2018-04-28 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-cfg.c
blob8726a530aafcf4fa7c23b4187147d632b11338c4
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 case annot_expr_parallel_kind:
351 break;
352 default:
353 gcc_unreachable ();
356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 gimple_call_arg (stmt, 0));
359 gsi_replace (&gsi, stmt, true);
364 /* Lower internal PHI function from GIMPLE FE. */
366 static void
367 lower_phi_internal_fn ()
369 basic_block bb, pred = NULL;
370 gimple_stmt_iterator gsi;
371 tree lhs;
372 gphi *phi_node;
373 gimple *stmt;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb, cfun)
378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
380 stmt = gsi_stmt (gsi);
381 if (! gimple_call_internal_p (stmt, IFN_PHI))
382 break;
384 lhs = gimple_call_lhs (stmt);
385 phi_node = create_phi_node (lhs, bb);
387 /* Add arguments to the PHI node. */
388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
390 tree arg = gimple_call_arg (stmt, i);
391 if (TREE_CODE (arg) == LABEL_DECL)
392 pred = label_to_block (arg);
393 else
395 edge e = find_edge (pred, bb);
396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
400 gsi_remove (&gsi, true);
405 static unsigned int
406 execute_build_cfg (void)
408 gimple_seq body = gimple_body (current_function_decl);
410 build_gimple_cfg (body);
411 gimple_set_body (current_function_decl, NULL);
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Scope blocks:\n");
415 dump_scope_blocks (dump_file, dump_flags);
417 cleanup_tree_cfg ();
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419 replace_loop_annotate ();
420 return 0;
423 namespace {
425 const pass_data pass_data_build_cfg =
427 GIMPLE_PASS, /* type */
428 "cfg", /* name */
429 OPTGROUP_NONE, /* optinfo_flags */
430 TV_TREE_CFG, /* tv_id */
431 PROP_gimple_leh, /* properties_required */
432 ( PROP_cfg | PROP_loops ), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg : public gimple_opt_pass
440 public:
441 pass_build_cfg (gcc::context *ctxt)
442 : gimple_opt_pass (pass_data_build_cfg, ctxt)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function *) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
450 } // anon namespace
452 gimple_opt_pass *
453 make_pass_build_cfg (gcc::context *ctxt)
455 return new pass_build_cfg (ctxt);
459 /* Return true if T is a computed goto. */
461 bool
462 computed_goto_p (gimple *t)
464 return (gimple_code (t) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
471 bool
472 gimple_seq_unreachable_p (gimple_seq stmts)
474 if (stmts == NULL
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 later. */
479 || sanitize_flags_p (SANITIZE_UNREACHABLE))
480 return false;
482 gimple_stmt_iterator gsi = gsi_last (stmts);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485 return false;
487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
489 gimple *stmt = gsi_stmt (gsi);
490 if (gimple_code (stmt) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt)
492 && !gimple_clobber_p (stmt))
493 return false;
495 return true;
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
501 <bb C>:
503 if (something)
504 goto <bb N>;
505 else
506 goto <bb M>;
507 <bb N>:
508 __builtin_unreachable ();
509 <bb M>: */
511 bool
512 assert_unreachable_fallthru_edge_p (edge e)
514 basic_block pred_bb = e->src;
515 gimple *last = last_stmt (pred_bb);
516 if (last && gimple_code (last) == GIMPLE_COND)
518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519 if (other_bb == e->dest)
520 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521 if (EDGE_COUNT (other_bb->succs) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb));
524 return false;
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
532 static void
533 gimple_call_initialize_ctrl_altering (gimple *stmt)
535 int flags = gimple_call_flags (stmt);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt)
539 /* A call also alters control flow if it does not return. */
540 || flags & ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags & ECF_TM_BUILTIN)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt)
551 && gimple_call_internal_unique_p (stmt)))
552 gimple_call_set_ctrl_altering (stmt, true);
553 else
554 gimple_call_set_ctrl_altering (stmt, false);
558 /* Insert SEQ after BB and build a flowgraph. */
560 static basic_block
561 make_blocks_1 (gimple_seq seq, basic_block bb)
563 gimple_stmt_iterator i = gsi_start (seq);
564 gimple *stmt = NULL;
565 gimple *prev_stmt = NULL;
566 bool start_new_block = true;
567 bool first_stmt_of_seq = true;
569 while (!gsi_end_p (i))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 prev_stmt = stmt;
581 stmt = gsi_stmt (i);
583 if (stmt && is_gimple_call (stmt))
584 gimple_call_initialize_ctrl_altering (stmt);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
588 so now. */
589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
591 if (!first_stmt_of_seq)
592 gsi_split_seq_before (&i, &seq);
593 bb = create_basic_block (seq, bb);
594 start_new_block = false;
595 prev_stmt = NULL;
598 /* Now add STMT to BB and create the subgraphs for special statement
599 codes. */
600 gimple_set_bb (stmt, bb);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 next iteration. */
604 if (stmt_ends_bb_p (stmt))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
610 SSA names. */
611 if (gimple_has_lhs (stmt)
612 && stmt_can_make_abnormal_goto (stmt)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
615 tree lhs = gimple_get_lhs (stmt);
616 tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 gimple *s = gimple_build_assign (lhs, tmp);
618 gimple_set_location (s, gimple_location (stmt));
619 gimple_set_block (s, gimple_block (stmt));
620 gimple_set_lhs (stmt, tmp);
621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 DECL_GIMPLE_REG_P (tmp) = 1;
624 gsi_insert_after (&i, s, GSI_SAME_STMT);
626 start_new_block = true;
629 gsi_next (&i);
630 first_stmt_of_seq = false;
632 return bb;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
637 static void
638 make_blocks (gimple_seq seq)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
656 label. */
657 if (MAY_HAVE_DEBUG_MARKER_STMTS)
659 gimple_stmt_iterator label = gsi_none ();
661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
663 gimple *stmt = gsi_stmt (i);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a <glabel *> (stmt))
669 if (gsi_end_p (label))
670 label = i;
671 continue;
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label))
677 continue;
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
689 LABEL. */
690 gimple_stmt_iterator copy = label;
691 gsi_move_after (&i, &copy);
692 continue;
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
697 label = gsi_none ();
701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
704 /* Create and return a new empty basic block after bb AFTER. */
706 static basic_block
707 create_bb (void *h, void *e, basic_block after)
709 basic_block bb;
711 gcc_assert (!e);
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
716 bb = alloc_block ();
718 bb->index = last_basic_block_for_fn (cfun);
719 bb->flags = BB_NEW;
720 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb, after);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun)
727 == basic_block_info_for_fn (cfun)->length ())
729 size_t new_size =
730 (last_basic_block_for_fn (cfun)
731 + (last_basic_block_for_fn (cfun) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
738 n_basic_blocks_for_fn (cfun)++;
739 last_basic_block_for_fn (cfun)++;
741 return bb;
745 /*---------------------------------------------------------------------------
746 Edge creation
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
753 basic_block
754 get_abnormal_succ_dispatcher (basic_block bb)
756 edge e;
757 edge_iterator ei;
759 FOR_EACH_EDGE (e, ei, bb->succs)
760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e->dest);
764 gimple *g = gsi_stmt (gsi);
765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 return e->dest;
768 return NULL;
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 static void
777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 basic_block for_bb, int *bb_to_omp_idx,
779 auto_vec<basic_block> *bbs, bool computed_goto)
781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782 unsigned int idx = 0;
783 basic_block bb;
784 bool inner = false;
786 if (bb_to_omp_idx)
788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789 if (bb_to_omp_idx[for_bb->index] != 0)
790 inner = true;
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
795 for_bb. */
796 if (*dispatcher == NULL)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
800 early. */
801 if (bb_to_omp_idx == NULL)
803 if (bbs->is_empty ())
804 return;
806 else
808 FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 break;
811 if (bb == NULL)
812 return;
815 /* Create the dispatcher bb. */
816 *dispatcher = create_basic_block (NULL, for_bb);
817 if (computed_goto)
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var = create_tmp_var (ptr_type_node, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION);
833 gimple *factored_computed_goto_label
834 = gimple_build_label (factored_label_decl);
835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
837 /* Build our new computed goto. */
838 gimple *factored_computed_goto = gimple_build_goto (var);
839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
841 FOR_EACH_VEC_ELT (*bbs, idx, bb)
843 if (bb_to_omp_idx
844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 continue;
847 gsi = gsi_last_bb (bb);
848 gimple *last = gsi_stmt (gsi);
850 gcc_assert (computed_goto_p (last));
852 /* Copy the original computed goto's destination into VAR. */
853 gimple *assignment
854 = gimple_build_assign (var, gimple_goto_dest (last));
855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 e->goto_locus = gimple_location (last);
859 gsi_remove (&gsi, true);
862 else
864 tree arg = inner ? boolean_true_node : boolean_false_node;
865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 1, arg);
867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs, idx, bb)
873 if (bb_to_omp_idx
874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 continue;
876 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 static int
890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
892 gimple *last = last_stmt (bb);
893 bool fallthru = false;
894 int ret = 0;
896 if (!last)
897 return ret;
899 switch (gimple_code (last))
901 case GIMPLE_GOTO:
902 if (make_goto_expr_edges (bb))
903 ret = 1;
904 fallthru = false;
905 break;
906 case GIMPLE_RETURN:
908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 e->goto_locus = gimple_location (last);
910 fallthru = false;
912 break;
913 case GIMPLE_COND:
914 make_cond_expr_edges (bb);
915 fallthru = false;
916 break;
917 case GIMPLE_SWITCH:
918 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919 fallthru = false;
920 break;
921 case GIMPLE_RESX:
922 make_eh_edges (last);
923 fallthru = false;
924 break;
925 case GIMPLE_EH_DISPATCH:
926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927 break;
929 case GIMPLE_CALL:
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
932 handlers. */
933 if (stmt_can_make_abnormal_goto (last))
934 ret = 2;
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 fallthru = false;
946 /* Some calls are known not to return. */
947 else
948 fallthru = !gimple_call_noreturn_p (last);
949 break;
951 case GIMPLE_ASSIGN:
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 control-altering. */
954 if (is_ctrl_altering_stmt (last))
955 make_eh_edges (last);
956 fallthru = true;
957 break;
959 case GIMPLE_ASM:
960 make_gimple_asm_edges (bb);
961 fallthru = true;
962 break;
964 CASE_GIMPLE_OMP:
965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966 break;
968 case GIMPLE_TRANSACTION:
970 gtransaction *txn = as_a <gtransaction *> (last);
971 tree label1 = gimple_transaction_label_norm (txn);
972 tree label2 = gimple_transaction_label_uninst (txn);
974 if (label1)
975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 if (label2)
977 make_edge (bb, label_to_block (label2),
978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
980 tree label3 = gimple_transaction_label_over (txn);
981 if (gimple_transaction_subcode (txn)
982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
985 fallthru = false;
987 break;
989 default:
990 gcc_assert (!stmt_ends_bb_p (last));
991 fallthru = true;
992 break;
995 if (fallthru)
996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
998 return ret;
1001 /* Join all the blocks in the flowgraph. */
1003 static void
1004 make_edges (void)
1006 basic_block bb;
1007 struct omp_region *cur_region = NULL;
1008 auto_vec<basic_block> ab_edge_goto;
1009 auto_vec<basic_block> ab_edge_call;
1010 int *bb_to_omp_idx = NULL;
1011 int cur_omp_region_idx = 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 EDGE_FALLTHRU);
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb, cfun)
1022 int mer;
1024 if (bb_to_omp_idx)
1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028 if (mer == 1)
1029 ab_edge_goto.safe_push (bb);
1030 else if (mer == 2)
1031 ab_edge_call.safe_push (bb);
1033 if (cur_region && bb_to_omp_idx == NULL)
1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1054 gimple_stmt_iterator gsi;
1055 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056 basic_block *dispatcher_bbs = dispatcher_bb_array;
1057 int count = n_basic_blocks_for_fn (cfun);
1059 if (bb_to_omp_idx)
1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1062 FOR_EACH_BB_FN (bb, cfun)
1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 tree target;
1069 if (!label_stmt)
1070 break;
1072 target = gimple_label_label (label_stmt);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target))
1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 &ab_edge_goto, true);
1079 if (DECL_NONLOCAL (target))
1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 &ab_edge_call, false);
1083 break;
1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 gsi_next_nondebug (&gsi);
1089 if (!gsi_end_p (gsi))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple *call_stmt = gsi_stmt (gsi);
1093 if (is_gimple_call (call_stmt)
1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 || gimple_call_builtin_p (call_stmt,
1096 BUILT_IN_SETJMP_RECEIVER)))
1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 &ab_edge_call, false);
1102 if (bb_to_omp_idx)
1103 XDELETE (dispatcher_bbs);
1106 XDELETE (bb_to_omp_idx);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 bool
1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1121 gimple *stmt = gsi_stmt (*gsi);
1122 basic_block bb = gimple_bb (stmt);
1123 basic_block lastbb, afterbb;
1124 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125 edge e;
1126 lastbb = make_blocks_1 (seq, bb);
1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128 return false;
1129 e = split_block (bb, stmt);
1130 /* Move e->dest to come after the new basic blocks. */
1131 afterbb = e->dest;
1132 unlink_block (afterbb);
1133 link_block (afterbb, lastbb);
1134 redirect_edge_succ (e, bb->next_bb);
1135 bb = bb->next_bb;
1136 while (bb != afterbb)
1138 struct omp_region *cur_region = NULL;
1139 profile_count cnt = profile_count::zero ();
1140 bool all = true;
1142 int cur_omp_region_idx = 0;
1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144 gcc_assert (!mer && !cur_region);
1145 add_bb_to_loop (bb, afterbb->loop_father);
1147 edge e;
1148 edge_iterator ei;
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1151 if (e->count ().initialized_p ())
1152 cnt += e->count ();
1153 else
1154 all = false;
1156 tree_guess_outgoing_edge_probabilities (bb);
1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158 bb->count = cnt;
1160 bb = bb->next_bb;
1162 return true;
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1168 profiling. */
1170 static int
1171 next_discriminator_for_locus (location_t locus)
1173 struct locus_discrim_map item;
1174 struct locus_discrim_map **slot;
1176 item.locus = locus;
1177 item.discriminator = 0;
1178 slot = discriminator_per_locus->find_slot_with_hash (
1179 &item, LOCATION_LINE (locus), INSERT);
1180 gcc_assert (slot);
1181 if (*slot == HTAB_EMPTY_ENTRY)
1183 *slot = XNEW (struct locus_discrim_map);
1184 gcc_assert (*slot);
1185 (*slot)->locus = locus;
1186 (*slot)->discriminator = 0;
1188 (*slot)->discriminator++;
1189 return (*slot)->discriminator;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1194 static bool
1195 same_line_p (location_t locus1, location_t locus2)
1197 expanded_location from, to;
1199 if (locus1 == locus2)
1200 return true;
1202 from = expand_location (locus1);
1203 to = expand_location (locus2);
1205 if (from.line != to.line)
1206 return false;
1207 if (from.file == to.file)
1208 return true;
1209 return (from.file != NULL
1210 && to.file != NULL
1211 && filename_cmp (from.file, to.file) == 0);
1214 /* Assign discriminators to each basic block. */
1216 static void
1217 assign_discriminators (void)
1219 basic_block bb;
1221 FOR_EACH_BB_FN (bb, cfun)
1223 edge e;
1224 edge_iterator ei;
1225 gimple *last = last_stmt (bb);
1226 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1228 if (locus == UNKNOWN_LOCATION)
1229 continue;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 gimple *first = first_non_label_stmt (e->dest);
1234 gimple *last = last_stmt (e->dest);
1235 if ((first && same_line_p (locus, gimple_location (first)))
1236 || (last && same_line_p (locus, gimple_location (last))))
1238 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1239 bb->discriminator = next_discriminator_for_locus (locus);
1240 else
1241 e->dest->discriminator = next_discriminator_for_locus (locus);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1249 static void
1250 make_cond_expr_edges (basic_block bb)
1252 gcond *entry = as_a <gcond *> (last_stmt (bb));
1253 gimple *then_stmt, *else_stmt;
1254 basic_block then_bb, else_bb;
1255 tree then_label, else_label;
1256 edge e;
1258 gcc_assert (entry);
1259 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1261 /* Entry basic blocks for each component. */
1262 then_label = gimple_cond_true_label (entry);
1263 else_label = gimple_cond_false_label (entry);
1264 then_bb = label_to_block (then_label);
1265 else_bb = label_to_block (else_label);
1266 then_stmt = first_stmt (then_bb);
1267 else_stmt = first_stmt (else_bb);
1269 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1270 e->goto_locus = gimple_location (then_stmt);
1271 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1272 if (e)
1273 e->goto_locus = gimple_location (else_stmt);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry, NULL_TREE);
1277 gimple_cond_set_false_label (entry, NULL_TREE);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1286 element. */
1288 bool
1289 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1291 tree t, next;
1293 for (t = value; t; t = next)
1295 next = CASE_CHAIN (t);
1296 CASE_CHAIN (t) = NULL;
1299 return true;
1302 /* Start recording information mapping edges to case labels. */
1304 void
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases == NULL);
1308 edge_to_cases = new hash_map<edge, tree>;
1309 touched_switch_bbs = BITMAP_ALLOC (NULL);
1312 /* Return nonzero if we are recording information for case labels. */
1314 static bool
1315 recording_case_labels_p (void)
1317 return (edge_to_cases != NULL);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1322 void
1323 end_recording_case_labels (void)
1325 bitmap_iterator bi;
1326 unsigned i;
1327 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1328 delete edge_to_cases;
1329 edge_to_cases = NULL;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1332 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1333 if (bb)
1335 gimple *stmt = last_stmt (bb);
1336 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1337 group_case_labels_stmt (as_a <gswitch *> (stmt));
1340 BITMAP_FREE (touched_switch_bbs);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1348 static tree
1349 get_cases_for_edge (edge e, gswitch *t)
1351 tree *slot;
1352 size_t i, n;
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1357 return NULL;
1359 slot = edge_to_cases->get (e);
1360 if (slot)
1361 return *slot;
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n = gimple_switch_num_labels (t);
1368 for (i = 0; i < n; i++)
1370 tree elt = gimple_switch_label (t, i);
1371 tree lab = CASE_LABEL (elt);
1372 basic_block label_bb = label_to_block (lab);
1373 edge this_edge = find_edge (e->src, label_bb);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1376 a new chain. */
1377 tree &s = edge_to_cases->get_or_insert (this_edge);
1378 CASE_CHAIN (elt) = s;
1379 s = elt;
1382 return *edge_to_cases->get (e);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1387 static void
1388 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1390 size_t i, n;
1392 n = gimple_switch_num_labels (entry);
1394 for (i = 0; i < n; ++i)
1396 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1397 basic_block label_bb = label_to_block (lab);
1398 make_edge (bb, label_bb, 0);
1403 /* Return the basic block holding label DEST. */
1405 basic_block
1406 label_to_block_fn (struct function *ifun, tree dest)
1408 int uid = LABEL_DECL_UID (dest);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid < 0)
1415 gimple_stmt_iterator gsi =
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1417 gimple *stmt;
1419 stmt = gimple_build_label (dest);
1420 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1421 uid = LABEL_DECL_UID (dest);
1423 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1424 return NULL;
1425 return (*ifun->cfg->x_label_to_block_map)[uid];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1431 static bool
1432 make_goto_expr_edges (basic_block bb)
1434 gimple_stmt_iterator last = gsi_last_bb (bb);
1435 gimple *goto_t = gsi_stmt (last);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t))
1440 tree dest = gimple_goto_dest (goto_t);
1441 basic_block label_bb = label_to_block (dest);
1442 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1443 e->goto_locus = gimple_location (goto_t);
1444 gsi_remove (&last, true);
1445 return false;
1448 /* A computed GOTO creates abnormal edges. */
1449 return true;
1452 /* Create edges for an asm statement with labels at block BB. */
1454 static void
1455 make_gimple_asm_edges (basic_block bb)
1457 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1458 int i, n = gimple_asm_nlabels (stmt);
1460 for (i = 0; i < n; ++i)
1462 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1463 basic_block label_bb = label_to_block (label);
1464 make_edge (bb, label_bb, 0);
1468 /*---------------------------------------------------------------------------
1469 Flowgraph analysis
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1483 /* The label. */
1484 tree label;
1486 /* True if the label is referenced from somewhere. */
1487 bool used;
1488 } *label_for_bb;
1490 /* Given LABEL return the first label in the same basic block. */
1492 static tree
1493 main_block_label (tree label)
1495 basic_block bb = label_to_block (label);
1496 tree main_label = label_for_bb[bb->index].label;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1499 if (!main_label)
1501 label_for_bb[bb->index].label = label;
1502 main_label = label;
1505 label_for_bb[bb->index].used = true;
1506 return main_label;
1509 /* Clean up redundant labels within the exception tree. */
1511 static void
1512 cleanup_dead_labels_eh (void)
1514 eh_landing_pad lp;
1515 eh_region r;
1516 tree lab;
1517 int i;
1519 if (cfun->eh == NULL)
1520 return;
1522 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1523 if (lp && lp->post_landing_pad)
1525 lab = main_block_label (lp->post_landing_pad);
1526 if (lab != lp->post_landing_pad)
1528 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1529 EH_LANDING_PAD_NR (lab) = lp->index;
1533 FOR_ALL_EH_REGION (r)
1534 switch (r->type)
1536 case ERT_CLEANUP:
1537 case ERT_MUST_NOT_THROW:
1538 break;
1540 case ERT_TRY:
1542 eh_catch c;
1543 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1545 lab = c->label;
1546 if (lab)
1547 c->label = main_block_label (lab);
1550 break;
1552 case ERT_ALLOWED_EXCEPTIONS:
1553 lab = r->u.allowed.label;
1554 if (lab)
1555 r->u.allowed.label = main_block_label (lab);
1556 break;
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1566 void
1567 cleanup_dead_labels (void)
1569 basic_block bb;
1570 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb, cfun)
1576 gimple_stmt_iterator i;
1578 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1580 tree label;
1581 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1583 if (!label_stmt)
1584 break;
1586 label = gimple_label_label (label_stmt);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb[bb->index].label)
1592 label_for_bb[bb->index].label = label;
1593 continue;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label)
1600 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1602 label_for_bb[bb->index].label = label;
1603 break;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb, cfun)
1612 gimple *stmt = last_stmt (bb);
1613 tree label, new_label;
1615 if (!stmt)
1616 continue;
1618 switch (gimple_code (stmt))
1620 case GIMPLE_COND:
1622 gcond *cond_stmt = as_a <gcond *> (stmt);
1623 label = gimple_cond_true_label (cond_stmt);
1624 if (label)
1626 new_label = main_block_label (label);
1627 if (new_label != label)
1628 gimple_cond_set_true_label (cond_stmt, new_label);
1631 label = gimple_cond_false_label (cond_stmt);
1632 if (label)
1634 new_label = main_block_label (label);
1635 if (new_label != label)
1636 gimple_cond_set_false_label (cond_stmt, new_label);
1639 break;
1641 case GIMPLE_SWITCH:
1643 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1644 size_t i, n = gimple_switch_num_labels (switch_stmt);
1646 /* Replace all destination labels. */
1647 for (i = 0; i < n; ++i)
1649 tree case_label = gimple_switch_label (switch_stmt, i);
1650 label = CASE_LABEL (case_label);
1651 new_label = main_block_label (label);
1652 if (new_label != label)
1653 CASE_LABEL (case_label) = new_label;
1655 break;
1658 case GIMPLE_ASM:
1660 gasm *asm_stmt = as_a <gasm *> (stmt);
1661 int i, n = gimple_asm_nlabels (asm_stmt);
1663 for (i = 0; i < n; ++i)
1665 tree cons = gimple_asm_label_op (asm_stmt, i);
1666 tree label = main_block_label (TREE_VALUE (cons));
1667 TREE_VALUE (cons) = label;
1669 break;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1674 case GIMPLE_GOTO:
1675 if (!computed_goto_p (stmt))
1677 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1678 label = gimple_goto_dest (goto_stmt);
1679 new_label = main_block_label (label);
1680 if (new_label != label)
1681 gimple_goto_set_dest (goto_stmt, new_label);
1683 break;
1685 case GIMPLE_TRANSACTION:
1687 gtransaction *txn = as_a <gtransaction *> (stmt);
1689 label = gimple_transaction_label_norm (txn);
1690 if (label)
1692 new_label = main_block_label (label);
1693 if (new_label != label)
1694 gimple_transaction_set_label_norm (txn, new_label);
1697 label = gimple_transaction_label_uninst (txn);
1698 if (label)
1700 new_label = main_block_label (label);
1701 if (new_label != label)
1702 gimple_transaction_set_label_uninst (txn, new_label);
1705 label = gimple_transaction_label_over (txn);
1706 if (label)
1708 new_label = main_block_label (label);
1709 if (new_label != label)
1710 gimple_transaction_set_label_over (txn, new_label);
1713 break;
1715 default:
1716 break;
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb, cfun)
1728 gimple_stmt_iterator i;
1729 tree label_for_this_bb = label_for_bb[bb->index].label;
1731 if (!label_for_this_bb)
1732 continue;
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb[bb->index].used)
1736 label_for_this_bb = NULL;
1738 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1740 tree label;
1741 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1743 if (!label_stmt)
1744 break;
1746 label = gimple_label_label (label_stmt);
1748 if (label == label_for_this_bb
1749 || !DECL_ARTIFICIAL (label)
1750 || DECL_NONLOCAL (label)
1751 || FORCED_LABEL (label))
1752 gsi_next (&i);
1753 else
1754 gsi_remove (&i, true);
1758 free (label_for_bb);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1765 bool
1766 group_case_labels_stmt (gswitch *stmt)
1768 int old_size = gimple_switch_num_labels (stmt);
1769 int i, next_index, new_size;
1770 basic_block default_bb = NULL;
1772 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1774 /* Look for possible opportunities to merge cases. */
1775 new_size = i = 1;
1776 while (i < old_size)
1778 tree base_case, base_high;
1779 basic_block base_bb;
1781 base_case = gimple_switch_label (stmt, i);
1783 gcc_assert (base_case);
1784 base_bb = label_to_block (CASE_LABEL (base_case));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb == NULL || base_bb == default_bb)
1790 i++;
1791 continue;
1794 base_high = CASE_HIGH (base_case)
1795 ? CASE_HIGH (base_case)
1796 : CASE_LOW (base_case);
1797 next_index = i + 1;
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index < old_size)
1804 tree merge_case = gimple_switch_label (stmt, next_index);
1805 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1806 wide_int bhp1 = wi::to_wide (base_high) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb == base_bb
1811 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1813 base_high = CASE_HIGH (merge_case) ?
1814 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1815 CASE_HIGH (base_case) = base_high;
1816 next_index++;
1818 else
1819 break;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb->succs) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1831 != BUILTINS_LOCATION)))
1833 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1834 if (base_edge != NULL)
1835 remove_edge_and_dominated_blocks (base_edge);
1836 i = next_index;
1837 continue;
1840 if (new_size < i)
1841 gimple_switch_set_label (stmt, new_size,
1842 gimple_switch_label (stmt, i));
1843 i = next_index;
1844 new_size++;
1847 gcc_assert (new_size <= old_size);
1849 if (new_size < old_size)
1850 gimple_switch_set_num_labels (stmt, new_size);
1852 return new_size < old_size;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1857 same label. */
1859 bool
1860 group_case_labels (void)
1862 basic_block bb;
1863 bool changed = false;
1865 FOR_EACH_BB_FN (bb, cfun)
1867 gimple *stmt = last_stmt (bb);
1868 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1869 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1872 return changed;
1875 /* Checks whether we can merge block B into block A. */
1877 static bool
1878 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1880 gimple *stmt;
1882 if (!single_succ_p (a))
1883 return false;
1885 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1886 return false;
1888 if (single_succ (a) != b)
1889 return false;
1891 if (!single_pred_p (b))
1892 return false;
1894 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1895 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1896 return false;
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt = last_stmt (a);
1901 if (stmt && stmt_ends_bb_p (stmt))
1902 return false;
1904 /* Do not allow a block with only a non-local label to be merged. */
1905 if (stmt)
1906 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1908 return false;
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1912 gsi_next (&gsi))
1914 tree lab;
1915 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1916 if (!label_stmt)
1917 break;
1918 lab = gimple_label_label (label_stmt);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1922 return false;
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1928 if (current_loops
1929 && b->loop_father->latch == b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1931 && (b->loop_father->header == a
1932 || b->loop_father != a->loop_father))
1933 return false;
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1939 gsi_next (&gsi))
1941 gphi *phi = gsi.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi)))
1944 return false;
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1948 if (!optimize
1949 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1951 location_t goto_locus = single_succ_edge (a)->goto_locus;
1952 gimple_stmt_iterator prev, next;
1953 prev = gsi_last_nondebug_bb (a);
1954 next = gsi_after_labels (b);
1955 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1956 gsi_next_nondebug (&next);
1957 if ((gsi_end_p (prev)
1958 || gimple_location (gsi_stmt (prev)) != goto_locus)
1959 && (gsi_end_p (next)
1960 || gimple_location (gsi_stmt (next)) != goto_locus))
1961 return false;
1964 return true;
1967 /* Replaces all uses of NAME by VAL. */
1969 void
1970 replace_uses_by (tree name, tree val)
1972 imm_use_iterator imm_iter;
1973 use_operand_p use;
1974 gimple *stmt;
1975 edge e;
1977 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt))
1982 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1984 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1986 replace_exp (use, val);
1988 if (gimple_code (stmt) == GIMPLE_PHI)
1990 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1991 PHI_ARG_INDEX_FROM_USE (use));
1992 if (e->flags & EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2004 if (gimple_code (stmt) != GIMPLE_PHI)
2006 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2007 gimple *orig_stmt = stmt;
2008 size_t i;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val))
2015 for (i = 0; i < gimple_num_ops (stmt); i++)
2017 tree op = gimple_op (stmt, i);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op && TREE_CODE (op) == ADDR_EXPR)
2022 recompute_tree_invariant_for_addr_expr (op);
2025 if (fold_stmt (&gsi))
2026 stmt = gsi_stmt (gsi);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2031 update_stmt (stmt);
2035 gcc_checking_assert (has_zero_uses (name));
2037 /* Also update the trees stored in loop structures. */
2038 if (current_loops)
2040 struct loop *loop;
2042 FOR_EACH_LOOP (loop, 0)
2044 substitute_in_loop_info (loop, name, val);
2049 /* Merge block B into block A. */
2051 static void
2052 gimple_merge_blocks (basic_block a, basic_block b)
2054 gimple_stmt_iterator last, gsi;
2055 gphi_iterator psi;
2057 if (dump_file)
2058 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi = gsi_last_bb (a);
2063 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2065 gimple *phi = gsi_stmt (psi);
2066 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2067 gimple *copy;
2068 bool may_replace_uses = (virtual_operand_p (def)
2069 || may_propagate_copy (def, use));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2073 if (current_loops
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2075 && !virtual_operand_p (def)
2076 && TREE_CODE (use) == SSA_NAME
2077 && a->loop_father != b->loop_father)
2078 may_replace_uses = false;
2080 if (!may_replace_uses)
2082 gcc_assert (!virtual_operand_p (def));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy = gimple_build_assign (def, use);
2089 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2090 remove_phi_node (&psi, false);
2092 else
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2096 the stmt. */
2097 if (virtual_operand_p (def))
2099 imm_use_iterator iter;
2100 use_operand_p use_p;
2101 gimple *stmt;
2103 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2105 SET_USE (use_p, use);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2110 else
2111 replace_uses_by (def, use);
2113 remove_phi_node (&psi, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b, a);
2120 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2121 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2126 gimple *stmt = gsi_stmt (gsi);
2127 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2129 tree label = gimple_label_label (label_stmt);
2130 int lp_nr;
2132 gsi_remove (&gsi, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label))
2142 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2143 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2148 gimple *dbg = gimple_build_debug_bind (label,
2149 integer_zero_node,
2150 stmt);
2151 gimple_debug_bind_reset_value (dbg);
2152 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2155 lp_nr = EH_LANDING_PAD_NR (label);
2156 if (lp_nr)
2158 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2159 lp->post_landing_pad = NULL;
2162 else
2164 gimple_set_bb (stmt, a);
2165 gsi_next (&gsi);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2171 profiles. */
2172 if (a->loop_father == b->loop_father)
2174 a->count = a->count.merge (b->count);
2177 /* Merge the sequences. */
2178 last = gsi_last_bb (a);
2179 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2180 set_bb_seq (b, NULL);
2182 if (cfgcleanup_altered_bbs)
2183 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2192 basic_block
2193 single_noncomplex_succ (basic_block bb)
2195 edge e0, e1;
2196 if (EDGE_COUNT (bb->succs) != 2)
2197 return bb;
2199 e0 = EDGE_SUCC (bb, 0);
2200 e1 = EDGE_SUCC (bb, 1);
2201 if (e0->flags & EDGE_COMPLEX)
2202 return e1->dest;
2203 if (e1->flags & EDGE_COMPLEX)
2204 return e0->dest;
2206 return bb;
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2211 void
2212 notice_special_calls (gcall *call)
2214 int flags = gimple_call_flags (call);
2216 if (flags & ECF_MAY_BE_ALLOCA)
2217 cfun->calls_alloca = true;
2218 if (flags & ECF_RETURNS_TWICE)
2219 cfun->calls_setjmp = true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2226 void
2227 clear_special_calls (void)
2229 cfun->calls_alloca = false;
2230 cfun->calls_setjmp = false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2235 static void
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb->succs) > 0)
2244 remove_edge (EDGE_SUCC (bb, 0));
2248 /* Remove statements of basic block BB. */
2250 static void
2251 remove_bb (basic_block bb)
2253 gimple_stmt_iterator i;
2255 if (dump_file)
2257 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2258 if (dump_flags & TDF_DETAILS)
2260 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2261 fprintf (dump_file, "\n");
2265 if (current_loops)
2267 struct loop *loop = bb->loop_father;
2269 /* If a loop gets removed, clean up the information associated
2270 with it. */
2271 if (loop->latch == bb
2272 || loop->header == bb)
2273 free_numbers_of_iterations_estimates (loop);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb) != NULL)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2282 details. */
2283 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2285 gimple *stmt = gsi_stmt (i);
2286 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2287 if (label_stmt
2288 && (FORCED_LABEL (gimple_label_label (label_stmt))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2291 basic_block new_bb;
2292 gimple_stmt_iterator new_gsi;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2296 non-locality. */
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2303 new_bb = bb->prev_bb;
2304 /* Don't move any labels into ENTRY block. */
2305 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2307 new_bb = single_succ (new_bb);
2308 gcc_assert (new_bb != bb);
2310 new_gsi = gsi_start_bb (new_bb);
2311 gsi_remove (&i, false);
2312 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2314 else
2316 /* Release SSA definitions. */
2317 release_defs (stmt);
2318 gsi_remove (&i, true);
2321 if (gsi_end_p (i))
2322 i = gsi_last_bb (bb);
2323 else
2324 gsi_prev (&i);
2328 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2329 bb->il.gimple.seq = NULL;
2330 bb->il.gimple.phi_nodes = NULL;
2334 /* Given a basic block BB and a value VAL for use in the final statement
2335 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2336 the edge that will be taken out of the block.
2337 If VAL is NULL_TREE, then the current value of the final statement's
2338 predicate or index is used.
2339 If the value does not match a unique edge, NULL is returned. */
2341 edge
2342 find_taken_edge (basic_block bb, tree val)
2344 gimple *stmt;
2346 stmt = last_stmt (bb);
2348 /* Handle ENTRY and EXIT. */
2349 if (!stmt)
2350 return NULL;
2352 if (gimple_code (stmt) == GIMPLE_COND)
2353 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2355 if (gimple_code (stmt) == GIMPLE_SWITCH)
2356 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2358 if (computed_goto_p (stmt))
2360 /* Only optimize if the argument is a label, if the argument is
2361 not a label then we can not construct a proper CFG.
2363 It may be the case that we only need to allow the LABEL_REF to
2364 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2365 appear inside a LABEL_EXPR just to be safe. */
2366 if (val
2367 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2368 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2369 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2372 /* Otherwise we only know the taken successor edge if it's unique. */
2373 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2377 statement, determine which of the outgoing edges will be taken out of the
2378 block. Return NULL if either edge may be taken. */
2380 static edge
2381 find_taken_edge_computed_goto (basic_block bb, tree val)
2383 basic_block dest;
2384 edge e = NULL;
2386 dest = label_to_block (val);
2387 if (dest)
2388 e = find_edge (bb, dest);
2390 /* It's possible for find_edge to return NULL here on invalid code
2391 that abuses the labels-as-values extension (e.g. code that attempts to
2392 jump *between* functions via stored labels-as-values; PR 84136).
2393 If so, then we simply return that NULL for the edge.
2394 We don't currently have a way of detecting such invalid code, so we
2395 can't assert that it was the case when a NULL edge occurs here. */
2397 return e;
2400 /* Given COND_STMT and a constant value VAL for use as the predicate,
2401 determine which of the two edges will be taken out of
2402 the statement's block. Return NULL if either edge may be taken.
2403 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2404 is used. */
2406 static edge
2407 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2409 edge true_edge, false_edge;
2411 if (val == NULL_TREE)
2413 /* Use the current value of the predicate. */
2414 if (gimple_cond_true_p (cond_stmt))
2415 val = integer_one_node;
2416 else if (gimple_cond_false_p (cond_stmt))
2417 val = integer_zero_node;
2418 else
2419 return NULL;
2421 else if (TREE_CODE (val) != INTEGER_CST)
2422 return NULL;
2424 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2425 &true_edge, &false_edge);
2427 return (integer_zerop (val) ? false_edge : true_edge);
2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2431 which edge will be taken out of the statement's block. Return NULL if any
2432 edge may be taken.
2433 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2434 is used. */
2436 static edge
2437 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2439 basic_block dest_bb;
2440 edge e;
2441 tree taken_case;
2443 if (gimple_switch_num_labels (switch_stmt) == 1)
2444 taken_case = gimple_switch_default_label (switch_stmt);
2445 else
2447 if (val == NULL_TREE)
2448 val = gimple_switch_index (switch_stmt);
2449 if (TREE_CODE (val) != INTEGER_CST)
2450 return NULL;
2451 else
2452 taken_case = find_case_label_for_value (switch_stmt, val);
2454 dest_bb = label_to_block (CASE_LABEL (taken_case));
2456 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2457 gcc_assert (e);
2458 return e;
2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2463 We can make optimal use here of the fact that the case labels are
2464 sorted: We can do a binary search for a case matching VAL. */
2466 static tree
2467 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2469 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2470 tree default_case = gimple_switch_default_label (switch_stmt);
2472 for (low = 0, high = n; high - low > 1; )
2474 size_t i = (high + low) / 2;
2475 tree t = gimple_switch_label (switch_stmt, i);
2476 int cmp;
2478 /* Cache the result of comparing CASE_LOW and val. */
2479 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2481 if (cmp > 0)
2482 high = i;
2483 else
2484 low = i;
2486 if (CASE_HIGH (t) == NULL)
2488 /* A singe-valued case label. */
2489 if (cmp == 0)
2490 return t;
2492 else
2494 /* A case range. We can only handle integer ranges. */
2495 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2496 return t;
2500 return default_case;
2504 /* Dump a basic block on stderr. */
2506 void
2507 gimple_debug_bb (basic_block bb)
2509 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2513 /* Dump basic block with index N on stderr. */
2515 basic_block
2516 gimple_debug_bb_n (int n)
2518 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2519 return BASIC_BLOCK_FOR_FN (cfun, n);
2523 /* Dump the CFG on stderr.
2525 FLAGS are the same used by the tree dumping functions
2526 (see TDF_* in dumpfile.h). */
2528 void
2529 gimple_debug_cfg (dump_flags_t flags)
2531 gimple_dump_cfg (stderr, flags);
2535 /* Dump the program showing basic block boundaries on the given FILE.
2537 FLAGS are the same used by the tree dumping functions (see TDF_* in
2538 tree.h). */
2540 void
2541 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2543 if (flags & TDF_DETAILS)
2545 dump_function_header (file, current_function_decl, flags);
2546 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2547 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2548 last_basic_block_for_fn (cfun));
2550 brief_dump_cfg (file, flags);
2551 fprintf (file, "\n");
2554 if (flags & TDF_STATS)
2555 dump_cfg_stats (file);
2557 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2561 /* Dump CFG statistics on FILE. */
2563 void
2564 dump_cfg_stats (FILE *file)
2566 static long max_num_merged_labels = 0;
2567 unsigned long size, total = 0;
2568 long num_edges;
2569 basic_block bb;
2570 const char * const fmt_str = "%-30s%-13s%12s\n";
2571 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2572 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2573 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2574 const char *funcname = current_function_name ();
2576 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2578 fprintf (file, "---------------------------------------------------------\n");
2579 fprintf (file, fmt_str, "", " Number of ", "Memory");
2580 fprintf (file, fmt_str, "", " instances ", "used ");
2581 fprintf (file, "---------------------------------------------------------\n");
2583 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2584 total += size;
2585 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2586 SCALE (size), LABEL (size));
2588 num_edges = 0;
2589 FOR_EACH_BB_FN (bb, cfun)
2590 num_edges += EDGE_COUNT (bb->succs);
2591 size = num_edges * sizeof (struct edge_def);
2592 total += size;
2593 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2595 fprintf (file, "---------------------------------------------------------\n");
2596 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2597 LABEL (total));
2598 fprintf (file, "---------------------------------------------------------\n");
2599 fprintf (file, "\n");
2601 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2602 max_num_merged_labels = cfg_stats.num_merged_labels;
2604 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2605 cfg_stats.num_merged_labels, max_num_merged_labels);
2607 fprintf (file, "\n");
2611 /* Dump CFG statistics on stderr. Keep extern so that it's always
2612 linked in the final executable. */
2614 DEBUG_FUNCTION void
2615 debug_cfg_stats (void)
2617 dump_cfg_stats (stderr);
2620 /*---------------------------------------------------------------------------
2621 Miscellaneous helpers
2622 ---------------------------------------------------------------------------*/
2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2625 flow. Transfers of control flow associated with EH are excluded. */
2627 static bool
2628 call_can_make_abnormal_goto (gimple *t)
2630 /* If the function has no non-local labels, then a call cannot make an
2631 abnormal transfer of control. */
2632 if (!cfun->has_nonlocal_label
2633 && !cfun->calls_setjmp)
2634 return false;
2636 /* Likewise if the call has no side effects. */
2637 if (!gimple_has_side_effects (t))
2638 return false;
2640 /* Likewise if the called function is leaf. */
2641 if (gimple_call_flags (t) & ECF_LEAF)
2642 return false;
2644 return true;
2648 /* Return true if T can make an abnormal transfer of control flow.
2649 Transfers of control flow associated with EH are excluded. */
2651 bool
2652 stmt_can_make_abnormal_goto (gimple *t)
2654 if (computed_goto_p (t))
2655 return true;
2656 if (is_gimple_call (t))
2657 return call_can_make_abnormal_goto (t);
2658 return false;
2662 /* Return true if T represents a stmt that always transfers control. */
2664 bool
2665 is_ctrl_stmt (gimple *t)
2667 switch (gimple_code (t))
2669 case GIMPLE_COND:
2670 case GIMPLE_SWITCH:
2671 case GIMPLE_GOTO:
2672 case GIMPLE_RETURN:
2673 case GIMPLE_RESX:
2674 return true;
2675 default:
2676 return false;
2681 /* Return true if T is a statement that may alter the flow of control
2682 (e.g., a call to a non-returning function). */
2684 bool
2685 is_ctrl_altering_stmt (gimple *t)
2687 gcc_assert (t);
2689 switch (gimple_code (t))
2691 case GIMPLE_CALL:
2692 /* Per stmt call flag indicates whether the call could alter
2693 controlflow. */
2694 if (gimple_call_ctrl_altering_p (t))
2695 return true;
2696 break;
2698 case GIMPLE_EH_DISPATCH:
2699 /* EH_DISPATCH branches to the individual catch handlers at
2700 this level of a try or allowed-exceptions region. It can
2701 fallthru to the next statement as well. */
2702 return true;
2704 case GIMPLE_ASM:
2705 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2706 return true;
2707 break;
2709 CASE_GIMPLE_OMP:
2710 /* OpenMP directives alter control flow. */
2711 return true;
2713 case GIMPLE_TRANSACTION:
2714 /* A transaction start alters control flow. */
2715 return true;
2717 default:
2718 break;
2721 /* If a statement can throw, it alters control flow. */
2722 return stmt_can_throw_internal (t);
2726 /* Return true if T is a simple local goto. */
2728 bool
2729 simple_goto_p (gimple *t)
2731 return (gimple_code (t) == GIMPLE_GOTO
2732 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2736 /* Return true if STMT should start a new basic block. PREV_STMT is
2737 the statement preceding STMT. It is used when STMT is a label or a
2738 case label. Labels should only start a new basic block if their
2739 previous statement wasn't a label. Otherwise, sequence of labels
2740 would generate unnecessary basic blocks that only contain a single
2741 label. */
2743 static inline bool
2744 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2746 if (stmt == NULL)
2747 return false;
2749 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2750 any nondebug stmts in the block. We don't want to start another
2751 block in this case: the debug stmt will already have started the
2752 one STMT would start if we weren't outputting debug stmts. */
2753 if (prev_stmt && is_gimple_debug (prev_stmt))
2754 return false;
2756 /* Labels start a new basic block only if the preceding statement
2757 wasn't a label of the same type. This prevents the creation of
2758 consecutive blocks that have nothing but a single label. */
2759 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2761 /* Nonlocal and computed GOTO targets always start a new block. */
2762 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2763 || FORCED_LABEL (gimple_label_label (label_stmt)))
2764 return true;
2766 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2768 if (DECL_NONLOCAL (gimple_label_label (
2769 as_a <glabel *> (prev_stmt))))
2770 return true;
2772 cfg_stats.num_merged_labels++;
2773 return false;
2775 else
2776 return true;
2778 else if (gimple_code (stmt) == GIMPLE_CALL)
2780 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2781 /* setjmp acts similar to a nonlocal GOTO target and thus should
2782 start a new block. */
2783 return true;
2784 if (gimple_call_internal_p (stmt, IFN_PHI)
2785 && prev_stmt
2786 && gimple_code (prev_stmt) != GIMPLE_LABEL
2787 && (gimple_code (prev_stmt) != GIMPLE_CALL
2788 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2789 /* PHI nodes start a new block unless preceeded by a label
2790 or another PHI. */
2791 return true;
2794 return false;
2798 /* Return true if T should end a basic block. */
2800 bool
2801 stmt_ends_bb_p (gimple *t)
2803 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2806 /* Remove block annotations and other data structures. */
2808 void
2809 delete_tree_cfg_annotations (struct function *fn)
2811 vec_free (label_to_block_map_for_fn (fn));
2814 /* Return the virtual phi in BB. */
2816 gphi *
2817 get_virtual_phi (basic_block bb)
2819 for (gphi_iterator gsi = gsi_start_phis (bb);
2820 !gsi_end_p (gsi);
2821 gsi_next (&gsi))
2823 gphi *phi = gsi.phi ();
2825 if (virtual_operand_p (PHI_RESULT (phi)))
2826 return phi;
2829 return NULL;
2832 /* Return the first statement in basic block BB. */
2834 gimple *
2835 first_stmt (basic_block bb)
2837 gimple_stmt_iterator i = gsi_start_bb (bb);
2838 gimple *stmt = NULL;
2840 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2842 gsi_next (&i);
2843 stmt = NULL;
2845 return stmt;
2848 /* Return the first non-label statement in basic block BB. */
2850 static gimple *
2851 first_non_label_stmt (basic_block bb)
2853 gimple_stmt_iterator i = gsi_start_bb (bb);
2854 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2855 gsi_next (&i);
2856 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2859 /* Return the last statement in basic block BB. */
2861 gimple *
2862 last_stmt (basic_block bb)
2864 gimple_stmt_iterator i = gsi_last_bb (bb);
2865 gimple *stmt = NULL;
2867 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2869 gsi_prev (&i);
2870 stmt = NULL;
2872 return stmt;
2875 /* Return the last statement of an otherwise empty block. Return NULL
2876 if the block is totally empty, or if it contains more than one
2877 statement. */
2879 gimple *
2880 last_and_only_stmt (basic_block bb)
2882 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2883 gimple *last, *prev;
2885 if (gsi_end_p (i))
2886 return NULL;
2888 last = gsi_stmt (i);
2889 gsi_prev_nondebug (&i);
2890 if (gsi_end_p (i))
2891 return last;
2893 /* Empty statements should no longer appear in the instruction stream.
2894 Everything that might have appeared before should be deleted by
2895 remove_useless_stmts, and the optimizers should just gsi_remove
2896 instead of smashing with build_empty_stmt.
2898 Thus the only thing that should appear here in a block containing
2899 one executable statement is a label. */
2900 prev = gsi_stmt (i);
2901 if (gimple_code (prev) == GIMPLE_LABEL)
2902 return last;
2903 else
2904 return NULL;
2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2909 static void
2910 reinstall_phi_args (edge new_edge, edge old_edge)
2912 edge_var_map *vm;
2913 int i;
2914 gphi_iterator phis;
2916 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2917 if (!v)
2918 return;
2920 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2921 v->iterate (i, &vm) && !gsi_end_p (phis);
2922 i++, gsi_next (&phis))
2924 gphi *phi = phis.phi ();
2925 tree result = redirect_edge_var_map_result (vm);
2926 tree arg = redirect_edge_var_map_def (vm);
2928 gcc_assert (result == gimple_phi_result (phi));
2930 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2933 redirect_edge_var_map_clear (old_edge);
2936 /* Returns the basic block after which the new basic block created
2937 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2938 near its "logical" location. This is of most help to humans looking
2939 at debugging dumps. */
2941 basic_block
2942 split_edge_bb_loc (edge edge_in)
2944 basic_block dest = edge_in->dest;
2945 basic_block dest_prev = dest->prev_bb;
2947 if (dest_prev)
2949 edge e = find_edge (dest_prev, dest);
2950 if (e && !(e->flags & EDGE_COMPLEX))
2951 return edge_in->src;
2953 return dest_prev;
2956 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2957 Abort on abnormal edges. */
2959 static basic_block
2960 gimple_split_edge (edge edge_in)
2962 basic_block new_bb, after_bb, dest;
2963 edge new_edge, e;
2965 /* Abnormal edges cannot be split. */
2966 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2968 dest = edge_in->dest;
2970 after_bb = split_edge_bb_loc (edge_in);
2972 new_bb = create_empty_bb (after_bb);
2973 new_bb->count = edge_in->count ();
2975 e = redirect_edge_and_branch (edge_in, new_bb);
2976 gcc_assert (e == edge_in);
2978 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2979 reinstall_phi_args (new_edge, e);
2981 return new_bb;
2985 /* Verify properties of the address expression T with base object BASE. */
2987 static tree
2988 verify_address (tree t, tree base)
2990 bool old_constant;
2991 bool old_side_effects;
2992 bool new_constant;
2993 bool new_side_effects;
2995 old_constant = TREE_CONSTANT (t);
2996 old_side_effects = TREE_SIDE_EFFECTS (t);
2998 recompute_tree_invariant_for_addr_expr (t);
2999 new_side_effects = TREE_SIDE_EFFECTS (t);
3000 new_constant = TREE_CONSTANT (t);
3002 if (old_constant != new_constant)
3004 error ("constant not recomputed when ADDR_EXPR changed");
3005 return t;
3007 if (old_side_effects != new_side_effects)
3009 error ("side effects not recomputed when ADDR_EXPR changed");
3010 return t;
3013 if (!(VAR_P (base)
3014 || TREE_CODE (base) == PARM_DECL
3015 || TREE_CODE (base) == RESULT_DECL))
3016 return NULL_TREE;
3018 if (DECL_GIMPLE_REG_P (base))
3020 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3021 return base;
3024 return NULL_TREE;
3027 /* Callback for walk_tree, check that all elements with address taken are
3028 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3029 inside a PHI node. */
3031 static tree
3032 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3034 tree t = *tp, x;
3036 if (TYPE_P (t))
3037 *walk_subtrees = 0;
3039 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3040 #define CHECK_OP(N, MSG) \
3041 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3042 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3044 switch (TREE_CODE (t))
3046 case SSA_NAME:
3047 if (SSA_NAME_IN_FREE_LIST (t))
3049 error ("SSA name in freelist but still referenced");
3050 return *tp;
3052 break;
3054 case PARM_DECL:
3055 case VAR_DECL:
3056 case RESULT_DECL:
3058 tree context = decl_function_context (t);
3059 if (context != cfun->decl
3060 && !SCOPE_FILE_SCOPE_P (context)
3061 && !TREE_STATIC (t)
3062 && !DECL_EXTERNAL (t))
3064 error ("Local declaration from a different function");
3065 return t;
3068 break;
3070 case INDIRECT_REF:
3071 error ("INDIRECT_REF in gimple IL");
3072 return t;
3074 case MEM_REF:
3075 x = TREE_OPERAND (t, 0);
3076 if (!POINTER_TYPE_P (TREE_TYPE (x))
3077 || !is_gimple_mem_ref_addr (x))
3079 error ("invalid first operand of MEM_REF");
3080 return x;
3082 if (!poly_int_tree_p (TREE_OPERAND (t, 1))
3083 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3085 error ("invalid offset operand of MEM_REF");
3086 return TREE_OPERAND (t, 1);
3088 if (TREE_CODE (x) == ADDR_EXPR)
3090 tree va = verify_address (x, TREE_OPERAND (x, 0));
3091 if (va)
3092 return va;
3093 x = TREE_OPERAND (x, 0);
3095 walk_tree (&x, verify_expr, data, NULL);
3096 *walk_subtrees = 0;
3097 break;
3099 case ASSERT_EXPR:
3100 x = fold (ASSERT_EXPR_COND (t));
3101 if (x == boolean_false_node)
3103 error ("ASSERT_EXPR with an always-false condition");
3104 return *tp;
3106 break;
3108 case MODIFY_EXPR:
3109 error ("MODIFY_EXPR not expected while having tuples");
3110 return *tp;
3112 case ADDR_EXPR:
3114 tree tem;
3116 gcc_assert (is_gimple_address (t));
3118 /* Skip any references (they will be checked when we recurse down the
3119 tree) and ensure that any variable used as a prefix is marked
3120 addressable. */
3121 for (x = TREE_OPERAND (t, 0);
3122 handled_component_p (x);
3123 x = TREE_OPERAND (x, 0))
3126 if ((tem = verify_address (t, x)))
3127 return tem;
3129 if (!(VAR_P (x)
3130 || TREE_CODE (x) == PARM_DECL
3131 || TREE_CODE (x) == RESULT_DECL))
3132 return NULL;
3134 if (!TREE_ADDRESSABLE (x))
3136 error ("address taken, but ADDRESSABLE bit not set");
3137 return x;
3140 break;
3143 case COND_EXPR:
3144 gcc_unreachable ();
3146 case NON_LVALUE_EXPR:
3147 case TRUTH_NOT_EXPR:
3148 gcc_unreachable ();
3150 CASE_CONVERT:
3151 case FIX_TRUNC_EXPR:
3152 case FLOAT_EXPR:
3153 case NEGATE_EXPR:
3154 case ABS_EXPR:
3155 case BIT_NOT_EXPR:
3156 gcc_unreachable ();
3158 case REALPART_EXPR:
3159 case IMAGPART_EXPR:
3160 case BIT_FIELD_REF:
3161 if (!is_gimple_reg_type (TREE_TYPE (t)))
3163 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3164 return t;
3167 if (TREE_CODE (t) == BIT_FIELD_REF)
3169 tree t0 = TREE_OPERAND (t, 0);
3170 tree t1 = TREE_OPERAND (t, 1);
3171 tree t2 = TREE_OPERAND (t, 2);
3172 poly_uint64 size, bitpos;
3173 if (!poly_int_tree_p (t1, &size)
3174 || !poly_int_tree_p (t2, &bitpos)
3175 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3176 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3178 error ("invalid position or size operand to BIT_FIELD_REF");
3179 return t;
3181 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3182 && maybe_ne (TYPE_PRECISION (TREE_TYPE (t)), size))
3184 error ("integral result type precision does not match "
3185 "field size of BIT_FIELD_REF");
3186 return t;
3188 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3189 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3190 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))),
3191 size))
3193 error ("mode size of non-integral result does not "
3194 "match field size of BIT_FIELD_REF");
3195 return t;
3197 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3198 && maybe_gt (size + bitpos,
3199 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0)))))
3201 error ("position plus size exceeds size of referenced object in "
3202 "BIT_FIELD_REF");
3203 return t;
3206 t = TREE_OPERAND (t, 0);
3208 /* Fall-through. */
3209 case COMPONENT_REF:
3210 case ARRAY_REF:
3211 case ARRAY_RANGE_REF:
3212 case VIEW_CONVERT_EXPR:
3213 /* We have a nest of references. Verify that each of the operands
3214 that determine where to reference is either a constant or a variable,
3215 verify that the base is valid, and then show we've already checked
3216 the subtrees. */
3217 while (handled_component_p (t))
3219 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3220 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3221 else if (TREE_CODE (t) == ARRAY_REF
3222 || TREE_CODE (t) == ARRAY_RANGE_REF)
3224 CHECK_OP (1, "invalid array index");
3225 if (TREE_OPERAND (t, 2))
3226 CHECK_OP (2, "invalid array lower bound");
3227 if (TREE_OPERAND (t, 3))
3228 CHECK_OP (3, "invalid array stride");
3230 else if (TREE_CODE (t) == BIT_FIELD_REF
3231 || TREE_CODE (t) == REALPART_EXPR
3232 || TREE_CODE (t) == IMAGPART_EXPR)
3234 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3235 "REALPART_EXPR");
3236 return t;
3239 t = TREE_OPERAND (t, 0);
3242 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3244 error ("invalid reference prefix");
3245 return t;
3247 walk_tree (&t, verify_expr, data, NULL);
3248 *walk_subtrees = 0;
3249 break;
3250 case PLUS_EXPR:
3251 case MINUS_EXPR:
3252 gcc_unreachable ();
3254 case POINTER_DIFF_EXPR:
3255 gcc_unreachable ();
3257 case POINTER_PLUS_EXPR:
3258 case MULT_EXPR:
3259 case TRUNC_DIV_EXPR:
3260 case CEIL_DIV_EXPR:
3261 case FLOOR_DIV_EXPR:
3262 case ROUND_DIV_EXPR:
3263 case TRUNC_MOD_EXPR:
3264 case CEIL_MOD_EXPR:
3265 case FLOOR_MOD_EXPR:
3266 case ROUND_MOD_EXPR:
3267 case RDIV_EXPR:
3268 case EXACT_DIV_EXPR:
3269 case MIN_EXPR:
3270 case MAX_EXPR:
3271 case LSHIFT_EXPR:
3272 case RSHIFT_EXPR:
3273 case LROTATE_EXPR:
3274 case RROTATE_EXPR:
3275 case BIT_IOR_EXPR:
3276 case BIT_XOR_EXPR:
3277 case BIT_AND_EXPR:
3278 gcc_unreachable ();
3280 case LT_EXPR:
3281 case LE_EXPR:
3282 case GT_EXPR:
3283 case GE_EXPR:
3284 case EQ_EXPR:
3285 case NE_EXPR:
3286 case UNORDERED_EXPR:
3287 case ORDERED_EXPR:
3288 case UNLT_EXPR:
3289 case UNLE_EXPR:
3290 case UNGT_EXPR:
3291 case UNGE_EXPR:
3292 case UNEQ_EXPR:
3293 case LTGT_EXPR:
3294 /* Reachable via COND_EXPR condition which is GENERIC. */
3295 CHECK_OP (0, "invalid operand to binary operator");
3296 CHECK_OP (1, "invalid operand to binary operator");
3297 break;
3299 case CONSTRUCTOR:
3300 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3301 *walk_subtrees = 0;
3302 break;
3304 case CASE_LABEL_EXPR:
3305 if (CASE_CHAIN (t))
3307 error ("invalid CASE_CHAIN");
3308 return t;
3310 break;
3312 default:
3313 break;
3315 return NULL;
3317 #undef CHECK_OP
3321 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3322 Returns true if there is an error, otherwise false. */
3324 static bool
3325 verify_types_in_gimple_min_lval (tree expr)
3327 tree op;
3329 if (is_gimple_id (expr))
3330 return false;
3332 if (TREE_CODE (expr) != TARGET_MEM_REF
3333 && TREE_CODE (expr) != MEM_REF)
3335 error ("invalid expression for min lvalue");
3336 return true;
3339 /* TARGET_MEM_REFs are strange beasts. */
3340 if (TREE_CODE (expr) == TARGET_MEM_REF)
3341 return false;
3343 op = TREE_OPERAND (expr, 0);
3344 if (!is_gimple_val (op))
3346 error ("invalid operand in indirect reference");
3347 debug_generic_stmt (op);
3348 return true;
3350 /* Memory references now generally can involve a value conversion. */
3352 return false;
3355 /* Verify if EXPR is a valid GIMPLE reference expression. If
3356 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3357 if there is an error, otherwise false. */
3359 static bool
3360 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3362 while (handled_component_p (expr))
3364 tree op = TREE_OPERAND (expr, 0);
3366 if (TREE_CODE (expr) == ARRAY_REF
3367 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3369 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3370 || (TREE_OPERAND (expr, 2)
3371 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3372 || (TREE_OPERAND (expr, 3)
3373 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3375 error ("invalid operands to array reference");
3376 debug_generic_stmt (expr);
3377 return true;
3381 /* Verify if the reference array element types are compatible. */
3382 if (TREE_CODE (expr) == ARRAY_REF
3383 && !useless_type_conversion_p (TREE_TYPE (expr),
3384 TREE_TYPE (TREE_TYPE (op))))
3386 error ("type mismatch in array reference");
3387 debug_generic_stmt (TREE_TYPE (expr));
3388 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3389 return true;
3391 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3392 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3393 TREE_TYPE (TREE_TYPE (op))))
3395 error ("type mismatch in array range reference");
3396 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3397 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3398 return true;
3401 if ((TREE_CODE (expr) == REALPART_EXPR
3402 || TREE_CODE (expr) == IMAGPART_EXPR)
3403 && !useless_type_conversion_p (TREE_TYPE (expr),
3404 TREE_TYPE (TREE_TYPE (op))))
3406 error ("type mismatch in real/imagpart reference");
3407 debug_generic_stmt (TREE_TYPE (expr));
3408 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3409 return true;
3412 if (TREE_CODE (expr) == COMPONENT_REF
3413 && !useless_type_conversion_p (TREE_TYPE (expr),
3414 TREE_TYPE (TREE_OPERAND (expr, 1))))
3416 error ("type mismatch in component reference");
3417 debug_generic_stmt (TREE_TYPE (expr));
3418 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3419 return true;
3422 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3424 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3425 that their operand is not an SSA name or an invariant when
3426 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3427 bug). Otherwise there is nothing to verify, gross mismatches at
3428 most invoke undefined behavior. */
3429 if (require_lvalue
3430 && (TREE_CODE (op) == SSA_NAME
3431 || is_gimple_min_invariant (op)))
3433 error ("conversion of an SSA_NAME on the left hand side");
3434 debug_generic_stmt (expr);
3435 return true;
3437 else if (TREE_CODE (op) == SSA_NAME
3438 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3440 error ("conversion of register to a different size");
3441 debug_generic_stmt (expr);
3442 return true;
3444 else if (!handled_component_p (op))
3445 return false;
3448 expr = op;
3451 if (TREE_CODE (expr) == MEM_REF)
3453 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3455 error ("invalid address operand in MEM_REF");
3456 debug_generic_stmt (expr);
3457 return true;
3459 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3460 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3462 error ("invalid offset operand in MEM_REF");
3463 debug_generic_stmt (expr);
3464 return true;
3467 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3469 if (!TMR_BASE (expr)
3470 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3472 error ("invalid address operand in TARGET_MEM_REF");
3473 return true;
3475 if (!TMR_OFFSET (expr)
3476 || !poly_int_tree_p (TMR_OFFSET (expr))
3477 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3479 error ("invalid offset operand in TARGET_MEM_REF");
3480 debug_generic_stmt (expr);
3481 return true;
3485 return ((require_lvalue || !is_gimple_min_invariant (expr))
3486 && verify_types_in_gimple_min_lval (expr));
3489 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3490 list of pointer-to types that is trivially convertible to DEST. */
3492 static bool
3493 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3495 tree src;
3497 if (!TYPE_POINTER_TO (src_obj))
3498 return true;
3500 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3501 if (useless_type_conversion_p (dest, src))
3502 return true;
3504 return false;
3507 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3508 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3510 static bool
3511 valid_fixed_convert_types_p (tree type1, tree type2)
3513 return (FIXED_POINT_TYPE_P (type1)
3514 && (INTEGRAL_TYPE_P (type2)
3515 || SCALAR_FLOAT_TYPE_P (type2)
3516 || FIXED_POINT_TYPE_P (type2)));
3519 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3520 is a problem, otherwise false. */
3522 static bool
3523 verify_gimple_call (gcall *stmt)
3525 tree fn = gimple_call_fn (stmt);
3526 tree fntype, fndecl;
3527 unsigned i;
3529 if (gimple_call_internal_p (stmt))
3531 if (fn)
3533 error ("gimple call has two targets");
3534 debug_generic_stmt (fn);
3535 return true;
3537 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3538 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3540 return false;
3543 else
3545 if (!fn)
3547 error ("gimple call has no target");
3548 return true;
3552 if (fn && !is_gimple_call_addr (fn))
3554 error ("invalid function in gimple call");
3555 debug_generic_stmt (fn);
3556 return true;
3559 if (fn
3560 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3561 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3562 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3564 error ("non-function in gimple call");
3565 return true;
3568 fndecl = gimple_call_fndecl (stmt);
3569 if (fndecl
3570 && TREE_CODE (fndecl) == FUNCTION_DECL
3571 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3572 && !DECL_PURE_P (fndecl)
3573 && !TREE_READONLY (fndecl))
3575 error ("invalid pure const state for function");
3576 return true;
3579 tree lhs = gimple_call_lhs (stmt);
3580 if (lhs
3581 && (!is_gimple_lvalue (lhs)
3582 || verify_types_in_gimple_reference (lhs, true)))
3584 error ("invalid LHS in gimple call");
3585 return true;
3588 if (gimple_call_ctrl_altering_p (stmt)
3589 && gimple_call_noreturn_p (stmt)
3590 && should_remove_lhs_p (lhs))
3592 error ("LHS in noreturn call");
3593 return true;
3596 fntype = gimple_call_fntype (stmt);
3597 if (fntype
3598 && lhs
3599 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3600 /* ??? At least C++ misses conversions at assignments from
3601 void * call results.
3602 For now simply allow arbitrary pointer type conversions. */
3603 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3604 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3606 error ("invalid conversion in gimple call");
3607 debug_generic_stmt (TREE_TYPE (lhs));
3608 debug_generic_stmt (TREE_TYPE (fntype));
3609 return true;
3612 if (gimple_call_chain (stmt)
3613 && !is_gimple_val (gimple_call_chain (stmt)))
3615 error ("invalid static chain in gimple call");
3616 debug_generic_stmt (gimple_call_chain (stmt));
3617 return true;
3620 /* If there is a static chain argument, the call should either be
3621 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3622 if (gimple_call_chain (stmt)
3623 && fndecl
3624 && !DECL_STATIC_CHAIN (fndecl))
3626 error ("static chain with function that doesn%'t use one");
3627 return true;
3630 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3632 switch (DECL_FUNCTION_CODE (fndecl))
3634 case BUILT_IN_UNREACHABLE:
3635 case BUILT_IN_TRAP:
3636 if (gimple_call_num_args (stmt) > 0)
3638 /* Built-in unreachable with parameters might not be caught by
3639 undefined behavior sanitizer. Front-ends do check users do not
3640 call them that way but we also produce calls to
3641 __builtin_unreachable internally, for example when IPA figures
3642 out a call cannot happen in a legal program. In such cases,
3643 we must make sure arguments are stripped off. */
3644 error ("__builtin_unreachable or __builtin_trap call with "
3645 "arguments");
3646 return true;
3648 break;
3649 default:
3650 break;
3654 /* ??? The C frontend passes unpromoted arguments in case it
3655 didn't see a function declaration before the call. So for now
3656 leave the call arguments mostly unverified. Once we gimplify
3657 unit-at-a-time we have a chance to fix this. */
3659 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3661 tree arg = gimple_call_arg (stmt, i);
3662 if ((is_gimple_reg_type (TREE_TYPE (arg))
3663 && !is_gimple_val (arg))
3664 || (!is_gimple_reg_type (TREE_TYPE (arg))
3665 && !is_gimple_lvalue (arg)))
3667 error ("invalid argument to gimple call");
3668 debug_generic_expr (arg);
3669 return true;
3673 return false;
3676 /* Verifies the gimple comparison with the result type TYPE and
3677 the operands OP0 and OP1, comparison code is CODE. */
3679 static bool
3680 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3682 tree op0_type = TREE_TYPE (op0);
3683 tree op1_type = TREE_TYPE (op1);
3685 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3687 error ("invalid operands in gimple comparison");
3688 return true;
3691 /* For comparisons we do not have the operations type as the
3692 effective type the comparison is carried out in. Instead
3693 we require that either the first operand is trivially
3694 convertible into the second, or the other way around.
3695 Because we special-case pointers to void we allow
3696 comparisons of pointers with the same mode as well. */
3697 if (!useless_type_conversion_p (op0_type, op1_type)
3698 && !useless_type_conversion_p (op1_type, op0_type)
3699 && (!POINTER_TYPE_P (op0_type)
3700 || !POINTER_TYPE_P (op1_type)
3701 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3703 error ("mismatching comparison operand types");
3704 debug_generic_expr (op0_type);
3705 debug_generic_expr (op1_type);
3706 return true;
3709 /* The resulting type of a comparison may be an effective boolean type. */
3710 if (INTEGRAL_TYPE_P (type)
3711 && (TREE_CODE (type) == BOOLEAN_TYPE
3712 || TYPE_PRECISION (type) == 1))
3714 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3715 || TREE_CODE (op1_type) == VECTOR_TYPE)
3716 && code != EQ_EXPR && code != NE_EXPR
3717 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3718 && !VECTOR_INTEGER_TYPE_P (op0_type))
3720 error ("unsupported operation or type for vector comparison"
3721 " returning a boolean");
3722 debug_generic_expr (op0_type);
3723 debug_generic_expr (op1_type);
3724 return true;
3727 /* Or a boolean vector type with the same element count
3728 as the comparison operand types. */
3729 else if (TREE_CODE (type) == VECTOR_TYPE
3730 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3732 if (TREE_CODE (op0_type) != VECTOR_TYPE
3733 || TREE_CODE (op1_type) != VECTOR_TYPE)
3735 error ("non-vector operands in vector comparison");
3736 debug_generic_expr (op0_type);
3737 debug_generic_expr (op1_type);
3738 return true;
3741 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3742 TYPE_VECTOR_SUBPARTS (op0_type)))
3744 error ("invalid vector comparison resulting type");
3745 debug_generic_expr (type);
3746 return true;
3749 else
3751 error ("bogus comparison result type");
3752 debug_generic_expr (type);
3753 return true;
3756 return false;
3759 /* Verify a gimple assignment statement STMT with an unary rhs.
3760 Returns true if anything is wrong. */
3762 static bool
3763 verify_gimple_assign_unary (gassign *stmt)
3765 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3766 tree lhs = gimple_assign_lhs (stmt);
3767 tree lhs_type = TREE_TYPE (lhs);
3768 tree rhs1 = gimple_assign_rhs1 (stmt);
3769 tree rhs1_type = TREE_TYPE (rhs1);
3771 if (!is_gimple_reg (lhs))
3773 error ("non-register as LHS of unary operation");
3774 return true;
3777 if (!is_gimple_val (rhs1))
3779 error ("invalid operand in unary operation");
3780 return true;
3783 /* First handle conversions. */
3784 switch (rhs_code)
3786 CASE_CONVERT:
3788 /* Allow conversions from pointer type to integral type only if
3789 there is no sign or zero extension involved.
3790 For targets were the precision of ptrofftype doesn't match that
3791 of pointers we need to allow arbitrary conversions to ptrofftype. */
3792 if ((POINTER_TYPE_P (lhs_type)
3793 && INTEGRAL_TYPE_P (rhs1_type))
3794 || (POINTER_TYPE_P (rhs1_type)
3795 && INTEGRAL_TYPE_P (lhs_type)
3796 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3797 || ptrofftype_p (lhs_type))))
3798 return false;
3800 /* Allow conversion from integral to offset type and vice versa. */
3801 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3802 && INTEGRAL_TYPE_P (rhs1_type))
3803 || (INTEGRAL_TYPE_P (lhs_type)
3804 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3805 return false;
3807 /* Otherwise assert we are converting between types of the
3808 same kind. */
3809 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3811 error ("invalid types in nop conversion");
3812 debug_generic_expr (lhs_type);
3813 debug_generic_expr (rhs1_type);
3814 return true;
3817 return false;
3820 case ADDR_SPACE_CONVERT_EXPR:
3822 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3823 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3824 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3826 error ("invalid types in address space conversion");
3827 debug_generic_expr (lhs_type);
3828 debug_generic_expr (rhs1_type);
3829 return true;
3832 return false;
3835 case FIXED_CONVERT_EXPR:
3837 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3838 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3840 error ("invalid types in fixed-point conversion");
3841 debug_generic_expr (lhs_type);
3842 debug_generic_expr (rhs1_type);
3843 return true;
3846 return false;
3849 case FLOAT_EXPR:
3851 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3852 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3853 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3855 error ("invalid types in conversion to floating point");
3856 debug_generic_expr (lhs_type);
3857 debug_generic_expr (rhs1_type);
3858 return true;
3861 return false;
3864 case FIX_TRUNC_EXPR:
3866 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3867 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3868 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3870 error ("invalid types in conversion to integer");
3871 debug_generic_expr (lhs_type);
3872 debug_generic_expr (rhs1_type);
3873 return true;
3876 return false;
3879 case VEC_UNPACK_HI_EXPR:
3880 case VEC_UNPACK_LO_EXPR:
3881 case VEC_UNPACK_FLOAT_HI_EXPR:
3882 case VEC_UNPACK_FLOAT_LO_EXPR:
3883 /* FIXME. */
3884 return false;
3886 case NEGATE_EXPR:
3887 case ABS_EXPR:
3888 case BIT_NOT_EXPR:
3889 case PAREN_EXPR:
3890 case CONJ_EXPR:
3891 break;
3893 case VEC_DUPLICATE_EXPR:
3894 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3895 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3897 error ("vec_duplicate should be from a scalar to a like vector");
3898 debug_generic_expr (lhs_type);
3899 debug_generic_expr (rhs1_type);
3900 return true;
3902 return false;
3904 default:
3905 gcc_unreachable ();
3908 /* For the remaining codes assert there is no conversion involved. */
3909 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3911 error ("non-trivial conversion in unary operation");
3912 debug_generic_expr (lhs_type);
3913 debug_generic_expr (rhs1_type);
3914 return true;
3917 return false;
3920 /* Verify a gimple assignment statement STMT with a binary rhs.
3921 Returns true if anything is wrong. */
3923 static bool
3924 verify_gimple_assign_binary (gassign *stmt)
3926 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3927 tree lhs = gimple_assign_lhs (stmt);
3928 tree lhs_type = TREE_TYPE (lhs);
3929 tree rhs1 = gimple_assign_rhs1 (stmt);
3930 tree rhs1_type = TREE_TYPE (rhs1);
3931 tree rhs2 = gimple_assign_rhs2 (stmt);
3932 tree rhs2_type = TREE_TYPE (rhs2);
3934 if (!is_gimple_reg (lhs))
3936 error ("non-register as LHS of binary operation");
3937 return true;
3940 if (!is_gimple_val (rhs1)
3941 || !is_gimple_val (rhs2))
3943 error ("invalid operands in binary operation");
3944 return true;
3947 /* First handle operations that involve different types. */
3948 switch (rhs_code)
3950 case COMPLEX_EXPR:
3952 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3953 || !(INTEGRAL_TYPE_P (rhs1_type)
3954 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3955 || !(INTEGRAL_TYPE_P (rhs2_type)
3956 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3958 error ("type mismatch in complex expression");
3959 debug_generic_expr (lhs_type);
3960 debug_generic_expr (rhs1_type);
3961 debug_generic_expr (rhs2_type);
3962 return true;
3965 return false;
3968 case LSHIFT_EXPR:
3969 case RSHIFT_EXPR:
3970 case LROTATE_EXPR:
3971 case RROTATE_EXPR:
3973 /* Shifts and rotates are ok on integral types, fixed point
3974 types and integer vector types. */
3975 if ((!INTEGRAL_TYPE_P (rhs1_type)
3976 && !FIXED_POINT_TYPE_P (rhs1_type)
3977 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3978 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3979 || (!INTEGRAL_TYPE_P (rhs2_type)
3980 /* Vector shifts of vectors are also ok. */
3981 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3982 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3983 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3984 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3985 || !useless_type_conversion_p (lhs_type, rhs1_type))
3987 error ("type mismatch in shift expression");
3988 debug_generic_expr (lhs_type);
3989 debug_generic_expr (rhs1_type);
3990 debug_generic_expr (rhs2_type);
3991 return true;
3994 return false;
3997 case WIDEN_LSHIFT_EXPR:
3999 if (!INTEGRAL_TYPE_P (lhs_type)
4000 || !INTEGRAL_TYPE_P (rhs1_type)
4001 || TREE_CODE (rhs2) != INTEGER_CST
4002 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
4004 error ("type mismatch in widening vector shift expression");
4005 debug_generic_expr (lhs_type);
4006 debug_generic_expr (rhs1_type);
4007 debug_generic_expr (rhs2_type);
4008 return true;
4011 return false;
4014 case VEC_WIDEN_LSHIFT_HI_EXPR:
4015 case VEC_WIDEN_LSHIFT_LO_EXPR:
4017 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4018 || TREE_CODE (lhs_type) != VECTOR_TYPE
4019 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4020 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
4021 || TREE_CODE (rhs2) != INTEGER_CST
4022 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
4023 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
4025 error ("type mismatch in widening vector shift expression");
4026 debug_generic_expr (lhs_type);
4027 debug_generic_expr (rhs1_type);
4028 debug_generic_expr (rhs2_type);
4029 return true;
4032 return false;
4035 case PLUS_EXPR:
4036 case MINUS_EXPR:
4038 tree lhs_etype = lhs_type;
4039 tree rhs1_etype = rhs1_type;
4040 tree rhs2_etype = rhs2_type;
4041 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
4043 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4044 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
4046 error ("invalid non-vector operands to vector valued plus");
4047 return true;
4049 lhs_etype = TREE_TYPE (lhs_type);
4050 rhs1_etype = TREE_TYPE (rhs1_type);
4051 rhs2_etype = TREE_TYPE (rhs2_type);
4053 if (POINTER_TYPE_P (lhs_etype)
4054 || POINTER_TYPE_P (rhs1_etype)
4055 || POINTER_TYPE_P (rhs2_etype))
4057 error ("invalid (pointer) operands to plus/minus");
4058 return true;
4061 /* Continue with generic binary expression handling. */
4062 break;
4065 case POINTER_PLUS_EXPR:
4067 if (!POINTER_TYPE_P (rhs1_type)
4068 || !useless_type_conversion_p (lhs_type, rhs1_type)
4069 || !ptrofftype_p (rhs2_type))
4071 error ("type mismatch in pointer plus expression");
4072 debug_generic_stmt (lhs_type);
4073 debug_generic_stmt (rhs1_type);
4074 debug_generic_stmt (rhs2_type);
4075 return true;
4078 return false;
4081 case POINTER_DIFF_EXPR:
4083 if (!POINTER_TYPE_P (rhs1_type)
4084 || !POINTER_TYPE_P (rhs2_type)
4085 /* Because we special-case pointers to void we allow difference
4086 of arbitrary pointers with the same mode. */
4087 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4088 || TREE_CODE (lhs_type) != INTEGER_TYPE
4089 || TYPE_UNSIGNED (lhs_type)
4090 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4092 error ("type mismatch in pointer diff expression");
4093 debug_generic_stmt (lhs_type);
4094 debug_generic_stmt (rhs1_type);
4095 debug_generic_stmt (rhs2_type);
4096 return true;
4099 return false;
4102 case TRUTH_ANDIF_EXPR:
4103 case TRUTH_ORIF_EXPR:
4104 case TRUTH_AND_EXPR:
4105 case TRUTH_OR_EXPR:
4106 case TRUTH_XOR_EXPR:
4108 gcc_unreachable ();
4110 case LT_EXPR:
4111 case LE_EXPR:
4112 case GT_EXPR:
4113 case GE_EXPR:
4114 case EQ_EXPR:
4115 case NE_EXPR:
4116 case UNORDERED_EXPR:
4117 case ORDERED_EXPR:
4118 case UNLT_EXPR:
4119 case UNLE_EXPR:
4120 case UNGT_EXPR:
4121 case UNGE_EXPR:
4122 case UNEQ_EXPR:
4123 case LTGT_EXPR:
4124 /* Comparisons are also binary, but the result type is not
4125 connected to the operand types. */
4126 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4128 case WIDEN_MULT_EXPR:
4129 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4130 return true;
4131 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4132 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4134 case WIDEN_SUM_EXPR:
4136 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4137 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4138 && ((!INTEGRAL_TYPE_P (rhs1_type)
4139 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4140 || (!INTEGRAL_TYPE_P (lhs_type)
4141 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4142 || !useless_type_conversion_p (lhs_type, rhs2_type)
4143 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
4144 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4146 error ("type mismatch in widening sum reduction");
4147 debug_generic_expr (lhs_type);
4148 debug_generic_expr (rhs1_type);
4149 debug_generic_expr (rhs2_type);
4150 return true;
4152 return false;
4155 case VEC_WIDEN_MULT_HI_EXPR:
4156 case VEC_WIDEN_MULT_LO_EXPR:
4157 case VEC_WIDEN_MULT_EVEN_EXPR:
4158 case VEC_WIDEN_MULT_ODD_EXPR:
4160 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4161 || TREE_CODE (lhs_type) != VECTOR_TYPE
4162 || !types_compatible_p (rhs1_type, rhs2_type)
4163 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4164 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4166 error ("type mismatch in vector widening multiplication");
4167 debug_generic_expr (lhs_type);
4168 debug_generic_expr (rhs1_type);
4169 debug_generic_expr (rhs2_type);
4170 return true;
4172 return false;
4175 case VEC_PACK_TRUNC_EXPR:
4176 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4177 vector boolean types. */
4178 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4179 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4180 && types_compatible_p (rhs1_type, rhs2_type)
4181 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4182 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4183 return false;
4185 /* Fallthru. */
4186 case VEC_PACK_SAT_EXPR:
4187 case VEC_PACK_FIX_TRUNC_EXPR:
4189 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4190 || TREE_CODE (lhs_type) != VECTOR_TYPE
4191 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4192 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4193 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4194 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4195 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4196 || !types_compatible_p (rhs1_type, rhs2_type)
4197 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4198 2 * GET_MODE_SIZE (element_mode (lhs_type))))
4200 error ("type mismatch in vector pack expression");
4201 debug_generic_expr (lhs_type);
4202 debug_generic_expr (rhs1_type);
4203 debug_generic_expr (rhs2_type);
4204 return true;
4207 return false;
4210 case MULT_EXPR:
4211 case MULT_HIGHPART_EXPR:
4212 case TRUNC_DIV_EXPR:
4213 case CEIL_DIV_EXPR:
4214 case FLOOR_DIV_EXPR:
4215 case ROUND_DIV_EXPR:
4216 case TRUNC_MOD_EXPR:
4217 case CEIL_MOD_EXPR:
4218 case FLOOR_MOD_EXPR:
4219 case ROUND_MOD_EXPR:
4220 case RDIV_EXPR:
4221 case EXACT_DIV_EXPR:
4222 case MIN_EXPR:
4223 case MAX_EXPR:
4224 case BIT_IOR_EXPR:
4225 case BIT_XOR_EXPR:
4226 case BIT_AND_EXPR:
4227 /* Continue with generic binary expression handling. */
4228 break;
4230 case VEC_SERIES_EXPR:
4231 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4233 error ("type mismatch in series expression");
4234 debug_generic_expr (rhs1_type);
4235 debug_generic_expr (rhs2_type);
4236 return true;
4238 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4239 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4241 error ("vector type expected in series expression");
4242 debug_generic_expr (lhs_type);
4243 return true;
4245 return false;
4247 default:
4248 gcc_unreachable ();
4251 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4252 || !useless_type_conversion_p (lhs_type, rhs2_type))
4254 error ("type mismatch in binary expression");
4255 debug_generic_stmt (lhs_type);
4256 debug_generic_stmt (rhs1_type);
4257 debug_generic_stmt (rhs2_type);
4258 return true;
4261 return false;
4264 /* Verify a gimple assignment statement STMT with a ternary rhs.
4265 Returns true if anything is wrong. */
4267 static bool
4268 verify_gimple_assign_ternary (gassign *stmt)
4270 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4271 tree lhs = gimple_assign_lhs (stmt);
4272 tree lhs_type = TREE_TYPE (lhs);
4273 tree rhs1 = gimple_assign_rhs1 (stmt);
4274 tree rhs1_type = TREE_TYPE (rhs1);
4275 tree rhs2 = gimple_assign_rhs2 (stmt);
4276 tree rhs2_type = TREE_TYPE (rhs2);
4277 tree rhs3 = gimple_assign_rhs3 (stmt);
4278 tree rhs3_type = TREE_TYPE (rhs3);
4280 if (!is_gimple_reg (lhs))
4282 error ("non-register as LHS of ternary operation");
4283 return true;
4286 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4287 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4288 || !is_gimple_val (rhs2)
4289 || !is_gimple_val (rhs3))
4291 error ("invalid operands in ternary operation");
4292 return true;
4295 /* First handle operations that involve different types. */
4296 switch (rhs_code)
4298 case WIDEN_MULT_PLUS_EXPR:
4299 case WIDEN_MULT_MINUS_EXPR:
4300 if ((!INTEGRAL_TYPE_P (rhs1_type)
4301 && !FIXED_POINT_TYPE_P (rhs1_type))
4302 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4303 || !useless_type_conversion_p (lhs_type, rhs3_type)
4304 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4305 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4307 error ("type mismatch in widening multiply-accumulate expression");
4308 debug_generic_expr (lhs_type);
4309 debug_generic_expr (rhs1_type);
4310 debug_generic_expr (rhs2_type);
4311 debug_generic_expr (rhs3_type);
4312 return true;
4314 break;
4316 case FMA_EXPR:
4317 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4318 || !useless_type_conversion_p (lhs_type, rhs2_type)
4319 || !useless_type_conversion_p (lhs_type, rhs3_type))
4321 error ("type mismatch in fused multiply-add expression");
4322 debug_generic_expr (lhs_type);
4323 debug_generic_expr (rhs1_type);
4324 debug_generic_expr (rhs2_type);
4325 debug_generic_expr (rhs3_type);
4326 return true;
4328 break;
4330 case VEC_COND_EXPR:
4331 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4332 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4333 TYPE_VECTOR_SUBPARTS (lhs_type)))
4335 error ("the first argument of a VEC_COND_EXPR must be of a "
4336 "boolean vector type of the same number of elements "
4337 "as the result");
4338 debug_generic_expr (lhs_type);
4339 debug_generic_expr (rhs1_type);
4340 return true;
4342 /* Fallthrough. */
4343 case COND_EXPR:
4344 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4345 || !useless_type_conversion_p (lhs_type, rhs3_type))
4347 error ("type mismatch in conditional expression");
4348 debug_generic_expr (lhs_type);
4349 debug_generic_expr (rhs2_type);
4350 debug_generic_expr (rhs3_type);
4351 return true;
4353 break;
4355 case VEC_PERM_EXPR:
4356 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4357 || !useless_type_conversion_p (lhs_type, rhs2_type))
4359 error ("type mismatch in vector permute expression");
4360 debug_generic_expr (lhs_type);
4361 debug_generic_expr (rhs1_type);
4362 debug_generic_expr (rhs2_type);
4363 debug_generic_expr (rhs3_type);
4364 return true;
4367 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4368 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4369 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4371 error ("vector types expected in vector permute expression");
4372 debug_generic_expr (lhs_type);
4373 debug_generic_expr (rhs1_type);
4374 debug_generic_expr (rhs2_type);
4375 debug_generic_expr (rhs3_type);
4376 return true;
4379 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4380 TYPE_VECTOR_SUBPARTS (rhs2_type))
4381 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4382 TYPE_VECTOR_SUBPARTS (rhs3_type))
4383 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4384 TYPE_VECTOR_SUBPARTS (lhs_type)))
4386 error ("vectors with different element number found "
4387 "in vector permute expression");
4388 debug_generic_expr (lhs_type);
4389 debug_generic_expr (rhs1_type);
4390 debug_generic_expr (rhs2_type);
4391 debug_generic_expr (rhs3_type);
4392 return true;
4395 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4396 || (TREE_CODE (rhs3) != VECTOR_CST
4397 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4398 (TREE_TYPE (rhs3_type)))
4399 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4400 (TREE_TYPE (rhs1_type))))))
4402 error ("invalid mask type in vector permute expression");
4403 debug_generic_expr (lhs_type);
4404 debug_generic_expr (rhs1_type);
4405 debug_generic_expr (rhs2_type);
4406 debug_generic_expr (rhs3_type);
4407 return true;
4410 return false;
4412 case SAD_EXPR:
4413 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4414 || !useless_type_conversion_p (lhs_type, rhs3_type)
4415 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4416 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4418 error ("type mismatch in sad expression");
4419 debug_generic_expr (lhs_type);
4420 debug_generic_expr (rhs1_type);
4421 debug_generic_expr (rhs2_type);
4422 debug_generic_expr (rhs3_type);
4423 return true;
4426 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4427 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4428 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4430 error ("vector types expected in sad expression");
4431 debug_generic_expr (lhs_type);
4432 debug_generic_expr (rhs1_type);
4433 debug_generic_expr (rhs2_type);
4434 debug_generic_expr (rhs3_type);
4435 return true;
4438 return false;
4440 case BIT_INSERT_EXPR:
4441 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4443 error ("type mismatch in BIT_INSERT_EXPR");
4444 debug_generic_expr (lhs_type);
4445 debug_generic_expr (rhs1_type);
4446 return true;
4448 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4449 && INTEGRAL_TYPE_P (rhs2_type))
4450 || (VECTOR_TYPE_P (rhs1_type)
4451 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4453 error ("not allowed type combination in BIT_INSERT_EXPR");
4454 debug_generic_expr (rhs1_type);
4455 debug_generic_expr (rhs2_type);
4456 return true;
4458 if (! tree_fits_uhwi_p (rhs3)
4459 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4460 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4462 error ("invalid position or size in BIT_INSERT_EXPR");
4463 return true;
4465 if (INTEGRAL_TYPE_P (rhs1_type))
4467 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4468 if (bitpos >= TYPE_PRECISION (rhs1_type)
4469 || (bitpos + TYPE_PRECISION (rhs2_type)
4470 > TYPE_PRECISION (rhs1_type)))
4472 error ("insertion out of range in BIT_INSERT_EXPR");
4473 return true;
4476 else if (VECTOR_TYPE_P (rhs1_type))
4478 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4479 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4480 if (bitpos % bitsize != 0)
4482 error ("vector insertion not at element boundary");
4483 return true;
4486 return false;
4488 case DOT_PROD_EXPR:
4490 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4491 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4492 && ((!INTEGRAL_TYPE_P (rhs1_type)
4493 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4494 || (!INTEGRAL_TYPE_P (lhs_type)
4495 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4496 || !types_compatible_p (rhs1_type, rhs2_type)
4497 || !useless_type_conversion_p (lhs_type, rhs3_type)
4498 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4499 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4501 error ("type mismatch in dot product reduction");
4502 debug_generic_expr (lhs_type);
4503 debug_generic_expr (rhs1_type);
4504 debug_generic_expr (rhs2_type);
4505 return true;
4507 return false;
4510 case REALIGN_LOAD_EXPR:
4511 /* FIXME. */
4512 return false;
4514 default:
4515 gcc_unreachable ();
4517 return false;
4520 /* Verify a gimple assignment statement STMT with a single rhs.
4521 Returns true if anything is wrong. */
4523 static bool
4524 verify_gimple_assign_single (gassign *stmt)
4526 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4527 tree lhs = gimple_assign_lhs (stmt);
4528 tree lhs_type = TREE_TYPE (lhs);
4529 tree rhs1 = gimple_assign_rhs1 (stmt);
4530 tree rhs1_type = TREE_TYPE (rhs1);
4531 bool res = false;
4533 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4535 error ("non-trivial conversion at assignment");
4536 debug_generic_expr (lhs_type);
4537 debug_generic_expr (rhs1_type);
4538 return true;
4541 if (gimple_clobber_p (stmt)
4542 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4544 error ("non-decl/MEM_REF LHS in clobber statement");
4545 debug_generic_expr (lhs);
4546 return true;
4549 if (handled_component_p (lhs)
4550 || TREE_CODE (lhs) == MEM_REF
4551 || TREE_CODE (lhs) == TARGET_MEM_REF)
4552 res |= verify_types_in_gimple_reference (lhs, true);
4554 /* Special codes we cannot handle via their class. */
4555 switch (rhs_code)
4557 case ADDR_EXPR:
4559 tree op = TREE_OPERAND (rhs1, 0);
4560 if (!is_gimple_addressable (op))
4562 error ("invalid operand in unary expression");
4563 return true;
4566 /* Technically there is no longer a need for matching types, but
4567 gimple hygiene asks for this check. In LTO we can end up
4568 combining incompatible units and thus end up with addresses
4569 of globals that change their type to a common one. */
4570 if (!in_lto_p
4571 && !types_compatible_p (TREE_TYPE (op),
4572 TREE_TYPE (TREE_TYPE (rhs1)))
4573 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4574 TREE_TYPE (op)))
4576 error ("type mismatch in address expression");
4577 debug_generic_stmt (TREE_TYPE (rhs1));
4578 debug_generic_stmt (TREE_TYPE (op));
4579 return true;
4582 return verify_types_in_gimple_reference (op, true);
4585 /* tcc_reference */
4586 case INDIRECT_REF:
4587 error ("INDIRECT_REF in gimple IL");
4588 return true;
4590 case COMPONENT_REF:
4591 case BIT_FIELD_REF:
4592 case ARRAY_REF:
4593 case ARRAY_RANGE_REF:
4594 case VIEW_CONVERT_EXPR:
4595 case REALPART_EXPR:
4596 case IMAGPART_EXPR:
4597 case TARGET_MEM_REF:
4598 case MEM_REF:
4599 if (!is_gimple_reg (lhs)
4600 && is_gimple_reg_type (TREE_TYPE (lhs)))
4602 error ("invalid rhs for gimple memory store");
4603 debug_generic_stmt (lhs);
4604 debug_generic_stmt (rhs1);
4605 return true;
4607 return res || verify_types_in_gimple_reference (rhs1, false);
4609 /* tcc_constant */
4610 case SSA_NAME:
4611 case INTEGER_CST:
4612 case REAL_CST:
4613 case FIXED_CST:
4614 case COMPLEX_CST:
4615 case VECTOR_CST:
4616 case STRING_CST:
4617 return res;
4619 /* tcc_declaration */
4620 case CONST_DECL:
4621 return res;
4622 case VAR_DECL:
4623 case PARM_DECL:
4624 if (!is_gimple_reg (lhs)
4625 && !is_gimple_reg (rhs1)
4626 && is_gimple_reg_type (TREE_TYPE (lhs)))
4628 error ("invalid rhs for gimple memory store");
4629 debug_generic_stmt (lhs);
4630 debug_generic_stmt (rhs1);
4631 return true;
4633 return res;
4635 case CONSTRUCTOR:
4636 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4638 unsigned int i;
4639 tree elt_i, elt_v, elt_t = NULL_TREE;
4641 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4642 return res;
4643 /* For vector CONSTRUCTORs we require that either it is empty
4644 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4645 (then the element count must be correct to cover the whole
4646 outer vector and index must be NULL on all elements, or it is
4647 a CONSTRUCTOR of scalar elements, where we as an exception allow
4648 smaller number of elements (assuming zero filling) and
4649 consecutive indexes as compared to NULL indexes (such
4650 CONSTRUCTORs can appear in the IL from FEs). */
4651 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4653 if (elt_t == NULL_TREE)
4655 elt_t = TREE_TYPE (elt_v);
4656 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4658 tree elt_t = TREE_TYPE (elt_v);
4659 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4660 TREE_TYPE (elt_t)))
4662 error ("incorrect type of vector CONSTRUCTOR"
4663 " elements");
4664 debug_generic_stmt (rhs1);
4665 return true;
4667 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4668 * TYPE_VECTOR_SUBPARTS (elt_t),
4669 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4671 error ("incorrect number of vector CONSTRUCTOR"
4672 " elements");
4673 debug_generic_stmt (rhs1);
4674 return true;
4677 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4678 elt_t))
4680 error ("incorrect type of vector CONSTRUCTOR elements");
4681 debug_generic_stmt (rhs1);
4682 return true;
4684 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4685 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4687 error ("incorrect number of vector CONSTRUCTOR elements");
4688 debug_generic_stmt (rhs1);
4689 return true;
4692 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4694 error ("incorrect type of vector CONSTRUCTOR elements");
4695 debug_generic_stmt (rhs1);
4696 return true;
4698 if (elt_i != NULL_TREE
4699 && (TREE_CODE (elt_t) == VECTOR_TYPE
4700 || TREE_CODE (elt_i) != INTEGER_CST
4701 || compare_tree_int (elt_i, i) != 0))
4703 error ("vector CONSTRUCTOR with non-NULL element index");
4704 debug_generic_stmt (rhs1);
4705 return true;
4707 if (!is_gimple_val (elt_v))
4709 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4710 debug_generic_stmt (rhs1);
4711 return true;
4715 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4717 error ("non-vector CONSTRUCTOR with elements");
4718 debug_generic_stmt (rhs1);
4719 return true;
4721 return res;
4722 case OBJ_TYPE_REF:
4723 case ASSERT_EXPR:
4724 case WITH_SIZE_EXPR:
4725 /* FIXME. */
4726 return res;
4728 default:;
4731 return res;
4734 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4735 is a problem, otherwise false. */
4737 static bool
4738 verify_gimple_assign (gassign *stmt)
4740 switch (gimple_assign_rhs_class (stmt))
4742 case GIMPLE_SINGLE_RHS:
4743 return verify_gimple_assign_single (stmt);
4745 case GIMPLE_UNARY_RHS:
4746 return verify_gimple_assign_unary (stmt);
4748 case GIMPLE_BINARY_RHS:
4749 return verify_gimple_assign_binary (stmt);
4751 case GIMPLE_TERNARY_RHS:
4752 return verify_gimple_assign_ternary (stmt);
4754 default:
4755 gcc_unreachable ();
4759 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4760 is a problem, otherwise false. */
4762 static bool
4763 verify_gimple_return (greturn *stmt)
4765 tree op = gimple_return_retval (stmt);
4766 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4768 /* We cannot test for present return values as we do not fix up missing
4769 return values from the original source. */
4770 if (op == NULL)
4771 return false;
4773 if (!is_gimple_val (op)
4774 && TREE_CODE (op) != RESULT_DECL)
4776 error ("invalid operand in return statement");
4777 debug_generic_stmt (op);
4778 return true;
4781 if ((TREE_CODE (op) == RESULT_DECL
4782 && DECL_BY_REFERENCE (op))
4783 || (TREE_CODE (op) == SSA_NAME
4784 && SSA_NAME_VAR (op)
4785 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4786 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4787 op = TREE_TYPE (op);
4789 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4791 error ("invalid conversion in return statement");
4792 debug_generic_stmt (restype);
4793 debug_generic_stmt (TREE_TYPE (op));
4794 return true;
4797 return false;
4801 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4802 is a problem, otherwise false. */
4804 static bool
4805 verify_gimple_goto (ggoto *stmt)
4807 tree dest = gimple_goto_dest (stmt);
4809 /* ??? We have two canonical forms of direct goto destinations, a
4810 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4811 if (TREE_CODE (dest) != LABEL_DECL
4812 && (!is_gimple_val (dest)
4813 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4815 error ("goto destination is neither a label nor a pointer");
4816 return true;
4819 return false;
4822 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4823 is a problem, otherwise false. */
4825 static bool
4826 verify_gimple_switch (gswitch *stmt)
4828 unsigned int i, n;
4829 tree elt, prev_upper_bound = NULL_TREE;
4830 tree index_type, elt_type = NULL_TREE;
4832 if (!is_gimple_val (gimple_switch_index (stmt)))
4834 error ("invalid operand to switch statement");
4835 debug_generic_stmt (gimple_switch_index (stmt));
4836 return true;
4839 index_type = TREE_TYPE (gimple_switch_index (stmt));
4840 if (! INTEGRAL_TYPE_P (index_type))
4842 error ("non-integral type switch statement");
4843 debug_generic_expr (index_type);
4844 return true;
4847 elt = gimple_switch_label (stmt, 0);
4848 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4850 error ("invalid default case label in switch statement");
4851 debug_generic_expr (elt);
4852 return true;
4855 n = gimple_switch_num_labels (stmt);
4856 for (i = 1; i < n; i++)
4858 elt = gimple_switch_label (stmt, i);
4860 if (! CASE_LOW (elt))
4862 error ("invalid case label in switch statement");
4863 debug_generic_expr (elt);
4864 return true;
4866 if (CASE_HIGH (elt)
4867 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4869 error ("invalid case range in switch statement");
4870 debug_generic_expr (elt);
4871 return true;
4874 if (elt_type)
4876 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4877 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4879 error ("type mismatch for case label in switch statement");
4880 debug_generic_expr (elt);
4881 return true;
4884 else
4886 elt_type = TREE_TYPE (CASE_LOW (elt));
4887 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4889 error ("type precision mismatch in switch statement");
4890 return true;
4894 if (prev_upper_bound)
4896 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4898 error ("case labels not sorted in switch statement");
4899 return true;
4903 prev_upper_bound = CASE_HIGH (elt);
4904 if (! prev_upper_bound)
4905 prev_upper_bound = CASE_LOW (elt);
4908 return false;
4911 /* Verify a gimple debug statement STMT.
4912 Returns true if anything is wrong. */
4914 static bool
4915 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4917 /* There isn't much that could be wrong in a gimple debug stmt. A
4918 gimple debug bind stmt, for example, maps a tree, that's usually
4919 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4920 component or member of an aggregate type, to another tree, that
4921 can be an arbitrary expression. These stmts expand into debug
4922 insns, and are converted to debug notes by var-tracking.c. */
4923 return false;
4926 /* Verify a gimple label statement STMT.
4927 Returns true if anything is wrong. */
4929 static bool
4930 verify_gimple_label (glabel *stmt)
4932 tree decl = gimple_label_label (stmt);
4933 int uid;
4934 bool err = false;
4936 if (TREE_CODE (decl) != LABEL_DECL)
4937 return true;
4938 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4939 && DECL_CONTEXT (decl) != current_function_decl)
4941 error ("label's context is not the current function decl");
4942 err |= true;
4945 uid = LABEL_DECL_UID (decl);
4946 if (cfun->cfg
4947 && (uid == -1
4948 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4950 error ("incorrect entry in label_to_block_map");
4951 err |= true;
4954 uid = EH_LANDING_PAD_NR (decl);
4955 if (uid)
4957 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4958 if (decl != lp->post_landing_pad)
4960 error ("incorrect setting of landing pad number");
4961 err |= true;
4965 return err;
4968 /* Verify a gimple cond statement STMT.
4969 Returns true if anything is wrong. */
4971 static bool
4972 verify_gimple_cond (gcond *stmt)
4974 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4976 error ("invalid comparison code in gimple cond");
4977 return true;
4979 if (!(!gimple_cond_true_label (stmt)
4980 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4981 || !(!gimple_cond_false_label (stmt)
4982 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4984 error ("invalid labels in gimple cond");
4985 return true;
4988 return verify_gimple_comparison (boolean_type_node,
4989 gimple_cond_lhs (stmt),
4990 gimple_cond_rhs (stmt),
4991 gimple_cond_code (stmt));
4994 /* Verify the GIMPLE statement STMT. Returns true if there is an
4995 error, otherwise false. */
4997 static bool
4998 verify_gimple_stmt (gimple *stmt)
5000 switch (gimple_code (stmt))
5002 case GIMPLE_ASSIGN:
5003 return verify_gimple_assign (as_a <gassign *> (stmt));
5005 case GIMPLE_LABEL:
5006 return verify_gimple_label (as_a <glabel *> (stmt));
5008 case GIMPLE_CALL:
5009 return verify_gimple_call (as_a <gcall *> (stmt));
5011 case GIMPLE_COND:
5012 return verify_gimple_cond (as_a <gcond *> (stmt));
5014 case GIMPLE_GOTO:
5015 return verify_gimple_goto (as_a <ggoto *> (stmt));
5017 case GIMPLE_SWITCH:
5018 return verify_gimple_switch (as_a <gswitch *> (stmt));
5020 case GIMPLE_RETURN:
5021 return verify_gimple_return (as_a <greturn *> (stmt));
5023 case GIMPLE_ASM:
5024 return false;
5026 case GIMPLE_TRANSACTION:
5027 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
5029 /* Tuples that do not have tree operands. */
5030 case GIMPLE_NOP:
5031 case GIMPLE_PREDICT:
5032 case GIMPLE_RESX:
5033 case GIMPLE_EH_DISPATCH:
5034 case GIMPLE_EH_MUST_NOT_THROW:
5035 return false;
5037 CASE_GIMPLE_OMP:
5038 /* OpenMP directives are validated by the FE and never operated
5039 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5040 non-gimple expressions when the main index variable has had
5041 its address taken. This does not affect the loop itself
5042 because the header of an GIMPLE_OMP_FOR is merely used to determine
5043 how to setup the parallel iteration. */
5044 return false;
5046 case GIMPLE_DEBUG:
5047 return verify_gimple_debug (stmt);
5049 default:
5050 gcc_unreachable ();
5054 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5055 and false otherwise. */
5057 static bool
5058 verify_gimple_phi (gphi *phi)
5060 bool err = false;
5061 unsigned i;
5062 tree phi_result = gimple_phi_result (phi);
5063 bool virtual_p;
5065 if (!phi_result)
5067 error ("invalid PHI result");
5068 return true;
5071 virtual_p = virtual_operand_p (phi_result);
5072 if (TREE_CODE (phi_result) != SSA_NAME
5073 || (virtual_p
5074 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5076 error ("invalid PHI result");
5077 err = true;
5080 for (i = 0; i < gimple_phi_num_args (phi); i++)
5082 tree t = gimple_phi_arg_def (phi, i);
5084 if (!t)
5086 error ("missing PHI def");
5087 err |= true;
5088 continue;
5090 /* Addressable variables do have SSA_NAMEs but they
5091 are not considered gimple values. */
5092 else if ((TREE_CODE (t) == SSA_NAME
5093 && virtual_p != virtual_operand_p (t))
5094 || (virtual_p
5095 && (TREE_CODE (t) != SSA_NAME
5096 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5097 || (!virtual_p
5098 && !is_gimple_val (t)))
5100 error ("invalid PHI argument");
5101 debug_generic_expr (t);
5102 err |= true;
5104 #ifdef ENABLE_TYPES_CHECKING
5105 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5107 error ("incompatible types in PHI argument %u", i);
5108 debug_generic_stmt (TREE_TYPE (phi_result));
5109 debug_generic_stmt (TREE_TYPE (t));
5110 err |= true;
5112 #endif
5115 return err;
5118 /* Verify the GIMPLE statements inside the sequence STMTS. */
5120 static bool
5121 verify_gimple_in_seq_2 (gimple_seq stmts)
5123 gimple_stmt_iterator ittr;
5124 bool err = false;
5126 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5128 gimple *stmt = gsi_stmt (ittr);
5130 switch (gimple_code (stmt))
5132 case GIMPLE_BIND:
5133 err |= verify_gimple_in_seq_2 (
5134 gimple_bind_body (as_a <gbind *> (stmt)));
5135 break;
5137 case GIMPLE_TRY:
5138 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5139 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5140 break;
5142 case GIMPLE_EH_FILTER:
5143 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5144 break;
5146 case GIMPLE_EH_ELSE:
5148 geh_else *eh_else = as_a <geh_else *> (stmt);
5149 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5150 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5152 break;
5154 case GIMPLE_CATCH:
5155 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5156 as_a <gcatch *> (stmt)));
5157 break;
5159 case GIMPLE_TRANSACTION:
5160 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5161 break;
5163 default:
5165 bool err2 = verify_gimple_stmt (stmt);
5166 if (err2)
5167 debug_gimple_stmt (stmt);
5168 err |= err2;
5173 return err;
5176 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5177 is a problem, otherwise false. */
5179 static bool
5180 verify_gimple_transaction (gtransaction *stmt)
5182 tree lab;
5184 lab = gimple_transaction_label_norm (stmt);
5185 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5186 return true;
5187 lab = gimple_transaction_label_uninst (stmt);
5188 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5189 return true;
5190 lab = gimple_transaction_label_over (stmt);
5191 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5192 return true;
5194 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5198 /* Verify the GIMPLE statements inside the statement list STMTS. */
5200 DEBUG_FUNCTION void
5201 verify_gimple_in_seq (gimple_seq stmts)
5203 timevar_push (TV_TREE_STMT_VERIFY);
5204 if (verify_gimple_in_seq_2 (stmts))
5205 internal_error ("verify_gimple failed");
5206 timevar_pop (TV_TREE_STMT_VERIFY);
5209 /* Return true when the T can be shared. */
5211 static bool
5212 tree_node_can_be_shared (tree t)
5214 if (IS_TYPE_OR_DECL_P (t)
5215 || is_gimple_min_invariant (t)
5216 || TREE_CODE (t) == SSA_NAME
5217 || t == error_mark_node
5218 || TREE_CODE (t) == IDENTIFIER_NODE)
5219 return true;
5221 if (TREE_CODE (t) == CASE_LABEL_EXPR)
5222 return true;
5224 if (DECL_P (t))
5225 return true;
5227 return false;
5230 /* Called via walk_tree. Verify tree sharing. */
5232 static tree
5233 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5235 hash_set<void *> *visited = (hash_set<void *> *) data;
5237 if (tree_node_can_be_shared (*tp))
5239 *walk_subtrees = false;
5240 return NULL;
5243 if (visited->add (*tp))
5244 return *tp;
5246 return NULL;
5249 /* Called via walk_gimple_stmt. Verify tree sharing. */
5251 static tree
5252 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5254 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5255 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5258 static bool eh_error_found;
5259 bool
5260 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5261 hash_set<gimple *> *visited)
5263 if (!visited->contains (stmt))
5265 error ("dead STMT in EH table");
5266 debug_gimple_stmt (stmt);
5267 eh_error_found = true;
5269 return true;
5272 /* Verify if the location LOCs block is in BLOCKS. */
5274 static bool
5275 verify_location (hash_set<tree> *blocks, location_t loc)
5277 tree block = LOCATION_BLOCK (loc);
5278 if (block != NULL_TREE
5279 && !blocks->contains (block))
5281 error ("location references block not in block tree");
5282 return true;
5284 if (block != NULL_TREE)
5285 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5286 return false;
5289 /* Called via walk_tree. Verify that expressions have no blocks. */
5291 static tree
5292 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5294 if (!EXPR_P (*tp))
5296 *walk_subtrees = false;
5297 return NULL;
5300 location_t loc = EXPR_LOCATION (*tp);
5301 if (LOCATION_BLOCK (loc) != NULL)
5302 return *tp;
5304 return NULL;
5307 /* Called via walk_tree. Verify locations of expressions. */
5309 static tree
5310 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5312 hash_set<tree> *blocks = (hash_set<tree> *) data;
5314 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5316 tree t = DECL_DEBUG_EXPR (*tp);
5317 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5318 if (addr)
5319 return addr;
5321 if ((VAR_P (*tp)
5322 || TREE_CODE (*tp) == PARM_DECL
5323 || TREE_CODE (*tp) == RESULT_DECL)
5324 && DECL_HAS_VALUE_EXPR_P (*tp))
5326 tree t = DECL_VALUE_EXPR (*tp);
5327 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5328 if (addr)
5329 return addr;
5332 if (!EXPR_P (*tp))
5334 *walk_subtrees = false;
5335 return NULL;
5338 location_t loc = EXPR_LOCATION (*tp);
5339 if (verify_location (blocks, loc))
5340 return *tp;
5342 return NULL;
5345 /* Called via walk_gimple_op. Verify locations of expressions. */
5347 static tree
5348 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5350 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5351 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5354 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5356 static void
5357 collect_subblocks (hash_set<tree> *blocks, tree block)
5359 tree t;
5360 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5362 blocks->add (t);
5363 collect_subblocks (blocks, t);
5367 /* Verify the GIMPLE statements in the CFG of FN. */
5369 DEBUG_FUNCTION void
5370 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5372 basic_block bb;
5373 bool err = false;
5375 timevar_push (TV_TREE_STMT_VERIFY);
5376 hash_set<void *> visited;
5377 hash_set<gimple *> visited_throwing_stmts;
5379 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5380 hash_set<tree> blocks;
5381 if (DECL_INITIAL (fn->decl))
5383 blocks.add (DECL_INITIAL (fn->decl));
5384 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5387 FOR_EACH_BB_FN (bb, fn)
5389 gimple_stmt_iterator gsi;
5391 for (gphi_iterator gpi = gsi_start_phis (bb);
5392 !gsi_end_p (gpi);
5393 gsi_next (&gpi))
5395 gphi *phi = gpi.phi ();
5396 bool err2 = false;
5397 unsigned i;
5399 if (gimple_bb (phi) != bb)
5401 error ("gimple_bb (phi) is set to a wrong basic block");
5402 err2 = true;
5405 err2 |= verify_gimple_phi (phi);
5407 /* Only PHI arguments have locations. */
5408 if (gimple_location (phi) != UNKNOWN_LOCATION)
5410 error ("PHI node with location");
5411 err2 = true;
5414 for (i = 0; i < gimple_phi_num_args (phi); i++)
5416 tree arg = gimple_phi_arg_def (phi, i);
5417 tree addr = walk_tree (&arg, verify_node_sharing_1,
5418 &visited, NULL);
5419 if (addr)
5421 error ("incorrect sharing of tree nodes");
5422 debug_generic_expr (addr);
5423 err2 |= true;
5425 location_t loc = gimple_phi_arg_location (phi, i);
5426 if (virtual_operand_p (gimple_phi_result (phi))
5427 && loc != UNKNOWN_LOCATION)
5429 error ("virtual PHI with argument locations");
5430 err2 = true;
5432 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5433 if (addr)
5435 debug_generic_expr (addr);
5436 err2 = true;
5438 err2 |= verify_location (&blocks, loc);
5441 if (err2)
5442 debug_gimple_stmt (phi);
5443 err |= err2;
5446 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5448 gimple *stmt = gsi_stmt (gsi);
5449 bool err2 = false;
5450 struct walk_stmt_info wi;
5451 tree addr;
5452 int lp_nr;
5454 if (gimple_bb (stmt) != bb)
5456 error ("gimple_bb (stmt) is set to a wrong basic block");
5457 err2 = true;
5460 err2 |= verify_gimple_stmt (stmt);
5461 err2 |= verify_location (&blocks, gimple_location (stmt));
5463 memset (&wi, 0, sizeof (wi));
5464 wi.info = (void *) &visited;
5465 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5466 if (addr)
5468 error ("incorrect sharing of tree nodes");
5469 debug_generic_expr (addr);
5470 err2 |= true;
5473 memset (&wi, 0, sizeof (wi));
5474 wi.info = (void *) &blocks;
5475 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5476 if (addr)
5478 debug_generic_expr (addr);
5479 err2 |= true;
5482 /* ??? Instead of not checking these stmts at all the walker
5483 should know its context via wi. */
5484 if (!is_gimple_debug (stmt)
5485 && !is_gimple_omp (stmt))
5487 memset (&wi, 0, sizeof (wi));
5488 addr = walk_gimple_op (stmt, verify_expr, &wi);
5489 if (addr)
5491 debug_generic_expr (addr);
5492 inform (gimple_location (stmt), "in statement");
5493 err2 |= true;
5497 /* If the statement is marked as part of an EH region, then it is
5498 expected that the statement could throw. Verify that when we
5499 have optimizations that simplify statements such that we prove
5500 that they cannot throw, that we update other data structures
5501 to match. */
5502 lp_nr = lookup_stmt_eh_lp (stmt);
5503 if (lp_nr != 0)
5504 visited_throwing_stmts.add (stmt);
5505 if (lp_nr > 0)
5507 if (!stmt_could_throw_p (stmt))
5509 if (verify_nothrow)
5511 error ("statement marked for throw, but doesn%'t");
5512 err2 |= true;
5515 else if (!gsi_one_before_end_p (gsi))
5517 error ("statement marked for throw in middle of block");
5518 err2 |= true;
5522 if (err2)
5523 debug_gimple_stmt (stmt);
5524 err |= err2;
5528 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5529 eh_error_found = false;
5530 if (eh_table)
5531 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5532 (&visited_throwing_stmts);
5534 if (err || eh_error_found)
5535 internal_error ("verify_gimple failed");
5537 verify_histograms ();
5538 timevar_pop (TV_TREE_STMT_VERIFY);
5542 /* Verifies that the flow information is OK. */
5544 static int
5545 gimple_verify_flow_info (void)
5547 int err = 0;
5548 basic_block bb;
5549 gimple_stmt_iterator gsi;
5550 gimple *stmt;
5551 edge e;
5552 edge_iterator ei;
5554 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5555 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5557 error ("ENTRY_BLOCK has IL associated with it");
5558 err = 1;
5561 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5562 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5564 error ("EXIT_BLOCK has IL associated with it");
5565 err = 1;
5568 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5569 if (e->flags & EDGE_FALLTHRU)
5571 error ("fallthru to exit from bb %d", e->src->index);
5572 err = 1;
5575 FOR_EACH_BB_FN (bb, cfun)
5577 bool found_ctrl_stmt = false;
5579 stmt = NULL;
5581 /* Skip labels on the start of basic block. */
5582 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5584 tree label;
5585 gimple *prev_stmt = stmt;
5587 stmt = gsi_stmt (gsi);
5589 if (gimple_code (stmt) != GIMPLE_LABEL)
5590 break;
5592 label = gimple_label_label (as_a <glabel *> (stmt));
5593 if (prev_stmt && DECL_NONLOCAL (label))
5595 error ("nonlocal label ");
5596 print_generic_expr (stderr, label);
5597 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5598 bb->index);
5599 err = 1;
5602 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5604 error ("EH landing pad label ");
5605 print_generic_expr (stderr, label);
5606 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5607 bb->index);
5608 err = 1;
5611 if (label_to_block (label) != bb)
5613 error ("label ");
5614 print_generic_expr (stderr, label);
5615 fprintf (stderr, " to block does not match in bb %d",
5616 bb->index);
5617 err = 1;
5620 if (decl_function_context (label) != current_function_decl)
5622 error ("label ");
5623 print_generic_expr (stderr, label);
5624 fprintf (stderr, " has incorrect context in bb %d",
5625 bb->index);
5626 err = 1;
5630 /* Verify that body of basic block BB is free of control flow. */
5631 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5633 gimple *stmt = gsi_stmt (gsi);
5635 if (found_ctrl_stmt)
5637 error ("control flow in the middle of basic block %d",
5638 bb->index);
5639 err = 1;
5642 if (stmt_ends_bb_p (stmt))
5643 found_ctrl_stmt = true;
5645 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5647 error ("label ");
5648 print_generic_expr (stderr, gimple_label_label (label_stmt));
5649 fprintf (stderr, " in the middle of basic block %d", bb->index);
5650 err = 1;
5654 gsi = gsi_last_nondebug_bb (bb);
5655 if (gsi_end_p (gsi))
5656 continue;
5658 stmt = gsi_stmt (gsi);
5660 if (gimple_code (stmt) == GIMPLE_LABEL)
5661 continue;
5663 err |= verify_eh_edges (stmt);
5665 if (is_ctrl_stmt (stmt))
5667 FOR_EACH_EDGE (e, ei, bb->succs)
5668 if (e->flags & EDGE_FALLTHRU)
5670 error ("fallthru edge after a control statement in bb %d",
5671 bb->index);
5672 err = 1;
5676 if (gimple_code (stmt) != GIMPLE_COND)
5678 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5679 after anything else but if statement. */
5680 FOR_EACH_EDGE (e, ei, bb->succs)
5681 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5683 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5684 bb->index);
5685 err = 1;
5689 switch (gimple_code (stmt))
5691 case GIMPLE_COND:
5693 edge true_edge;
5694 edge false_edge;
5696 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5698 if (!true_edge
5699 || !false_edge
5700 || !(true_edge->flags & EDGE_TRUE_VALUE)
5701 || !(false_edge->flags & EDGE_FALSE_VALUE)
5702 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5703 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5704 || EDGE_COUNT (bb->succs) >= 3)
5706 error ("wrong outgoing edge flags at end of bb %d",
5707 bb->index);
5708 err = 1;
5711 break;
5713 case GIMPLE_GOTO:
5714 if (simple_goto_p (stmt))
5716 error ("explicit goto at end of bb %d", bb->index);
5717 err = 1;
5719 else
5721 /* FIXME. We should double check that the labels in the
5722 destination blocks have their address taken. */
5723 FOR_EACH_EDGE (e, ei, bb->succs)
5724 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5725 | EDGE_FALSE_VALUE))
5726 || !(e->flags & EDGE_ABNORMAL))
5728 error ("wrong outgoing edge flags at end of bb %d",
5729 bb->index);
5730 err = 1;
5733 break;
5735 case GIMPLE_CALL:
5736 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5737 break;
5738 /* fallthru */
5739 case GIMPLE_RETURN:
5740 if (!single_succ_p (bb)
5741 || (single_succ_edge (bb)->flags
5742 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5743 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5745 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5746 err = 1;
5748 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5750 error ("return edge does not point to exit in bb %d",
5751 bb->index);
5752 err = 1;
5754 break;
5756 case GIMPLE_SWITCH:
5758 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5759 tree prev;
5760 edge e;
5761 size_t i, n;
5763 n = gimple_switch_num_labels (switch_stmt);
5765 /* Mark all the destination basic blocks. */
5766 for (i = 0; i < n; ++i)
5768 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5769 basic_block label_bb = label_to_block (lab);
5770 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5771 label_bb->aux = (void *)1;
5774 /* Verify that the case labels are sorted. */
5775 prev = gimple_switch_label (switch_stmt, 0);
5776 for (i = 1; i < n; ++i)
5778 tree c = gimple_switch_label (switch_stmt, i);
5779 if (!CASE_LOW (c))
5781 error ("found default case not at the start of "
5782 "case vector");
5783 err = 1;
5784 continue;
5786 if (CASE_LOW (prev)
5787 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5789 error ("case labels not sorted: ");
5790 print_generic_expr (stderr, prev);
5791 fprintf (stderr," is greater than ");
5792 print_generic_expr (stderr, c);
5793 fprintf (stderr," but comes before it.\n");
5794 err = 1;
5796 prev = c;
5798 /* VRP will remove the default case if it can prove it will
5799 never be executed. So do not verify there always exists
5800 a default case here. */
5802 FOR_EACH_EDGE (e, ei, bb->succs)
5804 if (!e->dest->aux)
5806 error ("extra outgoing edge %d->%d",
5807 bb->index, e->dest->index);
5808 err = 1;
5811 e->dest->aux = (void *)2;
5812 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5813 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5815 error ("wrong outgoing edge flags at end of bb %d",
5816 bb->index);
5817 err = 1;
5821 /* Check that we have all of them. */
5822 for (i = 0; i < n; ++i)
5824 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5825 basic_block label_bb = label_to_block (lab);
5827 if (label_bb->aux != (void *)2)
5829 error ("missing edge %i->%i", bb->index, label_bb->index);
5830 err = 1;
5834 FOR_EACH_EDGE (e, ei, bb->succs)
5835 e->dest->aux = (void *)0;
5837 break;
5839 case GIMPLE_EH_DISPATCH:
5840 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5841 break;
5843 default:
5844 break;
5848 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5849 verify_dominators (CDI_DOMINATORS);
5851 return err;
5855 /* Updates phi nodes after creating a forwarder block joined
5856 by edge FALLTHRU. */
5858 static void
5859 gimple_make_forwarder_block (edge fallthru)
5861 edge e;
5862 edge_iterator ei;
5863 basic_block dummy, bb;
5864 tree var;
5865 gphi_iterator gsi;
5867 dummy = fallthru->src;
5868 bb = fallthru->dest;
5870 if (single_pred_p (bb))
5871 return;
5873 /* If we redirected a branch we must create new PHI nodes at the
5874 start of BB. */
5875 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5877 gphi *phi, *new_phi;
5879 phi = gsi.phi ();
5880 var = gimple_phi_result (phi);
5881 new_phi = create_phi_node (var, bb);
5882 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5883 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5884 UNKNOWN_LOCATION);
5887 /* Add the arguments we have stored on edges. */
5888 FOR_EACH_EDGE (e, ei, bb->preds)
5890 if (e == fallthru)
5891 continue;
5893 flush_pending_stmts (e);
5898 /* Return a non-special label in the head of basic block BLOCK.
5899 Create one if it doesn't exist. */
5901 tree
5902 gimple_block_label (basic_block bb)
5904 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5905 bool first = true;
5906 tree label;
5907 glabel *stmt;
5909 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5911 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5912 if (!stmt)
5913 break;
5914 label = gimple_label_label (stmt);
5915 if (!DECL_NONLOCAL (label))
5917 if (!first)
5918 gsi_move_before (&i, &s);
5919 return label;
5923 label = create_artificial_label (UNKNOWN_LOCATION);
5924 stmt = gimple_build_label (label);
5925 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5926 return label;
5930 /* Attempt to perform edge redirection by replacing a possibly complex
5931 jump instruction by a goto or by removing the jump completely.
5932 This can apply only if all edges now point to the same block. The
5933 parameters and return values are equivalent to
5934 redirect_edge_and_branch. */
5936 static edge
5937 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5939 basic_block src = e->src;
5940 gimple_stmt_iterator i;
5941 gimple *stmt;
5943 /* We can replace or remove a complex jump only when we have exactly
5944 two edges. */
5945 if (EDGE_COUNT (src->succs) != 2
5946 /* Verify that all targets will be TARGET. Specifically, the
5947 edge that is not E must also go to TARGET. */
5948 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5949 return NULL;
5951 i = gsi_last_bb (src);
5952 if (gsi_end_p (i))
5953 return NULL;
5955 stmt = gsi_stmt (i);
5957 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5959 gsi_remove (&i, true);
5960 e = ssa_redirect_edge (e, target);
5961 e->flags = EDGE_FALLTHRU;
5962 return e;
5965 return NULL;
5969 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5970 edge representing the redirected branch. */
5972 static edge
5973 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5975 basic_block bb = e->src;
5976 gimple_stmt_iterator gsi;
5977 edge ret;
5978 gimple *stmt;
5980 if (e->flags & EDGE_ABNORMAL)
5981 return NULL;
5983 if (e->dest == dest)
5984 return NULL;
5986 if (e->flags & EDGE_EH)
5987 return redirect_eh_edge (e, dest);
5989 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5991 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5992 if (ret)
5993 return ret;
5996 gsi = gsi_last_nondebug_bb (bb);
5997 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5999 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6001 case GIMPLE_COND:
6002 /* For COND_EXPR, we only need to redirect the edge. */
6003 break;
6005 case GIMPLE_GOTO:
6006 /* No non-abnormal edges should lead from a non-simple goto, and
6007 simple ones should be represented implicitly. */
6008 gcc_unreachable ();
6010 case GIMPLE_SWITCH:
6012 gswitch *switch_stmt = as_a <gswitch *> (stmt);
6013 tree label = gimple_block_label (dest);
6014 tree cases = get_cases_for_edge (e, switch_stmt);
6016 /* If we have a list of cases associated with E, then use it
6017 as it's a lot faster than walking the entire case vector. */
6018 if (cases)
6020 edge e2 = find_edge (e->src, dest);
6021 tree last, first;
6023 first = cases;
6024 while (cases)
6026 last = cases;
6027 CASE_LABEL (cases) = label;
6028 cases = CASE_CHAIN (cases);
6031 /* If there was already an edge in the CFG, then we need
6032 to move all the cases associated with E to E2. */
6033 if (e2)
6035 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6037 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6038 CASE_CHAIN (cases2) = first;
6040 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6042 else
6044 size_t i, n = gimple_switch_num_labels (switch_stmt);
6046 for (i = 0; i < n; i++)
6048 tree elt = gimple_switch_label (switch_stmt, i);
6049 if (label_to_block (CASE_LABEL (elt)) == e->dest)
6050 CASE_LABEL (elt) = label;
6054 break;
6056 case GIMPLE_ASM:
6058 gasm *asm_stmt = as_a <gasm *> (stmt);
6059 int i, n = gimple_asm_nlabels (asm_stmt);
6060 tree label = NULL;
6062 for (i = 0; i < n; ++i)
6064 tree cons = gimple_asm_label_op (asm_stmt, i);
6065 if (label_to_block (TREE_VALUE (cons)) == e->dest)
6067 if (!label)
6068 label = gimple_block_label (dest);
6069 TREE_VALUE (cons) = label;
6073 /* If we didn't find any label matching the former edge in the
6074 asm labels, we must be redirecting the fallthrough
6075 edge. */
6076 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6078 break;
6080 case GIMPLE_RETURN:
6081 gsi_remove (&gsi, true);
6082 e->flags |= EDGE_FALLTHRU;
6083 break;
6085 case GIMPLE_OMP_RETURN:
6086 case GIMPLE_OMP_CONTINUE:
6087 case GIMPLE_OMP_SECTIONS_SWITCH:
6088 case GIMPLE_OMP_FOR:
6089 /* The edges from OMP constructs can be simply redirected. */
6090 break;
6092 case GIMPLE_EH_DISPATCH:
6093 if (!(e->flags & EDGE_FALLTHRU))
6094 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6095 break;
6097 case GIMPLE_TRANSACTION:
6098 if (e->flags & EDGE_TM_ABORT)
6099 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6100 gimple_block_label (dest));
6101 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6102 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6103 gimple_block_label (dest));
6104 else
6105 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6106 gimple_block_label (dest));
6107 break;
6109 default:
6110 /* Otherwise it must be a fallthru edge, and we don't need to
6111 do anything besides redirecting it. */
6112 gcc_assert (e->flags & EDGE_FALLTHRU);
6113 break;
6116 /* Update/insert PHI nodes as necessary. */
6118 /* Now update the edges in the CFG. */
6119 e = ssa_redirect_edge (e, dest);
6121 return e;
6124 /* Returns true if it is possible to remove edge E by redirecting
6125 it to the destination of the other edge from E->src. */
6127 static bool
6128 gimple_can_remove_branch_p (const_edge e)
6130 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6131 return false;
6133 return true;
6136 /* Simple wrapper, as we can always redirect fallthru edges. */
6138 static basic_block
6139 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6141 e = gimple_redirect_edge_and_branch (e, dest);
6142 gcc_assert (e);
6144 return NULL;
6148 /* Splits basic block BB after statement STMT (but at least after the
6149 labels). If STMT is NULL, BB is split just after the labels. */
6151 static basic_block
6152 gimple_split_block (basic_block bb, void *stmt)
6154 gimple_stmt_iterator gsi;
6155 gimple_stmt_iterator gsi_tgt;
6156 gimple_seq list;
6157 basic_block new_bb;
6158 edge e;
6159 edge_iterator ei;
6161 new_bb = create_empty_bb (bb);
6163 /* Redirect the outgoing edges. */
6164 new_bb->succs = bb->succs;
6165 bb->succs = NULL;
6166 FOR_EACH_EDGE (e, ei, new_bb->succs)
6167 e->src = new_bb;
6169 /* Get a stmt iterator pointing to the first stmt to move. */
6170 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6171 gsi = gsi_after_labels (bb);
6172 else
6174 gsi = gsi_for_stmt ((gimple *) stmt);
6175 gsi_next (&gsi);
6178 /* Move everything from GSI to the new basic block. */
6179 if (gsi_end_p (gsi))
6180 return new_bb;
6182 /* Split the statement list - avoid re-creating new containers as this
6183 brings ugly quadratic memory consumption in the inliner.
6184 (We are still quadratic since we need to update stmt BB pointers,
6185 sadly.) */
6186 gsi_split_seq_before (&gsi, &list);
6187 set_bb_seq (new_bb, list);
6188 for (gsi_tgt = gsi_start (list);
6189 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6190 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6192 return new_bb;
6196 /* Moves basic block BB after block AFTER. */
6198 static bool
6199 gimple_move_block_after (basic_block bb, basic_block after)
6201 if (bb->prev_bb == after)
6202 return true;
6204 unlink_block (bb);
6205 link_block (bb, after);
6207 return true;
6211 /* Return TRUE if block BB has no executable statements, otherwise return
6212 FALSE. */
6214 static bool
6215 gimple_empty_block_p (basic_block bb)
6217 /* BB must have no executable statements. */
6218 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6219 if (phi_nodes (bb))
6220 return false;
6221 if (gsi_end_p (gsi))
6222 return true;
6223 if (is_gimple_debug (gsi_stmt (gsi)))
6224 gsi_next_nondebug (&gsi);
6225 return gsi_end_p (gsi);
6229 /* Split a basic block if it ends with a conditional branch and if the
6230 other part of the block is not empty. */
6232 static basic_block
6233 gimple_split_block_before_cond_jump (basic_block bb)
6235 gimple *last, *split_point;
6236 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6237 if (gsi_end_p (gsi))
6238 return NULL;
6239 last = gsi_stmt (gsi);
6240 if (gimple_code (last) != GIMPLE_COND
6241 && gimple_code (last) != GIMPLE_SWITCH)
6242 return NULL;
6243 gsi_prev (&gsi);
6244 split_point = gsi_stmt (gsi);
6245 return split_block (bb, split_point)->dest;
6249 /* Return true if basic_block can be duplicated. */
6251 static bool
6252 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6254 return true;
6257 /* Create a duplicate of the basic block BB. NOTE: This does not
6258 preserve SSA form. */
6260 static basic_block
6261 gimple_duplicate_bb (basic_block bb)
6263 basic_block new_bb;
6264 gimple_stmt_iterator gsi_tgt;
6266 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6268 /* Copy the PHI nodes. We ignore PHI node arguments here because
6269 the incoming edges have not been setup yet. */
6270 for (gphi_iterator gpi = gsi_start_phis (bb);
6271 !gsi_end_p (gpi);
6272 gsi_next (&gpi))
6274 gphi *phi, *copy;
6275 phi = gpi.phi ();
6276 copy = create_phi_node (NULL_TREE, new_bb);
6277 create_new_def_for (gimple_phi_result (phi), copy,
6278 gimple_phi_result_ptr (copy));
6279 gimple_set_uid (copy, gimple_uid (phi));
6282 gsi_tgt = gsi_start_bb (new_bb);
6283 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6284 !gsi_end_p (gsi);
6285 gsi_next (&gsi))
6287 def_operand_p def_p;
6288 ssa_op_iter op_iter;
6289 tree lhs;
6290 gimple *stmt, *copy;
6292 stmt = gsi_stmt (gsi);
6293 if (gimple_code (stmt) == GIMPLE_LABEL)
6294 continue;
6296 /* Don't duplicate label debug stmts. */
6297 if (gimple_debug_bind_p (stmt)
6298 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6299 == LABEL_DECL)
6300 continue;
6302 /* Create a new copy of STMT and duplicate STMT's virtual
6303 operands. */
6304 copy = gimple_copy (stmt);
6305 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6307 maybe_duplicate_eh_stmt (copy, stmt);
6308 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6310 /* When copying around a stmt writing into a local non-user
6311 aggregate, make sure it won't share stack slot with other
6312 vars. */
6313 lhs = gimple_get_lhs (stmt);
6314 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6316 tree base = get_base_address (lhs);
6317 if (base
6318 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6319 && DECL_IGNORED_P (base)
6320 && !TREE_STATIC (base)
6321 && !DECL_EXTERNAL (base)
6322 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6323 DECL_NONSHAREABLE (base) = 1;
6326 /* Create new names for all the definitions created by COPY and
6327 add replacement mappings for each new name. */
6328 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6329 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6332 return new_bb;
6335 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6337 static void
6338 add_phi_args_after_copy_edge (edge e_copy)
6340 basic_block bb, bb_copy = e_copy->src, dest;
6341 edge e;
6342 edge_iterator ei;
6343 gphi *phi, *phi_copy;
6344 tree def;
6345 gphi_iterator psi, psi_copy;
6347 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6348 return;
6350 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6352 if (e_copy->dest->flags & BB_DUPLICATED)
6353 dest = get_bb_original (e_copy->dest);
6354 else
6355 dest = e_copy->dest;
6357 e = find_edge (bb, dest);
6358 if (!e)
6360 /* During loop unrolling the target of the latch edge is copied.
6361 In this case we are not looking for edge to dest, but to
6362 duplicated block whose original was dest. */
6363 FOR_EACH_EDGE (e, ei, bb->succs)
6365 if ((e->dest->flags & BB_DUPLICATED)
6366 && get_bb_original (e->dest) == dest)
6367 break;
6370 gcc_assert (e != NULL);
6373 for (psi = gsi_start_phis (e->dest),
6374 psi_copy = gsi_start_phis (e_copy->dest);
6375 !gsi_end_p (psi);
6376 gsi_next (&psi), gsi_next (&psi_copy))
6378 phi = psi.phi ();
6379 phi_copy = psi_copy.phi ();
6380 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6381 add_phi_arg (phi_copy, def, e_copy,
6382 gimple_phi_arg_location_from_edge (phi, e));
6387 /* Basic block BB_COPY was created by code duplication. Add phi node
6388 arguments for edges going out of BB_COPY. The blocks that were
6389 duplicated have BB_DUPLICATED set. */
6391 void
6392 add_phi_args_after_copy_bb (basic_block bb_copy)
6394 edge e_copy;
6395 edge_iterator ei;
6397 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6399 add_phi_args_after_copy_edge (e_copy);
6403 /* Blocks in REGION_COPY array of length N_REGION were created by
6404 duplication of basic blocks. Add phi node arguments for edges
6405 going from these blocks. If E_COPY is not NULL, also add
6406 phi node arguments for its destination.*/
6408 void
6409 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6410 edge e_copy)
6412 unsigned i;
6414 for (i = 0; i < n_region; i++)
6415 region_copy[i]->flags |= BB_DUPLICATED;
6417 for (i = 0; i < n_region; i++)
6418 add_phi_args_after_copy_bb (region_copy[i]);
6419 if (e_copy)
6420 add_phi_args_after_copy_edge (e_copy);
6422 for (i = 0; i < n_region; i++)
6423 region_copy[i]->flags &= ~BB_DUPLICATED;
6426 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6427 important exit edge EXIT. By important we mean that no SSA name defined
6428 inside region is live over the other exit edges of the region. All entry
6429 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6430 to the duplicate of the region. Dominance and loop information is
6431 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6432 UPDATE_DOMINANCE is false then we assume that the caller will update the
6433 dominance information after calling this function. The new basic
6434 blocks are stored to REGION_COPY in the same order as they had in REGION,
6435 provided that REGION_COPY is not NULL.
6436 The function returns false if it is unable to copy the region,
6437 true otherwise. */
6439 bool
6440 gimple_duplicate_sese_region (edge entry, edge exit,
6441 basic_block *region, unsigned n_region,
6442 basic_block *region_copy,
6443 bool update_dominance)
6445 unsigned i;
6446 bool free_region_copy = false, copying_header = false;
6447 struct loop *loop = entry->dest->loop_father;
6448 edge exit_copy;
6449 vec<basic_block> doms = vNULL;
6450 edge redirected;
6451 profile_count total_count = profile_count::uninitialized ();
6452 profile_count entry_count = profile_count::uninitialized ();
6454 if (!can_copy_bbs_p (region, n_region))
6455 return false;
6457 /* Some sanity checking. Note that we do not check for all possible
6458 missuses of the functions. I.e. if you ask to copy something weird,
6459 it will work, but the state of structures probably will not be
6460 correct. */
6461 for (i = 0; i < n_region; i++)
6463 /* We do not handle subloops, i.e. all the blocks must belong to the
6464 same loop. */
6465 if (region[i]->loop_father != loop)
6466 return false;
6468 if (region[i] != entry->dest
6469 && region[i] == loop->header)
6470 return false;
6473 /* In case the function is used for loop header copying (which is the primary
6474 use), ensure that EXIT and its copy will be new latch and entry edges. */
6475 if (loop->header == entry->dest)
6477 copying_header = true;
6479 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6480 return false;
6482 for (i = 0; i < n_region; i++)
6483 if (region[i] != exit->src
6484 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6485 return false;
6488 initialize_original_copy_tables ();
6490 if (copying_header)
6491 set_loop_copy (loop, loop_outer (loop));
6492 else
6493 set_loop_copy (loop, loop);
6495 if (!region_copy)
6497 region_copy = XNEWVEC (basic_block, n_region);
6498 free_region_copy = true;
6501 /* Record blocks outside the region that are dominated by something
6502 inside. */
6503 if (update_dominance)
6505 doms.create (0);
6506 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6509 if (entry->dest->count.initialized_p ())
6511 total_count = entry->dest->count;
6512 entry_count = entry->count ();
6513 /* Fix up corner cases, to avoid division by zero or creation of negative
6514 frequencies. */
6515 if (entry_count > total_count)
6516 entry_count = total_count;
6519 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6520 split_edge_bb_loc (entry), update_dominance);
6521 if (total_count.initialized_p () && entry_count.initialized_p ())
6523 scale_bbs_frequencies_profile_count (region, n_region,
6524 total_count - entry_count,
6525 total_count);
6526 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6527 total_count);
6530 if (copying_header)
6532 loop->header = exit->dest;
6533 loop->latch = exit->src;
6536 /* Redirect the entry and add the phi node arguments. */
6537 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6538 gcc_assert (redirected != NULL);
6539 flush_pending_stmts (entry);
6541 /* Concerning updating of dominators: We must recount dominators
6542 for entry block and its copy. Anything that is outside of the
6543 region, but was dominated by something inside needs recounting as
6544 well. */
6545 if (update_dominance)
6547 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6548 doms.safe_push (get_bb_original (entry->dest));
6549 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6550 doms.release ();
6553 /* Add the other PHI node arguments. */
6554 add_phi_args_after_copy (region_copy, n_region, NULL);
6556 if (free_region_copy)
6557 free (region_copy);
6559 free_original_copy_tables ();
6560 return true;
6563 /* Checks if BB is part of the region defined by N_REGION BBS. */
6564 static bool
6565 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6567 unsigned int n;
6569 for (n = 0; n < n_region; n++)
6571 if (bb == bbs[n])
6572 return true;
6574 return false;
6577 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6578 are stored to REGION_COPY in the same order in that they appear
6579 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6580 the region, EXIT an exit from it. The condition guarding EXIT
6581 is moved to ENTRY. Returns true if duplication succeeds, false
6582 otherwise.
6584 For example,
6586 some_code;
6587 if (cond)
6589 else
6592 is transformed to
6594 if (cond)
6596 some_code;
6599 else
6601 some_code;
6606 bool
6607 gimple_duplicate_sese_tail (edge entry, edge exit,
6608 basic_block *region, unsigned n_region,
6609 basic_block *region_copy)
6611 unsigned i;
6612 bool free_region_copy = false;
6613 struct loop *loop = exit->dest->loop_father;
6614 struct loop *orig_loop = entry->dest->loop_father;
6615 basic_block switch_bb, entry_bb, nentry_bb;
6616 vec<basic_block> doms;
6617 profile_count total_count = profile_count::uninitialized (),
6618 exit_count = profile_count::uninitialized ();
6619 edge exits[2], nexits[2], e;
6620 gimple_stmt_iterator gsi;
6621 gimple *cond_stmt;
6622 edge sorig, snew;
6623 basic_block exit_bb;
6624 gphi_iterator psi;
6625 gphi *phi;
6626 tree def;
6627 struct loop *target, *aloop, *cloop;
6629 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6630 exits[0] = exit;
6631 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6633 if (!can_copy_bbs_p (region, n_region))
6634 return false;
6636 initialize_original_copy_tables ();
6637 set_loop_copy (orig_loop, loop);
6639 target= loop;
6640 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6642 if (bb_part_of_region_p (aloop->header, region, n_region))
6644 cloop = duplicate_loop (aloop, target);
6645 duplicate_subloops (aloop, cloop);
6649 if (!region_copy)
6651 region_copy = XNEWVEC (basic_block, n_region);
6652 free_region_copy = true;
6655 gcc_assert (!need_ssa_update_p (cfun));
6657 /* Record blocks outside the region that are dominated by something
6658 inside. */
6659 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6661 total_count = exit->src->count;
6662 exit_count = exit->count ();
6663 /* Fix up corner cases, to avoid division by zero or creation of negative
6664 frequencies. */
6665 if (exit_count > total_count)
6666 exit_count = total_count;
6668 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6669 split_edge_bb_loc (exit), true);
6670 if (total_count.initialized_p () && exit_count.initialized_p ())
6672 scale_bbs_frequencies_profile_count (region, n_region,
6673 total_count - exit_count,
6674 total_count);
6675 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6676 total_count);
6679 /* Create the switch block, and put the exit condition to it. */
6680 entry_bb = entry->dest;
6681 nentry_bb = get_bb_copy (entry_bb);
6682 if (!last_stmt (entry->src)
6683 || !stmt_ends_bb_p (last_stmt (entry->src)))
6684 switch_bb = entry->src;
6685 else
6686 switch_bb = split_edge (entry);
6687 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6689 gsi = gsi_last_bb (switch_bb);
6690 cond_stmt = last_stmt (exit->src);
6691 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6692 cond_stmt = gimple_copy (cond_stmt);
6694 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6696 sorig = single_succ_edge (switch_bb);
6697 sorig->flags = exits[1]->flags;
6698 sorig->probability = exits[1]->probability;
6699 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6700 snew->probability = exits[0]->probability;
6703 /* Register the new edge from SWITCH_BB in loop exit lists. */
6704 rescan_loop_exit (snew, true, false);
6706 /* Add the PHI node arguments. */
6707 add_phi_args_after_copy (region_copy, n_region, snew);
6709 /* Get rid of now superfluous conditions and associated edges (and phi node
6710 arguments). */
6711 exit_bb = exit->dest;
6713 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6714 PENDING_STMT (e) = NULL;
6716 /* The latch of ORIG_LOOP was copied, and so was the backedge
6717 to the original header. We redirect this backedge to EXIT_BB. */
6718 for (i = 0; i < n_region; i++)
6719 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6721 gcc_assert (single_succ_edge (region_copy[i]));
6722 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6723 PENDING_STMT (e) = NULL;
6724 for (psi = gsi_start_phis (exit_bb);
6725 !gsi_end_p (psi);
6726 gsi_next (&psi))
6728 phi = psi.phi ();
6729 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6730 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6733 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6734 PENDING_STMT (e) = NULL;
6736 /* Anything that is outside of the region, but was dominated by something
6737 inside needs to update dominance info. */
6738 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6739 doms.release ();
6740 /* Update the SSA web. */
6741 update_ssa (TODO_update_ssa);
6743 if (free_region_copy)
6744 free (region_copy);
6746 free_original_copy_tables ();
6747 return true;
6750 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6751 adding blocks when the dominator traversal reaches EXIT. This
6752 function silently assumes that ENTRY strictly dominates EXIT. */
6754 void
6755 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6756 vec<basic_block> *bbs_p)
6758 basic_block son;
6760 for (son = first_dom_son (CDI_DOMINATORS, entry);
6761 son;
6762 son = next_dom_son (CDI_DOMINATORS, son))
6764 bbs_p->safe_push (son);
6765 if (son != exit)
6766 gather_blocks_in_sese_region (son, exit, bbs_p);
6770 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6771 The duplicates are recorded in VARS_MAP. */
6773 static void
6774 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6775 tree to_context)
6777 tree t = *tp, new_t;
6778 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6780 if (DECL_CONTEXT (t) == to_context)
6781 return;
6783 bool existed;
6784 tree &loc = vars_map->get_or_insert (t, &existed);
6786 if (!existed)
6788 if (SSA_VAR_P (t))
6790 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6791 add_local_decl (f, new_t);
6793 else
6795 gcc_assert (TREE_CODE (t) == CONST_DECL);
6796 new_t = copy_node (t);
6798 DECL_CONTEXT (new_t) = to_context;
6800 loc = new_t;
6802 else
6803 new_t = loc;
6805 *tp = new_t;
6809 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6810 VARS_MAP maps old ssa names and var_decls to the new ones. */
6812 static tree
6813 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6814 tree to_context)
6816 tree new_name;
6818 gcc_assert (!virtual_operand_p (name));
6820 tree *loc = vars_map->get (name);
6822 if (!loc)
6824 tree decl = SSA_NAME_VAR (name);
6825 if (decl)
6827 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6828 replace_by_duplicate_decl (&decl, vars_map, to_context);
6829 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6830 decl, SSA_NAME_DEF_STMT (name));
6832 else
6833 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6834 name, SSA_NAME_DEF_STMT (name));
6836 /* Now that we've used the def stmt to define new_name, make sure it
6837 doesn't define name anymore. */
6838 SSA_NAME_DEF_STMT (name) = NULL;
6840 vars_map->put (name, new_name);
6842 else
6843 new_name = *loc;
6845 return new_name;
6848 struct move_stmt_d
6850 tree orig_block;
6851 tree new_block;
6852 tree from_context;
6853 tree to_context;
6854 hash_map<tree, tree> *vars_map;
6855 htab_t new_label_map;
6856 hash_map<void *, void *> *eh_map;
6857 bool remap_decls_p;
6860 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6861 contained in *TP if it has been ORIG_BLOCK previously and change the
6862 DECL_CONTEXT of every local variable referenced in *TP. */
6864 static tree
6865 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6867 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6868 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6869 tree t = *tp;
6871 if (EXPR_P (t))
6873 tree block = TREE_BLOCK (t);
6874 if (block == NULL_TREE)
6876 else if (block == p->orig_block
6877 || p->orig_block == NULL_TREE)
6878 TREE_SET_BLOCK (t, p->new_block);
6879 else if (flag_checking)
6881 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6882 block = BLOCK_SUPERCONTEXT (block);
6883 gcc_assert (block == p->orig_block);
6886 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6888 if (TREE_CODE (t) == SSA_NAME)
6889 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6890 else if (TREE_CODE (t) == PARM_DECL
6891 && gimple_in_ssa_p (cfun))
6892 *tp = *(p->vars_map->get (t));
6893 else if (TREE_CODE (t) == LABEL_DECL)
6895 if (p->new_label_map)
6897 struct tree_map in, *out;
6898 in.base.from = t;
6899 out = (struct tree_map *)
6900 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6901 if (out)
6902 *tp = t = out->to;
6905 /* For FORCED_LABELs we can end up with references from other
6906 functions if some SESE regions are outlined. It is UB to
6907 jump in between them, but they could be used just for printing
6908 addresses etc. In that case, DECL_CONTEXT on the label should
6909 be the function containing the glabel stmt with that LABEL_DECL,
6910 rather than whatever function a reference to the label was seen
6911 last time. */
6912 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6913 DECL_CONTEXT (t) = p->to_context;
6915 else if (p->remap_decls_p)
6917 /* Replace T with its duplicate. T should no longer appear in the
6918 parent function, so this looks wasteful; however, it may appear
6919 in referenced_vars, and more importantly, as virtual operands of
6920 statements, and in alias lists of other variables. It would be
6921 quite difficult to expunge it from all those places. ??? It might
6922 suffice to do this for addressable variables. */
6923 if ((VAR_P (t) && !is_global_var (t))
6924 || TREE_CODE (t) == CONST_DECL)
6925 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6927 *walk_subtrees = 0;
6929 else if (TYPE_P (t))
6930 *walk_subtrees = 0;
6932 return NULL_TREE;
6935 /* Helper for move_stmt_r. Given an EH region number for the source
6936 function, map that to the duplicate EH regio number in the dest. */
6938 static int
6939 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6941 eh_region old_r, new_r;
6943 old_r = get_eh_region_from_number (old_nr);
6944 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6946 return new_r->index;
6949 /* Similar, but operate on INTEGER_CSTs. */
6951 static tree
6952 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6954 int old_nr, new_nr;
6956 old_nr = tree_to_shwi (old_t_nr);
6957 new_nr = move_stmt_eh_region_nr (old_nr, p);
6959 return build_int_cst (integer_type_node, new_nr);
6962 /* Like move_stmt_op, but for gimple statements.
6964 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6965 contained in the current statement in *GSI_P and change the
6966 DECL_CONTEXT of every local variable referenced in the current
6967 statement. */
6969 static tree
6970 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6971 struct walk_stmt_info *wi)
6973 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6974 gimple *stmt = gsi_stmt (*gsi_p);
6975 tree block = gimple_block (stmt);
6977 if (block == p->orig_block
6978 || (p->orig_block == NULL_TREE
6979 && block != NULL_TREE))
6980 gimple_set_block (stmt, p->new_block);
6982 switch (gimple_code (stmt))
6984 case GIMPLE_CALL:
6985 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6987 tree r, fndecl = gimple_call_fndecl (stmt);
6988 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6989 switch (DECL_FUNCTION_CODE (fndecl))
6991 case BUILT_IN_EH_COPY_VALUES:
6992 r = gimple_call_arg (stmt, 1);
6993 r = move_stmt_eh_region_tree_nr (r, p);
6994 gimple_call_set_arg (stmt, 1, r);
6995 /* FALLTHRU */
6997 case BUILT_IN_EH_POINTER:
6998 case BUILT_IN_EH_FILTER:
6999 r = gimple_call_arg (stmt, 0);
7000 r = move_stmt_eh_region_tree_nr (r, p);
7001 gimple_call_set_arg (stmt, 0, r);
7002 break;
7004 default:
7005 break;
7008 break;
7010 case GIMPLE_RESX:
7012 gresx *resx_stmt = as_a <gresx *> (stmt);
7013 int r = gimple_resx_region (resx_stmt);
7014 r = move_stmt_eh_region_nr (r, p);
7015 gimple_resx_set_region (resx_stmt, r);
7017 break;
7019 case GIMPLE_EH_DISPATCH:
7021 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7022 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7023 r = move_stmt_eh_region_nr (r, p);
7024 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7026 break;
7028 case GIMPLE_OMP_RETURN:
7029 case GIMPLE_OMP_CONTINUE:
7030 break;
7032 case GIMPLE_LABEL:
7034 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7035 so that such labels can be referenced from other regions.
7036 Make sure to update it when seeing a GIMPLE_LABEL though,
7037 that is the owner of the label. */
7038 walk_gimple_op (stmt, move_stmt_op, wi);
7039 *handled_ops_p = true;
7040 tree label = gimple_label_label (as_a <glabel *> (stmt));
7041 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7042 DECL_CONTEXT (label) = p->to_context;
7044 break;
7046 default:
7047 if (is_gimple_omp (stmt))
7049 /* Do not remap variables inside OMP directives. Variables
7050 referenced in clauses and directive header belong to the
7051 parent function and should not be moved into the child
7052 function. */
7053 bool save_remap_decls_p = p->remap_decls_p;
7054 p->remap_decls_p = false;
7055 *handled_ops_p = true;
7057 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7058 move_stmt_op, wi);
7060 p->remap_decls_p = save_remap_decls_p;
7062 break;
7065 return NULL_TREE;
7068 /* Move basic block BB from function CFUN to function DEST_FN. The
7069 block is moved out of the original linked list and placed after
7070 block AFTER in the new list. Also, the block is removed from the
7071 original array of blocks and placed in DEST_FN's array of blocks.
7072 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7073 updated to reflect the moved edges.
7075 The local variables are remapped to new instances, VARS_MAP is used
7076 to record the mapping. */
7078 static void
7079 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7080 basic_block after, bool update_edge_count_p,
7081 struct move_stmt_d *d)
7083 struct control_flow_graph *cfg;
7084 edge_iterator ei;
7085 edge e;
7086 gimple_stmt_iterator si;
7087 unsigned old_len, new_len;
7089 /* Remove BB from dominance structures. */
7090 delete_from_dominance_info (CDI_DOMINATORS, bb);
7092 /* Move BB from its current loop to the copy in the new function. */
7093 if (current_loops)
7095 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
7096 if (new_loop)
7097 bb->loop_father = new_loop;
7100 /* Link BB to the new linked list. */
7101 move_block_after (bb, after);
7103 /* Update the edge count in the corresponding flowgraphs. */
7104 if (update_edge_count_p)
7105 FOR_EACH_EDGE (e, ei, bb->succs)
7107 cfun->cfg->x_n_edges--;
7108 dest_cfun->cfg->x_n_edges++;
7111 /* Remove BB from the original basic block array. */
7112 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7113 cfun->cfg->x_n_basic_blocks--;
7115 /* Grow DEST_CFUN's basic block array if needed. */
7116 cfg = dest_cfun->cfg;
7117 cfg->x_n_basic_blocks++;
7118 if (bb->index >= cfg->x_last_basic_block)
7119 cfg->x_last_basic_block = bb->index + 1;
7121 old_len = vec_safe_length (cfg->x_basic_block_info);
7122 if ((unsigned) cfg->x_last_basic_block >= old_len)
7124 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7125 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7128 (*cfg->x_basic_block_info)[bb->index] = bb;
7130 /* Remap the variables in phi nodes. */
7131 for (gphi_iterator psi = gsi_start_phis (bb);
7132 !gsi_end_p (psi); )
7134 gphi *phi = psi.phi ();
7135 use_operand_p use;
7136 tree op = PHI_RESULT (phi);
7137 ssa_op_iter oi;
7138 unsigned i;
7140 if (virtual_operand_p (op))
7142 /* Remove the phi nodes for virtual operands (alias analysis will be
7143 run for the new function, anyway). */
7144 remove_phi_node (&psi, true);
7145 continue;
7148 SET_PHI_RESULT (phi,
7149 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7150 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7152 op = USE_FROM_PTR (use);
7153 if (TREE_CODE (op) == SSA_NAME)
7154 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7157 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7159 location_t locus = gimple_phi_arg_location (phi, i);
7160 tree block = LOCATION_BLOCK (locus);
7162 if (locus == UNKNOWN_LOCATION)
7163 continue;
7164 if (d->orig_block == NULL_TREE || block == d->orig_block)
7166 locus = set_block (locus, d->new_block);
7167 gimple_phi_arg_set_location (phi, i, locus);
7171 gsi_next (&psi);
7174 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7176 gimple *stmt = gsi_stmt (si);
7177 struct walk_stmt_info wi;
7179 memset (&wi, 0, sizeof (wi));
7180 wi.info = d;
7181 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7183 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7185 tree label = gimple_label_label (label_stmt);
7186 int uid = LABEL_DECL_UID (label);
7188 gcc_assert (uid > -1);
7190 old_len = vec_safe_length (cfg->x_label_to_block_map);
7191 if (old_len <= (unsigned) uid)
7193 new_len = 3 * uid / 2 + 1;
7194 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7197 (*cfg->x_label_to_block_map)[uid] = bb;
7198 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7200 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7202 if (uid >= dest_cfun->cfg->last_label_uid)
7203 dest_cfun->cfg->last_label_uid = uid + 1;
7206 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7207 remove_stmt_from_eh_lp_fn (cfun, stmt);
7209 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7210 gimple_remove_stmt_histograms (cfun, stmt);
7212 /* We cannot leave any operands allocated from the operand caches of
7213 the current function. */
7214 free_stmt_operands (cfun, stmt);
7215 push_cfun (dest_cfun);
7216 update_stmt (stmt);
7217 pop_cfun ();
7220 FOR_EACH_EDGE (e, ei, bb->succs)
7221 if (e->goto_locus != UNKNOWN_LOCATION)
7223 tree block = LOCATION_BLOCK (e->goto_locus);
7224 if (d->orig_block == NULL_TREE
7225 || block == d->orig_block)
7226 e->goto_locus = set_block (e->goto_locus, d->new_block);
7230 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7231 the outermost EH region. Use REGION as the incoming base EH region. */
7233 static eh_region
7234 find_outermost_region_in_block (struct function *src_cfun,
7235 basic_block bb, eh_region region)
7237 gimple_stmt_iterator si;
7239 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7241 gimple *stmt = gsi_stmt (si);
7242 eh_region stmt_region;
7243 int lp_nr;
7245 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7246 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7247 if (stmt_region)
7249 if (region == NULL)
7250 region = stmt_region;
7251 else if (stmt_region != region)
7253 region = eh_region_outermost (src_cfun, stmt_region, region);
7254 gcc_assert (region != NULL);
7259 return region;
7262 static tree
7263 new_label_mapper (tree decl, void *data)
7265 htab_t hash = (htab_t) data;
7266 struct tree_map *m;
7267 void **slot;
7269 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7271 m = XNEW (struct tree_map);
7272 m->hash = DECL_UID (decl);
7273 m->base.from = decl;
7274 m->to = create_artificial_label (UNKNOWN_LOCATION);
7275 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7276 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7277 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7279 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7280 gcc_assert (*slot == NULL);
7282 *slot = m;
7284 return m->to;
7287 /* Tree walker to replace the decls used inside value expressions by
7288 duplicates. */
7290 static tree
7291 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7293 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7295 switch (TREE_CODE (*tp))
7297 case VAR_DECL:
7298 case PARM_DECL:
7299 case RESULT_DECL:
7300 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7301 break;
7302 default:
7303 break;
7306 if (IS_TYPE_OR_DECL_P (*tp))
7307 *walk_subtrees = false;
7309 return NULL;
7312 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7313 subblocks. */
7315 static void
7316 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7317 tree to_context)
7319 tree *tp, t;
7321 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7323 t = *tp;
7324 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7325 continue;
7326 replace_by_duplicate_decl (&t, vars_map, to_context);
7327 if (t != *tp)
7329 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7331 tree x = DECL_VALUE_EXPR (*tp);
7332 struct replace_decls_d rd = { vars_map, to_context };
7333 unshare_expr (x);
7334 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7335 SET_DECL_VALUE_EXPR (t, x);
7336 DECL_HAS_VALUE_EXPR_P (t) = 1;
7338 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7339 *tp = t;
7343 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7344 replace_block_vars_by_duplicates (block, vars_map, to_context);
7347 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7348 from FN1 to FN2. */
7350 static void
7351 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7352 struct loop *loop)
7354 /* Discard it from the old loop array. */
7355 (*get_loops (fn1))[loop->num] = NULL;
7357 /* Place it in the new loop array, assigning it a new number. */
7358 loop->num = number_of_loops (fn2);
7359 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7361 /* Recurse to children. */
7362 for (loop = loop->inner; loop; loop = loop->next)
7363 fixup_loop_arrays_after_move (fn1, fn2, loop);
7366 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7367 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7369 DEBUG_FUNCTION void
7370 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7372 basic_block bb;
7373 edge_iterator ei;
7374 edge e;
7375 bitmap bbs = BITMAP_ALLOC (NULL);
7376 int i;
7378 gcc_assert (entry != NULL);
7379 gcc_assert (entry != exit);
7380 gcc_assert (bbs_p != NULL);
7382 gcc_assert (bbs_p->length () > 0);
7384 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7385 bitmap_set_bit (bbs, bb->index);
7387 gcc_assert (bitmap_bit_p (bbs, entry->index));
7388 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7390 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7392 if (bb == entry)
7394 gcc_assert (single_pred_p (entry));
7395 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7397 else
7398 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7400 e = ei_edge (ei);
7401 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7404 if (bb == exit)
7406 gcc_assert (single_succ_p (exit));
7407 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7409 else
7410 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7412 e = ei_edge (ei);
7413 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7417 BITMAP_FREE (bbs);
7420 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7422 bool
7423 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7425 bitmap release_names = (bitmap)data;
7427 if (TREE_CODE (from) != SSA_NAME)
7428 return true;
7430 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7431 return true;
7434 /* Return LOOP_DIST_ALIAS call if present in BB. */
7436 static gimple *
7437 find_loop_dist_alias (basic_block bb)
7439 gimple *g = last_stmt (bb);
7440 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7441 return NULL;
7443 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7444 gsi_prev (&gsi);
7445 if (gsi_end_p (gsi))
7446 return NULL;
7448 g = gsi_stmt (gsi);
7449 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7450 return g;
7451 return NULL;
7454 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7455 to VALUE and update any immediate uses of it's LHS. */
7457 void
7458 fold_loop_internal_call (gimple *g, tree value)
7460 tree lhs = gimple_call_lhs (g);
7461 use_operand_p use_p;
7462 imm_use_iterator iter;
7463 gimple *use_stmt;
7464 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7466 update_call_from_tree (&gsi, value);
7467 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7469 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7470 SET_USE (use_p, value);
7471 update_stmt (use_stmt);
7475 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7476 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7477 single basic block in the original CFG and the new basic block is
7478 returned. DEST_CFUN must not have a CFG yet.
7480 Note that the region need not be a pure SESE region. Blocks inside
7481 the region may contain calls to abort/exit. The only restriction
7482 is that ENTRY_BB should be the only entry point and it must
7483 dominate EXIT_BB.
7485 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7486 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7487 to the new function.
7489 All local variables referenced in the region are assumed to be in
7490 the corresponding BLOCK_VARS and unexpanded variable lists
7491 associated with DEST_CFUN.
7493 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7494 reimplement move_sese_region_to_fn by duplicating the region rather than
7495 moving it. */
7497 basic_block
7498 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7499 basic_block exit_bb, tree orig_block)
7501 vec<basic_block> bbs, dom_bbs;
7502 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7503 basic_block after, bb, *entry_pred, *exit_succ, abb;
7504 struct function *saved_cfun = cfun;
7505 int *entry_flag, *exit_flag;
7506 profile_probability *entry_prob, *exit_prob;
7507 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7508 edge e;
7509 edge_iterator ei;
7510 htab_t new_label_map;
7511 hash_map<void *, void *> *eh_map;
7512 struct loop *loop = entry_bb->loop_father;
7513 struct loop *loop0 = get_loop (saved_cfun, 0);
7514 struct move_stmt_d d;
7516 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7517 region. */
7518 gcc_assert (entry_bb != exit_bb
7519 && (!exit_bb
7520 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7522 /* Collect all the blocks in the region. Manually add ENTRY_BB
7523 because it won't be added by dfs_enumerate_from. */
7524 bbs.create (0);
7525 bbs.safe_push (entry_bb);
7526 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7528 if (flag_checking)
7529 verify_sese (entry_bb, exit_bb, &bbs);
7531 /* The blocks that used to be dominated by something in BBS will now be
7532 dominated by the new block. */
7533 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7534 bbs.address (),
7535 bbs.length ());
7537 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7538 the predecessor edges to ENTRY_BB and the successor edges to
7539 EXIT_BB so that we can re-attach them to the new basic block that
7540 will replace the region. */
7541 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7542 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7543 entry_flag = XNEWVEC (int, num_entry_edges);
7544 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7545 i = 0;
7546 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7548 entry_prob[i] = e->probability;
7549 entry_flag[i] = e->flags;
7550 entry_pred[i++] = e->src;
7551 remove_edge (e);
7554 if (exit_bb)
7556 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7557 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7558 exit_flag = XNEWVEC (int, num_exit_edges);
7559 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7560 i = 0;
7561 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7563 exit_prob[i] = e->probability;
7564 exit_flag[i] = e->flags;
7565 exit_succ[i++] = e->dest;
7566 remove_edge (e);
7569 else
7571 num_exit_edges = 0;
7572 exit_succ = NULL;
7573 exit_flag = NULL;
7574 exit_prob = NULL;
7577 /* Switch context to the child function to initialize DEST_FN's CFG. */
7578 gcc_assert (dest_cfun->cfg == NULL);
7579 push_cfun (dest_cfun);
7581 init_empty_tree_cfg ();
7583 /* Initialize EH information for the new function. */
7584 eh_map = NULL;
7585 new_label_map = NULL;
7586 if (saved_cfun->eh)
7588 eh_region region = NULL;
7590 FOR_EACH_VEC_ELT (bbs, i, bb)
7591 region = find_outermost_region_in_block (saved_cfun, bb, region);
7593 init_eh_for_function ();
7594 if (region != NULL)
7596 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7597 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7598 new_label_mapper, new_label_map);
7602 /* Initialize an empty loop tree. */
7603 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7604 init_loops_structure (dest_cfun, loops, 1);
7605 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7606 set_loops_for_fn (dest_cfun, loops);
7608 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7610 /* Move the outlined loop tree part. */
7611 num_nodes = bbs.length ();
7612 FOR_EACH_VEC_ELT (bbs, i, bb)
7614 if (bb->loop_father->header == bb)
7616 struct loop *this_loop = bb->loop_father;
7617 struct loop *outer = loop_outer (this_loop);
7618 if (outer == loop
7619 /* If the SESE region contains some bbs ending with
7620 a noreturn call, those are considered to belong
7621 to the outermost loop in saved_cfun, rather than
7622 the entry_bb's loop_father. */
7623 || outer == loop0)
7625 if (outer != loop)
7626 num_nodes -= this_loop->num_nodes;
7627 flow_loop_tree_node_remove (bb->loop_father);
7628 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7629 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7632 else if (bb->loop_father == loop0 && loop0 != loop)
7633 num_nodes--;
7635 /* Remove loop exits from the outlined region. */
7636 if (loops_for_fn (saved_cfun)->exits)
7637 FOR_EACH_EDGE (e, ei, bb->succs)
7639 struct loops *l = loops_for_fn (saved_cfun);
7640 loop_exit **slot
7641 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7642 NO_INSERT);
7643 if (slot)
7644 l->exits->clear_slot (slot);
7648 /* Adjust the number of blocks in the tree root of the outlined part. */
7649 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7651 /* Setup a mapping to be used by move_block_to_fn. */
7652 loop->aux = current_loops->tree_root;
7653 loop0->aux = current_loops->tree_root;
7655 /* Fix up orig_loop_num. If the block referenced in it has been moved
7656 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7657 struct loop *dloop;
7658 signed char *moved_orig_loop_num = NULL;
7659 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7660 if (dloop->orig_loop_num)
7662 if (moved_orig_loop_num == NULL)
7663 moved_orig_loop_num
7664 = XCNEWVEC (signed char, vec_safe_length (larray));
7665 if ((*larray)[dloop->orig_loop_num] != NULL
7666 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7668 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7669 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7670 moved_orig_loop_num[dloop->orig_loop_num]++;
7671 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7673 else
7675 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7676 dloop->orig_loop_num = 0;
7679 pop_cfun ();
7681 if (moved_orig_loop_num)
7683 FOR_EACH_VEC_ELT (bbs, i, bb)
7685 gimple *g = find_loop_dist_alias (bb);
7686 if (g == NULL)
7687 continue;
7689 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7690 gcc_assert (orig_loop_num
7691 && (unsigned) orig_loop_num < vec_safe_length (larray));
7692 if (moved_orig_loop_num[orig_loop_num] == 2)
7694 /* If we have moved both loops with this orig_loop_num into
7695 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7696 too, update the first argument. */
7697 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7698 && (get_loop (saved_cfun, dloop->orig_loop_num)
7699 == NULL));
7700 tree t = build_int_cst (integer_type_node,
7701 (*larray)[dloop->orig_loop_num]->num);
7702 gimple_call_set_arg (g, 0, t);
7703 update_stmt (g);
7704 /* Make sure the following loop will not update it. */
7705 moved_orig_loop_num[orig_loop_num] = 0;
7707 else
7708 /* Otherwise at least one of the loops stayed in saved_cfun.
7709 Remove the LOOP_DIST_ALIAS call. */
7710 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7712 FOR_EACH_BB_FN (bb, saved_cfun)
7714 gimple *g = find_loop_dist_alias (bb);
7715 if (g == NULL)
7716 continue;
7717 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7718 gcc_assert (orig_loop_num
7719 && (unsigned) orig_loop_num < vec_safe_length (larray));
7720 if (moved_orig_loop_num[orig_loop_num])
7721 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7722 of the corresponding loops was moved, remove it. */
7723 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7725 XDELETEVEC (moved_orig_loop_num);
7727 ggc_free (larray);
7729 /* Move blocks from BBS into DEST_CFUN. */
7730 gcc_assert (bbs.length () >= 2);
7731 after = dest_cfun->cfg->x_entry_block_ptr;
7732 hash_map<tree, tree> vars_map;
7734 memset (&d, 0, sizeof (d));
7735 d.orig_block = orig_block;
7736 d.new_block = DECL_INITIAL (dest_cfun->decl);
7737 d.from_context = cfun->decl;
7738 d.to_context = dest_cfun->decl;
7739 d.vars_map = &vars_map;
7740 d.new_label_map = new_label_map;
7741 d.eh_map = eh_map;
7742 d.remap_decls_p = true;
7744 if (gimple_in_ssa_p (cfun))
7745 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7747 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7748 set_ssa_default_def (dest_cfun, arg, narg);
7749 vars_map.put (arg, narg);
7752 FOR_EACH_VEC_ELT (bbs, i, bb)
7754 /* No need to update edge counts on the last block. It has
7755 already been updated earlier when we detached the region from
7756 the original CFG. */
7757 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7758 after = bb;
7761 loop->aux = NULL;
7762 loop0->aux = NULL;
7763 /* Loop sizes are no longer correct, fix them up. */
7764 loop->num_nodes -= num_nodes;
7765 for (struct loop *outer = loop_outer (loop);
7766 outer; outer = loop_outer (outer))
7767 outer->num_nodes -= num_nodes;
7768 loop0->num_nodes -= bbs.length () - num_nodes;
7770 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7772 struct loop *aloop;
7773 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7774 if (aloop != NULL)
7776 if (aloop->simduid)
7778 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7779 d.to_context);
7780 dest_cfun->has_simduid_loops = true;
7782 if (aloop->force_vectorize)
7783 dest_cfun->has_force_vectorize_loops = true;
7787 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7788 if (orig_block)
7790 tree block;
7791 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7792 == NULL_TREE);
7793 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7794 = BLOCK_SUBBLOCKS (orig_block);
7795 for (block = BLOCK_SUBBLOCKS (orig_block);
7796 block; block = BLOCK_CHAIN (block))
7797 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7798 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7801 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7802 &vars_map, dest_cfun->decl);
7804 if (new_label_map)
7805 htab_delete (new_label_map);
7806 if (eh_map)
7807 delete eh_map;
7809 if (gimple_in_ssa_p (cfun))
7811 /* We need to release ssa-names in a defined order, so first find them,
7812 and then iterate in ascending version order. */
7813 bitmap release_names = BITMAP_ALLOC (NULL);
7814 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7815 bitmap_iterator bi;
7816 unsigned i;
7817 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7818 release_ssa_name (ssa_name (i));
7819 BITMAP_FREE (release_names);
7822 /* Rewire the entry and exit blocks. The successor to the entry
7823 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7824 the child function. Similarly, the predecessor of DEST_FN's
7825 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7826 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7827 various CFG manipulation function get to the right CFG.
7829 FIXME, this is silly. The CFG ought to become a parameter to
7830 these helpers. */
7831 push_cfun (dest_cfun);
7832 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7833 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7834 if (exit_bb)
7836 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7837 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7839 else
7840 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7841 pop_cfun ();
7843 /* Back in the original function, the SESE region has disappeared,
7844 create a new basic block in its place. */
7845 bb = create_empty_bb (entry_pred[0]);
7846 if (current_loops)
7847 add_bb_to_loop (bb, loop);
7848 for (i = 0; i < num_entry_edges; i++)
7850 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7851 e->probability = entry_prob[i];
7854 for (i = 0; i < num_exit_edges; i++)
7856 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7857 e->probability = exit_prob[i];
7860 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7861 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7862 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7863 dom_bbs.release ();
7865 if (exit_bb)
7867 free (exit_prob);
7868 free (exit_flag);
7869 free (exit_succ);
7871 free (entry_prob);
7872 free (entry_flag);
7873 free (entry_pred);
7874 bbs.release ();
7876 return bb;
7879 /* Dump default def DEF to file FILE using FLAGS and indentation
7880 SPC. */
7882 static void
7883 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7885 for (int i = 0; i < spc; ++i)
7886 fprintf (file, " ");
7887 dump_ssaname_info_to_file (file, def, spc);
7889 print_generic_expr (file, TREE_TYPE (def), flags);
7890 fprintf (file, " ");
7891 print_generic_expr (file, def, flags);
7892 fprintf (file, " = ");
7893 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7894 fprintf (file, ";\n");
7897 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7899 static void
7900 print_no_sanitize_attr_value (FILE *file, tree value)
7902 unsigned int flags = tree_to_uhwi (value);
7903 bool first = true;
7904 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7906 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7908 if (!first)
7909 fprintf (file, " | ");
7910 fprintf (file, "%s", sanitizer_opts[i].name);
7911 first = false;
7916 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7919 void
7920 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7922 tree arg, var, old_current_fndecl = current_function_decl;
7923 struct function *dsf;
7924 bool ignore_topmost_bind = false, any_var = false;
7925 basic_block bb;
7926 tree chain;
7927 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7928 && decl_is_tm_clone (fndecl));
7929 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7931 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7933 fprintf (file, "__attribute__((");
7935 bool first = true;
7936 tree chain;
7937 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7938 first = false, chain = TREE_CHAIN (chain))
7940 if (!first)
7941 fprintf (file, ", ");
7943 tree name = get_attribute_name (chain);
7944 print_generic_expr (file, name, dump_flags);
7945 if (TREE_VALUE (chain) != NULL_TREE)
7947 fprintf (file, " (");
7949 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7950 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7951 else
7952 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7953 fprintf (file, ")");
7957 fprintf (file, "))\n");
7960 current_function_decl = fndecl;
7961 if (flags & TDF_GIMPLE)
7963 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7964 dump_flags | TDF_SLIM);
7965 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7967 else
7968 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7970 arg = DECL_ARGUMENTS (fndecl);
7971 while (arg)
7973 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7974 fprintf (file, " ");
7975 print_generic_expr (file, arg, dump_flags);
7976 if (DECL_CHAIN (arg))
7977 fprintf (file, ", ");
7978 arg = DECL_CHAIN (arg);
7980 fprintf (file, ")\n");
7982 dsf = DECL_STRUCT_FUNCTION (fndecl);
7983 if (dsf && (flags & TDF_EH))
7984 dump_eh_tree (file, dsf);
7986 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7988 dump_node (fndecl, TDF_SLIM | flags, file);
7989 current_function_decl = old_current_fndecl;
7990 return;
7993 /* When GIMPLE is lowered, the variables are no longer available in
7994 BIND_EXPRs, so display them separately. */
7995 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7997 unsigned ix;
7998 ignore_topmost_bind = true;
8000 fprintf (file, "{\n");
8001 if (gimple_in_ssa_p (fun)
8002 && (flags & TDF_ALIAS))
8004 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8005 arg = DECL_CHAIN (arg))
8007 tree def = ssa_default_def (fun, arg);
8008 if (def)
8009 dump_default_def (file, def, 2, flags);
8012 tree res = DECL_RESULT (fun->decl);
8013 if (res != NULL_TREE
8014 && DECL_BY_REFERENCE (res))
8016 tree def = ssa_default_def (fun, res);
8017 if (def)
8018 dump_default_def (file, def, 2, flags);
8021 tree static_chain = fun->static_chain_decl;
8022 if (static_chain != NULL_TREE)
8024 tree def = ssa_default_def (fun, static_chain);
8025 if (def)
8026 dump_default_def (file, def, 2, flags);
8030 if (!vec_safe_is_empty (fun->local_decls))
8031 FOR_EACH_LOCAL_DECL (fun, ix, var)
8033 print_generic_decl (file, var, flags);
8034 fprintf (file, "\n");
8036 any_var = true;
8039 tree name;
8041 if (gimple_in_ssa_p (cfun))
8042 FOR_EACH_SSA_NAME (ix, name, cfun)
8044 if (!SSA_NAME_VAR (name))
8046 fprintf (file, " ");
8047 print_generic_expr (file, TREE_TYPE (name), flags);
8048 fprintf (file, " ");
8049 print_generic_expr (file, name, flags);
8050 fprintf (file, ";\n");
8052 any_var = true;
8057 if (fun && fun->decl == fndecl
8058 && fun->cfg
8059 && basic_block_info_for_fn (fun))
8061 /* If the CFG has been built, emit a CFG-based dump. */
8062 if (!ignore_topmost_bind)
8063 fprintf (file, "{\n");
8065 if (any_var && n_basic_blocks_for_fn (fun))
8066 fprintf (file, "\n");
8068 FOR_EACH_BB_FN (bb, fun)
8069 dump_bb (file, bb, 2, flags);
8071 fprintf (file, "}\n");
8073 else if (fun->curr_properties & PROP_gimple_any)
8075 /* The function is now in GIMPLE form but the CFG has not been
8076 built yet. Emit the single sequence of GIMPLE statements
8077 that make up its body. */
8078 gimple_seq body = gimple_body (fndecl);
8080 if (gimple_seq_first_stmt (body)
8081 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8082 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8083 print_gimple_seq (file, body, 0, flags);
8084 else
8086 if (!ignore_topmost_bind)
8087 fprintf (file, "{\n");
8089 if (any_var)
8090 fprintf (file, "\n");
8092 print_gimple_seq (file, body, 2, flags);
8093 fprintf (file, "}\n");
8096 else
8098 int indent;
8100 /* Make a tree based dump. */
8101 chain = DECL_SAVED_TREE (fndecl);
8102 if (chain && TREE_CODE (chain) == BIND_EXPR)
8104 if (ignore_topmost_bind)
8106 chain = BIND_EXPR_BODY (chain);
8107 indent = 2;
8109 else
8110 indent = 0;
8112 else
8114 if (!ignore_topmost_bind)
8116 fprintf (file, "{\n");
8117 /* No topmost bind, pretend it's ignored for later. */
8118 ignore_topmost_bind = true;
8120 indent = 2;
8123 if (any_var)
8124 fprintf (file, "\n");
8126 print_generic_stmt_indented (file, chain, flags, indent);
8127 if (ignore_topmost_bind)
8128 fprintf (file, "}\n");
8131 if (flags & TDF_ENUMERATE_LOCALS)
8132 dump_enumerated_decls (file, flags);
8133 fprintf (file, "\n\n");
8135 current_function_decl = old_current_fndecl;
8138 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8140 DEBUG_FUNCTION void
8141 debug_function (tree fn, dump_flags_t flags)
8143 dump_function_to_file (fn, stderr, flags);
8147 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8149 static void
8150 print_pred_bbs (FILE *file, basic_block bb)
8152 edge e;
8153 edge_iterator ei;
8155 FOR_EACH_EDGE (e, ei, bb->preds)
8156 fprintf (file, "bb_%d ", e->src->index);
8160 /* Print on FILE the indexes for the successors of basic_block BB. */
8162 static void
8163 print_succ_bbs (FILE *file, basic_block bb)
8165 edge e;
8166 edge_iterator ei;
8168 FOR_EACH_EDGE (e, ei, bb->succs)
8169 fprintf (file, "bb_%d ", e->dest->index);
8172 /* Print to FILE the basic block BB following the VERBOSITY level. */
8174 void
8175 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8177 char *s_indent = (char *) alloca ((size_t) indent + 1);
8178 memset ((void *) s_indent, ' ', (size_t) indent);
8179 s_indent[indent] = '\0';
8181 /* Print basic_block's header. */
8182 if (verbosity >= 2)
8184 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8185 print_pred_bbs (file, bb);
8186 fprintf (file, "}, succs = {");
8187 print_succ_bbs (file, bb);
8188 fprintf (file, "})\n");
8191 /* Print basic_block's body. */
8192 if (verbosity >= 3)
8194 fprintf (file, "%s {\n", s_indent);
8195 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8196 fprintf (file, "%s }\n", s_indent);
8200 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8202 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8203 VERBOSITY level this outputs the contents of the loop, or just its
8204 structure. */
8206 static void
8207 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8209 char *s_indent;
8210 basic_block bb;
8212 if (loop == NULL)
8213 return;
8215 s_indent = (char *) alloca ((size_t) indent + 1);
8216 memset ((void *) s_indent, ' ', (size_t) indent);
8217 s_indent[indent] = '\0';
8219 /* Print loop's header. */
8220 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8221 if (loop->header)
8222 fprintf (file, "header = %d", loop->header->index);
8223 else
8225 fprintf (file, "deleted)\n");
8226 return;
8228 if (loop->latch)
8229 fprintf (file, ", latch = %d", loop->latch->index);
8230 else
8231 fprintf (file, ", multiple latches");
8232 fprintf (file, ", niter = ");
8233 print_generic_expr (file, loop->nb_iterations);
8235 if (loop->any_upper_bound)
8237 fprintf (file, ", upper_bound = ");
8238 print_decu (loop->nb_iterations_upper_bound, file);
8240 if (loop->any_likely_upper_bound)
8242 fprintf (file, ", likely_upper_bound = ");
8243 print_decu (loop->nb_iterations_likely_upper_bound, file);
8246 if (loop->any_estimate)
8248 fprintf (file, ", estimate = ");
8249 print_decu (loop->nb_iterations_estimate, file);
8251 if (loop->unroll)
8252 fprintf (file, ", unroll = %d", loop->unroll);
8253 fprintf (file, ")\n");
8255 /* Print loop's body. */
8256 if (verbosity >= 1)
8258 fprintf (file, "%s{\n", s_indent);
8259 FOR_EACH_BB_FN (bb, cfun)
8260 if (bb->loop_father == loop)
8261 print_loops_bb (file, bb, indent, verbosity);
8263 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8264 fprintf (file, "%s}\n", s_indent);
8268 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8269 spaces. Following VERBOSITY level this outputs the contents of the
8270 loop, or just its structure. */
8272 static void
8273 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8274 int verbosity)
8276 if (loop == NULL)
8277 return;
8279 print_loop (file, loop, indent, verbosity);
8280 print_loop_and_siblings (file, loop->next, indent, verbosity);
8283 /* Follow a CFG edge from the entry point of the program, and on entry
8284 of a loop, pretty print the loop structure on FILE. */
8286 void
8287 print_loops (FILE *file, int verbosity)
8289 basic_block bb;
8291 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8292 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8293 if (bb && bb->loop_father)
8294 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8297 /* Dump a loop. */
8299 DEBUG_FUNCTION void
8300 debug (struct loop &ref)
8302 print_loop (stderr, &ref, 0, /*verbosity*/0);
8305 DEBUG_FUNCTION void
8306 debug (struct loop *ptr)
8308 if (ptr)
8309 debug (*ptr);
8310 else
8311 fprintf (stderr, "<nil>\n");
8314 /* Dump a loop verbosely. */
8316 DEBUG_FUNCTION void
8317 debug_verbose (struct loop &ref)
8319 print_loop (stderr, &ref, 0, /*verbosity*/3);
8322 DEBUG_FUNCTION void
8323 debug_verbose (struct loop *ptr)
8325 if (ptr)
8326 debug (*ptr);
8327 else
8328 fprintf (stderr, "<nil>\n");
8332 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8334 DEBUG_FUNCTION void
8335 debug_loops (int verbosity)
8337 print_loops (stderr, verbosity);
8340 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8342 DEBUG_FUNCTION void
8343 debug_loop (struct loop *loop, int verbosity)
8345 print_loop (stderr, loop, 0, verbosity);
8348 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8349 level. */
8351 DEBUG_FUNCTION void
8352 debug_loop_num (unsigned num, int verbosity)
8354 debug_loop (get_loop (cfun, num), verbosity);
8357 /* Return true if BB ends with a call, possibly followed by some
8358 instructions that must stay with the call. Return false,
8359 otherwise. */
8361 static bool
8362 gimple_block_ends_with_call_p (basic_block bb)
8364 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8365 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8369 /* Return true if BB ends with a conditional branch. Return false,
8370 otherwise. */
8372 static bool
8373 gimple_block_ends_with_condjump_p (const_basic_block bb)
8375 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8376 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8380 /* Return true if statement T may terminate execution of BB in ways not
8381 explicitly represtented in the CFG. */
8383 bool
8384 stmt_can_terminate_bb_p (gimple *t)
8386 tree fndecl = NULL_TREE;
8387 int call_flags = 0;
8389 /* Eh exception not handled internally terminates execution of the whole
8390 function. */
8391 if (stmt_can_throw_external (t))
8392 return true;
8394 /* NORETURN and LONGJMP calls already have an edge to exit.
8395 CONST and PURE calls do not need one.
8396 We don't currently check for CONST and PURE here, although
8397 it would be a good idea, because those attributes are
8398 figured out from the RTL in mark_constant_function, and
8399 the counter incrementation code from -fprofile-arcs
8400 leads to different results from -fbranch-probabilities. */
8401 if (is_gimple_call (t))
8403 fndecl = gimple_call_fndecl (t);
8404 call_flags = gimple_call_flags (t);
8407 if (is_gimple_call (t)
8408 && fndecl
8409 && DECL_BUILT_IN (fndecl)
8410 && (call_flags & ECF_NOTHROW)
8411 && !(call_flags & ECF_RETURNS_TWICE)
8412 /* fork() doesn't really return twice, but the effect of
8413 wrapping it in __gcov_fork() which calls __gcov_flush()
8414 and clears the counters before forking has the same
8415 effect as returning twice. Force a fake edge. */
8416 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8417 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8418 return false;
8420 if (is_gimple_call (t))
8422 edge_iterator ei;
8423 edge e;
8424 basic_block bb;
8426 if (call_flags & (ECF_PURE | ECF_CONST)
8427 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8428 return false;
8430 /* Function call may do longjmp, terminate program or do other things.
8431 Special case noreturn that have non-abnormal edges out as in this case
8432 the fact is sufficiently represented by lack of edges out of T. */
8433 if (!(call_flags & ECF_NORETURN))
8434 return true;
8436 bb = gimple_bb (t);
8437 FOR_EACH_EDGE (e, ei, bb->succs)
8438 if ((e->flags & EDGE_FAKE) == 0)
8439 return true;
8442 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8443 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8444 return true;
8446 return false;
8450 /* Add fake edges to the function exit for any non constant and non
8451 noreturn calls (or noreturn calls with EH/abnormal edges),
8452 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8453 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8454 that were split.
8456 The goal is to expose cases in which entering a basic block does
8457 not imply that all subsequent instructions must be executed. */
8459 static int
8460 gimple_flow_call_edges_add (sbitmap blocks)
8462 int i;
8463 int blocks_split = 0;
8464 int last_bb = last_basic_block_for_fn (cfun);
8465 bool check_last_block = false;
8467 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8468 return 0;
8470 if (! blocks)
8471 check_last_block = true;
8472 else
8473 check_last_block = bitmap_bit_p (blocks,
8474 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8476 /* In the last basic block, before epilogue generation, there will be
8477 a fallthru edge to EXIT. Special care is required if the last insn
8478 of the last basic block is a call because make_edge folds duplicate
8479 edges, which would result in the fallthru edge also being marked
8480 fake, which would result in the fallthru edge being removed by
8481 remove_fake_edges, which would result in an invalid CFG.
8483 Moreover, we can't elide the outgoing fake edge, since the block
8484 profiler needs to take this into account in order to solve the minimal
8485 spanning tree in the case that the call doesn't return.
8487 Handle this by adding a dummy instruction in a new last basic block. */
8488 if (check_last_block)
8490 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8491 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8492 gimple *t = NULL;
8494 if (!gsi_end_p (gsi))
8495 t = gsi_stmt (gsi);
8497 if (t && stmt_can_terminate_bb_p (t))
8499 edge e;
8501 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8502 if (e)
8504 gsi_insert_on_edge (e, gimple_build_nop ());
8505 gsi_commit_edge_inserts ();
8510 /* Now add fake edges to the function exit for any non constant
8511 calls since there is no way that we can determine if they will
8512 return or not... */
8513 for (i = 0; i < last_bb; i++)
8515 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8516 gimple_stmt_iterator gsi;
8517 gimple *stmt, *last_stmt;
8519 if (!bb)
8520 continue;
8522 if (blocks && !bitmap_bit_p (blocks, i))
8523 continue;
8525 gsi = gsi_last_nondebug_bb (bb);
8526 if (!gsi_end_p (gsi))
8528 last_stmt = gsi_stmt (gsi);
8531 stmt = gsi_stmt (gsi);
8532 if (stmt_can_terminate_bb_p (stmt))
8534 edge e;
8536 /* The handling above of the final block before the
8537 epilogue should be enough to verify that there is
8538 no edge to the exit block in CFG already.
8539 Calling make_edge in such case would cause us to
8540 mark that edge as fake and remove it later. */
8541 if (flag_checking && stmt == last_stmt)
8543 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8544 gcc_assert (e == NULL);
8547 /* Note that the following may create a new basic block
8548 and renumber the existing basic blocks. */
8549 if (stmt != last_stmt)
8551 e = split_block (bb, stmt);
8552 if (e)
8553 blocks_split++;
8555 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8556 e->probability = profile_probability::guessed_never ();
8558 gsi_prev (&gsi);
8560 while (!gsi_end_p (gsi));
8564 if (blocks_split)
8565 checking_verify_flow_info ();
8567 return blocks_split;
8570 /* Removes edge E and all the blocks dominated by it, and updates dominance
8571 information. The IL in E->src needs to be updated separately.
8572 If dominance info is not available, only the edge E is removed.*/
8574 void
8575 remove_edge_and_dominated_blocks (edge e)
8577 vec<basic_block> bbs_to_remove = vNULL;
8578 vec<basic_block> bbs_to_fix_dom = vNULL;
8579 edge f;
8580 edge_iterator ei;
8581 bool none_removed = false;
8582 unsigned i;
8583 basic_block bb, dbb;
8584 bitmap_iterator bi;
8586 /* If we are removing a path inside a non-root loop that may change
8587 loop ownership of blocks or remove loops. Mark loops for fixup. */
8588 if (current_loops
8589 && loop_outer (e->src->loop_father) != NULL
8590 && e->src->loop_father == e->dest->loop_father)
8591 loops_state_set (LOOPS_NEED_FIXUP);
8593 if (!dom_info_available_p (CDI_DOMINATORS))
8595 remove_edge (e);
8596 return;
8599 /* No updating is needed for edges to exit. */
8600 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8602 if (cfgcleanup_altered_bbs)
8603 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8604 remove_edge (e);
8605 return;
8608 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8609 that is not dominated by E->dest, then this set is empty. Otherwise,
8610 all the basic blocks dominated by E->dest are removed.
8612 Also, to DF_IDOM we store the immediate dominators of the blocks in
8613 the dominance frontier of E (i.e., of the successors of the
8614 removed blocks, if there are any, and of E->dest otherwise). */
8615 FOR_EACH_EDGE (f, ei, e->dest->preds)
8617 if (f == e)
8618 continue;
8620 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8622 none_removed = true;
8623 break;
8627 auto_bitmap df, df_idom;
8628 if (none_removed)
8629 bitmap_set_bit (df_idom,
8630 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8631 else
8633 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8634 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8636 FOR_EACH_EDGE (f, ei, bb->succs)
8638 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8639 bitmap_set_bit (df, f->dest->index);
8642 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8643 bitmap_clear_bit (df, bb->index);
8645 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8647 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8648 bitmap_set_bit (df_idom,
8649 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8653 if (cfgcleanup_altered_bbs)
8655 /* Record the set of the altered basic blocks. */
8656 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8657 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8660 /* Remove E and the cancelled blocks. */
8661 if (none_removed)
8662 remove_edge (e);
8663 else
8665 /* Walk backwards so as to get a chance to substitute all
8666 released DEFs into debug stmts. See
8667 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8668 details. */
8669 for (i = bbs_to_remove.length (); i-- > 0; )
8670 delete_basic_block (bbs_to_remove[i]);
8673 /* Update the dominance information. The immediate dominator may change only
8674 for blocks whose immediate dominator belongs to DF_IDOM:
8676 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8677 removal. Let Z the arbitrary block such that idom(Z) = Y and
8678 Z dominates X after the removal. Before removal, there exists a path P
8679 from Y to X that avoids Z. Let F be the last edge on P that is
8680 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8681 dominates W, and because of P, Z does not dominate W), and W belongs to
8682 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8683 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8685 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8686 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8687 dbb;
8688 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8689 bbs_to_fix_dom.safe_push (dbb);
8692 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8694 bbs_to_remove.release ();
8695 bbs_to_fix_dom.release ();
8698 /* Purge dead EH edges from basic block BB. */
8700 bool
8701 gimple_purge_dead_eh_edges (basic_block bb)
8703 bool changed = false;
8704 edge e;
8705 edge_iterator ei;
8706 gimple *stmt = last_stmt (bb);
8708 if (stmt && stmt_can_throw_internal (stmt))
8709 return false;
8711 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8713 if (e->flags & EDGE_EH)
8715 remove_edge_and_dominated_blocks (e);
8716 changed = true;
8718 else
8719 ei_next (&ei);
8722 return changed;
8725 /* Purge dead EH edges from basic block listed in BLOCKS. */
8727 bool
8728 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8730 bool changed = false;
8731 unsigned i;
8732 bitmap_iterator bi;
8734 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8736 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8738 /* Earlier gimple_purge_dead_eh_edges could have removed
8739 this basic block already. */
8740 gcc_assert (bb || changed);
8741 if (bb != NULL)
8742 changed |= gimple_purge_dead_eh_edges (bb);
8745 return changed;
8748 /* Purge dead abnormal call edges from basic block BB. */
8750 bool
8751 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8753 bool changed = false;
8754 edge e;
8755 edge_iterator ei;
8756 gimple *stmt = last_stmt (bb);
8758 if (!cfun->has_nonlocal_label
8759 && !cfun->calls_setjmp)
8760 return false;
8762 if (stmt && stmt_can_make_abnormal_goto (stmt))
8763 return false;
8765 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8767 if (e->flags & EDGE_ABNORMAL)
8769 if (e->flags & EDGE_FALLTHRU)
8770 e->flags &= ~EDGE_ABNORMAL;
8771 else
8772 remove_edge_and_dominated_blocks (e);
8773 changed = true;
8775 else
8776 ei_next (&ei);
8779 return changed;
8782 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8784 bool
8785 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8787 bool changed = false;
8788 unsigned i;
8789 bitmap_iterator bi;
8791 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8793 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8795 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8796 this basic block already. */
8797 gcc_assert (bb || changed);
8798 if (bb != NULL)
8799 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8802 return changed;
8805 /* This function is called whenever a new edge is created or
8806 redirected. */
8808 static void
8809 gimple_execute_on_growing_pred (edge e)
8811 basic_block bb = e->dest;
8813 if (!gimple_seq_empty_p (phi_nodes (bb)))
8814 reserve_phi_args_for_new_edge (bb);
8817 /* This function is called immediately before edge E is removed from
8818 the edge vector E->dest->preds. */
8820 static void
8821 gimple_execute_on_shrinking_pred (edge e)
8823 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8824 remove_phi_args (e);
8827 /*---------------------------------------------------------------------------
8828 Helper functions for Loop versioning
8829 ---------------------------------------------------------------------------*/
8831 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8832 of 'first'. Both of them are dominated by 'new_head' basic block. When
8833 'new_head' was created by 'second's incoming edge it received phi arguments
8834 on the edge by split_edge(). Later, additional edge 'e' was created to
8835 connect 'new_head' and 'first'. Now this routine adds phi args on this
8836 additional edge 'e' that new_head to second edge received as part of edge
8837 splitting. */
8839 static void
8840 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8841 basic_block new_head, edge e)
8843 gphi *phi1, *phi2;
8844 gphi_iterator psi1, psi2;
8845 tree def;
8846 edge e2 = find_edge (new_head, second);
8848 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8849 edge, we should always have an edge from NEW_HEAD to SECOND. */
8850 gcc_assert (e2 != NULL);
8852 /* Browse all 'second' basic block phi nodes and add phi args to
8853 edge 'e' for 'first' head. PHI args are always in correct order. */
8855 for (psi2 = gsi_start_phis (second),
8856 psi1 = gsi_start_phis (first);
8857 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8858 gsi_next (&psi2), gsi_next (&psi1))
8860 phi1 = psi1.phi ();
8861 phi2 = psi2.phi ();
8862 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8863 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8868 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8869 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8870 the destination of the ELSE part. */
8872 static void
8873 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8874 basic_block second_head ATTRIBUTE_UNUSED,
8875 basic_block cond_bb, void *cond_e)
8877 gimple_stmt_iterator gsi;
8878 gimple *new_cond_expr;
8879 tree cond_expr = (tree) cond_e;
8880 edge e0;
8882 /* Build new conditional expr */
8883 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8884 NULL_TREE, NULL_TREE);
8886 /* Add new cond in cond_bb. */
8887 gsi = gsi_last_bb (cond_bb);
8888 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8890 /* Adjust edges appropriately to connect new head with first head
8891 as well as second head. */
8892 e0 = single_succ_edge (cond_bb);
8893 e0->flags &= ~EDGE_FALLTHRU;
8894 e0->flags |= EDGE_FALSE_VALUE;
8898 /* Do book-keeping of basic block BB for the profile consistency checker.
8899 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8900 then do post-pass accounting. Store the counting in RECORD. */
8901 static void
8902 gimple_account_profile_record (basic_block bb, int after_pass,
8903 struct profile_record *record)
8905 gimple_stmt_iterator i;
8906 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8908 record->size[after_pass]
8909 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8910 if (bb->count.initialized_p ())
8911 record->time[after_pass]
8912 += estimate_num_insns (gsi_stmt (i),
8913 &eni_time_weights) * bb->count.to_gcov_type ();
8914 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8915 record->time[after_pass]
8916 += estimate_num_insns (gsi_stmt (i),
8917 &eni_time_weights) * bb->count.to_frequency (cfun);
8921 struct cfg_hooks gimple_cfg_hooks = {
8922 "gimple",
8923 gimple_verify_flow_info,
8924 gimple_dump_bb, /* dump_bb */
8925 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8926 create_bb, /* create_basic_block */
8927 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8928 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8929 gimple_can_remove_branch_p, /* can_remove_branch_p */
8930 remove_bb, /* delete_basic_block */
8931 gimple_split_block, /* split_block */
8932 gimple_move_block_after, /* move_block_after */
8933 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8934 gimple_merge_blocks, /* merge_blocks */
8935 gimple_predict_edge, /* predict_edge */
8936 gimple_predicted_by_p, /* predicted_by_p */
8937 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8938 gimple_duplicate_bb, /* duplicate_block */
8939 gimple_split_edge, /* split_edge */
8940 gimple_make_forwarder_block, /* make_forward_block */
8941 NULL, /* tidy_fallthru_edge */
8942 NULL, /* force_nonfallthru */
8943 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8944 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8945 gimple_flow_call_edges_add, /* flow_call_edges_add */
8946 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8947 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8948 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8949 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8950 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8951 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8952 flush_pending_stmts, /* flush_pending_stmts */
8953 gimple_empty_block_p, /* block_empty_p */
8954 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8955 gimple_account_profile_record,
8959 /* Split all critical edges. */
8961 unsigned int
8962 split_critical_edges (void)
8964 basic_block bb;
8965 edge e;
8966 edge_iterator ei;
8968 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8969 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8970 mappings around the calls to split_edge. */
8971 start_recording_case_labels ();
8972 FOR_ALL_BB_FN (bb, cfun)
8974 FOR_EACH_EDGE (e, ei, bb->succs)
8976 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8977 split_edge (e);
8978 /* PRE inserts statements to edges and expects that
8979 since split_critical_edges was done beforehand, committing edge
8980 insertions will not split more edges. In addition to critical
8981 edges we must split edges that have multiple successors and
8982 end by control flow statements, such as RESX.
8983 Go ahead and split them too. This matches the logic in
8984 gimple_find_edge_insert_loc. */
8985 else if ((!single_pred_p (e->dest)
8986 || !gimple_seq_empty_p (phi_nodes (e->dest))
8987 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8988 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8989 && !(e->flags & EDGE_ABNORMAL))
8991 gimple_stmt_iterator gsi;
8993 gsi = gsi_last_bb (e->src);
8994 if (!gsi_end_p (gsi)
8995 && stmt_ends_bb_p (gsi_stmt (gsi))
8996 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8997 && !gimple_call_builtin_p (gsi_stmt (gsi),
8998 BUILT_IN_RETURN)))
8999 split_edge (e);
9003 end_recording_case_labels ();
9004 return 0;
9007 namespace {
9009 const pass_data pass_data_split_crit_edges =
9011 GIMPLE_PASS, /* type */
9012 "crited", /* name */
9013 OPTGROUP_NONE, /* optinfo_flags */
9014 TV_TREE_SPLIT_EDGES, /* tv_id */
9015 PROP_cfg, /* properties_required */
9016 PROP_no_crit_edges, /* properties_provided */
9017 0, /* properties_destroyed */
9018 0, /* todo_flags_start */
9019 0, /* todo_flags_finish */
9022 class pass_split_crit_edges : public gimple_opt_pass
9024 public:
9025 pass_split_crit_edges (gcc::context *ctxt)
9026 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9029 /* opt_pass methods: */
9030 virtual unsigned int execute (function *) { return split_critical_edges (); }
9032 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9033 }; // class pass_split_crit_edges
9035 } // anon namespace
9037 gimple_opt_pass *
9038 make_pass_split_crit_edges (gcc::context *ctxt)
9040 return new pass_split_crit_edges (ctxt);
9044 /* Insert COND expression which is GIMPLE_COND after STMT
9045 in basic block BB with appropriate basic block split
9046 and creation of a new conditionally executed basic block.
9047 Update profile so the new bb is visited with probability PROB.
9048 Return created basic block. */
9049 basic_block
9050 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9051 profile_probability prob)
9053 edge fall = split_block (bb, stmt);
9054 gimple_stmt_iterator iter = gsi_last_bb (bb);
9055 basic_block new_bb;
9057 /* Insert cond statement. */
9058 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9059 if (gsi_end_p (iter))
9060 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9061 else
9062 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9064 /* Create conditionally executed block. */
9065 new_bb = create_empty_bb (bb);
9066 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9067 e->probability = prob;
9068 new_bb->count = e->count ();
9069 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9071 /* Fix edge for split bb. */
9072 fall->flags = EDGE_FALSE_VALUE;
9073 fall->probability -= e->probability;
9075 /* Update dominance info. */
9076 if (dom_info_available_p (CDI_DOMINATORS))
9078 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9079 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9082 /* Update loop info. */
9083 if (current_loops)
9084 add_bb_to_loop (new_bb, bb->loop_father);
9086 return new_bb;
9089 /* Build a ternary operation and gimplify it. Emit code before GSI.
9090 Return the gimple_val holding the result. */
9092 tree
9093 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
9094 tree type, tree a, tree b, tree c)
9096 tree ret;
9097 location_t loc = gimple_location (gsi_stmt (*gsi));
9099 ret = fold_build3_loc (loc, code, type, a, b, c);
9100 STRIP_NOPS (ret);
9102 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9103 GSI_SAME_STMT);
9106 /* Build a binary operation and gimplify it. Emit code before GSI.
9107 Return the gimple_val holding the result. */
9109 tree
9110 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9111 tree type, tree a, tree b)
9113 tree ret;
9115 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9116 STRIP_NOPS (ret);
9118 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9119 GSI_SAME_STMT);
9122 /* Build a unary operation and gimplify it. Emit code before GSI.
9123 Return the gimple_val holding the result. */
9125 tree
9126 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9127 tree a)
9129 tree ret;
9131 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9132 STRIP_NOPS (ret);
9134 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9135 GSI_SAME_STMT);
9140 /* Given a basic block B which ends with a conditional and has
9141 precisely two successors, determine which of the edges is taken if
9142 the conditional is true and which is taken if the conditional is
9143 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9145 void
9146 extract_true_false_edges_from_block (basic_block b,
9147 edge *true_edge,
9148 edge *false_edge)
9150 edge e = EDGE_SUCC (b, 0);
9152 if (e->flags & EDGE_TRUE_VALUE)
9154 *true_edge = e;
9155 *false_edge = EDGE_SUCC (b, 1);
9157 else
9159 *false_edge = e;
9160 *true_edge = EDGE_SUCC (b, 1);
9165 /* From a controlling predicate in the immediate dominator DOM of
9166 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9167 predicate evaluates to true and false and store them to
9168 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9169 they are non-NULL. Returns true if the edges can be determined,
9170 else return false. */
9172 bool
9173 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9174 edge *true_controlled_edge,
9175 edge *false_controlled_edge)
9177 basic_block bb = phiblock;
9178 edge true_edge, false_edge, tem;
9179 edge e0 = NULL, e1 = NULL;
9181 /* We have to verify that one edge into the PHI node is dominated
9182 by the true edge of the predicate block and the other edge
9183 dominated by the false edge. This ensures that the PHI argument
9184 we are going to take is completely determined by the path we
9185 take from the predicate block.
9186 We can only use BB dominance checks below if the destination of
9187 the true/false edges are dominated by their edge, thus only
9188 have a single predecessor. */
9189 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9190 tem = EDGE_PRED (bb, 0);
9191 if (tem == true_edge
9192 || (single_pred_p (true_edge->dest)
9193 && (tem->src == true_edge->dest
9194 || dominated_by_p (CDI_DOMINATORS,
9195 tem->src, true_edge->dest))))
9196 e0 = tem;
9197 else if (tem == false_edge
9198 || (single_pred_p (false_edge->dest)
9199 && (tem->src == false_edge->dest
9200 || dominated_by_p (CDI_DOMINATORS,
9201 tem->src, false_edge->dest))))
9202 e1 = tem;
9203 else
9204 return false;
9205 tem = EDGE_PRED (bb, 1);
9206 if (tem == true_edge
9207 || (single_pred_p (true_edge->dest)
9208 && (tem->src == true_edge->dest
9209 || dominated_by_p (CDI_DOMINATORS,
9210 tem->src, true_edge->dest))))
9211 e0 = tem;
9212 else if (tem == false_edge
9213 || (single_pred_p (false_edge->dest)
9214 && (tem->src == false_edge->dest
9215 || dominated_by_p (CDI_DOMINATORS,
9216 tem->src, false_edge->dest))))
9217 e1 = tem;
9218 else
9219 return false;
9220 if (!e0 || !e1)
9221 return false;
9223 if (true_controlled_edge)
9224 *true_controlled_edge = e0;
9225 if (false_controlled_edge)
9226 *false_controlled_edge = e1;
9228 return true;
9231 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9232 range [low, high]. Place associated stmts before *GSI. */
9234 void
9235 generate_range_test (basic_block bb, tree index, tree low, tree high,
9236 tree *lhs, tree *rhs)
9238 tree type = TREE_TYPE (index);
9239 tree utype = unsigned_type_for (type);
9241 low = fold_convert (type, low);
9242 high = fold_convert (type, high);
9244 tree tmp = make_ssa_name (type);
9245 gassign *sub1
9246 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9248 *lhs = make_ssa_name (utype);
9249 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9251 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9252 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9253 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9254 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9257 /* Emit return warnings. */
9259 namespace {
9261 const pass_data pass_data_warn_function_return =
9263 GIMPLE_PASS, /* type */
9264 "*warn_function_return", /* name */
9265 OPTGROUP_NONE, /* optinfo_flags */
9266 TV_NONE, /* tv_id */
9267 PROP_cfg, /* properties_required */
9268 0, /* properties_provided */
9269 0, /* properties_destroyed */
9270 0, /* todo_flags_start */
9271 0, /* todo_flags_finish */
9274 class pass_warn_function_return : public gimple_opt_pass
9276 public:
9277 pass_warn_function_return (gcc::context *ctxt)
9278 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9281 /* opt_pass methods: */
9282 virtual unsigned int execute (function *);
9284 }; // class pass_warn_function_return
9286 unsigned int
9287 pass_warn_function_return::execute (function *fun)
9289 source_location location;
9290 gimple *last;
9291 edge e;
9292 edge_iterator ei;
9294 if (!targetm.warn_func_return (fun->decl))
9295 return 0;
9297 /* If we have a path to EXIT, then we do return. */
9298 if (TREE_THIS_VOLATILE (fun->decl)
9299 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9301 location = UNKNOWN_LOCATION;
9302 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9303 (e = ei_safe_edge (ei)); )
9305 last = last_stmt (e->src);
9306 if ((gimple_code (last) == GIMPLE_RETURN
9307 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9308 && location == UNKNOWN_LOCATION
9309 && ((location = LOCATION_LOCUS (gimple_location (last)))
9310 != UNKNOWN_LOCATION)
9311 && !optimize)
9312 break;
9313 /* When optimizing, replace return stmts in noreturn functions
9314 with __builtin_unreachable () call. */
9315 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9317 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9318 gimple *new_stmt = gimple_build_call (fndecl, 0);
9319 gimple_set_location (new_stmt, gimple_location (last));
9320 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9321 gsi_replace (&gsi, new_stmt, true);
9322 remove_edge (e);
9324 else
9325 ei_next (&ei);
9327 if (location == UNKNOWN_LOCATION)
9328 location = cfun->function_end_locus;
9329 warning_at (location, 0, "%<noreturn%> function does return");
9332 /* If we see "return;" in some basic block, then we do reach the end
9333 without returning a value. */
9334 else if (warn_return_type > 0
9335 && !TREE_NO_WARNING (fun->decl)
9336 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9338 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9340 gimple *last = last_stmt (e->src);
9341 greturn *return_stmt = dyn_cast <greturn *> (last);
9342 if (return_stmt
9343 && gimple_return_retval (return_stmt) == NULL
9344 && !gimple_no_warning_p (last))
9346 location = gimple_location (last);
9347 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9348 location = fun->function_end_locus;
9349 warning_at (location, OPT_Wreturn_type,
9350 "control reaches end of non-void function");
9351 TREE_NO_WARNING (fun->decl) = 1;
9352 break;
9355 /* The C++ FE turns fallthrough from the end of non-void function
9356 into __builtin_unreachable () call with BUILTINS_LOCATION.
9357 Recognize those too. */
9358 basic_block bb;
9359 if (!TREE_NO_WARNING (fun->decl))
9360 FOR_EACH_BB_FN (bb, fun)
9361 if (EDGE_COUNT (bb->succs) == 0)
9363 gimple *last = last_stmt (bb);
9364 const enum built_in_function ubsan_missing_ret
9365 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9366 if (last
9367 && ((LOCATION_LOCUS (gimple_location (last))
9368 == BUILTINS_LOCATION
9369 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9370 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9372 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9373 gsi_prev_nondebug (&gsi);
9374 gimple *prev = gsi_stmt (gsi);
9375 if (prev == NULL)
9376 location = UNKNOWN_LOCATION;
9377 else
9378 location = gimple_location (prev);
9379 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9380 location = fun->function_end_locus;
9381 warning_at (location, OPT_Wreturn_type,
9382 "control reaches end of non-void function");
9383 TREE_NO_WARNING (fun->decl) = 1;
9384 break;
9388 return 0;
9391 } // anon namespace
9393 gimple_opt_pass *
9394 make_pass_warn_function_return (gcc::context *ctxt)
9396 return new pass_warn_function_return (ctxt);
9399 /* Walk a gimplified function and warn for functions whose return value is
9400 ignored and attribute((warn_unused_result)) is set. This is done before
9401 inlining, so we don't have to worry about that. */
9403 static void
9404 do_warn_unused_result (gimple_seq seq)
9406 tree fdecl, ftype;
9407 gimple_stmt_iterator i;
9409 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9411 gimple *g = gsi_stmt (i);
9413 switch (gimple_code (g))
9415 case GIMPLE_BIND:
9416 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9417 break;
9418 case GIMPLE_TRY:
9419 do_warn_unused_result (gimple_try_eval (g));
9420 do_warn_unused_result (gimple_try_cleanup (g));
9421 break;
9422 case GIMPLE_CATCH:
9423 do_warn_unused_result (gimple_catch_handler (
9424 as_a <gcatch *> (g)));
9425 break;
9426 case GIMPLE_EH_FILTER:
9427 do_warn_unused_result (gimple_eh_filter_failure (g));
9428 break;
9430 case GIMPLE_CALL:
9431 if (gimple_call_lhs (g))
9432 break;
9433 if (gimple_call_internal_p (g))
9434 break;
9436 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9437 LHS. All calls whose value is ignored should be
9438 represented like this. Look for the attribute. */
9439 fdecl = gimple_call_fndecl (g);
9440 ftype = gimple_call_fntype (g);
9442 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9444 location_t loc = gimple_location (g);
9446 if (fdecl)
9447 warning_at (loc, OPT_Wunused_result,
9448 "ignoring return value of %qD, "
9449 "declared with attribute warn_unused_result",
9450 fdecl);
9451 else
9452 warning_at (loc, OPT_Wunused_result,
9453 "ignoring return value of function "
9454 "declared with attribute warn_unused_result");
9456 break;
9458 default:
9459 /* Not a container, not a call, or a call whose value is used. */
9460 break;
9465 namespace {
9467 const pass_data pass_data_warn_unused_result =
9469 GIMPLE_PASS, /* type */
9470 "*warn_unused_result", /* name */
9471 OPTGROUP_NONE, /* optinfo_flags */
9472 TV_NONE, /* tv_id */
9473 PROP_gimple_any, /* properties_required */
9474 0, /* properties_provided */
9475 0, /* properties_destroyed */
9476 0, /* todo_flags_start */
9477 0, /* todo_flags_finish */
9480 class pass_warn_unused_result : public gimple_opt_pass
9482 public:
9483 pass_warn_unused_result (gcc::context *ctxt)
9484 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9487 /* opt_pass methods: */
9488 virtual bool gate (function *) { return flag_warn_unused_result; }
9489 virtual unsigned int execute (function *)
9491 do_warn_unused_result (gimple_body (current_function_decl));
9492 return 0;
9495 }; // class pass_warn_unused_result
9497 } // anon namespace
9499 gimple_opt_pass *
9500 make_pass_warn_unused_result (gcc::context *ctxt)
9502 return new pass_warn_unused_result (ctxt);
9505 /* IPA passes, compilation of earlier functions or inlining
9506 might have changed some properties, such as marked functions nothrow,
9507 pure, const or noreturn.
9508 Remove redundant edges and basic blocks, and create new ones if necessary.
9510 This pass can't be executed as stand alone pass from pass manager, because
9511 in between inlining and this fixup the verify_flow_info would fail. */
9513 unsigned int
9514 execute_fixup_cfg (void)
9516 basic_block bb;
9517 gimple_stmt_iterator gsi;
9518 int todo = 0;
9519 cgraph_node *node = cgraph_node::get (current_function_decl);
9520 profile_count num = node->count;
9521 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9522 bool scale = num.initialized_p () && !(num == den);
9524 if (scale)
9526 profile_count::adjust_for_ipa_scaling (&num, &den);
9527 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9528 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9529 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9532 FOR_EACH_BB_FN (bb, cfun)
9534 if (scale)
9535 bb->count = bb->count.apply_scale (num, den);
9536 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9538 gimple *stmt = gsi_stmt (gsi);
9539 tree decl = is_gimple_call (stmt)
9540 ? gimple_call_fndecl (stmt)
9541 : NULL;
9542 if (decl)
9544 int flags = gimple_call_flags (stmt);
9545 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9547 if (gimple_purge_dead_abnormal_call_edges (bb))
9548 todo |= TODO_cleanup_cfg;
9550 if (gimple_in_ssa_p (cfun))
9552 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9553 update_stmt (stmt);
9557 if (flags & ECF_NORETURN
9558 && fixup_noreturn_call (stmt))
9559 todo |= TODO_cleanup_cfg;
9562 /* Remove stores to variables we marked write-only.
9563 Keep access when store has side effect, i.e. in case when source
9564 is volatile. */
9565 if (gimple_store_p (stmt)
9566 && !gimple_has_side_effects (stmt))
9568 tree lhs = get_base_address (gimple_get_lhs (stmt));
9570 if (VAR_P (lhs)
9571 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9572 && varpool_node::get (lhs)->writeonly)
9574 unlink_stmt_vdef (stmt);
9575 gsi_remove (&gsi, true);
9576 release_defs (stmt);
9577 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9578 continue;
9581 /* For calls we can simply remove LHS when it is known
9582 to be write-only. */
9583 if (is_gimple_call (stmt)
9584 && gimple_get_lhs (stmt))
9586 tree lhs = get_base_address (gimple_get_lhs (stmt));
9588 if (VAR_P (lhs)
9589 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9590 && varpool_node::get (lhs)->writeonly)
9592 gimple_call_set_lhs (stmt, NULL);
9593 update_stmt (stmt);
9594 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9598 if (maybe_clean_eh_stmt (stmt)
9599 && gimple_purge_dead_eh_edges (bb))
9600 todo |= TODO_cleanup_cfg;
9601 gsi_next (&gsi);
9604 /* If we have a basic block with no successors that does not
9605 end with a control statement or a noreturn call end it with
9606 a call to __builtin_unreachable. This situation can occur
9607 when inlining a noreturn call that does in fact return. */
9608 if (EDGE_COUNT (bb->succs) == 0)
9610 gimple *stmt = last_stmt (bb);
9611 if (!stmt
9612 || (!is_ctrl_stmt (stmt)
9613 && (!is_gimple_call (stmt)
9614 || !gimple_call_noreturn_p (stmt))))
9616 if (stmt && is_gimple_call (stmt))
9617 gimple_call_set_ctrl_altering (stmt, false);
9618 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9619 stmt = gimple_build_call (fndecl, 0);
9620 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9621 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9622 if (!cfun->after_inlining)
9624 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9625 node->create_edge (cgraph_node::get_create (fndecl),
9626 call_stmt, bb->count);
9631 if (scale)
9632 compute_function_frequency ();
9634 if (current_loops
9635 && (todo & TODO_cleanup_cfg))
9636 loops_state_set (LOOPS_NEED_FIXUP);
9638 return todo;
9641 namespace {
9643 const pass_data pass_data_fixup_cfg =
9645 GIMPLE_PASS, /* type */
9646 "fixup_cfg", /* name */
9647 OPTGROUP_NONE, /* optinfo_flags */
9648 TV_NONE, /* tv_id */
9649 PROP_cfg, /* properties_required */
9650 0, /* properties_provided */
9651 0, /* properties_destroyed */
9652 0, /* todo_flags_start */
9653 0, /* todo_flags_finish */
9656 class pass_fixup_cfg : public gimple_opt_pass
9658 public:
9659 pass_fixup_cfg (gcc::context *ctxt)
9660 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9663 /* opt_pass methods: */
9664 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9665 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9667 }; // class pass_fixup_cfg
9669 } // anon namespace
9671 gimple_opt_pass *
9672 make_pass_fixup_cfg (gcc::context *ctxt)
9674 return new pass_fixup_cfg (ctxt);
9677 /* Garbage collection support for edge_def. */
9679 extern void gt_ggc_mx (tree&);
9680 extern void gt_ggc_mx (gimple *&);
9681 extern void gt_ggc_mx (rtx&);
9682 extern void gt_ggc_mx (basic_block&);
9684 static void
9685 gt_ggc_mx (rtx_insn *& x)
9687 if (x)
9688 gt_ggc_mx_rtx_def ((void *) x);
9691 void
9692 gt_ggc_mx (edge_def *e)
9694 tree block = LOCATION_BLOCK (e->goto_locus);
9695 gt_ggc_mx (e->src);
9696 gt_ggc_mx (e->dest);
9697 if (current_ir_type () == IR_GIMPLE)
9698 gt_ggc_mx (e->insns.g);
9699 else
9700 gt_ggc_mx (e->insns.r);
9701 gt_ggc_mx (block);
9704 /* PCH support for edge_def. */
9706 extern void gt_pch_nx (tree&);
9707 extern void gt_pch_nx (gimple *&);
9708 extern void gt_pch_nx (rtx&);
9709 extern void gt_pch_nx (basic_block&);
9711 static void
9712 gt_pch_nx (rtx_insn *& x)
9714 if (x)
9715 gt_pch_nx_rtx_def ((void *) x);
9718 void
9719 gt_pch_nx (edge_def *e)
9721 tree block = LOCATION_BLOCK (e->goto_locus);
9722 gt_pch_nx (e->src);
9723 gt_pch_nx (e->dest);
9724 if (current_ir_type () == IR_GIMPLE)
9725 gt_pch_nx (e->insns.g);
9726 else
9727 gt_pch_nx (e->insns.r);
9728 gt_pch_nx (block);
9731 void
9732 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9734 tree block = LOCATION_BLOCK (e->goto_locus);
9735 op (&(e->src), cookie);
9736 op (&(e->dest), cookie);
9737 if (current_ir_type () == IR_GIMPLE)
9738 op (&(e->insns.g), cookie);
9739 else
9740 op (&(e->insns.r), cookie);
9741 op (&(block), cookie);
9744 #if CHECKING_P
9746 namespace selftest {
9748 /* Helper function for CFG selftests: create a dummy function decl
9749 and push it as cfun. */
9751 static tree
9752 push_fndecl (const char *name)
9754 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9755 /* FIXME: this uses input_location: */
9756 tree fndecl = build_fn_decl (name, fn_type);
9757 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9758 NULL_TREE, integer_type_node);
9759 DECL_RESULT (fndecl) = retval;
9760 push_struct_function (fndecl);
9761 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9762 ASSERT_TRUE (fun != NULL);
9763 init_empty_tree_cfg_for_function (fun);
9764 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9765 ASSERT_EQ (0, n_edges_for_fn (fun));
9766 return fndecl;
9769 /* These tests directly create CFGs.
9770 Compare with the static fns within tree-cfg.c:
9771 - build_gimple_cfg
9772 - make_blocks: calls create_basic_block (seq, bb);
9773 - make_edges. */
9775 /* Verify a simple cfg of the form:
9776 ENTRY -> A -> B -> C -> EXIT. */
9778 static void
9779 test_linear_chain ()
9781 gimple_register_cfg_hooks ();
9783 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9784 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9786 /* Create some empty blocks. */
9787 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9788 basic_block bb_b = create_empty_bb (bb_a);
9789 basic_block bb_c = create_empty_bb (bb_b);
9791 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9792 ASSERT_EQ (0, n_edges_for_fn (fun));
9794 /* Create some edges: a simple linear chain of BBs. */
9795 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9796 make_edge (bb_a, bb_b, 0);
9797 make_edge (bb_b, bb_c, 0);
9798 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9800 /* Verify the edges. */
9801 ASSERT_EQ (4, n_edges_for_fn (fun));
9802 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9803 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9804 ASSERT_EQ (1, bb_a->preds->length ());
9805 ASSERT_EQ (1, bb_a->succs->length ());
9806 ASSERT_EQ (1, bb_b->preds->length ());
9807 ASSERT_EQ (1, bb_b->succs->length ());
9808 ASSERT_EQ (1, bb_c->preds->length ());
9809 ASSERT_EQ (1, bb_c->succs->length ());
9810 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9811 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9813 /* Verify the dominance information
9814 Each BB in our simple chain should be dominated by the one before
9815 it. */
9816 calculate_dominance_info (CDI_DOMINATORS);
9817 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9818 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9819 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9820 ASSERT_EQ (1, dom_by_b.length ());
9821 ASSERT_EQ (bb_c, dom_by_b[0]);
9822 free_dominance_info (CDI_DOMINATORS);
9823 dom_by_b.release ();
9825 /* Similarly for post-dominance: each BB in our chain is post-dominated
9826 by the one after it. */
9827 calculate_dominance_info (CDI_POST_DOMINATORS);
9828 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9829 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9830 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9831 ASSERT_EQ (1, postdom_by_b.length ());
9832 ASSERT_EQ (bb_a, postdom_by_b[0]);
9833 free_dominance_info (CDI_POST_DOMINATORS);
9834 postdom_by_b.release ();
9836 pop_cfun ();
9839 /* Verify a simple CFG of the form:
9840 ENTRY
9844 /t \f
9850 EXIT. */
9852 static void
9853 test_diamond ()
9855 gimple_register_cfg_hooks ();
9857 tree fndecl = push_fndecl ("cfg_test_diamond");
9858 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9860 /* Create some empty blocks. */
9861 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9862 basic_block bb_b = create_empty_bb (bb_a);
9863 basic_block bb_c = create_empty_bb (bb_a);
9864 basic_block bb_d = create_empty_bb (bb_b);
9866 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9867 ASSERT_EQ (0, n_edges_for_fn (fun));
9869 /* Create the edges. */
9870 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9871 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9872 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9873 make_edge (bb_b, bb_d, 0);
9874 make_edge (bb_c, bb_d, 0);
9875 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9877 /* Verify the edges. */
9878 ASSERT_EQ (6, n_edges_for_fn (fun));
9879 ASSERT_EQ (1, bb_a->preds->length ());
9880 ASSERT_EQ (2, bb_a->succs->length ());
9881 ASSERT_EQ (1, bb_b->preds->length ());
9882 ASSERT_EQ (1, bb_b->succs->length ());
9883 ASSERT_EQ (1, bb_c->preds->length ());
9884 ASSERT_EQ (1, bb_c->succs->length ());
9885 ASSERT_EQ (2, bb_d->preds->length ());
9886 ASSERT_EQ (1, bb_d->succs->length ());
9888 /* Verify the dominance information. */
9889 calculate_dominance_info (CDI_DOMINATORS);
9890 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9891 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9892 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9893 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9894 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9895 dom_by_a.release ();
9896 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9897 ASSERT_EQ (0, dom_by_b.length ());
9898 dom_by_b.release ();
9899 free_dominance_info (CDI_DOMINATORS);
9901 /* Similarly for post-dominance. */
9902 calculate_dominance_info (CDI_POST_DOMINATORS);
9903 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9904 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9905 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9906 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9907 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9908 postdom_by_d.release ();
9909 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9910 ASSERT_EQ (0, postdom_by_b.length ());
9911 postdom_by_b.release ();
9912 free_dominance_info (CDI_POST_DOMINATORS);
9914 pop_cfun ();
9917 /* Verify that we can handle a CFG containing a "complete" aka
9918 fully-connected subgraph (where A B C D below all have edges
9919 pointing to each other node, also to themselves).
9920 e.g.:
9921 ENTRY EXIT
9927 A<--->B
9928 ^^ ^^
9929 | \ / |
9930 | X |
9931 | / \ |
9932 VV VV
9933 C<--->D
9936 static void
9937 test_fully_connected ()
9939 gimple_register_cfg_hooks ();
9941 tree fndecl = push_fndecl ("cfg_fully_connected");
9942 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9944 const int n = 4;
9946 /* Create some empty blocks. */
9947 auto_vec <basic_block> subgraph_nodes;
9948 for (int i = 0; i < n; i++)
9949 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9951 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9952 ASSERT_EQ (0, n_edges_for_fn (fun));
9954 /* Create the edges. */
9955 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9956 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9957 for (int i = 0; i < n; i++)
9958 for (int j = 0; j < n; j++)
9959 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9961 /* Verify the edges. */
9962 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9963 /* The first one is linked to ENTRY/EXIT as well as itself and
9964 everything else. */
9965 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9966 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9967 /* The other ones in the subgraph are linked to everything in
9968 the subgraph (including themselves). */
9969 for (int i = 1; i < n; i++)
9971 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9972 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9975 /* Verify the dominance information. */
9976 calculate_dominance_info (CDI_DOMINATORS);
9977 /* The initial block in the subgraph should be dominated by ENTRY. */
9978 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9979 get_immediate_dominator (CDI_DOMINATORS,
9980 subgraph_nodes[0]));
9981 /* Every other block in the subgraph should be dominated by the
9982 initial block. */
9983 for (int i = 1; i < n; i++)
9984 ASSERT_EQ (subgraph_nodes[0],
9985 get_immediate_dominator (CDI_DOMINATORS,
9986 subgraph_nodes[i]));
9987 free_dominance_info (CDI_DOMINATORS);
9989 /* Similarly for post-dominance. */
9990 calculate_dominance_info (CDI_POST_DOMINATORS);
9991 /* The initial block in the subgraph should be postdominated by EXIT. */
9992 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9993 get_immediate_dominator (CDI_POST_DOMINATORS,
9994 subgraph_nodes[0]));
9995 /* Every other block in the subgraph should be postdominated by the
9996 initial block, since that leads to EXIT. */
9997 for (int i = 1; i < n; i++)
9998 ASSERT_EQ (subgraph_nodes[0],
9999 get_immediate_dominator (CDI_POST_DOMINATORS,
10000 subgraph_nodes[i]));
10001 free_dominance_info (CDI_POST_DOMINATORS);
10003 pop_cfun ();
10006 /* Run all of the selftests within this file. */
10008 void
10009 tree_cfg_c_tests ()
10011 test_linear_chain ();
10012 test_diamond ();
10013 test_fully_connected ();
10016 } // namespace selftest
10018 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10019 - loop
10020 - nested loops
10021 - switch statement (a block with many out-edges)
10022 - something that jumps to itself
10023 - etc */
10025 #endif /* CHECKING_P */