libgo: update to Go1.10rc1
[official-gcc.git] / libgo / go / crypto / x509 / verify.go
blob9477e85b95167a8b9d2d1a7b3bd9797f023860cd
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package x509
7 import (
8 "bytes"
9 "errors"
10 "fmt"
11 "net"
12 "net/url"
13 "reflect"
14 "runtime"
15 "strings"
16 "time"
17 "unicode/utf8"
20 type InvalidReason int
22 const (
23 // NotAuthorizedToSign results when a certificate is signed by another
24 // which isn't marked as a CA certificate.
25 NotAuthorizedToSign InvalidReason = iota
26 // Expired results when a certificate has expired, based on the time
27 // given in the VerifyOptions.
28 Expired
29 // CANotAuthorizedForThisName results when an intermediate or root
30 // certificate has a name constraint which doesn't permit a DNS or
31 // other name (including IP address) in the leaf certificate.
32 CANotAuthorizedForThisName
33 // TooManyIntermediates results when a path length constraint is
34 // violated.
35 TooManyIntermediates
36 // IncompatibleUsage results when the certificate's key usage indicates
37 // that it may only be used for a different purpose.
38 IncompatibleUsage
39 // NameMismatch results when the subject name of a parent certificate
40 // does not match the issuer name in the child.
41 NameMismatch
42 // NameConstraintsWithoutSANs results when a leaf certificate doesn't
43 // contain a Subject Alternative Name extension, but a CA certificate
44 // contains name constraints.
45 NameConstraintsWithoutSANs
46 // UnconstrainedName results when a CA certificate contains permitted
47 // name constraints, but leaf certificate contains a name of an
48 // unsupported or unconstrained type.
49 UnconstrainedName
50 // TooManyConstraints results when the number of comparision operations
51 // needed to check a certificate exceeds the limit set by
52 // VerifyOptions.MaxConstraintComparisions. This limit exists to
53 // prevent pathological certificates can consuming excessive amounts of
54 // CPU time to verify.
55 TooManyConstraints
56 // CANotAuthorizedForExtKeyUsage results when an intermediate or root
57 // certificate does not permit an extended key usage that is claimed by
58 // the leaf certificate.
59 CANotAuthorizedForExtKeyUsage
62 // CertificateInvalidError results when an odd error occurs. Users of this
63 // library probably want to handle all these errors uniformly.
64 type CertificateInvalidError struct {
65 Cert *Certificate
66 Reason InvalidReason
67 Detail string
70 func (e CertificateInvalidError) Error() string {
71 switch e.Reason {
72 case NotAuthorizedToSign:
73 return "x509: certificate is not authorized to sign other certificates"
74 case Expired:
75 return "x509: certificate has expired or is not yet valid"
76 case CANotAuthorizedForThisName:
77 return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
78 case CANotAuthorizedForExtKeyUsage:
79 return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
80 case TooManyIntermediates:
81 return "x509: too many intermediates for path length constraint"
82 case IncompatibleUsage:
83 return "x509: certificate specifies an incompatible key usage: " + e.Detail
84 case NameMismatch:
85 return "x509: issuer name does not match subject from issuing certificate"
86 case NameConstraintsWithoutSANs:
87 return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
88 case UnconstrainedName:
89 return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
91 return "x509: unknown error"
94 // HostnameError results when the set of authorized names doesn't match the
95 // requested name.
96 type HostnameError struct {
97 Certificate *Certificate
98 Host string
101 func (h HostnameError) Error() string {
102 c := h.Certificate
104 var valid string
105 if ip := net.ParseIP(h.Host); ip != nil {
106 // Trying to validate an IP
107 if len(c.IPAddresses) == 0 {
108 return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
110 for _, san := range c.IPAddresses {
111 if len(valid) > 0 {
112 valid += ", "
114 valid += san.String()
116 } else {
117 if c.hasSANExtension() {
118 valid = strings.Join(c.DNSNames, ", ")
119 } else {
120 valid = c.Subject.CommonName
124 if len(valid) == 0 {
125 return "x509: certificate is not valid for any names, but wanted to match " + h.Host
127 return "x509: certificate is valid for " + valid + ", not " + h.Host
130 // UnknownAuthorityError results when the certificate issuer is unknown
131 type UnknownAuthorityError struct {
132 Cert *Certificate
133 // hintErr contains an error that may be helpful in determining why an
134 // authority wasn't found.
135 hintErr error
136 // hintCert contains a possible authority certificate that was rejected
137 // because of the error in hintErr.
138 hintCert *Certificate
141 func (e UnknownAuthorityError) Error() string {
142 s := "x509: certificate signed by unknown authority"
143 if e.hintErr != nil {
144 certName := e.hintCert.Subject.CommonName
145 if len(certName) == 0 {
146 if len(e.hintCert.Subject.Organization) > 0 {
147 certName = e.hintCert.Subject.Organization[0]
148 } else {
149 certName = "serial:" + e.hintCert.SerialNumber.String()
152 s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
154 return s
157 // SystemRootsError results when we fail to load the system root certificates.
158 type SystemRootsError struct {
159 Err error
162 func (se SystemRootsError) Error() string {
163 msg := "x509: failed to load system roots and no roots provided"
164 if se.Err != nil {
165 return msg + "; " + se.Err.Error()
167 return msg
170 // errNotParsed is returned when a certificate without ASN.1 contents is
171 // verified. Platform-specific verification needs the ASN.1 contents.
172 var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
174 // VerifyOptions contains parameters for Certificate.Verify. It's a structure
175 // because other PKIX verification APIs have ended up needing many options.
176 type VerifyOptions struct {
177 DNSName string
178 Intermediates *CertPool
179 Roots *CertPool // if nil, the system roots are used
180 CurrentTime time.Time // if zero, the current time is used
181 // KeyUsage specifies which Extended Key Usage values are acceptable.
182 // An empty list means ExtKeyUsageServerAuth. Key usage is considered a
183 // constraint down the chain which mirrors Windows CryptoAPI behavior,
184 // but not the spec. To accept any key usage, include ExtKeyUsageAny.
185 KeyUsages []ExtKeyUsage
186 // MaxConstraintComparisions is the maximum number of comparisons to
187 // perform when checking a given certificate's name constraints. If
188 // zero, a sensible default is used. This limit prevents pathalogical
189 // certificates from consuming excessive amounts of CPU time when
190 // validating.
191 MaxConstraintComparisions int
194 const (
195 leafCertificate = iota
196 intermediateCertificate
197 rootCertificate
200 // rfc2821Mailbox represents a “mailbox” (which is an email address to most
201 // people) by breaking it into the “local” (i.e. before the '@') and “domain”
202 // parts.
203 type rfc2821Mailbox struct {
204 local, domain string
207 // parseRFC2821Mailbox parses an email address into local and domain parts,
208 // based on the ABNF for a “Mailbox” from RFC 2821. According to
209 // https://tools.ietf.org/html/rfc5280#section-4.2.1.6 that's correct for an
210 // rfc822Name from a certificate: “The format of an rfc822Name is a "Mailbox"
211 // as defined in https://tools.ietf.org/html/rfc2821#section-4.1.2”.
212 func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
213 if len(in) == 0 {
214 return mailbox, false
217 localPartBytes := make([]byte, 0, len(in)/2)
219 if in[0] == '"' {
220 // Quoted-string = DQUOTE *qcontent DQUOTE
221 // non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
222 // qcontent = qtext / quoted-pair
223 // qtext = non-whitespace-control /
224 // %d33 / %d35-91 / %d93-126
225 // quoted-pair = ("\" text) / obs-qp
226 // text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
228 // (Names beginning with “obs-” are the obsolete syntax from
229 // https://tools.ietf.org/html/rfc2822#section-4. Since it has
230 // been 16 years, we no longer accept that.)
231 in = in[1:]
232 QuotedString:
233 for {
234 if len(in) == 0 {
235 return mailbox, false
237 c := in[0]
238 in = in[1:]
240 switch {
241 case c == '"':
242 break QuotedString
244 case c == '\\':
245 // quoted-pair
246 if len(in) == 0 {
247 return mailbox, false
249 if in[0] == 11 ||
250 in[0] == 12 ||
251 (1 <= in[0] && in[0] <= 9) ||
252 (14 <= in[0] && in[0] <= 127) {
253 localPartBytes = append(localPartBytes, in[0])
254 in = in[1:]
255 } else {
256 return mailbox, false
259 case c == 11 ||
260 c == 12 ||
261 // Space (char 32) is not allowed based on the
262 // BNF, but RFC 3696 gives an example that
263 // assumes that it is. Several “verified”
264 // errata continue to argue about this point.
265 // We choose to accept it.
266 c == 32 ||
267 c == 33 ||
268 c == 127 ||
269 (1 <= c && c <= 8) ||
270 (14 <= c && c <= 31) ||
271 (35 <= c && c <= 91) ||
272 (93 <= c && c <= 126):
273 // qtext
274 localPartBytes = append(localPartBytes, c)
276 default:
277 return mailbox, false
280 } else {
281 // Atom ("." Atom)*
282 NextChar:
283 for len(in) > 0 {
284 // atext from https://tools.ietf.org/html/rfc2822#section-3.2.4
285 c := in[0]
287 switch {
288 case c == '\\':
289 // Examples given in RFC 3696 suggest that
290 // escaped characters can appear outside of a
291 // quoted string. Several “verified” errata
292 // continue to argue the point. We choose to
293 // accept it.
294 in = in[1:]
295 if len(in) == 0 {
296 return mailbox, false
298 fallthrough
300 case ('0' <= c && c <= '9') ||
301 ('a' <= c && c <= 'z') ||
302 ('A' <= c && c <= 'Z') ||
303 c == '!' || c == '#' || c == '$' || c == '%' ||
304 c == '&' || c == '\'' || c == '*' || c == '+' ||
305 c == '-' || c == '/' || c == '=' || c == '?' ||
306 c == '^' || c == '_' || c == '`' || c == '{' ||
307 c == '|' || c == '}' || c == '~' || c == '.':
308 localPartBytes = append(localPartBytes, in[0])
309 in = in[1:]
311 default:
312 break NextChar
316 if len(localPartBytes) == 0 {
317 return mailbox, false
320 // https://tools.ietf.org/html/rfc3696#section-3
321 // “period (".") may also appear, but may not be used to start
322 // or end the local part, nor may two or more consecutive
323 // periods appear.”
324 twoDots := []byte{'.', '.'}
325 if localPartBytes[0] == '.' ||
326 localPartBytes[len(localPartBytes)-1] == '.' ||
327 bytes.Contains(localPartBytes, twoDots) {
328 return mailbox, false
332 if len(in) == 0 || in[0] != '@' {
333 return mailbox, false
335 in = in[1:]
337 // The RFC species a format for domains, but that's known to be
338 // violated in practice so we accept that anything after an '@' is the
339 // domain part.
340 if _, ok := domainToReverseLabels(in); !ok {
341 return mailbox, false
344 mailbox.local = string(localPartBytes)
345 mailbox.domain = in
346 return mailbox, true
349 // domainToReverseLabels converts a textual domain name like foo.example.com to
350 // the list of labels in reverse order, e.g. ["com", "example", "foo"].
351 func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
352 for len(domain) > 0 {
353 if i := strings.LastIndexByte(domain, '.'); i == -1 {
354 reverseLabels = append(reverseLabels, domain)
355 domain = ""
356 } else {
357 reverseLabels = append(reverseLabels, domain[i+1:len(domain)])
358 domain = domain[:i]
362 if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
363 // An empty label at the end indicates an absolute value.
364 return nil, false
367 for _, label := range reverseLabels {
368 if len(label) == 0 {
369 // Empty labels are otherwise invalid.
370 return nil, false
373 for _, c := range label {
374 if c < 33 || c > 126 {
375 // Invalid character.
376 return nil, false
381 return reverseLabels, true
384 func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
385 // If the constraint contains an @, then it specifies an exact mailbox
386 // name.
387 if strings.Contains(constraint, "@") {
388 constraintMailbox, ok := parseRFC2821Mailbox(constraint)
389 if !ok {
390 return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
392 return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
395 // Otherwise the constraint is like a DNS constraint of the domain part
396 // of the mailbox.
397 return matchDomainConstraint(mailbox.domain, constraint)
400 func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
401 // https://tools.ietf.org/html/rfc5280#section-4.2.1.10
402 // “a uniformResourceIdentifier that does not include an authority
403 // component with a host name specified as a fully qualified domain
404 // name (e.g., if the URI either does not include an authority
405 // component or includes an authority component in which the host name
406 // is specified as an IP address), then the application MUST reject the
407 // certificate.”
409 host := uri.Host
410 if len(host) == 0 {
411 return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
414 if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
415 var err error
416 host, _, err = net.SplitHostPort(uri.Host)
417 if err != nil {
418 return false, err
422 if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
423 net.ParseIP(host) != nil {
424 return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
427 return matchDomainConstraint(host, constraint)
430 func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
431 if len(ip) != len(constraint.IP) {
432 return false, nil
435 for i := range ip {
436 if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
437 return false, nil
441 return true, nil
444 func matchDomainConstraint(domain, constraint string) (bool, error) {
445 // The meaning of zero length constraints is not specified, but this
446 // code follows NSS and accepts them as matching everything.
447 if len(constraint) == 0 {
448 return true, nil
451 domainLabels, ok := domainToReverseLabels(domain)
452 if !ok {
453 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
456 // RFC 5280 says that a leading period in a domain name means that at
457 // least one label must be prepended, but only for URI and email
458 // constraints, not DNS constraints. The code also supports that
459 // behaviour for DNS constraints.
461 mustHaveSubdomains := false
462 if constraint[0] == '.' {
463 mustHaveSubdomains = true
464 constraint = constraint[1:]
467 constraintLabels, ok := domainToReverseLabels(constraint)
468 if !ok {
469 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
472 if len(domainLabels) < len(constraintLabels) ||
473 (mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
474 return false, nil
477 for i, constraintLabel := range constraintLabels {
478 if !strings.EqualFold(constraintLabel, domainLabels[i]) {
479 return false, nil
483 return true, nil
486 // checkNameConstraints checks that c permits a child certificate to claim the
487 // given name, of type nameType. The argument parsedName contains the parsed
488 // form of name, suitable for passing to the match function. The total number
489 // of comparisons is tracked in the given count and should not exceed the given
490 // limit.
491 func (c *Certificate) checkNameConstraints(count *int,
492 maxConstraintComparisons int,
493 nameType string,
494 name string,
495 parsedName interface{},
496 match func(parsedName, constraint interface{}) (match bool, err error),
497 permitted, excluded interface{}) error {
499 excludedValue := reflect.ValueOf(excluded)
501 *count += excludedValue.Len()
502 if *count > maxConstraintComparisons {
503 return CertificateInvalidError{c, TooManyConstraints, ""}
506 for i := 0; i < excludedValue.Len(); i++ {
507 constraint := excludedValue.Index(i).Interface()
508 match, err := match(parsedName, constraint)
509 if err != nil {
510 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
513 if match {
514 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
518 permittedValue := reflect.ValueOf(permitted)
520 *count += permittedValue.Len()
521 if *count > maxConstraintComparisons {
522 return CertificateInvalidError{c, TooManyConstraints, ""}
525 ok := true
526 for i := 0; i < permittedValue.Len(); i++ {
527 constraint := permittedValue.Index(i).Interface()
529 var err error
530 if ok, err = match(parsedName, constraint); err != nil {
531 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
534 if ok {
535 break
539 if !ok {
540 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
543 return nil
546 // ekuPermittedBy returns true iff the given extended key usage is permitted by
547 // the given EKU from a certificate. Normally, this would be a simple
548 // comparison plus a special case for the “any” EKU. But, in order to support
549 // existing certificates, some exceptions are made.
550 func ekuPermittedBy(eku, certEKU ExtKeyUsage) bool {
551 if certEKU == ExtKeyUsageAny || eku == certEKU {
552 return true
555 // Some exceptions are made to support existing certificates. Firstly,
556 // the ServerAuth and SGC EKUs are treated as a group.
557 mapServerAuthEKUs := func(eku ExtKeyUsage) ExtKeyUsage {
558 if eku == ExtKeyUsageNetscapeServerGatedCrypto || eku == ExtKeyUsageMicrosoftServerGatedCrypto {
559 return ExtKeyUsageServerAuth
561 return eku
564 eku = mapServerAuthEKUs(eku)
565 certEKU = mapServerAuthEKUs(certEKU)
567 if eku == certEKU ||
568 // ServerAuth in a CA permits ClientAuth in the leaf.
569 (eku == ExtKeyUsageClientAuth && certEKU == ExtKeyUsageServerAuth) ||
570 // Any CA may issue an OCSP responder certificate.
571 eku == ExtKeyUsageOCSPSigning ||
572 // Code-signing CAs can use Microsoft's commercial and
573 // kernel-mode EKUs.
574 ((eku == ExtKeyUsageMicrosoftCommercialCodeSigning || eku == ExtKeyUsageMicrosoftKernelCodeSigning) && certEKU == ExtKeyUsageCodeSigning) {
575 return true
578 return false
581 // isValid performs validity checks on c given that it is a candidate to append
582 // to the chain in currentChain.
583 func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
584 if len(c.UnhandledCriticalExtensions) > 0 {
585 return UnhandledCriticalExtension{}
588 if len(currentChain) > 0 {
589 child := currentChain[len(currentChain)-1]
590 if !bytes.Equal(child.RawIssuer, c.RawSubject) {
591 return CertificateInvalidError{c, NameMismatch, ""}
595 now := opts.CurrentTime
596 if now.IsZero() {
597 now = time.Now()
599 if now.Before(c.NotBefore) || now.After(c.NotAfter) {
600 return CertificateInvalidError{c, Expired, ""}
603 maxConstraintComparisons := opts.MaxConstraintComparisions
604 if maxConstraintComparisons == 0 {
605 maxConstraintComparisons = 250000
607 comparisonCount := 0
609 var leaf *Certificate
610 if certType == intermediateCertificate || certType == rootCertificate {
611 if len(currentChain) == 0 {
612 return errors.New("x509: internal error: empty chain when appending CA cert")
614 leaf = currentChain[0]
617 if (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints() {
618 sanExtension, ok := leaf.getSANExtension()
619 if !ok {
620 // This is the deprecated, legacy case of depending on
621 // the CN as a hostname. Chains modern enough to be
622 // using name constraints should not be depending on
623 // CNs.
624 return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""}
627 err := forEachSAN(sanExtension, func(tag int, data []byte) error {
628 switch tag {
629 case nameTypeEmail:
630 name := string(data)
631 mailbox, ok := parseRFC2821Mailbox(name)
632 if !ok {
633 // This certificate should not have parsed.
634 return errors.New("x509: internal error: rfc822Name SAN failed to parse")
637 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
638 func(parsedName, constraint interface{}) (bool, error) {
639 return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
640 }, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
641 return err
644 case nameTypeDNS:
645 name := string(data)
646 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
647 func(parsedName, constraint interface{}) (bool, error) {
648 return matchDomainConstraint(parsedName.(string), constraint.(string))
649 }, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
650 return err
653 case nameTypeURI:
654 name := string(data)
655 uri, err := url.Parse(name)
656 if err != nil {
657 return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
660 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
661 func(parsedName, constraint interface{}) (bool, error) {
662 return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
663 }, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
664 return err
667 case nameTypeIP:
668 ip := net.IP(data)
669 if l := len(ip); l != net.IPv4len && l != net.IPv6len {
670 return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
673 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
674 func(parsedName, constraint interface{}) (bool, error) {
675 return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
676 }, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
677 return err
680 default:
681 // Unknown SAN types are ignored.
684 return nil
687 if err != nil {
688 return err
692 checkEKUs := certType == intermediateCertificate
694 // If no extended key usages are specified, then all are acceptable.
695 if checkEKUs && (len(c.ExtKeyUsage) == 0 && len(c.UnknownExtKeyUsage) == 0) {
696 checkEKUs = false
699 // If the “any” key usage is permitted, then no more checks are needed.
700 if checkEKUs {
701 for _, caEKU := range c.ExtKeyUsage {
702 comparisonCount++
703 if caEKU == ExtKeyUsageAny {
704 checkEKUs = false
705 break
710 if checkEKUs {
711 NextEKU:
712 for _, eku := range leaf.ExtKeyUsage {
713 if comparisonCount > maxConstraintComparisons {
714 return CertificateInvalidError{c, TooManyConstraints, ""}
717 for _, caEKU := range c.ExtKeyUsage {
718 comparisonCount++
719 if ekuPermittedBy(eku, caEKU) {
720 continue NextEKU
724 oid, _ := oidFromExtKeyUsage(eku)
725 return CertificateInvalidError{c, CANotAuthorizedForExtKeyUsage, fmt.Sprintf("EKU not permitted: %#v", oid)}
728 NextUnknownEKU:
729 for _, eku := range leaf.UnknownExtKeyUsage {
730 if comparisonCount > maxConstraintComparisons {
731 return CertificateInvalidError{c, TooManyConstraints, ""}
734 for _, caEKU := range c.UnknownExtKeyUsage {
735 comparisonCount++
736 if caEKU.Equal(eku) {
737 continue NextUnknownEKU
741 return CertificateInvalidError{c, CANotAuthorizedForExtKeyUsage, fmt.Sprintf("EKU not permitted: %#v", eku)}
745 // KeyUsage status flags are ignored. From Engineering Security, Peter
746 // Gutmann: A European government CA marked its signing certificates as
747 // being valid for encryption only, but no-one noticed. Another
748 // European CA marked its signature keys as not being valid for
749 // signatures. A different CA marked its own trusted root certificate
750 // as being invalid for certificate signing. Another national CA
751 // distributed a certificate to be used to encrypt data for the
752 // country’s tax authority that was marked as only being usable for
753 // digital signatures but not for encryption. Yet another CA reversed
754 // the order of the bit flags in the keyUsage due to confusion over
755 // encoding endianness, essentially setting a random keyUsage in
756 // certificates that it issued. Another CA created a self-invalidating
757 // certificate by adding a certificate policy statement stipulating
758 // that the certificate had to be used strictly as specified in the
759 // keyUsage, and a keyUsage containing a flag indicating that the RSA
760 // encryption key could only be used for Diffie-Hellman key agreement.
762 if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
763 return CertificateInvalidError{c, NotAuthorizedToSign, ""}
766 if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
767 numIntermediates := len(currentChain) - 1
768 if numIntermediates > c.MaxPathLen {
769 return CertificateInvalidError{c, TooManyIntermediates, ""}
773 return nil
776 // Verify attempts to verify c by building one or more chains from c to a
777 // certificate in opts.Roots, using certificates in opts.Intermediates if
778 // needed. If successful, it returns one or more chains where the first
779 // element of the chain is c and the last element is from opts.Roots.
781 // If opts.Roots is nil and system roots are unavailable the returned error
782 // will be of type SystemRootsError.
784 // Name constraints in the intermediates will be applied to all names claimed
785 // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
786 // example.com if an intermediate doesn't permit it, even if example.com is not
787 // the name being validated. Note that DirectoryName constraints are not
788 // supported.
790 // Extended Key Usage values are enforced down a chain, so an intermediate or
791 // root that enumerates EKUs prevents a leaf from asserting an EKU not in that
792 // list.
794 // WARNING: this function doesn't do any revocation checking.
795 func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
796 // Platform-specific verification needs the ASN.1 contents so
797 // this makes the behavior consistent across platforms.
798 if len(c.Raw) == 0 {
799 return nil, errNotParsed
801 if opts.Intermediates != nil {
802 for _, intermediate := range opts.Intermediates.certs {
803 if len(intermediate.Raw) == 0 {
804 return nil, errNotParsed
809 // Use Windows's own verification and chain building.
810 if opts.Roots == nil && runtime.GOOS == "windows" {
811 return c.systemVerify(&opts)
814 if opts.Roots == nil {
815 opts.Roots = systemRootsPool()
816 if opts.Roots == nil {
817 return nil, SystemRootsError{systemRootsErr}
821 err = c.isValid(leafCertificate, nil, &opts)
822 if err != nil {
823 return
826 if len(opts.DNSName) > 0 {
827 err = c.VerifyHostname(opts.DNSName)
828 if err != nil {
829 return
833 requestedKeyUsages := make([]ExtKeyUsage, len(opts.KeyUsages))
834 copy(requestedKeyUsages, opts.KeyUsages)
835 if len(requestedKeyUsages) == 0 {
836 requestedKeyUsages = append(requestedKeyUsages, ExtKeyUsageServerAuth)
839 // If no key usages are specified, then any are acceptable.
840 checkEKU := len(c.ExtKeyUsage) > 0
842 for _, eku := range requestedKeyUsages {
843 if eku == ExtKeyUsageAny {
844 checkEKU = false
845 break
849 if checkEKU {
850 NextUsage:
851 for _, eku := range requestedKeyUsages {
852 for _, leafEKU := range c.ExtKeyUsage {
853 if ekuPermittedBy(eku, leafEKU) {
854 continue NextUsage
858 oid, _ := oidFromExtKeyUsage(eku)
859 return nil, CertificateInvalidError{c, IncompatibleUsage, fmt.Sprintf("%#v", oid)}
863 var candidateChains [][]*Certificate
864 if opts.Roots.contains(c) {
865 candidateChains = append(candidateChains, []*Certificate{c})
866 } else {
867 if candidateChains, err = c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts); err != nil {
868 return nil, err
872 return candidateChains, nil
875 func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
876 n := make([]*Certificate, len(chain)+1)
877 copy(n, chain)
878 n[len(chain)] = cert
879 return n
882 func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
883 possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
884 nextRoot:
885 for _, rootNum := range possibleRoots {
886 root := opts.Roots.certs[rootNum]
888 for _, cert := range currentChain {
889 if cert.Equal(root) {
890 continue nextRoot
894 err = root.isValid(rootCertificate, currentChain, opts)
895 if err != nil {
896 continue
898 chains = append(chains, appendToFreshChain(currentChain, root))
901 possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
902 nextIntermediate:
903 for _, intermediateNum := range possibleIntermediates {
904 intermediate := opts.Intermediates.certs[intermediateNum]
905 for _, cert := range currentChain {
906 if cert.Equal(intermediate) {
907 continue nextIntermediate
910 err = intermediate.isValid(intermediateCertificate, currentChain, opts)
911 if err != nil {
912 continue
914 var childChains [][]*Certificate
915 childChains, ok := cache[intermediateNum]
916 if !ok {
917 childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
918 cache[intermediateNum] = childChains
920 chains = append(chains, childChains...)
923 if len(chains) > 0 {
924 err = nil
927 if len(chains) == 0 && err == nil {
928 hintErr := rootErr
929 hintCert := failedRoot
930 if hintErr == nil {
931 hintErr = intermediateErr
932 hintCert = failedIntermediate
934 err = UnknownAuthorityError{c, hintErr, hintCert}
937 return
940 func matchHostnames(pattern, host string) bool {
941 host = strings.TrimSuffix(host, ".")
942 pattern = strings.TrimSuffix(pattern, ".")
944 if len(pattern) == 0 || len(host) == 0 {
945 return false
948 patternParts := strings.Split(pattern, ".")
949 hostParts := strings.Split(host, ".")
951 if len(patternParts) != len(hostParts) {
952 return false
955 for i, patternPart := range patternParts {
956 if i == 0 && patternPart == "*" {
957 continue
959 if patternPart != hostParts[i] {
960 return false
964 return true
967 // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
968 // an explicitly ASCII function to avoid any sharp corners resulting from
969 // performing Unicode operations on DNS labels.
970 func toLowerCaseASCII(in string) string {
971 // If the string is already lower-case then there's nothing to do.
972 isAlreadyLowerCase := true
973 for _, c := range in {
974 if c == utf8.RuneError {
975 // If we get a UTF-8 error then there might be
976 // upper-case ASCII bytes in the invalid sequence.
977 isAlreadyLowerCase = false
978 break
980 if 'A' <= c && c <= 'Z' {
981 isAlreadyLowerCase = false
982 break
986 if isAlreadyLowerCase {
987 return in
990 out := []byte(in)
991 for i, c := range out {
992 if 'A' <= c && c <= 'Z' {
993 out[i] += 'a' - 'A'
996 return string(out)
999 // VerifyHostname returns nil if c is a valid certificate for the named host.
1000 // Otherwise it returns an error describing the mismatch.
1001 func (c *Certificate) VerifyHostname(h string) error {
1002 // IP addresses may be written in [ ].
1003 candidateIP := h
1004 if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
1005 candidateIP = h[1 : len(h)-1]
1007 if ip := net.ParseIP(candidateIP); ip != nil {
1008 // We only match IP addresses against IP SANs.
1009 // https://tools.ietf.org/html/rfc6125#appendix-B.2
1010 for _, candidate := range c.IPAddresses {
1011 if ip.Equal(candidate) {
1012 return nil
1015 return HostnameError{c, candidateIP}
1018 lowered := toLowerCaseASCII(h)
1020 if c.hasSANExtension() {
1021 for _, match := range c.DNSNames {
1022 if matchHostnames(toLowerCaseASCII(match), lowered) {
1023 return nil
1026 // If Subject Alt Name is given, we ignore the common name.
1027 } else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
1028 return nil
1031 return HostnameError{c, h}