* c-decl.c (grokdeclarator): Use ISO word.
[official-gcc.git] / gcc / config / mips / mips.h
blob106026b4b7140b6502c6aa6b5ecc0331b9ef54d1
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
9 This file is part of GNU CC.
11 GNU CC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
16 GNU CC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GNU CC; see the file COPYING. If not, write to
23 the Free Software Foundation, 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
27 /* Standard GCC variables that we reference. */
29 extern char *asm_file_name;
30 extern char call_used_regs[];
31 extern int may_call_alloca;
32 extern char **save_argv;
33 extern int target_flags;
35 /* MIPS external variables defined in mips.c. */
37 /* comparison type */
38 enum cmp_type {
39 CMP_SI, /* compare four byte integers */
40 CMP_DI, /* compare eight byte integers */
41 CMP_SF, /* compare single precision floats */
42 CMP_DF, /* compare double precision floats */
43 CMP_MAX /* max comparison type */
46 /* types of delay slot */
47 enum delay_type {
48 DELAY_NONE, /* no delay slot */
49 DELAY_LOAD, /* load from memory delay */
50 DELAY_HILO, /* move from/to hi/lo registers */
51 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
54 /* Which processor to schedule for. Since there is no difference between
55 a R2000 and R3000 in terms of the scheduler, we collapse them into
56 just an R3000. The elements of the enumeration must match exactly
57 the cpu attribute in the mips.md machine description. */
59 enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
62 PROCESSOR_R3900,
63 PROCESSOR_R6000,
64 PROCESSOR_R4000,
65 PROCESSOR_R4100,
66 PROCESSOR_R4300,
67 PROCESSOR_R4600,
68 PROCESSOR_R4650,
69 PROCESSOR_R5000,
70 PROCESSOR_R8000,
71 PROCESSOR_R4KC,
72 PROCESSOR_R5KC,
73 PROCESSOR_R20KC
76 /* Recast the cpu class to be the cpu attribute. */
77 #define mips_cpu_attr ((enum attr_cpu)mips_tune)
79 /* Which ABI to use. These are constants because abi64.h must check their
80 value at preprocessing time.
82 ABI_32 (original 32, or o32), ABI_N32 (n32), ABI_64 (n64) are all
83 defined by SGI. ABI_O64 is o32 extended to work on a 64 bit machine. */
85 #define ABI_32 0
86 #define ABI_N32 1
87 #define ABI_64 2
88 #define ABI_EABI 3
89 #define ABI_O64 4
90 /* MEABI is gcc's internal name for MIPS' new EABI (defined by MIPS)
91 which is not the same as the above EABI (defined by Cygnus,
92 Greenhills, and Toshiba?). MEABI is not yet complete or published,
93 but at this point it looks like N32 as far as calling conventions go,
94 but allows for either 32 or 64 bit registers.
96 Currently MIPS is calling their EABI "the" MIPS EABI, and Cygnus'
97 EABI the legacy EABI. In the end we may end up calling both ABI's
98 EABI but give them different version numbers, but for now I'm going
99 with different names. */
100 #define ABI_MEABI 5
102 /* Whether to emit abicalls code sequences or not. */
104 enum mips_abicalls_type {
105 MIPS_ABICALLS_NO,
106 MIPS_ABICALLS_YES
109 /* Recast the abicalls class to be the abicalls attribute. */
110 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
112 /* Which type of block move to do (whether or not the last store is
113 split out so it can fill a branch delay slot). */
115 enum block_move_type {
116 BLOCK_MOVE_NORMAL, /* generate complete block move */
117 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
118 BLOCK_MOVE_LAST /* generate just the last store */
121 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
122 extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
123 extern const char *current_function_file; /* filename current function is in */
124 extern int num_source_filenames; /* current .file # */
125 extern int inside_function; /* != 0 if inside of a function */
126 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
127 extern int file_in_function_warning; /* warning given about .file in func */
128 extern int sdb_label_count; /* block start/end next label # */
129 extern int sdb_begin_function_line; /* Starting Line of current function */
130 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
131 extern int g_switch_value; /* value of the -G xx switch */
132 extern int g_switch_set; /* whether -G xx was passed. */
133 extern int sym_lineno; /* sgi next label # for each stmt */
134 extern int set_noreorder; /* # of nested .set noreorder's */
135 extern int set_nomacro; /* # of nested .set nomacro's */
136 extern int set_noat; /* # of nested .set noat's */
137 extern int set_volatile; /* # of nested .set volatile's */
138 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
139 extern int mips_dbx_regno[]; /* Map register # to debug register # */
140 extern struct rtx_def *branch_cmp[2]; /* operands for compare */
141 extern enum cmp_type branch_type; /* what type of branch to use */
142 extern enum processor_type mips_arch; /* which cpu to codegen for */
143 extern enum processor_type mips_tune; /* which cpu to schedule for */
144 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
145 extern int mips_isa; /* architectural level */
146 extern int mips16; /* whether generating mips16 code */
147 extern int mips16_hard_float; /* mips16 without -msoft-float */
148 extern int mips_entry; /* generate entry/exit for mips16 */
149 extern const char *mips_cpu_string; /* for -mcpu=<xxx> */
150 extern const char *mips_arch_string; /* for -march=<xxx> */
151 extern const char *mips_tune_string; /* for -mtune=<xxx> */
152 extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
153 extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
154 extern const char *mips_entry_string; /* for -mentry */
155 extern const char *mips_no_mips16_string;/* for -mno-mips16 */
156 extern const char *mips_explicit_type_size_string;/* for -mexplicit-type-size */
157 extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
158 extern int mips_split_addresses; /* perform high/lo_sum support */
159 extern int dslots_load_total; /* total # load related delay slots */
160 extern int dslots_load_filled; /* # filled load delay slots */
161 extern int dslots_jump_total; /* total # jump related delay slots */
162 extern int dslots_jump_filled; /* # filled jump delay slots */
163 extern int dslots_number_nops; /* # of nops needed by previous insn */
164 extern int num_refs[3]; /* # 1/2/3 word references */
165 extern struct rtx_def *mips_load_reg; /* register to check for load delay */
166 extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
167 extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
168 extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
169 extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
170 extern int mips_string_length; /* length of strings for mips16 */
171 extern struct rtx_def *mips16_gp_pseudo_rtx; /* psuedo reg holding $gp */
173 /* Functions to change what output section we are using. */
174 extern void rdata_section PARAMS ((void));
175 extern void sdata_section PARAMS ((void));
176 extern void sbss_section PARAMS ((void));
178 /* Stubs for half-pic support if not OSF/1 reference platform. */
180 #ifndef HALF_PIC_P
181 #define HALF_PIC_P() 0
182 #define HALF_PIC_NUMBER_PTRS 0
183 #define HALF_PIC_NUMBER_REFS 0
184 #define HALF_PIC_ENCODE(DECL)
185 #define HALF_PIC_DECLARE(NAME)
186 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
187 #define HALF_PIC_ADDRESS_P(X) 0
188 #define HALF_PIC_PTR(X) X
189 #define HALF_PIC_FINISH(STREAM)
190 #endif
192 /* Macros to silence warnings about numbers being signed in traditional
193 C and unsigned in ISO C when compiled on 32-bit hosts. */
195 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
196 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
197 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
200 /* Run-time compilation parameters selecting different hardware subsets. */
202 /* Macros used in the machine description to test the flags. */
204 /* Bits for real switches */
205 #define MASK_INT64 0x00000001 /* ints are 64 bits */
206 #define MASK_LONG64 0x00000002 /* longs are 64 bits */
207 #define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
208 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
209 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
210 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
211 #define MASK_STATS 0x00000040 /* print statistics to stderr */
212 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
213 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
214 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
215 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
216 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
217 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
218 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
219 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
220 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
221 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
222 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
223 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
224 #define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
225 #define MASK_MIPS16 0x00100000 /* Generate mips16 code */
226 #define MASK_NO_CHECK_ZERO_DIV \
227 0x00200000 /* divide by zero checking */
228 #define MASK_CHECK_RANGE_DIV \
229 0x00400000 /* divide result range checking */
230 #define MASK_UNINIT_CONST_IN_RODATA \
231 0x00800000 /* Store uninitialized
232 consts in rodata */
233 #define MASK_NO_FUSED_MADD 0x01000000 /* Don't generate floating point
234 multiply-add operations. */
236 /* Debug switches, not documented */
237 #define MASK_DEBUG 0 /* unused */
238 #define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
239 #define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
240 #define MASK_DEBUG_C 0 /* don't expand seq, etc. */
241 #define MASK_DEBUG_D 0 /* don't do define_split's */
242 #define MASK_DEBUG_E 0 /* function_arg debug */
243 #define MASK_DEBUG_F 0 /* ??? */
244 #define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
245 #define MASK_DEBUG_H 0 /* allow ints in FP registers */
246 #define MASK_DEBUG_I 0 /* unused */
248 /* Dummy switches used only in specs */
249 #define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
251 /* r4000 64 bit sizes */
252 #define TARGET_INT64 (target_flags & MASK_INT64)
253 #define TARGET_LONG64 (target_flags & MASK_LONG64)
254 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
255 #define TARGET_64BIT (target_flags & MASK_64BIT)
257 /* Mips vs. GNU linker */
258 #define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
260 /* Mips vs. GNU assembler */
261 #define TARGET_GAS (target_flags & MASK_GAS)
262 #define TARGET_MIPS_AS (!TARGET_GAS)
264 /* Debug Modes */
265 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
266 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
267 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
268 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
269 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
270 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
271 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
272 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
273 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
274 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
276 /* Reg. Naming in .s ($21 vs. $a0) */
277 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
279 /* Optimize for Sdata/Sbss */
280 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
282 /* print program statistics */
283 #define TARGET_STATS (target_flags & MASK_STATS)
285 /* call memcpy instead of inline code */
286 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
288 /* .abicalls, etc from Pyramid V.4 */
289 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
291 /* OSF pic references to externs */
292 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
294 /* software floating point */
295 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
296 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
298 /* always call through a register */
299 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
301 /* generate embedded PIC code;
302 requires gas. */
303 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
305 /* for embedded systems, optimize for
306 reduced RAM space instead of for
307 fastest code. */
308 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
310 /* always store uninitialized const
311 variables in rodata, requires
312 TARGET_EMBEDDED_DATA. */
313 #define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
315 /* generate big endian code. */
316 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
318 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
319 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
321 #define TARGET_MAD (target_flags & MASK_MAD)
323 #define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
325 #define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
327 #define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
328 #define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
330 /* This is true if we must enable the assembly language file switching
331 code. */
333 #define TARGET_FILE_SWITCHING \
334 (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
336 /* We must disable the function end stabs when doing the file switching trick,
337 because the Lscope stabs end up in the wrong place, making it impossible
338 to debug the resulting code. */
339 #define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
341 /* Generate mips16 code */
342 #define TARGET_MIPS16 (target_flags & MASK_MIPS16)
344 /* Architecture target defines. */
345 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
346 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
347 #define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100)
348 #define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
349 #define TARGET_MIPS4KC (mips_arch == PROCESSOR_R4KC)
350 #define TARGET_MIPS5KC (mips_arch == PROCESSOR_R5KC)
352 /* Scheduling target defines. */
353 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
354 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
355 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
356 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
357 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
359 /* Macro to define tables used to set the flags.
360 This is a list in braces of pairs in braces,
361 each pair being { "NAME", VALUE }
362 where VALUE is the bits to set or minus the bits to clear.
363 An empty string NAME is used to identify the default VALUE. */
365 #define TARGET_SWITCHES \
367 {"no-crt0", 0, \
368 N_("No default crt0.o") }, \
369 {"int64", MASK_INT64 | MASK_LONG64, \
370 N_("Use 64-bit int type")}, \
371 {"long64", MASK_LONG64, \
372 N_("Use 64-bit long type")}, \
373 {"long32", -(MASK_LONG64 | MASK_INT64), \
374 N_("Use 32-bit long type")}, \
375 {"split-addresses", MASK_SPLIT_ADDR, \
376 N_("Optimize lui/addiu address loads")}, \
377 {"no-split-addresses", -MASK_SPLIT_ADDR, \
378 N_("Don't optimize lui/addiu address loads")}, \
379 {"mips-as", -MASK_GAS, \
380 N_("Use MIPS as")}, \
381 {"gas", MASK_GAS, \
382 N_("Use GNU as")}, \
383 {"rnames", MASK_NAME_REGS, \
384 N_("Use symbolic register names")}, \
385 {"no-rnames", -MASK_NAME_REGS, \
386 N_("Don't use symbolic register names")}, \
387 {"gpOPT", MASK_GPOPT, \
388 N_("Use GP relative sdata/sbss sections")}, \
389 {"gpopt", MASK_GPOPT, \
390 N_("Use GP relative sdata/sbss sections")}, \
391 {"no-gpOPT", -MASK_GPOPT, \
392 N_("Don't use GP relative sdata/sbss sections")}, \
393 {"no-gpopt", -MASK_GPOPT, \
394 N_("Don't use GP relative sdata/sbss sections")}, \
395 {"stats", MASK_STATS, \
396 N_("Output compiler statistics")}, \
397 {"no-stats", -MASK_STATS, \
398 N_("Don't output compiler statistics")}, \
399 {"memcpy", MASK_MEMCPY, \
400 N_("Don't optimize block moves")}, \
401 {"no-memcpy", -MASK_MEMCPY, \
402 N_("Optimize block moves")}, \
403 {"mips-tfile", MASK_MIPS_TFILE, \
404 N_("Use mips-tfile asm postpass")}, \
405 {"no-mips-tfile", -MASK_MIPS_TFILE, \
406 N_("Don't use mips-tfile asm postpass")}, \
407 {"soft-float", MASK_SOFT_FLOAT, \
408 N_("Use software floating point")}, \
409 {"hard-float", -MASK_SOFT_FLOAT, \
410 N_("Use hardware floating point")}, \
411 {"fp64", MASK_FLOAT64, \
412 N_("Use 64-bit FP registers")}, \
413 {"fp32", -MASK_FLOAT64, \
414 N_("Use 32-bit FP registers")}, \
415 {"gp64", MASK_64BIT, \
416 N_("Use 64-bit general registers")}, \
417 {"gp32", -MASK_64BIT, \
418 N_("Use 32-bit general registers")}, \
419 {"abicalls", MASK_ABICALLS, \
420 N_("Use Irix PIC")}, \
421 {"no-abicalls", -MASK_ABICALLS, \
422 N_("Don't use Irix PIC")}, \
423 {"half-pic", MASK_HALF_PIC, \
424 N_("Use OSF PIC")}, \
425 {"no-half-pic", -MASK_HALF_PIC, \
426 N_("Don't use OSF PIC")}, \
427 {"long-calls", MASK_LONG_CALLS, \
428 N_("Use indirect calls")}, \
429 {"no-long-calls", -MASK_LONG_CALLS, \
430 N_("Don't use indirect calls")}, \
431 {"embedded-pic", MASK_EMBEDDED_PIC, \
432 N_("Use embedded PIC")}, \
433 {"no-embedded-pic", -MASK_EMBEDDED_PIC, \
434 N_("Don't use embedded PIC")}, \
435 {"embedded-data", MASK_EMBEDDED_DATA, \
436 N_("Use ROM instead of RAM")}, \
437 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
438 N_("Don't use ROM instead of RAM")}, \
439 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
440 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
441 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
442 N_("Don't put uninitialized constants in ROM")}, \
443 {"eb", MASK_BIG_ENDIAN, \
444 N_("Use big-endian byte order")}, \
445 {"el", -MASK_BIG_ENDIAN, \
446 N_("Use little-endian byte order")}, \
447 {"single-float", MASK_SINGLE_FLOAT, \
448 N_("Use single (32-bit) FP only")}, \
449 {"double-float", -MASK_SINGLE_FLOAT, \
450 N_("Don't use single (32-bit) FP only")}, \
451 {"mad", MASK_MAD, \
452 N_("Use multiply accumulate")}, \
453 {"no-mad", -MASK_MAD, \
454 N_("Don't use multiply accumulate")}, \
455 {"no-fused-madd", MASK_NO_FUSED_MADD, \
456 N_("Don't generate fused multiply/add instructions")}, \
457 {"fused-madd", -MASK_NO_FUSED_MADD, \
458 N_("Generate fused multiply/add instructions")}, \
459 {"fix4300", MASK_4300_MUL_FIX, \
460 N_("Work around early 4300 hardware bug")}, \
461 {"no-fix4300", -MASK_4300_MUL_FIX, \
462 N_("Don't work around early 4300 hardware bug")}, \
463 {"3900", 0, \
464 N_("Optimize for 3900")}, \
465 {"4650", 0, \
466 N_("Optimize for 4650")}, \
467 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
468 N_("Trap on integer divide by zero")}, \
469 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
470 N_("Don't trap on integer divide by zero")}, \
471 {"check-range-division",MASK_CHECK_RANGE_DIV, \
472 N_("Trap on integer divide overflow")}, \
473 {"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
474 N_("Don't trap on integer divide overflow")}, \
475 {"debug", MASK_DEBUG, \
476 NULL}, \
477 {"debuga", MASK_DEBUG_A, \
478 NULL}, \
479 {"debugb", MASK_DEBUG_B, \
480 NULL}, \
481 {"debugc", MASK_DEBUG_C, \
482 NULL}, \
483 {"debugd", MASK_DEBUG_D, \
484 NULL}, \
485 {"debuge", MASK_DEBUG_E, \
486 NULL}, \
487 {"debugf", MASK_DEBUG_F, \
488 NULL}, \
489 {"debugg", MASK_DEBUG_G, \
490 NULL}, \
491 {"debugh", MASK_DEBUG_H, \
492 NULL}, \
493 {"debugi", MASK_DEBUG_I, \
494 NULL}, \
495 {"", (TARGET_DEFAULT \
496 | TARGET_CPU_DEFAULT \
497 | TARGET_ENDIAN_DEFAULT), \
498 NULL}, \
501 /* Default target_flags if no switches are specified */
503 #ifndef TARGET_DEFAULT
504 #define TARGET_DEFAULT 0
505 #endif
507 #ifndef TARGET_CPU_DEFAULT
508 #define TARGET_CPU_DEFAULT 0
509 #endif
511 #ifndef TARGET_ENDIAN_DEFAULT
512 #ifndef DECSTATION
513 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
514 #else
515 #define TARGET_ENDIAN_DEFAULT 0
516 #endif
517 #endif
519 #ifndef MIPS_ISA_DEFAULT
520 #define MIPS_ISA_DEFAULT 1
521 #endif
523 #ifdef IN_LIBGCC2
524 #undef TARGET_64BIT
525 /* Make this compile time constant for libgcc2 */
526 #ifdef __mips64
527 #define TARGET_64BIT 1
528 #else
529 #define TARGET_64BIT 0
530 #endif
531 #endif /* IN_LIBGCC2 */
533 #ifndef MULTILIB_ENDIAN_DEFAULT
534 #if TARGET_ENDIAN_DEFAULT == 0
535 #define MULTILIB_ENDIAN_DEFAULT "EL"
536 #else
537 #define MULTILIB_ENDIAN_DEFAULT "EB"
538 #endif
539 #endif
541 #ifndef MULTILIB_ISA_DEFAULT
542 # if MIPS_ISA_DEFAULT == 1
543 # define MULTILIB_ISA_DEFAULT "mips1"
544 # else
545 # if MIPS_ISA_DEFAULT == 2
546 # define MULTILIB_ISA_DEFAULT "mips2"
547 # else
548 # if MIPS_ISA_DEFAULT == 3
549 # define MULTILIB_ISA_DEFAULT "mips3"
550 # else
551 # if MIPS_ISA_DEFAULT == 4
552 # define MULTILIB_ISA_DEFAULT "mips4"
553 # else
554 # if MIPS_ISA_DEFAULT == 32
555 # define MULTILIB_ISA_DEFAULT "mips32"
556 # else
557 # if MIPS_ISA_DEFAULT == 64
558 # define MULTILIB_ISA_DEFAULT "mips64"
559 # else
560 # define MULTILIB_ISA_DEFAULT "mips1"
561 # endif
562 # endif
563 # endif
564 # endif
565 # endif
566 # endif
567 #endif
569 #ifndef MULTILIB_DEFAULTS
570 #define MULTILIB_DEFAULTS { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT }
571 #endif
573 /* We must pass -EL to the linker by default for little endian embedded
574 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
575 linker will default to using big-endian output files. The OUTPUT_FORMAT
576 line must be in the linker script, otherwise -EB/-EL will not work. */
578 #ifndef ENDIAN_SPEC
579 #if TARGET_ENDIAN_DEFAULT == 0
580 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EL} %{EB}"
581 #else
582 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EB} %{EL}"
583 #endif
584 #endif
586 /* This macro is similar to `TARGET_SWITCHES' but defines names of
587 command options that have values. Its definition is an
588 initializer with a subgrouping for each command option.
590 Each subgrouping contains a string constant, that defines the
591 fixed part of the option name, and the address of a variable.
592 The variable, type `char *', is set to the variable part of the
593 given option if the fixed part matches. The actual option name
594 is made by appending `-m' to the specified name.
596 Here is an example which defines `-mshort-data-NUMBER'. If the
597 given option is `-mshort-data-512', the variable `m88k_short_data'
598 will be set to the string `"512"'.
600 extern char *m88k_short_data;
601 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
603 #define TARGET_OPTIONS \
605 SUBTARGET_TARGET_OPTIONS \
606 { "cpu=", &mips_cpu_string, \
607 N_("Specify CPU for scheduling purposes")}, \
608 { "tune=", &mips_tune_string, \
609 N_("Specify CPU for scheduling purposes")}, \
610 { "arch=", &mips_arch_string, \
611 N_("Specify CPU for code generation purposes")}, \
612 { "ips", &mips_isa_string, \
613 N_("Specify a Standard MIPS ISA")}, \
614 { "entry", &mips_entry_string, \
615 N_("Use mips16 entry/exit psuedo ops")}, \
616 { "no-mips16", &mips_no_mips16_string, \
617 N_("Don't use MIPS16 instructions")}, \
618 { "explicit-type-size", &mips_explicit_type_size_string, \
619 NULL}, \
620 { "no-flush-func", &mips_cache_flush_func, \
621 N_("Don't call any cache flush functions")}, \
622 { "flush-func=", &mips_cache_flush_func, \
623 N_("Specify cache flush function")}, \
626 /* This is meant to be redefined in the host dependent files. */
627 #define SUBTARGET_TARGET_OPTIONS
629 #define GENERATE_BRANCHLIKELY (!TARGET_MIPS16 && ISA_HAS_BRANCHLIKELY)
631 /* Generate three-operand multiply instructions for SImode. */
632 #define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
633 || mips_isa == 32 \
634 || mips_isa == 64) \
635 && !TARGET_MIPS16)
637 /* Generate three-operand multiply instructions for DImode. */
638 #define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
639 && !TARGET_MIPS16)
641 /* Macros to decide whether certain features are available or not,
642 depending on the instruction set architecture level. */
644 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
645 #define HAVE_SQRT_P() (mips_isa != 1)
647 /* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
648 #define ISA_HAS_64BIT_REGS (mips_isa == 3 \
649 || mips_isa == 4 \
650 || mips_isa == 64)
652 /* ISA has branch likely instructions (eg. mips2). */
653 /* Disable branchlikely for tx39 until compare rewrite. They haven't
654 been generated up to this point. */
655 #define ISA_HAS_BRANCHLIKELY (mips_isa != 1 \
656 /* || TARGET_MIPS3900 */)
658 /* ISA has the conditional move instructions introduced in mips4. */
659 #define ISA_HAS_CONDMOVE (mips_isa == 4 \
660 || mips_isa == 32 \
661 || mips_isa == 64)
663 /* ISA has just the integer condition move instructions (movn,movz) */
664 #define ISA_HAS_INT_CONDMOVE 0
668 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
669 branch on CC, and move (both FP and non-FP) on CC. */
670 #define ISA_HAS_8CC (mips_isa == 4 \
671 || mips_isa == 32 \
672 || mips_isa == 64)
675 /* This is a catch all for the other new mips4 instructions: indexed load and
676 indexed prefetch instructions, the FP madd,msub,nmadd, and nmsub instructions,
677 and the FP recip and recip sqrt instructions */
678 #define ISA_HAS_FP4 (mips_isa == 4 \
681 /* ISA has conditional trap instructions. */
682 #define ISA_HAS_COND_TRAP (mips_isa >= 2)
684 /* ISA has multiply-accumulate instructions, madd and msub. */
685 #define ISA_HAS_MADD_MSUB (mips_isa == 32 \
686 || mips_isa == 64 \
689 /* ISA has nmadd and nmsub instructions. */
690 #define ISA_HAS_NMADD_NMSUB (mips_isa == 4 \
693 /* ISA has count leading zeroes/ones instruction (not implemented). */
694 #define ISA_HAS_CLZ_CLO (mips_isa == 32 \
695 || mips_isa == 64 \
698 /* ISA has double-word count leading zeroes/ones instruction (not
699 implemented). */
700 #define ISA_HAS_DCLZ_DCLO (mips_isa == 64)
703 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
704 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
705 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
706 target_flags, and -mgp64 sets MASK_64BIT.
708 Setting MASK_64BIT in target_flags will cause gcc to assume that
709 registers are 64 bits wide. int, long and void * will be 32 bit;
710 this may be changed with -mint64 or -mlong64.
712 The gen* programs link code that refers to MASK_64BIT. They don't
713 actually use the information in target_flags; they just refer to
714 it. */
716 /* Switch Recognition by gcc.c. Add -G xx support */
718 #undef SWITCH_TAKES_ARG
719 #define SWITCH_TAKES_ARG(CHAR) \
720 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
722 /* Sometimes certain combinations of command options do not make sense
723 on a particular target machine. You can define a macro
724 `OVERRIDE_OPTIONS' to take account of this. This macro, if
725 defined, is executed once just after all the command options have
726 been parsed.
728 On the MIPS, it is used to handle -G. We also use it to set up all
729 of the tables referenced in the other macros. */
731 #define OVERRIDE_OPTIONS override_options ()
733 /* Zero or more C statements that may conditionally modify two
734 variables `fixed_regs' and `call_used_regs' (both of type `char
735 []') after they have been initialized from the two preceding
736 macros.
738 This is necessary in case the fixed or call-clobbered registers
739 depend on target flags.
741 You need not define this macro if it has no work to do.
743 If the usage of an entire class of registers depends on the target
744 flags, you may indicate this to GCC by using this macro to modify
745 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
746 the classes which should not be used by GCC. Also define the macro
747 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
748 letter for a class that shouldn't be used.
750 (However, if this class is not included in `GENERAL_REGS' and all
751 of the insn patterns whose constraints permit this class are
752 controlled by target switches, then GCC will automatically avoid
753 using these registers when the target switches are opposed to
754 them.) */
756 #define CONDITIONAL_REGISTER_USAGE \
757 do \
759 if (!TARGET_HARD_FLOAT) \
761 int regno; \
763 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
764 fixed_regs[regno] = call_used_regs[regno] = 1; \
765 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
766 fixed_regs[regno] = call_used_regs[regno] = 1; \
768 else if (! ISA_HAS_8CC) \
770 int regno; \
772 /* We only have a single condition code register. We \
773 implement this by hiding all the condition code registers, \
774 and generating RTL that refers directly to ST_REG_FIRST. */ \
775 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
776 fixed_regs[regno] = call_used_regs[regno] = 1; \
778 /* In mips16 mode, we permit the $t temporary registers to be used \
779 for reload. We prohibit the unused $s registers, since they \
780 are caller saved, and saving them via a mips16 register would \
781 probably waste more time than just reloading the value. */ \
782 if (TARGET_MIPS16) \
784 fixed_regs[18] = call_used_regs[18] = 1; \
785 fixed_regs[19] = call_used_regs[19] = 1; \
786 fixed_regs[20] = call_used_regs[20] = 1; \
787 fixed_regs[21] = call_used_regs[21] = 1; \
788 fixed_regs[22] = call_used_regs[22] = 1; \
789 fixed_regs[23] = call_used_regs[23] = 1; \
790 fixed_regs[26] = call_used_regs[26] = 1; \
791 fixed_regs[27] = call_used_regs[27] = 1; \
792 fixed_regs[30] = call_used_regs[30] = 1; \
794 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
796 while (0)
798 /* This is meant to be redefined in the host dependent files. */
799 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
801 /* Show we can debug even without a frame pointer. */
802 #define CAN_DEBUG_WITHOUT_FP
804 /* Complain about missing specs and predefines that should be defined in each
805 of the target tm files to override the defaults. This is mostly a place-
806 holder until I can get each of the files updated [mm]. */
808 #if defined(OSF_OS) \
809 || defined(DECSTATION) \
810 || defined(SGI_TARGET) \
811 || defined(MIPS_NEWS) \
812 || defined(MIPS_SYSV) \
813 || defined(MIPS_SVR4) \
814 || defined(MIPS_BSD43)
816 #ifndef CPP_PREDEFINES
817 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
818 #endif
820 #ifndef LIB_SPEC
821 #error "Define LIB_SPEC in the appropriate tm.h file"
822 #endif
824 #ifndef STARTFILE_SPEC
825 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
826 #endif
828 #ifndef MACHINE_TYPE
829 #error "Define MACHINE_TYPE in the appropriate tm.h file"
830 #endif
831 #endif
833 /* Tell collect what flags to pass to nm. */
834 #ifndef NM_FLAGS
835 #define NM_FLAGS "-Bn"
836 #endif
839 /* Names to predefine in the preprocessor for this target machine. */
841 #ifndef CPP_PREDEFINES
842 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
843 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
844 -Asystem=unix -Asystem=bsd -Acpu=mips -Amachine=mips"
845 #endif
847 /* Assembler specs. */
849 /* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
850 than gas. */
852 #define MIPS_AS_ASM_SPEC "\
853 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
854 %{pipe: %e-pipe is not supported} \
855 %{K} %(subtarget_mips_as_asm_spec)"
857 /* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
858 rather than gas. It may be overridden by subtargets. */
860 #ifndef SUBTARGET_MIPS_AS_ASM_SPEC
861 #define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
862 #endif
864 /* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
865 assembler. */
867 #define GAS_ASM_SPEC "%{march=*} %{mtune=*} %{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v} %{mgp32} %{mgp64} %(abi_gas_asm_spec) %{mabi=32:%{!mips*:-mips1}}"
870 /* We use the o32 abi as default for mips1 and mips2. SGI uses n32/n64 for
871 mips3 and mips4 by default, however, this is unsupported at this point in
872 binutils so we use o64. This should change when n32/n64 is supported. */
874 extern int mips_abi;
876 #ifndef MIPS_ABI_DEFAULT
877 #define MIPS_ABI_DEFAULT ABI_32
878 #endif
880 #if MIPS_ABI_DEFAULT == ABI_32
881 #define ABI_GAS_ASM_SPEC "%{mabi=*} \
882 %{!mabi=*:%{mips3|mips4|mips5|mips64:-mabi=o64} %{!mips3:%{!mips4:%{!mips5:%{!mips64:-mabi=32}}}}}"
883 #endif
885 #if MIPS_ABI_DEFAULT == ABI_N32
886 #define ABI_GAS_ASM_SPEC "%{mabi=*} %{!mabi=*:-mabi=n32}"
887 #endif
889 #if MIPS_ABI_DEFAULT == ABI_64
890 #define ABI_GAS_ASM_SPEC "%{mabi=*} %{!mabi=*:-mabi=64}"
891 #endif
893 #if MIPS_ABI_DEFAULT == ABI_EABI
894 #define ABI_GAS_ASM_SPEC "%{mabi=*} %{!mabi=*:-mabi=eabi}"
895 #endif
897 #if MIPS_ABI_DEFAULT == ABI_O64
898 #define ABI_GAS_ASM_SPEC "\
899 %{mabi=*} \
900 %{!mabi=*:%{mips1|mips2|mips32:-mabi=32} %{!mips1:%{!mips2:%{!mips3:%{!mips32:-mabi=o64}}}}}"
901 #endif
903 #if MIPS_ABI_DEFAULT == ABI_MEABI
904 #define ABI_GAS_ASM_SPEC "\
905 %{mabi=*} \
906 %{!mabi=*:-mabi=meabi }"
907 #endif
909 #ifndef ABI_GAS_ASM_SPEC
910 #error "Unhandled MIPS_ABI_DEFAULT"
911 #endif
913 /* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
914 GAS_ASM_SPEC as the default, depending upon the value of
915 TARGET_DEFAULT. */
917 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
918 /* GAS */
920 #define TARGET_ASM_SPEC "\
921 %{mmips-as: %(mips_as_asm_spec)} \
922 %{!mmips-as: %(gas_asm_spec)}"
924 #else /* not GAS */
926 #define TARGET_ASM_SPEC "\
927 %{!mgas: %(mips_as_asm_spec)} \
928 %{mgas: %(gas_asm_spec)}"
930 #endif /* not GAS */
932 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
933 to the assembler. It may be overridden by subtargets. */
934 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
935 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
936 %{noasmopt:-O0} \
937 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
938 #endif
940 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
941 the assembler. It may be overridden by subtargets. */
942 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
943 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
944 %{g} %{g0} %{g1} %{g2} %{g3} \
945 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
946 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
947 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
948 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
949 #endif
951 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
952 overridden by subtargets. */
954 #ifndef SUBTARGET_ASM_SPEC
955 #define SUBTARGET_ASM_SPEC ""
956 #endif
958 /* ASM_SPEC is the set of arguments to pass to the assembler. */
960 #undef ASM_SPEC
961 #define ASM_SPEC "\
962 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64}\
963 %{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
964 %(subtarget_asm_optimizing_spec) \
965 %(subtarget_asm_debugging_spec) \
966 %{membedded-pic} \
967 %{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
968 %(target_asm_spec) \
969 %(subtarget_asm_spec)"
971 /* Specify to run a post-processor, mips-tfile after the assembler
972 has run to stuff the mips debug information into the object file.
973 This is needed because the $#!%^ MIPS assembler provides no way
974 of specifying such information in the assembly file. If we are
975 cross compiling, disable mips-tfile unless the user specifies
976 -mmips-tfile. */
978 #ifndef ASM_FINAL_SPEC
979 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
980 /* GAS */
981 #define ASM_FINAL_SPEC "\
982 %{mmips-as: %{!mno-mips-tfile: \
983 \n mips-tfile %{v*: -v} \
984 %{K: -I %b.o~} \
985 %{!K: %{save-temps: -I %b.o~}} \
986 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
987 %{.s:%i} %{!.s:%g.s}}}"
989 #else
990 /* not GAS */
991 #define ASM_FINAL_SPEC "\
992 %{!mgas: %{!mno-mips-tfile: \
993 \n mips-tfile %{v*: -v} \
994 %{K: -I %b.o~} \
995 %{!K: %{save-temps: -I %b.o~}} \
996 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
997 %{.s:%i} %{!.s:%g.s}}}"
999 #endif
1000 #endif /* ASM_FINAL_SPEC */
1002 /* Redefinition of libraries used. Mips doesn't support normal
1003 UNIX style profiling via calling _mcount. It does offer
1004 profiling that samples the PC, so do what we can... */
1006 #ifndef LIB_SPEC
1007 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
1008 #endif
1010 /* Extra switches sometimes passed to the linker. */
1011 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1012 will interpret it as a -b option. */
1014 #ifndef LINK_SPEC
1015 #define LINK_SPEC "\
1016 %(endian_spec) \
1017 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64} \
1018 %{bestGnum} %{shared} %{non_shared}"
1019 #endif /* LINK_SPEC defined */
1022 /* Specs for the compiler proper */
1024 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1025 overridden by subtargets. */
1026 #ifndef SUBTARGET_CC1_SPEC
1027 #define SUBTARGET_CC1_SPEC ""
1028 #endif
1030 /* Deal with historic options. */
1031 #ifndef CC1_CPU_SPEC
1032 #define CC1_CPU_SPEC "\
1033 %{!mcpu*: \
1034 %{m3900:-march=r3900 -mips1 -mfp32 -mgp32 \
1035 %n`-m3900' is deprecated. Use `-march=r3900' instead.\n} \
1036 %{m4650:-march=r4650 -mmad -msingle-float \
1037 %n`-m4650' is deprecated. Use `-march=r4650' instead.\n}}"
1038 #endif
1040 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1041 /* Note, we will need to adjust the following if we ever find a MIPS variant
1042 that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
1043 that show up in this case. */
1045 #ifndef CC1_SPEC
1046 #define CC1_SPEC "\
1047 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1048 %{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
1049 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
1050 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
1051 %{mips32:-mfp32 -mgp32} \
1052 %{mips64:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
1053 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
1054 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
1055 %{mint64|mlong64|mlong32:-mexplicit-type-size }\
1056 %{mgp32: %{mfp64:%emay not use both -mgp32 and -mfp64} %{!mfp32: -mfp32}} \
1057 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1058 %{pic-none: -mno-half-pic} \
1059 %{pic-lib: -mhalf-pic} \
1060 %{pic-extern: -mhalf-pic} \
1061 %{pic-calls: -mhalf-pic} \
1062 %{save-temps: } \
1063 %(subtarget_cc1_spec) \
1064 %(cc1_cpu_spec)"
1065 #endif
1067 /* Preprocessor specs. */
1069 /* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
1070 be overridden by subtargets. */
1072 #ifndef SUBTARGET_CPP_SIZE_SPEC
1073 #define SUBTARGET_CPP_SIZE_SPEC "\
1074 %{mlong64:%{!mips1:%{!mips2:%{!mips32:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int}}}} \
1075 %{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
1076 #endif
1078 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1079 overridden by subtargets. */
1080 #ifndef SUBTARGET_CPP_SPEC
1081 #define SUBTARGET_CPP_SPEC ""
1082 #endif
1084 /* If we're using 64bit longs, then we have to define __LONG_MAX__
1085 correctly. Similarly for 64bit ints and __INT_MAX__. */
1086 #ifndef LONG_MAX_SPEC
1087 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_LONG64)
1088 #define LONG_MAX_SPEC "%{!mlong32:-D__LONG_MAX__=9223372036854775807L}"
1089 #else
1090 #define LONG_MAX_SPEC "%{mlong64:-D__LONG_MAX__=9223372036854775807L}"
1091 #endif
1092 #endif
1094 /* Define appropriate macros for fpr register size. */
1095 #ifndef CPP_FPR_SPEC
1096 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_FLOAT64)
1097 #define CPP_FPR_SPEC "-D__mips_fpr=64"
1098 #else
1099 #define CPP_FPR_SPEC "-D__mips_fpr=32"
1100 #endif
1101 #endif
1103 /* For C++ we need to ensure that _LANGUAGE_C_PLUS_PLUS is defined independent
1104 of the source file extension. */
1105 #undef CPLUSPLUS_CPP_SPEC
1106 #define CPLUSPLUS_CPP_SPEC "\
1107 -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS \
1108 %(cpp) \
1110 /* CPP_SPEC is the set of arguments to pass to the preprocessor. */
1112 #ifndef CPP_SPEC
1113 #define CPP_SPEC "\
1114 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
1115 %{.S|.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
1116 %{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.cpp: %{!.cp: %{!.c++: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}}}}} \
1117 %(subtarget_cpp_size_spec) \
1118 %{mips3:-U__mips -D__mips=3 -D__mips64} \
1119 %{mips4:-U__mips -D__mips=4 -D__mips64} \
1120 %{mips32:-U__mips -D__mips=32} \
1121 %{mips64:-U__mips -D__mips=64 -D__mips64} \
1122 %{mgp32:-U__mips64} %{mgp64:-D__mips64} \
1123 %{mfp32:-D__mips_fpr=32} %{mfp64:-D__mips_fpr=64} %{!mfp32: %{!mfp64: %{mgp32:-D__mips_fpr=32} %{!mgp32: %(cpp_fpr_spec)}}} \
1124 %{msingle-float:%{!msoft-float:-D__mips_single_float}} \
1125 %{m4650:%{!msoft-float:-D__mips_single_float}} \
1126 %{msoft-float:-D__mips_soft_float} \
1127 %{mabi=eabi:-D__mips_eabi} \
1128 %{mips16:%{!mno-mips16:-D__mips16}} \
1129 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
1130 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
1131 %(long_max_spec) \
1132 %(subtarget_cpp_spec) "
1133 #endif
1135 /* This macro defines names of additional specifications to put in the specs
1136 that can be used in various specifications like CC1_SPEC. Its definition
1137 is an initializer with a subgrouping for each command option.
1139 Each subgrouping contains a string constant, that defines the
1140 specification name, and a string constant that used by the GNU CC driver
1141 program.
1143 Do not define this macro if it does not need to do anything. */
1145 #define EXTRA_SPECS \
1146 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1147 { "cc1_cpu_spec", CC1_CPU_SPEC}, \
1148 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1149 { "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
1150 { "long_max_spec", LONG_MAX_SPEC }, \
1151 { "cpp_fpr_spec", CPP_FPR_SPEC }, \
1152 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1153 { "gas_asm_spec", GAS_ASM_SPEC }, \
1154 { "abi_gas_asm_spec", ABI_GAS_ASM_SPEC }, \
1155 { "target_asm_spec", TARGET_ASM_SPEC }, \
1156 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1157 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1158 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1159 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1160 { "endian_spec", ENDIAN_SPEC }, \
1161 SUBTARGET_EXTRA_SPECS
1163 #ifndef SUBTARGET_EXTRA_SPECS
1164 #define SUBTARGET_EXTRA_SPECS
1165 #endif
1167 /* If defined, this macro is an additional prefix to try after
1168 `STANDARD_EXEC_PREFIX'. */
1170 #ifndef MD_EXEC_PREFIX
1171 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
1172 #endif
1174 #ifndef MD_STARTFILE_PREFIX
1175 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1176 #endif
1179 /* Print subsidiary information on the compiler version in use. */
1181 #define MIPS_VERSION "[AL 1.1, MM 40]"
1183 #ifndef MACHINE_TYPE
1184 #define MACHINE_TYPE "BSD Mips"
1185 #endif
1187 #ifndef TARGET_VERSION_INTERNAL
1188 #define TARGET_VERSION_INTERNAL(STREAM) \
1189 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
1190 #endif
1192 #ifndef TARGET_VERSION
1193 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
1194 #endif
1197 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1198 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
1199 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1201 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1202 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1203 #endif
1205 /* By default, turn on GDB extensions. */
1206 #define DEFAULT_GDB_EXTENSIONS 1
1208 /* If we are passing smuggling stabs through the MIPS ECOFF object
1209 format, put a comment in front of the .stab<x> operation so
1210 that the MIPS assembler does not choke. The mips-tfile program
1211 will correctly put the stab into the object file. */
1213 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1214 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1215 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1217 /* Local compiler-generated symbols must have a prefix that the assembler
1218 understands. By default, this is $, although some targets (e.g.,
1219 NetBSD-ELF) need to override this. */
1221 #ifndef LOCAL_LABEL_PREFIX
1222 #define LOCAL_LABEL_PREFIX "$"
1223 #endif
1225 /* By default on the mips, external symbols do not have an underscore
1226 prepended, but some targets (e.g., NetBSD) require this. */
1228 #ifndef USER_LABEL_PREFIX
1229 #define USER_LABEL_PREFIX ""
1230 #endif
1232 /* Forward references to tags are allowed. */
1233 #define SDB_ALLOW_FORWARD_REFERENCES
1235 /* Unknown tags are also allowed. */
1236 #define SDB_ALLOW_UNKNOWN_REFERENCES
1238 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1239 since the length can run past this up to a continuation point. */
1240 #undef DBX_CONTIN_LENGTH
1241 #define DBX_CONTIN_LENGTH 1500
1243 /* How to renumber registers for dbx and gdb. */
1244 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1246 /* The mapping from gcc register number to DWARF 2 CFA column number.
1247 This mapping does not allow for tracking register 0, since SGI's broken
1248 dwarf reader thinks column 0 is used for the frame address, but since
1249 register 0 is fixed this is not a problem. */
1250 #define DWARF_FRAME_REGNUM(REG) \
1251 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
1253 /* The DWARF 2 CFA column which tracks the return address. */
1254 #define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
1256 /* Before the prologue, RA lives in r31. */
1257 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
1259 /* Describe how we implement __builtin_eh_return. */
1260 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1261 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1263 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1264 The default for this in 64-bit mode is 8, which causes problems with
1265 SFmode register saves. */
1266 #define DWARF_CIE_DATA_ALIGNMENT 4
1268 /* Overrides for the COFF debug format. */
1269 #define PUT_SDB_SCL(a) \
1270 do { \
1271 extern FILE *asm_out_text_file; \
1272 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1273 } while (0)
1275 #define PUT_SDB_INT_VAL(a) \
1276 do { \
1277 extern FILE *asm_out_text_file; \
1278 fprintf (asm_out_text_file, "\t.val\t"); \
1279 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1280 fprintf (asm_out_text_file, ";"); \
1281 } while (0)
1283 #define PUT_SDB_VAL(a) \
1284 do { \
1285 extern FILE *asm_out_text_file; \
1286 fputs ("\t.val\t", asm_out_text_file); \
1287 output_addr_const (asm_out_text_file, (a)); \
1288 fputc (';', asm_out_text_file); \
1289 } while (0)
1291 #define PUT_SDB_DEF(a) \
1292 do { \
1293 extern FILE *asm_out_text_file; \
1294 fprintf (asm_out_text_file, "\t%s.def\t", \
1295 (TARGET_GAS) ? "" : "#"); \
1296 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1297 fputc (';', asm_out_text_file); \
1298 } while (0)
1300 #define PUT_SDB_PLAIN_DEF(a) \
1301 do { \
1302 extern FILE *asm_out_text_file; \
1303 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1304 (TARGET_GAS) ? "" : "#", (a)); \
1305 } while (0)
1307 #define PUT_SDB_ENDEF \
1308 do { \
1309 extern FILE *asm_out_text_file; \
1310 fprintf (asm_out_text_file, "\t.endef\n"); \
1311 } while (0)
1313 #define PUT_SDB_TYPE(a) \
1314 do { \
1315 extern FILE *asm_out_text_file; \
1316 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1317 } while (0)
1319 #define PUT_SDB_SIZE(a) \
1320 do { \
1321 extern FILE *asm_out_text_file; \
1322 fprintf (asm_out_text_file, "\t.size\t"); \
1323 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1324 fprintf (asm_out_text_file, ";"); \
1325 } while (0)
1327 #define PUT_SDB_DIM(a) \
1328 do { \
1329 extern FILE *asm_out_text_file; \
1330 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1331 } while (0)
1333 #ifndef PUT_SDB_START_DIM
1334 #define PUT_SDB_START_DIM \
1335 do { \
1336 extern FILE *asm_out_text_file; \
1337 fprintf (asm_out_text_file, "\t.dim\t"); \
1338 } while (0)
1339 #endif
1341 #ifndef PUT_SDB_NEXT_DIM
1342 #define PUT_SDB_NEXT_DIM(a) \
1343 do { \
1344 extern FILE *asm_out_text_file; \
1345 fprintf (asm_out_text_file, "%d,", a); \
1346 } while (0)
1347 #endif
1349 #ifndef PUT_SDB_LAST_DIM
1350 #define PUT_SDB_LAST_DIM(a) \
1351 do { \
1352 extern FILE *asm_out_text_file; \
1353 fprintf (asm_out_text_file, "%d;", a); \
1354 } while (0)
1355 #endif
1357 #define PUT_SDB_TAG(a) \
1358 do { \
1359 extern FILE *asm_out_text_file; \
1360 fprintf (asm_out_text_file, "\t.tag\t"); \
1361 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1362 fputc (';', asm_out_text_file); \
1363 } while (0)
1365 /* For block start and end, we create labels, so that
1366 later we can figure out where the correct offset is.
1367 The normal .ent/.end serve well enough for functions,
1368 so those are just commented out. */
1370 #define PUT_SDB_BLOCK_START(LINE) \
1371 do { \
1372 extern FILE *asm_out_text_file; \
1373 fprintf (asm_out_text_file, \
1374 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1375 LOCAL_LABEL_PREFIX, \
1376 sdb_label_count, \
1377 (TARGET_GAS) ? "" : "#", \
1378 LOCAL_LABEL_PREFIX, \
1379 sdb_label_count, \
1380 (LINE)); \
1381 sdb_label_count++; \
1382 } while (0)
1384 #define PUT_SDB_BLOCK_END(LINE) \
1385 do { \
1386 extern FILE *asm_out_text_file; \
1387 fprintf (asm_out_text_file, \
1388 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1389 LOCAL_LABEL_PREFIX, \
1390 sdb_label_count, \
1391 (TARGET_GAS) ? "" : "#", \
1392 LOCAL_LABEL_PREFIX, \
1393 sdb_label_count, \
1394 (LINE)); \
1395 sdb_label_count++; \
1396 } while (0)
1398 #define PUT_SDB_FUNCTION_START(LINE)
1400 #define PUT_SDB_FUNCTION_END(LINE) \
1401 do { \
1402 extern FILE *asm_out_text_file; \
1403 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1404 } while (0)
1406 #define PUT_SDB_EPILOGUE_END(NAME)
1408 #define PUT_SDB_SRC_FILE(FILENAME) \
1409 do { \
1410 extern FILE *asm_out_text_file; \
1411 output_file_directive (asm_out_text_file, (FILENAME)); \
1412 } while (0)
1414 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1415 sprintf ((BUFFER), ".%dfake", (NUMBER));
1417 /* Correct the offset of automatic variables and arguments. Note that
1418 the MIPS debug format wants all automatic variables and arguments
1419 to be in terms of the virtual frame pointer (stack pointer before
1420 any adjustment in the function), while the MIPS 3.0 linker wants
1421 the frame pointer to be the stack pointer after the initial
1422 adjustment. */
1424 #define DEBUGGER_AUTO_OFFSET(X) \
1425 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1426 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1427 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1429 /* Tell collect that the object format is ECOFF */
1430 #ifndef OBJECT_FORMAT_ROSE
1431 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1432 #define EXTENDED_COFF /* ECOFF, not normal coff */
1433 #endif
1435 /* Target machine storage layout */
1437 /* Define in order to support both big and little endian float formats
1438 in the same gcc binary. */
1439 #define REAL_ARITHMETIC
1441 /* Define this if most significant bit is lowest numbered
1442 in instructions that operate on numbered bit-fields.
1444 #define BITS_BIG_ENDIAN 0
1446 /* Define this if most significant byte of a word is the lowest numbered. */
1447 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1449 /* Define this if most significant word of a multiword number is the lowest. */
1450 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1452 /* Define this to set the endianness to use in libgcc2.c, which can
1453 not depend on target_flags. */
1454 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1455 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1456 #else
1457 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1458 #endif
1460 /* Number of bits in an addressable storage unit */
1461 #define BITS_PER_UNIT 8
1463 /* Width in bits of a "word", which is the contents of a machine register.
1464 Note that this is not necessarily the width of data type `int';
1465 if using 16-bit ints on a 68000, this would still be 32.
1466 But on a machine with 16-bit registers, this would be 16. */
1467 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
1468 #define MAX_BITS_PER_WORD 64
1470 /* Width of a word, in units (bytes). */
1471 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1472 #define MIN_UNITS_PER_WORD 4
1474 /* For MIPS, width of a floating point register. */
1475 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1477 /* A C expression for the size in bits of the type `int' on the
1478 target machine. If you don't define this, the default is one
1479 word. */
1480 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
1481 #define MAX_INT_TYPE_SIZE 64
1483 /* Tell the preprocessor the maximum size of wchar_t. */
1484 #ifndef MAX_WCHAR_TYPE_SIZE
1485 #ifndef WCHAR_TYPE_SIZE
1486 #define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
1487 #endif
1488 #endif
1490 /* A C expression for the size in bits of the type `short' on the
1491 target machine. If you don't define this, the default is half a
1492 word. (If this would be less than one storage unit, it is
1493 rounded up to one unit.) */
1494 #define SHORT_TYPE_SIZE 16
1496 /* A C expression for the size in bits of the type `long' on the
1497 target machine. If you don't define this, the default is one
1498 word. */
1499 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1500 #define MAX_LONG_TYPE_SIZE 64
1502 /* A C expression for the size in bits of the type `long long' on the
1503 target machine. If you don't define this, the default is two
1504 words. */
1505 #define LONG_LONG_TYPE_SIZE 64
1507 /* A C expression for the size in bits of the type `char' on the
1508 target machine. If you don't define this, the default is one
1509 quarter of a word. (If this would be less than one storage unit,
1510 it is rounded up to one unit.) */
1511 #define CHAR_TYPE_SIZE BITS_PER_UNIT
1513 /* A C expression for the size in bits of the type `float' on the
1514 target machine. If you don't define this, the default is one
1515 word. */
1516 #define FLOAT_TYPE_SIZE 32
1518 /* A C expression for the size in bits of the type `double' on the
1519 target machine. If you don't define this, the default is two
1520 words. */
1521 #define DOUBLE_TYPE_SIZE 64
1523 /* A C expression for the size in bits of the type `long double' on
1524 the target machine. If you don't define this, the default is two
1525 words. */
1526 #define LONG_DOUBLE_TYPE_SIZE 64
1528 /* Width in bits of a pointer.
1529 See also the macro `Pmode' defined below. */
1530 #ifndef POINTER_SIZE
1531 #define POINTER_SIZE (Pmode == DImode ? 64 : 32)
1532 #endif
1534 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1535 #define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
1537 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1538 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
1540 /* Allocation boundary (in *bits*) for the code of a function. */
1541 #define FUNCTION_BOUNDARY 32
1543 /* Alignment of field after `int : 0' in a structure. */
1544 #define EMPTY_FIELD_BOUNDARY 32
1546 /* Every structure's size must be a multiple of this. */
1547 /* 8 is observed right on a DECstation and on riscos 4.02. */
1548 #define STRUCTURE_SIZE_BOUNDARY 8
1550 /* There is no point aligning anything to a rounder boundary than this. */
1551 #define BIGGEST_ALIGNMENT 64
1553 /* Set this nonzero if move instructions will actually fail to work
1554 when given unaligned data. */
1555 #define STRICT_ALIGNMENT 1
1557 /* Define this if you wish to imitate the way many other C compilers
1558 handle alignment of bitfields and the structures that contain
1559 them.
1561 The behavior is that the type written for a bitfield (`int',
1562 `short', or other integer type) imposes an alignment for the
1563 entire structure, as if the structure really did contain an
1564 ordinary field of that type. In addition, the bitfield is placed
1565 within the structure so that it would fit within such a field,
1566 not crossing a boundary for it.
1568 Thus, on most machines, a bitfield whose type is written as `int'
1569 would not cross a four-byte boundary, and would force four-byte
1570 alignment for the whole structure. (The alignment used may not
1571 be four bytes; it is controlled by the other alignment
1572 parameters.)
1574 If the macro is defined, its definition should be a C expression;
1575 a nonzero value for the expression enables this behavior. */
1577 #define PCC_BITFIELD_TYPE_MATTERS 1
1579 /* If defined, a C expression to compute the alignment given to a
1580 constant that is being placed in memory. CONSTANT is the constant
1581 and ALIGN is the alignment that the object would ordinarily have.
1582 The value of this macro is used instead of that alignment to align
1583 the object.
1585 If this macro is not defined, then ALIGN is used.
1587 The typical use of this macro is to increase alignment for string
1588 constants to be word aligned so that `strcpy' calls that copy
1589 constants can be done inline. */
1591 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1592 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1593 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1595 /* If defined, a C expression to compute the alignment for a static
1596 variable. TYPE is the data type, and ALIGN is the alignment that
1597 the object would ordinarily have. The value of this macro is used
1598 instead of that alignment to align the object.
1600 If this macro is not defined, then ALIGN is used.
1602 One use of this macro is to increase alignment of medium-size
1603 data to make it all fit in fewer cache lines. Another is to
1604 cause character arrays to be word-aligned so that `strcpy' calls
1605 that copy constants to character arrays can be done inline. */
1607 #undef DATA_ALIGNMENT
1608 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1609 ((((ALIGN) < BITS_PER_WORD) \
1610 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1611 || TREE_CODE (TYPE) == UNION_TYPE \
1612 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1615 /* Force right-alignment for small varargs in 32 bit little_endian mode */
1617 #define PAD_VARARGS_DOWN (TARGET_64BIT \
1618 || mips_abi == ABI_MEABI \
1619 ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
1621 /* Define this macro if an argument declared as `char' or `short' in a
1622 prototype should actually be passed as an `int'. In addition to
1623 avoiding errors in certain cases of mismatch, it also makes for
1624 better code on certain machines. */
1626 #define PROMOTE_PROTOTYPES 1
1628 /* Define if operations between registers always perform the operation
1629 on the full register even if a narrower mode is specified. */
1630 #define WORD_REGISTER_OPERATIONS
1632 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1633 will either zero-extend or sign-extend. The value of this macro should
1634 be the code that says which one of the two operations is implicitly
1635 done, NIL if none.
1637 When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
1638 moves. All other referces are zero extended. */
1639 #define LOAD_EXTEND_OP(MODE) \
1640 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1641 ? SIGN_EXTEND : ZERO_EXTEND)
1643 /* Define this macro if it is advisable to hold scalars in registers
1644 in a wider mode than that declared by the program. In such cases,
1645 the value is constrained to be within the bounds of the declared
1646 type, but kept valid in the wider mode. The signedness of the
1647 extension may differ from that of the type.
1649 We promote any value smaller than SImode up to SImode. We don't
1650 want to promote to DImode when in 64 bit mode, because that would
1651 prevent us from using the faster SImode multiply and divide
1652 instructions. */
1654 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1655 if (GET_MODE_CLASS (MODE) == MODE_INT \
1656 && GET_MODE_SIZE (MODE) < 4) \
1657 (MODE) = SImode;
1659 /* Define this if function arguments should also be promoted using the above
1660 procedure. */
1662 #define PROMOTE_FUNCTION_ARGS
1664 /* Likewise, if the function return value is promoted. */
1666 #define PROMOTE_FUNCTION_RETURN
1668 /* Standard register usage. */
1670 /* Number of actual hardware registers.
1671 The hardware registers are assigned numbers for the compiler
1672 from 0 to just below FIRST_PSEUDO_REGISTER.
1673 All registers that the compiler knows about must be given numbers,
1674 even those that are not normally considered general registers.
1676 On the Mips, we have 32 integer registers, 32 floating point
1677 registers, 8 condition code registers, and the special registers
1678 hi, lo, hilo, and rap. The 8 condition code registers are only
1679 used if mips_isa >= 4. The hilo register is only used in 64 bit
1680 mode. It represents a 64 bit value stored as two 32 bit values in
1681 the hi and lo registers; this is the result of the mult
1682 instruction. rap is a pointer to the stack where the return
1683 address reg ($31) was stored. This is needed for C++ exception
1684 handling. */
1686 #define FIRST_PSEUDO_REGISTER 76
1688 /* 1 for registers that have pervasive standard uses
1689 and are not available for the register allocator.
1691 On the MIPS, see conventions, page D-2 */
1693 #define FIXED_REGISTERS \
1695 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1697 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1698 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1699 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
1703 /* 1 for registers not available across function calls.
1704 These must include the FIXED_REGISTERS and also any
1705 registers that can be used without being saved.
1706 The latter must include the registers where values are returned
1707 and the register where structure-value addresses are passed.
1708 Aside from that, you can include as many other registers as you like. */
1710 #define CALL_USED_REGISTERS \
1712 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1713 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1714 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1715 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1716 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1720 /* Internal macros to classify a register number as to whether it's a
1721 general purpose register, a floating point register, a
1722 multiply/divide register, or a status register. */
1724 #define GP_REG_FIRST 0
1725 #define GP_REG_LAST 31
1726 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1727 #define GP_DBX_FIRST 0
1729 #define FP_REG_FIRST 32
1730 #define FP_REG_LAST 63
1731 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1732 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1734 #define MD_REG_FIRST 64
1735 #define MD_REG_LAST 66
1736 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1738 #define ST_REG_FIRST 67
1739 #define ST_REG_LAST 74
1740 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1742 #define RAP_REG_NUM 75
1744 #define AT_REGNUM (GP_REG_FIRST + 1)
1745 #define HI_REGNUM (MD_REG_FIRST + 0)
1746 #define LO_REGNUM (MD_REG_FIRST + 1)
1747 #define HILO_REGNUM (MD_REG_FIRST + 2)
1749 /* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1750 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1751 should be used instead. */
1752 #define FPSW_REGNUM ST_REG_FIRST
1754 #define GP_REG_P(REGNO) \
1755 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1756 #define M16_REG_P(REGNO) \
1757 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1758 #define FP_REG_P(REGNO) \
1759 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1760 #define MD_REG_P(REGNO) \
1761 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1762 #define ST_REG_P(REGNO) \
1763 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1765 /* Return number of consecutive hard regs needed starting at reg REGNO
1766 to hold something of mode MODE.
1767 This is ordinarily the length in words of a value of mode MODE
1768 but can be less for certain modes in special long registers.
1770 On the MIPS, all general registers are one word long. Except on
1771 the R4000 with the FR bit set, the floating point uses register
1772 pairs, with the second register not being allocable. */
1774 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1776 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1777 MODE. In 32 bit mode, require that DImode and DFmode be in even
1778 registers. For DImode, this makes some of the insns easier to
1779 write, since you don't have to worry about a DImode value in
1780 registers 3 & 4, producing a result in 4 & 5.
1782 To make the code simpler HARD_REGNO_MODE_OK now just references an
1783 array built in override_options. Because machmodes.h is not yet
1784 included before this file is processed, the MODE bound can't be
1785 expressed here. */
1787 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1789 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1790 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1792 /* Value is 1 if it is a good idea to tie two pseudo registers
1793 when one has mode MODE1 and one has mode MODE2.
1794 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1795 for any hard reg, then this must be 0 for correct output. */
1796 #define MODES_TIEABLE_P(MODE1, MODE2) \
1797 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1798 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1799 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1800 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1802 /* MIPS pc is not overloaded on a register. */
1803 /* #define PC_REGNUM xx */
1805 /* Register to use for pushing function arguments. */
1806 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1808 /* Offset from the stack pointer to the first available location. Use
1809 the default value zero. */
1810 /* #define STACK_POINTER_OFFSET 0 */
1812 /* Base register for access to local variables of the function. We
1813 pretend that the frame pointer is $1, and then eliminate it to
1814 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1815 a fixed register, and will not be used for anything else. */
1816 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1818 /* Temporary scratch register for use by the assembler. */
1819 #define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
1821 /* $30 is not available on the mips16, so we use $17 as the frame
1822 pointer. */
1823 #define HARD_FRAME_POINTER_REGNUM \
1824 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1826 /* Value should be nonzero if functions must have frame pointers.
1827 Zero means the frame pointer need not be set up (and parms
1828 may be accessed via the stack pointer) in functions that seem suitable.
1829 This is computed in `reload', in reload1.c. */
1830 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1832 /* Base register for access to arguments of the function. */
1833 #define ARG_POINTER_REGNUM GP_REG_FIRST
1835 /* Fake register that holds the address on the stack of the
1836 current function's return address. */
1837 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1839 /* Register in which static-chain is passed to a function. */
1840 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1842 /* If the structure value address is passed in a register, then
1843 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1844 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1846 /* If the structure value address is not passed in a register, define
1847 `STRUCT_VALUE' as an expression returning an RTX for the place
1848 where the address is passed. If it returns 0, the address is
1849 passed as an "invisible" first argument. */
1850 #define STRUCT_VALUE 0
1852 /* Mips registers used in prologue/epilogue code when the stack frame
1853 is larger than 32K bytes. These registers must come from the
1854 scratch register set, and not used for passing and returning
1855 arguments and any other information used in the calling sequence
1856 (such as pic). Must start at 12, since t0/t3 are parameter passing
1857 registers in the 64 bit ABI. */
1859 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1860 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1862 /* Define this macro if it is as good or better to call a constant
1863 function address than to call an address kept in a register. */
1864 #define NO_FUNCTION_CSE 1
1866 /* Define this macro if it is as good or better for a function to
1867 call itself with an explicit address than to call an address
1868 kept in a register. */
1869 #define NO_RECURSIVE_FUNCTION_CSE 1
1871 /* The register number of the register used to address a table of
1872 static data addresses in memory. In some cases this register is
1873 defined by a processor's "application binary interface" (ABI).
1874 When this macro is defined, RTL is generated for this register
1875 once, as with the stack pointer and frame pointer registers. If
1876 this macro is not defined, it is up to the machine-dependent
1877 files to allocate such a register (if necessary). */
1878 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1880 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1882 /* Initialize embedded_pic_fnaddr_rtx before RTL generation for
1883 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
1884 isn't always called for static inline functions. */
1885 #define INIT_EXPANDERS \
1886 do { \
1887 embedded_pic_fnaddr_rtx = NULL; \
1888 mips16_gp_pseudo_rtx = NULL; \
1889 } while (0)
1891 /* Define the classes of registers for register constraints in the
1892 machine description. Also define ranges of constants.
1894 One of the classes must always be named ALL_REGS and include all hard regs.
1895 If there is more than one class, another class must be named NO_REGS
1896 and contain no registers.
1898 The name GENERAL_REGS must be the name of a class (or an alias for
1899 another name such as ALL_REGS). This is the class of registers
1900 that is allowed by "g" or "r" in a register constraint.
1901 Also, registers outside this class are allocated only when
1902 instructions express preferences for them.
1904 The classes must be numbered in nondecreasing order; that is,
1905 a larger-numbered class must never be contained completely
1906 in a smaller-numbered class.
1908 For any two classes, it is very desirable that there be another
1909 class that represents their union. */
1911 enum reg_class
1913 NO_REGS, /* no registers in set */
1914 M16_NA_REGS, /* mips16 regs not used to pass args */
1915 M16_REGS, /* mips16 directly accessible registers */
1916 T_REG, /* mips16 T register ($24) */
1917 M16_T_REGS, /* mips16 registers plus T register */
1918 GR_REGS, /* integer registers */
1919 FP_REGS, /* floating point registers */
1920 HI_REG, /* hi register */
1921 LO_REG, /* lo register */
1922 HILO_REG, /* hilo register pair for 64 bit mode mult */
1923 MD_REGS, /* multiply/divide registers (hi/lo) */
1924 HI_AND_GR_REGS, /* union classes */
1925 LO_AND_GR_REGS,
1926 HILO_AND_GR_REGS,
1927 ST_REGS, /* status registers (fp status) */
1928 ALL_REGS, /* all registers */
1929 LIM_REG_CLASSES /* max value + 1 */
1932 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1934 #define GENERAL_REGS GR_REGS
1936 /* An initializer containing the names of the register classes as C
1937 string constants. These names are used in writing some of the
1938 debugging dumps. */
1940 #define REG_CLASS_NAMES \
1942 "NO_REGS", \
1943 "M16_NA_REGS", \
1944 "M16_REGS", \
1945 "T_REG", \
1946 "M16_T_REGS", \
1947 "GR_REGS", \
1948 "FP_REGS", \
1949 "HI_REG", \
1950 "LO_REG", \
1951 "HILO_REG", \
1952 "MD_REGS", \
1953 "HI_AND_GR_REGS", \
1954 "LO_AND_GR_REGS", \
1955 "HILO_AND_GR_REGS", \
1956 "ST_REGS", \
1957 "ALL_REGS" \
1960 /* An initializer containing the contents of the register classes,
1961 as integers which are bit masks. The Nth integer specifies the
1962 contents of class N. The way the integer MASK is interpreted is
1963 that register R is in the class if `MASK & (1 << R)' is 1.
1965 When the machine has more than 32 registers, an integer does not
1966 suffice. Then the integers are replaced by sub-initializers,
1967 braced groupings containing several integers. Each
1968 sub-initializer must be suitable as an initializer for the type
1969 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1971 #define REG_CLASS_CONTENTS \
1973 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1974 { 0x0003000c, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1975 { 0x000300fc, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1976 { 0x01000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1977 { 0x010300fc, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
1978 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1979 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1980 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1981 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
1982 { 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
1983 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1984 { 0xffffffff, 0x00000000, 0x00000001 }, /* union classes */ \
1985 { 0xffffffff, 0x00000000, 0x00000002 }, \
1986 { 0xffffffff, 0x00000000, 0x00000004 }, \
1987 { 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
1988 { 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
1992 /* A C expression whose value is a register class containing hard
1993 register REGNO. In general there is more that one such class;
1994 choose a class which is "minimal", meaning that no smaller class
1995 also contains the register. */
1997 extern const enum reg_class mips_regno_to_class[];
1999 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2001 /* A macro whose definition is the name of the class to which a
2002 valid base register must belong. A base register is one used in
2003 an address which is the register value plus a displacement. */
2005 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
2007 /* A macro whose definition is the name of the class to which a
2008 valid index register must belong. An index register is one used
2009 in an address where its value is either multiplied by a scale
2010 factor or added to another register (as well as added to a
2011 displacement). */
2013 #define INDEX_REG_CLASS NO_REGS
2015 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
2016 registers explicitly used in the rtl to be used as spill registers
2017 but prevents the compiler from extending the lifetime of these
2018 registers. */
2020 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
2022 /* This macro is used later on in the file. */
2023 #define GR_REG_CLASS_P(CLASS) \
2024 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
2025 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
2027 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
2028 is the default value (allocate the registers in numeric order). We
2029 define it just so that we can override it for the mips16 target in
2030 ORDER_REGS_FOR_LOCAL_ALLOC. */
2032 #define REG_ALLOC_ORDER \
2033 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2034 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
2035 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2036 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2037 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 \
2040 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
2041 to be rearranged based on a particular function. On the mips16, we
2042 want to allocate $24 (T_REG) before other registers for
2043 instructions for which it is possible. */
2045 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
2047 /* REGISTER AND CONSTANT CLASSES */
2049 /* Get reg_class from a letter such as appears in the machine
2050 description.
2052 DEFINED REGISTER CLASSES:
2054 'd' General (aka integer) registers
2055 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
2056 'y' General registers (in both mips16 and non mips16 mode)
2057 'e' mips16 non argument registers (M16_NA_REGS)
2058 't' mips16 temporary register ($24)
2059 'f' Floating point registers
2060 'h' Hi register
2061 'l' Lo register
2062 'x' Multiply/divide registers
2063 'a' HILO_REG
2064 'z' FP Status register
2065 'b' All registers */
2067 extern enum reg_class mips_char_to_class[];
2069 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
2071 /* The letters I, J, K, L, M, N, O, and P in a register constraint
2072 string can be used to stand for particular ranges of immediate
2073 operands. This macro defines what the ranges are. C is the
2074 letter, and VALUE is a constant value. Return 1 if VALUE is
2075 in the range specified by C. */
2077 /* For MIPS:
2079 `I' is used for the range of constants an arithmetic insn can
2080 actually contain (16 bits signed integers).
2082 `J' is used for the range which is just zero (ie, $r0).
2084 `K' is used for the range of constants a logical insn can actually
2085 contain (16 bit zero-extended integers).
2087 `L' is used for the range of constants that be loaded with lui
2088 (ie, the bottom 16 bits are zero).
2090 `M' is used for the range of constants that take two words to load
2091 (ie, not matched by `I', `K', and `L').
2093 `N' is used for negative 16 bit constants other than -65536.
2095 `O' is a 15 bit signed integer.
2097 `P' is used for positive 16 bit constants. */
2099 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
2100 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
2102 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
2103 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
2104 : (C) == 'J' ? ((VALUE) == 0) \
2105 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
2106 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
2107 && (((VALUE) & ~2147483647) == 0 \
2108 || ((VALUE) & ~2147483647) == ~2147483647)) \
2109 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
2110 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
2111 && (((VALUE) & 0x0000ffff) != 0 \
2112 || (((VALUE) & ~2147483647) != 0 \
2113 && ((VALUE) & ~2147483647) != ~2147483647))) \
2114 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
2115 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
2116 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
2117 : 0)
2119 /* Similar, but for floating constants, and defining letters G and H.
2120 Here VALUE is the CONST_DOUBLE rtx itself. */
2122 /* For Mips
2124 'G' : Floating point 0 */
2126 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2127 ((C) == 'G' \
2128 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
2130 /* Letters in the range `Q' through `U' may be defined in a
2131 machine-dependent fashion to stand for arbitrary operand types.
2132 The machine description macro `EXTRA_CONSTRAINT' is passed the
2133 operand as its first argument and the constraint letter as its
2134 second operand.
2136 `Q' is for mips16 GP relative constants
2137 `R' is for memory references which take 1 word for the instruction.
2138 `S' is for references to extern items which are PIC for OSF/rose.
2139 `T' is for memory addresses that can be used to load two words. */
2141 #define EXTRA_CONSTRAINT(OP,CODE) \
2142 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
2143 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
2144 && mips16_gp_offset_p (OP)) \
2145 : (GET_CODE (OP) != MEM) ? FALSE \
2146 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
2147 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
2148 && HALF_PIC_ADDRESS_P (OP)) \
2149 : FALSE)
2151 /* Given an rtx X being reloaded into a reg required to be
2152 in class CLASS, return the class of reg to actually use.
2153 In general this is just CLASS; but on some machines
2154 in some cases it is preferable to use a more restrictive class. */
2156 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2157 ((CLASS) != ALL_REGS \
2158 ? (! TARGET_MIPS16 \
2159 ? (CLASS) \
2160 : ((CLASS) != GR_REGS \
2161 ? (CLASS) \
2162 : M16_REGS)) \
2163 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2164 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
2165 ? (TARGET_SOFT_FLOAT \
2166 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2167 : FP_REGS) \
2168 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
2169 || GET_MODE (X) == VOIDmode) \
2170 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2171 : (CLASS))))
2173 /* Certain machines have the property that some registers cannot be
2174 copied to some other registers without using memory. Define this
2175 macro on those machines to be a C expression that is non-zero if
2176 objects of mode MODE in registers of CLASS1 can only be copied to
2177 registers of class CLASS2 by storing a register of CLASS1 into
2178 memory and loading that memory location into a register of CLASS2.
2180 Do not define this macro if its value would always be zero. */
2182 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2183 ((!TARGET_DEBUG_H_MODE \
2184 && GET_MODE_CLASS (MODE) == MODE_INT \
2185 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2186 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2187 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2188 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2189 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
2191 /* The HI and LO registers can only be reloaded via the general
2192 registers. Condition code registers can only be loaded to the
2193 general registers, and from the floating point registers. */
2195 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2196 mips_secondary_reload_class (CLASS, MODE, X, 1)
2197 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2198 mips_secondary_reload_class (CLASS, MODE, X, 0)
2200 /* Return the maximum number of consecutive registers
2201 needed to represent mode MODE in a register of class CLASS. */
2203 #define CLASS_UNITS(mode, size) \
2204 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
2206 #define CLASS_MAX_NREGS(CLASS, MODE) \
2207 ((CLASS) == FP_REGS \
2208 ? (TARGET_FLOAT64 \
2209 ? CLASS_UNITS (MODE, 8) \
2210 : 2 * CLASS_UNITS (MODE, 8)) \
2211 : CLASS_UNITS (MODE, UNITS_PER_WORD))
2213 /* If defined, gives a class of registers that cannot be used as the
2214 operand of a SUBREG that changes the mode of the object illegally. */
2216 #define CLASS_CANNOT_CHANGE_MODE \
2217 (TARGET_FLOAT64 && ! TARGET_64BIT ? FP_REGS : NO_REGS)
2219 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
2221 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
2222 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
2224 /* Stack layout; function entry, exit and calling. */
2226 /* Define this if pushing a word on the stack
2227 makes the stack pointer a smaller address. */
2228 #define STACK_GROWS_DOWNWARD
2230 /* Define this if the nominal address of the stack frame
2231 is at the high-address end of the local variables;
2232 that is, each additional local variable allocated
2233 goes at a more negative offset in the frame. */
2234 /* #define FRAME_GROWS_DOWNWARD */
2236 /* Offset within stack frame to start allocating local variables at.
2237 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
2238 first local allocated. Otherwise, it is the offset to the BEGINNING
2239 of the first local allocated. */
2240 #define STARTING_FRAME_OFFSET \
2241 (current_function_outgoing_args_size \
2242 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
2244 /* Offset from the stack pointer register to an item dynamically
2245 allocated on the stack, e.g., by `alloca'.
2247 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2248 length of the outgoing arguments. The default is correct for most
2249 machines. See `function.c' for details.
2251 The MIPS ABI states that functions which dynamically allocate the
2252 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2253 we are trying to create a second frame pointer to the function, so
2254 allocate some stack space to make it happy.
2256 However, the linker currently complains about linking any code that
2257 dynamically allocates stack space, and there seems to be a bug in
2258 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2260 #if 0
2261 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
2262 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2263 ? 4*UNITS_PER_WORD \
2264 : current_function_outgoing_args_size)
2265 #endif
2267 /* The return address for the current frame is in r31 is this is a leaf
2268 function. Otherwise, it is on the stack. It is at a variable offset
2269 from sp/fp/ap, so we define a fake hard register rap which is a
2270 poiner to the return address on the stack. This always gets eliminated
2271 during reload to be either the frame pointer or the stack pointer plus
2272 an offset. */
2274 /* ??? This definition fails for leaf functions. There is currently no
2275 general solution for this problem. */
2277 /* ??? There appears to be no way to get the return address of any previous
2278 frame except by disassembling instructions in the prologue/epilogue.
2279 So currently we support only the current frame. */
2281 #define RETURN_ADDR_RTX(count, frame) \
2282 ((count == 0) \
2283 ? gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
2284 : (rtx) 0)
2286 /* Structure to be filled in by compute_frame_size with register
2287 save masks, and offsets for the current function. */
2289 struct mips_frame_info
2291 long total_size; /* # bytes that the entire frame takes up */
2292 long var_size; /* # bytes that variables take up */
2293 long args_size; /* # bytes that outgoing arguments take up */
2294 long extra_size; /* # bytes of extra gunk */
2295 int gp_reg_size; /* # bytes needed to store gp regs */
2296 int fp_reg_size; /* # bytes needed to store fp regs */
2297 long mask; /* mask of saved gp registers */
2298 long fmask; /* mask of saved fp registers */
2299 long gp_save_offset; /* offset from vfp to store gp registers */
2300 long fp_save_offset; /* offset from vfp to store fp registers */
2301 long gp_sp_offset; /* offset from new sp to store gp registers */
2302 long fp_sp_offset; /* offset from new sp to store fp registers */
2303 int initialized; /* != 0 if frame size already calculated */
2304 int num_gp; /* number of gp registers saved */
2305 int num_fp; /* number of fp registers saved */
2306 long insns_len; /* length of insns; mips16 only */
2309 extern struct mips_frame_info current_frame_info;
2311 /* If defined, this macro specifies a table of register pairs used to
2312 eliminate unneeded registers that point into the stack frame. If
2313 it is not defined, the only elimination attempted by the compiler
2314 is to replace references to the frame pointer with references to
2315 the stack pointer.
2317 The definition of this macro is a list of structure
2318 initializations, each of which specifies an original and
2319 replacement register.
2321 On some machines, the position of the argument pointer is not
2322 known until the compilation is completed. In such a case, a
2323 separate hard register must be used for the argument pointer.
2324 This register can be eliminated by replacing it with either the
2325 frame pointer or the argument pointer, depending on whether or not
2326 the frame pointer has been eliminated.
2328 In this case, you might specify:
2329 #define ELIMINABLE_REGS \
2330 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2331 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2332 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2334 Note that the elimination of the argument pointer with the stack
2335 pointer is specified first since that is the preferred elimination.
2337 The eliminations to $17 are only used on the mips16. See the
2338 definition of HARD_FRAME_POINTER_REGNUM. */
2340 #define ELIMINABLE_REGS \
2341 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2342 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2343 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2344 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2345 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2346 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2347 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
2348 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2349 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2350 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2352 /* A C expression that returns non-zero if the compiler is allowed to
2353 try to replace register number FROM-REG with register number
2354 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2355 defined, and will usually be the constant 1, since most of the
2356 cases preventing register elimination are things that the compiler
2357 already knows about.
2359 When not in mips16 and mips64, we can always eliminate to the
2360 frame pointer. We can eliminate to the stack pointer unless
2361 a frame pointer is needed. In mips16 mode, we need a frame
2362 pointer for a large frame; otherwise, reload may be unable
2363 to compute the address of a local variable, since there is
2364 no way to add a large constant to the stack pointer
2365 without using a temporary register.
2367 In mips16, for some instructions (eg lwu), we can't eliminate the
2368 frame pointer for the stack pointer. These instructions are
2369 only generated in TARGET_64BIT mode.
2372 #define CAN_ELIMINATE(FROM, TO) \
2373 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM && (! leaf_function_p () \
2374 || (TO == GP_REG_FIRST + 31 && leaf_function_p))) \
2375 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
2376 && ((TO) == HARD_FRAME_POINTER_REGNUM \
2377 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
2378 && ! (TARGET_MIPS16 && TARGET_64BIT) \
2379 && (! TARGET_MIPS16 \
2380 || compute_frame_size (get_frame_size ()) < 32768)))))
2382 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
2383 specifies the initial difference between the specified pair of
2384 registers. This macro must be defined if `ELIMINABLE_REGS' is
2385 defined. */
2387 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2388 { compute_frame_size (get_frame_size ()); \
2389 if (TARGET_MIPS16 && (FROM) == FRAME_POINTER_REGNUM \
2390 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2391 (OFFSET) = - current_function_outgoing_args_size; \
2392 else if ((FROM) == FRAME_POINTER_REGNUM) \
2393 (OFFSET) = 0; \
2394 else if (TARGET_MIPS16 && (FROM) == ARG_POINTER_REGNUM \
2395 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2396 (OFFSET) = (current_frame_info.total_size \
2397 - current_function_outgoing_args_size \
2398 - ((mips_abi != ABI_32 \
2399 && mips_abi != ABI_O64 \
2400 && mips_abi != ABI_EABI) \
2401 ? current_function_pretend_args_size \
2402 : 0)); \
2403 else if ((FROM) == ARG_POINTER_REGNUM) \
2404 (OFFSET) = (current_frame_info.total_size \
2405 - ((mips_abi != ABI_32 \
2406 && mips_abi != ABI_O64 \
2407 && mips_abi != ABI_EABI) \
2408 ? current_function_pretend_args_size \
2409 : 0)); \
2410 /* Some ABIs store 64 bits to the stack, but Pmode is 32 bits, \
2411 so we must add 4 bytes to the offset to get the right value. */ \
2412 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM) \
2414 if (leaf_function_p ()) \
2415 (OFFSET) = 0; \
2416 else (OFFSET) = current_frame_info.gp_sp_offset \
2417 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
2418 * (BYTES_BIG_ENDIAN != 0)); \
2420 else \
2421 abort(); \
2424 /* If we generate an insn to push BYTES bytes,
2425 this says how many the stack pointer really advances by.
2426 On the VAX, sp@- in a byte insn really pushes a word. */
2428 /* #define PUSH_ROUNDING(BYTES) 0 */
2430 /* If defined, the maximum amount of space required for outgoing
2431 arguments will be computed and placed into the variable
2432 `current_function_outgoing_args_size'. No space will be pushed
2433 onto the stack for each call; instead, the function prologue
2434 should increase the stack frame size by this amount.
2436 It is not proper to define both `PUSH_ROUNDING' and
2437 `ACCUMULATE_OUTGOING_ARGS'. */
2438 #define ACCUMULATE_OUTGOING_ARGS 1
2440 /* Offset from the argument pointer register to the first argument's
2441 address. On some machines it may depend on the data type of the
2442 function.
2444 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
2445 the first argument's address.
2447 On the MIPS, we must skip the first argument position if we are
2448 returning a structure or a union, to account for its address being
2449 passed in $4. However, at the current time, this produces a compiler
2450 that can't bootstrap, so comment it out for now. */
2452 #if 0
2453 #define FIRST_PARM_OFFSET(FNDECL) \
2454 (FNDECL != 0 \
2455 && TREE_TYPE (FNDECL) != 0 \
2456 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2457 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
2458 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2459 ? UNITS_PER_WORD \
2460 : 0)
2461 #else
2462 #define FIRST_PARM_OFFSET(FNDECL) 0
2463 #endif
2465 /* When a parameter is passed in a register, stack space is still
2466 allocated for it. For the MIPS, stack space must be allocated, cf
2467 Asm Lang Prog Guide page 7-8.
2469 BEWARE that some space is also allocated for non existing arguments
2470 in register. In case an argument list is of form GF used registers
2471 are a0 (a2,a3), but we should push over a1... */
2473 #define REG_PARM_STACK_SPACE(FNDECL) \
2474 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
2476 /* Define this if it is the responsibility of the caller to
2477 allocate the area reserved for arguments passed in registers.
2478 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2479 of this macro is to determine whether the space is included in
2480 `current_function_outgoing_args_size'. */
2481 #define OUTGOING_REG_PARM_STACK_SPACE
2483 /* Align stack frames on 64 bits (Double Word ). */
2484 #ifndef STACK_BOUNDARY
2485 #define STACK_BOUNDARY 64
2486 #endif
2488 /* Make sure 4 words are always allocated on the stack. */
2490 #ifndef STACK_ARGS_ADJUST
2491 #define STACK_ARGS_ADJUST(SIZE) \
2493 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2494 SIZE.constant = 4 * UNITS_PER_WORD; \
2496 #endif
2499 /* A C expression that should indicate the number of bytes of its
2500 own arguments that a function pops on returning, or 0
2501 if the function pops no arguments and the caller must therefore
2502 pop them all after the function returns.
2504 FUNDECL is the declaration node of the function (as a tree).
2506 FUNTYPE is a C variable whose value is a tree node that
2507 describes the function in question. Normally it is a node of
2508 type `FUNCTION_TYPE' that describes the data type of the function.
2509 From this it is possible to obtain the data types of the value
2510 and arguments (if known).
2512 When a call to a library function is being considered, FUNTYPE
2513 will contain an identifier node for the library function. Thus,
2514 if you need to distinguish among various library functions, you
2515 can do so by their names. Note that "library function" in this
2516 context means a function used to perform arithmetic, whose name
2517 is known specially in the compiler and was not mentioned in the
2518 C code being compiled.
2520 STACK-SIZE is the number of bytes of arguments passed on the
2521 stack. If a variable number of bytes is passed, it is zero, and
2522 argument popping will always be the responsibility of the
2523 calling function. */
2525 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2528 /* Symbolic macros for the registers used to return integer and floating
2529 point values. */
2531 #define GP_RETURN (GP_REG_FIRST + 2)
2532 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2534 /* Symbolic macros for the first/last argument registers. */
2536 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2537 #define GP_ARG_LAST (GP_REG_FIRST + 7)
2538 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2539 #define FP_ARG_LAST (FP_REG_FIRST + 15)
2541 #define MAX_ARGS_IN_REGISTERS 4
2543 /* Define how to find the value returned by a library function
2544 assuming the value has mode MODE. Because we define
2545 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2546 PROMOTE_MODE does. */
2548 #define LIBCALL_VALUE(MODE) \
2549 gen_rtx (REG, \
2550 ((GET_MODE_CLASS (MODE) != MODE_INT \
2551 || GET_MODE_SIZE (MODE) >= 4) \
2552 ? (MODE) \
2553 : SImode), \
2554 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
2555 && (! TARGET_SINGLE_FLOAT \
2556 || GET_MODE_SIZE (MODE) <= 4)) \
2557 ? FP_RETURN \
2558 : GP_RETURN))
2560 /* Define how to find the value returned by a function.
2561 VALTYPE is the data type of the value (as a tree).
2562 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2563 otherwise, FUNC is 0. */
2565 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
2568 /* 1 if N is a possible register number for a function value.
2569 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2570 Currently, R2 and F0 are only implemented here (C has no complex type) */
2572 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2574 /* 1 if N is a possible register number for function argument passing.
2575 We have no FP argument registers when soft-float. When FP registers
2576 are 32 bits, we can't directly reference the odd numbered ones. */
2578 #define FUNCTION_ARG_REGNO_P(N) \
2579 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
2580 || ((! TARGET_SOFT_FLOAT \
2581 && ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
2582 && (TARGET_FLOAT64 || (0 == (N) % 2))) \
2583 && ! fixed_regs[N]))
2585 /* A C expression which can inhibit the returning of certain function
2586 values in registers, based on the type of value. A nonzero value says
2587 to return the function value in memory, just as large structures are
2588 always returned. Here TYPE will be a C expression of type
2589 `tree', representing the data type of the value.
2591 Note that values of mode `BLKmode' must be explicitly
2592 handled by this macro. Also, the option `-fpcc-struct-return'
2593 takes effect regardless of this macro. On most systems, it is
2594 possible to leave the macro undefined; this causes a default
2595 definition to be used, whose value is the constant 1 for BLKmode
2596 values, and 0 otherwise.
2598 GCC normally converts 1 byte structures into chars, 2 byte
2599 structs into shorts, and 4 byte structs into ints, and returns
2600 them this way. Defining the following macro overrides this,
2601 to give us MIPS cc compatibility. */
2603 #define RETURN_IN_MEMORY(TYPE) \
2604 (TYPE_MODE (TYPE) == BLKmode)
2606 /* A code distinguishing the floating point format of the target
2607 machine. There are three defined values: IEEE_FLOAT_FORMAT,
2608 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
2610 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2613 /* Define a data type for recording info about an argument list
2614 during the scan of that argument list. This data type should
2615 hold all necessary information about the function itself
2616 and about the args processed so far, enough to enable macros
2617 such as FUNCTION_ARG to determine where the next arg should go.
2619 On the mips16, we need to keep track of which floating point
2620 arguments were passed in general registers, but would have been
2621 passed in the FP regs if this were a 32 bit function, so that we
2622 can move them to the FP regs if we wind up calling a 32 bit
2623 function. We record this information in fp_code, encoded in base
2624 four. A zero digit means no floating point argument, a one digit
2625 means an SFmode argument, and a two digit means a DFmode argument,
2626 and a three digit is not used. The low order digit is the first
2627 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2628 an SFmode argument. ??? A more sophisticated approach will be
2629 needed if MIPS_ABI != ABI_32. */
2631 typedef struct mips_args {
2632 int gp_reg_found; /* whether a gp register was found yet */
2633 unsigned int arg_number; /* argument number */
2634 unsigned int arg_words; /* # total words the arguments take */
2635 unsigned int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
2636 int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
2637 int fp_code; /* Mode of FP arguments (mips16) */
2638 unsigned int num_adjusts; /* number of adjustments made */
2639 /* Adjustments made to args pass in regs. */
2640 /* ??? The size is doubled to work around a
2641 bug in the code that sets the adjustments
2642 in function_arg. */
2643 int prototype; /* True if the function has a prototype. */
2644 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
2645 } CUMULATIVE_ARGS;
2647 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2648 for a call to a function whose data type is FNTYPE.
2649 For a library call, FNTYPE is 0.
2653 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2654 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2656 /* Update the data in CUM to advance over an argument
2657 of mode MODE and data type TYPE.
2658 (TYPE is null for libcalls where that information may not be available.) */
2660 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2661 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2663 /* Determine where to put an argument to a function.
2664 Value is zero to push the argument on the stack,
2665 or a hard register in which to store the argument.
2667 MODE is the argument's machine mode.
2668 TYPE is the data type of the argument (as a tree).
2669 This is null for libcalls where that information may
2670 not be available.
2671 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2672 the preceding args and about the function being called.
2673 NAMED is nonzero if this argument is a named parameter
2674 (otherwise it is an extra parameter matching an ellipsis). */
2676 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2677 function_arg( &CUM, MODE, TYPE, NAMED)
2679 /* For an arg passed partly in registers and partly in memory,
2680 this is the number of registers used.
2681 For args passed entirely in registers or entirely in memory, zero. */
2683 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2684 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2686 /* If defined, a C expression that gives the alignment boundary, in
2687 bits, of an argument with the specified mode and type. If it is
2688 not defined, `PARM_BOUNDARY' is used for all arguments. */
2690 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2691 (((TYPE) != 0) \
2692 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
2693 ? PARM_BOUNDARY \
2694 : TYPE_ALIGN(TYPE)) \
2695 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2696 ? PARM_BOUNDARY \
2697 : GET_MODE_ALIGNMENT(MODE)))
2700 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2702 #define MUST_SAVE_REGISTER(regno) \
2703 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2704 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
2705 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2707 /* ALIGN FRAMES on double word boundaries */
2708 #ifndef MIPS_STACK_ALIGN
2709 #define MIPS_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
2710 #endif
2713 /* Define the `__builtin_va_list' type for the ABI. */
2714 #define BUILD_VA_LIST_TYPE(VALIST) \
2715 (VALIST) = mips_build_va_list ()
2717 /* Implement `va_start' for varargs and stdarg. */
2718 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2719 mips_va_start (stdarg, valist, nextarg)
2721 /* Implement `va_arg'. */
2722 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2723 mips_va_arg (valist, type)
2725 /* Output assembler code to FILE to increment profiler label # LABELNO
2726 for profiling a function entry. */
2728 #define FUNCTION_PROFILER(FILE, LABELNO) \
2730 if (TARGET_MIPS16) \
2731 sorry ("mips16 function profiling"); \
2732 fprintf (FILE, "\t.set\tnoreorder\n"); \
2733 fprintf (FILE, "\t.set\tnoat\n"); \
2734 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2735 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2736 fprintf (FILE, "\tjal\t_mcount\n"); \
2737 fprintf (FILE, \
2738 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2739 TARGET_64BIT ? "dsubu" : "subu", \
2740 reg_names[STACK_POINTER_REGNUM], \
2741 reg_names[STACK_POINTER_REGNUM], \
2742 Pmode == DImode ? 16 : 8); \
2743 fprintf (FILE, "\t.set\treorder\n"); \
2744 fprintf (FILE, "\t.set\tat\n"); \
2747 /* Define this macro if the code for function profiling should come
2748 before the function prologue. Normally, the profiling code comes
2749 after. */
2751 /* #define PROFILE_BEFORE_PROLOGUE */
2753 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2754 the stack pointer does not matter. The value is tested only in
2755 functions that have frame pointers.
2756 No definition is equivalent to always zero. */
2758 #define EXIT_IGNORE_STACK 1
2761 /* A C statement to output, on the stream FILE, assembler code for a
2762 block of data that contains the constant parts of a trampoline.
2763 This code should not include a label--the label is taken care of
2764 automatically. */
2766 #define TRAMPOLINE_TEMPLATE(STREAM) \
2768 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2769 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2770 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2771 if (Pmode == DImode) \
2773 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2774 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2776 else \
2778 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2779 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2781 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2782 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2783 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2784 if (Pmode == DImode) \
2786 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2787 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2789 else \
2791 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2792 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2796 /* A C expression for the size in bytes of the trampoline, as an
2797 integer. */
2799 #define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
2801 /* Alignment required for trampolines, in bits. */
2803 #define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
2805 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2806 program and data caches. */
2808 #ifndef CACHE_FLUSH_FUNC
2809 #define CACHE_FLUSH_FUNC "_flush_cache"
2810 #endif
2812 /* A C statement to initialize the variable parts of a trampoline.
2813 ADDR is an RTX for the address of the trampoline; FNADDR is an
2814 RTX for the address of the nested function; STATIC_CHAIN is an
2815 RTX for the static chain value that should be passed to the
2816 function when it is called. */
2818 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2820 rtx addr = ADDR; \
2821 if (Pmode == DImode) \
2823 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2824 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
2826 else \
2828 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2829 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
2832 /* Flush both caches. We need to flush the data cache in case \
2833 the system has a write-back cache. */ \
2834 /* ??? Should check the return value for errors. */ \
2835 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2836 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2837 0, VOIDmode, 3, addr, Pmode, \
2838 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2839 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2842 /* Addressing modes, and classification of registers for them. */
2844 /* #define HAVE_POST_INCREMENT 0 */
2845 /* #define HAVE_POST_DECREMENT 0 */
2847 /* #define HAVE_PRE_DECREMENT 0 */
2848 /* #define HAVE_PRE_INCREMENT 0 */
2850 /* These assume that REGNO is a hard or pseudo reg number.
2851 They give nonzero only if REGNO is a hard reg of the suitable class
2852 or a pseudo reg currently allocated to a suitable hard reg.
2853 These definitions are NOT overridden anywhere. */
2855 #define BASE_REG_P(regno, mode) \
2856 (TARGET_MIPS16 \
2857 ? (M16_REG_P (regno) \
2858 || (regno) == FRAME_POINTER_REGNUM \
2859 || (regno) == ARG_POINTER_REGNUM \
2860 || ((regno) == STACK_POINTER_REGNUM \
2861 && (GET_MODE_SIZE (mode) == 4 \
2862 || GET_MODE_SIZE (mode) == 8))) \
2863 : GP_REG_P (regno))
2865 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
2866 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
2867 (mode))
2869 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
2870 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
2872 #define REGNO_OK_FOR_INDEX_P(regno) 0
2873 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
2874 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
2876 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2877 and check its validity for a certain class.
2878 We have two alternate definitions for each of them.
2879 The usual definition accepts all pseudo regs; the other rejects them all.
2880 The symbol REG_OK_STRICT causes the latter definition to be used.
2882 Most source files want to accept pseudo regs in the hope that
2883 they will get allocated to the class that the insn wants them to be in.
2884 Some source files that are used after register allocation
2885 need to be strict. */
2887 #ifndef REG_OK_STRICT
2888 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2889 mips_reg_mode_ok_for_base_p (X, MODE, 0)
2890 #else
2891 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2892 mips_reg_mode_ok_for_base_p (X, MODE, 1)
2893 #endif
2895 #define REG_OK_FOR_INDEX_P(X) 0
2898 /* Maximum number of registers that can appear in a valid memory address. */
2900 #define MAX_REGS_PER_ADDRESS 1
2902 /* A C compound statement with a conditional `goto LABEL;' executed
2903 if X (an RTX) is a legitimate memory address on the target
2904 machine for a memory operand of mode MODE.
2906 It usually pays to define several simpler macros to serve as
2907 subroutines for this one. Otherwise it may be too complicated
2908 to understand.
2910 This macro must exist in two variants: a strict variant and a
2911 non-strict one. The strict variant is used in the reload pass.
2912 It must be defined so that any pseudo-register that has not been
2913 allocated a hard register is considered a memory reference. In
2914 contexts where some kind of register is required, a
2915 pseudo-register with no hard register must be rejected.
2917 The non-strict variant is used in other passes. It must be
2918 defined to accept all pseudo-registers in every context where
2919 some kind of register is required.
2921 Compiler source files that want to use the strict variant of
2922 this macro define the macro `REG_OK_STRICT'. You should use an
2923 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2924 in that case and the non-strict variant otherwise.
2926 Typically among the subroutines used to define
2927 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2928 acceptable registers for various purposes (one for base
2929 registers, one for index registers, and so on). Then only these
2930 subroutine macros need have two variants; the higher levels of
2931 macros may be the same whether strict or not.
2933 Normally, constant addresses which are the sum of a `symbol_ref'
2934 and an integer are stored inside a `const' RTX to mark them as
2935 constant. Therefore, there is no need to recognize such sums
2936 specifically as legitimate addresses. Normally you would simply
2937 recognize any `const' as legitimate.
2939 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2940 constant sums that are not marked with `const'. It assumes
2941 that a naked `plus' indicates indexing. If so, then you *must*
2942 reject such naked constant sums as illegitimate addresses, so
2943 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2945 On some machines, whether a symbolic address is legitimate
2946 depends on the section that the address refers to. On these
2947 machines, define the macro `ENCODE_SECTION_INFO' to store the
2948 information into the `symbol_ref', and then check for it here.
2949 When you see a `const', you will have to look inside it to find
2950 the `symbol_ref' in order to determine the section. */
2952 #if 1
2953 #define GO_PRINTF(x) fprintf(stderr, (x))
2954 #define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
2955 #define GO_DEBUG_RTX(x) debug_rtx(x)
2957 #else
2958 #define GO_PRINTF(x)
2959 #define GO_PRINTF2(x,y)
2960 #define GO_DEBUG_RTX(x)
2961 #endif
2963 #ifdef REG_OK_STRICT
2964 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2966 if (mips_legitimate_address_p (MODE, X, 1)) \
2967 goto ADDR; \
2969 #else
2970 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2972 if (mips_legitimate_address_p (MODE, X, 0)) \
2973 goto ADDR; \
2975 #endif
2977 /* A C expression that is 1 if the RTX X is a constant which is a
2978 valid address. This is defined to be the same as `CONSTANT_P (X)',
2979 but rejecting CONST_DOUBLE. */
2980 /* When pic, we must reject addresses of the form symbol+large int.
2981 This is because an instruction `sw $4,s+70000' needs to be converted
2982 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2983 assembler would use $at as a temp to load in the large offset. In this
2984 case $at is already in use. We convert such problem addresses to
2985 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2986 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2987 #define CONSTANT_ADDRESS_P(X) \
2988 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2989 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2990 || (GET_CODE (X) == CONST \
2991 && ! (flag_pic && pic_address_needs_scratch (X)) \
2992 && (mips_abi == ABI_32 \
2993 || mips_abi == ABI_O64 \
2994 || mips_abi == ABI_EABI))) \
2995 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
2997 /* Define this, so that when PIC, reload won't try to reload invalid
2998 addresses which require two reload registers. */
3000 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
3002 /* Nonzero if the constant value X is a legitimate general operand.
3003 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
3005 At present, GAS doesn't understand li.[sd], so don't allow it
3006 to be generated at present. Also, the MIPS assembler does not
3007 grok li.d Infinity. */
3009 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
3010 Note that the Irix 6 assembler problem may already be fixed.
3011 Note also that the GET_CODE (X) == CONST test catches the mips16
3012 gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
3013 a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
3014 ABI_64 to work together, we'll need to fix this. */
3015 #define LEGITIMATE_CONSTANT_P(X) \
3016 ((GET_CODE (X) != CONST_DOUBLE \
3017 || mips_const_double_ok (X, GET_MODE (X))) \
3018 && ! (GET_CODE (X) == CONST \
3019 && ! TARGET_GAS \
3020 && (mips_abi == ABI_N32 \
3021 || mips_abi == ABI_64)) \
3022 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
3024 /* A C compound statement that attempts to replace X with a valid
3025 memory address for an operand of mode MODE. WIN will be a C
3026 statement label elsewhere in the code; the macro definition may
3029 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
3031 to avoid further processing if the address has become legitimate.
3033 X will always be the result of a call to `break_out_memory_refs',
3034 and OLDX will be the operand that was given to that function to
3035 produce X.
3037 The code generated by this macro should not alter the
3038 substructure of X. If it transforms X into a more legitimate
3039 form, it should assign X (which will always be a C variable) a
3040 new value.
3042 It is not necessary for this macro to come up with a legitimate
3043 address. The compiler has standard ways of doing so in all
3044 cases. In fact, it is safe for this macro to do nothing. But
3045 often a machine-dependent strategy can generate better code.
3047 For the MIPS, transform:
3049 memory(X + <large int>)
3051 into:
3053 Y = <large int> & ~0x7fff;
3054 Z = X + Y
3055 memory (Z + (<large int> & 0x7fff));
3057 This is for CSE to find several similar references, and only use one Z.
3059 When PIC, convert addresses of the form memory (symbol+large int) to
3060 memory (reg+large int). */
3063 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
3065 register rtx xinsn = (X); \
3067 if (TARGET_DEBUG_B_MODE) \
3069 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
3070 GO_DEBUG_RTX (xinsn); \
3073 if (mips_split_addresses && mips_check_split (X, MODE)) \
3075 /* ??? Is this ever executed? */ \
3076 X = gen_rtx_LO_SUM (Pmode, \
3077 copy_to_mode_reg (Pmode, \
3078 gen_rtx (HIGH, Pmode, X)), \
3079 X); \
3080 goto WIN; \
3083 if (GET_CODE (xinsn) == CONST \
3084 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
3085 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
3086 || (mips_abi != ABI_32 \
3087 && mips_abi != ABI_O64 \
3088 && mips_abi != ABI_EABI))) \
3090 rtx ptr_reg = gen_reg_rtx (Pmode); \
3091 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
3093 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
3095 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
3096 if (SMALL_INT (constant)) \
3097 goto WIN; \
3098 /* Otherwise we fall through so the code below will fix the \
3099 constant. */ \
3100 xinsn = X; \
3103 if (GET_CODE (xinsn) == PLUS) \
3105 register rtx xplus0 = XEXP (xinsn, 0); \
3106 register rtx xplus1 = XEXP (xinsn, 1); \
3107 register enum rtx_code code0 = GET_CODE (xplus0); \
3108 register enum rtx_code code1 = GET_CODE (xplus1); \
3110 if (code0 != REG && code1 == REG) \
3112 xplus0 = XEXP (xinsn, 1); \
3113 xplus1 = XEXP (xinsn, 0); \
3114 code0 = GET_CODE (xplus0); \
3115 code1 = GET_CODE (xplus1); \
3118 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
3119 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
3121 rtx int_reg = gen_reg_rtx (Pmode); \
3122 rtx ptr_reg = gen_reg_rtx (Pmode); \
3124 emit_move_insn (int_reg, \
3125 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
3127 emit_insn (gen_rtx_SET (VOIDmode, \
3128 ptr_reg, \
3129 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
3131 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
3132 goto WIN; \
3136 if (TARGET_DEBUG_B_MODE) \
3137 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
3141 /* A C statement or compound statement with a conditional `goto
3142 LABEL;' executed if memory address X (an RTX) can have different
3143 meanings depending on the machine mode of the memory reference it
3144 is used for.
3146 Autoincrement and autodecrement addresses typically have
3147 mode-dependent effects because the amount of the increment or
3148 decrement is the size of the operand being addressed. Some
3149 machines have other mode-dependent addresses. Many RISC machines
3150 have no mode-dependent addresses.
3152 You may assume that ADDR is a valid address for the machine. */
3154 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
3157 /* Define this macro if references to a symbol must be treated
3158 differently depending on something about the variable or
3159 function named by the symbol (such as what section it is in).
3161 The macro definition, if any, is executed immediately after the
3162 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
3163 The value of the rtl will be a `mem' whose address is a
3164 `symbol_ref'.
3166 The usual thing for this macro to do is to a flag in the
3167 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
3168 name string in the `symbol_ref' (if one bit is not enough
3169 information).
3171 The best way to modify the name string is by adding text to the
3172 beginning, with suitable punctuation to prevent any ambiguity.
3173 Allocate the new name in `saveable_obstack'. You will have to
3174 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
3175 and output the name accordingly.
3177 You can also check the information stored in the `symbol_ref' in
3178 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
3179 `PRINT_OPERAND_ADDRESS'.
3181 When optimizing for the $gp pointer, SYMBOL_REF_FLAG is set for all
3182 small objects.
3184 When generating embedded PIC code, SYMBOL_REF_FLAG is set for
3185 symbols which are not in the .text section.
3187 When generating mips16 code, SYMBOL_REF_FLAG is set for string
3188 constants which are put in the .text section. We also record the
3189 total length of all such strings; this total is used to decide
3190 whether we need to split the constant table, and need not be
3191 precisely correct.
3193 When not mips16 code nor embedded PIC, if a symbol is in a
3194 gp addresable section, SYMBOL_REF_FLAG is set prevent gcc from
3195 splitting the reference so that gas can generate a gp relative
3196 reference.
3198 When TARGET_EMBEDDED_DATA is set, we assume that all const
3199 variables will be stored in ROM, which is too far from %gp to use
3200 %gprel addressing. Note that (1) we include "extern const"
3201 variables in this, which mips_select_section doesn't, and (2) we
3202 can't always tell if they're really const (they might be const C++
3203 objects with non-const constructors), so we err on the side of
3204 caution and won't use %gprel anyway (otherwise we'd have to defer
3205 this decision to the linker/loader). The handling of extern consts
3206 is why the DECL_INITIAL macros differ from mips_select_section.
3208 If you are changing this macro, you should look at
3209 mips_select_section and see if it needs a similar change. */
3211 #define ENCODE_SECTION_INFO(DECL) \
3212 do \
3214 if (TARGET_MIPS16) \
3216 if (TREE_CODE (DECL) == STRING_CST \
3217 && ! flag_writable_strings \
3218 /* If this string is from a function, and the function will \
3219 go in a gnu linkonce section, then we can't directly \
3220 access the string. This gets an assembler error \
3221 "unsupported PC relative reference to different section".\
3222 If we modify SELECT_SECTION to put it in function_section\
3223 instead of text_section, it still fails because \
3224 DECL_SECTION_NAME isn't set until assemble_start_function.\
3225 If we fix that, it still fails because strings are shared\
3226 among multiple functions, and we have cross section \
3227 references again. We force it to work by putting string \
3228 addresses in the constant pool and indirecting. */ \
3229 && (! current_function_decl \
3230 || ! DECL_ONE_ONLY (current_function_decl))) \
3232 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3233 mips_string_length += TREE_STRING_LENGTH (DECL); \
3237 if (TARGET_EMBEDDED_DATA \
3238 && (TREE_CODE (DECL) == VAR_DECL \
3239 && TREE_READONLY (DECL) && !TREE_SIDE_EFFECTS (DECL)) \
3240 && (!DECL_INITIAL (DECL) \
3241 || TREE_CONSTANT (DECL_INITIAL (DECL)))) \
3243 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
3246 else if (TARGET_EMBEDDED_PIC) \
3248 if (TREE_CODE (DECL) == VAR_DECL) \
3249 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3250 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
3251 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
3252 else if (TREE_CODE (DECL) == STRING_CST \
3253 && ! flag_writable_strings) \
3254 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
3255 else \
3256 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3259 else if (TREE_CODE (DECL) == VAR_DECL \
3260 && DECL_SECTION_NAME (DECL) != NULL_TREE \
3261 && (0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (DECL)), \
3262 ".sdata") \
3263 || 0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (DECL)),\
3264 ".sbss"))) \
3266 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3269 /* We can not perform GP optimizations on variables which are in \
3270 specific sections, except for .sdata and .sbss which are \
3271 handled above. */ \
3272 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL \
3273 && DECL_SECTION_NAME (DECL) == NULL_TREE) \
3275 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
3277 if (size > 0 && size <= mips_section_threshold) \
3278 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3281 else if (HALF_PIC_P ()) \
3283 HALF_PIC_ENCODE (DECL); \
3286 while (0)
3288 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
3289 'the start of the function that this code is output in'. */
3291 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
3292 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
3293 asm_fprintf ((FILE), "%U%s", \
3294 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
3295 else \
3296 asm_fprintf ((FILE), "%U%s", (NAME))
3298 /* The mips16 wants the constant pool to be after the function,
3299 because the PC relative load instructions use unsigned offsets. */
3301 #define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3303 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3304 mips_string_length = 0;
3306 #if 0
3307 /* In mips16 mode, put most string constants after the function. */
3308 #define CONSTANT_AFTER_FUNCTION_P(tree) \
3309 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3310 #endif
3312 /* Specify the machine mode that this machine uses
3313 for the index in the tablejump instruction.
3314 ??? Using HImode in mips16 mode can cause overflow. However, the
3315 overflow is no more likely than the overflow in a branch
3316 instruction. Large functions can currently break in both ways. */
3317 #define CASE_VECTOR_MODE \
3318 (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
3320 /* Define as C expression which evaluates to nonzero if the tablejump
3321 instruction expects the table to contain offsets from the address of the
3322 table.
3323 Do not define this if the table should contain absolute addresses. */
3324 #define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
3326 /* Specify the tree operation to be used to convert reals to integers. */
3327 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
3329 /* This is the kind of divide that is easiest to do in the general case. */
3330 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
3332 /* Define this as 1 if `char' should by default be signed; else as 0. */
3333 #ifndef DEFAULT_SIGNED_CHAR
3334 #define DEFAULT_SIGNED_CHAR 1
3335 #endif
3337 /* Max number of bytes we can move from memory to memory
3338 in one reasonably fast instruction. */
3339 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3340 #define MAX_MOVE_MAX 8
3342 /* Define this macro as a C expression which is nonzero if
3343 accessing less than a word of memory (i.e. a `char' or a
3344 `short') is no faster than accessing a word of memory, i.e., if
3345 such access require more than one instruction or if there is no
3346 difference in cost between byte and (aligned) word loads.
3348 On RISC machines, it tends to generate better code to define
3349 this as 1, since it avoids making a QI or HI mode register. */
3350 #define SLOW_BYTE_ACCESS 1
3352 /* We assume that the store-condition-codes instructions store 0 for false
3353 and some other value for true. This is the value stored for true. */
3355 #define STORE_FLAG_VALUE 1
3357 /* Define this if zero-extension is slow (more than one real instruction). */
3358 #define SLOW_ZERO_EXTEND
3360 /* Define this to be nonzero if shift instructions ignore all but the low-order
3361 few bits. */
3362 #define SHIFT_COUNT_TRUNCATED 1
3364 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3365 is done just by pretending it is already truncated. */
3366 /* In 64 bit mode, 32 bit instructions require that register values be properly
3367 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3368 converts a value >32 bits to a value <32 bits. */
3369 /* ??? This results in inefficient code for 64 bit to 32 conversions.
3370 Something needs to be done about this. Perhaps not use any 32 bit
3371 instructions? Perhaps use PROMOTE_MODE? */
3372 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3373 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
3375 /* Specify the machine mode that pointers have.
3376 After generation of rtl, the compiler makes no further distinction
3377 between pointers and any other objects of this machine mode.
3379 For MIPS we make pointers are the smaller of longs and gp-registers. */
3381 #ifndef Pmode
3382 #define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
3383 #endif
3385 /* A function address in a call instruction
3386 is a word address (for indexing purposes)
3387 so give the MEM rtx a words's mode. */
3389 #define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
3391 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
3392 memset, instead of the BSD functions bcopy and bzero. */
3394 #if defined(MIPS_SYSV) || defined(OSF_OS)
3395 #define TARGET_MEM_FUNCTIONS
3396 #endif
3399 /* A part of a C `switch' statement that describes the relative
3400 costs of constant RTL expressions. It must contain `case'
3401 labels for expression codes `const_int', `const', `symbol_ref',
3402 `label_ref' and `const_double'. Each case must ultimately reach
3403 a `return' statement to return the relative cost of the use of
3404 that kind of constant value in an expression. The cost may
3405 depend on the precise value of the constant, which is available
3406 for examination in X.
3408 CODE is the expression code--redundant, since it can be obtained
3409 with `GET_CODE (X)'. */
3411 #define CONST_COSTS(X,CODE,OUTER_CODE) \
3412 case CONST_INT: \
3413 if (! TARGET_MIPS16) \
3415 /* Always return 0, since we don't have different sized \
3416 instructions, hence different costs according to Richard \
3417 Kenner */ \
3418 return 0; \
3420 if ((OUTER_CODE) == SET) \
3422 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3423 return 0; \
3424 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3425 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3426 return COSTS_N_INSNS (1); \
3427 else \
3428 return COSTS_N_INSNS (2); \
3430 /* A PLUS could be an address. We don't want to force an address \
3431 to use a register, so accept any signed 16 bit value without \
3432 complaint. */ \
3433 if ((OUTER_CODE) == PLUS \
3434 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3435 return 0; \
3436 /* A number between 1 and 8 inclusive is efficient for a shift. \
3437 Otherwise, we will need an extended instruction. */ \
3438 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3439 || (OUTER_CODE) == LSHIFTRT) \
3441 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3442 return 0; \
3443 return COSTS_N_INSNS (1); \
3445 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3446 if ((OUTER_CODE) == XOR \
3447 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3448 return 0; \
3449 /* We may be able to use slt or sltu for a comparison with a \
3450 signed 16 bit value. (The boundary conditions aren't quite \
3451 right, but this is just a heuristic anyhow.) */ \
3452 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3453 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3454 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3455 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3456 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3457 return 0; \
3458 /* Equality comparisons with 0 are cheap. */ \
3459 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3460 && INTVAL (X) == 0) \
3461 return 0; \
3463 /* Otherwise, work out the cost to load the value into a \
3464 register. */ \
3465 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3466 return COSTS_N_INSNS (1); \
3467 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3468 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3469 return COSTS_N_INSNS (2); \
3470 else \
3471 return COSTS_N_INSNS (3); \
3473 case LABEL_REF: \
3474 return COSTS_N_INSNS (2); \
3476 case CONST: \
3478 rtx offset = const0_rtx; \
3479 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
3481 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3483 /* Treat this like a signed 16 bit CONST_INT. */ \
3484 if ((OUTER_CODE) == PLUS) \
3485 return 0; \
3486 else if ((OUTER_CODE) == SET) \
3487 return COSTS_N_INSNS (1); \
3488 else \
3489 return COSTS_N_INSNS (2); \
3492 if (GET_CODE (symref) == LABEL_REF) \
3493 return COSTS_N_INSNS (2); \
3495 if (GET_CODE (symref) != SYMBOL_REF) \
3496 return COSTS_N_INSNS (4); \
3498 /* let's be paranoid.... */ \
3499 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
3500 return COSTS_N_INSNS (2); \
3502 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3505 case SYMBOL_REF: \
3506 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3508 case CONST_DOUBLE: \
3510 rtx high, low; \
3511 if (TARGET_MIPS16) \
3512 return COSTS_N_INSNS (4); \
3513 split_double (X, &high, &low); \
3514 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3515 || low == CONST0_RTX (GET_MODE (low))) \
3516 ? 2 : 4); \
3519 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3520 This can be used, for example, to indicate how costly a multiply
3521 instruction is. In writing this macro, you can use the construct
3522 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3524 This macro is optional; do not define it if the default cost
3525 assumptions are adequate for the target machine.
3527 If -mdebugd is used, change the multiply cost to 2, so multiply by
3528 a constant isn't converted to a series of shifts. This helps
3529 strength reduction, and also makes it easier to identify what the
3530 compiler is doing. */
3532 /* ??? Fix this to be right for the R8000. */
3533 #define RTX_COSTS(X,CODE,OUTER_CODE) \
3534 case MEM: \
3536 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3537 if (simple_memory_operand (X, GET_MODE (X))) \
3538 return COSTS_N_INSNS (num_words); \
3540 return COSTS_N_INSNS (2*num_words); \
3543 case FFS: \
3544 return COSTS_N_INSNS (6); \
3546 case NOT: \
3547 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
3549 case AND: \
3550 case IOR: \
3551 case XOR: \
3552 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3553 return COSTS_N_INSNS (2); \
3555 break; \
3557 case ASHIFT: \
3558 case ASHIFTRT: \
3559 case LSHIFTRT: \
3560 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3561 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
3563 break; \
3565 case ABS: \
3567 enum machine_mode xmode = GET_MODE (X); \
3568 if (xmode == SFmode || xmode == DFmode) \
3569 return COSTS_N_INSNS (1); \
3571 return COSTS_N_INSNS (4); \
3574 case PLUS: \
3575 case MINUS: \
3577 enum machine_mode xmode = GET_MODE (X); \
3578 if (xmode == SFmode || xmode == DFmode) \
3580 if (TUNE_MIPS3000 \
3581 || TUNE_MIPS3900) \
3582 return COSTS_N_INSNS (2); \
3583 else if (TUNE_MIPS6000) \
3584 return COSTS_N_INSNS (3); \
3585 else \
3586 return COSTS_N_INSNS (6); \
3589 if (xmode == DImode && !TARGET_64BIT) \
3590 return COSTS_N_INSNS (4); \
3592 break; \
3595 case NEG: \
3596 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3597 return 4; \
3599 break; \
3601 case MULT: \
3603 enum machine_mode xmode = GET_MODE (X); \
3604 if (xmode == SFmode) \
3606 if (TUNE_MIPS3000 \
3607 || TUNE_MIPS3900 \
3608 || TUNE_MIPS5000) \
3609 return COSTS_N_INSNS (4); \
3610 else if (TUNE_MIPS6000) \
3611 return COSTS_N_INSNS (5); \
3612 else \
3613 return COSTS_N_INSNS (7); \
3616 if (xmode == DFmode) \
3618 if (TUNE_MIPS3000 \
3619 || TUNE_MIPS3900 \
3620 || TUNE_MIPS5000) \
3621 return COSTS_N_INSNS (5); \
3622 else if (TUNE_MIPS6000) \
3623 return COSTS_N_INSNS (6); \
3624 else \
3625 return COSTS_N_INSNS (8); \
3628 if (TUNE_MIPS3000) \
3629 return COSTS_N_INSNS (12); \
3630 else if (TUNE_MIPS3900) \
3631 return COSTS_N_INSNS (2); \
3632 else if (TUNE_MIPS6000) \
3633 return COSTS_N_INSNS (17); \
3634 else if (TUNE_MIPS5000) \
3635 return COSTS_N_INSNS (5); \
3636 else \
3637 return COSTS_N_INSNS (10); \
3640 case DIV: \
3641 case MOD: \
3643 enum machine_mode xmode = GET_MODE (X); \
3644 if (xmode == SFmode) \
3646 if (TUNE_MIPS3000 \
3647 || TUNE_MIPS3900) \
3648 return COSTS_N_INSNS (12); \
3649 else if (TUNE_MIPS6000) \
3650 return COSTS_N_INSNS (15); \
3651 else \
3652 return COSTS_N_INSNS (23); \
3655 if (xmode == DFmode) \
3657 if (TUNE_MIPS3000 \
3658 || TUNE_MIPS3900) \
3659 return COSTS_N_INSNS (19); \
3660 else if (TUNE_MIPS6000) \
3661 return COSTS_N_INSNS (16); \
3662 else \
3663 return COSTS_N_INSNS (36); \
3666 /* fall through */ \
3668 case UDIV: \
3669 case UMOD: \
3670 if (TUNE_MIPS3000 \
3671 || TUNE_MIPS3900) \
3672 return COSTS_N_INSNS (35); \
3673 else if (TUNE_MIPS6000) \
3674 return COSTS_N_INSNS (38); \
3675 else if (TUNE_MIPS5000) \
3676 return COSTS_N_INSNS (36); \
3677 else \
3678 return COSTS_N_INSNS (69); \
3680 case SIGN_EXTEND: \
3681 /* A sign extend from SImode to DImode in 64 bit mode is often \
3682 zero instructions, because the result can often be used \
3683 directly by another instruction; we'll call it one. */ \
3684 if (TARGET_64BIT && GET_MODE (X) == DImode \
3685 && GET_MODE (XEXP (X, 0)) == SImode) \
3686 return COSTS_N_INSNS (1); \
3687 else \
3688 return COSTS_N_INSNS (2); \
3690 case ZERO_EXTEND: \
3691 if (TARGET_64BIT && GET_MODE (X) == DImode \
3692 && GET_MODE (XEXP (X, 0)) == SImode) \
3693 return COSTS_N_INSNS (2); \
3694 else \
3695 return COSTS_N_INSNS (1);
3697 /* An expression giving the cost of an addressing mode that
3698 contains ADDRESS. If not defined, the cost is computed from the
3699 form of the ADDRESS expression and the `CONST_COSTS' values.
3701 For most CISC machines, the default cost is a good approximation
3702 of the true cost of the addressing mode. However, on RISC
3703 machines, all instructions normally have the same length and
3704 execution time. Hence all addresses will have equal costs.
3706 In cases where more than one form of an address is known, the
3707 form with the lowest cost will be used. If multiple forms have
3708 the same, lowest, cost, the one that is the most complex will be
3709 used.
3711 For example, suppose an address that is equal to the sum of a
3712 register and a constant is used twice in the same basic block.
3713 When this macro is not defined, the address will be computed in
3714 a register and memory references will be indirect through that
3715 register. On machines where the cost of the addressing mode
3716 containing the sum is no higher than that of a simple indirect
3717 reference, this will produce an additional instruction and
3718 possibly require an additional register. Proper specification
3719 of this macro eliminates this overhead for such machines.
3721 Similar use of this macro is made in strength reduction of loops.
3723 ADDRESS need not be valid as an address. In such a case, the
3724 cost is not relevant and can be any value; invalid addresses
3725 need not be assigned a different cost.
3727 On machines where an address involving more than one register is
3728 as cheap as an address computation involving only one register,
3729 defining `ADDRESS_COST' to reflect this can cause two registers
3730 to be live over a region of code where only one would have been
3731 if `ADDRESS_COST' were not defined in that manner. This effect
3732 should be considered in the definition of this macro.
3733 Equivalent costs should probably only be given to addresses with
3734 different numbers of registers on machines with lots of registers.
3736 This macro will normally either not be defined or be defined as
3737 a constant. */
3739 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3741 /* A C expression for the cost of moving data from a register in
3742 class FROM to one in class TO. The classes are expressed using
3743 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3744 the default; other values are interpreted relative to that.
3746 It is not required that the cost always equal 2 when FROM is the
3747 same as TO; on some machines it is expensive to move between
3748 registers if they are not general registers.
3750 If reload sees an insn consisting of a single `set' between two
3751 hard registers, and if `REGISTER_MOVE_COST' applied to their
3752 classes returns a value of 2, reload does not check to ensure
3753 that the constraints of the insn are met. Setting a cost of
3754 other than 2 will allow reload to verify that the constraints are
3755 met. You should do this if the `movM' pattern's constraints do
3756 not allow such copying.
3758 ??? We make make the cost of moving from HI/LO/HILO/MD into general
3759 registers the same as for one of moving general registers to
3760 HI/LO/HILO/MD for TARGET_MIPS16 in order to prevent allocating a
3761 pseudo to HI/LO/HILO/MD. This might hurt optimizations though, it
3762 isn't clear if it is wise. And it might not work in all cases. We
3763 could solve the DImode LO reg problem by using a multiply, just like
3764 reload_{in,out}si. We could solve the SImode/HImode HI reg problem
3765 by using divide instructions. divu puts the remainder in the HI
3766 reg, so doing a divide by -1 will move the value in the HI reg for
3767 all values except -1. We could handle that case by using a signed
3768 divide, e.g. -1 / 2 (or maybe 1 / -2?). We'd have to emit a
3769 compare/branch to test the input value to see which instruction we
3770 need to use. This gets pretty messy, but it is feasible. */
3772 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
3773 ((FROM) == M16_REGS && GR_REG_CLASS_P (TO) ? 2 \
3774 : (FROM) == M16_NA_REGS && GR_REG_CLASS_P (TO) ? 2 \
3775 : GR_REG_CLASS_P (FROM) && (TO) == M16_REGS ? 2 \
3776 : GR_REG_CLASS_P (FROM) && (TO) == M16_NA_REGS ? 2 \
3777 : GR_REG_CLASS_P (FROM) && GR_REG_CLASS_P (TO) ? (TARGET_MIPS16 ? 4 : 2) \
3778 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
3779 : GR_REG_CLASS_P (FROM) && (TO) == FP_REGS ? 4 \
3780 : (FROM) == FP_REGS && GR_REG_CLASS_P (TO) ? 4 \
3781 : (((FROM) == HI_REG || (FROM) == LO_REG \
3782 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
3783 && GR_REG_CLASS_P (TO)) ? (TARGET_MIPS16 ? 12 : 6) \
3784 : (((TO) == HI_REG || (TO) == LO_REG \
3785 || (TO) == MD_REGS || (TO) == HILO_REG) \
3786 && GR_REG_CLASS_P (FROM)) ? (TARGET_MIPS16 ? 12 : 6) \
3787 : (FROM) == ST_REGS && GR_REG_CLASS_P (TO) ? 4 \
3788 : (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
3789 : 12)
3791 /* ??? Fix this to be right for the R8000. */
3792 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
3793 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
3794 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
3796 /* Define if copies to/from condition code registers should be avoided.
3798 This is needed for the MIPS because reload_outcc is not complete;
3799 it needs to handle cases where the source is a general or another
3800 condition code register. */
3801 #define AVOID_CCMODE_COPIES
3803 /* A C expression for the cost of a branch instruction. A value of
3804 1 is the default; other values are interpreted relative to that. */
3806 /* ??? Fix this to be right for the R8000. */
3807 #define BRANCH_COST \
3808 ((! TARGET_MIPS16 \
3809 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
3810 ? 2 : 1)
3812 /* If defined, modifies the length assigned to instruction INSN as a
3813 function of the context in which it is used. LENGTH is an lvalue
3814 that contains the initially computed length of the insn and should
3815 be updated with the correct length of the insn. */
3816 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
3817 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
3820 /* Optionally define this if you have added predicates to
3821 `MACHINE.c'. This macro is called within an initializer of an
3822 array of structures. The first field in the structure is the
3823 name of a predicate and the second field is an array of rtl
3824 codes. For each predicate, list all rtl codes that can be in
3825 expressions matched by the predicate. The list should have a
3826 trailing comma. Here is an example of two entries in the list
3827 for a typical RISC machine:
3829 #define PREDICATE_CODES \
3830 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3831 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3833 Defining this macro does not affect the generated code (however,
3834 incorrect definitions that omit an rtl code that may be matched
3835 by the predicate can cause the compiler to malfunction).
3836 Instead, it allows the table built by `genrecog' to be more
3837 compact and efficient, thus speeding up the compiler. The most
3838 important predicates to include in the list specified by this
3839 macro are thoses used in the most insn patterns. */
3841 #define PREDICATE_CODES \
3842 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3843 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3844 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
3845 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3846 {"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3847 {"small_int", { CONST_INT }}, \
3848 {"large_int", { CONST_INT }}, \
3849 {"mips_const_double_ok", { CONST_DOUBLE }}, \
3850 {"const_float_1_operand", { CONST_DOUBLE }}, \
3851 {"simple_memory_operand", { MEM, SUBREG }}, \
3852 {"equality_op", { EQ, NE }}, \
3853 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3854 LTU, LEU }}, \
3855 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
3856 {"pc_or_label_operand", { PC, LABEL_REF }}, \
3857 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3858 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3859 SYMBOL_REF, LABEL_REF, SUBREG, \
3860 REG, MEM}}, \
3861 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3862 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3863 MEM, SIGN_EXTEND }}, \
3864 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
3865 {"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
3866 SIGN_EXTEND }}, \
3867 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3868 SIGN_EXTEND }}, \
3869 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3870 SIGN_EXTEND }}, \
3871 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3872 SYMBOL_REF, LABEL_REF, SUBREG, \
3873 REG, SIGN_EXTEND }}, \
3874 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }}, \
3875 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
3876 CONST_DOUBLE, CONST }}, \
3877 {"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
3878 {"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
3880 /* A list of predicates that do special things with modes, and so
3881 should not elicit warnings for VOIDmode match_operand. */
3883 #define SPECIAL_MODE_PREDICATES \
3884 "pc_or_label_operand",
3887 /* If defined, a C statement to be executed just prior to the
3888 output of assembler code for INSN, to modify the extracted
3889 operands so they will be output differently.
3891 Here the argument OPVEC is the vector containing the operands
3892 extracted from INSN, and NOPERANDS is the number of elements of
3893 the vector which contain meaningful data for this insn. The
3894 contents of this vector are what will be used to convert the
3895 insn template into assembler code, so you can change the
3896 assembler output by changing the contents of the vector.
3898 We use it to check if the current insn needs a nop in front of it
3899 because of load delays, and also to update the delay slot
3900 statistics. */
3902 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3903 final_prescan_insn (INSN, OPVEC, NOPERANDS)
3906 /* Control the assembler format that we output. */
3908 /* Output at beginning of assembler file.
3909 If we are optimizing to use the global pointer, create a temporary
3910 file to hold all of the text stuff, and write it out to the end.
3911 This is needed because the MIPS assembler is evidently one pass,
3912 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3913 declaration when the code is processed, it generates a two
3914 instruction sequence. */
3916 #undef ASM_FILE_START
3917 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3919 /* Output to assembler file text saying following lines
3920 may contain character constants, extra white space, comments, etc. */
3922 #ifndef ASM_APP_ON
3923 #define ASM_APP_ON " #APP\n"
3924 #endif
3926 /* Output to assembler file text saying following lines
3927 no longer contain unusual constructs. */
3929 #ifndef ASM_APP_OFF
3930 #define ASM_APP_OFF " #NO_APP\n"
3931 #endif
3933 /* How to refer to registers in assembler output.
3934 This sequence is indexed by compiler's hard-register-number (see above).
3936 In order to support the two different conventions for register names,
3937 we use the name of a table set up in mips.c, which is overwritten
3938 if -mrnames is used. */
3940 #define REGISTER_NAMES \
3942 &mips_reg_names[ 0][0], \
3943 &mips_reg_names[ 1][0], \
3944 &mips_reg_names[ 2][0], \
3945 &mips_reg_names[ 3][0], \
3946 &mips_reg_names[ 4][0], \
3947 &mips_reg_names[ 5][0], \
3948 &mips_reg_names[ 6][0], \
3949 &mips_reg_names[ 7][0], \
3950 &mips_reg_names[ 8][0], \
3951 &mips_reg_names[ 9][0], \
3952 &mips_reg_names[10][0], \
3953 &mips_reg_names[11][0], \
3954 &mips_reg_names[12][0], \
3955 &mips_reg_names[13][0], \
3956 &mips_reg_names[14][0], \
3957 &mips_reg_names[15][0], \
3958 &mips_reg_names[16][0], \
3959 &mips_reg_names[17][0], \
3960 &mips_reg_names[18][0], \
3961 &mips_reg_names[19][0], \
3962 &mips_reg_names[20][0], \
3963 &mips_reg_names[21][0], \
3964 &mips_reg_names[22][0], \
3965 &mips_reg_names[23][0], \
3966 &mips_reg_names[24][0], \
3967 &mips_reg_names[25][0], \
3968 &mips_reg_names[26][0], \
3969 &mips_reg_names[27][0], \
3970 &mips_reg_names[28][0], \
3971 &mips_reg_names[29][0], \
3972 &mips_reg_names[30][0], \
3973 &mips_reg_names[31][0], \
3974 &mips_reg_names[32][0], \
3975 &mips_reg_names[33][0], \
3976 &mips_reg_names[34][0], \
3977 &mips_reg_names[35][0], \
3978 &mips_reg_names[36][0], \
3979 &mips_reg_names[37][0], \
3980 &mips_reg_names[38][0], \
3981 &mips_reg_names[39][0], \
3982 &mips_reg_names[40][0], \
3983 &mips_reg_names[41][0], \
3984 &mips_reg_names[42][0], \
3985 &mips_reg_names[43][0], \
3986 &mips_reg_names[44][0], \
3987 &mips_reg_names[45][0], \
3988 &mips_reg_names[46][0], \
3989 &mips_reg_names[47][0], \
3990 &mips_reg_names[48][0], \
3991 &mips_reg_names[49][0], \
3992 &mips_reg_names[50][0], \
3993 &mips_reg_names[51][0], \
3994 &mips_reg_names[52][0], \
3995 &mips_reg_names[53][0], \
3996 &mips_reg_names[54][0], \
3997 &mips_reg_names[55][0], \
3998 &mips_reg_names[56][0], \
3999 &mips_reg_names[57][0], \
4000 &mips_reg_names[58][0], \
4001 &mips_reg_names[59][0], \
4002 &mips_reg_names[60][0], \
4003 &mips_reg_names[61][0], \
4004 &mips_reg_names[62][0], \
4005 &mips_reg_names[63][0], \
4006 &mips_reg_names[64][0], \
4007 &mips_reg_names[65][0], \
4008 &mips_reg_names[66][0], \
4009 &mips_reg_names[67][0], \
4010 &mips_reg_names[68][0], \
4011 &mips_reg_names[69][0], \
4012 &mips_reg_names[70][0], \
4013 &mips_reg_names[71][0], \
4014 &mips_reg_names[72][0], \
4015 &mips_reg_names[73][0], \
4016 &mips_reg_names[74][0], \
4017 &mips_reg_names[75][0], \
4020 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
4021 So define this for it. */
4022 #define DEBUG_REGISTER_NAMES \
4024 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
4025 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
4026 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
4027 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
4028 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
4029 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
4030 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
4031 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
4032 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
4033 "$fcc5","$fcc6","$fcc7","$rap" \
4036 /* If defined, a C initializer for an array of structures
4037 containing a name and a register number. This macro defines
4038 additional names for hard registers, thus allowing the `asm'
4039 option in declarations to refer to registers using alternate
4040 names.
4042 We define both names for the integer registers here. */
4044 #define ADDITIONAL_REGISTER_NAMES \
4046 { "$0", 0 + GP_REG_FIRST }, \
4047 { "$1", 1 + GP_REG_FIRST }, \
4048 { "$2", 2 + GP_REG_FIRST }, \
4049 { "$3", 3 + GP_REG_FIRST }, \
4050 { "$4", 4 + GP_REG_FIRST }, \
4051 { "$5", 5 + GP_REG_FIRST }, \
4052 { "$6", 6 + GP_REG_FIRST }, \
4053 { "$7", 7 + GP_REG_FIRST }, \
4054 { "$8", 8 + GP_REG_FIRST }, \
4055 { "$9", 9 + GP_REG_FIRST }, \
4056 { "$10", 10 + GP_REG_FIRST }, \
4057 { "$11", 11 + GP_REG_FIRST }, \
4058 { "$12", 12 + GP_REG_FIRST }, \
4059 { "$13", 13 + GP_REG_FIRST }, \
4060 { "$14", 14 + GP_REG_FIRST }, \
4061 { "$15", 15 + GP_REG_FIRST }, \
4062 { "$16", 16 + GP_REG_FIRST }, \
4063 { "$17", 17 + GP_REG_FIRST }, \
4064 { "$18", 18 + GP_REG_FIRST }, \
4065 { "$19", 19 + GP_REG_FIRST }, \
4066 { "$20", 20 + GP_REG_FIRST }, \
4067 { "$21", 21 + GP_REG_FIRST }, \
4068 { "$22", 22 + GP_REG_FIRST }, \
4069 { "$23", 23 + GP_REG_FIRST }, \
4070 { "$24", 24 + GP_REG_FIRST }, \
4071 { "$25", 25 + GP_REG_FIRST }, \
4072 { "$26", 26 + GP_REG_FIRST }, \
4073 { "$27", 27 + GP_REG_FIRST }, \
4074 { "$28", 28 + GP_REG_FIRST }, \
4075 { "$29", 29 + GP_REG_FIRST }, \
4076 { "$30", 30 + GP_REG_FIRST }, \
4077 { "$31", 31 + GP_REG_FIRST }, \
4078 { "$sp", 29 + GP_REG_FIRST }, \
4079 { "$fp", 30 + GP_REG_FIRST }, \
4080 { "at", 1 + GP_REG_FIRST }, \
4081 { "v0", 2 + GP_REG_FIRST }, \
4082 { "v1", 3 + GP_REG_FIRST }, \
4083 { "a0", 4 + GP_REG_FIRST }, \
4084 { "a1", 5 + GP_REG_FIRST }, \
4085 { "a2", 6 + GP_REG_FIRST }, \
4086 { "a3", 7 + GP_REG_FIRST }, \
4087 { "t0", 8 + GP_REG_FIRST }, \
4088 { "t1", 9 + GP_REG_FIRST }, \
4089 { "t2", 10 + GP_REG_FIRST }, \
4090 { "t3", 11 + GP_REG_FIRST }, \
4091 { "t4", 12 + GP_REG_FIRST }, \
4092 { "t5", 13 + GP_REG_FIRST }, \
4093 { "t6", 14 + GP_REG_FIRST }, \
4094 { "t7", 15 + GP_REG_FIRST }, \
4095 { "s0", 16 + GP_REG_FIRST }, \
4096 { "s1", 17 + GP_REG_FIRST }, \
4097 { "s2", 18 + GP_REG_FIRST }, \
4098 { "s3", 19 + GP_REG_FIRST }, \
4099 { "s4", 20 + GP_REG_FIRST }, \
4100 { "s5", 21 + GP_REG_FIRST }, \
4101 { "s6", 22 + GP_REG_FIRST }, \
4102 { "s7", 23 + GP_REG_FIRST }, \
4103 { "t8", 24 + GP_REG_FIRST }, \
4104 { "t9", 25 + GP_REG_FIRST }, \
4105 { "k0", 26 + GP_REG_FIRST }, \
4106 { "k1", 27 + GP_REG_FIRST }, \
4107 { "gp", 28 + GP_REG_FIRST }, \
4108 { "sp", 29 + GP_REG_FIRST }, \
4109 { "fp", 30 + GP_REG_FIRST }, \
4110 { "ra", 31 + GP_REG_FIRST }, \
4111 { "$sp", 29 + GP_REG_FIRST }, \
4112 { "$fp", 30 + GP_REG_FIRST } \
4115 /* A C compound statement to output to stdio stream STREAM the
4116 assembler syntax for an instruction operand X. X is an RTL
4117 expression.
4119 CODE is a value that can be used to specify one of several ways
4120 of printing the operand. It is used when identical operands
4121 must be printed differently depending on the context. CODE
4122 comes from the `%' specification that was used to request
4123 printing of the operand. If the specification was just `%DIGIT'
4124 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4125 is the ASCII code for LTR.
4127 If X is a register, this macro should print the register's name.
4128 The names can be found in an array `reg_names' whose type is
4129 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4131 When the machine description has a specification `%PUNCT' (a `%'
4132 followed by a punctuation character), this macro is called with
4133 a null pointer for X and the punctuation character for CODE.
4135 See mips.c for the MIPS specific codes. */
4137 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
4139 /* A C expression which evaluates to true if CODE is a valid
4140 punctuation character for use in the `PRINT_OPERAND' macro. If
4141 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
4142 punctuation characters (except for the standard one, `%') are
4143 used in this way. */
4145 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
4147 /* A C compound statement to output to stdio stream STREAM the
4148 assembler syntax for an instruction operand that is a memory
4149 reference whose address is ADDR. ADDR is an RTL expression.
4151 On some machines, the syntax for a symbolic address depends on
4152 the section that the address refers to. On these machines,
4153 define the macro `ENCODE_SECTION_INFO' to store the information
4154 into the `symbol_ref', and then check for it here. */
4156 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
4159 /* A C statement, to be executed after all slot-filler instructions
4160 have been output. If necessary, call `dbr_sequence_length' to
4161 determine the number of slots filled in a sequence (zero if not
4162 currently outputting a sequence), to decide how many no-ops to
4163 output, or whatever.
4165 Don't define this macro if it has nothing to do, but it is
4166 helpful in reading assembly output if the extent of the delay
4167 sequence is made explicit (e.g. with white space).
4169 Note that output routines for instructions with delay slots must
4170 be prepared to deal with not being output as part of a sequence
4171 (i.e. when the scheduling pass is not run, or when no slot
4172 fillers could be found.) The variable `final_sequence' is null
4173 when not processing a sequence, otherwise it contains the
4174 `sequence' rtx being output. */
4176 #define DBR_OUTPUT_SEQEND(STREAM) \
4177 do \
4179 if (set_nomacro > 0 && --set_nomacro == 0) \
4180 fputs ("\t.set\tmacro\n", STREAM); \
4182 if (set_noreorder > 0 && --set_noreorder == 0) \
4183 fputs ("\t.set\treorder\n", STREAM); \
4185 dslots_jump_filled++; \
4186 fputs ("\n", STREAM); \
4188 while (0)
4191 /* How to tell the debugger about changes of source files. Note, the
4192 mips ECOFF format cannot deal with changes of files inside of
4193 functions, which means the output of parser generators like bison
4194 is generally not debuggable without using the -l switch. Lose,
4195 lose, lose. Silicon graphics seems to want all .file's hardwired
4196 to 1. */
4198 #ifndef SET_FILE_NUMBER
4199 #define SET_FILE_NUMBER() ++num_source_filenames
4200 #endif
4202 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
4203 mips_output_filename (STREAM, NAME)
4205 /* This is defined so that it can be overridden in iris6.h. */
4206 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
4207 do \
4209 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
4210 output_quoted_string (STREAM, NAME); \
4211 fputs ("\n", STREAM); \
4213 while (0)
4215 /* This is how to output a note the debugger telling it the line number
4216 to which the following sequence of instructions corresponds.
4217 Silicon graphics puts a label after each .loc. */
4219 #ifndef LABEL_AFTER_LOC
4220 #define LABEL_AFTER_LOC(STREAM)
4221 #endif
4223 #ifndef ASM_OUTPUT_SOURCE_LINE
4224 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
4225 mips_output_lineno (STREAM, LINE)
4226 #endif
4228 /* The MIPS implementation uses some labels for its own purpose. The
4229 following lists what labels are created, and are all formed by the
4230 pattern $L[a-z].*. The machine independent portion of GCC creates
4231 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
4233 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
4234 $Lb[0-9]+ Begin blocks for MIPS debug support
4235 $Lc[0-9]+ Label for use in s<xx> operation.
4236 $Le[0-9]+ End blocks for MIPS debug support
4237 $Lp\..+ Half-pic labels. */
4239 /* This is how to output the definition of a user-level label named NAME,
4240 such as the label on a static function or variable NAME.
4242 If we are optimizing the gp, remember that this label has been put
4243 out, so we know not to emit an .extern for it in mips_asm_file_end.
4244 We use one of the common bits in the IDENTIFIER tree node for this,
4245 since those bits seem to be unused, and we don't have any method
4246 of getting the decl nodes from the name. */
4248 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
4249 do { \
4250 assemble_name (STREAM, NAME); \
4251 fputs (":\n", STREAM); \
4252 } while (0)
4255 /* A C statement (sans semicolon) to output to the stdio stream
4256 STREAM any text necessary for declaring the name NAME of an
4257 initialized variable which is being defined. This macro must
4258 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
4259 The argument DECL is the `VAR_DECL' tree node representing the
4260 variable.
4262 If this macro is not defined, then the variable name is defined
4263 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
4265 #undef ASM_DECLARE_OBJECT_NAME
4266 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
4267 do \
4269 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
4270 HALF_PIC_DECLARE (NAME); \
4272 while (0)
4275 /* This is how to output a command to make the user-level label named NAME
4276 defined for reference from other files. */
4278 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
4279 do { \
4280 fputs ("\t.globl\t", STREAM); \
4281 assemble_name (STREAM, NAME); \
4282 fputs ("\n", STREAM); \
4283 } while (0)
4285 /* This says how to define a global common symbol. */
4287 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
4288 do { \
4289 /* If the target wants uninitialized const declarations in \
4290 .rdata then don't put them in .comm */ \
4291 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
4292 && TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
4293 && (DECL_INITIAL (DECL) == 0 \
4294 || DECL_INITIAL (DECL) == error_mark_node)) \
4296 if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
4297 ASM_GLOBALIZE_LABEL (STREAM, NAME); \
4299 READONLY_DATA_SECTION (); \
4300 ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
4301 mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
4302 (SIZE)); \
4304 else \
4305 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
4306 (SIZE)); \
4307 } while (0)
4310 /* This says how to define a local common symbol (ie, not visible to
4311 linker). */
4313 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
4314 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
4317 /* This says how to output an external. It would be possible not to
4318 output anything and let undefined symbol become external. However
4319 the assembler uses length information on externals to allocate in
4320 data/sdata bss/sbss, thereby saving exec time. */
4322 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4323 mips_output_external(STREAM,DECL,NAME)
4325 /* This says what to print at the end of the assembly file */
4326 #undef ASM_FILE_END
4327 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4330 /* Play switch file games if we're optimizing the global pointer. */
4332 #undef TEXT_SECTION
4333 #define TEXT_SECTION() \
4334 do { \
4335 extern FILE *asm_out_text_file; \
4336 if (TARGET_FILE_SWITCHING) \
4337 asm_out_file = asm_out_text_file; \
4338 fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
4339 fputc ('\n', asm_out_file); \
4340 } while (0)
4343 /* This is how to declare a function name. The actual work of
4344 emitting the label is moved to function_prologue, so that we can
4345 get the line number correctly emitted before the .ent directive,
4346 and after any .file directives. */
4348 #undef ASM_DECLARE_FUNCTION_NAME
4349 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
4350 HALF_PIC_DECLARE (NAME)
4352 /* This is how to output an internal numbered label where
4353 PREFIX is the class of label and NUM is the number within the class. */
4355 #undef ASM_OUTPUT_INTERNAL_LABEL
4356 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
4357 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
4359 /* This is how to store into the string LABEL
4360 the symbol_ref name of an internal numbered label where
4361 PREFIX is the class of label and NUM is the number within the class.
4362 This is suitable for output with `assemble_name'. */
4364 #undef ASM_GENERATE_INTERNAL_LABEL
4365 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4366 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
4368 /* This is how to output an assembler line defining a `double' constant. */
4370 #define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
4371 mips_output_double (STREAM, VALUE)
4374 /* This is how to output an assembler line defining a `float' constant. */
4376 #define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
4377 mips_output_float (STREAM, VALUE)
4380 /* This is how to output an assembler line defining an `int' constant. */
4382 #define ASM_OUTPUT_INT(STREAM,VALUE) \
4383 do { \
4384 fprintf (STREAM, "\t.word\t"); \
4385 output_addr_const (STREAM, (VALUE)); \
4386 fprintf (STREAM, "\n"); \
4387 } while (0)
4389 /* Likewise for 64 bit, `char' and `short' constants.
4391 FIXME: operand_subword can't handle some complex constant expressions
4392 that output_addr_const can (for example it does not call
4393 simplify_subtraction). Since GAS can handle dword, even for mipsII,
4394 rely on that to avoid operand_subword for most of the cases where this
4395 matters. Try gcc.c-torture/compile/930326-1.c with -mips2 -mlong64,
4396 or the same case with the type of 'i' changed to long long.
4400 #define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
4401 do { \
4402 if (TARGET_64BIT || TARGET_GAS) \
4404 fprintf (STREAM, "\t.dword\t"); \
4405 if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (VALUE) != CONST_INT) \
4406 /* We can't use 'X' for negative numbers, because then we won't \
4407 get the right value for the upper 32 bits. */ \
4408 output_addr_const (STREAM, VALUE); \
4409 else \
4410 /* We must use 'X', because otherwise LONG_MIN will print as \
4411 a number that the Irix 6 assembler won't accept. */ \
4412 print_operand (STREAM, VALUE, 'X'); \
4413 fprintf (STREAM, "\n"); \
4415 else \
4417 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
4418 UNITS_PER_WORD, BITS_PER_WORD, 1); \
4419 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
4420 UNITS_PER_WORD, BITS_PER_WORD, 1); \
4422 } while (0)
4424 #define ASM_OUTPUT_SHORT(STREAM,VALUE) \
4426 fprintf (STREAM, "\t.half\t"); \
4427 output_addr_const (STREAM, (VALUE)); \
4428 fprintf (STREAM, "\n"); \
4431 #define ASM_OUTPUT_CHAR(STREAM,VALUE) \
4433 fprintf (STREAM, "\t.byte\t"); \
4434 output_addr_const (STREAM, (VALUE)); \
4435 fprintf (STREAM, "\n"); \
4438 /* This is how to output an assembler line for a numeric constant byte. */
4440 #define ASM_OUTPUT_BYTE(STREAM,VALUE) \
4441 fprintf (STREAM, "\t.byte\t0x%x\n", (int)(VALUE))
4443 /* This is how to output an element of a case-vector that is absolute. */
4445 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
4446 fprintf (STREAM, "\t%s\t%sL%d\n", \
4447 Pmode == DImode ? ".dword" : ".word", \
4448 LOCAL_LABEL_PREFIX, \
4449 VALUE)
4451 /* This is how to output an element of a case-vector that is relative.
4452 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4453 TARGET_EMBEDDED_PIC). */
4455 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
4456 do { \
4457 if (TARGET_MIPS16) \
4458 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4459 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4460 else if (TARGET_EMBEDDED_PIC) \
4461 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
4462 Pmode == DImode ? ".dword" : ".word", \
4463 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4464 else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
4465 fprintf (STREAM, "\t%s\t%sL%d\n", \
4466 Pmode == DImode ? ".gpdword" : ".gpword", \
4467 LOCAL_LABEL_PREFIX, VALUE); \
4468 else \
4469 fprintf (STREAM, "\t%s\t%sL%d\n", \
4470 Pmode == DImode ? ".dword" : ".word", \
4471 LOCAL_LABEL_PREFIX, VALUE); \
4472 } while (0)
4474 /* When generating embedded PIC or mips16 code we want to put the jump
4475 table in the .text section. In all other cases, we want to put the
4476 jump table in the .rdata section. Unfortunately, we can't use
4477 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4478 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4479 section if appropriate. */
4480 #undef ASM_OUTPUT_CASE_LABEL
4481 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4482 do { \
4483 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4484 function_section (current_function_decl); \
4485 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4486 } while (0)
4488 /* This is how to output an assembler line
4489 that says to advance the location counter
4490 to a multiple of 2**LOG bytes. */
4492 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
4493 fprintf (STREAM, "\t.align\t%d\n", (LOG))
4495 /* This is how to output an assembler line to advance the location
4496 counter by SIZE bytes. */
4498 #undef ASM_OUTPUT_SKIP
4499 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4500 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4502 /* This is how to output a string. */
4503 #undef ASM_OUTPUT_ASCII
4504 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
4505 mips_output_ascii (STREAM, STRING, LEN)
4507 /* Handle certain cpp directives used in header files on sysV. */
4508 #define SCCS_DIRECTIVE
4510 /* Output #ident as a in the read-only data section. */
4511 #undef ASM_OUTPUT_IDENT
4512 #define ASM_OUTPUT_IDENT(FILE, STRING) \
4514 const char *p = STRING; \
4515 int size = strlen (p) + 1; \
4516 rdata_section (); \
4517 assemble_string (p, size); \
4520 /* Default to -G 8 */
4521 #ifndef MIPS_DEFAULT_GVALUE
4522 #define MIPS_DEFAULT_GVALUE 8
4523 #endif
4525 /* Define the strings to put out for each section in the object file. */
4526 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4527 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
4528 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
4529 #define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
4530 #undef READONLY_DATA_SECTION
4531 #define READONLY_DATA_SECTION rdata_section
4532 #define SMALL_DATA_SECTION sdata_section
4534 /* What other sections we support other than the normal .data/.text. */
4536 #undef EXTRA_SECTIONS
4537 #define EXTRA_SECTIONS in_sdata, in_rdata
4539 /* Define the additional functions to select our additional sections. */
4541 /* on the MIPS it is not a good idea to put constants in the text
4542 section, since this defeats the sdata/data mechanism. This is
4543 especially true when -O is used. In this case an effort is made to
4544 address with faster (gp) register relative addressing, which can
4545 only get at sdata and sbss items (there is no stext !!) However,
4546 if the constant is too large for sdata, and it's readonly, it
4547 will go into the .rdata section. */
4549 #undef EXTRA_SECTION_FUNCTIONS
4550 #define EXTRA_SECTION_FUNCTIONS \
4551 void \
4552 sdata_section () \
4554 if (in_section != in_sdata) \
4556 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4557 in_section = in_sdata; \
4561 void \
4562 rdata_section () \
4564 if (in_section != in_rdata) \
4566 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
4567 in_section = in_rdata; \
4571 /* Given a decl node or constant node, choose the section to output it in
4572 and select that section. */
4574 #undef SELECT_RTX_SECTION
4575 #define SELECT_RTX_SECTION(MODE, RTX, ALIGN) \
4576 mips_select_rtx_section (MODE, RTX)
4578 #undef SELECT_SECTION
4579 #define SELECT_SECTION(DECL, RELOC, ALIGN) \
4580 mips_select_section (DECL, RELOC)
4583 /* Store in OUTPUT a string (made with alloca) containing
4584 an assembler-name for a local static variable named NAME.
4585 LABELNO is an integer which is different for each call. */
4587 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4588 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4589 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4591 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4592 do \
4594 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4595 TARGET_64BIT ? "dsubu" : "subu", \
4596 reg_names[STACK_POINTER_REGNUM], \
4597 reg_names[STACK_POINTER_REGNUM], \
4598 TARGET_64BIT ? "sd" : "sw", \
4599 reg_names[REGNO], \
4600 reg_names[STACK_POINTER_REGNUM]); \
4602 while (0)
4604 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4605 do \
4607 if (! set_noreorder) \
4608 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4610 dslots_load_total++; \
4611 dslots_load_filled++; \
4612 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4613 TARGET_64BIT ? "ld" : "lw", \
4614 reg_names[REGNO], \
4615 reg_names[STACK_POINTER_REGNUM], \
4616 TARGET_64BIT ? "daddu" : "addu", \
4617 reg_names[STACK_POINTER_REGNUM], \
4618 reg_names[STACK_POINTER_REGNUM]); \
4620 if (! set_noreorder) \
4621 fprintf (STREAM, "\t.set\treorder\n"); \
4623 while (0)
4625 /* How to start an assembler comment.
4626 The leading space is important (the mips native assembler requires it). */
4627 #ifndef ASM_COMMENT_START
4628 #define ASM_COMMENT_START " #"
4629 #endif
4632 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4633 and mips-tdump.c to print them out.
4635 These must match the corresponding definitions in gdb/mipsread.c.
4636 Unfortunately, gcc and gdb do not currently share any directories. */
4638 #define CODE_MASK 0x8F300
4639 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4640 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4641 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
4644 /* Default definitions for size_t and ptrdiff_t. */
4646 #ifndef SIZE_TYPE
4647 #define NO_BUILTIN_SIZE_TYPE
4648 #define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
4649 #endif
4651 #ifndef PTRDIFF_TYPE
4652 #define NO_BUILTIN_PTRDIFF_TYPE
4653 #define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
4654 #endif
4656 /* See mips_expand_prologue's use of loadgp for when this should be
4657 true. */
4659 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
4660 && mips_abi != ABI_32 \
4661 && mips_abi != ABI_O64)
4663 /* In mips16 mode, we need to look through the function to check for
4664 PC relative loads that are out of range. */
4665 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4667 /* We need to use a special set of functions to handle hard floating
4668 point code in mips16 mode. */
4670 #ifndef INIT_SUBTARGET_OPTABS
4671 #define INIT_SUBTARGET_OPTABS
4672 #endif
4674 #define INIT_TARGET_OPTABS \
4675 do \
4677 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4678 INIT_SUBTARGET_OPTABS; \
4679 else \
4681 add_optab->handlers[(int) SFmode].libfunc = \
4682 init_one_libfunc ("__mips16_addsf3"); \
4683 sub_optab->handlers[(int) SFmode].libfunc = \
4684 init_one_libfunc ("__mips16_subsf3"); \
4685 smul_optab->handlers[(int) SFmode].libfunc = \
4686 init_one_libfunc ("__mips16_mulsf3"); \
4687 sdiv_optab->handlers[(int) SFmode].libfunc = \
4688 init_one_libfunc ("__mips16_divsf3"); \
4690 eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
4691 nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
4692 gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
4693 gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
4694 ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
4695 lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
4697 floatsisf_libfunc = \
4698 init_one_libfunc ("__mips16_floatsisf"); \
4699 fixsfsi_libfunc = \
4700 init_one_libfunc ("__mips16_fixsfsi"); \
4702 if (TARGET_DOUBLE_FLOAT) \
4704 add_optab->handlers[(int) DFmode].libfunc = \
4705 init_one_libfunc ("__mips16_adddf3"); \
4706 sub_optab->handlers[(int) DFmode].libfunc = \
4707 init_one_libfunc ("__mips16_subdf3"); \
4708 smul_optab->handlers[(int) DFmode].libfunc = \
4709 init_one_libfunc ("__mips16_muldf3"); \
4710 sdiv_optab->handlers[(int) DFmode].libfunc = \
4711 init_one_libfunc ("__mips16_divdf3"); \
4713 extendsfdf2_libfunc = \
4714 init_one_libfunc ("__mips16_extendsfdf2"); \
4715 truncdfsf2_libfunc = \
4716 init_one_libfunc ("__mips16_truncdfsf2"); \
4718 eqdf2_libfunc = \
4719 init_one_libfunc ("__mips16_eqdf2"); \
4720 nedf2_libfunc = \
4721 init_one_libfunc ("__mips16_nedf2"); \
4722 gtdf2_libfunc = \
4723 init_one_libfunc ("__mips16_gtdf2"); \
4724 gedf2_libfunc = \
4725 init_one_libfunc ("__mips16_gedf2"); \
4726 ltdf2_libfunc = \
4727 init_one_libfunc ("__mips16_ltdf2"); \
4728 ledf2_libfunc = \
4729 init_one_libfunc ("__mips16_ledf2"); \
4731 floatsidf_libfunc = \
4732 init_one_libfunc ("__mips16_floatsidf"); \
4733 fixdfsi_libfunc = \
4734 init_one_libfunc ("__mips16_fixdfsi"); \
4738 while (0)