IVOPT performance tuning patch. The main problem is a variant of maximal weight
[official-gcc.git] / gcc / alias.c
blob9b70bb86bb26cfe4a4ddb0c3595b6c77e747eccc
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "diagnostic-core.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
48 #include "df.h"
49 #include "tree-ssa-alias.h"
50 #include "pointer-set.h"
51 #include "tree-flow.h"
53 /* The aliasing API provided here solves related but different problems:
55 Say there exists (in c)
57 struct X {
58 struct Y y1;
59 struct Z z2;
60 } x1, *px1, *px2;
62 struct Y y2, *py;
63 struct Z z2, *pz;
66 py = &px1.y1;
67 px2 = &x1;
69 Consider the four questions:
71 Can a store to x1 interfere with px2->y1?
72 Can a store to x1 interfere with px2->z2?
73 (*px2).z2
74 Can a store to x1 change the value pointed to by with py?
75 Can a store to x1 change the value pointed to by with pz?
77 The answer to these questions can be yes, yes, yes, and maybe.
79 The first two questions can be answered with a simple examination
80 of the type system. If structure X contains a field of type Y then
81 a store thru a pointer to an X can overwrite any field that is
82 contained (recursively) in an X (unless we know that px1 != px2).
84 The last two of the questions can be solved in the same way as the
85 first two questions but this is too conservative. The observation
86 is that in some cases analysis we can know if which (if any) fields
87 are addressed and if those addresses are used in bad ways. This
88 analysis may be language specific. In C, arbitrary operations may
89 be applied to pointers. However, there is some indication that
90 this may be too conservative for some C++ types.
92 The pass ipa-type-escape does this analysis for the types whose
93 instances do not escape across the compilation boundary.
95 Historically in GCC, these two problems were combined and a single
96 data structure was used to represent the solution to these
97 problems. We now have two similar but different data structures,
98 The data structure to solve the last two question is similar to the
99 first, but does not contain have the fields in it whose address are
100 never taken. For types that do escape the compilation unit, the
101 data structures will have identical information.
104 /* The alias sets assigned to MEMs assist the back-end in determining
105 which MEMs can alias which other MEMs. In general, two MEMs in
106 different alias sets cannot alias each other, with one important
107 exception. Consider something like:
109 struct S { int i; double d; };
111 a store to an `S' can alias something of either type `int' or type
112 `double'. (However, a store to an `int' cannot alias a `double'
113 and vice versa.) We indicate this via a tree structure that looks
114 like:
115 struct S
118 |/_ _\|
119 int double
121 (The arrows are directed and point downwards.)
122 In this situation we say the alias set for `struct S' is the
123 `superset' and that those for `int' and `double' are `subsets'.
125 To see whether two alias sets can point to the same memory, we must
126 see if either alias set is a subset of the other. We need not trace
127 past immediate descendants, however, since we propagate all
128 grandchildren up one level.
130 Alias set zero is implicitly a superset of all other alias sets.
131 However, this is no actual entry for alias set zero. It is an
132 error to attempt to explicitly construct a subset of zero. */
134 struct GTY(()) alias_set_entry_d {
135 /* The alias set number, as stored in MEM_ALIAS_SET. */
136 alias_set_type alias_set;
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 int has_zero_child;
142 /* The children of the alias set. These are not just the immediate
143 children, but, in fact, all descendants. So, if we have:
145 struct T { struct S s; float f; }
147 continuing our example above, the children here will be all of
148 `int', `double', `float', and `struct S'. */
149 splay_tree GTY((param1_is (int), param2_is (int))) children;
151 typedef struct alias_set_entry_d *alias_set_entry;
153 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
154 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
155 static void record_set (rtx, const_rtx, void *);
156 static int base_alias_check (rtx, rtx, enum machine_mode,
157 enum machine_mode);
158 static rtx find_base_value (rtx);
159 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
160 static int insert_subset_children (splay_tree_node, void*);
161 static alias_set_entry get_alias_set_entry (alias_set_type);
162 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163 bool (*) (const_rtx, bool));
164 static int aliases_everything_p (const_rtx);
165 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int write_dependence_p (const_rtx, const_rtx, int);
170 static void memory_modified_1 (rtx, const_rtx, void *);
172 /* Set up all info needed to perform alias analysis on memory references. */
174 /* Returns the size in bytes of the mode of X. */
175 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
177 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178 different alias sets. We ignore alias sets in functions making use
179 of variable arguments because the va_arg macros on some systems are
180 not legal ANSI C. */
181 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
182 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains. 10 is a completely arbitrary choice. */
186 #define MAX_ALIAS_LOOP_PASSES 10
188 /* reg_base_value[N] gives an address to which register N is related.
189 If all sets after the first add or subtract to the current value
190 or otherwise modify it so it does not point to a different top level
191 object, reg_base_value[N] is equal to the address part of the source
192 of the first set.
194 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
195 expressions represent certain special values: function arguments and
196 the stack, frame, and argument pointers.
198 The contents of an ADDRESS is not normally used, the mode of the
199 ADDRESS determines whether the ADDRESS is a function argument or some
200 other special value. Pointer equality, not rtx_equal_p, determines whether
201 two ADDRESS expressions refer to the same base address.
203 The only use of the contents of an ADDRESS is for determining if the
204 current function performs nonlocal memory memory references for the
205 purposes of marking the function as a constant function. */
207 static GTY(()) VEC(rtx,gc) *reg_base_value;
208 static rtx *new_reg_base_value;
210 /* We preserve the copy of old array around to avoid amount of garbage
211 produced. About 8% of garbage produced were attributed to this
212 array. */
213 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
215 #define static_reg_base_value \
216 (this_target_rtl->x_static_reg_base_value)
218 #define REG_BASE_VALUE(X) \
219 (REGNO (X) < VEC_length (rtx, reg_base_value) \
220 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
222 /* Vector indexed by N giving the initial (unchanging) value known for
223 pseudo-register N. This array is initialized in init_alias_analysis,
224 and does not change until end_alias_analysis is called. */
225 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
227 /* Indicates number of valid entries in reg_known_value. */
228 static GTY(()) unsigned int reg_known_value_size;
230 /* Vector recording for each reg_known_value whether it is due to a
231 REG_EQUIV note. Future passes (viz., reload) may replace the
232 pseudo with the equivalent expression and so we account for the
233 dependences that would be introduced if that happens.
235 The REG_EQUIV notes created in assign_parms may mention the arg
236 pointer, and there are explicit insns in the RTL that modify the
237 arg pointer. Thus we must ensure that such insns don't get
238 scheduled across each other because that would invalidate the
239 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
240 wrong, but solving the problem in the scheduler will likely give
241 better code, so we do it here. */
242 static bool *reg_known_equiv_p;
244 /* True when scanning insns from the start of the rtl to the
245 NOTE_INSN_FUNCTION_BEG note. */
246 static bool copying_arguments;
248 DEF_VEC_P(alias_set_entry);
249 DEF_VEC_ALLOC_P(alias_set_entry,gc);
251 /* The splay-tree used to store the various alias set entries. */
252 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
254 /* Build a decomposed reference object for querying the alias-oracle
255 from the MEM rtx and store it in *REF.
256 Returns false if MEM is not suitable for the alias-oracle. */
258 static bool
259 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
261 tree expr = MEM_EXPR (mem);
262 tree base;
264 if (!expr)
265 return false;
267 ao_ref_init (ref, expr);
269 /* Get the base of the reference and see if we have to reject or
270 adjust it. */
271 base = ao_ref_base (ref);
272 if (base == NULL_TREE)
273 return false;
275 /* The tree oracle doesn't like to have these. */
276 if (TREE_CODE (base) == FUNCTION_DECL
277 || TREE_CODE (base) == LABEL_DECL)
278 return false;
280 /* If this is a pointer dereference of a non-SSA_NAME punt.
281 ??? We could replace it with a pointer to anything. */
282 if ((INDIRECT_REF_P (base)
283 || TREE_CODE (base) == MEM_REF)
284 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
285 return false;
287 /* If this is a reference based on a partitioned decl replace the
288 base with an INDIRECT_REF of the pointer representative we
289 created during stack slot partitioning. */
290 if (TREE_CODE (base) == VAR_DECL
291 && ! TREE_STATIC (base)
292 && cfun->gimple_df->decls_to_pointers != NULL)
294 void *namep;
295 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
296 if (namep)
297 ref->base = build_simple_mem_ref (*(tree *)namep);
300 ref->ref_alias_set = MEM_ALIAS_SET (mem);
302 /* If MEM_OFFSET or MEM_SIZE are NULL we have to punt.
303 Keep points-to related information though. */
304 if (!MEM_OFFSET (mem)
305 || !MEM_SIZE (mem))
307 ref->ref = NULL_TREE;
308 ref->offset = 0;
309 ref->size = -1;
310 ref->max_size = -1;
311 return true;
314 /* If the base decl is a parameter we can have negative MEM_OFFSET in
315 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
316 here. */
317 if (INTVAL (MEM_OFFSET (mem)) < 0
318 && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
319 * BITS_PER_UNIT) == ref->size)
320 return true;
322 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
323 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
325 /* The MEM may extend into adjacent fields, so adjust max_size if
326 necessary. */
327 if (ref->max_size != -1
328 && ref->size > ref->max_size)
329 ref->max_size = ref->size;
331 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
332 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
333 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
334 && (ref->offset < 0
335 || (DECL_P (ref->base)
336 && (!host_integerp (DECL_SIZE (ref->base), 1)
337 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
338 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
339 return false;
341 return true;
344 /* Query the alias-oracle on whether the two memory rtx X and MEM may
345 alias. If TBAA_P is set also apply TBAA. Returns true if the
346 two rtxen may alias, false otherwise. */
348 static bool
349 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
351 ao_ref ref1, ref2;
353 if (!ao_ref_from_mem (&ref1, x)
354 || !ao_ref_from_mem (&ref2, mem))
355 return true;
357 return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
360 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
361 such an entry, or NULL otherwise. */
363 static inline alias_set_entry
364 get_alias_set_entry (alias_set_type alias_set)
366 return VEC_index (alias_set_entry, alias_sets, alias_set);
369 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
370 the two MEMs cannot alias each other. */
372 static inline int
373 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
375 /* Perform a basic sanity check. Namely, that there are no alias sets
376 if we're not using strict aliasing. This helps to catch bugs
377 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
378 where a MEM is allocated in some way other than by the use of
379 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
380 use alias sets to indicate that spilled registers cannot alias each
381 other, we might need to remove this check. */
382 gcc_assert (flag_strict_aliasing
383 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
385 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
388 /* Insert the NODE into the splay tree given by DATA. Used by
389 record_alias_subset via splay_tree_foreach. */
391 static int
392 insert_subset_children (splay_tree_node node, void *data)
394 splay_tree_insert ((splay_tree) data, node->key, node->value);
396 return 0;
399 /* Return true if the first alias set is a subset of the second. */
401 bool
402 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
404 alias_set_entry ase;
406 /* Everything is a subset of the "aliases everything" set. */
407 if (set2 == 0)
408 return true;
410 /* Otherwise, check if set1 is a subset of set2. */
411 ase = get_alias_set_entry (set2);
412 if (ase != 0
413 && (ase->has_zero_child
414 || splay_tree_lookup (ase->children,
415 (splay_tree_key) set1)))
416 return true;
417 return false;
420 /* Return 1 if the two specified alias sets may conflict. */
423 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
425 alias_set_entry ase;
427 /* The easy case. */
428 if (alias_sets_must_conflict_p (set1, set2))
429 return 1;
431 /* See if the first alias set is a subset of the second. */
432 ase = get_alias_set_entry (set1);
433 if (ase != 0
434 && (ase->has_zero_child
435 || splay_tree_lookup (ase->children,
436 (splay_tree_key) set2)))
437 return 1;
439 /* Now do the same, but with the alias sets reversed. */
440 ase = get_alias_set_entry (set2);
441 if (ase != 0
442 && (ase->has_zero_child
443 || splay_tree_lookup (ase->children,
444 (splay_tree_key) set1)))
445 return 1;
447 /* The two alias sets are distinct and neither one is the
448 child of the other. Therefore, they cannot conflict. */
449 return 0;
452 static int
453 walk_mems_2 (rtx *x, rtx mem)
455 if (MEM_P (*x))
457 if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
458 return 1;
460 return -1;
462 return 0;
465 static int
466 walk_mems_1 (rtx *x, rtx *pat)
468 if (MEM_P (*x))
470 /* Visit all MEMs in *PAT and check indepedence. */
471 if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
472 /* Indicate that dependence was determined and stop traversal. */
473 return 1;
475 return -1;
477 return 0;
480 /* Return 1 if two specified instructions have mem expr with conflict alias sets*/
481 bool
482 insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
484 /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
485 return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
486 &PATTERN (insn2));
489 /* Return 1 if the two specified alias sets will always conflict. */
492 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
494 if (set1 == 0 || set2 == 0 || set1 == set2)
495 return 1;
497 return 0;
500 /* Return 1 if any MEM object of type T1 will always conflict (using the
501 dependency routines in this file) with any MEM object of type T2.
502 This is used when allocating temporary storage. If T1 and/or T2 are
503 NULL_TREE, it means we know nothing about the storage. */
506 objects_must_conflict_p (tree t1, tree t2)
508 alias_set_type set1, set2;
510 /* If neither has a type specified, we don't know if they'll conflict
511 because we may be using them to store objects of various types, for
512 example the argument and local variables areas of inlined functions. */
513 if (t1 == 0 && t2 == 0)
514 return 0;
516 /* If they are the same type, they must conflict. */
517 if (t1 == t2
518 /* Likewise if both are volatile. */
519 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
520 return 1;
522 set1 = t1 ? get_alias_set (t1) : 0;
523 set2 = t2 ? get_alias_set (t2) : 0;
525 /* We can't use alias_sets_conflict_p because we must make sure
526 that every subtype of t1 will conflict with every subtype of
527 t2 for which a pair of subobjects of these respective subtypes
528 overlaps on the stack. */
529 return alias_sets_must_conflict_p (set1, set2);
532 /* Return true if all nested component references handled by
533 get_inner_reference in T are such that we should use the alias set
534 provided by the object at the heart of T.
536 This is true for non-addressable components (which don't have their
537 own alias set), as well as components of objects in alias set zero.
538 This later point is a special case wherein we wish to override the
539 alias set used by the component, but we don't have per-FIELD_DECL
540 assignable alias sets. */
542 bool
543 component_uses_parent_alias_set (const_tree t)
545 while (1)
547 /* If we're at the end, it vacuously uses its own alias set. */
548 if (!handled_component_p (t))
549 return false;
551 switch (TREE_CODE (t))
553 case COMPONENT_REF:
554 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
555 return true;
556 break;
558 case ARRAY_REF:
559 case ARRAY_RANGE_REF:
560 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
561 return true;
562 break;
564 case REALPART_EXPR:
565 case IMAGPART_EXPR:
566 break;
568 default:
569 /* Bitfields and casts are never addressable. */
570 return true;
573 t = TREE_OPERAND (t, 0);
574 if (get_alias_set (TREE_TYPE (t)) == 0)
575 return true;
579 /* Return the alias set for the memory pointed to by T, which may be
580 either a type or an expression. Return -1 if there is nothing
581 special about dereferencing T. */
583 static alias_set_type
584 get_deref_alias_set_1 (tree t)
586 /* If we're not doing any alias analysis, just assume everything
587 aliases everything else. */
588 if (!flag_strict_aliasing)
589 return 0;
591 /* All we care about is the type. */
592 if (! TYPE_P (t))
593 t = TREE_TYPE (t);
595 /* If we have an INDIRECT_REF via a void pointer, we don't
596 know anything about what that might alias. Likewise if the
597 pointer is marked that way. */
598 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
599 || TYPE_REF_CAN_ALIAS_ALL (t))
600 return 0;
602 return -1;
605 /* Return the alias set for the memory pointed to by T, which may be
606 either a type or an expression. */
608 alias_set_type
609 get_deref_alias_set (tree t)
611 alias_set_type set = get_deref_alias_set_1 (t);
613 /* Fall back to the alias-set of the pointed-to type. */
614 if (set == -1)
616 if (! TYPE_P (t))
617 t = TREE_TYPE (t);
618 set = get_alias_set (TREE_TYPE (t));
621 return set;
624 /* Return the alias set for T, which may be either a type or an
625 expression. Call language-specific routine for help, if needed. */
627 alias_set_type
628 get_alias_set (tree t)
630 alias_set_type set;
632 /* If we're not doing any alias analysis, just assume everything
633 aliases everything else. Also return 0 if this or its type is
634 an error. */
635 if (! flag_strict_aliasing || t == error_mark_node
636 || (! TYPE_P (t)
637 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
638 return 0;
640 /* We can be passed either an expression or a type. This and the
641 language-specific routine may make mutually-recursive calls to each other
642 to figure out what to do. At each juncture, we see if this is a tree
643 that the language may need to handle specially. First handle things that
644 aren't types. */
645 if (! TYPE_P (t))
647 tree inner;
649 /* Give the language a chance to do something with this tree
650 before we look at it. */
651 STRIP_NOPS (t);
652 set = lang_hooks.get_alias_set (t);
653 if (set != -1)
654 return set;
656 /* Retrieve the original memory reference if needed. */
657 if (TREE_CODE (t) == TARGET_MEM_REF)
658 t = TMR_ORIGINAL (t);
660 /* Get the base object of the reference. */
661 inner = t;
662 while (handled_component_p (inner))
664 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
665 the type of any component references that wrap it to
666 determine the alias-set. */
667 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
668 t = TREE_OPERAND (inner, 0);
669 inner = TREE_OPERAND (inner, 0);
672 /* Handle pointer dereferences here, they can override the
673 alias-set. */
674 if (INDIRECT_REF_P (inner))
676 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
677 if (set != -1)
678 return set;
680 else if (TREE_CODE (inner) == MEM_REF)
682 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
683 if (set != -1)
684 return set;
687 /* If the innermost reference is a MEM_REF that has a
688 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
689 using the memory access type for determining the alias-set. */
690 if (TREE_CODE (inner) == MEM_REF
691 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
692 != TYPE_MAIN_VARIANT
693 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
694 return get_deref_alias_set (TREE_OPERAND (inner, 1));
696 /* Otherwise, pick up the outermost object that we could have a pointer
697 to, processing conversions as above. */
698 while (component_uses_parent_alias_set (t))
700 t = TREE_OPERAND (t, 0);
701 STRIP_NOPS (t);
704 /* If we've already determined the alias set for a decl, just return
705 it. This is necessary for C++ anonymous unions, whose component
706 variables don't look like union members (boo!). */
707 if (TREE_CODE (t) == VAR_DECL
708 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
709 return MEM_ALIAS_SET (DECL_RTL (t));
711 /* Now all we care about is the type. */
712 t = TREE_TYPE (t);
715 /* Variant qualifiers don't affect the alias set, so get the main
716 variant. */
717 t = TYPE_MAIN_VARIANT (t);
719 /* Always use the canonical type as well. If this is a type that
720 requires structural comparisons to identify compatible types
721 use alias set zero. */
722 if (TYPE_STRUCTURAL_EQUALITY_P (t))
724 /* Allow the language to specify another alias set for this
725 type. */
726 set = lang_hooks.get_alias_set (t);
727 if (set != -1)
728 return set;
729 return 0;
732 t = TYPE_CANONICAL (t);
734 /* Canonical types shouldn't form a tree nor should the canonical
735 type require structural equality checks. */
736 gcc_checking_assert (TYPE_CANONICAL (t) == t
737 && !TYPE_STRUCTURAL_EQUALITY_P (t));
739 /* If this is a type with a known alias set, return it. */
740 if (TYPE_ALIAS_SET_KNOWN_P (t))
741 return TYPE_ALIAS_SET (t);
743 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
744 if (!COMPLETE_TYPE_P (t))
746 /* For arrays with unknown size the conservative answer is the
747 alias set of the element type. */
748 if (TREE_CODE (t) == ARRAY_TYPE)
749 return get_alias_set (TREE_TYPE (t));
751 /* But return zero as a conservative answer for incomplete types. */
752 return 0;
755 /* See if the language has special handling for this type. */
756 set = lang_hooks.get_alias_set (t);
757 if (set != -1)
758 return set;
760 /* There are no objects of FUNCTION_TYPE, so there's no point in
761 using up an alias set for them. (There are, of course, pointers
762 and references to functions, but that's different.) */
763 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
764 set = 0;
766 /* Unless the language specifies otherwise, let vector types alias
767 their components. This avoids some nasty type punning issues in
768 normal usage. And indeed lets vectors be treated more like an
769 array slice. */
770 else if (TREE_CODE (t) == VECTOR_TYPE)
771 set = get_alias_set (TREE_TYPE (t));
773 /* Unless the language specifies otherwise, treat array types the
774 same as their components. This avoids the asymmetry we get
775 through recording the components. Consider accessing a
776 character(kind=1) through a reference to a character(kind=1)[1:1].
777 Or consider if we want to assign integer(kind=4)[0:D.1387] and
778 integer(kind=4)[4] the same alias set or not.
779 Just be pragmatic here and make sure the array and its element
780 type get the same alias set assigned. */
781 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
782 set = get_alias_set (TREE_TYPE (t));
784 /* Otherwise make a new alias set for this type. */
785 else
786 set = new_alias_set ();
788 TYPE_ALIAS_SET (t) = set;
790 /* If this is an aggregate type or a complex type, we must record any
791 component aliasing information. */
792 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
793 record_component_aliases (t);
795 return set;
798 /* Return a brand-new alias set. */
800 alias_set_type
801 new_alias_set (void)
803 if (flag_strict_aliasing)
805 if (alias_sets == 0)
806 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
807 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
808 return VEC_length (alias_set_entry, alias_sets) - 1;
810 else
811 return 0;
814 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
815 not everything that aliases SUPERSET also aliases SUBSET. For example,
816 in C, a store to an `int' can alias a load of a structure containing an
817 `int', and vice versa. But it can't alias a load of a 'double' member
818 of the same structure. Here, the structure would be the SUPERSET and
819 `int' the SUBSET. This relationship is also described in the comment at
820 the beginning of this file.
822 This function should be called only once per SUPERSET/SUBSET pair.
824 It is illegal for SUPERSET to be zero; everything is implicitly a
825 subset of alias set zero. */
827 void
828 record_alias_subset (alias_set_type superset, alias_set_type subset)
830 alias_set_entry superset_entry;
831 alias_set_entry subset_entry;
833 /* It is possible in complex type situations for both sets to be the same,
834 in which case we can ignore this operation. */
835 if (superset == subset)
836 return;
838 gcc_assert (superset);
840 superset_entry = get_alias_set_entry (superset);
841 if (superset_entry == 0)
843 /* Create an entry for the SUPERSET, so that we have a place to
844 attach the SUBSET. */
845 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
846 superset_entry->alias_set = superset;
847 superset_entry->children
848 = splay_tree_new_ggc (splay_tree_compare_ints,
849 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
850 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
851 superset_entry->has_zero_child = 0;
852 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
855 if (subset == 0)
856 superset_entry->has_zero_child = 1;
857 else
859 subset_entry = get_alias_set_entry (subset);
860 /* If there is an entry for the subset, enter all of its children
861 (if they are not already present) as children of the SUPERSET. */
862 if (subset_entry)
864 if (subset_entry->has_zero_child)
865 superset_entry->has_zero_child = 1;
867 splay_tree_foreach (subset_entry->children, insert_subset_children,
868 superset_entry->children);
871 /* Enter the SUBSET itself as a child of the SUPERSET. */
872 splay_tree_insert (superset_entry->children,
873 (splay_tree_key) subset, 0);
877 /* Record that component types of TYPE, if any, are part of that type for
878 aliasing purposes. For record types, we only record component types
879 for fields that are not marked non-addressable. For array types, we
880 only record the component type if it is not marked non-aliased. */
882 void
883 record_component_aliases (tree type)
885 alias_set_type superset = get_alias_set (type);
886 tree field;
888 if (superset == 0)
889 return;
891 switch (TREE_CODE (type))
893 case RECORD_TYPE:
894 case UNION_TYPE:
895 case QUAL_UNION_TYPE:
896 /* Recursively record aliases for the base classes, if there are any. */
897 if (TYPE_BINFO (type))
899 int i;
900 tree binfo, base_binfo;
902 for (binfo = TYPE_BINFO (type), i = 0;
903 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
904 record_alias_subset (superset,
905 get_alias_set (BINFO_TYPE (base_binfo)));
907 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
908 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
909 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
910 break;
912 case COMPLEX_TYPE:
913 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
914 break;
916 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
917 element type. */
919 default:
920 break;
924 /* Allocate an alias set for use in storing and reading from the varargs
925 spill area. */
927 static GTY(()) alias_set_type varargs_set = -1;
929 alias_set_type
930 get_varargs_alias_set (void)
932 #if 1
933 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
934 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
935 consistently use the varargs alias set for loads from the varargs
936 area. So don't use it anywhere. */
937 return 0;
938 #else
939 if (varargs_set == -1)
940 varargs_set = new_alias_set ();
942 return varargs_set;
943 #endif
946 /* Likewise, but used for the fixed portions of the frame, e.g., register
947 save areas. */
949 static GTY(()) alias_set_type frame_set = -1;
951 alias_set_type
952 get_frame_alias_set (void)
954 if (frame_set == -1)
955 frame_set = new_alias_set ();
957 return frame_set;
960 /* Inside SRC, the source of a SET, find a base address. */
962 static rtx
963 find_base_value (rtx src)
965 unsigned int regno;
967 #if defined (FIND_BASE_TERM)
968 /* Try machine-dependent ways to find the base term. */
969 src = FIND_BASE_TERM (src);
970 #endif
972 switch (GET_CODE (src))
974 case SYMBOL_REF:
975 case LABEL_REF:
976 return src;
978 case REG:
979 regno = REGNO (src);
980 /* At the start of a function, argument registers have known base
981 values which may be lost later. Returning an ADDRESS
982 expression here allows optimization based on argument values
983 even when the argument registers are used for other purposes. */
984 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
985 return new_reg_base_value[regno];
987 /* If a pseudo has a known base value, return it. Do not do this
988 for non-fixed hard regs since it can result in a circular
989 dependency chain for registers which have values at function entry.
991 The test above is not sufficient because the scheduler may move
992 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
993 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
994 && regno < VEC_length (rtx, reg_base_value))
996 /* If we're inside init_alias_analysis, use new_reg_base_value
997 to reduce the number of relaxation iterations. */
998 if (new_reg_base_value && new_reg_base_value[regno]
999 && DF_REG_DEF_COUNT (regno) == 1)
1000 return new_reg_base_value[regno];
1002 if (VEC_index (rtx, reg_base_value, regno))
1003 return VEC_index (rtx, reg_base_value, regno);
1006 return 0;
1008 case MEM:
1009 /* Check for an argument passed in memory. Only record in the
1010 copying-arguments block; it is too hard to track changes
1011 otherwise. */
1012 if (copying_arguments
1013 && (XEXP (src, 0) == arg_pointer_rtx
1014 || (GET_CODE (XEXP (src, 0)) == PLUS
1015 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1016 return gen_rtx_ADDRESS (VOIDmode, src);
1017 return 0;
1019 case CONST:
1020 src = XEXP (src, 0);
1021 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1022 break;
1024 /* ... fall through ... */
1026 case PLUS:
1027 case MINUS:
1029 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1031 /* If either operand is a REG that is a known pointer, then it
1032 is the base. */
1033 if (REG_P (src_0) && REG_POINTER (src_0))
1034 return find_base_value (src_0);
1035 if (REG_P (src_1) && REG_POINTER (src_1))
1036 return find_base_value (src_1);
1038 /* If either operand is a REG, then see if we already have
1039 a known value for it. */
1040 if (REG_P (src_0))
1042 temp = find_base_value (src_0);
1043 if (temp != 0)
1044 src_0 = temp;
1047 if (REG_P (src_1))
1049 temp = find_base_value (src_1);
1050 if (temp!= 0)
1051 src_1 = temp;
1054 /* If either base is named object or a special address
1055 (like an argument or stack reference), then use it for the
1056 base term. */
1057 if (src_0 != 0
1058 && (GET_CODE (src_0) == SYMBOL_REF
1059 || GET_CODE (src_0) == LABEL_REF
1060 || (GET_CODE (src_0) == ADDRESS
1061 && GET_MODE (src_0) != VOIDmode)))
1062 return src_0;
1064 if (src_1 != 0
1065 && (GET_CODE (src_1) == SYMBOL_REF
1066 || GET_CODE (src_1) == LABEL_REF
1067 || (GET_CODE (src_1) == ADDRESS
1068 && GET_MODE (src_1) != VOIDmode)))
1069 return src_1;
1071 /* Guess which operand is the base address:
1072 If either operand is a symbol, then it is the base. If
1073 either operand is a CONST_INT, then the other is the base. */
1074 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1075 return find_base_value (src_0);
1076 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1077 return find_base_value (src_1);
1079 return 0;
1082 case LO_SUM:
1083 /* The standard form is (lo_sum reg sym) so look only at the
1084 second operand. */
1085 return find_base_value (XEXP (src, 1));
1087 case AND:
1088 /* If the second operand is constant set the base
1089 address to the first operand. */
1090 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1091 return find_base_value (XEXP (src, 0));
1092 return 0;
1094 case TRUNCATE:
1095 /* As we do not know which address space the pointer is refering to, we can
1096 handle this only if the target does not support different pointer or
1097 address modes depending on the address space. */
1098 if (!target_default_pointer_address_modes_p ())
1099 break;
1100 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1101 break;
1102 /* Fall through. */
1103 case HIGH:
1104 case PRE_INC:
1105 case PRE_DEC:
1106 case POST_INC:
1107 case POST_DEC:
1108 case PRE_MODIFY:
1109 case POST_MODIFY:
1110 return find_base_value (XEXP (src, 0));
1112 case ZERO_EXTEND:
1113 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1114 /* As we do not know which address space the pointer is refering to, we can
1115 handle this only if the target does not support different pointer or
1116 address modes depending on the address space. */
1117 if (!target_default_pointer_address_modes_p ())
1118 break;
1121 rtx temp = find_base_value (XEXP (src, 0));
1123 if (temp != 0 && CONSTANT_P (temp))
1124 temp = convert_memory_address (Pmode, temp);
1126 return temp;
1129 default:
1130 break;
1133 return 0;
1136 /* Called from init_alias_analysis indirectly through note_stores. */
1138 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1139 register N has been set in this function. */
1140 static char *reg_seen;
1142 /* Addresses which are known not to alias anything else are identified
1143 by a unique integer. */
1144 static int unique_id;
1146 static void
1147 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1149 unsigned regno;
1150 rtx src;
1151 int n;
1153 if (!REG_P (dest))
1154 return;
1156 regno = REGNO (dest);
1158 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1160 /* If this spans multiple hard registers, then we must indicate that every
1161 register has an unusable value. */
1162 if (regno < FIRST_PSEUDO_REGISTER)
1163 n = hard_regno_nregs[regno][GET_MODE (dest)];
1164 else
1165 n = 1;
1166 if (n != 1)
1168 while (--n >= 0)
1170 reg_seen[regno + n] = 1;
1171 new_reg_base_value[regno + n] = 0;
1173 return;
1176 if (set)
1178 /* A CLOBBER wipes out any old value but does not prevent a previously
1179 unset register from acquiring a base address (i.e. reg_seen is not
1180 set). */
1181 if (GET_CODE (set) == CLOBBER)
1183 new_reg_base_value[regno] = 0;
1184 return;
1186 src = SET_SRC (set);
1188 else
1190 if (reg_seen[regno])
1192 new_reg_base_value[regno] = 0;
1193 return;
1195 reg_seen[regno] = 1;
1196 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1197 GEN_INT (unique_id++));
1198 return;
1201 /* If this is not the first set of REGNO, see whether the new value
1202 is related to the old one. There are two cases of interest:
1204 (1) The register might be assigned an entirely new value
1205 that has the same base term as the original set.
1207 (2) The set might be a simple self-modification that
1208 cannot change REGNO's base value.
1210 If neither case holds, reject the original base value as invalid.
1211 Note that the following situation is not detected:
1213 extern int x, y; int *p = &x; p += (&y-&x);
1215 ANSI C does not allow computing the difference of addresses
1216 of distinct top level objects. */
1217 if (new_reg_base_value[regno] != 0
1218 && find_base_value (src) != new_reg_base_value[regno])
1219 switch (GET_CODE (src))
1221 case LO_SUM:
1222 case MINUS:
1223 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1224 new_reg_base_value[regno] = 0;
1225 break;
1226 case PLUS:
1227 /* If the value we add in the PLUS is also a valid base value,
1228 this might be the actual base value, and the original value
1229 an index. */
1231 rtx other = NULL_RTX;
1233 if (XEXP (src, 0) == dest)
1234 other = XEXP (src, 1);
1235 else if (XEXP (src, 1) == dest)
1236 other = XEXP (src, 0);
1238 if (! other || find_base_value (other))
1239 new_reg_base_value[regno] = 0;
1240 break;
1242 case AND:
1243 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1244 new_reg_base_value[regno] = 0;
1245 break;
1246 default:
1247 new_reg_base_value[regno] = 0;
1248 break;
1250 /* If this is the first set of a register, record the value. */
1251 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1252 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1253 new_reg_base_value[regno] = find_base_value (src);
1255 reg_seen[regno] = 1;
1258 /* If a value is known for REGNO, return it. */
1261 get_reg_known_value (unsigned int regno)
1263 if (regno >= FIRST_PSEUDO_REGISTER)
1265 regno -= FIRST_PSEUDO_REGISTER;
1266 if (regno < reg_known_value_size)
1267 return reg_known_value[regno];
1269 return NULL;
1272 /* Set it. */
1274 static void
1275 set_reg_known_value (unsigned int regno, rtx val)
1277 if (regno >= FIRST_PSEUDO_REGISTER)
1279 regno -= FIRST_PSEUDO_REGISTER;
1280 if (regno < reg_known_value_size)
1281 reg_known_value[regno] = val;
1285 /* Similarly for reg_known_equiv_p. */
1287 bool
1288 get_reg_known_equiv_p (unsigned int regno)
1290 if (regno >= FIRST_PSEUDO_REGISTER)
1292 regno -= FIRST_PSEUDO_REGISTER;
1293 if (regno < reg_known_value_size)
1294 return reg_known_equiv_p[regno];
1296 return false;
1299 static void
1300 set_reg_known_equiv_p (unsigned int regno, bool val)
1302 if (regno >= FIRST_PSEUDO_REGISTER)
1304 regno -= FIRST_PSEUDO_REGISTER;
1305 if (regno < reg_known_value_size)
1306 reg_known_equiv_p[regno] = val;
1311 /* Returns a canonical version of X, from the point of view alias
1312 analysis. (For example, if X is a MEM whose address is a register,
1313 and the register has a known value (say a SYMBOL_REF), then a MEM
1314 whose address is the SYMBOL_REF is returned.) */
1317 canon_rtx (rtx x)
1319 /* Recursively look for equivalences. */
1320 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1322 rtx t = get_reg_known_value (REGNO (x));
1323 if (t == x)
1324 return x;
1325 if (t)
1326 return canon_rtx (t);
1329 if (GET_CODE (x) == PLUS)
1331 rtx x0 = canon_rtx (XEXP (x, 0));
1332 rtx x1 = canon_rtx (XEXP (x, 1));
1334 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1336 if (CONST_INT_P (x0))
1337 return plus_constant (x1, INTVAL (x0));
1338 else if (CONST_INT_P (x1))
1339 return plus_constant (x0, INTVAL (x1));
1340 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1344 /* This gives us much better alias analysis when called from
1345 the loop optimizer. Note we want to leave the original
1346 MEM alone, but need to return the canonicalized MEM with
1347 all the flags with their original values. */
1348 else if (MEM_P (x))
1349 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1351 return x;
1354 /* Return 1 if X and Y are identical-looking rtx's.
1355 Expect that X and Y has been already canonicalized.
1357 We use the data in reg_known_value above to see if two registers with
1358 different numbers are, in fact, equivalent. */
1360 static int
1361 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1363 int i;
1364 int j;
1365 enum rtx_code code;
1366 const char *fmt;
1368 if (x == 0 && y == 0)
1369 return 1;
1370 if (x == 0 || y == 0)
1371 return 0;
1373 if (x == y)
1374 return 1;
1376 code = GET_CODE (x);
1377 /* Rtx's of different codes cannot be equal. */
1378 if (code != GET_CODE (y))
1379 return 0;
1381 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1382 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1384 if (GET_MODE (x) != GET_MODE (y))
1385 return 0;
1387 /* Some RTL can be compared without a recursive examination. */
1388 switch (code)
1390 case REG:
1391 return REGNO (x) == REGNO (y);
1393 case LABEL_REF:
1394 return XEXP (x, 0) == XEXP (y, 0);
1396 case SYMBOL_REF:
1397 return XSTR (x, 0) == XSTR (y, 0);
1399 case VALUE:
1400 case CONST_INT:
1401 case CONST_DOUBLE:
1402 case CONST_FIXED:
1403 /* There's no need to compare the contents of CONST_DOUBLEs or
1404 CONST_INTs because pointer equality is a good enough
1405 comparison for these nodes. */
1406 return 0;
1408 default:
1409 break;
1412 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1413 if (code == PLUS)
1414 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1415 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1416 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1417 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1418 /* For commutative operations, the RTX match if the operand match in any
1419 order. Also handle the simple binary and unary cases without a loop. */
1420 if (COMMUTATIVE_P (x))
1422 rtx xop0 = canon_rtx (XEXP (x, 0));
1423 rtx yop0 = canon_rtx (XEXP (y, 0));
1424 rtx yop1 = canon_rtx (XEXP (y, 1));
1426 return ((rtx_equal_for_memref_p (xop0, yop0)
1427 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1428 || (rtx_equal_for_memref_p (xop0, yop1)
1429 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1431 else if (NON_COMMUTATIVE_P (x))
1433 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1434 canon_rtx (XEXP (y, 0)))
1435 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1436 canon_rtx (XEXP (y, 1))));
1438 else if (UNARY_P (x))
1439 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1440 canon_rtx (XEXP (y, 0)));
1442 /* Compare the elements. If any pair of corresponding elements
1443 fail to match, return 0 for the whole things.
1445 Limit cases to types which actually appear in addresses. */
1447 fmt = GET_RTX_FORMAT (code);
1448 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1450 switch (fmt[i])
1452 case 'i':
1453 if (XINT (x, i) != XINT (y, i))
1454 return 0;
1455 break;
1457 case 'E':
1458 /* Two vectors must have the same length. */
1459 if (XVECLEN (x, i) != XVECLEN (y, i))
1460 return 0;
1462 /* And the corresponding elements must match. */
1463 for (j = 0; j < XVECLEN (x, i); j++)
1464 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1465 canon_rtx (XVECEXP (y, i, j))) == 0)
1466 return 0;
1467 break;
1469 case 'e':
1470 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1471 canon_rtx (XEXP (y, i))) == 0)
1472 return 0;
1473 break;
1475 /* This can happen for asm operands. */
1476 case 's':
1477 if (strcmp (XSTR (x, i), XSTR (y, i)))
1478 return 0;
1479 break;
1481 /* This can happen for an asm which clobbers memory. */
1482 case '0':
1483 break;
1485 /* It is believed that rtx's at this level will never
1486 contain anything but integers and other rtx's,
1487 except for within LABEL_REFs and SYMBOL_REFs. */
1488 default:
1489 gcc_unreachable ();
1492 return 1;
1496 find_base_term (rtx x)
1498 cselib_val *val;
1499 struct elt_loc_list *l;
1501 #if defined (FIND_BASE_TERM)
1502 /* Try machine-dependent ways to find the base term. */
1503 x = FIND_BASE_TERM (x);
1504 #endif
1506 switch (GET_CODE (x))
1508 case REG:
1509 return REG_BASE_VALUE (x);
1511 case TRUNCATE:
1512 /* As we do not know which address space the pointer is refering to, we can
1513 handle this only if the target does not support different pointer or
1514 address modes depending on the address space. */
1515 if (!target_default_pointer_address_modes_p ())
1516 return 0;
1517 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1518 return 0;
1519 /* Fall through. */
1520 case HIGH:
1521 case PRE_INC:
1522 case PRE_DEC:
1523 case POST_INC:
1524 case POST_DEC:
1525 case PRE_MODIFY:
1526 case POST_MODIFY:
1527 return find_base_term (XEXP (x, 0));
1529 case ZERO_EXTEND:
1530 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1531 /* As we do not know which address space the pointer is refering to, we can
1532 handle this only if the target does not support different pointer or
1533 address modes depending on the address space. */
1534 if (!target_default_pointer_address_modes_p ())
1535 return 0;
1538 rtx temp = find_base_term (XEXP (x, 0));
1540 if (temp != 0 && CONSTANT_P (temp))
1541 temp = convert_memory_address (Pmode, temp);
1543 return temp;
1546 case VALUE:
1547 val = CSELIB_VAL_PTR (x);
1548 if (!val)
1549 return 0;
1550 for (l = val->locs; l; l = l->next)
1551 if ((x = find_base_term (l->loc)) != 0)
1552 return x;
1553 return 0;
1555 case LO_SUM:
1556 /* The standard form is (lo_sum reg sym) so look only at the
1557 second operand. */
1558 return find_base_term (XEXP (x, 1));
1560 case CONST:
1561 x = XEXP (x, 0);
1562 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1563 return 0;
1564 /* Fall through. */
1565 case PLUS:
1566 case MINUS:
1568 rtx tmp1 = XEXP (x, 0);
1569 rtx tmp2 = XEXP (x, 1);
1571 /* This is a little bit tricky since we have to determine which of
1572 the two operands represents the real base address. Otherwise this
1573 routine may return the index register instead of the base register.
1575 That may cause us to believe no aliasing was possible, when in
1576 fact aliasing is possible.
1578 We use a few simple tests to guess the base register. Additional
1579 tests can certainly be added. For example, if one of the operands
1580 is a shift or multiply, then it must be the index register and the
1581 other operand is the base register. */
1583 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1584 return find_base_term (tmp2);
1586 /* If either operand is known to be a pointer, then use it
1587 to determine the base term. */
1588 if (REG_P (tmp1) && REG_POINTER (tmp1))
1590 rtx base = find_base_term (tmp1);
1591 if (base)
1592 return base;
1595 if (REG_P (tmp2) && REG_POINTER (tmp2))
1597 rtx base = find_base_term (tmp2);
1598 if (base)
1599 return base;
1602 /* Neither operand was known to be a pointer. Go ahead and find the
1603 base term for both operands. */
1604 tmp1 = find_base_term (tmp1);
1605 tmp2 = find_base_term (tmp2);
1607 /* If either base term is named object or a special address
1608 (like an argument or stack reference), then use it for the
1609 base term. */
1610 if (tmp1 != 0
1611 && (GET_CODE (tmp1) == SYMBOL_REF
1612 || GET_CODE (tmp1) == LABEL_REF
1613 || (GET_CODE (tmp1) == ADDRESS
1614 && GET_MODE (tmp1) != VOIDmode)))
1615 return tmp1;
1617 if (tmp2 != 0
1618 && (GET_CODE (tmp2) == SYMBOL_REF
1619 || GET_CODE (tmp2) == LABEL_REF
1620 || (GET_CODE (tmp2) == ADDRESS
1621 && GET_MODE (tmp2) != VOIDmode)))
1622 return tmp2;
1624 /* We could not determine which of the two operands was the
1625 base register and which was the index. So we can determine
1626 nothing from the base alias check. */
1627 return 0;
1630 case AND:
1631 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1632 return find_base_term (XEXP (x, 0));
1633 return 0;
1635 case SYMBOL_REF:
1636 case LABEL_REF:
1637 return x;
1639 default:
1640 return 0;
1644 /* Return 0 if the addresses X and Y are known to point to different
1645 objects, 1 if they might be pointers to the same object. */
1647 static int
1648 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1649 enum machine_mode y_mode)
1651 rtx x_base = find_base_term (x);
1652 rtx y_base = find_base_term (y);
1654 /* If the address itself has no known base see if a known equivalent
1655 value has one. If either address still has no known base, nothing
1656 is known about aliasing. */
1657 if (x_base == 0)
1659 rtx x_c;
1661 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1662 return 1;
1664 x_base = find_base_term (x_c);
1665 if (x_base == 0)
1666 return 1;
1669 if (y_base == 0)
1671 rtx y_c;
1672 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1673 return 1;
1675 y_base = find_base_term (y_c);
1676 if (y_base == 0)
1677 return 1;
1680 /* If the base addresses are equal nothing is known about aliasing. */
1681 if (rtx_equal_p (x_base, y_base))
1682 return 1;
1684 /* The base addresses are different expressions. If they are not accessed
1685 via AND, there is no conflict. We can bring knowledge of object
1686 alignment into play here. For example, on alpha, "char a, b;" can
1687 alias one another, though "char a; long b;" cannot. AND addesses may
1688 implicitly alias surrounding objects; i.e. unaligned access in DImode
1689 via AND address can alias all surrounding object types except those
1690 with aligment 8 or higher. */
1691 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1692 return 1;
1693 if (GET_CODE (x) == AND
1694 && (!CONST_INT_P (XEXP (x, 1))
1695 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1696 return 1;
1697 if (GET_CODE (y) == AND
1698 && (!CONST_INT_P (XEXP (y, 1))
1699 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1700 return 1;
1702 /* Differing symbols not accessed via AND never alias. */
1703 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1704 return 0;
1706 /* If one address is a stack reference there can be no alias:
1707 stack references using different base registers do not alias,
1708 a stack reference can not alias a parameter, and a stack reference
1709 can not alias a global. */
1710 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1711 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1712 return 0;
1714 return 1;
1717 /* Convert the address X into something we can use. This is done by returning
1718 it unchanged unless it is a value; in the latter case we call cselib to get
1719 a more useful rtx. */
1722 get_addr (rtx x)
1724 cselib_val *v;
1725 struct elt_loc_list *l;
1727 if (GET_CODE (x) != VALUE)
1728 return x;
1729 v = CSELIB_VAL_PTR (x);
1730 if (v)
1732 for (l = v->locs; l; l = l->next)
1733 if (CONSTANT_P (l->loc))
1734 return l->loc;
1735 for (l = v->locs; l; l = l->next)
1736 if (!REG_P (l->loc) && !MEM_P (l->loc))
1737 return l->loc;
1738 if (v->locs)
1739 return v->locs->loc;
1741 return x;
1744 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1745 where SIZE is the size in bytes of the memory reference. If ADDR
1746 is not modified by the memory reference then ADDR is returned. */
1748 static rtx
1749 addr_side_effect_eval (rtx addr, int size, int n_refs)
1751 int offset = 0;
1753 switch (GET_CODE (addr))
1755 case PRE_INC:
1756 offset = (n_refs + 1) * size;
1757 break;
1758 case PRE_DEC:
1759 offset = -(n_refs + 1) * size;
1760 break;
1761 case POST_INC:
1762 offset = n_refs * size;
1763 break;
1764 case POST_DEC:
1765 offset = -n_refs * size;
1766 break;
1768 default:
1769 return addr;
1772 if (offset)
1773 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1774 GEN_INT (offset));
1775 else
1776 addr = XEXP (addr, 0);
1777 addr = canon_rtx (addr);
1779 return addr;
1782 /* Return one if X and Y (memory addresses) reference the
1783 same location in memory or if the references overlap.
1784 Return zero if they do not overlap, else return
1785 minus one in which case they still might reference the same location.
1787 C is an offset accumulator. When
1788 C is nonzero, we are testing aliases between X and Y + C.
1789 XSIZE is the size in bytes of the X reference,
1790 similarly YSIZE is the size in bytes for Y.
1791 Expect that canon_rtx has been already called for X and Y.
1793 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1794 referenced (the reference was BLKmode), so make the most pessimistic
1795 assumptions.
1797 If XSIZE or YSIZE is negative, we may access memory outside the object
1798 being referenced as a side effect. This can happen when using AND to
1799 align memory references, as is done on the Alpha.
1801 Nice to notice that varying addresses cannot conflict with fp if no
1802 local variables had their addresses taken, but that's too hard now.
1804 ??? Contrary to the tree alias oracle this does not return
1805 one for X + non-constant and Y + non-constant when X and Y are equal.
1806 If that is fixed the TBAA hack for union type-punning can be removed. */
1808 static int
1809 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1811 if (GET_CODE (x) == VALUE)
1813 if (REG_P (y))
1815 struct elt_loc_list *l = NULL;
1816 if (CSELIB_VAL_PTR (x))
1817 for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
1818 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1819 break;
1820 if (l)
1821 x = y;
1822 else
1823 x = get_addr (x);
1825 /* Don't call get_addr if y is the same VALUE. */
1826 else if (x != y)
1827 x = get_addr (x);
1829 if (GET_CODE (y) == VALUE)
1831 if (REG_P (x))
1833 struct elt_loc_list *l = NULL;
1834 if (CSELIB_VAL_PTR (y))
1835 for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
1836 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1837 break;
1838 if (l)
1839 y = x;
1840 else
1841 y = get_addr (y);
1843 /* Don't call get_addr if x is the same VALUE. */
1844 else if (y != x)
1845 y = get_addr (y);
1847 if (GET_CODE (x) == HIGH)
1848 x = XEXP (x, 0);
1849 else if (GET_CODE (x) == LO_SUM)
1850 x = XEXP (x, 1);
1851 else
1852 x = addr_side_effect_eval (x, xsize, 0);
1853 if (GET_CODE (y) == HIGH)
1854 y = XEXP (y, 0);
1855 else if (GET_CODE (y) == LO_SUM)
1856 y = XEXP (y, 1);
1857 else
1858 y = addr_side_effect_eval (y, ysize, 0);
1860 if (rtx_equal_for_memref_p (x, y))
1862 if (xsize <= 0 || ysize <= 0)
1863 return 1;
1864 if (c >= 0 && xsize > c)
1865 return 1;
1866 if (c < 0 && ysize+c > 0)
1867 return 1;
1868 return 0;
1871 /* This code used to check for conflicts involving stack references and
1872 globals but the base address alias code now handles these cases. */
1874 if (GET_CODE (x) == PLUS)
1876 /* The fact that X is canonicalized means that this
1877 PLUS rtx is canonicalized. */
1878 rtx x0 = XEXP (x, 0);
1879 rtx x1 = XEXP (x, 1);
1881 if (GET_CODE (y) == PLUS)
1883 /* The fact that Y is canonicalized means that this
1884 PLUS rtx is canonicalized. */
1885 rtx y0 = XEXP (y, 0);
1886 rtx y1 = XEXP (y, 1);
1888 if (rtx_equal_for_memref_p (x1, y1))
1889 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1890 if (rtx_equal_for_memref_p (x0, y0))
1891 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1892 if (CONST_INT_P (x1))
1894 if (CONST_INT_P (y1))
1895 return memrefs_conflict_p (xsize, x0, ysize, y0,
1896 c - INTVAL (x1) + INTVAL (y1));
1897 else
1898 return memrefs_conflict_p (xsize, x0, ysize, y,
1899 c - INTVAL (x1));
1901 else if (CONST_INT_P (y1))
1902 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1904 return -1;
1906 else if (CONST_INT_P (x1))
1907 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1909 else if (GET_CODE (y) == PLUS)
1911 /* The fact that Y is canonicalized means that this
1912 PLUS rtx is canonicalized. */
1913 rtx y0 = XEXP (y, 0);
1914 rtx y1 = XEXP (y, 1);
1916 if (CONST_INT_P (y1))
1917 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1918 else
1919 return -1;
1922 if (GET_CODE (x) == GET_CODE (y))
1923 switch (GET_CODE (x))
1925 case MULT:
1927 /* Handle cases where we expect the second operands to be the
1928 same, and check only whether the first operand would conflict
1929 or not. */
1930 rtx x0, y0;
1931 rtx x1 = canon_rtx (XEXP (x, 1));
1932 rtx y1 = canon_rtx (XEXP (y, 1));
1933 if (! rtx_equal_for_memref_p (x1, y1))
1934 return -1;
1935 x0 = canon_rtx (XEXP (x, 0));
1936 y0 = canon_rtx (XEXP (y, 0));
1937 if (rtx_equal_for_memref_p (x0, y0))
1938 return (xsize == 0 || ysize == 0
1939 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1941 /* Can't properly adjust our sizes. */
1942 if (!CONST_INT_P (x1))
1943 return -1;
1944 xsize /= INTVAL (x1);
1945 ysize /= INTVAL (x1);
1946 c /= INTVAL (x1);
1947 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1950 default:
1951 break;
1954 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1955 as an access with indeterminate size. Assume that references
1956 besides AND are aligned, so if the size of the other reference is
1957 at least as large as the alignment, assume no other overlap. */
1958 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
1960 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1961 xsize = -1;
1962 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1964 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1966 /* ??? If we are indexing far enough into the array/structure, we
1967 may yet be able to determine that we can not overlap. But we
1968 also need to that we are far enough from the end not to overlap
1969 a following reference, so we do nothing with that for now. */
1970 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1971 ysize = -1;
1972 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1975 if (CONSTANT_P (x))
1977 if (CONST_INT_P (x) && CONST_INT_P (y))
1979 c += (INTVAL (y) - INTVAL (x));
1980 return (xsize <= 0 || ysize <= 0
1981 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1984 if (GET_CODE (x) == CONST)
1986 if (GET_CODE (y) == CONST)
1987 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1988 ysize, canon_rtx (XEXP (y, 0)), c);
1989 else
1990 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1991 ysize, y, c);
1993 if (GET_CODE (y) == CONST)
1994 return memrefs_conflict_p (xsize, x, ysize,
1995 canon_rtx (XEXP (y, 0)), c);
1997 if (CONSTANT_P (y))
1998 return (xsize <= 0 || ysize <= 0
1999 || (rtx_equal_for_memref_p (x, y)
2000 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2002 return -1;
2005 return -1;
2008 /* Functions to compute memory dependencies.
2010 Since we process the insns in execution order, we can build tables
2011 to keep track of what registers are fixed (and not aliased), what registers
2012 are varying in known ways, and what registers are varying in unknown
2013 ways.
2015 If both memory references are volatile, then there must always be a
2016 dependence between the two references, since their order can not be
2017 changed. A volatile and non-volatile reference can be interchanged
2018 though.
2020 A MEM_IN_STRUCT reference at a non-AND varying address can never
2021 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
2022 also must allow AND addresses, because they may generate accesses
2023 outside the object being referenced. This is used to generate
2024 aligned addresses from unaligned addresses, for instance, the alpha
2025 storeqi_unaligned pattern. */
2027 /* Read dependence: X is read after read in MEM takes place. There can
2028 only be a dependence here if both reads are volatile. */
2031 read_dependence (const_rtx mem, const_rtx x)
2033 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2036 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
2037 MEM2 is a reference to a structure at a varying address, or returns
2038 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
2039 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
2040 to decide whether or not an address may vary; it should return
2041 nonzero whenever variation is possible.
2042 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
2044 static const_rtx
2045 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
2046 rtx mem2_addr,
2047 bool (*varies_p) (const_rtx, bool))
2049 if (! flag_strict_aliasing)
2050 return NULL_RTX;
2052 if (MEM_ALIAS_SET (mem2)
2053 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2054 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2055 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2056 varying address. */
2057 return mem1;
2059 if (MEM_ALIAS_SET (mem1)
2060 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2061 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2062 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2063 varying address. */
2064 return mem2;
2066 return NULL_RTX;
2069 /* Returns nonzero if something about the mode or address format MEM1
2070 indicates that it might well alias *anything*. */
2072 static int
2073 aliases_everything_p (const_rtx mem)
2075 if (GET_CODE (XEXP (mem, 0)) == AND)
2076 /* If the address is an AND, it's very hard to know at what it is
2077 actually pointing. */
2078 return 1;
2080 return 0;
2083 /* Return true if we can determine that the fields referenced cannot
2084 overlap for any pair of objects. */
2086 static bool
2087 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2089 const_tree fieldx, fieldy, typex, typey, orig_y;
2091 if (!flag_strict_aliasing)
2092 return false;
2096 /* The comparison has to be done at a common type, since we don't
2097 know how the inheritance hierarchy works. */
2098 orig_y = y;
2101 fieldx = TREE_OPERAND (x, 1);
2102 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2104 y = orig_y;
2107 fieldy = TREE_OPERAND (y, 1);
2108 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2110 if (typex == typey)
2111 goto found;
2113 y = TREE_OPERAND (y, 0);
2115 while (y && TREE_CODE (y) == COMPONENT_REF);
2117 x = TREE_OPERAND (x, 0);
2119 while (x && TREE_CODE (x) == COMPONENT_REF);
2120 /* Never found a common type. */
2121 return false;
2123 found:
2124 /* If we're left with accessing different fields of a structure,
2125 then no overlap. */
2126 if (TREE_CODE (typex) == RECORD_TYPE
2127 && fieldx != fieldy)
2128 return true;
2130 /* The comparison on the current field failed. If we're accessing
2131 a very nested structure, look at the next outer level. */
2132 x = TREE_OPERAND (x, 0);
2133 y = TREE_OPERAND (y, 0);
2135 while (x && y
2136 && TREE_CODE (x) == COMPONENT_REF
2137 && TREE_CODE (y) == COMPONENT_REF);
2139 return false;
2142 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2144 static tree
2145 decl_for_component_ref (tree x)
2149 x = TREE_OPERAND (x, 0);
2151 while (x && TREE_CODE (x) == COMPONENT_REF);
2153 return x && DECL_P (x) ? x : NULL_TREE;
2156 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2157 offset of the field reference. */
2159 static rtx
2160 adjust_offset_for_component_ref (tree x, rtx offset)
2162 HOST_WIDE_INT ioffset;
2164 if (! offset)
2165 return NULL_RTX;
2167 ioffset = INTVAL (offset);
2170 tree offset = component_ref_field_offset (x);
2171 tree field = TREE_OPERAND (x, 1);
2173 if (! host_integerp (offset, 1))
2174 return NULL_RTX;
2175 ioffset += (tree_low_cst (offset, 1)
2176 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2177 / BITS_PER_UNIT));
2179 x = TREE_OPERAND (x, 0);
2181 while (x && TREE_CODE (x) == COMPONENT_REF);
2183 return GEN_INT (ioffset);
2186 /* Return nonzero if we can determine the exprs corresponding to memrefs
2187 X and Y and they do not overlap. */
2190 nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2192 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2193 rtx rtlx, rtly;
2194 rtx basex, basey;
2195 rtx moffsetx, moffsety;
2196 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2198 /* Unless both have exprs, we can't tell anything. */
2199 if (exprx == 0 || expry == 0)
2200 return 0;
2202 /* For spill-slot accesses make sure we have valid offsets. */
2203 if ((exprx == get_spill_slot_decl (false)
2204 && ! MEM_OFFSET (x))
2205 || (expry == get_spill_slot_decl (false)
2206 && ! MEM_OFFSET (y)))
2207 return 0;
2209 /* If both are field references, we may be able to determine something. */
2210 if (TREE_CODE (exprx) == COMPONENT_REF
2211 && TREE_CODE (expry) == COMPONENT_REF
2212 && nonoverlapping_component_refs_p (exprx, expry))
2213 return 1;
2216 /* If the field reference test failed, look at the DECLs involved. */
2217 moffsetx = MEM_OFFSET (x);
2218 if (TREE_CODE (exprx) == COMPONENT_REF)
2220 tree t = decl_for_component_ref (exprx);
2221 if (! t)
2222 return 0;
2223 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2224 exprx = t;
2227 moffsety = MEM_OFFSET (y);
2228 if (TREE_CODE (expry) == COMPONENT_REF)
2230 tree t = decl_for_component_ref (expry);
2231 if (! t)
2232 return 0;
2233 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2234 expry = t;
2237 if (! DECL_P (exprx) || ! DECL_P (expry))
2238 return 0;
2240 /* With invalid code we can end up storing into the constant pool.
2241 Bail out to avoid ICEing when creating RTL for this.
2242 See gfortran.dg/lto/20091028-2_0.f90. */
2243 if (TREE_CODE (exprx) == CONST_DECL
2244 || TREE_CODE (expry) == CONST_DECL)
2245 return 1;
2247 rtlx = DECL_RTL (exprx);
2248 rtly = DECL_RTL (expry);
2250 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2251 can't overlap unless they are the same because we never reuse that part
2252 of the stack frame used for locals for spilled pseudos. */
2253 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2254 && ! rtx_equal_p (rtlx, rtly))
2255 return 1;
2257 /* If we have MEMs refering to different address spaces (which can
2258 potentially overlap), we cannot easily tell from the addresses
2259 whether the references overlap. */
2260 if (MEM_P (rtlx) && MEM_P (rtly)
2261 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2262 return 0;
2264 /* Get the base and offsets of both decls. If either is a register, we
2265 know both are and are the same, so use that as the base. The only
2266 we can avoid overlap is if we can deduce that they are nonoverlapping
2267 pieces of that decl, which is very rare. */
2268 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2269 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2270 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2272 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2273 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2274 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2276 /* If the bases are different, we know they do not overlap if both
2277 are constants or if one is a constant and the other a pointer into the
2278 stack frame. Otherwise a different base means we can't tell if they
2279 overlap or not. */
2280 if (! rtx_equal_p (basex, basey))
2281 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2282 || (CONSTANT_P (basex) && REG_P (basey)
2283 && REGNO_PTR_FRAME_P (REGNO (basey)))
2284 || (CONSTANT_P (basey) && REG_P (basex)
2285 && REGNO_PTR_FRAME_P (REGNO (basex))));
2287 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2288 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2289 : -1);
2290 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2291 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2292 -1);
2294 /* If we have an offset for either memref, it can update the values computed
2295 above. */
2296 if (moffsetx)
2297 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2298 if (moffsety)
2299 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2301 /* If a memref has both a size and an offset, we can use the smaller size.
2302 We can't do this if the offset isn't known because we must view this
2303 memref as being anywhere inside the DECL's MEM. */
2304 if (MEM_SIZE (x) && moffsetx)
2305 sizex = INTVAL (MEM_SIZE (x));
2306 if (MEM_SIZE (y) && moffsety)
2307 sizey = INTVAL (MEM_SIZE (y));
2309 /* Put the values of the memref with the lower offset in X's values. */
2310 if (offsetx > offsety)
2312 tem = offsetx, offsetx = offsety, offsety = tem;
2313 tem = sizex, sizex = sizey, sizey = tem;
2316 /* If we don't know the size of the lower-offset value, we can't tell
2317 if they conflict. Otherwise, we do the test. */
2318 return sizex >= 0 && offsety >= offsetx + sizex;
2321 /* Helper for true_dependence and canon_true_dependence.
2322 Checks for true dependence: X is read after store in MEM takes place.
2324 VARIES is the function that should be used as rtx_varies function.
2326 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2327 NULL_RTX, and the canonical addresses of MEM and X are both computed
2328 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2330 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2332 Returns 1 if there is a true dependence, 0 otherwise. */
2334 static int
2335 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2336 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool),
2337 bool mem_canonicalized)
2339 rtx base;
2340 int ret;
2342 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2343 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2345 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2346 return 1;
2348 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2349 This is used in epilogue deallocation functions, and in cselib. */
2350 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2351 return 1;
2352 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2353 return 1;
2354 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2355 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2356 return 1;
2358 /* Read-only memory is by definition never modified, and therefore can't
2359 conflict with anything. We don't expect to find read-only set on MEM,
2360 but stupid user tricks can produce them, so don't die. */
2361 if (MEM_READONLY_P (x))
2362 return 0;
2364 /* If we have MEMs refering to different address spaces (which can
2365 potentially overlap), we cannot easily tell from the addresses
2366 whether the references overlap. */
2367 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2368 return 1;
2370 if (! mem_addr)
2372 mem_addr = XEXP (mem, 0);
2373 if (mem_mode == VOIDmode)
2374 mem_mode = GET_MODE (mem);
2377 if (! x_addr)
2379 x_addr = XEXP (x, 0);
2380 if (!((GET_CODE (x_addr) == VALUE
2381 && GET_CODE (mem_addr) != VALUE
2382 && reg_mentioned_p (x_addr, mem_addr))
2383 || (GET_CODE (x_addr) != VALUE
2384 && GET_CODE (mem_addr) == VALUE
2385 && reg_mentioned_p (mem_addr, x_addr))))
2387 x_addr = get_addr (x_addr);
2388 if (! mem_canonicalized)
2389 mem_addr = get_addr (mem_addr);
2393 base = find_base_term (x_addr);
2394 if (base && (GET_CODE (base) == LABEL_REF
2395 || (GET_CODE (base) == SYMBOL_REF
2396 && CONSTANT_POOL_ADDRESS_P (base))))
2397 return 0;
2399 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2400 return 0;
2402 x_addr = canon_rtx (x_addr);
2403 if (!mem_canonicalized)
2404 mem_addr = canon_rtx (mem_addr);
2406 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2407 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2408 return ret;
2410 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2411 return 0;
2413 if (nonoverlapping_memrefs_p (mem, x))
2414 return 0;
2416 if (aliases_everything_p (x))
2417 return 1;
2419 /* We cannot use aliases_everything_p to test MEM, since we must look
2420 at MEM_ADDR, rather than XEXP (mem, 0). */
2421 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2422 return 1;
2424 /* ??? In true_dependence we also allow BLKmode to alias anything. Why
2425 don't we do this in anti_dependence and output_dependence? */
2426 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2427 return 1;
2429 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2430 return 0;
2432 return rtx_refs_may_alias_p (x, mem, true);
2435 /* True dependence: X is read after store in MEM takes place. */
2438 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2439 bool (*varies) (const_rtx, bool))
2441 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2442 x, NULL_RTX, varies,
2443 /*mem_canonicalized=*/false);
2446 /* Canonical true dependence: X is read after store in MEM takes place.
2447 Variant of true_dependence which assumes MEM has already been
2448 canonicalized (hence we no longer do that here).
2449 The mem_addr argument has been added, since true_dependence_1 computed
2450 this value prior to canonicalizing. */
2453 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2454 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2456 return true_dependence_1 (mem, mem_mode, mem_addr,
2457 x, x_addr, varies,
2458 /*mem_canonicalized=*/true);
2461 /* Returns nonzero if a write to X might alias a previous read from
2462 (or, if WRITEP is nonzero, a write to) MEM. */
2464 static int
2465 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2467 rtx x_addr, mem_addr;
2468 const_rtx fixed_scalar;
2469 rtx base;
2470 int ret;
2472 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2473 return 1;
2475 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2476 This is used in epilogue deallocation functions. */
2477 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2478 return 1;
2479 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2480 return 1;
2481 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2482 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2483 return 1;
2485 /* A read from read-only memory can't conflict with read-write memory. */
2486 if (!writep && MEM_READONLY_P (mem))
2487 return 0;
2489 /* If we have MEMs refering to different address spaces (which can
2490 potentially overlap), we cannot easily tell from the addresses
2491 whether the references overlap. */
2492 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2493 return 1;
2495 x_addr = XEXP (x, 0);
2496 mem_addr = XEXP (mem, 0);
2497 if (!((GET_CODE (x_addr) == VALUE
2498 && GET_CODE (mem_addr) != VALUE
2499 && reg_mentioned_p (x_addr, mem_addr))
2500 || (GET_CODE (x_addr) != VALUE
2501 && GET_CODE (mem_addr) == VALUE
2502 && reg_mentioned_p (mem_addr, x_addr))))
2504 x_addr = get_addr (x_addr);
2505 mem_addr = get_addr (mem_addr);
2508 if (! writep)
2510 base = find_base_term (mem_addr);
2511 if (base && (GET_CODE (base) == LABEL_REF
2512 || (GET_CODE (base) == SYMBOL_REF
2513 && CONSTANT_POOL_ADDRESS_P (base))))
2514 return 0;
2517 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2518 GET_MODE (mem)))
2519 return 0;
2521 x_addr = canon_rtx (x_addr);
2522 mem_addr = canon_rtx (mem_addr);
2524 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2525 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2526 return ret;
2528 if (nonoverlapping_memrefs_p (x, mem))
2529 return 0;
2531 fixed_scalar
2532 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2533 rtx_addr_varies_p);
2535 if ((fixed_scalar == mem && !aliases_everything_p (x))
2536 || (fixed_scalar == x && !aliases_everything_p (mem)))
2537 return 0;
2539 return rtx_refs_may_alias_p (x, mem, false);
2542 /* Anti dependence: X is written after read in MEM takes place. */
2545 anti_dependence (const_rtx mem, const_rtx x)
2547 return write_dependence_p (mem, x, /*writep=*/0);
2550 /* Output dependence: X is written after store in MEM takes place. */
2553 output_dependence (const_rtx mem, const_rtx x)
2555 return write_dependence_p (mem, x, /*writep=*/1);
2559 void
2560 init_alias_target (void)
2562 int i;
2564 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2566 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2567 /* Check whether this register can hold an incoming pointer
2568 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2569 numbers, so translate if necessary due to register windows. */
2570 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2571 && HARD_REGNO_MODE_OK (i, Pmode))
2572 static_reg_base_value[i]
2573 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2575 static_reg_base_value[STACK_POINTER_REGNUM]
2576 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2577 static_reg_base_value[ARG_POINTER_REGNUM]
2578 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2579 static_reg_base_value[FRAME_POINTER_REGNUM]
2580 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2581 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2582 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2583 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2584 #endif
2587 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2588 to be memory reference. */
2589 static bool memory_modified;
2590 static void
2591 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2593 if (MEM_P (x))
2595 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2596 memory_modified = true;
2601 /* Return true when INSN possibly modify memory contents of MEM
2602 (i.e. address can be modified). */
2603 bool
2604 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2606 if (!INSN_P (insn))
2607 return false;
2608 memory_modified = false;
2609 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2610 return memory_modified;
2613 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2614 array. */
2616 void
2617 init_alias_analysis (void)
2619 unsigned int maxreg = max_reg_num ();
2620 int changed, pass;
2621 int i;
2622 unsigned int ui;
2623 rtx insn;
2625 timevar_push (TV_ALIAS_ANALYSIS);
2627 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2628 reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
2629 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2631 /* If we have memory allocated from the previous run, use it. */
2632 if (old_reg_base_value)
2633 reg_base_value = old_reg_base_value;
2635 if (reg_base_value)
2636 VEC_truncate (rtx, reg_base_value, 0);
2638 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2640 new_reg_base_value = XNEWVEC (rtx, maxreg);
2641 reg_seen = XNEWVEC (char, maxreg);
2643 /* The basic idea is that each pass through this loop will use the
2644 "constant" information from the previous pass to propagate alias
2645 information through another level of assignments.
2647 This could get expensive if the assignment chains are long. Maybe
2648 we should throttle the number of iterations, possibly based on
2649 the optimization level or flag_expensive_optimizations.
2651 We could propagate more information in the first pass by making use
2652 of DF_REG_DEF_COUNT to determine immediately that the alias information
2653 for a pseudo is "constant".
2655 A program with an uninitialized variable can cause an infinite loop
2656 here. Instead of doing a full dataflow analysis to detect such problems
2657 we just cap the number of iterations for the loop.
2659 The state of the arrays for the set chain in question does not matter
2660 since the program has undefined behavior. */
2662 pass = 0;
2665 /* Assume nothing will change this iteration of the loop. */
2666 changed = 0;
2668 /* We want to assign the same IDs each iteration of this loop, so
2669 start counting from zero each iteration of the loop. */
2670 unique_id = 0;
2672 /* We're at the start of the function each iteration through the
2673 loop, so we're copying arguments. */
2674 copying_arguments = true;
2676 /* Wipe the potential alias information clean for this pass. */
2677 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2679 /* Wipe the reg_seen array clean. */
2680 memset (reg_seen, 0, maxreg);
2682 /* Mark all hard registers which may contain an address.
2683 The stack, frame and argument pointers may contain an address.
2684 An argument register which can hold a Pmode value may contain
2685 an address even if it is not in BASE_REGS.
2687 The address expression is VOIDmode for an argument and
2688 Pmode for other registers. */
2690 memcpy (new_reg_base_value, static_reg_base_value,
2691 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2693 /* Walk the insns adding values to the new_reg_base_value array. */
2694 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2696 if (INSN_P (insn))
2698 rtx note, set;
2700 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2701 /* The prologue/epilogue insns are not threaded onto the
2702 insn chain until after reload has completed. Thus,
2703 there is no sense wasting time checking if INSN is in
2704 the prologue/epilogue until after reload has completed. */
2705 if (reload_completed
2706 && prologue_epilogue_contains (insn))
2707 continue;
2708 #endif
2710 /* If this insn has a noalias note, process it, Otherwise,
2711 scan for sets. A simple set will have no side effects
2712 which could change the base value of any other register. */
2714 if (GET_CODE (PATTERN (insn)) == SET
2715 && REG_NOTES (insn) != 0
2716 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2717 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2718 else
2719 note_stores (PATTERN (insn), record_set, NULL);
2721 set = single_set (insn);
2723 if (set != 0
2724 && REG_P (SET_DEST (set))
2725 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2727 unsigned int regno = REGNO (SET_DEST (set));
2728 rtx src = SET_SRC (set);
2729 rtx t;
2731 note = find_reg_equal_equiv_note (insn);
2732 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2733 && DF_REG_DEF_COUNT (regno) != 1)
2734 note = NULL_RTX;
2736 if (note != NULL_RTX
2737 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2738 && ! rtx_varies_p (XEXP (note, 0), 1)
2739 && ! reg_overlap_mentioned_p (SET_DEST (set),
2740 XEXP (note, 0)))
2742 set_reg_known_value (regno, XEXP (note, 0));
2743 set_reg_known_equiv_p (regno,
2744 REG_NOTE_KIND (note) == REG_EQUIV);
2746 else if (DF_REG_DEF_COUNT (regno) == 1
2747 && GET_CODE (src) == PLUS
2748 && REG_P (XEXP (src, 0))
2749 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2750 && CONST_INT_P (XEXP (src, 1)))
2752 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2753 set_reg_known_value (regno, t);
2754 set_reg_known_equiv_p (regno, 0);
2756 else if (DF_REG_DEF_COUNT (regno) == 1
2757 && ! rtx_varies_p (src, 1))
2759 set_reg_known_value (regno, src);
2760 set_reg_known_equiv_p (regno, 0);
2764 else if (NOTE_P (insn)
2765 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2766 copying_arguments = false;
2769 /* Now propagate values from new_reg_base_value to reg_base_value. */
2770 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2772 for (ui = 0; ui < maxreg; ui++)
2774 if (new_reg_base_value[ui]
2775 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2776 && ! rtx_equal_p (new_reg_base_value[ui],
2777 VEC_index (rtx, reg_base_value, ui)))
2779 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2780 changed = 1;
2784 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2786 /* Fill in the remaining entries. */
2787 for (i = 0; i < (int)reg_known_value_size; i++)
2788 if (reg_known_value[i] == 0)
2789 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2791 /* Clean up. */
2792 free (new_reg_base_value);
2793 new_reg_base_value = 0;
2794 free (reg_seen);
2795 reg_seen = 0;
2796 timevar_pop (TV_ALIAS_ANALYSIS);
2799 void
2800 end_alias_analysis (void)
2802 old_reg_base_value = reg_base_value;
2803 ggc_free (reg_known_value);
2804 reg_known_value = 0;
2805 reg_known_value_size = 0;
2806 free (reg_known_equiv_p);
2807 reg_known_equiv_p = 0;
2810 #include "gt-alias.h"