[NDS32] new attribute no_prologue and new option -mret-in-naked-func.
[official-gcc.git] / gcc / ada / sem_res.adb
blobd11296c9e57fb2ce0d86442c89b95455cdc9fe51
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
145 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
146 -- If a default expression in entry call N depends on the discriminants
147 -- of the task, it must be replaced with a reference to the discriminant
148 -- of the task being called.
150 procedure Resolve_Op_Concat_Arg
151 (N : Node_Id;
152 Arg : Node_Id;
153 Typ : Entity_Id;
154 Is_Comp : Boolean);
155 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
156 -- concatenation operator. The operand is either of the array type or of
157 -- the component type. If the operand is an aggregate, and the component
158 -- type is composite, this is ambiguous if component type has aggregates.
160 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
161 -- Does the first part of the work of Resolve_Op_Concat
163 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
164 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
165 -- has been resolved. See Resolve_Op_Concat for details.
167 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
168 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
169 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
170 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
171 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
172 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
173 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
204 function Operator_Kind
205 (Op_Name : Name_Id;
206 Is_Binary : Boolean) return Node_Kind;
207 -- Utility to map the name of an operator into the corresponding Node. Used
208 -- by other node rewriting procedures.
210 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
211 -- Resolve actuals of call, and add default expressions for missing ones.
212 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
213 -- called subprogram.
215 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
216 -- Called from Resolve_Call, when the prefix denotes an entry or element
217 -- of entry family. Actuals are resolved as for subprograms, and the node
218 -- is rebuilt as an entry call. Also called for protected operations. Typ
219 -- is the context type, which is used when the operation is a protected
220 -- function with no arguments, and the return value is indexed.
222 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
223 -- A call to a user-defined intrinsic operator is rewritten as a call to
224 -- the corresponding predefined operator, with suitable conversions. Note
225 -- that this applies only for intrinsic operators that denote predefined
226 -- operators, not ones that are intrinsic imports of back-end builtins.
228 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
229 -- Ditto, for arithmetic unary operators
231 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
232 -- If an operator node resolves to a call to a user-defined operator,
233 -- rewrite the node as a function call.
235 procedure Make_Call_Into_Operator
236 (N : Node_Id;
237 Typ : Entity_Id;
238 Op_Id : Entity_Id);
239 -- Inverse transformation: if an operator is given in functional notation,
240 -- then after resolving the node, transform into an operator node, so that
241 -- operands are resolved properly. Recall that predefined operators do not
242 -- have a full signature and special resolution rules apply.
244 procedure Rewrite_Renamed_Operator
245 (N : Node_Id;
246 Op : Entity_Id;
247 Typ : Entity_Id);
248 -- An operator can rename another, e.g. in an instantiation. In that
249 -- case, the proper operator node must be constructed and resolved.
251 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
252 -- The String_Literal_Subtype is built for all strings that are not
253 -- operands of a static concatenation operation. If the argument is not
254 -- a N_String_Literal node, then the call has no effect.
256 procedure Set_Slice_Subtype (N : Node_Id);
257 -- Build subtype of array type, with the range specified by the slice
259 procedure Simplify_Type_Conversion (N : Node_Id);
260 -- Called after N has been resolved and evaluated, but before range checks
261 -- have been applied. Currently simplifies a combination of floating-point
262 -- to integer conversion and Rounding or Truncation attribute.
264 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
265 -- A universal_fixed expression in an universal context is unambiguous if
266 -- there is only one applicable fixed point type. Determining whether there
267 -- is only one requires a search over all visible entities, and happens
268 -- only in very pathological cases (see 6115-006).
270 -------------------------
271 -- Ambiguous_Character --
272 -------------------------
274 procedure Ambiguous_Character (C : Node_Id) is
275 E : Entity_Id;
277 begin
278 if Nkind (C) = N_Character_Literal then
279 Error_Msg_N ("ambiguous character literal", C);
281 -- First the ones in Standard
283 Error_Msg_N ("\\possible interpretation: Character!", C);
284 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
286 -- Include Wide_Wide_Character in Ada 2005 mode
288 if Ada_Version >= Ada_2005 then
289 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
290 end if;
292 -- Now any other types that match
294 E := Current_Entity (C);
295 while Present (E) loop
296 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
297 E := Homonym (E);
298 end loop;
299 end if;
300 end Ambiguous_Character;
302 -------------------------
303 -- Analyze_And_Resolve --
304 -------------------------
306 procedure Analyze_And_Resolve (N : Node_Id) is
307 begin
308 Analyze (N);
309 Resolve (N);
310 end Analyze_And_Resolve;
312 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
313 begin
314 Analyze (N);
315 Resolve (N, Typ);
316 end Analyze_And_Resolve;
318 -- Versions with check(s) suppressed
320 procedure Analyze_And_Resolve
321 (N : Node_Id;
322 Typ : Entity_Id;
323 Suppress : Check_Id)
325 Scop : constant Entity_Id := Current_Scope;
327 begin
328 if Suppress = All_Checks then
329 declare
330 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
331 begin
332 Scope_Suppress.Suppress := (others => True);
333 Analyze_And_Resolve (N, Typ);
334 Scope_Suppress.Suppress := Sva;
335 end;
337 else
338 declare
339 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
340 begin
341 Scope_Suppress.Suppress (Suppress) := True;
342 Analyze_And_Resolve (N, Typ);
343 Scope_Suppress.Suppress (Suppress) := Svg;
344 end;
345 end if;
347 if Current_Scope /= Scop
348 and then Scope_Is_Transient
349 then
350 -- This can only happen if a transient scope was created for an inner
351 -- expression, which will be removed upon completion of the analysis
352 -- of an enclosing construct. The transient scope must have the
353 -- suppress status of the enclosing environment, not of this Analyze
354 -- call.
356 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
357 Scope_Suppress;
358 end if;
359 end Analyze_And_Resolve;
361 procedure Analyze_And_Resolve
362 (N : Node_Id;
363 Suppress : Check_Id)
365 Scop : constant Entity_Id := Current_Scope;
367 begin
368 if Suppress = All_Checks then
369 declare
370 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
371 begin
372 Scope_Suppress.Suppress := (others => True);
373 Analyze_And_Resolve (N);
374 Scope_Suppress.Suppress := Sva;
375 end;
377 else
378 declare
379 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
380 begin
381 Scope_Suppress.Suppress (Suppress) := True;
382 Analyze_And_Resolve (N);
383 Scope_Suppress.Suppress (Suppress) := Svg;
384 end;
385 end if;
387 if Current_Scope /= Scop and then Scope_Is_Transient then
388 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
389 Scope_Suppress;
390 end if;
391 end Analyze_And_Resolve;
393 ----------------------------
394 -- Check_Discriminant_Use --
395 ----------------------------
397 procedure Check_Discriminant_Use (N : Node_Id) is
398 PN : constant Node_Id := Parent (N);
399 Disc : constant Entity_Id := Entity (N);
400 P : Node_Id;
401 D : Node_Id;
403 begin
404 -- Any use in a spec-expression is legal
406 if In_Spec_Expression then
407 null;
409 elsif Nkind (PN) = N_Range then
411 -- Discriminant cannot be used to constrain a scalar type
413 P := Parent (PN);
415 if Nkind (P) = N_Range_Constraint
416 and then Nkind (Parent (P)) = N_Subtype_Indication
417 and then Nkind (Parent (Parent (P))) = N_Component_Definition
418 then
419 Error_Msg_N ("discriminant cannot constrain scalar type", N);
421 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
423 -- The following check catches the unusual case where a
424 -- discriminant appears within an index constraint that is part
425 -- of a larger expression within a constraint on a component,
426 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
427 -- check case of record components, and note that a similar check
428 -- should also apply in the case of discriminant constraints
429 -- below. ???
431 -- Note that the check for N_Subtype_Declaration below is to
432 -- detect the valid use of discriminants in the constraints of a
433 -- subtype declaration when this subtype declaration appears
434 -- inside the scope of a record type (which is syntactically
435 -- illegal, but which may be created as part of derived type
436 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
437 -- for more info.
439 if Ekind (Current_Scope) = E_Record_Type
440 and then Scope (Disc) = Current_Scope
441 and then not
442 (Nkind (Parent (P)) = N_Subtype_Indication
443 and then
444 Nkind_In (Parent (Parent (P)), N_Component_Definition,
445 N_Subtype_Declaration)
446 and then Paren_Count (N) = 0)
447 then
448 Error_Msg_N
449 ("discriminant must appear alone in component constraint", N);
450 return;
451 end if;
453 -- Detect a common error:
455 -- type R (D : Positive := 100) is record
456 -- Name : String (1 .. D);
457 -- end record;
459 -- The default value causes an object of type R to be allocated
460 -- with room for Positive'Last characters. The RM does not mandate
461 -- the allocation of the maximum size, but that is what GNAT does
462 -- so we should warn the programmer that there is a problem.
464 Check_Large : declare
465 SI : Node_Id;
466 T : Entity_Id;
467 TB : Node_Id;
468 CB : Entity_Id;
470 function Large_Storage_Type (T : Entity_Id) return Boolean;
471 -- Return True if type T has a large enough range that any
472 -- array whose index type covered the whole range of the type
473 -- would likely raise Storage_Error.
475 ------------------------
476 -- Large_Storage_Type --
477 ------------------------
479 function Large_Storage_Type (T : Entity_Id) return Boolean is
480 begin
481 -- The type is considered large if its bounds are known at
482 -- compile time and if it requires at least as many bits as
483 -- a Positive to store the possible values.
485 return Compile_Time_Known_Value (Type_Low_Bound (T))
486 and then Compile_Time_Known_Value (Type_High_Bound (T))
487 and then
488 Minimum_Size (T, Biased => True) >=
489 RM_Size (Standard_Positive);
490 end Large_Storage_Type;
492 -- Start of processing for Check_Large
494 begin
495 -- Check that the Disc has a large range
497 if not Large_Storage_Type (Etype (Disc)) then
498 goto No_Danger;
499 end if;
501 -- If the enclosing type is limited, we allocate only the
502 -- default value, not the maximum, and there is no need for
503 -- a warning.
505 if Is_Limited_Type (Scope (Disc)) then
506 goto No_Danger;
507 end if;
509 -- Check that it is the high bound
511 if N /= High_Bound (PN)
512 or else No (Discriminant_Default_Value (Disc))
513 then
514 goto No_Danger;
515 end if;
517 -- Check the array allows a large range at this bound. First
518 -- find the array
520 SI := Parent (P);
522 if Nkind (SI) /= N_Subtype_Indication then
523 goto No_Danger;
524 end if;
526 T := Entity (Subtype_Mark (SI));
528 if not Is_Array_Type (T) then
529 goto No_Danger;
530 end if;
532 -- Next, find the dimension
534 TB := First_Index (T);
535 CB := First (Constraints (P));
536 while True
537 and then Present (TB)
538 and then Present (CB)
539 and then CB /= PN
540 loop
541 Next_Index (TB);
542 Next (CB);
543 end loop;
545 if CB /= PN then
546 goto No_Danger;
547 end if;
549 -- Now, check the dimension has a large range
551 if not Large_Storage_Type (Etype (TB)) then
552 goto No_Danger;
553 end if;
555 -- Warn about the danger
557 Error_Msg_N
558 ("??creation of & object may raise Storage_Error!",
559 Scope (Disc));
561 <<No_Danger>>
562 null;
564 end Check_Large;
565 end if;
567 -- Legal case is in index or discriminant constraint
569 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
570 N_Discriminant_Association)
571 then
572 if Paren_Count (N) > 0 then
573 Error_Msg_N
574 ("discriminant in constraint must appear alone", N);
576 elsif Nkind (N) = N_Expanded_Name
577 and then Comes_From_Source (N)
578 then
579 Error_Msg_N
580 ("discriminant must appear alone as a direct name", N);
581 end if;
583 return;
585 -- Otherwise, context is an expression. It should not be within (i.e. a
586 -- subexpression of) a constraint for a component.
588 else
589 D := PN;
590 P := Parent (PN);
591 while not Nkind_In (P, N_Component_Declaration,
592 N_Subtype_Indication,
593 N_Entry_Declaration)
594 loop
595 D := P;
596 P := Parent (P);
597 exit when No (P);
598 end loop;
600 -- If the discriminant is used in an expression that is a bound of a
601 -- scalar type, an Itype is created and the bounds are attached to
602 -- its range, not to the original subtype indication. Such use is of
603 -- course a double fault.
605 if (Nkind (P) = N_Subtype_Indication
606 and then Nkind_In (Parent (P), N_Component_Definition,
607 N_Derived_Type_Definition)
608 and then D = Constraint (P))
610 -- The constraint itself may be given by a subtype indication,
611 -- rather than by a more common discrete range.
613 or else (Nkind (P) = N_Subtype_Indication
614 and then
615 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
616 or else Nkind (P) = N_Entry_Declaration
617 or else Nkind (D) = N_Defining_Identifier
618 then
619 Error_Msg_N
620 ("discriminant in constraint must appear alone", N);
621 end if;
622 end if;
623 end Check_Discriminant_Use;
625 --------------------------------
626 -- Check_For_Visible_Operator --
627 --------------------------------
629 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
630 begin
631 if Is_Invisible_Operator (N, T) then
632 Error_Msg_NE -- CODEFIX
633 ("operator for} is not directly visible!", N, First_Subtype (T));
634 Error_Msg_N -- CODEFIX
635 ("use clause would make operation legal!", N);
636 end if;
637 end Check_For_Visible_Operator;
639 ----------------------------------
640 -- Check_Fully_Declared_Prefix --
641 ----------------------------------
643 procedure Check_Fully_Declared_Prefix
644 (Typ : Entity_Id;
645 Pref : Node_Id)
647 begin
648 -- Check that the designated type of the prefix of a dereference is
649 -- not an incomplete type. This cannot be done unconditionally, because
650 -- dereferences of private types are legal in default expressions. This
651 -- case is taken care of in Check_Fully_Declared, called below. There
652 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
654 -- This consideration also applies to similar checks for allocators,
655 -- qualified expressions, and type conversions.
657 -- An additional exception concerns other per-object expressions that
658 -- are not directly related to component declarations, in particular
659 -- representation pragmas for tasks. These will be per-object
660 -- expressions if they depend on discriminants or some global entity.
661 -- If the task has access discriminants, the designated type may be
662 -- incomplete at the point the expression is resolved. This resolution
663 -- takes place within the body of the initialization procedure, where
664 -- the discriminant is replaced by its discriminal.
666 if Is_Entity_Name (Pref)
667 and then Ekind (Entity (Pref)) = E_In_Parameter
668 then
669 null;
671 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
672 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
673 -- Analyze_Object_Renaming, and Freeze_Entity.
675 elsif Ada_Version >= Ada_2005
676 and then Is_Entity_Name (Pref)
677 and then Is_Access_Type (Etype (Pref))
678 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
679 E_Incomplete_Type
680 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
681 then
682 null;
683 else
684 Check_Fully_Declared (Typ, Parent (Pref));
685 end if;
686 end Check_Fully_Declared_Prefix;
688 ------------------------------
689 -- Check_Infinite_Recursion --
690 ------------------------------
692 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
693 P : Node_Id;
694 C : Node_Id;
696 function Same_Argument_List return Boolean;
697 -- Check whether list of actuals is identical to list of formals of
698 -- called function (which is also the enclosing scope).
700 ------------------------
701 -- Same_Argument_List --
702 ------------------------
704 function Same_Argument_List return Boolean is
705 A : Node_Id;
706 F : Entity_Id;
707 Subp : Entity_Id;
709 begin
710 if not Is_Entity_Name (Name (N)) then
711 return False;
712 else
713 Subp := Entity (Name (N));
714 end if;
716 F := First_Formal (Subp);
717 A := First_Actual (N);
718 while Present (F) and then Present (A) loop
719 if not Is_Entity_Name (A) or else Entity (A) /= F then
720 return False;
721 end if;
723 Next_Actual (A);
724 Next_Formal (F);
725 end loop;
727 return True;
728 end Same_Argument_List;
730 -- Start of processing for Check_Infinite_Recursion
732 begin
733 -- Special case, if this is a procedure call and is a call to the
734 -- current procedure with the same argument list, then this is for
735 -- sure an infinite recursion and we insert a call to raise SE.
737 if Is_List_Member (N)
738 and then List_Length (List_Containing (N)) = 1
739 and then Same_Argument_List
740 then
741 declare
742 P : constant Node_Id := Parent (N);
743 begin
744 if Nkind (P) = N_Handled_Sequence_Of_Statements
745 and then Nkind (Parent (P)) = N_Subprogram_Body
746 and then Is_Empty_List (Declarations (Parent (P)))
747 then
748 Error_Msg_Warn := SPARK_Mode /= On;
749 Error_Msg_N ("!infinite recursion<<", N);
750 Error_Msg_N ("\!Storage_Error [<<", N);
751 Insert_Action (N,
752 Make_Raise_Storage_Error (Sloc (N),
753 Reason => SE_Infinite_Recursion));
754 return True;
755 end if;
756 end;
757 end if;
759 -- If not that special case, search up tree, quitting if we reach a
760 -- construct (e.g. a conditional) that tells us that this is not a
761 -- case for an infinite recursion warning.
763 C := N;
764 loop
765 P := Parent (C);
767 -- If no parent, then we were not inside a subprogram, this can for
768 -- example happen when processing certain pragmas in a spec. Just
769 -- return False in this case.
771 if No (P) then
772 return False;
773 end if;
775 -- Done if we get to subprogram body, this is definitely an infinite
776 -- recursion case if we did not find anything to stop us.
778 exit when Nkind (P) = N_Subprogram_Body;
780 -- If appearing in conditional, result is false
782 if Nkind_In (P, N_Or_Else,
783 N_And_Then,
784 N_Case_Expression,
785 N_Case_Statement,
786 N_If_Expression,
787 N_If_Statement)
788 then
789 return False;
791 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
792 and then C /= First (Statements (P))
793 then
794 -- If the call is the expression of a return statement and the
795 -- actuals are identical to the formals, it's worth a warning.
796 -- However, we skip this if there is an immediately preceding
797 -- raise statement, since the call is never executed.
799 -- Furthermore, this corresponds to a common idiom:
801 -- function F (L : Thing) return Boolean is
802 -- begin
803 -- raise Program_Error;
804 -- return F (L);
805 -- end F;
807 -- for generating a stub function
809 if Nkind (Parent (N)) = N_Simple_Return_Statement
810 and then Same_Argument_List
811 then
812 exit when not Is_List_Member (Parent (N));
814 -- OK, return statement is in a statement list, look for raise
816 declare
817 Nod : Node_Id;
819 begin
820 -- Skip past N_Freeze_Entity nodes generated by expansion
822 Nod := Prev (Parent (N));
823 while Present (Nod)
824 and then Nkind (Nod) = N_Freeze_Entity
825 loop
826 Prev (Nod);
827 end loop;
829 -- If no raise statement, give warning. We look at the
830 -- original node, because in the case of "raise ... with
831 -- ...", the node has been transformed into a call.
833 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
834 and then
835 (Nkind (Nod) not in N_Raise_xxx_Error
836 or else Present (Condition (Nod)));
837 end;
838 end if;
840 return False;
842 else
843 C := P;
844 end if;
845 end loop;
847 Error_Msg_Warn := SPARK_Mode /= On;
848 Error_Msg_N ("!possible infinite recursion<<", N);
849 Error_Msg_N ("\!??Storage_Error ]<<", N);
851 return True;
852 end Check_Infinite_Recursion;
854 ---------------------------------------
855 -- Check_No_Direct_Boolean_Operators --
856 ---------------------------------------
858 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
859 begin
860 if Scope (Entity (N)) = Standard_Standard
861 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
862 then
863 -- Restriction only applies to original source code
865 if Comes_From_Source (N) then
866 Check_Restriction (No_Direct_Boolean_Operators, N);
867 end if;
868 end if;
870 -- Do style check (but skip if in instance, error is on template)
872 if Style_Check then
873 if not In_Instance then
874 Check_Boolean_Operator (N);
875 end if;
876 end if;
877 end Check_No_Direct_Boolean_Operators;
879 ------------------------------
880 -- Check_Parameterless_Call --
881 ------------------------------
883 procedure Check_Parameterless_Call (N : Node_Id) is
884 Nam : Node_Id;
886 function Prefix_Is_Access_Subp return Boolean;
887 -- If the prefix is of an access_to_subprogram type, the node must be
888 -- rewritten as a call. Ditto if the prefix is overloaded and all its
889 -- interpretations are access to subprograms.
891 ---------------------------
892 -- Prefix_Is_Access_Subp --
893 ---------------------------
895 function Prefix_Is_Access_Subp return Boolean is
896 I : Interp_Index;
897 It : Interp;
899 begin
900 -- If the context is an attribute reference that can apply to
901 -- functions, this is never a parameterless call (RM 4.1.4(6)).
903 if Nkind (Parent (N)) = N_Attribute_Reference
904 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
905 Name_Code_Address,
906 Name_Access)
907 then
908 return False;
909 end if;
911 if not Is_Overloaded (N) then
912 return
913 Ekind (Etype (N)) = E_Subprogram_Type
914 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
915 else
916 Get_First_Interp (N, I, It);
917 while Present (It.Typ) loop
918 if Ekind (It.Typ) /= E_Subprogram_Type
919 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
920 then
921 return False;
922 end if;
924 Get_Next_Interp (I, It);
925 end loop;
927 return True;
928 end if;
929 end Prefix_Is_Access_Subp;
931 -- Start of processing for Check_Parameterless_Call
933 begin
934 -- Defend against junk stuff if errors already detected
936 if Total_Errors_Detected /= 0 then
937 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
938 return;
939 elsif Nkind (N) in N_Has_Chars
940 and then not Is_Valid_Name (Chars (N))
941 then
942 return;
943 end if;
945 Require_Entity (N);
946 end if;
948 -- If the context expects a value, and the name is a procedure, this is
949 -- most likely a missing 'Access. Don't try to resolve the parameterless
950 -- call, error will be caught when the outer call is analyzed.
952 if Is_Entity_Name (N)
953 and then Ekind (Entity (N)) = E_Procedure
954 and then not Is_Overloaded (N)
955 and then
956 Nkind_In (Parent (N), N_Parameter_Association,
957 N_Function_Call,
958 N_Procedure_Call_Statement)
959 then
960 return;
961 end if;
963 -- Rewrite as call if overloadable entity that is (or could be, in the
964 -- overloaded case) a function call. If we know for sure that the entity
965 -- is an enumeration literal, we do not rewrite it.
967 -- If the entity is the name of an operator, it cannot be a call because
968 -- operators cannot have default parameters. In this case, this must be
969 -- a string whose contents coincide with an operator name. Set the kind
970 -- of the node appropriately.
972 if (Is_Entity_Name (N)
973 and then Nkind (N) /= N_Operator_Symbol
974 and then Is_Overloadable (Entity (N))
975 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
976 or else Is_Overloaded (N)))
978 -- Rewrite as call if it is an explicit dereference of an expression of
979 -- a subprogram access type, and the subprogram type is not that of a
980 -- procedure or entry.
982 or else
983 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
985 -- Rewrite as call if it is a selected component which is a function,
986 -- this is the case of a call to a protected function (which may be
987 -- overloaded with other protected operations).
989 or else
990 (Nkind (N) = N_Selected_Component
991 and then (Ekind (Entity (Selector_Name (N))) = E_Function
992 or else
993 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
994 E_Procedure)
995 and then Is_Overloaded (Selector_Name (N)))))
997 -- If one of the above three conditions is met, rewrite as call. Apply
998 -- the rewriting only once.
1000 then
1001 if Nkind (Parent (N)) /= N_Function_Call
1002 or else N /= Name (Parent (N))
1003 then
1005 -- This may be a prefixed call that was not fully analyzed, e.g.
1006 -- an actual in an instance.
1008 if Ada_Version >= Ada_2005
1009 and then Nkind (N) = N_Selected_Component
1010 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1011 then
1012 Analyze_Selected_Component (N);
1014 if Nkind (N) /= N_Selected_Component then
1015 return;
1016 end if;
1017 end if;
1019 -- The node is the name of the parameterless call. Preserve its
1020 -- descendants, which may be complex expressions.
1022 Nam := Relocate_Node (N);
1024 -- If overloaded, overload set belongs to new copy
1026 Save_Interps (N, Nam);
1028 -- Change node to parameterless function call (note that the
1029 -- Parameter_Associations associations field is left set to Empty,
1030 -- its normal default value since there are no parameters)
1032 Change_Node (N, N_Function_Call);
1033 Set_Name (N, Nam);
1034 Set_Sloc (N, Sloc (Nam));
1035 Analyze_Call (N);
1036 end if;
1038 elsif Nkind (N) = N_Parameter_Association then
1039 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1041 elsif Nkind (N) = N_Operator_Symbol then
1042 Change_Operator_Symbol_To_String_Literal (N);
1043 Set_Is_Overloaded (N, False);
1044 Set_Etype (N, Any_String);
1045 end if;
1046 end Check_Parameterless_Call;
1048 --------------------------------
1049 -- Is_Atomic_Ref_With_Address --
1050 --------------------------------
1052 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1053 Pref : constant Node_Id := Prefix (N);
1055 begin
1056 if not Is_Entity_Name (Pref) then
1057 return False;
1059 else
1060 declare
1061 Pent : constant Entity_Id := Entity (Pref);
1062 Ptyp : constant Entity_Id := Etype (Pent);
1063 begin
1064 return not Is_Access_Type (Ptyp)
1065 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1066 and then Present (Address_Clause (Pent));
1067 end;
1068 end if;
1069 end Is_Atomic_Ref_With_Address;
1071 -----------------------------
1072 -- Is_Definite_Access_Type --
1073 -----------------------------
1075 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1076 Btyp : constant Entity_Id := Base_Type (E);
1077 begin
1078 return Ekind (Btyp) = E_Access_Type
1079 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1080 and then Comes_From_Source (Btyp));
1081 end Is_Definite_Access_Type;
1083 ----------------------
1084 -- Is_Predefined_Op --
1085 ----------------------
1087 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1088 begin
1089 -- Predefined operators are intrinsic subprograms
1091 if not Is_Intrinsic_Subprogram (Nam) then
1092 return False;
1093 end if;
1095 -- A call to a back-end builtin is never a predefined operator
1097 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1098 return False;
1099 end if;
1101 return not Is_Generic_Instance (Nam)
1102 and then Chars (Nam) in Any_Operator_Name
1103 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1104 end Is_Predefined_Op;
1106 -----------------------------
1107 -- Make_Call_Into_Operator --
1108 -----------------------------
1110 procedure Make_Call_Into_Operator
1111 (N : Node_Id;
1112 Typ : Entity_Id;
1113 Op_Id : Entity_Id)
1115 Op_Name : constant Name_Id := Chars (Op_Id);
1116 Act1 : Node_Id := First_Actual (N);
1117 Act2 : Node_Id := Next_Actual (Act1);
1118 Error : Boolean := False;
1119 Func : constant Entity_Id := Entity (Name (N));
1120 Is_Binary : constant Boolean := Present (Act2);
1121 Op_Node : Node_Id;
1122 Opnd_Type : Entity_Id := Empty;
1123 Orig_Type : Entity_Id := Empty;
1124 Pack : Entity_Id;
1126 type Kind_Test is access function (E : Entity_Id) return Boolean;
1128 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1129 -- If the operand is not universal, and the operator is given by an
1130 -- expanded name, verify that the operand has an interpretation with a
1131 -- type defined in the given scope of the operator.
1133 function Type_In_P (Test : Kind_Test) return Entity_Id;
1134 -- Find a type of the given class in package Pack that contains the
1135 -- operator.
1137 ---------------------------
1138 -- Operand_Type_In_Scope --
1139 ---------------------------
1141 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1142 Nod : constant Node_Id := Right_Opnd (Op_Node);
1143 I : Interp_Index;
1144 It : Interp;
1146 begin
1147 if not Is_Overloaded (Nod) then
1148 return Scope (Base_Type (Etype (Nod))) = S;
1150 else
1151 Get_First_Interp (Nod, I, It);
1152 while Present (It.Typ) loop
1153 if Scope (Base_Type (It.Typ)) = S then
1154 return True;
1155 end if;
1157 Get_Next_Interp (I, It);
1158 end loop;
1160 return False;
1161 end if;
1162 end Operand_Type_In_Scope;
1164 ---------------
1165 -- Type_In_P --
1166 ---------------
1168 function Type_In_P (Test : Kind_Test) return Entity_Id is
1169 E : Entity_Id;
1171 function In_Decl return Boolean;
1172 -- Verify that node is not part of the type declaration for the
1173 -- candidate type, which would otherwise be invisible.
1175 -------------
1176 -- In_Decl --
1177 -------------
1179 function In_Decl return Boolean is
1180 Decl_Node : constant Node_Id := Parent (E);
1181 N2 : Node_Id;
1183 begin
1184 N2 := N;
1186 if Etype (E) = Any_Type then
1187 return True;
1189 elsif No (Decl_Node) then
1190 return False;
1192 else
1193 while Present (N2)
1194 and then Nkind (N2) /= N_Compilation_Unit
1195 loop
1196 if N2 = Decl_Node then
1197 return True;
1198 else
1199 N2 := Parent (N2);
1200 end if;
1201 end loop;
1203 return False;
1204 end if;
1205 end In_Decl;
1207 -- Start of processing for Type_In_P
1209 begin
1210 -- If the context type is declared in the prefix package, this is the
1211 -- desired base type.
1213 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1214 return Base_Type (Typ);
1216 else
1217 E := First_Entity (Pack);
1218 while Present (E) loop
1219 if Test (E) and then not In_Decl then
1220 return E;
1221 end if;
1223 Next_Entity (E);
1224 end loop;
1226 return Empty;
1227 end if;
1228 end Type_In_P;
1230 -- Start of processing for Make_Call_Into_Operator
1232 begin
1233 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1235 -- Ensure that the corresponding operator has the same parent as the
1236 -- original call. This guarantees that parent traversals performed by
1237 -- the ABE mechanism succeed.
1239 Set_Parent (Op_Node, Parent (N));
1241 -- Binary operator
1243 if Is_Binary then
1244 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1245 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1246 Save_Interps (Act1, Left_Opnd (Op_Node));
1247 Save_Interps (Act2, Right_Opnd (Op_Node));
1248 Act1 := Left_Opnd (Op_Node);
1249 Act2 := Right_Opnd (Op_Node);
1251 -- Unary operator
1253 else
1254 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1255 Save_Interps (Act1, Right_Opnd (Op_Node));
1256 Act1 := Right_Opnd (Op_Node);
1257 end if;
1259 -- If the operator is denoted by an expanded name, and the prefix is
1260 -- not Standard, but the operator is a predefined one whose scope is
1261 -- Standard, then this is an implicit_operator, inserted as an
1262 -- interpretation by the procedure of the same name. This procedure
1263 -- overestimates the presence of implicit operators, because it does
1264 -- not examine the type of the operands. Verify now that the operand
1265 -- type appears in the given scope. If right operand is universal,
1266 -- check the other operand. In the case of concatenation, either
1267 -- argument can be the component type, so check the type of the result.
1268 -- If both arguments are literals, look for a type of the right kind
1269 -- defined in the given scope. This elaborate nonsense is brought to
1270 -- you courtesy of b33302a. The type itself must be frozen, so we must
1271 -- find the type of the proper class in the given scope.
1273 -- A final wrinkle is the multiplication operator for fixed point types,
1274 -- which is defined in Standard only, and not in the scope of the
1275 -- fixed point type itself.
1277 if Nkind (Name (N)) = N_Expanded_Name then
1278 Pack := Entity (Prefix (Name (N)));
1280 -- If this is a package renaming, get renamed entity, which will be
1281 -- the scope of the operands if operaton is type-correct.
1283 if Present (Renamed_Entity (Pack)) then
1284 Pack := Renamed_Entity (Pack);
1285 end if;
1287 -- If the entity being called is defined in the given package, it is
1288 -- a renaming of a predefined operator, and known to be legal.
1290 if Scope (Entity (Name (N))) = Pack
1291 and then Pack /= Standard_Standard
1292 then
1293 null;
1295 -- Visibility does not need to be checked in an instance: if the
1296 -- operator was not visible in the generic it has been diagnosed
1297 -- already, else there is an implicit copy of it in the instance.
1299 elsif In_Instance then
1300 null;
1302 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1303 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1304 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1305 then
1306 if Pack /= Standard_Standard then
1307 Error := True;
1308 end if;
1310 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1311 -- available.
1313 elsif Ada_Version >= Ada_2005
1314 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1315 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1316 then
1317 null;
1319 else
1320 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1322 if Op_Name = Name_Op_Concat then
1323 Opnd_Type := Base_Type (Typ);
1325 elsif (Scope (Opnd_Type) = Standard_Standard
1326 and then Is_Binary)
1327 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1328 and then Is_Binary
1329 and then not Comes_From_Source (Opnd_Type))
1330 then
1331 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1332 end if;
1334 if Scope (Opnd_Type) = Standard_Standard then
1336 -- Verify that the scope contains a type that corresponds to
1337 -- the given literal. Optimize the case where Pack is Standard.
1339 if Pack /= Standard_Standard then
1340 if Opnd_Type = Universal_Integer then
1341 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1343 elsif Opnd_Type = Universal_Real then
1344 Orig_Type := Type_In_P (Is_Real_Type'Access);
1346 elsif Opnd_Type = Any_String then
1347 Orig_Type := Type_In_P (Is_String_Type'Access);
1349 elsif Opnd_Type = Any_Access then
1350 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1352 elsif Opnd_Type = Any_Composite then
1353 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1355 if Present (Orig_Type) then
1356 if Has_Private_Component (Orig_Type) then
1357 Orig_Type := Empty;
1358 else
1359 Set_Etype (Act1, Orig_Type);
1361 if Is_Binary then
1362 Set_Etype (Act2, Orig_Type);
1363 end if;
1364 end if;
1365 end if;
1367 else
1368 Orig_Type := Empty;
1369 end if;
1371 Error := No (Orig_Type);
1372 end if;
1374 elsif Ekind (Opnd_Type) = E_Allocator_Type
1375 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1376 then
1377 Error := True;
1379 -- If the type is defined elsewhere, and the operator is not
1380 -- defined in the given scope (by a renaming declaration, e.g.)
1381 -- then this is an error as well. If an extension of System is
1382 -- present, and the type may be defined there, Pack must be
1383 -- System itself.
1385 elsif Scope (Opnd_Type) /= Pack
1386 and then Scope (Op_Id) /= Pack
1387 and then (No (System_Aux_Id)
1388 or else Scope (Opnd_Type) /= System_Aux_Id
1389 or else Pack /= Scope (System_Aux_Id))
1390 then
1391 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1392 Error := True;
1393 else
1394 Error := not Operand_Type_In_Scope (Pack);
1395 end if;
1397 elsif Pack = Standard_Standard
1398 and then not Operand_Type_In_Scope (Standard_Standard)
1399 then
1400 Error := True;
1401 end if;
1402 end if;
1404 if Error then
1405 Error_Msg_Node_2 := Pack;
1406 Error_Msg_NE
1407 ("& not declared in&", N, Selector_Name (Name (N)));
1408 Set_Etype (N, Any_Type);
1409 return;
1411 -- Detect a mismatch between the context type and the result type
1412 -- in the named package, which is otherwise not detected if the
1413 -- operands are universal. Check is only needed if source entity is
1414 -- an operator, not a function that renames an operator.
1416 elsif Nkind (Parent (N)) /= N_Type_Conversion
1417 and then Ekind (Entity (Name (N))) = E_Operator
1418 and then Is_Numeric_Type (Typ)
1419 and then not Is_Universal_Numeric_Type (Typ)
1420 and then Scope (Base_Type (Typ)) /= Pack
1421 and then not In_Instance
1422 then
1423 if Is_Fixed_Point_Type (Typ)
1424 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1425 then
1426 -- Already checked above
1428 null;
1430 -- Operator may be defined in an extension of System
1432 elsif Present (System_Aux_Id)
1433 and then Present (Opnd_Type)
1434 and then Scope (Opnd_Type) = System_Aux_Id
1435 then
1436 null;
1438 else
1439 -- Could we use Wrong_Type here??? (this would require setting
1440 -- Etype (N) to the actual type found where Typ was expected).
1442 Error_Msg_NE ("expect }", N, Typ);
1443 end if;
1444 end if;
1445 end if;
1447 Set_Chars (Op_Node, Op_Name);
1449 if not Is_Private_Type (Etype (N)) then
1450 Set_Etype (Op_Node, Base_Type (Etype (N)));
1451 else
1452 Set_Etype (Op_Node, Etype (N));
1453 end if;
1455 -- If this is a call to a function that renames a predefined equality,
1456 -- the renaming declaration provides a type that must be used to
1457 -- resolve the operands. This must be done now because resolution of
1458 -- the equality node will not resolve any remaining ambiguity, and it
1459 -- assumes that the first operand is not overloaded.
1461 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1462 and then Ekind (Func) = E_Function
1463 and then Is_Overloaded (Act1)
1464 then
1465 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1466 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1467 end if;
1469 Set_Entity (Op_Node, Op_Id);
1470 Generate_Reference (Op_Id, N, ' ');
1472 -- Do rewrite setting Comes_From_Source on the result if the original
1473 -- call came from source. Although it is not strictly the case that the
1474 -- operator as such comes from the source, logically it corresponds
1475 -- exactly to the function call in the source, so it should be marked
1476 -- this way (e.g. to make sure that validity checks work fine).
1478 declare
1479 CS : constant Boolean := Comes_From_Source (N);
1480 begin
1481 Rewrite (N, Op_Node);
1482 Set_Comes_From_Source (N, CS);
1483 end;
1485 -- If this is an arithmetic operator and the result type is private,
1486 -- the operands and the result must be wrapped in conversion to
1487 -- expose the underlying numeric type and expand the proper checks,
1488 -- e.g. on division.
1490 if Is_Private_Type (Typ) then
1491 case Nkind (N) is
1492 when N_Op_Add
1493 | N_Op_Divide
1494 | N_Op_Expon
1495 | N_Op_Mod
1496 | N_Op_Multiply
1497 | N_Op_Rem
1498 | N_Op_Subtract
1500 Resolve_Intrinsic_Operator (N, Typ);
1502 when N_Op_Abs
1503 | N_Op_Minus
1504 | N_Op_Plus
1506 Resolve_Intrinsic_Unary_Operator (N, Typ);
1508 when others =>
1509 Resolve (N, Typ);
1510 end case;
1511 else
1512 Resolve (N, Typ);
1513 end if;
1515 -- If in ASIS_Mode, propagate operand types to original actuals of
1516 -- function call, which would otherwise not be fully resolved. If
1517 -- the call has already been constant-folded, nothing to do. We
1518 -- relocate the operand nodes rather than copy them, to preserve
1519 -- original_node pointers, given that the operands themselves may
1520 -- have been rewritten. If the call was itself a rewriting of an
1521 -- operator node, nothing to do.
1523 if ASIS_Mode
1524 and then Nkind (N) in N_Op
1525 and then Nkind (Original_Node (N)) = N_Function_Call
1526 then
1527 declare
1528 L : Node_Id;
1529 R : constant Node_Id := Right_Opnd (N);
1531 Old_First : constant Node_Id :=
1532 First (Parameter_Associations (Original_Node (N)));
1533 Old_Sec : Node_Id;
1535 begin
1536 if Is_Binary then
1537 L := Left_Opnd (N);
1538 Old_Sec := Next (Old_First);
1540 -- If the original call has named associations, replace the
1541 -- explicit actual parameter in the association with the proper
1542 -- resolved operand.
1544 if Nkind (Old_First) = N_Parameter_Association then
1545 if Chars (Selector_Name (Old_First)) =
1546 Chars (First_Entity (Op_Id))
1547 then
1548 Rewrite (Explicit_Actual_Parameter (Old_First),
1549 Relocate_Node (L));
1550 else
1551 Rewrite (Explicit_Actual_Parameter (Old_First),
1552 Relocate_Node (R));
1553 end if;
1555 else
1556 Rewrite (Old_First, Relocate_Node (L));
1557 end if;
1559 if Nkind (Old_Sec) = N_Parameter_Association then
1560 if Chars (Selector_Name (Old_Sec)) =
1561 Chars (First_Entity (Op_Id))
1562 then
1563 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1564 Relocate_Node (L));
1565 else
1566 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1567 Relocate_Node (R));
1568 end if;
1570 else
1571 Rewrite (Old_Sec, Relocate_Node (R));
1572 end if;
1574 else
1575 if Nkind (Old_First) = N_Parameter_Association then
1576 Rewrite (Explicit_Actual_Parameter (Old_First),
1577 Relocate_Node (R));
1578 else
1579 Rewrite (Old_First, Relocate_Node (R));
1580 end if;
1581 end if;
1582 end;
1584 Set_Parent (Original_Node (N), Parent (N));
1585 end if;
1586 end Make_Call_Into_Operator;
1588 -------------------
1589 -- Operator_Kind --
1590 -------------------
1592 function Operator_Kind
1593 (Op_Name : Name_Id;
1594 Is_Binary : Boolean) return Node_Kind
1596 Kind : Node_Kind;
1598 begin
1599 -- Use CASE statement or array???
1601 if Is_Binary then
1602 if Op_Name = Name_Op_And then
1603 Kind := N_Op_And;
1604 elsif Op_Name = Name_Op_Or then
1605 Kind := N_Op_Or;
1606 elsif Op_Name = Name_Op_Xor then
1607 Kind := N_Op_Xor;
1608 elsif Op_Name = Name_Op_Eq then
1609 Kind := N_Op_Eq;
1610 elsif Op_Name = Name_Op_Ne then
1611 Kind := N_Op_Ne;
1612 elsif Op_Name = Name_Op_Lt then
1613 Kind := N_Op_Lt;
1614 elsif Op_Name = Name_Op_Le then
1615 Kind := N_Op_Le;
1616 elsif Op_Name = Name_Op_Gt then
1617 Kind := N_Op_Gt;
1618 elsif Op_Name = Name_Op_Ge then
1619 Kind := N_Op_Ge;
1620 elsif Op_Name = Name_Op_Add then
1621 Kind := N_Op_Add;
1622 elsif Op_Name = Name_Op_Subtract then
1623 Kind := N_Op_Subtract;
1624 elsif Op_Name = Name_Op_Concat then
1625 Kind := N_Op_Concat;
1626 elsif Op_Name = Name_Op_Multiply then
1627 Kind := N_Op_Multiply;
1628 elsif Op_Name = Name_Op_Divide then
1629 Kind := N_Op_Divide;
1630 elsif Op_Name = Name_Op_Mod then
1631 Kind := N_Op_Mod;
1632 elsif Op_Name = Name_Op_Rem then
1633 Kind := N_Op_Rem;
1634 elsif Op_Name = Name_Op_Expon then
1635 Kind := N_Op_Expon;
1636 else
1637 raise Program_Error;
1638 end if;
1640 -- Unary operators
1642 else
1643 if Op_Name = Name_Op_Add then
1644 Kind := N_Op_Plus;
1645 elsif Op_Name = Name_Op_Subtract then
1646 Kind := N_Op_Minus;
1647 elsif Op_Name = Name_Op_Abs then
1648 Kind := N_Op_Abs;
1649 elsif Op_Name = Name_Op_Not then
1650 Kind := N_Op_Not;
1651 else
1652 raise Program_Error;
1653 end if;
1654 end if;
1656 return Kind;
1657 end Operator_Kind;
1659 ----------------------------
1660 -- Preanalyze_And_Resolve --
1661 ----------------------------
1663 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1664 Save_Full_Analysis : constant Boolean := Full_Analysis;
1666 begin
1667 Full_Analysis := False;
1668 Expander_Mode_Save_And_Set (False);
1670 -- Normally, we suppress all checks for this preanalysis. There is no
1671 -- point in processing them now, since they will be applied properly
1672 -- and in the proper location when the default expressions reanalyzed
1673 -- and reexpanded later on. We will also have more information at that
1674 -- point for possible suppression of individual checks.
1676 -- However, in SPARK mode, most expansion is suppressed, and this
1677 -- later reanalysis and reexpansion may not occur. SPARK mode does
1678 -- require the setting of checking flags for proof purposes, so we
1679 -- do the SPARK preanalysis without suppressing checks.
1681 -- This special handling for SPARK mode is required for example in the
1682 -- case of Ada 2012 constructs such as quantified expressions, which are
1683 -- expanded in two separate steps.
1685 if GNATprove_Mode then
1686 Analyze_And_Resolve (N, T);
1687 else
1688 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1689 end if;
1691 Expander_Mode_Restore;
1692 Full_Analysis := Save_Full_Analysis;
1693 end Preanalyze_And_Resolve;
1695 -- Version without context type
1697 procedure Preanalyze_And_Resolve (N : Node_Id) is
1698 Save_Full_Analysis : constant Boolean := Full_Analysis;
1700 begin
1701 Full_Analysis := False;
1702 Expander_Mode_Save_And_Set (False);
1704 Analyze (N);
1705 Resolve (N, Etype (N), Suppress => All_Checks);
1707 Expander_Mode_Restore;
1708 Full_Analysis := Save_Full_Analysis;
1709 end Preanalyze_And_Resolve;
1711 ----------------------------------
1712 -- Replace_Actual_Discriminants --
1713 ----------------------------------
1715 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1716 Loc : constant Source_Ptr := Sloc (N);
1717 Tsk : Node_Id := Empty;
1719 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1720 -- Comment needed???
1722 -------------------
1723 -- Process_Discr --
1724 -------------------
1726 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1727 Ent : Entity_Id;
1729 begin
1730 if Nkind (Nod) = N_Identifier then
1731 Ent := Entity (Nod);
1733 if Present (Ent)
1734 and then Ekind (Ent) = E_Discriminant
1735 then
1736 Rewrite (Nod,
1737 Make_Selected_Component (Loc,
1738 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1739 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1741 Set_Etype (Nod, Etype (Ent));
1742 end if;
1744 end if;
1746 return OK;
1747 end Process_Discr;
1749 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1751 -- Start of processing for Replace_Actual_Discriminants
1753 begin
1754 if Expander_Active then
1755 null;
1757 -- Allow the replacement of concurrent discriminants in GNATprove even
1758 -- though this is a light expansion activity. Note that generic units
1759 -- are not modified.
1761 elsif GNATprove_Mode and not Inside_A_Generic then
1762 null;
1764 else
1765 return;
1766 end if;
1768 if Nkind (Name (N)) = N_Selected_Component then
1769 Tsk := Prefix (Name (N));
1771 elsif Nkind (Name (N)) = N_Indexed_Component then
1772 Tsk := Prefix (Prefix (Name (N)));
1773 end if;
1775 if Present (Tsk) then
1776 Replace_Discrs (Default);
1777 end if;
1778 end Replace_Actual_Discriminants;
1780 -------------
1781 -- Resolve --
1782 -------------
1784 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1785 Ambiguous : Boolean := False;
1786 Ctx_Type : Entity_Id := Typ;
1787 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1788 Err_Type : Entity_Id := Empty;
1789 Found : Boolean := False;
1790 From_Lib : Boolean;
1791 I : Interp_Index;
1792 I1 : Interp_Index := 0; -- prevent junk warning
1793 It : Interp;
1794 It1 : Interp;
1795 Seen : Entity_Id := Empty; -- prevent junk warning
1797 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1798 -- Determine whether a node comes from a predefined library unit or
1799 -- Standard.
1801 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1802 -- Try and fix up a literal so that it matches its expected type. New
1803 -- literals are manufactured if necessary to avoid cascaded errors.
1805 procedure Report_Ambiguous_Argument;
1806 -- Additional diagnostics when an ambiguous call has an ambiguous
1807 -- argument (typically a controlling actual).
1809 procedure Resolution_Failed;
1810 -- Called when attempt at resolving current expression fails
1812 ------------------------------------
1813 -- Comes_From_Predefined_Lib_Unit --
1814 -------------------------------------
1816 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1817 begin
1818 return
1819 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1820 end Comes_From_Predefined_Lib_Unit;
1822 --------------------
1823 -- Patch_Up_Value --
1824 --------------------
1826 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1827 begin
1828 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1829 Rewrite (N,
1830 Make_Real_Literal (Sloc (N),
1831 Realval => UR_From_Uint (Intval (N))));
1832 Set_Etype (N, Universal_Real);
1833 Set_Is_Static_Expression (N);
1835 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1836 Rewrite (N,
1837 Make_Integer_Literal (Sloc (N),
1838 Intval => UR_To_Uint (Realval (N))));
1839 Set_Etype (N, Universal_Integer);
1840 Set_Is_Static_Expression (N);
1842 elsif Nkind (N) = N_String_Literal
1843 and then Is_Character_Type (Typ)
1844 then
1845 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1846 Rewrite (N,
1847 Make_Character_Literal (Sloc (N),
1848 Chars => Name_Find,
1849 Char_Literal_Value =>
1850 UI_From_Int (Character'Pos ('A'))));
1851 Set_Etype (N, Any_Character);
1852 Set_Is_Static_Expression (N);
1854 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1855 Rewrite (N,
1856 Make_String_Literal (Sloc (N),
1857 Strval => End_String));
1859 elsif Nkind (N) = N_Range then
1860 Patch_Up_Value (Low_Bound (N), Typ);
1861 Patch_Up_Value (High_Bound (N), Typ);
1862 end if;
1863 end Patch_Up_Value;
1865 -------------------------------
1866 -- Report_Ambiguous_Argument --
1867 -------------------------------
1869 procedure Report_Ambiguous_Argument is
1870 Arg : constant Node_Id := First (Parameter_Associations (N));
1871 I : Interp_Index;
1872 It : Interp;
1874 begin
1875 if Nkind (Arg) = N_Function_Call
1876 and then Is_Entity_Name (Name (Arg))
1877 and then Is_Overloaded (Name (Arg))
1878 then
1879 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1881 -- Could use comments on what is going on here???
1883 Get_First_Interp (Name (Arg), I, It);
1884 while Present (It.Nam) loop
1885 Error_Msg_Sloc := Sloc (It.Nam);
1887 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1888 Error_Msg_N ("interpretation (inherited) #!", Arg);
1889 else
1890 Error_Msg_N ("interpretation #!", Arg);
1891 end if;
1893 Get_Next_Interp (I, It);
1894 end loop;
1895 end if;
1896 end Report_Ambiguous_Argument;
1898 -----------------------
1899 -- Resolution_Failed --
1900 -----------------------
1902 procedure Resolution_Failed is
1903 begin
1904 Patch_Up_Value (N, Typ);
1906 -- Set the type to the desired one to minimize cascaded errors. Note
1907 -- that this is an approximation and does not work in all cases.
1909 Set_Etype (N, Typ);
1911 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1912 Set_Is_Overloaded (N, False);
1914 -- The caller will return without calling the expander, so we need
1915 -- to set the analyzed flag. Note that it is fine to set Analyzed
1916 -- to True even if we are in the middle of a shallow analysis,
1917 -- (see the spec of sem for more details) since this is an error
1918 -- situation anyway, and there is no point in repeating the
1919 -- analysis later (indeed it won't work to repeat it later, since
1920 -- we haven't got a clear resolution of which entity is being
1921 -- referenced.)
1923 Set_Analyzed (N, True);
1924 return;
1925 end Resolution_Failed;
1927 -- Start of processing for Resolve
1929 begin
1930 if N = Error then
1931 return;
1932 end if;
1934 -- Access attribute on remote subprogram cannot be used for a non-remote
1935 -- access-to-subprogram type.
1937 if Nkind (N) = N_Attribute_Reference
1938 and then Nam_In (Attribute_Name (N), Name_Access,
1939 Name_Unrestricted_Access,
1940 Name_Unchecked_Access)
1941 and then Comes_From_Source (N)
1942 and then Is_Entity_Name (Prefix (N))
1943 and then Is_Subprogram (Entity (Prefix (N)))
1944 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1945 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1946 then
1947 Error_Msg_N
1948 ("prefix must statically denote a non-remote subprogram", N);
1949 end if;
1951 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1953 -- If the context is a Remote_Access_To_Subprogram, access attributes
1954 -- must be resolved with the corresponding fat pointer. There is no need
1955 -- to check for the attribute name since the return type of an
1956 -- attribute is never a remote type.
1958 if Nkind (N) = N_Attribute_Reference
1959 and then Comes_From_Source (N)
1960 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1961 then
1962 declare
1963 Attr : constant Attribute_Id :=
1964 Get_Attribute_Id (Attribute_Name (N));
1965 Pref : constant Node_Id := Prefix (N);
1966 Decl : Node_Id;
1967 Spec : Node_Id;
1968 Is_Remote : Boolean := True;
1970 begin
1971 -- Check that Typ is a remote access-to-subprogram type
1973 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1975 -- Prefix (N) must statically denote a remote subprogram
1976 -- declared in a package specification.
1978 if Attr = Attribute_Access or else
1979 Attr = Attribute_Unchecked_Access or else
1980 Attr = Attribute_Unrestricted_Access
1981 then
1982 Decl := Unit_Declaration_Node (Entity (Pref));
1984 if Nkind (Decl) = N_Subprogram_Body then
1985 Spec := Corresponding_Spec (Decl);
1987 if Present (Spec) then
1988 Decl := Unit_Declaration_Node (Spec);
1989 end if;
1990 end if;
1992 Spec := Parent (Decl);
1994 if not Is_Entity_Name (Prefix (N))
1995 or else Nkind (Spec) /= N_Package_Specification
1996 or else
1997 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1998 then
1999 Is_Remote := False;
2000 Error_Msg_N
2001 ("prefix must statically denote a remote subprogram ",
2003 end if;
2005 -- If we are generating code in distributed mode, perform
2006 -- semantic checks against corresponding remote entities.
2008 if Expander_Active
2009 and then Get_PCS_Name /= Name_No_DSA
2010 then
2011 Check_Subtype_Conformant
2012 (New_Id => Entity (Prefix (N)),
2013 Old_Id => Designated_Type
2014 (Corresponding_Remote_Type (Typ)),
2015 Err_Loc => N);
2017 if Is_Remote then
2018 Process_Remote_AST_Attribute (N, Typ);
2019 end if;
2020 end if;
2021 end if;
2022 end if;
2023 end;
2024 end if;
2026 Debug_A_Entry ("resolving ", N);
2028 if Debug_Flag_V then
2029 Write_Overloads (N);
2030 end if;
2032 if Comes_From_Source (N) then
2033 if Is_Fixed_Point_Type (Typ) then
2034 Check_Restriction (No_Fixed_Point, N);
2036 elsif Is_Floating_Point_Type (Typ)
2037 and then Typ /= Universal_Real
2038 and then Typ /= Any_Real
2039 then
2040 Check_Restriction (No_Floating_Point, N);
2041 end if;
2042 end if;
2044 -- Return if already analyzed
2046 if Analyzed (N) then
2047 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2048 Analyze_Dimension (N);
2049 return;
2051 -- Any case of Any_Type as the Etype value means that we had a
2052 -- previous error.
2054 elsif Etype (N) = Any_Type then
2055 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2056 return;
2057 end if;
2059 Check_Parameterless_Call (N);
2061 -- The resolution of an Expression_With_Actions is determined by
2062 -- its Expression.
2064 if Nkind (N) = N_Expression_With_Actions then
2065 Resolve (Expression (N), Typ);
2067 Found := True;
2068 Expr_Type := Etype (Expression (N));
2070 -- If not overloaded, then we know the type, and all that needs doing
2071 -- is to check that this type is compatible with the context.
2073 elsif not Is_Overloaded (N) then
2074 Found := Covers (Typ, Etype (N));
2075 Expr_Type := Etype (N);
2077 -- In the overloaded case, we must select the interpretation that
2078 -- is compatible with the context (i.e. the type passed to Resolve)
2080 else
2081 -- Loop through possible interpretations
2083 Get_First_Interp (N, I, It);
2084 Interp_Loop : while Present (It.Typ) loop
2085 if Debug_Flag_V then
2086 Write_Str ("Interp: ");
2087 Write_Interp (It);
2088 end if;
2090 -- We are only interested in interpretations that are compatible
2091 -- with the expected type, any other interpretations are ignored.
2093 if not Covers (Typ, It.Typ) then
2094 if Debug_Flag_V then
2095 Write_Str (" interpretation incompatible with context");
2096 Write_Eol;
2097 end if;
2099 else
2100 -- Skip the current interpretation if it is disabled by an
2101 -- abstract operator. This action is performed only when the
2102 -- type against which we are resolving is the same as the
2103 -- type of the interpretation.
2105 if Ada_Version >= Ada_2005
2106 and then It.Typ = Typ
2107 and then Typ /= Universal_Integer
2108 and then Typ /= Universal_Real
2109 and then Present (It.Abstract_Op)
2110 then
2111 if Debug_Flag_V then
2112 Write_Line ("Skip.");
2113 end if;
2115 goto Continue;
2116 end if;
2118 -- First matching interpretation
2120 if not Found then
2121 Found := True;
2122 I1 := I;
2123 Seen := It.Nam;
2124 Expr_Type := It.Typ;
2126 -- Matching interpretation that is not the first, maybe an
2127 -- error, but there are some cases where preference rules are
2128 -- used to choose between the two possibilities. These and
2129 -- some more obscure cases are handled in Disambiguate.
2131 else
2132 -- If the current statement is part of a predefined library
2133 -- unit, then all interpretations which come from user level
2134 -- packages should not be considered. Check previous and
2135 -- current one.
2137 if From_Lib then
2138 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2139 goto Continue;
2141 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2143 -- Previous interpretation must be discarded
2145 I1 := I;
2146 Seen := It.Nam;
2147 Expr_Type := It.Typ;
2148 Set_Entity (N, Seen);
2149 goto Continue;
2150 end if;
2151 end if;
2153 -- Otherwise apply further disambiguation steps
2155 Error_Msg_Sloc := Sloc (Seen);
2156 It1 := Disambiguate (N, I1, I, Typ);
2158 -- Disambiguation has succeeded. Skip the remaining
2159 -- interpretations.
2161 if It1 /= No_Interp then
2162 Seen := It1.Nam;
2163 Expr_Type := It1.Typ;
2165 while Present (It.Typ) loop
2166 Get_Next_Interp (I, It);
2167 end loop;
2169 else
2170 -- Before we issue an ambiguity complaint, check for the
2171 -- case of a subprogram call where at least one of the
2172 -- arguments is Any_Type, and if so suppress the message,
2173 -- since it is a cascaded error. This can also happen for
2174 -- a generalized indexing operation.
2176 if Nkind (N) in N_Subprogram_Call
2177 or else (Nkind (N) = N_Indexed_Component
2178 and then Present (Generalized_Indexing (N)))
2179 then
2180 declare
2181 A : Node_Id;
2182 E : Node_Id;
2184 begin
2185 if Nkind (N) = N_Indexed_Component then
2186 Rewrite (N, Generalized_Indexing (N));
2187 end if;
2189 A := First_Actual (N);
2190 while Present (A) loop
2191 E := A;
2193 if Nkind (E) = N_Parameter_Association then
2194 E := Explicit_Actual_Parameter (E);
2195 end if;
2197 if Etype (E) = Any_Type then
2198 if Debug_Flag_V then
2199 Write_Str ("Any_Type in call");
2200 Write_Eol;
2201 end if;
2203 exit Interp_Loop;
2204 end if;
2206 Next_Actual (A);
2207 end loop;
2208 end;
2210 elsif Nkind (N) in N_Binary_Op
2211 and then (Etype (Left_Opnd (N)) = Any_Type
2212 or else Etype (Right_Opnd (N)) = Any_Type)
2213 then
2214 exit Interp_Loop;
2216 elsif Nkind (N) in N_Unary_Op
2217 and then Etype (Right_Opnd (N)) = Any_Type
2218 then
2219 exit Interp_Loop;
2220 end if;
2222 -- Not that special case, so issue message using the flag
2223 -- Ambiguous to control printing of the header message
2224 -- only at the start of an ambiguous set.
2226 if not Ambiguous then
2227 if Nkind (N) = N_Function_Call
2228 and then Nkind (Name (N)) = N_Explicit_Dereference
2229 then
2230 Error_Msg_N
2231 ("ambiguous expression (cannot resolve indirect "
2232 & "call)!", N);
2233 else
2234 Error_Msg_NE -- CODEFIX
2235 ("ambiguous expression (cannot resolve&)!",
2236 N, It.Nam);
2237 end if;
2239 Ambiguous := True;
2241 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2242 Error_Msg_N
2243 ("\\possible interpretation (inherited)#!", N);
2244 else
2245 Error_Msg_N -- CODEFIX
2246 ("\\possible interpretation#!", N);
2247 end if;
2249 if Nkind (N) in N_Subprogram_Call
2250 and then Present (Parameter_Associations (N))
2251 then
2252 Report_Ambiguous_Argument;
2253 end if;
2254 end if;
2256 Error_Msg_Sloc := Sloc (It.Nam);
2258 -- By default, the error message refers to the candidate
2259 -- interpretation. But if it is a predefined operator, it
2260 -- is implicitly declared at the declaration of the type
2261 -- of the operand. Recover the sloc of that declaration
2262 -- for the error message.
2264 if Nkind (N) in N_Op
2265 and then Scope (It.Nam) = Standard_Standard
2266 and then not Is_Overloaded (Right_Opnd (N))
2267 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2268 Standard_Standard
2269 then
2270 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2272 if Comes_From_Source (Err_Type)
2273 and then Present (Parent (Err_Type))
2274 then
2275 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2276 end if;
2278 elsif Nkind (N) in N_Binary_Op
2279 and then Scope (It.Nam) = Standard_Standard
2280 and then not Is_Overloaded (Left_Opnd (N))
2281 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2282 Standard_Standard
2283 then
2284 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2286 if Comes_From_Source (Err_Type)
2287 and then Present (Parent (Err_Type))
2288 then
2289 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2290 end if;
2292 -- If this is an indirect call, use the subprogram_type
2293 -- in the message, to have a meaningful location. Also
2294 -- indicate if this is an inherited operation, created
2295 -- by a type declaration.
2297 elsif Nkind (N) = N_Function_Call
2298 and then Nkind (Name (N)) = N_Explicit_Dereference
2299 and then Is_Type (It.Nam)
2300 then
2301 Err_Type := It.Nam;
2302 Error_Msg_Sloc :=
2303 Sloc (Associated_Node_For_Itype (Err_Type));
2304 else
2305 Err_Type := Empty;
2306 end if;
2308 if Nkind (N) in N_Op
2309 and then Scope (It.Nam) = Standard_Standard
2310 and then Present (Err_Type)
2311 then
2312 -- Special-case the message for universal_fixed
2313 -- operators, which are not declared with the type
2314 -- of the operand, but appear forever in Standard.
2316 if It.Typ = Universal_Fixed
2317 and then Scope (It.Nam) = Standard_Standard
2318 then
2319 Error_Msg_N
2320 ("\\possible interpretation as universal_fixed "
2321 & "operation (RM 4.5.5 (19))", N);
2322 else
2323 Error_Msg_N
2324 ("\\possible interpretation (predefined)#!", N);
2325 end if;
2327 elsif
2328 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2329 then
2330 Error_Msg_N
2331 ("\\possible interpretation (inherited)#!", N);
2332 else
2333 Error_Msg_N -- CODEFIX
2334 ("\\possible interpretation#!", N);
2335 end if;
2337 end if;
2338 end if;
2340 -- We have a matching interpretation, Expr_Type is the type
2341 -- from this interpretation, and Seen is the entity.
2343 -- For an operator, just set the entity name. The type will be
2344 -- set by the specific operator resolution routine.
2346 if Nkind (N) in N_Op then
2347 Set_Entity (N, Seen);
2348 Generate_Reference (Seen, N);
2350 elsif Nkind_In (N, N_Case_Expression,
2351 N_Character_Literal,
2352 N_Delta_Aggregate,
2353 N_If_Expression)
2354 then
2355 Set_Etype (N, Expr_Type);
2357 -- AI05-0139-2: Expression is overloaded because type has
2358 -- implicit dereference. If type matches context, no implicit
2359 -- dereference is involved. If the expression is an entity,
2360 -- generate a reference to it, as this is not done for an
2361 -- overloaded construct during analysis.
2363 elsif Has_Implicit_Dereference (Expr_Type) then
2364 Set_Etype (N, Expr_Type);
2365 Set_Is_Overloaded (N, False);
2367 if Is_Entity_Name (N) then
2368 Generate_Reference (Entity (N), N);
2369 end if;
2371 exit Interp_Loop;
2373 elsif Is_Overloaded (N)
2374 and then Present (It.Nam)
2375 and then Ekind (It.Nam) = E_Discriminant
2376 and then Has_Implicit_Dereference (It.Nam)
2377 then
2378 -- If the node is a general indexing, the dereference is
2379 -- is inserted when resolving the rewritten form, else
2380 -- insert it now.
2382 if Nkind (N) /= N_Indexed_Component
2383 or else No (Generalized_Indexing (N))
2384 then
2385 Build_Explicit_Dereference (N, It.Nam);
2386 end if;
2388 -- For an explicit dereference, attribute reference, range,
2389 -- short-circuit form (which is not an operator node), or call
2390 -- with a name that is an explicit dereference, there is
2391 -- nothing to be done at this point.
2393 elsif Nkind_In (N, N_Attribute_Reference,
2394 N_And_Then,
2395 N_Explicit_Dereference,
2396 N_Identifier,
2397 N_Indexed_Component,
2398 N_Or_Else,
2399 N_Range,
2400 N_Selected_Component,
2401 N_Slice)
2402 or else Nkind (Name (N)) = N_Explicit_Dereference
2403 then
2404 null;
2406 -- For procedure or function calls, set the type of the name,
2407 -- and also the entity pointer for the prefix.
2409 elsif Nkind (N) in N_Subprogram_Call
2410 and then Is_Entity_Name (Name (N))
2411 then
2412 Set_Etype (Name (N), Expr_Type);
2413 Set_Entity (Name (N), Seen);
2414 Generate_Reference (Seen, Name (N));
2416 elsif Nkind (N) = N_Function_Call
2417 and then Nkind (Name (N)) = N_Selected_Component
2418 then
2419 Set_Etype (Name (N), Expr_Type);
2420 Set_Entity (Selector_Name (Name (N)), Seen);
2421 Generate_Reference (Seen, Selector_Name (Name (N)));
2423 -- For all other cases, just set the type of the Name
2425 else
2426 Set_Etype (Name (N), Expr_Type);
2427 end if;
2429 end if;
2431 <<Continue>>
2433 -- Move to next interpretation
2435 exit Interp_Loop when No (It.Typ);
2437 Get_Next_Interp (I, It);
2438 end loop Interp_Loop;
2439 end if;
2441 -- At this stage Found indicates whether or not an acceptable
2442 -- interpretation exists. If not, then we have an error, except that if
2443 -- the context is Any_Type as a result of some other error, then we
2444 -- suppress the error report.
2446 if not Found then
2447 if Typ /= Any_Type then
2449 -- If type we are looking for is Void, then this is the procedure
2450 -- call case, and the error is simply that what we gave is not a
2451 -- procedure name (we think of procedure calls as expressions with
2452 -- types internally, but the user doesn't think of them this way).
2454 if Typ = Standard_Void_Type then
2456 -- Special case message if function used as a procedure
2458 if Nkind (N) = N_Procedure_Call_Statement
2459 and then Is_Entity_Name (Name (N))
2460 and then Ekind (Entity (Name (N))) = E_Function
2461 then
2462 Error_Msg_NE
2463 ("cannot use call to function & as a statement",
2464 Name (N), Entity (Name (N)));
2465 Error_Msg_N
2466 ("\return value of a function call cannot be ignored",
2467 Name (N));
2469 -- Otherwise give general message (not clear what cases this
2470 -- covers, but no harm in providing for them).
2472 else
2473 Error_Msg_N ("expect procedure name in procedure call", N);
2474 end if;
2476 Found := True;
2478 -- Otherwise we do have a subexpression with the wrong type
2480 -- Check for the case of an allocator which uses an access type
2481 -- instead of the designated type. This is a common error and we
2482 -- specialize the message, posting an error on the operand of the
2483 -- allocator, complaining that we expected the designated type of
2484 -- the allocator.
2486 elsif Nkind (N) = N_Allocator
2487 and then Is_Access_Type (Typ)
2488 and then Is_Access_Type (Etype (N))
2489 and then Designated_Type (Etype (N)) = Typ
2490 then
2491 Wrong_Type (Expression (N), Designated_Type (Typ));
2492 Found := True;
2494 -- Check for view mismatch on Null in instances, for which the
2495 -- view-swapping mechanism has no identifier.
2497 elsif (In_Instance or else In_Inlined_Body)
2498 and then (Nkind (N) = N_Null)
2499 and then Is_Private_Type (Typ)
2500 and then Is_Access_Type (Full_View (Typ))
2501 then
2502 Resolve (N, Full_View (Typ));
2503 Set_Etype (N, Typ);
2504 return;
2506 -- Check for an aggregate. Sometimes we can get bogus aggregates
2507 -- from misuse of parentheses, and we are about to complain about
2508 -- the aggregate without even looking inside it.
2510 -- Instead, if we have an aggregate of type Any_Composite, then
2511 -- analyze and resolve the component fields, and then only issue
2512 -- another message if we get no errors doing this (otherwise
2513 -- assume that the errors in the aggregate caused the problem).
2515 elsif Nkind (N) = N_Aggregate
2516 and then Etype (N) = Any_Composite
2517 then
2518 -- Disable expansion in any case. If there is a type mismatch
2519 -- it may be fatal to try to expand the aggregate. The flag
2520 -- would otherwise be set to false when the error is posted.
2522 Expander_Active := False;
2524 declare
2525 procedure Check_Aggr (Aggr : Node_Id);
2526 -- Check one aggregate, and set Found to True if we have a
2527 -- definite error in any of its elements
2529 procedure Check_Elmt (Aelmt : Node_Id);
2530 -- Check one element of aggregate and set Found to True if
2531 -- we definitely have an error in the element.
2533 ----------------
2534 -- Check_Aggr --
2535 ----------------
2537 procedure Check_Aggr (Aggr : Node_Id) is
2538 Elmt : Node_Id;
2540 begin
2541 if Present (Expressions (Aggr)) then
2542 Elmt := First (Expressions (Aggr));
2543 while Present (Elmt) loop
2544 Check_Elmt (Elmt);
2545 Next (Elmt);
2546 end loop;
2547 end if;
2549 if Present (Component_Associations (Aggr)) then
2550 Elmt := First (Component_Associations (Aggr));
2551 while Present (Elmt) loop
2553 -- If this is a default-initialized component, then
2554 -- there is nothing to check. The box will be
2555 -- replaced by the appropriate call during late
2556 -- expansion.
2558 if Nkind (Elmt) /= N_Iterated_Component_Association
2559 and then not Box_Present (Elmt)
2560 then
2561 Check_Elmt (Expression (Elmt));
2562 end if;
2564 Next (Elmt);
2565 end loop;
2566 end if;
2567 end Check_Aggr;
2569 ----------------
2570 -- Check_Elmt --
2571 ----------------
2573 procedure Check_Elmt (Aelmt : Node_Id) is
2574 begin
2575 -- If we have a nested aggregate, go inside it (to
2576 -- attempt a naked analyze-resolve of the aggregate can
2577 -- cause undesirable cascaded errors). Do not resolve
2578 -- expression if it needs a type from context, as for
2579 -- integer * fixed expression.
2581 if Nkind (Aelmt) = N_Aggregate then
2582 Check_Aggr (Aelmt);
2584 else
2585 Analyze (Aelmt);
2587 if not Is_Overloaded (Aelmt)
2588 and then Etype (Aelmt) /= Any_Fixed
2589 then
2590 Resolve (Aelmt);
2591 end if;
2593 if Etype (Aelmt) = Any_Type then
2594 Found := True;
2595 end if;
2596 end if;
2597 end Check_Elmt;
2599 begin
2600 Check_Aggr (N);
2601 end;
2602 end if;
2604 -- Looks like we have a type error, but check for special case
2605 -- of Address wanted, integer found, with the configuration pragma
2606 -- Allow_Integer_Address active. If we have this case, introduce
2607 -- an unchecked conversion to allow the integer expression to be
2608 -- treated as an Address. The reverse case of integer wanted,
2609 -- Address found, is treated in an analogous manner.
2611 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2612 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2613 Analyze_And_Resolve (N, Typ);
2614 return;
2616 -- Under relaxed RM semantics silently replace occurrences of null
2617 -- by System.Address_Null.
2619 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2620 Replace_Null_By_Null_Address (N);
2621 Analyze_And_Resolve (N, Typ);
2622 return;
2623 end if;
2625 -- That special Allow_Integer_Address check did not apply, so we
2626 -- have a real type error. If an error message was issued already,
2627 -- Found got reset to True, so if it's still False, issue standard
2628 -- Wrong_Type message.
2630 if not Found then
2631 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2632 declare
2633 Subp_Name : Node_Id;
2635 begin
2636 if Is_Entity_Name (Name (N)) then
2637 Subp_Name := Name (N);
2639 elsif Nkind (Name (N)) = N_Selected_Component then
2641 -- Protected operation: retrieve operation name
2643 Subp_Name := Selector_Name (Name (N));
2645 else
2646 raise Program_Error;
2647 end if;
2649 Error_Msg_Node_2 := Typ;
2650 Error_Msg_NE
2651 ("no visible interpretation of& matches expected type&",
2652 N, Subp_Name);
2653 end;
2655 if All_Errors_Mode then
2656 declare
2657 Index : Interp_Index;
2658 It : Interp;
2660 begin
2661 Error_Msg_N ("\\possible interpretations:", N);
2663 Get_First_Interp (Name (N), Index, It);
2664 while Present (It.Nam) loop
2665 Error_Msg_Sloc := Sloc (It.Nam);
2666 Error_Msg_Node_2 := It.Nam;
2667 Error_Msg_NE
2668 ("\\ type& for & declared#", N, It.Typ);
2669 Get_Next_Interp (Index, It);
2670 end loop;
2671 end;
2673 else
2674 Error_Msg_N ("\use -gnatf for details", N);
2675 end if;
2677 else
2678 Wrong_Type (N, Typ);
2679 end if;
2680 end if;
2681 end if;
2683 Resolution_Failed;
2684 return;
2686 -- Test if we have more than one interpretation for the context
2688 elsif Ambiguous then
2689 Resolution_Failed;
2690 return;
2692 -- Only one intepretation
2694 else
2695 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2696 -- the "+" on T is abstract, and the operands are of universal type,
2697 -- the above code will have (incorrectly) resolved the "+" to the
2698 -- universal one in Standard. Therefore check for this case and give
2699 -- an error. We can't do this earlier, because it would cause legal
2700 -- cases to get errors (when some other type has an abstract "+").
2702 if Ada_Version >= Ada_2005
2703 and then Nkind (N) in N_Op
2704 and then Is_Overloaded (N)
2705 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2706 then
2707 Get_First_Interp (N, I, It);
2708 while Present (It.Typ) loop
2709 if Present (It.Abstract_Op) and then
2710 Etype (It.Abstract_Op) = Typ
2711 then
2712 Error_Msg_NE
2713 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2714 return;
2715 end if;
2717 Get_Next_Interp (I, It);
2718 end loop;
2719 end if;
2721 -- Here we have an acceptable interpretation for the context
2723 -- Propagate type information and normalize tree for various
2724 -- predefined operations. If the context only imposes a class of
2725 -- types, rather than a specific type, propagate the actual type
2726 -- downward.
2728 if Typ = Any_Integer or else
2729 Typ = Any_Boolean or else
2730 Typ = Any_Modular or else
2731 Typ = Any_Real or else
2732 Typ = Any_Discrete
2733 then
2734 Ctx_Type := Expr_Type;
2736 -- Any_Fixed is legal in a real context only if a specific fixed-
2737 -- point type is imposed. If Norman Cohen can be confused by this,
2738 -- it deserves a separate message.
2740 if Typ = Any_Real
2741 and then Expr_Type = Any_Fixed
2742 then
2743 Error_Msg_N ("illegal context for mixed mode operation", N);
2744 Set_Etype (N, Universal_Real);
2745 Ctx_Type := Universal_Real;
2746 end if;
2747 end if;
2749 -- A user-defined operator is transformed into a function call at
2750 -- this point, so that further processing knows that operators are
2751 -- really operators (i.e. are predefined operators). User-defined
2752 -- operators that are intrinsic are just renamings of the predefined
2753 -- ones, and need not be turned into calls either, but if they rename
2754 -- a different operator, we must transform the node accordingly.
2755 -- Instantiations of Unchecked_Conversion are intrinsic but are
2756 -- treated as functions, even if given an operator designator.
2758 if Nkind (N) in N_Op
2759 and then Present (Entity (N))
2760 and then Ekind (Entity (N)) /= E_Operator
2761 then
2762 if not Is_Predefined_Op (Entity (N)) then
2763 Rewrite_Operator_As_Call (N, Entity (N));
2765 elsif Present (Alias (Entity (N)))
2766 and then
2767 Nkind (Parent (Parent (Entity (N)))) =
2768 N_Subprogram_Renaming_Declaration
2769 then
2770 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2772 -- If the node is rewritten, it will be fully resolved in
2773 -- Rewrite_Renamed_Operator.
2775 if Analyzed (N) then
2776 return;
2777 end if;
2778 end if;
2779 end if;
2781 case N_Subexpr'(Nkind (N)) is
2782 when N_Aggregate =>
2783 Resolve_Aggregate (N, Ctx_Type);
2785 when N_Allocator =>
2786 Resolve_Allocator (N, Ctx_Type);
2788 when N_Short_Circuit =>
2789 Resolve_Short_Circuit (N, Ctx_Type);
2791 when N_Attribute_Reference =>
2792 Resolve_Attribute (N, Ctx_Type);
2794 when N_Case_Expression =>
2795 Resolve_Case_Expression (N, Ctx_Type);
2797 when N_Character_Literal =>
2798 Resolve_Character_Literal (N, Ctx_Type);
2800 when N_Delta_Aggregate =>
2801 Resolve_Delta_Aggregate (N, Ctx_Type);
2803 when N_Expanded_Name =>
2804 Resolve_Entity_Name (N, Ctx_Type);
2806 when N_Explicit_Dereference =>
2807 Resolve_Explicit_Dereference (N, Ctx_Type);
2809 when N_Expression_With_Actions =>
2810 Resolve_Expression_With_Actions (N, Ctx_Type);
2812 when N_Extension_Aggregate =>
2813 Resolve_Extension_Aggregate (N, Ctx_Type);
2815 when N_Function_Call =>
2816 Resolve_Call (N, Ctx_Type);
2818 when N_Identifier =>
2819 Resolve_Entity_Name (N, Ctx_Type);
2821 when N_If_Expression =>
2822 Resolve_If_Expression (N, Ctx_Type);
2824 when N_Indexed_Component =>
2825 Resolve_Indexed_Component (N, Ctx_Type);
2827 when N_Integer_Literal =>
2828 Resolve_Integer_Literal (N, Ctx_Type);
2830 when N_Membership_Test =>
2831 Resolve_Membership_Op (N, Ctx_Type);
2833 when N_Null =>
2834 Resolve_Null (N, Ctx_Type);
2836 when N_Op_And
2837 | N_Op_Or
2838 | N_Op_Xor
2840 Resolve_Logical_Op (N, Ctx_Type);
2842 when N_Op_Eq
2843 | N_Op_Ne
2845 Resolve_Equality_Op (N, Ctx_Type);
2847 when N_Op_Ge
2848 | N_Op_Gt
2849 | N_Op_Le
2850 | N_Op_Lt
2852 Resolve_Comparison_Op (N, Ctx_Type);
2854 when N_Op_Not =>
2855 Resolve_Op_Not (N, Ctx_Type);
2857 when N_Op_Add
2858 | N_Op_Divide
2859 | N_Op_Mod
2860 | N_Op_Multiply
2861 | N_Op_Rem
2862 | N_Op_Subtract
2864 Resolve_Arithmetic_Op (N, Ctx_Type);
2866 when N_Op_Concat =>
2867 Resolve_Op_Concat (N, Ctx_Type);
2869 when N_Op_Expon =>
2870 Resolve_Op_Expon (N, Ctx_Type);
2872 when N_Op_Abs
2873 | N_Op_Minus
2874 | N_Op_Plus
2876 Resolve_Unary_Op (N, Ctx_Type);
2878 when N_Op_Shift =>
2879 Resolve_Shift (N, Ctx_Type);
2881 when N_Procedure_Call_Statement =>
2882 Resolve_Call (N, Ctx_Type);
2884 when N_Operator_Symbol =>
2885 Resolve_Operator_Symbol (N, Ctx_Type);
2887 when N_Qualified_Expression =>
2888 Resolve_Qualified_Expression (N, Ctx_Type);
2890 -- Why is the following null, needs a comment ???
2892 when N_Quantified_Expression =>
2893 null;
2895 when N_Raise_Expression =>
2896 Resolve_Raise_Expression (N, Ctx_Type);
2898 when N_Raise_xxx_Error =>
2899 Set_Etype (N, Ctx_Type);
2901 when N_Range =>
2902 Resolve_Range (N, Ctx_Type);
2904 when N_Real_Literal =>
2905 Resolve_Real_Literal (N, Ctx_Type);
2907 when N_Reference =>
2908 Resolve_Reference (N, Ctx_Type);
2910 when N_Selected_Component =>
2911 Resolve_Selected_Component (N, Ctx_Type);
2913 when N_Slice =>
2914 Resolve_Slice (N, Ctx_Type);
2916 when N_String_Literal =>
2917 Resolve_String_Literal (N, Ctx_Type);
2919 when N_Target_Name =>
2920 Resolve_Target_Name (N, Ctx_Type);
2922 when N_Type_Conversion =>
2923 Resolve_Type_Conversion (N, Ctx_Type);
2925 when N_Unchecked_Expression =>
2926 Resolve_Unchecked_Expression (N, Ctx_Type);
2928 when N_Unchecked_Type_Conversion =>
2929 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2930 end case;
2932 -- Mark relevant use-type and use-package clauses as effective using
2933 -- the original node because constant folding may have occured and
2934 -- removed references that need to be examined.
2936 if Nkind (Original_Node (N)) in N_Op then
2937 Mark_Use_Clauses (Original_Node (N));
2938 end if;
2940 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2941 -- expression of an anonymous access type that occurs in the context
2942 -- of a named general access type, except when the expression is that
2943 -- of a membership test. This ensures proper legality checking in
2944 -- terms of allowed conversions (expressions that would be illegal to
2945 -- convert implicitly are allowed in membership tests).
2947 if Ada_Version >= Ada_2012
2948 and then Ekind (Ctx_Type) = E_General_Access_Type
2949 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2950 and then Nkind (Parent (N)) not in N_Membership_Test
2951 then
2952 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2953 Analyze_And_Resolve (N, Ctx_Type);
2954 end if;
2956 -- If the subexpression was replaced by a non-subexpression, then
2957 -- all we do is to expand it. The only legitimate case we know of
2958 -- is converting procedure call statement to entry call statements,
2959 -- but there may be others, so we are making this test general.
2961 if Nkind (N) not in N_Subexpr then
2962 Debug_A_Exit ("resolving ", N, " (done)");
2963 Expand (N);
2964 return;
2965 end if;
2967 -- The expression is definitely NOT overloaded at this point, so
2968 -- we reset the Is_Overloaded flag to avoid any confusion when
2969 -- reanalyzing the node.
2971 Set_Is_Overloaded (N, False);
2973 -- Freeze expression type, entity if it is a name, and designated
2974 -- type if it is an allocator (RM 13.14(10,11,13)).
2976 -- Now that the resolution of the type of the node is complete, and
2977 -- we did not detect an error, we can expand this node. We skip the
2978 -- expand call if we are in a default expression, see section
2979 -- "Handling of Default Expressions" in Sem spec.
2981 Debug_A_Exit ("resolving ", N, " (done)");
2983 -- We unconditionally freeze the expression, even if we are in
2984 -- default expression mode (the Freeze_Expression routine tests this
2985 -- flag and only freezes static types if it is set).
2987 -- Ada 2012 (AI05-177): The declaration of an expression function
2988 -- does not cause freezing, but we never reach here in that case.
2989 -- Here we are resolving the corresponding expanded body, so we do
2990 -- need to perform normal freezing.
2992 -- As elsewhere we do not emit freeze node within a generic. We make
2993 -- an exception for entities that are expressions, only to detect
2994 -- misuses of deferred constants and preserve the output of various
2995 -- tests.
2997 if not Inside_A_Generic or else Is_Entity_Name (N) then
2998 Freeze_Expression (N);
2999 end if;
3001 -- Now we can do the expansion
3003 Expand (N);
3004 end if;
3005 end Resolve;
3007 -------------
3008 -- Resolve --
3009 -------------
3011 -- Version with check(s) suppressed
3013 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3014 begin
3015 if Suppress = All_Checks then
3016 declare
3017 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3018 begin
3019 Scope_Suppress.Suppress := (others => True);
3020 Resolve (N, Typ);
3021 Scope_Suppress.Suppress := Sva;
3022 end;
3024 else
3025 declare
3026 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3027 begin
3028 Scope_Suppress.Suppress (Suppress) := True;
3029 Resolve (N, Typ);
3030 Scope_Suppress.Suppress (Suppress) := Svg;
3031 end;
3032 end if;
3033 end Resolve;
3035 -------------
3036 -- Resolve --
3037 -------------
3039 -- Version with implicit type
3041 procedure Resolve (N : Node_Id) is
3042 begin
3043 Resolve (N, Etype (N));
3044 end Resolve;
3046 ---------------------
3047 -- Resolve_Actuals --
3048 ---------------------
3050 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3051 Loc : constant Source_Ptr := Sloc (N);
3052 A : Node_Id;
3053 A_Id : Entity_Id;
3054 A_Typ : Entity_Id := Empty; -- init to avoid warning
3055 F : Entity_Id;
3056 F_Typ : Entity_Id;
3057 Prev : Node_Id := Empty;
3058 Orig_A : Node_Id;
3059 Real_F : Entity_Id := Empty; -- init to avoid warning
3061 Real_Subp : Entity_Id;
3062 -- If the subprogram being called is an inherited operation for
3063 -- a formal derived type in an instance, Real_Subp is the subprogram
3064 -- that will be called. It may have different formal names than the
3065 -- operation of the formal in the generic, so after actual is resolved
3066 -- the name of the actual in a named association must carry the name
3067 -- of the actual of the subprogram being called.
3069 procedure Check_Aliased_Parameter;
3070 -- Check rules on aliased parameters and related accessibility rules
3071 -- in (RM 3.10.2 (10.2-10.4)).
3073 procedure Check_Argument_Order;
3074 -- Performs a check for the case where the actuals are all simple
3075 -- identifiers that correspond to the formal names, but in the wrong
3076 -- order, which is considered suspicious and cause for a warning.
3078 procedure Check_Prefixed_Call;
3079 -- If the original node is an overloaded call in prefix notation,
3080 -- insert an 'Access or a dereference as needed over the first actual.
3081 -- Try_Object_Operation has already verified that there is a valid
3082 -- interpretation, but the form of the actual can only be determined
3083 -- once the primitive operation is identified.
3085 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3086 -- Emit an error concerning the illegal usage of an effectively volatile
3087 -- object in interfering context (SPARK RM 7.13(12)).
3089 procedure Insert_Default;
3090 -- If the actual is missing in a call, insert in the actuals list
3091 -- an instance of the default expression. The insertion is always
3092 -- a named association.
3094 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3095 -- Check whether T1 and T2, or their full views, are derived from a
3096 -- common type. Used to enforce the restrictions on array conversions
3097 -- of AI95-00246.
3099 function Static_Concatenation (N : Node_Id) return Boolean;
3100 -- Predicate to determine whether an actual that is a concatenation
3101 -- will be evaluated statically and does not need a transient scope.
3102 -- This must be determined before the actual is resolved and expanded
3103 -- because if needed the transient scope must be introduced earlier.
3105 -----------------------------
3106 -- Check_Aliased_Parameter --
3107 -----------------------------
3109 procedure Check_Aliased_Parameter is
3110 Nominal_Subt : Entity_Id;
3112 begin
3113 if Is_Aliased (F) then
3114 if Is_Tagged_Type (A_Typ) then
3115 null;
3117 elsif Is_Aliased_View (A) then
3118 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3119 Nominal_Subt := Base_Type (A_Typ);
3120 else
3121 Nominal_Subt := A_Typ;
3122 end if;
3124 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3125 null;
3127 -- In a generic body assume the worst for generic formals:
3128 -- they can have a constrained partial view (AI05-041).
3130 elsif Has_Discriminants (F_Typ)
3131 and then not Is_Constrained (F_Typ)
3132 and then not Has_Constrained_Partial_View (F_Typ)
3133 and then not Is_Generic_Type (F_Typ)
3134 then
3135 null;
3137 else
3138 Error_Msg_NE ("untagged actual does not match "
3139 & "aliased formal&", A, F);
3140 end if;
3142 else
3143 Error_Msg_NE ("actual for aliased formal& must be "
3144 & "aliased object", A, F);
3145 end if;
3147 if Ekind (Nam) = E_Procedure then
3148 null;
3150 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3151 if Nkind (Parent (N)) = N_Type_Conversion
3152 and then Type_Access_Level (Etype (Parent (N))) <
3153 Object_Access_Level (A)
3154 then
3155 Error_Msg_N ("aliased actual has wrong accessibility", A);
3156 end if;
3158 elsif Nkind (Parent (N)) = N_Qualified_Expression
3159 and then Nkind (Parent (Parent (N))) = N_Allocator
3160 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3161 Object_Access_Level (A)
3162 then
3163 Error_Msg_N
3164 ("aliased actual in allocator has wrong accessibility", A);
3165 end if;
3166 end if;
3167 end Check_Aliased_Parameter;
3169 --------------------------
3170 -- Check_Argument_Order --
3171 --------------------------
3173 procedure Check_Argument_Order is
3174 begin
3175 -- Nothing to do if no parameters, or original node is neither a
3176 -- function call nor a procedure call statement (happens in the
3177 -- operator-transformed-to-function call case), or the call does
3178 -- not come from source, or this warning is off.
3180 if not Warn_On_Parameter_Order
3181 or else No (Parameter_Associations (N))
3182 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3183 or else not Comes_From_Source (N)
3184 then
3185 return;
3186 end if;
3188 declare
3189 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3191 begin
3192 -- Nothing to do if only one parameter
3194 if Nargs < 2 then
3195 return;
3196 end if;
3198 -- Here if at least two arguments
3200 declare
3201 Actuals : array (1 .. Nargs) of Node_Id;
3202 Actual : Node_Id;
3203 Formal : Node_Id;
3205 Wrong_Order : Boolean := False;
3206 -- Set True if an out of order case is found
3208 begin
3209 -- Collect identifier names of actuals, fail if any actual is
3210 -- not a simple identifier, and record max length of name.
3212 Actual := First (Parameter_Associations (N));
3213 for J in Actuals'Range loop
3214 if Nkind (Actual) /= N_Identifier then
3215 return;
3216 else
3217 Actuals (J) := Actual;
3218 Next (Actual);
3219 end if;
3220 end loop;
3222 -- If we got this far, all actuals are identifiers and the list
3223 -- of their names is stored in the Actuals array.
3225 Formal := First_Formal (Nam);
3226 for J in Actuals'Range loop
3228 -- If we ran out of formals, that's odd, probably an error
3229 -- which will be detected elsewhere, but abandon the search.
3231 if No (Formal) then
3232 return;
3233 end if;
3235 -- If name matches and is in order OK
3237 if Chars (Formal) = Chars (Actuals (J)) then
3238 null;
3240 else
3241 -- If no match, see if it is elsewhere in list and if so
3242 -- flag potential wrong order if type is compatible.
3244 for K in Actuals'Range loop
3245 if Chars (Formal) = Chars (Actuals (K))
3246 and then
3247 Has_Compatible_Type (Actuals (K), Etype (Formal))
3248 then
3249 Wrong_Order := True;
3250 goto Continue;
3251 end if;
3252 end loop;
3254 -- No match
3256 return;
3257 end if;
3259 <<Continue>> Next_Formal (Formal);
3260 end loop;
3262 -- If Formals left over, also probably an error, skip warning
3264 if Present (Formal) then
3265 return;
3266 end if;
3268 -- Here we give the warning if something was out of order
3270 if Wrong_Order then
3271 Error_Msg_N
3272 ("?P?actuals for this call may be in wrong order", N);
3273 end if;
3274 end;
3275 end;
3276 end Check_Argument_Order;
3278 -------------------------
3279 -- Check_Prefixed_Call --
3280 -------------------------
3282 procedure Check_Prefixed_Call is
3283 Act : constant Node_Id := First_Actual (N);
3284 A_Type : constant Entity_Id := Etype (Act);
3285 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3286 Orig : constant Node_Id := Original_Node (N);
3287 New_A : Node_Id;
3289 begin
3290 -- Check whether the call is a prefixed call, with or without
3291 -- additional actuals.
3293 if Nkind (Orig) = N_Selected_Component
3294 or else
3295 (Nkind (Orig) = N_Indexed_Component
3296 and then Nkind (Prefix (Orig)) = N_Selected_Component
3297 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3298 and then Is_Entity_Name (Act)
3299 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3300 then
3301 if Is_Access_Type (A_Type)
3302 and then not Is_Access_Type (F_Type)
3303 then
3304 -- Introduce dereference on object in prefix
3306 New_A :=
3307 Make_Explicit_Dereference (Sloc (Act),
3308 Prefix => Relocate_Node (Act));
3309 Rewrite (Act, New_A);
3310 Analyze (Act);
3312 elsif Is_Access_Type (F_Type)
3313 and then not Is_Access_Type (A_Type)
3314 then
3315 -- Introduce an implicit 'Access in prefix
3317 if not Is_Aliased_View (Act) then
3318 Error_Msg_NE
3319 ("object in prefixed call to& must be aliased "
3320 & "(RM 4.1.3 (13 1/2))",
3321 Prefix (Act), Nam);
3322 end if;
3324 Rewrite (Act,
3325 Make_Attribute_Reference (Loc,
3326 Attribute_Name => Name_Access,
3327 Prefix => Relocate_Node (Act)));
3328 end if;
3330 Analyze (Act);
3331 end if;
3332 end Check_Prefixed_Call;
3334 ---------------------------------------
3335 -- Flag_Effectively_Volatile_Objects --
3336 ---------------------------------------
3338 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3339 function Flag_Object (N : Node_Id) return Traverse_Result;
3340 -- Determine whether arbitrary node N denotes an effectively volatile
3341 -- object and if it does, emit an error.
3343 -----------------
3344 -- Flag_Object --
3345 -----------------
3347 function Flag_Object (N : Node_Id) return Traverse_Result is
3348 Id : Entity_Id;
3350 begin
3351 -- Do not consider nested function calls because they have already
3352 -- been processed during their own resolution.
3354 if Nkind (N) = N_Function_Call then
3355 return Skip;
3357 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3358 Id := Entity (N);
3360 if Is_Object (Id)
3361 and then Is_Effectively_Volatile (Id)
3362 and then (Async_Writers_Enabled (Id)
3363 or else Effective_Reads_Enabled (Id))
3364 then
3365 Error_Msg_N
3366 ("volatile object cannot appear in this context (SPARK "
3367 & "RM 7.1.3(11))", N);
3368 return Skip;
3369 end if;
3370 end if;
3372 return OK;
3373 end Flag_Object;
3375 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3377 -- Start of processing for Flag_Effectively_Volatile_Objects
3379 begin
3380 Flag_Objects (Expr);
3381 end Flag_Effectively_Volatile_Objects;
3383 --------------------
3384 -- Insert_Default --
3385 --------------------
3387 procedure Insert_Default is
3388 Actval : Node_Id;
3389 Assoc : Node_Id;
3391 begin
3392 -- Missing argument in call, nothing to insert
3394 if No (Default_Value (F)) then
3395 return;
3397 else
3398 -- Note that we do a full New_Copy_Tree, so that any associated
3399 -- Itypes are properly copied. This may not be needed any more,
3400 -- but it does no harm as a safety measure. Defaults of a generic
3401 -- formal may be out of bounds of the corresponding actual (see
3402 -- cc1311b) and an additional check may be required.
3404 Actval :=
3405 New_Copy_Tree
3406 (Default_Value (F),
3407 New_Scope => Current_Scope,
3408 New_Sloc => Loc);
3410 -- Propagate dimension information, if any.
3412 Copy_Dimensions (Default_Value (F), Actval);
3414 if Is_Concurrent_Type (Scope (Nam))
3415 and then Has_Discriminants (Scope (Nam))
3416 then
3417 Replace_Actual_Discriminants (N, Actval);
3418 end if;
3420 if Is_Overloadable (Nam)
3421 and then Present (Alias (Nam))
3422 then
3423 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3424 and then not Is_Tagged_Type (Etype (F))
3425 then
3426 -- If default is a real literal, do not introduce a
3427 -- conversion whose effect may depend on the run-time
3428 -- size of universal real.
3430 if Nkind (Actval) = N_Real_Literal then
3431 Set_Etype (Actval, Base_Type (Etype (F)));
3432 else
3433 Actval := Unchecked_Convert_To (Etype (F), Actval);
3434 end if;
3435 end if;
3437 if Is_Scalar_Type (Etype (F)) then
3438 Enable_Range_Check (Actval);
3439 end if;
3441 Set_Parent (Actval, N);
3443 -- Resolve aggregates with their base type, to avoid scope
3444 -- anomalies: the subtype was first built in the subprogram
3445 -- declaration, and the current call may be nested.
3447 if Nkind (Actval) = N_Aggregate then
3448 Analyze_And_Resolve (Actval, Etype (F));
3449 else
3450 Analyze_And_Resolve (Actval, Etype (Actval));
3451 end if;
3453 else
3454 Set_Parent (Actval, N);
3456 -- See note above concerning aggregates
3458 if Nkind (Actval) = N_Aggregate
3459 and then Has_Discriminants (Etype (Actval))
3460 then
3461 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3463 -- Resolve entities with their own type, which may differ from
3464 -- the type of a reference in a generic context (the view
3465 -- swapping mechanism did not anticipate the re-analysis of
3466 -- default values in calls).
3468 elsif Is_Entity_Name (Actval) then
3469 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3471 else
3472 Analyze_And_Resolve (Actval, Etype (Actval));
3473 end if;
3474 end if;
3476 -- If default is a tag indeterminate function call, propagate tag
3477 -- to obtain proper dispatching.
3479 if Is_Controlling_Formal (F)
3480 and then Nkind (Default_Value (F)) = N_Function_Call
3481 then
3482 Set_Is_Controlling_Actual (Actval);
3483 end if;
3484 end if;
3486 -- If the default expression raises constraint error, then just
3487 -- silently replace it with an N_Raise_Constraint_Error node, since
3488 -- we already gave the warning on the subprogram spec. If node is
3489 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3490 -- the warnings removal machinery.
3492 if Raises_Constraint_Error (Actval)
3493 and then Nkind (Actval) /= N_Raise_Constraint_Error
3494 then
3495 Rewrite (Actval,
3496 Make_Raise_Constraint_Error (Loc,
3497 Reason => CE_Range_Check_Failed));
3499 Set_Raises_Constraint_Error (Actval);
3500 Set_Etype (Actval, Etype (F));
3501 end if;
3503 Assoc :=
3504 Make_Parameter_Association (Loc,
3505 Explicit_Actual_Parameter => Actval,
3506 Selector_Name => Make_Identifier (Loc, Chars (F)));
3508 -- Case of insertion is first named actual
3510 if No (Prev)
3511 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3512 then
3513 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3514 Set_First_Named_Actual (N, Actval);
3516 if No (Prev) then
3517 if No (Parameter_Associations (N)) then
3518 Set_Parameter_Associations (N, New_List (Assoc));
3519 else
3520 Append (Assoc, Parameter_Associations (N));
3521 end if;
3523 else
3524 Insert_After (Prev, Assoc);
3525 end if;
3527 -- Case of insertion is not first named actual
3529 else
3530 Set_Next_Named_Actual
3531 (Assoc, Next_Named_Actual (Parent (Prev)));
3532 Set_Next_Named_Actual (Parent (Prev), Actval);
3533 Append (Assoc, Parameter_Associations (N));
3534 end if;
3536 Mark_Rewrite_Insertion (Assoc);
3537 Mark_Rewrite_Insertion (Actval);
3539 Prev := Actval;
3540 end Insert_Default;
3542 -------------------
3543 -- Same_Ancestor --
3544 -------------------
3546 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3547 FT1 : Entity_Id := T1;
3548 FT2 : Entity_Id := T2;
3550 begin
3551 if Is_Private_Type (T1)
3552 and then Present (Full_View (T1))
3553 then
3554 FT1 := Full_View (T1);
3555 end if;
3557 if Is_Private_Type (T2)
3558 and then Present (Full_View (T2))
3559 then
3560 FT2 := Full_View (T2);
3561 end if;
3563 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3564 end Same_Ancestor;
3566 --------------------------
3567 -- Static_Concatenation --
3568 --------------------------
3570 function Static_Concatenation (N : Node_Id) return Boolean is
3571 begin
3572 case Nkind (N) is
3573 when N_String_Literal =>
3574 return True;
3576 when N_Op_Concat =>
3578 -- Concatenation is static when both operands are static and
3579 -- the concatenation operator is a predefined one.
3581 return Scope (Entity (N)) = Standard_Standard
3582 and then
3583 Static_Concatenation (Left_Opnd (N))
3584 and then
3585 Static_Concatenation (Right_Opnd (N));
3587 when others =>
3588 if Is_Entity_Name (N) then
3589 declare
3590 Ent : constant Entity_Id := Entity (N);
3591 begin
3592 return Ekind (Ent) = E_Constant
3593 and then Present (Constant_Value (Ent))
3594 and then
3595 Is_OK_Static_Expression (Constant_Value (Ent));
3596 end;
3598 else
3599 return False;
3600 end if;
3601 end case;
3602 end Static_Concatenation;
3604 -- Start of processing for Resolve_Actuals
3606 begin
3607 Check_Argument_Order;
3609 if Is_Overloadable (Nam)
3610 and then Is_Inherited_Operation (Nam)
3611 and then In_Instance
3612 and then Present (Alias (Nam))
3613 and then Present (Overridden_Operation (Alias (Nam)))
3614 then
3615 Real_Subp := Alias (Nam);
3616 else
3617 Real_Subp := Empty;
3618 end if;
3620 if Present (First_Actual (N)) then
3621 Check_Prefixed_Call;
3622 end if;
3624 A := First_Actual (N);
3625 F := First_Formal (Nam);
3627 if Present (Real_Subp) then
3628 Real_F := First_Formal (Real_Subp);
3629 end if;
3631 while Present (F) loop
3632 if No (A) and then Needs_No_Actuals (Nam) then
3633 null;
3635 -- If we have an error in any actual or formal, indicated by a type
3636 -- of Any_Type, then abandon resolution attempt, and set result type
3637 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3638 -- type is imposed from context.
3640 elsif (Present (A) and then Etype (A) = Any_Type)
3641 or else Etype (F) = Any_Type
3642 then
3643 if Nkind (A) /= N_Raise_Expression then
3644 Set_Etype (N, Any_Type);
3645 return;
3646 end if;
3647 end if;
3649 -- Case where actual is present
3651 -- If the actual is an entity, generate a reference to it now. We
3652 -- do this before the actual is resolved, because a formal of some
3653 -- protected subprogram, or a task discriminant, will be rewritten
3654 -- during expansion, and the source entity reference may be lost.
3656 if Present (A)
3657 and then Is_Entity_Name (A)
3658 and then Comes_From_Source (A)
3659 then
3660 -- Annotate the tree by creating a variable reference marker when
3661 -- the actual denotes a variable reference, in case the reference
3662 -- is folded or optimized away. The variable reference marker is
3663 -- automatically saved for later examination by the ABE Processing
3664 -- phase. The status of the reference is set as follows:
3666 -- status mode
3667 -- read IN, IN OUT
3668 -- write IN OUT, OUT
3670 Build_Variable_Reference_Marker
3671 (N => A,
3672 Read => Ekind (F) /= E_Out_Parameter,
3673 Write => Ekind (F) /= E_In_Parameter);
3675 Orig_A := Entity (A);
3677 if Present (Orig_A) then
3678 if Is_Formal (Orig_A)
3679 and then Ekind (F) /= E_In_Parameter
3680 then
3681 Generate_Reference (Orig_A, A, 'm');
3683 elsif not Is_Overloaded (A) then
3684 if Ekind (F) /= E_Out_Parameter then
3685 Generate_Reference (Orig_A, A);
3687 -- RM 6.4.1(12): For an out parameter that is passed by
3688 -- copy, the formal parameter object is created, and:
3690 -- * For an access type, the formal parameter is initialized
3691 -- from the value of the actual, without checking that the
3692 -- value satisfies any constraint, any predicate, or any
3693 -- exclusion of the null value.
3695 -- * For a scalar type that has the Default_Value aspect
3696 -- specified, the formal parameter is initialized from the
3697 -- value of the actual, without checking that the value
3698 -- satisfies any constraint or any predicate.
3699 -- I do not understand why this case is included??? this is
3700 -- not a case where an OUT parameter is treated as IN OUT.
3702 -- * For a composite type with discriminants or that has
3703 -- implicit initial values for any subcomponents, the
3704 -- behavior is as for an in out parameter passed by copy.
3706 -- Hence for these cases we generate the read reference now
3707 -- (the write reference will be generated later by
3708 -- Note_Possible_Modification).
3710 elsif Is_By_Copy_Type (Etype (F))
3711 and then
3712 (Is_Access_Type (Etype (F))
3713 or else
3714 (Is_Scalar_Type (Etype (F))
3715 and then
3716 Present (Default_Aspect_Value (Etype (F))))
3717 or else
3718 (Is_Composite_Type (Etype (F))
3719 and then (Has_Discriminants (Etype (F))
3720 or else Is_Partially_Initialized_Type
3721 (Etype (F)))))
3722 then
3723 Generate_Reference (Orig_A, A);
3724 end if;
3725 end if;
3726 end if;
3727 end if;
3729 if Present (A)
3730 and then (Nkind (Parent (A)) /= N_Parameter_Association
3731 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3732 then
3733 -- If style checking mode on, check match of formal name
3735 if Style_Check then
3736 if Nkind (Parent (A)) = N_Parameter_Association then
3737 Check_Identifier (Selector_Name (Parent (A)), F);
3738 end if;
3739 end if;
3741 -- If the formal is Out or In_Out, do not resolve and expand the
3742 -- conversion, because it is subsequently expanded into explicit
3743 -- temporaries and assignments. However, the object of the
3744 -- conversion can be resolved. An exception is the case of tagged
3745 -- type conversion with a class-wide actual. In that case we want
3746 -- the tag check to occur and no temporary will be needed (no
3747 -- representation change can occur) and the parameter is passed by
3748 -- reference, so we go ahead and resolve the type conversion.
3749 -- Another exception is the case of reference to component or
3750 -- subcomponent of a bit-packed array, in which case we want to
3751 -- defer expansion to the point the in and out assignments are
3752 -- performed.
3754 if Ekind (F) /= E_In_Parameter
3755 and then Nkind (A) = N_Type_Conversion
3756 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3757 then
3758 if Ekind (F) = E_In_Out_Parameter
3759 and then Is_Array_Type (Etype (F))
3760 then
3761 -- In a view conversion, the conversion must be legal in
3762 -- both directions, and thus both component types must be
3763 -- aliased, or neither (4.6 (8)).
3765 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3766 -- the privacy requirement should not apply to generic
3767 -- types, and should be checked in an instance. ARG query
3768 -- is in order ???
3770 if Has_Aliased_Components (Etype (Expression (A))) /=
3771 Has_Aliased_Components (Etype (F))
3772 then
3773 Error_Msg_N
3774 ("both component types in a view conversion must be"
3775 & " aliased, or neither", A);
3777 -- Comment here??? what set of cases???
3779 elsif
3780 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3781 then
3782 -- Check view conv between unrelated by ref array types
3784 if Is_By_Reference_Type (Etype (F))
3785 or else Is_By_Reference_Type (Etype (Expression (A)))
3786 then
3787 Error_Msg_N
3788 ("view conversion between unrelated by reference "
3789 & "array types not allowed (\'A'I-00246)", A);
3791 -- In Ada 2005 mode, check view conversion component
3792 -- type cannot be private, tagged, or volatile. Note
3793 -- that we only apply this to source conversions. The
3794 -- generated code can contain conversions which are
3795 -- not subject to this test, and we cannot extract the
3796 -- component type in such cases since it is not present.
3798 elsif Comes_From_Source (A)
3799 and then Ada_Version >= Ada_2005
3800 then
3801 declare
3802 Comp_Type : constant Entity_Id :=
3803 Component_Type
3804 (Etype (Expression (A)));
3805 begin
3806 if (Is_Private_Type (Comp_Type)
3807 and then not Is_Generic_Type (Comp_Type))
3808 or else Is_Tagged_Type (Comp_Type)
3809 or else Is_Volatile (Comp_Type)
3810 then
3811 Error_Msg_N
3812 ("component type of a view conversion cannot"
3813 & " be private, tagged, or volatile"
3814 & " (RM 4.6 (24))",
3815 Expression (A));
3816 end if;
3817 end;
3818 end if;
3819 end if;
3820 end if;
3822 -- Resolve expression if conversion is all OK
3824 if (Conversion_OK (A)
3825 or else Valid_Conversion (A, Etype (A), Expression (A)))
3826 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3827 then
3828 Resolve (Expression (A));
3829 end if;
3831 -- If the actual is a function call that returns a limited
3832 -- unconstrained object that needs finalization, create a
3833 -- transient scope for it, so that it can receive the proper
3834 -- finalization list.
3836 elsif Expander_Active
3837 and then Nkind (A) = N_Function_Call
3838 and then Is_Limited_Record (Etype (F))
3839 and then not Is_Constrained (Etype (F))
3840 and then (Needs_Finalization (Etype (F))
3841 or else Has_Task (Etype (F)))
3842 then
3843 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3844 Resolve (A, Etype (F));
3846 -- A small optimization: if one of the actuals is a concatenation
3847 -- create a block around a procedure call to recover stack space.
3848 -- This alleviates stack usage when several procedure calls in
3849 -- the same statement list use concatenation. We do not perform
3850 -- this wrapping for code statements, where the argument is a
3851 -- static string, and we want to preserve warnings involving
3852 -- sequences of such statements.
3854 elsif Expander_Active
3855 and then Nkind (A) = N_Op_Concat
3856 and then Nkind (N) = N_Procedure_Call_Statement
3857 and then not (Is_Intrinsic_Subprogram (Nam)
3858 and then Chars (Nam) = Name_Asm)
3859 and then not Static_Concatenation (A)
3860 then
3861 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3862 Resolve (A, Etype (F));
3864 else
3865 if Nkind (A) = N_Type_Conversion
3866 and then Is_Array_Type (Etype (F))
3867 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3868 and then
3869 (Is_Limited_Type (Etype (F))
3870 or else Is_Limited_Type (Etype (Expression (A))))
3871 then
3872 Error_Msg_N
3873 ("conversion between unrelated limited array types not "
3874 & "allowed ('A'I-00246)", A);
3876 if Is_Limited_Type (Etype (F)) then
3877 Explain_Limited_Type (Etype (F), A);
3878 end if;
3880 if Is_Limited_Type (Etype (Expression (A))) then
3881 Explain_Limited_Type (Etype (Expression (A)), A);
3882 end if;
3883 end if;
3885 -- (Ada 2005: AI-251): If the actual is an allocator whose
3886 -- directly designated type is a class-wide interface, we build
3887 -- an anonymous access type to use it as the type of the
3888 -- allocator. Later, when the subprogram call is expanded, if
3889 -- the interface has a secondary dispatch table the expander
3890 -- will add a type conversion to force the correct displacement
3891 -- of the pointer.
3893 if Nkind (A) = N_Allocator then
3894 declare
3895 DDT : constant Entity_Id :=
3896 Directly_Designated_Type (Base_Type (Etype (F)));
3898 New_Itype : Entity_Id;
3900 begin
3901 if Is_Class_Wide_Type (DDT)
3902 and then Is_Interface (DDT)
3903 then
3904 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3905 Set_Etype (New_Itype, Etype (A));
3906 Set_Directly_Designated_Type
3907 (New_Itype, Directly_Designated_Type (Etype (A)));
3908 Set_Etype (A, New_Itype);
3909 end if;
3911 -- Ada 2005, AI-162:If the actual is an allocator, the
3912 -- innermost enclosing statement is the master of the
3913 -- created object. This needs to be done with expansion
3914 -- enabled only, otherwise the transient scope will not
3915 -- be removed in the expansion of the wrapped construct.
3917 if Expander_Active
3918 and then (Needs_Finalization (DDT)
3919 or else Has_Task (DDT))
3920 then
3921 Establish_Transient_Scope
3922 (A, Manage_Sec_Stack => False);
3923 end if;
3924 end;
3926 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3927 Check_Restriction (No_Access_Parameter_Allocators, A);
3928 end if;
3929 end if;
3931 -- (Ada 2005): The call may be to a primitive operation of a
3932 -- tagged synchronized type, declared outside of the type. In
3933 -- this case the controlling actual must be converted to its
3934 -- corresponding record type, which is the formal type. The
3935 -- actual may be a subtype, either because of a constraint or
3936 -- because it is a generic actual, so use base type to locate
3937 -- concurrent type.
3939 F_Typ := Base_Type (Etype (F));
3941 if Is_Tagged_Type (F_Typ)
3942 and then (Is_Concurrent_Type (F_Typ)
3943 or else Is_Concurrent_Record_Type (F_Typ))
3944 then
3945 -- If the actual is overloaded, look for an interpretation
3946 -- that has a synchronized type.
3948 if not Is_Overloaded (A) then
3949 A_Typ := Base_Type (Etype (A));
3951 else
3952 declare
3953 Index : Interp_Index;
3954 It : Interp;
3956 begin
3957 Get_First_Interp (A, Index, It);
3958 while Present (It.Typ) loop
3959 if Is_Concurrent_Type (It.Typ)
3960 or else Is_Concurrent_Record_Type (It.Typ)
3961 then
3962 A_Typ := Base_Type (It.Typ);
3963 exit;
3964 end if;
3966 Get_Next_Interp (Index, It);
3967 end loop;
3968 end;
3969 end if;
3971 declare
3972 Full_A_Typ : Entity_Id;
3974 begin
3975 if Present (Full_View (A_Typ)) then
3976 Full_A_Typ := Base_Type (Full_View (A_Typ));
3977 else
3978 Full_A_Typ := A_Typ;
3979 end if;
3981 -- Tagged synchronized type (case 1): the actual is a
3982 -- concurrent type.
3984 if Is_Concurrent_Type (A_Typ)
3985 and then Corresponding_Record_Type (A_Typ) = F_Typ
3986 then
3987 Rewrite (A,
3988 Unchecked_Convert_To
3989 (Corresponding_Record_Type (A_Typ), A));
3990 Resolve (A, Etype (F));
3992 -- Tagged synchronized type (case 2): the formal is a
3993 -- concurrent type.
3995 elsif Ekind (Full_A_Typ) = E_Record_Type
3996 and then Present
3997 (Corresponding_Concurrent_Type (Full_A_Typ))
3998 and then Is_Concurrent_Type (F_Typ)
3999 and then Present (Corresponding_Record_Type (F_Typ))
4000 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4001 then
4002 Resolve (A, Corresponding_Record_Type (F_Typ));
4004 -- Common case
4006 else
4007 Resolve (A, Etype (F));
4008 end if;
4009 end;
4011 -- Not a synchronized operation
4013 else
4014 Resolve (A, Etype (F));
4015 end if;
4016 end if;
4018 A_Typ := Etype (A);
4019 F_Typ := Etype (F);
4021 -- An actual cannot be an untagged formal incomplete type
4023 if Ekind (A_Typ) = E_Incomplete_Type
4024 and then not Is_Tagged_Type (A_Typ)
4025 and then Is_Generic_Type (A_Typ)
4026 then
4027 Error_Msg_N
4028 ("invalid use of untagged formal incomplete type", A);
4029 end if;
4031 if Comes_From_Source (Original_Node (N))
4032 and then Nkind_In (Original_Node (N), N_Function_Call,
4033 N_Procedure_Call_Statement)
4034 then
4035 -- In formal mode, check that actual parameters matching
4036 -- formals of tagged types are objects (or ancestor type
4037 -- conversions of objects), not general expressions.
4039 if Is_Actual_Tagged_Parameter (A) then
4040 if Is_SPARK_05_Object_Reference (A) then
4041 null;
4043 elsif Nkind (A) = N_Type_Conversion then
4044 declare
4045 Operand : constant Node_Id := Expression (A);
4046 Operand_Typ : constant Entity_Id := Etype (Operand);
4047 Target_Typ : constant Entity_Id := A_Typ;
4049 begin
4050 if not Is_SPARK_05_Object_Reference (Operand) then
4051 Check_SPARK_05_Restriction
4052 ("object required", Operand);
4054 -- In formal mode, the only view conversions are those
4055 -- involving ancestor conversion of an extended type.
4057 elsif not
4058 (Is_Tagged_Type (Target_Typ)
4059 and then not Is_Class_Wide_Type (Target_Typ)
4060 and then Is_Tagged_Type (Operand_Typ)
4061 and then not Is_Class_Wide_Type (Operand_Typ)
4062 and then Is_Ancestor (Target_Typ, Operand_Typ))
4063 then
4064 if Ekind_In
4065 (F, E_Out_Parameter, E_In_Out_Parameter)
4066 then
4067 Check_SPARK_05_Restriction
4068 ("ancestor conversion is the only permitted "
4069 & "view conversion", A);
4070 else
4071 Check_SPARK_05_Restriction
4072 ("ancestor conversion required", A);
4073 end if;
4075 else
4076 null;
4077 end if;
4078 end;
4080 else
4081 Check_SPARK_05_Restriction ("object required", A);
4082 end if;
4084 -- In formal mode, the only view conversions are those
4085 -- involving ancestor conversion of an extended type.
4087 elsif Nkind (A) = N_Type_Conversion
4088 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4089 then
4090 Check_SPARK_05_Restriction
4091 ("ancestor conversion is the only permitted view "
4092 & "conversion", A);
4093 end if;
4094 end if;
4096 -- has warnings suppressed, then we reset Never_Set_In_Source for
4097 -- the calling entity. The reason for this is to catch cases like
4098 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4099 -- uses trickery to modify an IN parameter.
4101 if Ekind (F) = E_In_Parameter
4102 and then Is_Entity_Name (A)
4103 and then Present (Entity (A))
4104 and then Ekind (Entity (A)) = E_Variable
4105 and then Has_Warnings_Off (F_Typ)
4106 then
4107 Set_Never_Set_In_Source (Entity (A), False);
4108 end if;
4110 -- Perform error checks for IN and IN OUT parameters
4112 if Ekind (F) /= E_Out_Parameter then
4114 -- Check unset reference. For scalar parameters, it is clearly
4115 -- wrong to pass an uninitialized value as either an IN or
4116 -- IN-OUT parameter. For composites, it is also clearly an
4117 -- error to pass a completely uninitialized value as an IN
4118 -- parameter, but the case of IN OUT is trickier. We prefer
4119 -- not to give a warning here. For example, suppose there is
4120 -- a routine that sets some component of a record to False.
4121 -- It is perfectly reasonable to make this IN-OUT and allow
4122 -- either initialized or uninitialized records to be passed
4123 -- in this case.
4125 -- For partially initialized composite values, we also avoid
4126 -- warnings, since it is quite likely that we are passing a
4127 -- partially initialized value and only the initialized fields
4128 -- will in fact be read in the subprogram.
4130 if Is_Scalar_Type (A_Typ)
4131 or else (Ekind (F) = E_In_Parameter
4132 and then not Is_Partially_Initialized_Type (A_Typ))
4133 then
4134 Check_Unset_Reference (A);
4135 end if;
4137 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4138 -- actual to a nested call, since this constitutes a reading of
4139 -- the parameter, which is not allowed.
4141 if Ada_Version = Ada_83
4142 and then Is_Entity_Name (A)
4143 and then Ekind (Entity (A)) = E_Out_Parameter
4144 then
4145 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4146 end if;
4147 end if;
4149 -- In -gnatd.q mode, forget that a given array is constant when
4150 -- it is passed as an IN parameter to a foreign-convention
4151 -- subprogram. This is in case the subprogram evilly modifies the
4152 -- object. Of course, correct code would use IN OUT.
4154 if Debug_Flag_Dot_Q
4155 and then Ekind (F) = E_In_Parameter
4156 and then Has_Foreign_Convention (Nam)
4157 and then Is_Array_Type (F_Typ)
4158 and then Nkind (A) in N_Has_Entity
4159 and then Present (Entity (A))
4160 then
4161 Set_Is_True_Constant (Entity (A), False);
4162 end if;
4164 -- Case of OUT or IN OUT parameter
4166 if Ekind (F) /= E_In_Parameter then
4168 -- For an Out parameter, check for useless assignment. Note
4169 -- that we can't set Last_Assignment this early, because we may
4170 -- kill current values in Resolve_Call, and that call would
4171 -- clobber the Last_Assignment field.
4173 -- Note: call Warn_On_Useless_Assignment before doing the check
4174 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4175 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4176 -- reflects the last assignment, not this one.
4178 if Ekind (F) = E_Out_Parameter then
4179 if Warn_On_Modified_As_Out_Parameter (F)
4180 and then Is_Entity_Name (A)
4181 and then Present (Entity (A))
4182 and then Comes_From_Source (N)
4183 then
4184 Warn_On_Useless_Assignment (Entity (A), A);
4185 end if;
4186 end if;
4188 -- Validate the form of the actual. Note that the call to
4189 -- Is_OK_Variable_For_Out_Formal generates the required
4190 -- reference in this case.
4192 -- A call to an initialization procedure for an aggregate
4193 -- component may initialize a nested component of a constant
4194 -- designated object. In this context the object is variable.
4196 if not Is_OK_Variable_For_Out_Formal (A)
4197 and then not Is_Init_Proc (Nam)
4198 then
4199 Error_Msg_NE ("actual for& must be a variable", A, F);
4201 if Is_Subprogram (Current_Scope) then
4202 if Is_Invariant_Procedure (Current_Scope)
4203 or else Is_Partial_Invariant_Procedure (Current_Scope)
4204 then
4205 Error_Msg_N
4206 ("function used in invariant cannot modify its "
4207 & "argument", F);
4209 elsif Is_Predicate_Function (Current_Scope) then
4210 Error_Msg_N
4211 ("function used in predicate cannot modify its "
4212 & "argument", F);
4213 end if;
4214 end if;
4215 end if;
4217 -- What's the following about???
4219 if Is_Entity_Name (A) then
4220 Kill_Checks (Entity (A));
4221 else
4222 Kill_All_Checks;
4223 end if;
4224 end if;
4226 if Etype (A) = Any_Type then
4227 Set_Etype (N, Any_Type);
4228 return;
4229 end if;
4231 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4233 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4235 -- Apply predicate tests except in certain special cases. Note
4236 -- that it might be more consistent to apply these only when
4237 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4238 -- for the outbound predicate tests ??? In any case indicate
4239 -- the function being called, for better warnings if the call
4240 -- leads to an infinite recursion.
4242 if Predicate_Tests_On_Arguments (Nam) then
4243 Apply_Predicate_Check (A, F_Typ, Nam);
4244 end if;
4246 -- Apply required constraint checks
4248 -- Gigi looks at the check flag and uses the appropriate types.
4249 -- For now since one flag is used there is an optimization
4250 -- which might not be done in the IN OUT case since Gigi does
4251 -- not do any analysis. More thought required about this ???
4253 -- In fact is this comment obsolete??? doesn't the expander now
4254 -- generate all these tests anyway???
4256 if Is_Scalar_Type (Etype (A)) then
4257 Apply_Scalar_Range_Check (A, F_Typ);
4259 elsif Is_Array_Type (Etype (A)) then
4260 Apply_Length_Check (A, F_Typ);
4262 elsif Is_Record_Type (F_Typ)
4263 and then Has_Discriminants (F_Typ)
4264 and then Is_Constrained (F_Typ)
4265 and then (not Is_Derived_Type (F_Typ)
4266 or else Comes_From_Source (Nam))
4267 then
4268 Apply_Discriminant_Check (A, F_Typ);
4270 -- For view conversions of a discriminated object, apply
4271 -- check to object itself, the conversion alreay has the
4272 -- proper type.
4274 if Nkind (A) = N_Type_Conversion
4275 and then Is_Constrained (Etype (Expression (A)))
4276 then
4277 Apply_Discriminant_Check (Expression (A), F_Typ);
4278 end if;
4280 elsif Is_Access_Type (F_Typ)
4281 and then Is_Array_Type (Designated_Type (F_Typ))
4282 and then Is_Constrained (Designated_Type (F_Typ))
4283 then
4284 Apply_Length_Check (A, F_Typ);
4286 elsif Is_Access_Type (F_Typ)
4287 and then Has_Discriminants (Designated_Type (F_Typ))
4288 and then Is_Constrained (Designated_Type (F_Typ))
4289 then
4290 Apply_Discriminant_Check (A, F_Typ);
4292 else
4293 Apply_Range_Check (A, F_Typ);
4294 end if;
4296 -- Ada 2005 (AI-231): Note that the controlling parameter case
4297 -- already existed in Ada 95, which is partially checked
4298 -- elsewhere (see Checks), and we don't want the warning
4299 -- message to differ.
4301 if Is_Access_Type (F_Typ)
4302 and then Can_Never_Be_Null (F_Typ)
4303 and then Known_Null (A)
4304 then
4305 if Is_Controlling_Formal (F) then
4306 Apply_Compile_Time_Constraint_Error
4307 (N => A,
4308 Msg => "null value not allowed here??",
4309 Reason => CE_Access_Check_Failed);
4311 elsif Ada_Version >= Ada_2005 then
4312 Apply_Compile_Time_Constraint_Error
4313 (N => A,
4314 Msg => "(Ada 2005) null not allowed in "
4315 & "null-excluding formal??",
4316 Reason => CE_Null_Not_Allowed);
4317 end if;
4318 end if;
4319 end if;
4321 -- Checks for OUT parameters and IN OUT parameters
4323 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4325 -- If there is a type conversion, make sure the return value
4326 -- meets the constraints of the variable before the conversion.
4328 if Nkind (A) = N_Type_Conversion then
4329 if Is_Scalar_Type (A_Typ) then
4330 Apply_Scalar_Range_Check
4331 (Expression (A), Etype (Expression (A)), A_Typ);
4333 -- In addition, the returned value of the parameter must
4334 -- satisfy the bounds of the object type (see comment
4335 -- below).
4337 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4339 else
4340 Apply_Range_Check
4341 (Expression (A), Etype (Expression (A)), A_Typ);
4342 end if;
4344 -- If no conversion, apply scalar range checks and length check
4345 -- based on the subtype of the actual (NOT that of the formal).
4346 -- This indicates that the check takes place on return from the
4347 -- call. During expansion the required constraint checks are
4348 -- inserted. In GNATprove mode, in the absence of expansion,
4349 -- the flag indicates that the returned value is valid.
4351 else
4352 if Is_Scalar_Type (F_Typ) then
4353 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4355 elsif Is_Array_Type (F_Typ)
4356 and then Ekind (F) = E_Out_Parameter
4357 then
4358 Apply_Length_Check (A, F_Typ);
4359 else
4360 Apply_Range_Check (A, A_Typ, F_Typ);
4361 end if;
4362 end if;
4364 -- Note: we do not apply the predicate checks for the case of
4365 -- OUT and IN OUT parameters. They are instead applied in the
4366 -- Expand_Actuals routine in Exp_Ch6.
4367 end if;
4369 -- An actual associated with an access parameter is implicitly
4370 -- converted to the anonymous access type of the formal and must
4371 -- satisfy the legality checks for access conversions.
4373 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4374 if not Valid_Conversion (A, F_Typ, A) then
4375 Error_Msg_N
4376 ("invalid implicit conversion for access parameter", A);
4377 end if;
4379 -- If the actual is an access selected component of a variable,
4380 -- the call may modify its designated object. It is reasonable
4381 -- to treat this as a potential modification of the enclosing
4382 -- record, to prevent spurious warnings that it should be
4383 -- declared as a constant, because intuitively programmers
4384 -- regard the designated subcomponent as part of the record.
4386 if Nkind (A) = N_Selected_Component
4387 and then Is_Entity_Name (Prefix (A))
4388 and then not Is_Constant_Object (Entity (Prefix (A)))
4389 then
4390 Note_Possible_Modification (A, Sure => False);
4391 end if;
4392 end if;
4394 -- Check bad case of atomic/volatile argument (RM C.6(12))
4396 if Is_By_Reference_Type (Etype (F))
4397 and then Comes_From_Source (N)
4398 then
4399 if Is_Atomic_Object (A)
4400 and then not Is_Atomic (Etype (F))
4401 then
4402 Error_Msg_NE
4403 ("cannot pass atomic argument to non-atomic formal&",
4404 A, F);
4406 elsif Is_Volatile_Object (A)
4407 and then not Is_Volatile (Etype (F))
4408 then
4409 Error_Msg_NE
4410 ("cannot pass volatile argument to non-volatile formal&",
4411 A, F);
4412 end if;
4413 end if;
4415 -- Check that subprograms don't have improper controlling
4416 -- arguments (RM 3.9.2 (9)).
4418 -- A primitive operation may have an access parameter of an
4419 -- incomplete tagged type, but a dispatching call is illegal
4420 -- if the type is still incomplete.
4422 if Is_Controlling_Formal (F) then
4423 Set_Is_Controlling_Actual (A);
4425 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4426 declare
4427 Desig : constant Entity_Id := Designated_Type (Etype (F));
4428 begin
4429 if Ekind (Desig) = E_Incomplete_Type
4430 and then No (Full_View (Desig))
4431 and then No (Non_Limited_View (Desig))
4432 then
4433 Error_Msg_NE
4434 ("premature use of incomplete type& "
4435 & "in dispatching call", A, Desig);
4436 end if;
4437 end;
4438 end if;
4440 elsif Nkind (A) = N_Explicit_Dereference then
4441 Validate_Remote_Access_To_Class_Wide_Type (A);
4442 end if;
4444 -- Apply legality rule 3.9.2 (9/1)
4446 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4447 and then not Is_Class_Wide_Type (F_Typ)
4448 and then not Is_Controlling_Formal (F)
4449 and then not In_Instance
4450 then
4451 Error_Msg_N ("class-wide argument not allowed here!", A);
4453 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4454 Error_Msg_Node_2 := F_Typ;
4455 Error_Msg_NE
4456 ("& is not a dispatching operation of &!", A, Nam);
4457 end if;
4459 -- Apply the checks described in 3.10.2(27): if the context is a
4460 -- specific access-to-object, the actual cannot be class-wide.
4461 -- Use base type to exclude access_to_subprogram cases.
4463 elsif Is_Access_Type (A_Typ)
4464 and then Is_Access_Type (F_Typ)
4465 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4466 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4467 or else (Nkind (A) = N_Attribute_Reference
4468 and then
4469 Is_Class_Wide_Type (Etype (Prefix (A)))))
4470 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4471 and then not Is_Controlling_Formal (F)
4473 -- Disable these checks for call to imported C++ subprograms
4475 and then not
4476 (Is_Entity_Name (Name (N))
4477 and then Is_Imported (Entity (Name (N)))
4478 and then Convention (Entity (Name (N))) = Convention_CPP)
4479 then
4480 Error_Msg_N
4481 ("access to class-wide argument not allowed here!", A);
4483 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4484 Error_Msg_Node_2 := Designated_Type (F_Typ);
4485 Error_Msg_NE
4486 ("& is not a dispatching operation of &!", A, Nam);
4487 end if;
4488 end if;
4490 Check_Aliased_Parameter;
4492 Eval_Actual (A);
4494 -- If it is a named association, treat the selector_name as a
4495 -- proper identifier, and mark the corresponding entity.
4497 if Nkind (Parent (A)) = N_Parameter_Association
4499 -- Ignore reference in SPARK mode, as it refers to an entity not
4500 -- in scope at the point of reference, so the reference should
4501 -- be ignored for computing effects of subprograms.
4503 and then not GNATprove_Mode
4504 then
4505 -- If subprogram is overridden, use name of formal that
4506 -- is being called.
4508 if Present (Real_Subp) then
4509 Set_Entity (Selector_Name (Parent (A)), Real_F);
4510 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4512 else
4513 Set_Entity (Selector_Name (Parent (A)), F);
4514 Generate_Reference (F, Selector_Name (Parent (A)));
4515 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4516 Generate_Reference (F_Typ, N, ' ');
4517 end if;
4518 end if;
4520 Prev := A;
4522 if Ekind (F) /= E_Out_Parameter then
4523 Check_Unset_Reference (A);
4524 end if;
4526 -- The following checks are only relevant when SPARK_Mode is on as
4527 -- they are not standard Ada legality rule. Internally generated
4528 -- temporaries are ignored.
4530 if SPARK_Mode = On and then Comes_From_Source (A) then
4532 -- An effectively volatile object may act as an actual when the
4533 -- corresponding formal is of a non-scalar effectively volatile
4534 -- type (SPARK RM 7.1.3(11)).
4536 if not Is_Scalar_Type (Etype (F))
4537 and then Is_Effectively_Volatile (Etype (F))
4538 then
4539 null;
4541 -- An effectively volatile object may act as an actual in a
4542 -- call to an instance of Unchecked_Conversion.
4543 -- (SPARK RM 7.1.3(11)).
4545 elsif Is_Unchecked_Conversion_Instance (Nam) then
4546 null;
4548 -- The actual denotes an object
4550 elsif Is_Effectively_Volatile_Object (A) then
4551 Error_Msg_N
4552 ("volatile object cannot act as actual in a call (SPARK "
4553 & "RM 7.1.3(11))", A);
4555 -- Otherwise the actual denotes an expression. Inspect the
4556 -- expression and flag each effectively volatile object with
4557 -- enabled property Async_Writers or Effective_Reads as illegal
4558 -- because it apprears within an interfering context. Note that
4559 -- this is usually done in Resolve_Entity_Name, but when the
4560 -- effectively volatile object appears as an actual in a call,
4561 -- the call must be resolved first.
4563 else
4564 Flag_Effectively_Volatile_Objects (A);
4565 end if;
4567 -- An effectively volatile variable cannot act as an actual
4568 -- parameter in a procedure call when the variable has enabled
4569 -- property Effective_Reads and the corresponding formal is of
4570 -- mode IN (SPARK RM 7.1.3(10)).
4572 if Ekind (Nam) = E_Procedure
4573 and then Ekind (F) = E_In_Parameter
4574 and then Is_Entity_Name (A)
4575 then
4576 A_Id := Entity (A);
4578 if Ekind (A_Id) = E_Variable
4579 and then Is_Effectively_Volatile (Etype (A_Id))
4580 and then Effective_Reads_Enabled (A_Id)
4581 then
4582 Error_Msg_NE
4583 ("effectively volatile variable & cannot appear as "
4584 & "actual in procedure call", A, A_Id);
4586 Error_Msg_Name_1 := Name_Effective_Reads;
4587 Error_Msg_N ("\\variable has enabled property %", A);
4588 Error_Msg_N ("\\corresponding formal has mode IN", A);
4589 end if;
4590 end if;
4591 end if;
4593 -- A formal parameter of a specific tagged type whose related
4594 -- subprogram is subject to pragma Extensions_Visible with value
4595 -- "False" cannot act as an actual in a subprogram with value
4596 -- "True" (SPARK RM 6.1.7(3)).
4598 if Is_EVF_Expression (A)
4599 and then Extensions_Visible_Status (Nam) =
4600 Extensions_Visible_True
4601 then
4602 Error_Msg_N
4603 ("formal parameter cannot act as actual parameter when "
4604 & "Extensions_Visible is False", A);
4605 Error_Msg_NE
4606 ("\subprogram & has Extensions_Visible True", A, Nam);
4607 end if;
4609 -- The actual parameter of a Ghost subprogram whose formal is of
4610 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4612 if Comes_From_Source (Nam)
4613 and then Is_Ghost_Entity (Nam)
4614 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4615 and then Is_Entity_Name (A)
4616 and then Present (Entity (A))
4617 and then not Is_Ghost_Entity (Entity (A))
4618 then
4619 Error_Msg_NE
4620 ("non-ghost variable & cannot appear as actual in call to "
4621 & "ghost procedure", A, Entity (A));
4623 if Ekind (F) = E_In_Out_Parameter then
4624 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4625 else
4626 Error_Msg_N ("\corresponding formal has mode OUT", A);
4627 end if;
4628 end if;
4630 Next_Actual (A);
4632 -- Case where actual is not present
4634 else
4635 Insert_Default;
4636 end if;
4638 Next_Formal (F);
4640 if Present (Real_Subp) then
4641 Next_Formal (Real_F);
4642 end if;
4643 end loop;
4644 end Resolve_Actuals;
4646 -----------------------
4647 -- Resolve_Allocator --
4648 -----------------------
4650 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4651 Desig_T : constant Entity_Id := Designated_Type (Typ);
4652 E : constant Node_Id := Expression (N);
4653 Subtyp : Entity_Id;
4654 Discrim : Entity_Id;
4655 Constr : Node_Id;
4656 Aggr : Node_Id;
4657 Assoc : Node_Id := Empty;
4658 Disc_Exp : Node_Id;
4660 procedure Check_Allocator_Discrim_Accessibility
4661 (Disc_Exp : Node_Id;
4662 Alloc_Typ : Entity_Id);
4663 -- Check that accessibility level associated with an access discriminant
4664 -- initialized in an allocator by the expression Disc_Exp is not deeper
4665 -- than the level of the allocator type Alloc_Typ. An error message is
4666 -- issued if this condition is violated. Specialized checks are done for
4667 -- the cases of a constraint expression which is an access attribute or
4668 -- an access discriminant.
4670 function In_Dispatching_Context return Boolean;
4671 -- If the allocator is an actual in a call, it is allowed to be class-
4672 -- wide when the context is not because it is a controlling actual.
4674 -------------------------------------------
4675 -- Check_Allocator_Discrim_Accessibility --
4676 -------------------------------------------
4678 procedure Check_Allocator_Discrim_Accessibility
4679 (Disc_Exp : Node_Id;
4680 Alloc_Typ : Entity_Id)
4682 begin
4683 if Type_Access_Level (Etype (Disc_Exp)) >
4684 Deepest_Type_Access_Level (Alloc_Typ)
4685 then
4686 Error_Msg_N
4687 ("operand type has deeper level than allocator type", Disc_Exp);
4689 -- When the expression is an Access attribute the level of the prefix
4690 -- object must not be deeper than that of the allocator's type.
4692 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4693 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4694 Attribute_Access
4695 and then Object_Access_Level (Prefix (Disc_Exp)) >
4696 Deepest_Type_Access_Level (Alloc_Typ)
4697 then
4698 Error_Msg_N
4699 ("prefix of attribute has deeper level than allocator type",
4700 Disc_Exp);
4702 -- When the expression is an access discriminant the check is against
4703 -- the level of the prefix object.
4705 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4706 and then Nkind (Disc_Exp) = N_Selected_Component
4707 and then Object_Access_Level (Prefix (Disc_Exp)) >
4708 Deepest_Type_Access_Level (Alloc_Typ)
4709 then
4710 Error_Msg_N
4711 ("access discriminant has deeper level than allocator type",
4712 Disc_Exp);
4714 -- All other cases are legal
4716 else
4717 null;
4718 end if;
4719 end Check_Allocator_Discrim_Accessibility;
4721 ----------------------------
4722 -- In_Dispatching_Context --
4723 ----------------------------
4725 function In_Dispatching_Context return Boolean is
4726 Par : constant Node_Id := Parent (N);
4728 begin
4729 return Nkind (Par) in N_Subprogram_Call
4730 and then Is_Entity_Name (Name (Par))
4731 and then Is_Dispatching_Operation (Entity (Name (Par)));
4732 end In_Dispatching_Context;
4734 -- Start of processing for Resolve_Allocator
4736 begin
4737 -- Replace general access with specific type
4739 if Ekind (Etype (N)) = E_Allocator_Type then
4740 Set_Etype (N, Base_Type (Typ));
4741 end if;
4743 if Is_Abstract_Type (Typ) then
4744 Error_Msg_N ("type of allocator cannot be abstract", N);
4745 end if;
4747 -- For qualified expression, resolve the expression using the given
4748 -- subtype (nothing to do for type mark, subtype indication)
4750 if Nkind (E) = N_Qualified_Expression then
4751 if Is_Class_Wide_Type (Etype (E))
4752 and then not Is_Class_Wide_Type (Desig_T)
4753 and then not In_Dispatching_Context
4754 then
4755 Error_Msg_N
4756 ("class-wide allocator not allowed for this access type", N);
4757 end if;
4759 Resolve (Expression (E), Etype (E));
4760 Check_Non_Static_Context (Expression (E));
4761 Check_Unset_Reference (Expression (E));
4763 -- Allocators generated by the build-in-place expansion mechanism
4764 -- are explicitly marked as coming from source but do not need to be
4765 -- checked for limited initialization. To exclude this case, ensure
4766 -- that the parent of the allocator is a source node.
4767 -- The return statement constructed for an Expression_Function does
4768 -- not come from source but requires a limited check.
4770 if Is_Limited_Type (Etype (E))
4771 and then Comes_From_Source (N)
4772 and then
4773 (Comes_From_Source (Parent (N))
4774 or else
4775 (Ekind (Current_Scope) = E_Function
4776 and then Nkind (Original_Node (Unit_Declaration_Node
4777 (Current_Scope))) = N_Expression_Function))
4778 and then not In_Instance_Body
4779 then
4780 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4781 if Nkind (Parent (N)) = N_Assignment_Statement then
4782 Error_Msg_N
4783 ("illegal expression for initialized allocator of a "
4784 & "limited type (RM 7.5 (2.7/2))", N);
4785 else
4786 Error_Msg_N
4787 ("initialization not allowed for limited types", N);
4788 end if;
4790 Explain_Limited_Type (Etype (E), N);
4791 end if;
4792 end if;
4794 -- A qualified expression requires an exact match of the type. Class-
4795 -- wide matching is not allowed.
4797 if (Is_Class_Wide_Type (Etype (Expression (E)))
4798 or else Is_Class_Wide_Type (Etype (E)))
4799 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4800 then
4801 Wrong_Type (Expression (E), Etype (E));
4802 end if;
4804 -- Calls to build-in-place functions are not currently supported in
4805 -- allocators for access types associated with a simple storage pool.
4806 -- Supporting such allocators may require passing additional implicit
4807 -- parameters to build-in-place functions (or a significant revision
4808 -- of the current b-i-p implementation to unify the handling for
4809 -- multiple kinds of storage pools). ???
4811 if Is_Limited_View (Desig_T)
4812 and then Nkind (Expression (E)) = N_Function_Call
4813 then
4814 declare
4815 Pool : constant Entity_Id :=
4816 Associated_Storage_Pool (Root_Type (Typ));
4817 begin
4818 if Present (Pool)
4819 and then
4820 Present (Get_Rep_Pragma
4821 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4822 then
4823 Error_Msg_N
4824 ("limited function calls not yet supported in simple "
4825 & "storage pool allocators", Expression (E));
4826 end if;
4827 end;
4828 end if;
4830 -- A special accessibility check is needed for allocators that
4831 -- constrain access discriminants. The level of the type of the
4832 -- expression used to constrain an access discriminant cannot be
4833 -- deeper than the type of the allocator (in contrast to access
4834 -- parameters, where the level of the actual can be arbitrary).
4836 -- We can't use Valid_Conversion to perform this check because in
4837 -- general the type of the allocator is unrelated to the type of
4838 -- the access discriminant.
4840 if Ekind (Typ) /= E_Anonymous_Access_Type
4841 or else Is_Local_Anonymous_Access (Typ)
4842 then
4843 Subtyp := Entity (Subtype_Mark (E));
4845 Aggr := Original_Node (Expression (E));
4847 if Has_Discriminants (Subtyp)
4848 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4849 then
4850 Discrim := First_Discriminant (Base_Type (Subtyp));
4852 -- Get the first component expression of the aggregate
4854 if Present (Expressions (Aggr)) then
4855 Disc_Exp := First (Expressions (Aggr));
4857 elsif Present (Component_Associations (Aggr)) then
4858 Assoc := First (Component_Associations (Aggr));
4860 if Present (Assoc) then
4861 Disc_Exp := Expression (Assoc);
4862 else
4863 Disc_Exp := Empty;
4864 end if;
4866 else
4867 Disc_Exp := Empty;
4868 end if;
4870 while Present (Discrim) and then Present (Disc_Exp) loop
4871 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4872 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4873 end if;
4875 Next_Discriminant (Discrim);
4877 if Present (Discrim) then
4878 if Present (Assoc) then
4879 Next (Assoc);
4880 Disc_Exp := Expression (Assoc);
4882 elsif Present (Next (Disc_Exp)) then
4883 Next (Disc_Exp);
4885 else
4886 Assoc := First (Component_Associations (Aggr));
4888 if Present (Assoc) then
4889 Disc_Exp := Expression (Assoc);
4890 else
4891 Disc_Exp := Empty;
4892 end if;
4893 end if;
4894 end if;
4895 end loop;
4896 end if;
4897 end if;
4899 -- For a subtype mark or subtype indication, freeze the subtype
4901 else
4902 Freeze_Expression (E);
4904 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4905 Error_Msg_N
4906 ("initialization required for access-to-constant allocator", N);
4907 end if;
4909 -- A special accessibility check is needed for allocators that
4910 -- constrain access discriminants. The level of the type of the
4911 -- expression used to constrain an access discriminant cannot be
4912 -- deeper than the type of the allocator (in contrast to access
4913 -- parameters, where the level of the actual can be arbitrary).
4914 -- We can't use Valid_Conversion to perform this check because
4915 -- in general the type of the allocator is unrelated to the type
4916 -- of the access discriminant.
4918 if Nkind (Original_Node (E)) = N_Subtype_Indication
4919 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4920 or else Is_Local_Anonymous_Access (Typ))
4921 then
4922 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4924 if Has_Discriminants (Subtyp) then
4925 Discrim := First_Discriminant (Base_Type (Subtyp));
4926 Constr := First (Constraints (Constraint (Original_Node (E))));
4927 while Present (Discrim) and then Present (Constr) loop
4928 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4929 if Nkind (Constr) = N_Discriminant_Association then
4930 Disc_Exp := Original_Node (Expression (Constr));
4931 else
4932 Disc_Exp := Original_Node (Constr);
4933 end if;
4935 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4936 end if;
4938 Next_Discriminant (Discrim);
4939 Next (Constr);
4940 end loop;
4941 end if;
4942 end if;
4943 end if;
4945 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4946 -- check that the level of the type of the created object is not deeper
4947 -- than the level of the allocator's access type, since extensions can
4948 -- now occur at deeper levels than their ancestor types. This is a
4949 -- static accessibility level check; a run-time check is also needed in
4950 -- the case of an initialized allocator with a class-wide argument (see
4951 -- Expand_Allocator_Expression).
4953 if Ada_Version >= Ada_2005
4954 and then Is_Class_Wide_Type (Desig_T)
4955 then
4956 declare
4957 Exp_Typ : Entity_Id;
4959 begin
4960 if Nkind (E) = N_Qualified_Expression then
4961 Exp_Typ := Etype (E);
4962 elsif Nkind (E) = N_Subtype_Indication then
4963 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4964 else
4965 Exp_Typ := Entity (E);
4966 end if;
4968 if Type_Access_Level (Exp_Typ) >
4969 Deepest_Type_Access_Level (Typ)
4970 then
4971 if In_Instance_Body then
4972 Error_Msg_Warn := SPARK_Mode /= On;
4973 Error_Msg_N
4974 ("type in allocator has deeper level than "
4975 & "designated class-wide type<<", E);
4976 Error_Msg_N ("\Program_Error [<<", E);
4977 Rewrite (N,
4978 Make_Raise_Program_Error (Sloc (N),
4979 Reason => PE_Accessibility_Check_Failed));
4980 Set_Etype (N, Typ);
4982 -- Do not apply Ada 2005 accessibility checks on a class-wide
4983 -- allocator if the type given in the allocator is a formal
4984 -- type. A run-time check will be performed in the instance.
4986 elsif not Is_Generic_Type (Exp_Typ) then
4987 Error_Msg_N ("type in allocator has deeper level than "
4988 & "designated class-wide type", E);
4989 end if;
4990 end if;
4991 end;
4992 end if;
4994 -- Check for allocation from an empty storage pool
4996 if No_Pool_Assigned (Typ) then
4997 Error_Msg_N ("allocation from empty storage pool!", N);
4999 -- If the context is an unchecked conversion, as may happen within an
5000 -- inlined subprogram, the allocator is being resolved with its own
5001 -- anonymous type. In that case, if the target type has a specific
5002 -- storage pool, it must be inherited explicitly by the allocator type.
5004 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5005 and then No (Associated_Storage_Pool (Typ))
5006 then
5007 Set_Associated_Storage_Pool
5008 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5009 end if;
5011 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5012 Check_Restriction (No_Anonymous_Allocators, N);
5013 end if;
5015 -- Check that an allocator with task parts isn't for a nested access
5016 -- type when restriction No_Task_Hierarchy applies.
5018 if not Is_Library_Level_Entity (Base_Type (Typ))
5019 and then Has_Task (Base_Type (Desig_T))
5020 then
5021 Check_Restriction (No_Task_Hierarchy, N);
5022 end if;
5024 -- An illegal allocator may be rewritten as a raise Program_Error
5025 -- statement.
5027 if Nkind (N) = N_Allocator then
5029 -- Avoid coextension processing for an allocator that is the
5030 -- expansion of a build-in-place function call.
5032 if Nkind (Original_Node (N)) = N_Allocator
5033 and then Nkind (Expression (Original_Node (N))) =
5034 N_Qualified_Expression
5035 and then Nkind (Expression (Expression (Original_Node (N)))) =
5036 N_Function_Call
5037 and then Is_Expanded_Build_In_Place_Call
5038 (Expression (Expression (Original_Node (N))))
5039 then
5040 null; -- b-i-p function call case
5042 else
5043 -- An anonymous access discriminant is the definition of a
5044 -- coextension.
5046 if Ekind (Typ) = E_Anonymous_Access_Type
5047 and then Nkind (Associated_Node_For_Itype (Typ)) =
5048 N_Discriminant_Specification
5049 then
5050 declare
5051 Discr : constant Entity_Id :=
5052 Defining_Identifier (Associated_Node_For_Itype (Typ));
5054 begin
5055 Check_Restriction (No_Coextensions, N);
5057 -- Ada 2012 AI05-0052: If the designated type of the
5058 -- allocator is limited, then the allocator shall not
5059 -- be used to define the value of an access discriminant
5060 -- unless the discriminated type is immutably limited.
5062 if Ada_Version >= Ada_2012
5063 and then Is_Limited_Type (Desig_T)
5064 and then not Is_Limited_View (Scope (Discr))
5065 then
5066 Error_Msg_N
5067 ("only immutably limited types can have anonymous "
5068 & "access discriminants designating a limited type",
5070 end if;
5071 end;
5073 -- Avoid marking an allocator as a dynamic coextension if it is
5074 -- within a static construct.
5076 if not Is_Static_Coextension (N) then
5077 Set_Is_Dynamic_Coextension (N);
5079 -- Finalization and deallocation of coextensions utilizes an
5080 -- approximate implementation which does not directly adhere
5081 -- to the semantic rules. Warn on potential issues involving
5082 -- coextensions.
5084 if Is_Controlled (Desig_T) then
5085 Error_Msg_N
5086 ("??coextension will not be finalized when its "
5087 & "associated owner is deallocated or finalized", N);
5088 else
5089 Error_Msg_N
5090 ("??coextension will not be deallocated when its "
5091 & "associated owner is deallocated", N);
5092 end if;
5093 end if;
5095 -- Cleanup for potential static coextensions
5097 else
5098 Set_Is_Dynamic_Coextension (N, False);
5099 Set_Is_Static_Coextension (N, False);
5101 -- Anonymous access-to-controlled objects are not finalized on
5102 -- time because this involves run-time ownership and currently
5103 -- this property is not available. In rare cases the object may
5104 -- not be finalized at all. Warn on potential issues involving
5105 -- anonymous access-to-controlled objects.
5107 if Ekind (Typ) = E_Anonymous_Access_Type
5108 and then Is_Controlled_Active (Desig_T)
5109 then
5110 Error_Msg_N
5111 ("??object designated by anonymous access object might "
5112 & "not be finalized until its enclosing library unit "
5113 & "goes out of scope", N);
5114 Error_Msg_N ("\use named access type instead", N);
5115 end if;
5116 end if;
5117 end if;
5118 end if;
5120 -- Report a simple error: if the designated object is a local task,
5121 -- its body has not been seen yet, and its activation will fail an
5122 -- elaboration check.
5124 if Is_Task_Type (Desig_T)
5125 and then Scope (Base_Type (Desig_T)) = Current_Scope
5126 and then Is_Compilation_Unit (Current_Scope)
5127 and then Ekind (Current_Scope) = E_Package
5128 and then not In_Package_Body (Current_Scope)
5129 then
5130 Error_Msg_Warn := SPARK_Mode /= On;
5131 Error_Msg_N ("cannot activate task before body seen<<", N);
5132 Error_Msg_N ("\Program_Error [<<", N);
5133 end if;
5135 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5136 -- type with a task component on a subpool. This action must raise
5137 -- Program_Error at runtime.
5139 if Ada_Version >= Ada_2012
5140 and then Nkind (N) = N_Allocator
5141 and then Present (Subpool_Handle_Name (N))
5142 and then Has_Task (Desig_T)
5143 then
5144 Error_Msg_Warn := SPARK_Mode /= On;
5145 Error_Msg_N ("cannot allocate task on subpool<<", N);
5146 Error_Msg_N ("\Program_Error [<<", N);
5148 Rewrite (N,
5149 Make_Raise_Program_Error (Sloc (N),
5150 Reason => PE_Explicit_Raise));
5151 Set_Etype (N, Typ);
5152 end if;
5153 end Resolve_Allocator;
5155 ---------------------------
5156 -- Resolve_Arithmetic_Op --
5157 ---------------------------
5159 -- Used for resolving all arithmetic operators except exponentiation
5161 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5162 L : constant Node_Id := Left_Opnd (N);
5163 R : constant Node_Id := Right_Opnd (N);
5164 TL : constant Entity_Id := Base_Type (Etype (L));
5165 TR : constant Entity_Id := Base_Type (Etype (R));
5166 T : Entity_Id;
5167 Rop : Node_Id;
5169 B_Typ : constant Entity_Id := Base_Type (Typ);
5170 -- We do the resolution using the base type, because intermediate values
5171 -- in expressions always are of the base type, not a subtype of it.
5173 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5174 -- Returns True if N is in a context that expects "any real type"
5176 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5177 -- Return True iff given type is Integer or universal real/integer
5179 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5180 -- Choose type of integer literal in fixed-point operation to conform
5181 -- to available fixed-point type. T is the type of the other operand,
5182 -- which is needed to determine the expected type of N.
5184 procedure Set_Operand_Type (N : Node_Id);
5185 -- Set operand type to T if universal
5187 -------------------------------
5188 -- Expected_Type_Is_Any_Real --
5189 -------------------------------
5191 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5192 begin
5193 -- N is the expression after "delta" in a fixed_point_definition;
5194 -- see RM-3.5.9(6):
5196 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5197 N_Decimal_Fixed_Point_Definition,
5199 -- N is one of the bounds in a real_range_specification;
5200 -- see RM-3.5.7(5):
5202 N_Real_Range_Specification,
5204 -- N is the expression of a delta_constraint;
5205 -- see RM-J.3(3):
5207 N_Delta_Constraint);
5208 end Expected_Type_Is_Any_Real;
5210 -----------------------------
5211 -- Is_Integer_Or_Universal --
5212 -----------------------------
5214 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5215 T : Entity_Id;
5216 Index : Interp_Index;
5217 It : Interp;
5219 begin
5220 if not Is_Overloaded (N) then
5221 T := Etype (N);
5222 return Base_Type (T) = Base_Type (Standard_Integer)
5223 or else T = Universal_Integer
5224 or else T = Universal_Real;
5225 else
5226 Get_First_Interp (N, Index, It);
5227 while Present (It.Typ) loop
5228 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5229 or else It.Typ = Universal_Integer
5230 or else It.Typ = Universal_Real
5231 then
5232 return True;
5233 end if;
5235 Get_Next_Interp (Index, It);
5236 end loop;
5237 end if;
5239 return False;
5240 end Is_Integer_Or_Universal;
5242 ----------------------------
5243 -- Set_Mixed_Mode_Operand --
5244 ----------------------------
5246 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5247 Index : Interp_Index;
5248 It : Interp;
5250 begin
5251 if Universal_Interpretation (N) = Universal_Integer then
5253 -- A universal integer literal is resolved as standard integer
5254 -- except in the case of a fixed-point result, where we leave it
5255 -- as universal (to be handled by Exp_Fixd later on)
5257 if Is_Fixed_Point_Type (T) then
5258 Resolve (N, Universal_Integer);
5259 else
5260 Resolve (N, Standard_Integer);
5261 end if;
5263 elsif Universal_Interpretation (N) = Universal_Real
5264 and then (T = Base_Type (Standard_Integer)
5265 or else T = Universal_Integer
5266 or else T = Universal_Real)
5267 then
5268 -- A universal real can appear in a fixed-type context. We resolve
5269 -- the literal with that context, even though this might raise an
5270 -- exception prematurely (the other operand may be zero).
5272 Resolve (N, B_Typ);
5274 elsif Etype (N) = Base_Type (Standard_Integer)
5275 and then T = Universal_Real
5276 and then Is_Overloaded (N)
5277 then
5278 -- Integer arg in mixed-mode operation. Resolve with universal
5279 -- type, in case preference rule must be applied.
5281 Resolve (N, Universal_Integer);
5283 elsif Etype (N) = T
5284 and then B_Typ /= Universal_Fixed
5285 then
5287 -- if the operand is part of a fixed multiplication operation,
5288 -- a conversion will be applied to each operand, so resolve it
5289 -- with its own type.
5291 if Nkind_In (Parent (N), N_Op_Multiply, N_Op_Divide) then
5292 Resolve (N);
5294 else
5295 -- Not a mixed-mode operation, resolve with context
5297 Resolve (N, B_Typ);
5298 end if;
5300 elsif Etype (N) = Any_Fixed then
5302 -- N may itself be a mixed-mode operation, so use context type
5304 Resolve (N, B_Typ);
5306 elsif Is_Fixed_Point_Type (T)
5307 and then B_Typ = Universal_Fixed
5308 and then Is_Overloaded (N)
5309 then
5310 -- Must be (fixed * fixed) operation, operand must have one
5311 -- compatible interpretation.
5313 Resolve (N, Any_Fixed);
5315 elsif Is_Fixed_Point_Type (B_Typ)
5316 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5317 and then Is_Overloaded (N)
5318 then
5319 -- C * F(X) in a fixed context, where C is a real literal or a
5320 -- fixed-point expression. F must have either a fixed type
5321 -- interpretation or an integer interpretation, but not both.
5323 Get_First_Interp (N, Index, It);
5324 while Present (It.Typ) loop
5325 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5326 if Analyzed (N) then
5327 Error_Msg_N ("ambiguous operand in fixed operation", N);
5328 else
5329 Resolve (N, Standard_Integer);
5330 end if;
5332 elsif Is_Fixed_Point_Type (It.Typ) then
5333 if Analyzed (N) then
5334 Error_Msg_N ("ambiguous operand in fixed operation", N);
5335 else
5336 Resolve (N, It.Typ);
5337 end if;
5338 end if;
5340 Get_Next_Interp (Index, It);
5341 end loop;
5343 -- Reanalyze the literal with the fixed type of the context. If
5344 -- context is Universal_Fixed, we are within a conversion, leave
5345 -- the literal as a universal real because there is no usable
5346 -- fixed type, and the target of the conversion plays no role in
5347 -- the resolution.
5349 declare
5350 Op2 : Node_Id;
5351 T2 : Entity_Id;
5353 begin
5354 if N = L then
5355 Op2 := R;
5356 else
5357 Op2 := L;
5358 end if;
5360 if B_Typ = Universal_Fixed
5361 and then Nkind (Op2) = N_Real_Literal
5362 then
5363 T2 := Universal_Real;
5364 else
5365 T2 := B_Typ;
5366 end if;
5368 Set_Analyzed (Op2, False);
5369 Resolve (Op2, T2);
5370 end;
5372 -- A universal real conditional expression can appear in a fixed-type
5373 -- context and must be resolved with that context to facilitate the
5374 -- code generation to the backend.
5376 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5377 and then Etype (N) = Universal_Real
5378 and then Is_Fixed_Point_Type (B_Typ)
5379 then
5380 Resolve (N, B_Typ);
5382 else
5383 Resolve (N);
5384 end if;
5385 end Set_Mixed_Mode_Operand;
5387 ----------------------
5388 -- Set_Operand_Type --
5389 ----------------------
5391 procedure Set_Operand_Type (N : Node_Id) is
5392 begin
5393 if Etype (N) = Universal_Integer
5394 or else Etype (N) = Universal_Real
5395 then
5396 Set_Etype (N, T);
5397 end if;
5398 end Set_Operand_Type;
5400 -- Start of processing for Resolve_Arithmetic_Op
5402 begin
5403 if Comes_From_Source (N)
5404 and then Ekind (Entity (N)) = E_Function
5405 and then Is_Imported (Entity (N))
5406 and then Is_Intrinsic_Subprogram (Entity (N))
5407 then
5408 Resolve_Intrinsic_Operator (N, Typ);
5409 return;
5411 -- Special-case for mixed-mode universal expressions or fixed point type
5412 -- operation: each argument is resolved separately. The same treatment
5413 -- is required if one of the operands of a fixed point operation is
5414 -- universal real, since in this case we don't do a conversion to a
5415 -- specific fixed-point type (instead the expander handles the case).
5417 -- Set the type of the node to its universal interpretation because
5418 -- legality checks on an exponentiation operand need the context.
5420 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5421 and then Present (Universal_Interpretation (L))
5422 and then Present (Universal_Interpretation (R))
5423 then
5424 Set_Etype (N, B_Typ);
5425 Resolve (L, Universal_Interpretation (L));
5426 Resolve (R, Universal_Interpretation (R));
5428 elsif (B_Typ = Universal_Real
5429 or else Etype (N) = Universal_Fixed
5430 or else (Etype (N) = Any_Fixed
5431 and then Is_Fixed_Point_Type (B_Typ))
5432 or else (Is_Fixed_Point_Type (B_Typ)
5433 and then (Is_Integer_Or_Universal (L)
5434 or else
5435 Is_Integer_Or_Universal (R))))
5436 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5437 then
5438 if TL = Universal_Integer or else TR = Universal_Integer then
5439 Check_For_Visible_Operator (N, B_Typ);
5440 end if;
5442 -- If context is a fixed type and one operand is integer, the other
5443 -- is resolved with the type of the context.
5445 if Is_Fixed_Point_Type (B_Typ)
5446 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5447 or else TL = Universal_Integer)
5448 then
5449 Resolve (R, B_Typ);
5450 Resolve (L, TL);
5452 elsif Is_Fixed_Point_Type (B_Typ)
5453 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5454 or else TR = Universal_Integer)
5455 then
5456 Resolve (L, B_Typ);
5457 Resolve (R, TR);
5459 -- If both operands are universal and the context is a floating
5460 -- point type, the operands are resolved to the type of the context.
5462 elsif Is_Floating_Point_Type (B_Typ) then
5463 Resolve (L, B_Typ);
5464 Resolve (R, B_Typ);
5466 else
5467 Set_Mixed_Mode_Operand (L, TR);
5468 Set_Mixed_Mode_Operand (R, TL);
5469 end if;
5471 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5472 -- multiplying operators from being used when the expected type is
5473 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5474 -- some cases where the expected type is actually Any_Real;
5475 -- Expected_Type_Is_Any_Real takes care of that case.
5477 if Etype (N) = Universal_Fixed
5478 or else Etype (N) = Any_Fixed
5479 then
5480 if B_Typ = Universal_Fixed
5481 and then not Expected_Type_Is_Any_Real (N)
5482 and then not Nkind_In (Parent (N), N_Type_Conversion,
5483 N_Unchecked_Type_Conversion)
5484 then
5485 Error_Msg_N ("type cannot be determined from context!", N);
5486 Error_Msg_N ("\explicit conversion to result type required", N);
5488 Set_Etype (L, Any_Type);
5489 Set_Etype (R, Any_Type);
5491 else
5492 if Ada_Version = Ada_83
5493 and then Etype (N) = Universal_Fixed
5494 and then not
5495 Nkind_In (Parent (N), N_Type_Conversion,
5496 N_Unchecked_Type_Conversion)
5497 then
5498 Error_Msg_N
5499 ("(Ada 83) fixed-point operation needs explicit "
5500 & "conversion", N);
5501 end if;
5503 -- The expected type is "any real type" in contexts like
5505 -- type T is delta <universal_fixed-expression> ...
5507 -- in which case we need to set the type to Universal_Real
5508 -- so that static expression evaluation will work properly.
5510 if Expected_Type_Is_Any_Real (N) then
5511 Set_Etype (N, Universal_Real);
5512 else
5513 Set_Etype (N, B_Typ);
5514 end if;
5515 end if;
5517 elsif Is_Fixed_Point_Type (B_Typ)
5518 and then (Is_Integer_Or_Universal (L)
5519 or else Nkind (L) = N_Real_Literal
5520 or else Nkind (R) = N_Real_Literal
5521 or else Is_Integer_Or_Universal (R))
5522 then
5523 Set_Etype (N, B_Typ);
5525 elsif Etype (N) = Any_Fixed then
5527 -- If no previous errors, this is only possible if one operand is
5528 -- overloaded and the context is universal. Resolve as such.
5530 Set_Etype (N, B_Typ);
5531 end if;
5533 else
5534 if (TL = Universal_Integer or else TL = Universal_Real)
5535 and then
5536 (TR = Universal_Integer or else TR = Universal_Real)
5537 then
5538 Check_For_Visible_Operator (N, B_Typ);
5539 end if;
5541 -- If the context is Universal_Fixed and the operands are also
5542 -- universal fixed, this is an error, unless there is only one
5543 -- applicable fixed_point type (usually Duration).
5545 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5546 T := Unique_Fixed_Point_Type (N);
5548 if T = Any_Type then
5549 Set_Etype (N, T);
5550 return;
5551 else
5552 Resolve (L, T);
5553 Resolve (R, T);
5554 end if;
5556 else
5557 Resolve (L, B_Typ);
5558 Resolve (R, B_Typ);
5559 end if;
5561 -- If one of the arguments was resolved to a non-universal type.
5562 -- label the result of the operation itself with the same type.
5563 -- Do the same for the universal argument, if any.
5565 T := Intersect_Types (L, R);
5566 Set_Etype (N, Base_Type (T));
5567 Set_Operand_Type (L);
5568 Set_Operand_Type (R);
5569 end if;
5571 Generate_Operator_Reference (N, Typ);
5572 Analyze_Dimension (N);
5573 Eval_Arithmetic_Op (N);
5575 -- In SPARK, a multiplication or division with operands of fixed point
5576 -- types must be qualified or explicitly converted to identify the
5577 -- result type.
5579 if (Is_Fixed_Point_Type (Etype (L))
5580 or else Is_Fixed_Point_Type (Etype (R)))
5581 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5582 and then
5583 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5584 then
5585 Check_SPARK_05_Restriction
5586 ("operation should be qualified or explicitly converted", N);
5587 end if;
5589 -- Set overflow and division checking bit
5591 if Nkind (N) in N_Op then
5592 if not Overflow_Checks_Suppressed (Etype (N)) then
5593 Enable_Overflow_Check (N);
5594 end if;
5596 -- Give warning if explicit division by zero
5598 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5599 and then not Division_Checks_Suppressed (Etype (N))
5600 then
5601 Rop := Right_Opnd (N);
5603 if Compile_Time_Known_Value (Rop)
5604 and then ((Is_Integer_Type (Etype (Rop))
5605 and then Expr_Value (Rop) = Uint_0)
5606 or else
5607 (Is_Real_Type (Etype (Rop))
5608 and then Expr_Value_R (Rop) = Ureal_0))
5609 then
5610 -- Specialize the warning message according to the operation.
5611 -- When SPARK_Mode is On, force a warning instead of an error
5612 -- in that case, as this likely corresponds to deactivated
5613 -- code. The following warnings are for the case
5615 case Nkind (N) is
5616 when N_Op_Divide =>
5618 -- For division, we have two cases, for float division
5619 -- of an unconstrained float type, on a machine where
5620 -- Machine_Overflows is false, we don't get an exception
5621 -- at run-time, but rather an infinity or Nan. The Nan
5622 -- case is pretty obscure, so just warn about infinities.
5624 if Is_Floating_Point_Type (Typ)
5625 and then not Is_Constrained (Typ)
5626 and then not Machine_Overflows_On_Target
5627 then
5628 Error_Msg_N
5629 ("float division by zero, may generate "
5630 & "'+'/'- infinity??", Right_Opnd (N));
5632 -- For all other cases, we get a Constraint_Error
5634 else
5635 Apply_Compile_Time_Constraint_Error
5636 (N, "division by zero??", CE_Divide_By_Zero,
5637 Loc => Sloc (Right_Opnd (N)),
5638 Warn => SPARK_Mode = On);
5639 end if;
5641 when N_Op_Rem =>
5642 Apply_Compile_Time_Constraint_Error
5643 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5644 Loc => Sloc (Right_Opnd (N)),
5645 Warn => SPARK_Mode = On);
5647 when N_Op_Mod =>
5648 Apply_Compile_Time_Constraint_Error
5649 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5650 Loc => Sloc (Right_Opnd (N)),
5651 Warn => SPARK_Mode = On);
5653 -- Division by zero can only happen with division, rem,
5654 -- and mod operations.
5656 when others =>
5657 raise Program_Error;
5658 end case;
5660 -- In GNATprove mode, we enable the division check so that
5661 -- GNATprove will issue a message if it cannot be proved.
5663 if GNATprove_Mode then
5664 Activate_Division_Check (N);
5665 end if;
5667 -- Otherwise just set the flag to check at run time
5669 else
5670 Activate_Division_Check (N);
5671 end if;
5672 end if;
5674 -- If Restriction No_Implicit_Conditionals is active, then it is
5675 -- violated if either operand can be negative for mod, or for rem
5676 -- if both operands can be negative.
5678 if Restriction_Check_Required (No_Implicit_Conditionals)
5679 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5680 then
5681 declare
5682 Lo : Uint;
5683 Hi : Uint;
5684 OK : Boolean;
5686 LNeg : Boolean;
5687 RNeg : Boolean;
5688 -- Set if corresponding operand might be negative
5690 begin
5691 Determine_Range
5692 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5693 LNeg := (not OK) or else Lo < 0;
5695 Determine_Range
5696 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5697 RNeg := (not OK) or else Lo < 0;
5699 -- Check if we will be generating conditionals. There are two
5700 -- cases where that can happen, first for REM, the only case
5701 -- is largest negative integer mod -1, where the division can
5702 -- overflow, but we still have to give the right result. The
5703 -- front end generates a test for this annoying case. Here we
5704 -- just test if both operands can be negative (that's what the
5705 -- expander does, so we match its logic here).
5707 -- The second case is mod where either operand can be negative.
5708 -- In this case, the back end has to generate additional tests.
5710 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5711 or else
5712 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5713 then
5714 Check_Restriction (No_Implicit_Conditionals, N);
5715 end if;
5716 end;
5717 end if;
5718 end if;
5720 Check_Unset_Reference (L);
5721 Check_Unset_Reference (R);
5722 end Resolve_Arithmetic_Op;
5724 ------------------
5725 -- Resolve_Call --
5726 ------------------
5728 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5729 function Same_Or_Aliased_Subprograms
5730 (S : Entity_Id;
5731 E : Entity_Id) return Boolean;
5732 -- Returns True if the subprogram entity S is the same as E or else
5733 -- S is an alias of E.
5735 ---------------------------------
5736 -- Same_Or_Aliased_Subprograms --
5737 ---------------------------------
5739 function Same_Or_Aliased_Subprograms
5740 (S : Entity_Id;
5741 E : Entity_Id) return Boolean
5743 Subp_Alias : constant Entity_Id := Alias (S);
5744 begin
5745 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5746 end Same_Or_Aliased_Subprograms;
5748 -- Local variables
5750 Loc : constant Source_Ptr := Sloc (N);
5751 Subp : constant Node_Id := Name (N);
5752 Body_Id : Entity_Id;
5753 I : Interp_Index;
5754 It : Interp;
5755 Nam : Entity_Id;
5756 Nam_Decl : Node_Id;
5757 Nam_UA : Entity_Id;
5758 Norm_OK : Boolean;
5759 Rtype : Entity_Id;
5760 Scop : Entity_Id;
5762 -- Start of processing for Resolve_Call
5764 begin
5765 -- Preserve relevant elaboration-related attributes of the context which
5766 -- are no longer available or very expensive to recompute once analysis,
5767 -- resolution, and expansion are over.
5769 Mark_Elaboration_Attributes
5770 (N_Id => N,
5771 Checks => True,
5772 Modes => True,
5773 Warnings => True);
5775 -- The context imposes a unique interpretation with type Typ on a
5776 -- procedure or function call. Find the entity of the subprogram that
5777 -- yields the expected type, and propagate the corresponding formal
5778 -- constraints on the actuals. The caller has established that an
5779 -- interpretation exists, and emitted an error if not unique.
5781 -- First deal with the case of a call to an access-to-subprogram,
5782 -- dereference made explicit in Analyze_Call.
5784 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5785 if not Is_Overloaded (Subp) then
5786 Nam := Etype (Subp);
5788 else
5789 -- Find the interpretation whose type (a subprogram type) has a
5790 -- return type that is compatible with the context. Analysis of
5791 -- the node has established that one exists.
5793 Nam := Empty;
5795 Get_First_Interp (Subp, I, It);
5796 while Present (It.Typ) loop
5797 if Covers (Typ, Etype (It.Typ)) then
5798 Nam := It.Typ;
5799 exit;
5800 end if;
5802 Get_Next_Interp (I, It);
5803 end loop;
5805 if No (Nam) then
5806 raise Program_Error;
5807 end if;
5808 end if;
5810 -- If the prefix is not an entity, then resolve it
5812 if not Is_Entity_Name (Subp) then
5813 Resolve (Subp, Nam);
5814 end if;
5816 -- For an indirect call, we always invalidate checks, since we do not
5817 -- know whether the subprogram is local or global. Yes we could do
5818 -- better here, e.g. by knowing that there are no local subprograms,
5819 -- but it does not seem worth the effort. Similarly, we kill all
5820 -- knowledge of current constant values.
5822 Kill_Current_Values;
5824 -- If this is a procedure call which is really an entry call, do
5825 -- the conversion of the procedure call to an entry call. Protected
5826 -- operations use the same circuitry because the name in the call
5827 -- can be an arbitrary expression with special resolution rules.
5829 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5830 or else (Is_Entity_Name (Subp)
5831 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5832 then
5833 Resolve_Entry_Call (N, Typ);
5835 if Legacy_Elaboration_Checks then
5836 Check_Elab_Call (N);
5837 end if;
5839 -- Annotate the tree by creating a call marker in case the original
5840 -- call is transformed by expansion. The call marker is automatically
5841 -- saved for later examination by the ABE Processing phase.
5843 Build_Call_Marker (N);
5845 -- Kill checks and constant values, as above for indirect case
5846 -- Who knows what happens when another task is activated?
5848 Kill_Current_Values;
5849 return;
5851 -- Normal subprogram call with name established in Resolve
5853 elsif not (Is_Type (Entity (Subp))) then
5854 Nam := Entity (Subp);
5855 Set_Entity_With_Checks (Subp, Nam);
5857 -- Otherwise we must have the case of an overloaded call
5859 else
5860 pragma Assert (Is_Overloaded (Subp));
5862 -- Initialize Nam to prevent warning (we know it will be assigned
5863 -- in the loop below, but the compiler does not know that).
5865 Nam := Empty;
5867 Get_First_Interp (Subp, I, It);
5868 while Present (It.Typ) loop
5869 if Covers (Typ, It.Typ) then
5870 Nam := It.Nam;
5871 Set_Entity_With_Checks (Subp, Nam);
5872 exit;
5873 end if;
5875 Get_Next_Interp (I, It);
5876 end loop;
5877 end if;
5879 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5880 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5881 and then Nkind (Subp) /= N_Explicit_Dereference
5882 and then Present (Parameter_Associations (N))
5883 then
5884 -- The prefix is a parameterless function call that returns an access
5885 -- to subprogram. If parameters are present in the current call, add
5886 -- add an explicit dereference. We use the base type here because
5887 -- within an instance these may be subtypes.
5889 -- The dereference is added either in Analyze_Call or here. Should
5890 -- be consolidated ???
5892 Set_Is_Overloaded (Subp, False);
5893 Set_Etype (Subp, Etype (Nam));
5894 Insert_Explicit_Dereference (Subp);
5895 Nam := Designated_Type (Etype (Nam));
5896 Resolve (Subp, Nam);
5897 end if;
5899 -- Check that a call to Current_Task does not occur in an entry body
5901 if Is_RTE (Nam, RE_Current_Task) then
5902 declare
5903 P : Node_Id;
5905 begin
5906 P := N;
5907 loop
5908 P := Parent (P);
5910 -- Exclude calls that occur within the default of a formal
5911 -- parameter of the entry, since those are evaluated outside
5912 -- of the body.
5914 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5916 if Nkind (P) = N_Entry_Body
5917 or else (Nkind (P) = N_Subprogram_Body
5918 and then Is_Entry_Barrier_Function (P))
5919 then
5920 Rtype := Etype (N);
5921 Error_Msg_Warn := SPARK_Mode /= On;
5922 Error_Msg_NE
5923 ("& should not be used in entry body (RM C.7(17))<<",
5924 N, Nam);
5925 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5926 Rewrite (N,
5927 Make_Raise_Program_Error (Loc,
5928 Reason => PE_Current_Task_In_Entry_Body));
5929 Set_Etype (N, Rtype);
5930 return;
5931 end if;
5932 end loop;
5933 end;
5934 end if;
5936 -- Check that a procedure call does not occur in the context of the
5937 -- entry call statement of a conditional or timed entry call. Note that
5938 -- the case of a call to a subprogram renaming of an entry will also be
5939 -- rejected. The test for N not being an N_Entry_Call_Statement is
5940 -- defensive, covering the possibility that the processing of entry
5941 -- calls might reach this point due to later modifications of the code
5942 -- above.
5944 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5945 and then Nkind (N) /= N_Entry_Call_Statement
5946 and then Entry_Call_Statement (Parent (N)) = N
5947 then
5948 if Ada_Version < Ada_2005 then
5949 Error_Msg_N ("entry call required in select statement", N);
5951 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5952 -- for a procedure_or_entry_call, the procedure_name or
5953 -- procedure_prefix of the procedure_call_statement shall denote
5954 -- an entry renamed by a procedure, or (a view of) a primitive
5955 -- subprogram of a limited interface whose first parameter is
5956 -- a controlling parameter.
5958 elsif Nkind (N) = N_Procedure_Call_Statement
5959 and then not Is_Renamed_Entry (Nam)
5960 and then not Is_Controlling_Limited_Procedure (Nam)
5961 then
5962 Error_Msg_N
5963 ("entry call or dispatching primitive of interface required", N);
5964 end if;
5965 end if;
5967 -- If the SPARK_05 restriction is active, we are not allowed
5968 -- to have a call to a subprogram before we see its completion.
5970 if not Has_Completion (Nam)
5971 and then Restriction_Check_Required (SPARK_05)
5973 -- Don't flag strange internal calls
5975 and then Comes_From_Source (N)
5976 and then Comes_From_Source (Nam)
5978 -- Only flag calls in extended main source
5980 and then In_Extended_Main_Source_Unit (Nam)
5981 and then In_Extended_Main_Source_Unit (N)
5983 -- Exclude enumeration literals from this processing
5985 and then Ekind (Nam) /= E_Enumeration_Literal
5986 then
5987 Check_SPARK_05_Restriction
5988 ("call to subprogram cannot appear before its body", N);
5989 end if;
5991 -- Check that this is not a call to a protected procedure or entry from
5992 -- within a protected function.
5994 Check_Internal_Protected_Use (N, Nam);
5996 -- Freeze the subprogram name if not in a spec-expression. Note that
5997 -- we freeze procedure calls as well as function calls. Procedure calls
5998 -- are not frozen according to the rules (RM 13.14(14)) because it is
5999 -- impossible to have a procedure call to a non-frozen procedure in
6000 -- pure Ada, but in the code that we generate in the expander, this
6001 -- rule needs extending because we can generate procedure calls that
6002 -- need freezing.
6004 -- In Ada 2012, expression functions may be called within pre/post
6005 -- conditions of subsequent functions or expression functions. Such
6006 -- calls do not freeze when they appear within generated bodies,
6007 -- (including the body of another expression function) which would
6008 -- place the freeze node in the wrong scope. An expression function
6009 -- is frozen in the usual fashion, by the appearance of a real body,
6010 -- or at the end of a declarative part.
6012 if Is_Entity_Name (Subp)
6013 and then not In_Spec_Expression
6014 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6015 and then
6016 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6017 or else Scope (Entity (Subp)) = Current_Scope)
6018 then
6019 Freeze_Expression (Subp);
6020 end if;
6022 -- For a predefined operator, the type of the result is the type imposed
6023 -- by context, except for a predefined operation on universal fixed.
6024 -- Otherwise The type of the call is the type returned by the subprogram
6025 -- being called.
6027 if Is_Predefined_Op (Nam) then
6028 if Etype (N) /= Universal_Fixed then
6029 Set_Etype (N, Typ);
6030 end if;
6032 -- If the subprogram returns an array type, and the context requires the
6033 -- component type of that array type, the node is really an indexing of
6034 -- the parameterless call. Resolve as such. A pathological case occurs
6035 -- when the type of the component is an access to the array type. In
6036 -- this case the call is truly ambiguous. If the call is to an intrinsic
6037 -- subprogram, it can't be an indexed component. This check is necessary
6038 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6039 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6040 -- pointers to the same array), the compiler gets confused and does an
6041 -- infinite recursion.
6043 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6044 and then
6045 ((Is_Array_Type (Etype (Nam))
6046 and then Covers (Typ, Component_Type (Etype (Nam))))
6047 or else
6048 (Is_Access_Type (Etype (Nam))
6049 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6050 and then
6051 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6052 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6053 then
6054 declare
6055 Index_Node : Node_Id;
6056 New_Subp : Node_Id;
6057 Ret_Type : constant Entity_Id := Etype (Nam);
6059 begin
6060 if Is_Access_Type (Ret_Type)
6061 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6062 then
6063 Error_Msg_N
6064 ("cannot disambiguate function call and indexing", N);
6065 else
6066 New_Subp := Relocate_Node (Subp);
6068 -- The called entity may be an explicit dereference, in which
6069 -- case there is no entity to set.
6071 if Nkind (New_Subp) /= N_Explicit_Dereference then
6072 Set_Entity (Subp, Nam);
6073 end if;
6075 if (Is_Array_Type (Ret_Type)
6076 and then Component_Type (Ret_Type) /= Any_Type)
6077 or else
6078 (Is_Access_Type (Ret_Type)
6079 and then
6080 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6081 then
6082 if Needs_No_Actuals (Nam) then
6084 -- Indexed call to a parameterless function
6086 Index_Node :=
6087 Make_Indexed_Component (Loc,
6088 Prefix =>
6089 Make_Function_Call (Loc, Name => New_Subp),
6090 Expressions => Parameter_Associations (N));
6091 else
6092 -- An Ada 2005 prefixed call to a primitive operation
6093 -- whose first parameter is the prefix. This prefix was
6094 -- prepended to the parameter list, which is actually a
6095 -- list of indexes. Remove the prefix in order to build
6096 -- the proper indexed component.
6098 Index_Node :=
6099 Make_Indexed_Component (Loc,
6100 Prefix =>
6101 Make_Function_Call (Loc,
6102 Name => New_Subp,
6103 Parameter_Associations =>
6104 New_List
6105 (Remove_Head (Parameter_Associations (N)))),
6106 Expressions => Parameter_Associations (N));
6107 end if;
6109 -- Preserve the parenthesis count of the node
6111 Set_Paren_Count (Index_Node, Paren_Count (N));
6113 -- Since we are correcting a node classification error made
6114 -- by the parser, we call Replace rather than Rewrite.
6116 Replace (N, Index_Node);
6118 Set_Etype (Prefix (N), Ret_Type);
6119 Set_Etype (N, Typ);
6120 Resolve_Indexed_Component (N, Typ);
6122 if Legacy_Elaboration_Checks then
6123 Check_Elab_Call (Prefix (N));
6124 end if;
6126 -- Annotate the tree by creating a call marker in case
6127 -- the original call is transformed by expansion. The call
6128 -- marker is automatically saved for later examination by
6129 -- the ABE Processing phase.
6131 Build_Call_Marker (Prefix (N));
6132 end if;
6133 end if;
6135 return;
6136 end;
6138 else
6139 -- If the called function is not declared in the main unit and it
6140 -- returns the limited view of type then use the available view (as
6141 -- is done in Try_Object_Operation) to prevent back-end confusion;
6142 -- for the function entity itself. The call must appear in a context
6143 -- where the nonlimited view is available. If the function entity is
6144 -- in the extended main unit then no action is needed, because the
6145 -- back end handles this case. In either case the type of the call
6146 -- is the nonlimited view.
6148 if From_Limited_With (Etype (Nam))
6149 and then Present (Available_View (Etype (Nam)))
6150 then
6151 Set_Etype (N, Available_View (Etype (Nam)));
6153 if not In_Extended_Main_Code_Unit (Nam) then
6154 Set_Etype (Nam, Available_View (Etype (Nam)));
6155 end if;
6157 else
6158 Set_Etype (N, Etype (Nam));
6159 end if;
6160 end if;
6162 -- In the case where the call is to an overloaded subprogram, Analyze
6163 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6164 -- such a case Normalize_Actuals needs to be called once more to order
6165 -- the actuals correctly. Otherwise the call will have the ordering
6166 -- given by the last overloaded subprogram whether this is the correct
6167 -- one being called or not.
6169 if Is_Overloaded (Subp) then
6170 Normalize_Actuals (N, Nam, False, Norm_OK);
6171 pragma Assert (Norm_OK);
6172 end if;
6174 -- In any case, call is fully resolved now. Reset Overload flag, to
6175 -- prevent subsequent overload resolution if node is analyzed again
6177 Set_Is_Overloaded (Subp, False);
6178 Set_Is_Overloaded (N, False);
6180 -- A Ghost entity must appear in a specific context
6182 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6183 Check_Ghost_Context (Nam, N);
6184 end if;
6186 -- If we are calling the current subprogram from immediately within its
6187 -- body, then that is the case where we can sometimes detect cases of
6188 -- infinite recursion statically. Do not try this in case restriction
6189 -- No_Recursion is in effect anyway, and do it only for source calls.
6191 if Comes_From_Source (N) then
6192 Scop := Current_Scope;
6194 -- Check violation of SPARK_05 restriction which does not permit
6195 -- a subprogram body to contain a call to the subprogram directly.
6197 if Restriction_Check_Required (SPARK_05)
6198 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6199 then
6200 Check_SPARK_05_Restriction
6201 ("subprogram may not contain direct call to itself", N);
6202 end if;
6204 -- Issue warning for possible infinite recursion in the absence
6205 -- of the No_Recursion restriction.
6207 if Same_Or_Aliased_Subprograms (Nam, Scop)
6208 and then not Restriction_Active (No_Recursion)
6209 and then Check_Infinite_Recursion (N)
6210 then
6211 -- Here we detected and flagged an infinite recursion, so we do
6212 -- not need to test the case below for further warnings. Also we
6213 -- are all done if we now have a raise SE node.
6215 if Nkind (N) = N_Raise_Storage_Error then
6216 return;
6217 end if;
6219 -- If call is to immediately containing subprogram, then check for
6220 -- the case of a possible run-time detectable infinite recursion.
6222 else
6223 Scope_Loop : while Scop /= Standard_Standard loop
6224 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6226 -- Although in general case, recursion is not statically
6227 -- checkable, the case of calling an immediately containing
6228 -- subprogram is easy to catch.
6230 Check_Restriction (No_Recursion, N);
6232 -- If the recursive call is to a parameterless subprogram,
6233 -- then even if we can't statically detect infinite
6234 -- recursion, this is pretty suspicious, and we output a
6235 -- warning. Furthermore, we will try later to detect some
6236 -- cases here at run time by expanding checking code (see
6237 -- Detect_Infinite_Recursion in package Exp_Ch6).
6239 -- If the recursive call is within a handler, do not emit a
6240 -- warning, because this is a common idiom: loop until input
6241 -- is correct, catch illegal input in handler and restart.
6243 if No (First_Formal (Nam))
6244 and then Etype (Nam) = Standard_Void_Type
6245 and then not Error_Posted (N)
6246 and then Nkind (Parent (N)) /= N_Exception_Handler
6247 then
6248 -- For the case of a procedure call. We give the message
6249 -- only if the call is the first statement in a sequence
6250 -- of statements, or if all previous statements are
6251 -- simple assignments. This is simply a heuristic to
6252 -- decrease false positives, without losing too many good
6253 -- warnings. The idea is that these previous statements
6254 -- may affect global variables the procedure depends on.
6255 -- We also exclude raise statements, that may arise from
6256 -- constraint checks and are probably unrelated to the
6257 -- intended control flow.
6259 if Nkind (N) = N_Procedure_Call_Statement
6260 and then Is_List_Member (N)
6261 then
6262 declare
6263 P : Node_Id;
6264 begin
6265 P := Prev (N);
6266 while Present (P) loop
6267 if not Nkind_In (P, N_Assignment_Statement,
6268 N_Raise_Constraint_Error)
6269 then
6270 exit Scope_Loop;
6271 end if;
6273 Prev (P);
6274 end loop;
6275 end;
6276 end if;
6278 -- Do not give warning if we are in a conditional context
6280 declare
6281 K : constant Node_Kind := Nkind (Parent (N));
6282 begin
6283 if (K = N_Loop_Statement
6284 and then Present (Iteration_Scheme (Parent (N))))
6285 or else K = N_If_Statement
6286 or else K = N_Elsif_Part
6287 or else K = N_Case_Statement_Alternative
6288 then
6289 exit Scope_Loop;
6290 end if;
6291 end;
6293 -- Here warning is to be issued
6295 Set_Has_Recursive_Call (Nam);
6296 Error_Msg_Warn := SPARK_Mode /= On;
6297 Error_Msg_N ("possible infinite recursion<<!", N);
6298 Error_Msg_N ("\Storage_Error ]<<!", N);
6299 end if;
6301 exit Scope_Loop;
6302 end if;
6304 Scop := Scope (Scop);
6305 end loop Scope_Loop;
6306 end if;
6307 end if;
6309 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6311 Check_Obsolescent_2005_Entity (Nam, Subp);
6313 -- If subprogram name is a predefined operator, it was given in
6314 -- functional notation. Replace call node with operator node, so
6315 -- that actuals can be resolved appropriately.
6317 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6318 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6319 return;
6321 elsif Present (Alias (Nam))
6322 and then Is_Predefined_Op (Alias (Nam))
6323 then
6324 Resolve_Actuals (N, Nam);
6325 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6326 return;
6327 end if;
6329 -- Create a transient scope if the resulting type requires it
6331 -- There are several notable exceptions:
6333 -- a) In init procs, the transient scope overhead is not needed, and is
6334 -- even incorrect when the call is a nested initialization call for a
6335 -- component whose expansion may generate adjust calls. However, if the
6336 -- call is some other procedure call within an initialization procedure
6337 -- (for example a call to Create_Task in the init_proc of the task
6338 -- run-time record) a transient scope must be created around this call.
6340 -- b) Enumeration literal pseudo-calls need no transient scope
6342 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6343 -- functions) do not use the secondary stack even though the return
6344 -- type may be unconstrained.
6346 -- d) Calls to a build-in-place function, since such functions may
6347 -- allocate their result directly in a target object, and cases where
6348 -- the result does get allocated in the secondary stack are checked for
6349 -- within the specialized Exp_Ch6 procedures for expanding those
6350 -- build-in-place calls.
6352 -- e) Calls to inlinable expression functions do not use the secondary
6353 -- stack (since the call will be replaced by its returned object).
6355 -- f) If the subprogram is marked Inline_Always, then even if it returns
6356 -- an unconstrained type the call does not require use of the secondary
6357 -- stack. However, inlining will only take place if the body to inline
6358 -- is already present. It may not be available if e.g. the subprogram is
6359 -- declared in a child instance.
6361 if Is_Inlined (Nam)
6362 and then Has_Pragma_Inline (Nam)
6363 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6364 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6365 then
6366 null;
6368 elsif Ekind (Nam) = E_Enumeration_Literal
6369 or else Is_Build_In_Place_Function (Nam)
6370 or else Is_Intrinsic_Subprogram (Nam)
6371 or else Is_Inlinable_Expression_Function (Nam)
6372 then
6373 null;
6375 elsif Expander_Active
6376 and then Ekind (Nam) = E_Function
6377 and then Requires_Transient_Scope (Etype (Nam))
6378 then
6379 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6381 -- If the call appears within the bounds of a loop, it will be
6382 -- rewritten and reanalyzed, nothing left to do here.
6384 if Nkind (N) /= N_Function_Call then
6385 return;
6386 end if;
6387 end if;
6389 -- A protected function cannot be called within the definition of the
6390 -- enclosing protected type, unless it is part of a pre/postcondition
6391 -- on another protected operation. This may appear in the entry wrapper
6392 -- created for an entry with preconditions.
6394 if Is_Protected_Type (Scope (Nam))
6395 and then In_Open_Scopes (Scope (Nam))
6396 and then not Has_Completion (Scope (Nam))
6397 and then not In_Spec_Expression
6398 and then not Is_Entry_Wrapper (Current_Scope)
6399 then
6400 Error_Msg_NE
6401 ("& cannot be called before end of protected definition", N, Nam);
6402 end if;
6404 -- Propagate interpretation to actuals, and add default expressions
6405 -- where needed.
6407 if Present (First_Formal (Nam)) then
6408 Resolve_Actuals (N, Nam);
6410 -- Overloaded literals are rewritten as function calls, for purpose of
6411 -- resolution. After resolution, we can replace the call with the
6412 -- literal itself.
6414 elsif Ekind (Nam) = E_Enumeration_Literal then
6415 Copy_Node (Subp, N);
6416 Resolve_Entity_Name (N, Typ);
6418 -- Avoid validation, since it is a static function call
6420 Generate_Reference (Nam, Subp);
6421 return;
6422 end if;
6424 -- If the subprogram is not global, then kill all saved values and
6425 -- checks. This is a bit conservative, since in many cases we could do
6426 -- better, but it is not worth the effort. Similarly, we kill constant
6427 -- values. However we do not need to do this for internal entities
6428 -- (unless they are inherited user-defined subprograms), since they
6429 -- are not in the business of molesting local values.
6431 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6432 -- kill all checks and values for calls to global subprograms. This
6433 -- takes care of the case where an access to a local subprogram is
6434 -- taken, and could be passed directly or indirectly and then called
6435 -- from almost any context.
6437 -- Note: we do not do this step till after resolving the actuals. That
6438 -- way we still take advantage of the current value information while
6439 -- scanning the actuals.
6441 -- We suppress killing values if we are processing the nodes associated
6442 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6443 -- type kills all the values as part of analyzing the code that
6444 -- initializes the dispatch tables.
6446 if Inside_Freezing_Actions = 0
6447 and then (not Is_Library_Level_Entity (Nam)
6448 or else Suppress_Value_Tracking_On_Call
6449 (Nearest_Dynamic_Scope (Current_Scope)))
6450 and then (Comes_From_Source (Nam)
6451 or else (Present (Alias (Nam))
6452 and then Comes_From_Source (Alias (Nam))))
6453 then
6454 Kill_Current_Values;
6455 end if;
6457 -- If we are warning about unread OUT parameters, this is the place to
6458 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6459 -- after the above call to Kill_Current_Values (since that call clears
6460 -- the Last_Assignment field of all local variables).
6462 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6463 and then Comes_From_Source (N)
6464 and then In_Extended_Main_Source_Unit (N)
6465 then
6466 declare
6467 F : Entity_Id;
6468 A : Node_Id;
6470 begin
6471 F := First_Formal (Nam);
6472 A := First_Actual (N);
6473 while Present (F) and then Present (A) loop
6474 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6475 and then Warn_On_Modified_As_Out_Parameter (F)
6476 and then Is_Entity_Name (A)
6477 and then Present (Entity (A))
6478 and then Comes_From_Source (N)
6479 and then Safe_To_Capture_Value (N, Entity (A))
6480 then
6481 Set_Last_Assignment (Entity (A), A);
6482 end if;
6484 Next_Formal (F);
6485 Next_Actual (A);
6486 end loop;
6487 end;
6488 end if;
6490 -- If the subprogram is a primitive operation, check whether or not
6491 -- it is a correct dispatching call.
6493 if Is_Overloadable (Nam)
6494 and then Is_Dispatching_Operation (Nam)
6495 then
6496 Check_Dispatching_Call (N);
6498 elsif Ekind (Nam) /= E_Subprogram_Type
6499 and then Is_Abstract_Subprogram (Nam)
6500 and then not In_Instance
6501 then
6502 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6503 end if;
6505 -- If this is a dispatching call, generate the appropriate reference,
6506 -- for better source navigation in GPS.
6508 if Is_Overloadable (Nam)
6509 and then Present (Controlling_Argument (N))
6510 then
6511 Generate_Reference (Nam, Subp, 'R');
6513 -- Normal case, not a dispatching call: generate a call reference
6515 else
6516 Generate_Reference (Nam, Subp, 's');
6517 end if;
6519 if Is_Intrinsic_Subprogram (Nam) then
6520 Check_Intrinsic_Call (N);
6521 end if;
6523 -- Check for violation of restriction No_Specific_Termination_Handlers
6524 -- and warn on a potentially blocking call to Abort_Task.
6526 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6527 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6528 or else
6529 Is_RTE (Nam, RE_Specific_Handler))
6530 then
6531 Check_Restriction (No_Specific_Termination_Handlers, N);
6533 elsif Is_RTE (Nam, RE_Abort_Task) then
6534 Check_Potentially_Blocking_Operation (N);
6535 end if;
6537 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6538 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6539 -- need to check the second argument to determine whether it is an
6540 -- absolute or relative timing event.
6542 if Restriction_Check_Required (No_Relative_Delay)
6543 and then Is_RTE (Nam, RE_Set_Handler)
6544 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6545 then
6546 Check_Restriction (No_Relative_Delay, N);
6547 end if;
6549 -- Issue an error for a call to an eliminated subprogram. This routine
6550 -- will not perform the check if the call appears within a default
6551 -- expression.
6553 Check_For_Eliminated_Subprogram (Subp, Nam);
6555 -- In formal mode, the primitive operations of a tagged type or type
6556 -- extension do not include functions that return the tagged type.
6558 if Nkind (N) = N_Function_Call
6559 and then Is_Tagged_Type (Etype (N))
6560 and then Is_Entity_Name (Name (N))
6561 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6562 then
6563 Check_SPARK_05_Restriction ("function not inherited", N);
6564 end if;
6566 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6567 -- class-wide and the call dispatches on result in a context that does
6568 -- not provide a tag, the call raises Program_Error.
6570 if Nkind (N) = N_Function_Call
6571 and then In_Instance
6572 and then Is_Generic_Actual_Type (Typ)
6573 and then Is_Class_Wide_Type (Typ)
6574 and then Has_Controlling_Result (Nam)
6575 and then Nkind (Parent (N)) = N_Object_Declaration
6576 then
6577 -- Verify that none of the formals are controlling
6579 declare
6580 Call_OK : Boolean := False;
6581 F : Entity_Id;
6583 begin
6584 F := First_Formal (Nam);
6585 while Present (F) loop
6586 if Is_Controlling_Formal (F) then
6587 Call_OK := True;
6588 exit;
6589 end if;
6591 Next_Formal (F);
6592 end loop;
6594 if not Call_OK then
6595 Error_Msg_Warn := SPARK_Mode /= On;
6596 Error_Msg_N ("!cannot determine tag of result<<", N);
6597 Error_Msg_N ("\Program_Error [<<!", N);
6598 Insert_Action (N,
6599 Make_Raise_Program_Error (Sloc (N),
6600 Reason => PE_Explicit_Raise));
6601 end if;
6602 end;
6603 end if;
6605 -- Check for calling a function with OUT or IN OUT parameter when the
6606 -- calling context (us right now) is not Ada 2012, so does not allow
6607 -- OUT or IN OUT parameters in function calls. Functions declared in
6608 -- a predefined unit are OK, as they may be called indirectly from a
6609 -- user-declared instantiation.
6611 if Ada_Version < Ada_2012
6612 and then Ekind (Nam) = E_Function
6613 and then Has_Out_Or_In_Out_Parameter (Nam)
6614 and then not In_Predefined_Unit (Nam)
6615 then
6616 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6617 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6618 end if;
6620 -- Check the dimensions of the actuals in the call. For function calls,
6621 -- propagate the dimensions from the returned type to N.
6623 Analyze_Dimension_Call (N, Nam);
6625 -- All done, evaluate call and deal with elaboration issues
6627 Eval_Call (N);
6629 if Legacy_Elaboration_Checks then
6630 Check_Elab_Call (N);
6631 end if;
6633 -- Annotate the tree by creating a call marker in case the original call
6634 -- is transformed by expansion. The call marker is automatically saved
6635 -- for later examination by the ABE Processing phase.
6637 Build_Call_Marker (N);
6639 -- In GNATprove mode, expansion is disabled, but we want to inline some
6640 -- subprograms to facilitate formal verification. Indirect calls through
6641 -- a subprogram type or within a generic cannot be inlined. Inlining is
6642 -- performed only for calls subject to SPARK_Mode on.
6644 if GNATprove_Mode
6645 and then SPARK_Mode = On
6646 and then Is_Overloadable (Nam)
6647 and then not Inside_A_Generic
6648 then
6649 Nam_UA := Ultimate_Alias (Nam);
6650 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6652 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6653 Body_Id := Corresponding_Body (Nam_Decl);
6655 -- Nothing to do if the subprogram is not eligible for inlining in
6656 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6658 if not Is_Inlined_Always (Nam_UA)
6659 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6660 or else Debug_Flag_M
6661 then
6662 null;
6664 -- Calls cannot be inlined inside assertions, as GNATprove treats
6665 -- assertions as logic expressions. Only issue a message when the
6666 -- body has been seen, otherwise this leads to spurious messages
6667 -- on expression functions.
6669 elsif In_Assertion_Expr /= 0 then
6670 if Present (Body_Id) then
6671 Cannot_Inline
6672 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6673 end if;
6675 -- Calls cannot be inlined inside default expressions
6677 elsif In_Default_Expr then
6678 Cannot_Inline
6679 ("cannot inline & (in default expression)?", N, Nam_UA);
6681 -- Inlining should not be performed during pre-analysis
6683 elsif Full_Analysis then
6685 -- Do not inline calls inside expression functions, as this
6686 -- would prevent interpreting them as logical formulas in
6687 -- GNATprove. Only issue a message when the body has been seen,
6688 -- otherwise this leads to spurious messages on callees that
6689 -- are themselves expression functions.
6691 if Present (Current_Subprogram)
6692 and then Is_Expression_Function_Or_Completion
6693 (Current_Subprogram)
6694 then
6695 if Present (Body_Id)
6696 and then Present (Body_To_Inline (Nam_Decl))
6697 then
6698 Cannot_Inline
6699 ("cannot inline & (inside expression function)?",
6700 N, Nam_UA);
6701 end if;
6703 -- With the one-pass inlining technique, a call cannot be
6704 -- inlined if the corresponding body has not been seen yet.
6706 elsif No (Body_Id) then
6707 Cannot_Inline
6708 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6710 -- Nothing to do if there is no body to inline, indicating that
6711 -- the subprogram is not suitable for inlining in GNATprove
6712 -- mode.
6714 elsif No (Body_To_Inline (Nam_Decl)) then
6715 null;
6717 -- Calls cannot be inlined inside potentially unevaluated
6718 -- expressions, as this would create complex actions inside
6719 -- expressions, that are not handled by GNATprove.
6721 elsif Is_Potentially_Unevaluated (N) then
6722 Cannot_Inline
6723 ("cannot inline & (in potentially unevaluated context)?",
6724 N, Nam_UA);
6726 -- Do not inline calls which would possibly lead to missing a
6727 -- type conversion check on an input parameter.
6729 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6730 Cannot_Inline
6731 ("cannot inline & (possible check on input parameters)?",
6732 N, Nam_UA);
6734 -- Otherwise, inline the call
6736 else
6737 Expand_Inlined_Call (N, Nam_UA, Nam);
6738 end if;
6739 end if;
6740 end if;
6741 end if;
6743 Mark_Use_Clauses (Subp);
6745 Warn_On_Overlapping_Actuals (Nam, N);
6746 end Resolve_Call;
6748 -----------------------------
6749 -- Resolve_Case_Expression --
6750 -----------------------------
6752 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6753 Alt : Node_Id;
6754 Alt_Expr : Node_Id;
6755 Alt_Typ : Entity_Id;
6756 Is_Dyn : Boolean;
6758 begin
6759 Alt := First (Alternatives (N));
6760 while Present (Alt) loop
6761 Alt_Expr := Expression (Alt);
6763 if Error_Posted (Alt_Expr) then
6764 return;
6765 end if;
6767 Resolve (Alt_Expr, Typ);
6768 Alt_Typ := Etype (Alt_Expr);
6770 -- When the expression is of a scalar subtype different from the
6771 -- result subtype, then insert a conversion to ensure the generation
6772 -- of a constraint check.
6774 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6775 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6776 Analyze_And_Resolve (Alt_Expr, Typ);
6777 end if;
6779 Next (Alt);
6780 end loop;
6782 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6783 -- dynamically tagged must be known statically.
6785 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6786 Alt := First (Alternatives (N));
6787 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6789 while Present (Alt) loop
6790 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6791 Error_Msg_N
6792 ("all or none of the dependent expressions can be "
6793 & "dynamically tagged", N);
6794 end if;
6796 Next (Alt);
6797 end loop;
6798 end if;
6800 Set_Etype (N, Typ);
6801 Eval_Case_Expression (N);
6802 Analyze_Dimension (N);
6803 end Resolve_Case_Expression;
6805 -------------------------------
6806 -- Resolve_Character_Literal --
6807 -------------------------------
6809 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6810 B_Typ : constant Entity_Id := Base_Type (Typ);
6811 C : Entity_Id;
6813 begin
6814 -- Verify that the character does belong to the type of the context
6816 Set_Etype (N, B_Typ);
6817 Eval_Character_Literal (N);
6819 -- Wide_Wide_Character literals must always be defined, since the set
6820 -- of wide wide character literals is complete, i.e. if a character
6821 -- literal is accepted by the parser, then it is OK for wide wide
6822 -- character (out of range character literals are rejected).
6824 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6825 return;
6827 -- Always accept character literal for type Any_Character, which
6828 -- occurs in error situations and in comparisons of literals, both
6829 -- of which should accept all literals.
6831 elsif B_Typ = Any_Character then
6832 return;
6834 -- For Standard.Character or a type derived from it, check that the
6835 -- literal is in range.
6837 elsif Root_Type (B_Typ) = Standard_Character then
6838 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6839 return;
6840 end if;
6842 -- For Standard.Wide_Character or a type derived from it, check that the
6843 -- literal is in range.
6845 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6846 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6847 return;
6848 end if;
6850 -- If the entity is already set, this has already been resolved in a
6851 -- generic context, or comes from expansion. Nothing else to do.
6853 elsif Present (Entity (N)) then
6854 return;
6856 -- Otherwise we have a user defined character type, and we can use the
6857 -- standard visibility mechanisms to locate the referenced entity.
6859 else
6860 C := Current_Entity (N);
6861 while Present (C) loop
6862 if Etype (C) = B_Typ then
6863 Set_Entity_With_Checks (N, C);
6864 Generate_Reference (C, N);
6865 return;
6866 end if;
6868 C := Homonym (C);
6869 end loop;
6870 end if;
6872 -- If we fall through, then the literal does not match any of the
6873 -- entries of the enumeration type. This isn't just a constraint error
6874 -- situation, it is an illegality (see RM 4.2).
6876 Error_Msg_NE
6877 ("character not defined for }", N, First_Subtype (B_Typ));
6878 end Resolve_Character_Literal;
6880 ---------------------------
6881 -- Resolve_Comparison_Op --
6882 ---------------------------
6884 -- Context requires a boolean type, and plays no role in resolution.
6885 -- Processing identical to that for equality operators. The result type is
6886 -- the base type, which matters when pathological subtypes of booleans with
6887 -- limited ranges are used.
6889 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6890 L : constant Node_Id := Left_Opnd (N);
6891 R : constant Node_Id := Right_Opnd (N);
6892 T : Entity_Id;
6894 begin
6895 -- If this is an intrinsic operation which is not predefined, use the
6896 -- types of its declared arguments to resolve the possibly overloaded
6897 -- operands. Otherwise the operands are unambiguous and specify the
6898 -- expected type.
6900 if Scope (Entity (N)) /= Standard_Standard then
6901 T := Etype (First_Entity (Entity (N)));
6903 else
6904 T := Find_Unique_Type (L, R);
6906 if T = Any_Fixed then
6907 T := Unique_Fixed_Point_Type (L);
6908 end if;
6909 end if;
6911 Set_Etype (N, Base_Type (Typ));
6912 Generate_Reference (T, N, ' ');
6914 -- Skip remaining processing if already set to Any_Type
6916 if T = Any_Type then
6917 return;
6918 end if;
6920 -- Deal with other error cases
6922 if T = Any_String or else
6923 T = Any_Composite or else
6924 T = Any_Character
6925 then
6926 if T = Any_Character then
6927 Ambiguous_Character (L);
6928 else
6929 Error_Msg_N ("ambiguous operands for comparison", N);
6930 end if;
6932 Set_Etype (N, Any_Type);
6933 return;
6934 end if;
6936 -- Resolve the operands if types OK
6938 Resolve (L, T);
6939 Resolve (R, T);
6940 Check_Unset_Reference (L);
6941 Check_Unset_Reference (R);
6942 Generate_Operator_Reference (N, T);
6943 Check_Low_Bound_Tested (N);
6945 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6946 -- types or array types except String.
6948 if Is_Boolean_Type (T) then
6949 Check_SPARK_05_Restriction
6950 ("comparison is not defined on Boolean type", N);
6952 elsif Is_Array_Type (T)
6953 and then Base_Type (T) /= Standard_String
6954 then
6955 Check_SPARK_05_Restriction
6956 ("comparison is not defined on array types other than String", N);
6957 end if;
6959 -- Check comparison on unordered enumeration
6961 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6962 Error_Msg_Sloc := Sloc (Etype (L));
6963 Error_Msg_NE
6964 ("comparison on unordered enumeration type& declared#?U?",
6965 N, Etype (L));
6966 end if;
6968 Analyze_Dimension (N);
6970 -- Evaluate the relation (note we do this after the above check since
6971 -- this Eval call may change N to True/False. Skip this evaluation
6972 -- inside assertions, in order to keep assertions as written by users
6973 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6974 -- Except evaluation is still performed even inside assertions for
6975 -- comparisons between values of universal type, which are useless
6976 -- for static analysis tools, and not supported even by GNATprove.
6978 if In_Assertion_Expr = 0
6979 or else (Is_Universal_Numeric_Type (Etype (L))
6980 and then
6981 Is_Universal_Numeric_Type (Etype (R)))
6982 then
6983 Eval_Relational_Op (N);
6984 end if;
6985 end Resolve_Comparison_Op;
6987 -----------------------------------------
6988 -- Resolve_Discrete_Subtype_Indication --
6989 -----------------------------------------
6991 procedure Resolve_Discrete_Subtype_Indication
6992 (N : Node_Id;
6993 Typ : Entity_Id)
6995 R : Node_Id;
6996 S : Entity_Id;
6998 begin
6999 Analyze (Subtype_Mark (N));
7000 S := Entity (Subtype_Mark (N));
7002 if Nkind (Constraint (N)) /= N_Range_Constraint then
7003 Error_Msg_N ("expect range constraint for discrete type", N);
7004 Set_Etype (N, Any_Type);
7006 else
7007 R := Range_Expression (Constraint (N));
7009 if R = Error then
7010 return;
7011 end if;
7013 Analyze (R);
7015 if Base_Type (S) /= Base_Type (Typ) then
7016 Error_Msg_NE
7017 ("expect subtype of }", N, First_Subtype (Typ));
7019 -- Rewrite the constraint as a range of Typ
7020 -- to allow compilation to proceed further.
7022 Set_Etype (N, Typ);
7023 Rewrite (Low_Bound (R),
7024 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7025 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7026 Attribute_Name => Name_First));
7027 Rewrite (High_Bound (R),
7028 Make_Attribute_Reference (Sloc (High_Bound (R)),
7029 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7030 Attribute_Name => Name_First));
7032 else
7033 Resolve (R, Typ);
7034 Set_Etype (N, Etype (R));
7036 -- Additionally, we must check that the bounds are compatible
7037 -- with the given subtype, which might be different from the
7038 -- type of the context.
7040 Apply_Range_Check (R, S);
7042 -- ??? If the above check statically detects a Constraint_Error
7043 -- it replaces the offending bound(s) of the range R with a
7044 -- Constraint_Error node. When the itype which uses these bounds
7045 -- is frozen the resulting call to Duplicate_Subexpr generates
7046 -- a new temporary for the bounds.
7048 -- Unfortunately there are other itypes that are also made depend
7049 -- on these bounds, so when Duplicate_Subexpr is called they get
7050 -- a forward reference to the newly created temporaries and Gigi
7051 -- aborts on such forward references. This is probably sign of a
7052 -- more fundamental problem somewhere else in either the order of
7053 -- itype freezing or the way certain itypes are constructed.
7055 -- To get around this problem we call Remove_Side_Effects right
7056 -- away if either bounds of R are a Constraint_Error.
7058 declare
7059 L : constant Node_Id := Low_Bound (R);
7060 H : constant Node_Id := High_Bound (R);
7062 begin
7063 if Nkind (L) = N_Raise_Constraint_Error then
7064 Remove_Side_Effects (L);
7065 end if;
7067 if Nkind (H) = N_Raise_Constraint_Error then
7068 Remove_Side_Effects (H);
7069 end if;
7070 end;
7072 Check_Unset_Reference (Low_Bound (R));
7073 Check_Unset_Reference (High_Bound (R));
7074 end if;
7075 end if;
7076 end Resolve_Discrete_Subtype_Indication;
7078 -------------------------
7079 -- Resolve_Entity_Name --
7080 -------------------------
7082 -- Used to resolve identifiers and expanded names
7084 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7085 function Is_Assignment_Or_Object_Expression
7086 (Context : Node_Id;
7087 Expr : Node_Id) return Boolean;
7088 -- Determine whether node Context denotes an assignment statement or an
7089 -- object declaration whose expression is node Expr.
7091 ----------------------------------------
7092 -- Is_Assignment_Or_Object_Expression --
7093 ----------------------------------------
7095 function Is_Assignment_Or_Object_Expression
7096 (Context : Node_Id;
7097 Expr : Node_Id) return Boolean
7099 begin
7100 if Nkind_In (Context, N_Assignment_Statement,
7101 N_Object_Declaration)
7102 and then Expression (Context) = Expr
7103 then
7104 return True;
7106 -- Check whether a construct that yields a name is the expression of
7107 -- an assignment statement or an object declaration.
7109 elsif (Nkind_In (Context, N_Attribute_Reference,
7110 N_Explicit_Dereference,
7111 N_Indexed_Component,
7112 N_Selected_Component,
7113 N_Slice)
7114 and then Prefix (Context) = Expr)
7115 or else
7116 (Nkind_In (Context, N_Type_Conversion,
7117 N_Unchecked_Type_Conversion)
7118 and then Expression (Context) = Expr)
7119 then
7120 return
7121 Is_Assignment_Or_Object_Expression
7122 (Context => Parent (Context),
7123 Expr => Context);
7125 -- Otherwise the context is not an assignment statement or an object
7126 -- declaration.
7128 else
7129 return False;
7130 end if;
7131 end Is_Assignment_Or_Object_Expression;
7133 -- Local variables
7135 E : constant Entity_Id := Entity (N);
7136 Par : Node_Id;
7138 -- Start of processing for Resolve_Entity_Name
7140 begin
7141 -- If garbage from errors, set to Any_Type and return
7143 if No (E) and then Total_Errors_Detected /= 0 then
7144 Set_Etype (N, Any_Type);
7145 return;
7146 end if;
7148 -- Replace named numbers by corresponding literals. Note that this is
7149 -- the one case where Resolve_Entity_Name must reset the Etype, since
7150 -- it is currently marked as universal.
7152 if Ekind (E) = E_Named_Integer then
7153 Set_Etype (N, Typ);
7154 Eval_Named_Integer (N);
7156 elsif Ekind (E) = E_Named_Real then
7157 Set_Etype (N, Typ);
7158 Eval_Named_Real (N);
7160 -- For enumeration literals, we need to make sure that a proper style
7161 -- check is done, since such literals are overloaded, and thus we did
7162 -- not do a style check during the first phase of analysis.
7164 elsif Ekind (E) = E_Enumeration_Literal then
7165 Set_Entity_With_Checks (N, E);
7166 Eval_Entity_Name (N);
7168 -- Case of (sub)type name appearing in a context where an expression
7169 -- is expected. This is legal if occurrence is a current instance.
7170 -- See RM 8.6 (17/3).
7172 elsif Is_Type (E) then
7173 if Is_Current_Instance (N) then
7174 null;
7176 -- Any other use is an error
7178 else
7179 Error_Msg_N
7180 ("invalid use of subtype mark in expression or call", N);
7181 end if;
7183 -- Check discriminant use if entity is discriminant in current scope,
7184 -- i.e. discriminant of record or concurrent type currently being
7185 -- analyzed. Uses in corresponding body are unrestricted.
7187 elsif Ekind (E) = E_Discriminant
7188 and then Scope (E) = Current_Scope
7189 and then not Has_Completion (Current_Scope)
7190 then
7191 Check_Discriminant_Use (N);
7193 -- A parameterless generic function cannot appear in a context that
7194 -- requires resolution.
7196 elsif Ekind (E) = E_Generic_Function then
7197 Error_Msg_N ("illegal use of generic function", N);
7199 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7200 -- array types (i.e. bounds and length) are legal.
7202 elsif Ekind (E) = E_Out_Parameter
7203 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7204 or else Is_Scalar_Type (Etype (E)))
7206 and then (Nkind (Parent (N)) in N_Op
7207 or else Nkind (Parent (N)) = N_Explicit_Dereference
7208 or else Is_Assignment_Or_Object_Expression
7209 (Context => Parent (N),
7210 Expr => N))
7211 then
7212 if Ada_Version = Ada_83 then
7213 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7214 end if;
7216 -- In all other cases, just do the possible static evaluation
7218 else
7219 -- A deferred constant that appears in an expression must have a
7220 -- completion, unless it has been removed by in-place expansion of
7221 -- an aggregate. A constant that is a renaming does not need
7222 -- initialization.
7224 if Ekind (E) = E_Constant
7225 and then Comes_From_Source (E)
7226 and then No (Constant_Value (E))
7227 and then Is_Frozen (Etype (E))
7228 and then not In_Spec_Expression
7229 and then not Is_Imported (E)
7230 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7231 then
7232 if No_Initialization (Parent (E))
7233 or else (Present (Full_View (E))
7234 and then No_Initialization (Parent (Full_View (E))))
7235 then
7236 null;
7237 else
7238 Error_Msg_N
7239 ("deferred constant is frozen before completion", N);
7240 end if;
7241 end if;
7243 Eval_Entity_Name (N);
7244 end if;
7246 Par := Parent (N);
7248 -- When the entity appears in a parameter association, retrieve the
7249 -- related subprogram call.
7251 if Nkind (Par) = N_Parameter_Association then
7252 Par := Parent (Par);
7253 end if;
7255 if Comes_From_Source (N) then
7257 -- The following checks are only relevant when SPARK_Mode is on as
7258 -- they are not standard Ada legality rules.
7260 if SPARK_Mode = On then
7262 -- An effectively volatile object subject to enabled properties
7263 -- Async_Writers or Effective_Reads must appear in non-interfering
7264 -- context (SPARK RM 7.1.3(12)).
7266 if Is_Object (E)
7267 and then Is_Effectively_Volatile (E)
7268 and then (Async_Writers_Enabled (E)
7269 or else Effective_Reads_Enabled (E))
7270 and then not Is_OK_Volatile_Context (Par, N)
7271 then
7272 SPARK_Msg_N
7273 ("volatile object cannot appear in this context "
7274 & "(SPARK RM 7.1.3(12))", N);
7275 end if;
7277 -- Check for possible elaboration issues with respect to reads of
7278 -- variables. The act of renaming the variable is not considered a
7279 -- read as it simply establishes an alias.
7281 if Legacy_Elaboration_Checks
7282 and then Ekind (E) = E_Variable
7283 and then Dynamic_Elaboration_Checks
7284 and then Nkind (Par) /= N_Object_Renaming_Declaration
7285 then
7286 Check_Elab_Call (N);
7287 end if;
7288 end if;
7290 -- The variable may eventually become a constituent of a single
7291 -- protected/task type. Record the reference now and verify its
7292 -- legality when analyzing the contract of the variable
7293 -- (SPARK RM 9.3).
7295 if Ekind (E) = E_Variable then
7296 Record_Possible_Part_Of_Reference (E, N);
7297 end if;
7299 -- A Ghost entity must appear in a specific context
7301 if Is_Ghost_Entity (E) then
7302 Check_Ghost_Context (E, N);
7303 end if;
7304 end if;
7306 -- We may be resolving an entity within expanded code, so a reference to
7307 -- an entity should be ignored when calculating effective use clauses to
7308 -- avoid inappropriate marking.
7310 if Comes_From_Source (N) then
7311 Mark_Use_Clauses (E);
7312 end if;
7313 end Resolve_Entity_Name;
7315 -------------------
7316 -- Resolve_Entry --
7317 -------------------
7319 procedure Resolve_Entry (Entry_Name : Node_Id) is
7320 Loc : constant Source_Ptr := Sloc (Entry_Name);
7321 Nam : Entity_Id;
7322 New_N : Node_Id;
7323 S : Entity_Id;
7324 Tsk : Entity_Id;
7325 E_Name : Node_Id;
7326 Index : Node_Id;
7328 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7329 -- If the bounds of the entry family being called depend on task
7330 -- discriminants, build a new index subtype where a discriminant is
7331 -- replaced with the value of the discriminant of the target task.
7332 -- The target task is the prefix of the entry name in the call.
7334 -----------------------
7335 -- Actual_Index_Type --
7336 -----------------------
7338 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7339 Typ : constant Entity_Id := Entry_Index_Type (E);
7340 Tsk : constant Entity_Id := Scope (E);
7341 Lo : constant Node_Id := Type_Low_Bound (Typ);
7342 Hi : constant Node_Id := Type_High_Bound (Typ);
7343 New_T : Entity_Id;
7345 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7346 -- If the bound is given by a discriminant, replace with a reference
7347 -- to the discriminant of the same name in the target task. If the
7348 -- entry name is the target of a requeue statement and the entry is
7349 -- in the current protected object, the bound to be used is the
7350 -- discriminal of the object (see Apply_Range_Checks for details of
7351 -- the transformation).
7353 -----------------------------
7354 -- Actual_Discriminant_Ref --
7355 -----------------------------
7357 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7358 Typ : constant Entity_Id := Etype (Bound);
7359 Ref : Node_Id;
7361 begin
7362 Remove_Side_Effects (Bound);
7364 if not Is_Entity_Name (Bound)
7365 or else Ekind (Entity (Bound)) /= E_Discriminant
7366 then
7367 return Bound;
7369 elsif Is_Protected_Type (Tsk)
7370 and then In_Open_Scopes (Tsk)
7371 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7372 then
7373 -- Note: here Bound denotes a discriminant of the corresponding
7374 -- record type tskV, whose discriminal is a formal of the
7375 -- init-proc tskVIP. What we want is the body discriminal,
7376 -- which is associated to the discriminant of the original
7377 -- concurrent type tsk.
7379 return New_Occurrence_Of
7380 (Find_Body_Discriminal (Entity (Bound)), Loc);
7382 else
7383 Ref :=
7384 Make_Selected_Component (Loc,
7385 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7386 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7387 Analyze (Ref);
7388 Resolve (Ref, Typ);
7389 return Ref;
7390 end if;
7391 end Actual_Discriminant_Ref;
7393 -- Start of processing for Actual_Index_Type
7395 begin
7396 if not Has_Discriminants (Tsk)
7397 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7398 then
7399 return Entry_Index_Type (E);
7401 else
7402 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7403 Set_Etype (New_T, Base_Type (Typ));
7404 Set_Size_Info (New_T, Typ);
7405 Set_RM_Size (New_T, RM_Size (Typ));
7406 Set_Scalar_Range (New_T,
7407 Make_Range (Sloc (Entry_Name),
7408 Low_Bound => Actual_Discriminant_Ref (Lo),
7409 High_Bound => Actual_Discriminant_Ref (Hi)));
7411 return New_T;
7412 end if;
7413 end Actual_Index_Type;
7415 -- Start of processing for Resolve_Entry
7417 begin
7418 -- Find name of entry being called, and resolve prefix of name with its
7419 -- own type. The prefix can be overloaded, and the name and signature of
7420 -- the entry must be taken into account.
7422 if Nkind (Entry_Name) = N_Indexed_Component then
7424 -- Case of dealing with entry family within the current tasks
7426 E_Name := Prefix (Entry_Name);
7428 else
7429 E_Name := Entry_Name;
7430 end if;
7432 if Is_Entity_Name (E_Name) then
7434 -- Entry call to an entry (or entry family) in the current task. This
7435 -- is legal even though the task will deadlock. Rewrite as call to
7436 -- current task.
7438 -- This can also be a call to an entry in an enclosing task. If this
7439 -- is a single task, we have to retrieve its name, because the scope
7440 -- of the entry is the task type, not the object. If the enclosing
7441 -- task is a task type, the identity of the task is given by its own
7442 -- self variable.
7444 -- Finally this can be a requeue on an entry of the same task or
7445 -- protected object.
7447 S := Scope (Entity (E_Name));
7449 for J in reverse 0 .. Scope_Stack.Last loop
7450 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7451 and then not Comes_From_Source (S)
7452 then
7453 -- S is an enclosing task or protected object. The concurrent
7454 -- declaration has been converted into a type declaration, and
7455 -- the object itself has an object declaration that follows
7456 -- the type in the same declarative part.
7458 Tsk := Next_Entity (S);
7459 while Etype (Tsk) /= S loop
7460 Next_Entity (Tsk);
7461 end loop;
7463 S := Tsk;
7464 exit;
7466 elsif S = Scope_Stack.Table (J).Entity then
7468 -- Call to current task. Will be transformed into call to Self
7470 exit;
7472 end if;
7473 end loop;
7475 New_N :=
7476 Make_Selected_Component (Loc,
7477 Prefix => New_Occurrence_Of (S, Loc),
7478 Selector_Name =>
7479 New_Occurrence_Of (Entity (E_Name), Loc));
7480 Rewrite (E_Name, New_N);
7481 Analyze (E_Name);
7483 elsif Nkind (Entry_Name) = N_Selected_Component
7484 and then Is_Overloaded (Prefix (Entry_Name))
7485 then
7486 -- Use the entry name (which must be unique at this point) to find
7487 -- the prefix that returns the corresponding task/protected type.
7489 declare
7490 Pref : constant Node_Id := Prefix (Entry_Name);
7491 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7492 I : Interp_Index;
7493 It : Interp;
7495 begin
7496 Get_First_Interp (Pref, I, It);
7497 while Present (It.Typ) loop
7498 if Scope (Ent) = It.Typ then
7499 Set_Etype (Pref, It.Typ);
7500 exit;
7501 end if;
7503 Get_Next_Interp (I, It);
7504 end loop;
7505 end;
7506 end if;
7508 if Nkind (Entry_Name) = N_Selected_Component then
7509 Resolve (Prefix (Entry_Name));
7511 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7512 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7513 Resolve (Prefix (Prefix (Entry_Name)));
7514 Index := First (Expressions (Entry_Name));
7515 Resolve (Index, Entry_Index_Type (Nam));
7517 -- Generate a reference for the index when it denotes an entity
7519 if Is_Entity_Name (Index) then
7520 Generate_Reference (Entity (Index), Nam);
7521 end if;
7523 -- Up to this point the expression could have been the actual in a
7524 -- simple entry call, and be given by a named association.
7526 if Nkind (Index) = N_Parameter_Association then
7527 Error_Msg_N ("expect expression for entry index", Index);
7528 else
7529 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7530 end if;
7531 end if;
7532 end Resolve_Entry;
7534 ------------------------
7535 -- Resolve_Entry_Call --
7536 ------------------------
7538 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7539 Entry_Name : constant Node_Id := Name (N);
7540 Loc : constant Source_Ptr := Sloc (Entry_Name);
7542 Nam : Entity_Id;
7543 Norm_OK : Boolean;
7544 Obj : Node_Id;
7545 Was_Over : Boolean;
7547 begin
7548 -- We kill all checks here, because it does not seem worth the effort to
7549 -- do anything better, an entry call is a big operation.
7551 Kill_All_Checks;
7553 -- Processing of the name is similar for entry calls and protected
7554 -- operation calls. Once the entity is determined, we can complete
7555 -- the resolution of the actuals.
7557 -- The selector may be overloaded, in the case of a protected object
7558 -- with overloaded functions. The type of the context is used for
7559 -- resolution.
7561 if Nkind (Entry_Name) = N_Selected_Component
7562 and then Is_Overloaded (Selector_Name (Entry_Name))
7563 and then Typ /= Standard_Void_Type
7564 then
7565 declare
7566 I : Interp_Index;
7567 It : Interp;
7569 begin
7570 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7571 while Present (It.Typ) loop
7572 if Covers (Typ, It.Typ) then
7573 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7574 Set_Etype (Entry_Name, It.Typ);
7576 Generate_Reference (It.Typ, N, ' ');
7577 end if;
7579 Get_Next_Interp (I, It);
7580 end loop;
7581 end;
7582 end if;
7584 Resolve_Entry (Entry_Name);
7586 if Nkind (Entry_Name) = N_Selected_Component then
7588 -- Simple entry or protected operation call
7590 Nam := Entity (Selector_Name (Entry_Name));
7591 Obj := Prefix (Entry_Name);
7593 if Is_Subprogram (Nam) then
7594 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7595 end if;
7597 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7599 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7601 -- Call to member of entry family
7603 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7604 Obj := Prefix (Prefix (Entry_Name));
7605 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7606 end if;
7608 -- We cannot in general check the maximum depth of protected entry calls
7609 -- at compile time. But we can tell that any protected entry call at all
7610 -- violates a specified nesting depth of zero.
7612 if Is_Protected_Type (Scope (Nam)) then
7613 Check_Restriction (Max_Entry_Queue_Length, N);
7614 end if;
7616 -- Use context type to disambiguate a protected function that can be
7617 -- called without actuals and that returns an array type, and where the
7618 -- argument list may be an indexing of the returned value.
7620 if Ekind (Nam) = E_Function
7621 and then Needs_No_Actuals (Nam)
7622 and then Present (Parameter_Associations (N))
7623 and then
7624 ((Is_Array_Type (Etype (Nam))
7625 and then Covers (Typ, Component_Type (Etype (Nam))))
7627 or else (Is_Access_Type (Etype (Nam))
7628 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7629 and then
7630 Covers
7631 (Typ,
7632 Component_Type (Designated_Type (Etype (Nam))))))
7633 then
7634 declare
7635 Index_Node : Node_Id;
7637 begin
7638 Index_Node :=
7639 Make_Indexed_Component (Loc,
7640 Prefix =>
7641 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7642 Expressions => Parameter_Associations (N));
7644 -- Since we are correcting a node classification error made by the
7645 -- parser, we call Replace rather than Rewrite.
7647 Replace (N, Index_Node);
7648 Set_Etype (Prefix (N), Etype (Nam));
7649 Set_Etype (N, Typ);
7650 Resolve_Indexed_Component (N, Typ);
7651 return;
7652 end;
7653 end if;
7655 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7656 and then Present (Contract_Wrapper (Nam))
7657 and then Current_Scope /= Contract_Wrapper (Nam)
7658 then
7659 -- Note the entity being called before rewriting the call, so that
7660 -- it appears used at this point.
7662 Generate_Reference (Nam, Entry_Name, 'r');
7664 -- Rewrite as call to the precondition wrapper, adding the task
7665 -- object to the list of actuals. If the call is to a member of an
7666 -- entry family, include the index as well.
7668 declare
7669 New_Call : Node_Id;
7670 New_Actuals : List_Id;
7672 begin
7673 New_Actuals := New_List (Obj);
7675 if Nkind (Entry_Name) = N_Indexed_Component then
7676 Append_To (New_Actuals,
7677 New_Copy_Tree (First (Expressions (Entry_Name))));
7678 end if;
7680 Append_List (Parameter_Associations (N), New_Actuals);
7681 New_Call :=
7682 Make_Procedure_Call_Statement (Loc,
7683 Name =>
7684 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7685 Parameter_Associations => New_Actuals);
7686 Rewrite (N, New_Call);
7688 -- Preanalyze and resolve new call. Current procedure is called
7689 -- from Resolve_Call, after which expansion will take place.
7691 Preanalyze_And_Resolve (N);
7692 return;
7693 end;
7694 end if;
7696 -- The operation name may have been overloaded. Order the actuals
7697 -- according to the formals of the resolved entity, and set the return
7698 -- type to that of the operation.
7700 if Was_Over then
7701 Normalize_Actuals (N, Nam, False, Norm_OK);
7702 pragma Assert (Norm_OK);
7703 Set_Etype (N, Etype (Nam));
7705 -- Reset the Is_Overloaded flag, since resolution is now completed
7707 -- Simple entry call
7709 if Nkind (Entry_Name) = N_Selected_Component then
7710 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7712 -- Call to a member of an entry family
7714 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7715 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7716 end if;
7717 end if;
7719 Resolve_Actuals (N, Nam);
7720 Check_Internal_Protected_Use (N, Nam);
7722 -- Create a call reference to the entry
7724 Generate_Reference (Nam, Entry_Name, 's');
7726 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7727 Check_Potentially_Blocking_Operation (N);
7728 end if;
7730 -- Verify that a procedure call cannot masquerade as an entry
7731 -- call where an entry call is expected.
7733 if Ekind (Nam) = E_Procedure then
7734 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7735 and then N = Entry_Call_Statement (Parent (N))
7736 then
7737 Error_Msg_N ("entry call required in select statement", N);
7739 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7740 and then N = Triggering_Statement (Parent (N))
7741 then
7742 Error_Msg_N ("triggering statement cannot be procedure call", N);
7744 elsif Ekind (Scope (Nam)) = E_Task_Type
7745 and then not In_Open_Scopes (Scope (Nam))
7746 then
7747 Error_Msg_N ("task has no entry with this name", Entry_Name);
7748 end if;
7749 end if;
7751 -- After resolution, entry calls and protected procedure calls are
7752 -- changed into entry calls, for expansion. The structure of the node
7753 -- does not change, so it can safely be done in place. Protected
7754 -- function calls must keep their structure because they are
7755 -- subexpressions.
7757 if Ekind (Nam) /= E_Function then
7759 -- A protected operation that is not a function may modify the
7760 -- corresponding object, and cannot apply to a constant. If this
7761 -- is an internal call, the prefix is the type itself.
7763 if Is_Protected_Type (Scope (Nam))
7764 and then not Is_Variable (Obj)
7765 and then (not Is_Entity_Name (Obj)
7766 or else not Is_Type (Entity (Obj)))
7767 then
7768 Error_Msg_N
7769 ("prefix of protected procedure or entry call must be variable",
7770 Entry_Name);
7771 end if;
7773 declare
7774 Entry_Call : Node_Id;
7776 begin
7777 Entry_Call :=
7778 Make_Entry_Call_Statement (Loc,
7779 Name => Entry_Name,
7780 Parameter_Associations => Parameter_Associations (N));
7782 -- Inherit relevant attributes from the original call
7784 Set_First_Named_Actual
7785 (Entry_Call, First_Named_Actual (N));
7787 Set_Is_Elaboration_Checks_OK_Node
7788 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7790 Set_Is_Elaboration_Warnings_OK_Node
7791 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7793 Set_Is_SPARK_Mode_On_Node
7794 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7796 Rewrite (N, Entry_Call);
7797 Set_Analyzed (N, True);
7798 end;
7800 -- Protected functions can return on the secondary stack, in which case
7801 -- we must trigger the transient scope mechanism.
7803 elsif Expander_Active
7804 and then Requires_Transient_Scope (Etype (Nam))
7805 then
7806 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7807 end if;
7808 end Resolve_Entry_Call;
7810 -------------------------
7811 -- Resolve_Equality_Op --
7812 -------------------------
7814 -- Both arguments must have the same type, and the boolean context does
7815 -- not participate in the resolution. The first pass verifies that the
7816 -- interpretation is not ambiguous, and the type of the left argument is
7817 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7818 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7819 -- though they carry a single (universal) type. Diagnose this case here.
7821 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7822 L : constant Node_Id := Left_Opnd (N);
7823 R : constant Node_Id := Right_Opnd (N);
7824 T : Entity_Id := Find_Unique_Type (L, R);
7826 procedure Check_If_Expression (Cond : Node_Id);
7827 -- The resolution rule for if expressions requires that each such must
7828 -- have a unique type. This means that if several dependent expressions
7829 -- are of a non-null anonymous access type, and the context does not
7830 -- impose an expected type (as can be the case in an equality operation)
7831 -- the expression must be rejected.
7833 procedure Explain_Redundancy (N : Node_Id);
7834 -- Attempt to explain the nature of a redundant comparison with True. If
7835 -- the expression N is too complex, this routine issues a general error
7836 -- message.
7838 function Find_Unique_Access_Type return Entity_Id;
7839 -- In the case of allocators and access attributes, the context must
7840 -- provide an indication of the specific access type to be used. If
7841 -- one operand is of such a "generic" access type, check whether there
7842 -- is a specific visible access type that has the same designated type.
7843 -- This is semantically dubious, and of no interest to any real code,
7844 -- but c48008a makes it all worthwhile.
7846 -------------------------
7847 -- Check_If_Expression --
7848 -------------------------
7850 procedure Check_If_Expression (Cond : Node_Id) is
7851 Then_Expr : Node_Id;
7852 Else_Expr : Node_Id;
7854 begin
7855 if Nkind (Cond) = N_If_Expression then
7856 Then_Expr := Next (First (Expressions (Cond)));
7857 Else_Expr := Next (Then_Expr);
7859 if Nkind (Then_Expr) /= N_Null
7860 and then Nkind (Else_Expr) /= N_Null
7861 then
7862 Error_Msg_N ("cannot determine type of if expression", Cond);
7863 end if;
7864 end if;
7865 end Check_If_Expression;
7867 ------------------------
7868 -- Explain_Redundancy --
7869 ------------------------
7871 procedure Explain_Redundancy (N : Node_Id) is
7872 Error : Name_Id;
7873 Val : Node_Id;
7874 Val_Id : Entity_Id;
7876 begin
7877 Val := N;
7879 -- Strip the operand down to an entity
7881 loop
7882 if Nkind (Val) = N_Selected_Component then
7883 Val := Selector_Name (Val);
7884 else
7885 exit;
7886 end if;
7887 end loop;
7889 -- The construct denotes an entity
7891 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7892 Val_Id := Entity (Val);
7894 -- Do not generate an error message when the comparison is done
7895 -- against the enumeration literal Standard.True.
7897 if Ekind (Val_Id) /= E_Enumeration_Literal then
7899 -- Build a customized error message
7901 Name_Len := 0;
7902 Add_Str_To_Name_Buffer ("?r?");
7904 if Ekind (Val_Id) = E_Component then
7905 Add_Str_To_Name_Buffer ("component ");
7907 elsif Ekind (Val_Id) = E_Constant then
7908 Add_Str_To_Name_Buffer ("constant ");
7910 elsif Ekind (Val_Id) = E_Discriminant then
7911 Add_Str_To_Name_Buffer ("discriminant ");
7913 elsif Is_Formal (Val_Id) then
7914 Add_Str_To_Name_Buffer ("parameter ");
7916 elsif Ekind (Val_Id) = E_Variable then
7917 Add_Str_To_Name_Buffer ("variable ");
7918 end if;
7920 Add_Str_To_Name_Buffer ("& is always True!");
7921 Error := Name_Find;
7923 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7924 end if;
7926 -- The construct is too complex to disect, issue a general message
7928 else
7929 Error_Msg_N ("?r?expression is always True!", Val);
7930 end if;
7931 end Explain_Redundancy;
7933 -----------------------------
7934 -- Find_Unique_Access_Type --
7935 -----------------------------
7937 function Find_Unique_Access_Type return Entity_Id is
7938 Acc : Entity_Id;
7939 E : Entity_Id;
7940 S : Entity_Id;
7942 begin
7943 if Ekind_In (Etype (R), E_Allocator_Type,
7944 E_Access_Attribute_Type)
7945 then
7946 Acc := Designated_Type (Etype (R));
7948 elsif Ekind_In (Etype (L), E_Allocator_Type,
7949 E_Access_Attribute_Type)
7950 then
7951 Acc := Designated_Type (Etype (L));
7952 else
7953 return Empty;
7954 end if;
7956 S := Current_Scope;
7957 while S /= Standard_Standard loop
7958 E := First_Entity (S);
7959 while Present (E) loop
7960 if Is_Type (E)
7961 and then Is_Access_Type (E)
7962 and then Ekind (E) /= E_Allocator_Type
7963 and then Designated_Type (E) = Base_Type (Acc)
7964 then
7965 return E;
7966 end if;
7968 Next_Entity (E);
7969 end loop;
7971 S := Scope (S);
7972 end loop;
7974 return Empty;
7975 end Find_Unique_Access_Type;
7977 -- Start of processing for Resolve_Equality_Op
7979 begin
7980 Set_Etype (N, Base_Type (Typ));
7981 Generate_Reference (T, N, ' ');
7983 if T = Any_Fixed then
7984 T := Unique_Fixed_Point_Type (L);
7985 end if;
7987 if T /= Any_Type then
7988 if T = Any_String or else
7989 T = Any_Composite or else
7990 T = Any_Character
7991 then
7992 if T = Any_Character then
7993 Ambiguous_Character (L);
7994 else
7995 Error_Msg_N ("ambiguous operands for equality", N);
7996 end if;
7998 Set_Etype (N, Any_Type);
7999 return;
8001 elsif T = Any_Access
8002 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8003 then
8004 T := Find_Unique_Access_Type;
8006 if No (T) then
8007 Error_Msg_N ("ambiguous operands for equality", N);
8008 Set_Etype (N, Any_Type);
8009 return;
8010 end if;
8012 -- If expressions must have a single type, and if the context does
8013 -- not impose one the dependent expressions cannot be anonymous
8014 -- access types.
8016 -- Why no similar processing for case expressions???
8018 elsif Ada_Version >= Ada_2012
8019 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8020 E_Anonymous_Access_Subprogram_Type)
8021 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8022 E_Anonymous_Access_Subprogram_Type)
8023 then
8024 Check_If_Expression (L);
8025 Check_If_Expression (R);
8026 end if;
8028 Resolve (L, T);
8029 Resolve (R, T);
8031 -- In SPARK, equality operators = and /= for array types other than
8032 -- String are only defined when, for each index position, the
8033 -- operands have equal static bounds.
8035 if Is_Array_Type (T) then
8037 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8038 -- operation if not needed.
8040 if Restriction_Check_Required (SPARK_05)
8041 and then Base_Type (T) /= Standard_String
8042 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8043 and then Etype (L) /= Any_Composite -- or else L in error
8044 and then Etype (R) /= Any_Composite -- or else R in error
8045 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8046 then
8047 Check_SPARK_05_Restriction
8048 ("array types should have matching static bounds", N);
8049 end if;
8050 end if;
8052 -- If the unique type is a class-wide type then it will be expanded
8053 -- into a dispatching call to the predefined primitive. Therefore we
8054 -- check here for potential violation of such restriction.
8056 if Is_Class_Wide_Type (T) then
8057 Check_Restriction (No_Dispatching_Calls, N);
8058 end if;
8060 -- Only warn for redundant equality comparison to True for objects
8061 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8062 -- other expressions, it may be a matter of preference to write
8063 -- "Expr = True" or "Expr".
8065 if Warn_On_Redundant_Constructs
8066 and then Comes_From_Source (N)
8067 and then Comes_From_Source (R)
8068 and then Is_Entity_Name (R)
8069 and then Entity (R) = Standard_True
8070 and then
8071 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8072 or else
8073 Nkind (L) in N_Op)
8074 then
8075 Error_Msg_N -- CODEFIX
8076 ("?r?comparison with True is redundant!", N);
8077 Explain_Redundancy (Original_Node (R));
8078 end if;
8080 Check_Unset_Reference (L);
8081 Check_Unset_Reference (R);
8082 Generate_Operator_Reference (N, T);
8083 Check_Low_Bound_Tested (N);
8085 -- If this is an inequality, it may be the implicit inequality
8086 -- created for a user-defined operation, in which case the corres-
8087 -- ponding equality operation is not intrinsic, and the operation
8088 -- cannot be constant-folded. Else fold.
8090 if Nkind (N) = N_Op_Eq
8091 or else Comes_From_Source (Entity (N))
8092 or else Ekind (Entity (N)) = E_Operator
8093 or else Is_Intrinsic_Subprogram
8094 (Corresponding_Equality (Entity (N)))
8095 then
8096 Analyze_Dimension (N);
8097 Eval_Relational_Op (N);
8099 elsif Nkind (N) = N_Op_Ne
8100 and then Is_Abstract_Subprogram (Entity (N))
8101 then
8102 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8103 end if;
8105 -- Ada 2005: If one operand is an anonymous access type, convert the
8106 -- other operand to it, to ensure that the underlying types match in
8107 -- the back-end. Same for access_to_subprogram, and the conversion
8108 -- verifies that the types are subtype conformant.
8110 -- We apply the same conversion in the case one of the operands is a
8111 -- private subtype of the type of the other.
8113 -- Why the Expander_Active test here ???
8115 if Expander_Active
8116 and then
8117 (Ekind_In (T, E_Anonymous_Access_Type,
8118 E_Anonymous_Access_Subprogram_Type)
8119 or else Is_Private_Type (T))
8120 then
8121 if Etype (L) /= T then
8122 Rewrite (L,
8123 Make_Unchecked_Type_Conversion (Sloc (L),
8124 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8125 Expression => Relocate_Node (L)));
8126 Analyze_And_Resolve (L, T);
8127 end if;
8129 if (Etype (R)) /= T then
8130 Rewrite (R,
8131 Make_Unchecked_Type_Conversion (Sloc (R),
8132 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8133 Expression => Relocate_Node (R)));
8134 Analyze_And_Resolve (R, T);
8135 end if;
8136 end if;
8137 end if;
8138 end Resolve_Equality_Op;
8140 ----------------------------------
8141 -- Resolve_Explicit_Dereference --
8142 ----------------------------------
8144 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8145 Loc : constant Source_Ptr := Sloc (N);
8146 New_N : Node_Id;
8147 P : constant Node_Id := Prefix (N);
8149 P_Typ : Entity_Id;
8150 -- The candidate prefix type, if overloaded
8152 I : Interp_Index;
8153 It : Interp;
8155 begin
8156 Check_Fully_Declared_Prefix (Typ, P);
8157 P_Typ := Empty;
8159 -- A useful optimization: check whether the dereference denotes an
8160 -- element of a container, and if so rewrite it as a call to the
8161 -- corresponding Element function.
8163 -- Disabled for now, on advice of ARG. A more restricted form of the
8164 -- predicate might be acceptable ???
8166 -- if Is_Container_Element (N) then
8167 -- return;
8168 -- end if;
8170 if Is_Overloaded (P) then
8172 -- Use the context type to select the prefix that has the correct
8173 -- designated type. Keep the first match, which will be the inner-
8174 -- most.
8176 Get_First_Interp (P, I, It);
8178 while Present (It.Typ) loop
8179 if Is_Access_Type (It.Typ)
8180 and then Covers (Typ, Designated_Type (It.Typ))
8181 then
8182 if No (P_Typ) then
8183 P_Typ := It.Typ;
8184 end if;
8186 -- Remove access types that do not match, but preserve access
8187 -- to subprogram interpretations, in case a further dereference
8188 -- is needed (see below).
8190 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8191 Remove_Interp (I);
8192 end if;
8194 Get_Next_Interp (I, It);
8195 end loop;
8197 if Present (P_Typ) then
8198 Resolve (P, P_Typ);
8199 Set_Etype (N, Designated_Type (P_Typ));
8201 else
8202 -- If no interpretation covers the designated type of the prefix,
8203 -- this is the pathological case where not all implementations of
8204 -- the prefix allow the interpretation of the node as a call. Now
8205 -- that the expected type is known, Remove other interpretations
8206 -- from prefix, rewrite it as a call, and resolve again, so that
8207 -- the proper call node is generated.
8209 Get_First_Interp (P, I, It);
8210 while Present (It.Typ) loop
8211 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8212 Remove_Interp (I);
8213 end if;
8215 Get_Next_Interp (I, It);
8216 end loop;
8218 New_N :=
8219 Make_Function_Call (Loc,
8220 Name =>
8221 Make_Explicit_Dereference (Loc,
8222 Prefix => P),
8223 Parameter_Associations => New_List);
8225 Save_Interps (N, New_N);
8226 Rewrite (N, New_N);
8227 Analyze_And_Resolve (N, Typ);
8228 return;
8229 end if;
8231 -- If not overloaded, resolve P with its own type
8233 else
8234 Resolve (P);
8235 end if;
8237 -- If the prefix might be null, add an access check
8239 if Is_Access_Type (Etype (P))
8240 and then not Can_Never_Be_Null (Etype (P))
8241 then
8242 Apply_Access_Check (N);
8243 end if;
8245 -- If the designated type is a packed unconstrained array type, and the
8246 -- explicit dereference is not in the context of an attribute reference,
8247 -- then we must compute and set the actual subtype, since it is needed
8248 -- by Gigi. The reason we exclude the attribute case is that this is
8249 -- handled fine by Gigi, and in fact we use such attributes to build the
8250 -- actual subtype. We also exclude generated code (which builds actual
8251 -- subtypes directly if they are needed).
8253 if Is_Array_Type (Etype (N))
8254 and then Is_Packed (Etype (N))
8255 and then not Is_Constrained (Etype (N))
8256 and then Nkind (Parent (N)) /= N_Attribute_Reference
8257 and then Comes_From_Source (N)
8258 then
8259 Set_Etype (N, Get_Actual_Subtype (N));
8260 end if;
8262 Analyze_Dimension (N);
8264 -- Note: No Eval processing is required for an explicit dereference,
8265 -- because such a name can never be static.
8267 end Resolve_Explicit_Dereference;
8269 -------------------------------------
8270 -- Resolve_Expression_With_Actions --
8271 -------------------------------------
8273 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8274 begin
8275 Set_Etype (N, Typ);
8277 -- If N has no actions, and its expression has been constant folded,
8278 -- then rewrite N as just its expression. Note, we can't do this in
8279 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8280 -- Expression (N) to be expanded again.
8282 if Is_Empty_List (Actions (N))
8283 and then Compile_Time_Known_Value (Expression (N))
8284 then
8285 Rewrite (N, Expression (N));
8286 end if;
8287 end Resolve_Expression_With_Actions;
8289 ----------------------------------
8290 -- Resolve_Generalized_Indexing --
8291 ----------------------------------
8293 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8294 Indexing : constant Node_Id := Generalized_Indexing (N);
8295 Call : Node_Id;
8296 Indexes : List_Id;
8297 Pref : Node_Id;
8299 begin
8300 -- In ASIS mode, propagate the information about the indexes back to
8301 -- to the original indexing node. The generalized indexing is either
8302 -- a function call, or a dereference of one. The actuals include the
8303 -- prefix of the original node, which is the container expression.
8305 if ASIS_Mode then
8306 Resolve (Indexing, Typ);
8307 Set_Etype (N, Etype (Indexing));
8308 Set_Is_Overloaded (N, False);
8310 Call := Indexing;
8311 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8312 loop
8313 Call := Prefix (Call);
8314 end loop;
8316 if Nkind (Call) = N_Function_Call then
8317 Indexes := New_Copy_List (Parameter_Associations (Call));
8318 Pref := Remove_Head (Indexes);
8319 Set_Expressions (N, Indexes);
8321 -- If expression is to be reanalyzed, reset Generalized_Indexing
8322 -- to recreate call node, as is the case when the expression is
8323 -- part of an expression function.
8325 if In_Spec_Expression then
8326 Set_Generalized_Indexing (N, Empty);
8327 end if;
8329 Set_Prefix (N, Pref);
8330 end if;
8332 else
8333 Rewrite (N, Indexing);
8334 Resolve (N, Typ);
8335 end if;
8336 end Resolve_Generalized_Indexing;
8338 ---------------------------
8339 -- Resolve_If_Expression --
8340 ---------------------------
8342 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8343 Condition : constant Node_Id := First (Expressions (N));
8344 Then_Expr : Node_Id;
8345 Else_Expr : Node_Id;
8346 Else_Typ : Entity_Id;
8347 Then_Typ : Entity_Id;
8349 begin
8350 -- Defend against malformed expressions
8352 if No (Condition) then
8353 return;
8354 end if;
8356 Then_Expr := Next (Condition);
8358 if No (Then_Expr) then
8359 return;
8360 end if;
8362 Else_Expr := Next (Then_Expr);
8364 Resolve (Condition, Any_Boolean);
8365 Resolve (Then_Expr, Typ);
8366 Then_Typ := Etype (Then_Expr);
8368 -- When the "then" expression is of a scalar subtype different from the
8369 -- result subtype, then insert a conversion to ensure the generation of
8370 -- a constraint check. The same is done for the else part below, again
8371 -- comparing subtypes rather than base types.
8373 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8374 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8375 Analyze_And_Resolve (Then_Expr, Typ);
8376 end if;
8378 -- If ELSE expression present, just resolve using the determined type
8379 -- If type is universal, resolve to any member of the class.
8381 if Present (Else_Expr) then
8382 if Typ = Universal_Integer then
8383 Resolve (Else_Expr, Any_Integer);
8385 elsif Typ = Universal_Real then
8386 Resolve (Else_Expr, Any_Real);
8388 else
8389 Resolve (Else_Expr, Typ);
8390 end if;
8392 Else_Typ := Etype (Else_Expr);
8394 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8395 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8396 Analyze_And_Resolve (Else_Expr, Typ);
8398 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8399 -- dynamically tagged must be known statically.
8401 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8402 if Is_Dynamically_Tagged (Then_Expr) /=
8403 Is_Dynamically_Tagged (Else_Expr)
8404 then
8405 Error_Msg_N ("all or none of the dependent expressions "
8406 & "can be dynamically tagged", N);
8407 end if;
8408 end if;
8410 -- If no ELSE expression is present, root type must be Standard.Boolean
8411 -- and we provide a Standard.True result converted to the appropriate
8412 -- Boolean type (in case it is a derived boolean type).
8414 elsif Root_Type (Typ) = Standard_Boolean then
8415 Else_Expr :=
8416 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8417 Analyze_And_Resolve (Else_Expr, Typ);
8418 Append_To (Expressions (N), Else_Expr);
8420 else
8421 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8422 Append_To (Expressions (N), Error);
8423 end if;
8425 Set_Etype (N, Typ);
8427 if not Error_Posted (N) then
8428 Eval_If_Expression (N);
8429 end if;
8431 Analyze_Dimension (N);
8432 end Resolve_If_Expression;
8434 -------------------------------
8435 -- Resolve_Indexed_Component --
8436 -------------------------------
8438 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8439 Name : constant Node_Id := Prefix (N);
8440 Expr : Node_Id;
8441 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8442 Index : Node_Id;
8444 begin
8445 if Present (Generalized_Indexing (N)) then
8446 Resolve_Generalized_Indexing (N, Typ);
8447 return;
8448 end if;
8450 if Is_Overloaded (Name) then
8452 -- Use the context type to select the prefix that yields the correct
8453 -- component type.
8455 declare
8456 I : Interp_Index;
8457 It : Interp;
8458 I1 : Interp_Index := 0;
8459 P : constant Node_Id := Prefix (N);
8460 Found : Boolean := False;
8462 begin
8463 Get_First_Interp (P, I, It);
8464 while Present (It.Typ) loop
8465 if (Is_Array_Type (It.Typ)
8466 and then Covers (Typ, Component_Type (It.Typ)))
8467 or else (Is_Access_Type (It.Typ)
8468 and then Is_Array_Type (Designated_Type (It.Typ))
8469 and then
8470 Covers
8471 (Typ,
8472 Component_Type (Designated_Type (It.Typ))))
8473 then
8474 if Found then
8475 It := Disambiguate (P, I1, I, Any_Type);
8477 if It = No_Interp then
8478 Error_Msg_N ("ambiguous prefix for indexing", N);
8479 Set_Etype (N, Typ);
8480 return;
8482 else
8483 Found := True;
8484 Array_Type := It.Typ;
8485 I1 := I;
8486 end if;
8488 else
8489 Found := True;
8490 Array_Type := It.Typ;
8491 I1 := I;
8492 end if;
8493 end if;
8495 Get_Next_Interp (I, It);
8496 end loop;
8497 end;
8499 else
8500 Array_Type := Etype (Name);
8501 end if;
8503 Resolve (Name, Array_Type);
8504 Array_Type := Get_Actual_Subtype_If_Available (Name);
8506 -- If prefix is access type, dereference to get real array type.
8507 -- Note: we do not apply an access check because the expander always
8508 -- introduces an explicit dereference, and the check will happen there.
8510 if Is_Access_Type (Array_Type) then
8511 Array_Type := Designated_Type (Array_Type);
8512 end if;
8514 -- If name was overloaded, set component type correctly now
8515 -- If a misplaced call to an entry family (which has no index types)
8516 -- return. Error will be diagnosed from calling context.
8518 if Is_Array_Type (Array_Type) then
8519 Set_Etype (N, Component_Type (Array_Type));
8520 else
8521 return;
8522 end if;
8524 Index := First_Index (Array_Type);
8525 Expr := First (Expressions (N));
8527 -- The prefix may have resolved to a string literal, in which case its
8528 -- etype has a special representation. This is only possible currently
8529 -- if the prefix is a static concatenation, written in functional
8530 -- notation.
8532 if Ekind (Array_Type) = E_String_Literal_Subtype then
8533 Resolve (Expr, Standard_Positive);
8535 else
8536 while Present (Index) and Present (Expr) loop
8537 Resolve (Expr, Etype (Index));
8538 Check_Unset_Reference (Expr);
8540 if Is_Scalar_Type (Etype (Expr)) then
8541 Apply_Scalar_Range_Check (Expr, Etype (Index));
8542 else
8543 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8544 end if;
8546 Next_Index (Index);
8547 Next (Expr);
8548 end loop;
8549 end if;
8551 Analyze_Dimension (N);
8553 -- Do not generate the warning on suspicious index if we are analyzing
8554 -- package Ada.Tags; otherwise we will report the warning with the
8555 -- Prims_Ptr field of the dispatch table.
8557 if Scope (Etype (Prefix (N))) = Standard_Standard
8558 or else not
8559 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8560 Ada_Tags)
8561 then
8562 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8563 Eval_Indexed_Component (N);
8564 end if;
8566 -- If the array type is atomic, and the component is not atomic, then
8567 -- this is worth a warning, since we have a situation where the access
8568 -- to the component may cause extra read/writes of the atomic array
8569 -- object, or partial word accesses, which could be unexpected.
8571 if Nkind (N) = N_Indexed_Component
8572 and then Is_Atomic_Ref_With_Address (N)
8573 and then not (Has_Atomic_Components (Array_Type)
8574 or else (Is_Entity_Name (Prefix (N))
8575 and then Has_Atomic_Components
8576 (Entity (Prefix (N)))))
8577 and then not Is_Atomic (Component_Type (Array_Type))
8578 then
8579 Error_Msg_N
8580 ("??access to non-atomic component of atomic array", Prefix (N));
8581 Error_Msg_N
8582 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8583 end if;
8584 end Resolve_Indexed_Component;
8586 -----------------------------
8587 -- Resolve_Integer_Literal --
8588 -----------------------------
8590 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8591 begin
8592 Set_Etype (N, Typ);
8593 Eval_Integer_Literal (N);
8594 end Resolve_Integer_Literal;
8596 --------------------------------
8597 -- Resolve_Intrinsic_Operator --
8598 --------------------------------
8600 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8601 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8602 Op : Entity_Id;
8603 Arg1 : Node_Id;
8604 Arg2 : Node_Id;
8606 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8607 -- If the operand is a literal, it cannot be the expression in a
8608 -- conversion. Use a qualified expression instead.
8610 ---------------------
8611 -- Convert_Operand --
8612 ---------------------
8614 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8615 Loc : constant Source_Ptr := Sloc (Opnd);
8616 Res : Node_Id;
8618 begin
8619 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8620 Res :=
8621 Make_Qualified_Expression (Loc,
8622 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8623 Expression => Relocate_Node (Opnd));
8624 Analyze (Res);
8626 else
8627 Res := Unchecked_Convert_To (Btyp, Opnd);
8628 end if;
8630 return Res;
8631 end Convert_Operand;
8633 -- Start of processing for Resolve_Intrinsic_Operator
8635 begin
8636 -- We must preserve the original entity in a generic setting, so that
8637 -- the legality of the operation can be verified in an instance.
8639 if not Expander_Active then
8640 return;
8641 end if;
8643 Op := Entity (N);
8644 while Scope (Op) /= Standard_Standard loop
8645 Op := Homonym (Op);
8646 pragma Assert (Present (Op));
8647 end loop;
8649 Set_Entity (N, Op);
8650 Set_Is_Overloaded (N, False);
8652 -- If the result or operand types are private, rewrite with unchecked
8653 -- conversions on the operands and the result, to expose the proper
8654 -- underlying numeric type.
8656 if Is_Private_Type (Typ)
8657 or else Is_Private_Type (Etype (Left_Opnd (N)))
8658 or else Is_Private_Type (Etype (Right_Opnd (N)))
8659 then
8660 Arg1 := Convert_Operand (Left_Opnd (N));
8662 if Nkind (N) = N_Op_Expon then
8663 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8664 else
8665 Arg2 := Convert_Operand (Right_Opnd (N));
8666 end if;
8668 if Nkind (Arg1) = N_Type_Conversion then
8669 Save_Interps (Left_Opnd (N), Expression (Arg1));
8670 end if;
8672 if Nkind (Arg2) = N_Type_Conversion then
8673 Save_Interps (Right_Opnd (N), Expression (Arg2));
8674 end if;
8676 Set_Left_Opnd (N, Arg1);
8677 Set_Right_Opnd (N, Arg2);
8679 Set_Etype (N, Btyp);
8680 Rewrite (N, Unchecked_Convert_To (Typ, N));
8681 Resolve (N, Typ);
8683 elsif Typ /= Etype (Left_Opnd (N))
8684 or else Typ /= Etype (Right_Opnd (N))
8685 then
8686 -- Add explicit conversion where needed, and save interpretations in
8687 -- case operands are overloaded.
8689 Arg1 := Convert_To (Typ, Left_Opnd (N));
8690 Arg2 := Convert_To (Typ, Right_Opnd (N));
8692 if Nkind (Arg1) = N_Type_Conversion then
8693 Save_Interps (Left_Opnd (N), Expression (Arg1));
8694 else
8695 Save_Interps (Left_Opnd (N), Arg1);
8696 end if;
8698 if Nkind (Arg2) = N_Type_Conversion then
8699 Save_Interps (Right_Opnd (N), Expression (Arg2));
8700 else
8701 Save_Interps (Right_Opnd (N), Arg2);
8702 end if;
8704 Rewrite (Left_Opnd (N), Arg1);
8705 Rewrite (Right_Opnd (N), Arg2);
8706 Analyze (Arg1);
8707 Analyze (Arg2);
8708 Resolve_Arithmetic_Op (N, Typ);
8710 else
8711 Resolve_Arithmetic_Op (N, Typ);
8712 end if;
8713 end Resolve_Intrinsic_Operator;
8715 --------------------------------------
8716 -- Resolve_Intrinsic_Unary_Operator --
8717 --------------------------------------
8719 procedure Resolve_Intrinsic_Unary_Operator
8720 (N : Node_Id;
8721 Typ : Entity_Id)
8723 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8724 Op : Entity_Id;
8725 Arg2 : Node_Id;
8727 begin
8728 Op := Entity (N);
8729 while Scope (Op) /= Standard_Standard loop
8730 Op := Homonym (Op);
8731 pragma Assert (Present (Op));
8732 end loop;
8734 Set_Entity (N, Op);
8736 if Is_Private_Type (Typ) then
8737 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8738 Save_Interps (Right_Opnd (N), Expression (Arg2));
8740 Set_Right_Opnd (N, Arg2);
8742 Set_Etype (N, Btyp);
8743 Rewrite (N, Unchecked_Convert_To (Typ, N));
8744 Resolve (N, Typ);
8746 else
8747 Resolve_Unary_Op (N, Typ);
8748 end if;
8749 end Resolve_Intrinsic_Unary_Operator;
8751 ------------------------
8752 -- Resolve_Logical_Op --
8753 ------------------------
8755 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8756 B_Typ : Entity_Id;
8758 begin
8759 Check_No_Direct_Boolean_Operators (N);
8761 -- Predefined operations on scalar types yield the base type. On the
8762 -- other hand, logical operations on arrays yield the type of the
8763 -- arguments (and the context).
8765 if Is_Array_Type (Typ) then
8766 B_Typ := Typ;
8767 else
8768 B_Typ := Base_Type (Typ);
8769 end if;
8771 -- The following test is required because the operands of the operation
8772 -- may be literals, in which case the resulting type appears to be
8773 -- compatible with a signed integer type, when in fact it is compatible
8774 -- only with modular types. If the context itself is universal, the
8775 -- operation is illegal.
8777 if not Valid_Boolean_Arg (Typ) then
8778 Error_Msg_N ("invalid context for logical operation", N);
8779 Set_Etype (N, Any_Type);
8780 return;
8782 elsif Typ = Any_Modular then
8783 Error_Msg_N
8784 ("no modular type available in this context", N);
8785 Set_Etype (N, Any_Type);
8786 return;
8788 elsif Is_Modular_Integer_Type (Typ)
8789 and then Etype (Left_Opnd (N)) = Universal_Integer
8790 and then Etype (Right_Opnd (N)) = Universal_Integer
8791 then
8792 Check_For_Visible_Operator (N, B_Typ);
8793 end if;
8795 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8796 -- is active and the result type is standard Boolean (do not mess with
8797 -- ops that return a nonstandard Boolean type, because something strange
8798 -- is going on).
8800 -- Note: you might expect this replacement to be done during expansion,
8801 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8802 -- is used, no part of the right operand of an "and" or "or" operator
8803 -- should be executed if the left operand would short-circuit the
8804 -- evaluation of the corresponding "and then" or "or else". If we left
8805 -- the replacement to expansion time, then run-time checks associated
8806 -- with such operands would be evaluated unconditionally, due to being
8807 -- before the condition prior to the rewriting as short-circuit forms
8808 -- during expansion.
8810 if Short_Circuit_And_Or
8811 and then B_Typ = Standard_Boolean
8812 and then Nkind_In (N, N_Op_And, N_Op_Or)
8813 then
8814 -- Mark the corresponding putative SCO operator as truly a logical
8815 -- (and short-circuit) operator.
8817 if Generate_SCO and then Comes_From_Source (N) then
8818 Set_SCO_Logical_Operator (N);
8819 end if;
8821 if Nkind (N) = N_Op_And then
8822 Rewrite (N,
8823 Make_And_Then (Sloc (N),
8824 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8825 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8826 Analyze_And_Resolve (N, B_Typ);
8828 -- Case of OR changed to OR ELSE
8830 else
8831 Rewrite (N,
8832 Make_Or_Else (Sloc (N),
8833 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8834 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8835 Analyze_And_Resolve (N, B_Typ);
8836 end if;
8838 -- Return now, since analysis of the rewritten ops will take care of
8839 -- other reference bookkeeping and expression folding.
8841 return;
8842 end if;
8844 Resolve (Left_Opnd (N), B_Typ);
8845 Resolve (Right_Opnd (N), B_Typ);
8847 Check_Unset_Reference (Left_Opnd (N));
8848 Check_Unset_Reference (Right_Opnd (N));
8850 Set_Etype (N, B_Typ);
8851 Generate_Operator_Reference (N, B_Typ);
8852 Eval_Logical_Op (N);
8854 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8855 -- only when both operands have same static lower and higher bounds. Of
8856 -- course the types have to match, so only check if operands are
8857 -- compatible and the node itself has no errors.
8859 if Is_Array_Type (B_Typ)
8860 and then Nkind (N) in N_Binary_Op
8861 then
8862 declare
8863 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8864 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8866 begin
8867 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8868 -- operation if not needed.
8870 if Restriction_Check_Required (SPARK_05)
8871 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8872 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8873 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8874 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8875 then
8876 Check_SPARK_05_Restriction
8877 ("array types should have matching static bounds", N);
8878 end if;
8879 end;
8880 end if;
8881 end Resolve_Logical_Op;
8883 ---------------------------
8884 -- Resolve_Membership_Op --
8885 ---------------------------
8887 -- The context can only be a boolean type, and does not determine the
8888 -- arguments. Arguments should be unambiguous, but the preference rule for
8889 -- universal types applies.
8891 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8892 pragma Warnings (Off, Typ);
8894 L : constant Node_Id := Left_Opnd (N);
8895 R : constant Node_Id := Right_Opnd (N);
8896 T : Entity_Id;
8898 procedure Resolve_Set_Membership;
8899 -- Analysis has determined a unique type for the left operand. Use it to
8900 -- resolve the disjuncts.
8902 ----------------------------
8903 -- Resolve_Set_Membership --
8904 ----------------------------
8906 procedure Resolve_Set_Membership is
8907 Alt : Node_Id;
8908 Ltyp : Entity_Id;
8910 begin
8911 -- If the left operand is overloaded, find type compatible with not
8912 -- overloaded alternative of the right operand.
8914 if Is_Overloaded (L) then
8915 Ltyp := Empty;
8916 Alt := First (Alternatives (N));
8917 while Present (Alt) loop
8918 if not Is_Overloaded (Alt) then
8919 Ltyp := Intersect_Types (L, Alt);
8920 exit;
8921 else
8922 Next (Alt);
8923 end if;
8924 end loop;
8926 -- Unclear how to resolve expression if all alternatives are also
8927 -- overloaded.
8929 if No (Ltyp) then
8930 Error_Msg_N ("ambiguous expression", N);
8931 end if;
8933 else
8934 Ltyp := Etype (L);
8935 end if;
8937 Resolve (L, Ltyp);
8939 Alt := First (Alternatives (N));
8940 while Present (Alt) loop
8942 -- Alternative is an expression, a range
8943 -- or a subtype mark.
8945 if not Is_Entity_Name (Alt)
8946 or else not Is_Type (Entity (Alt))
8947 then
8948 Resolve (Alt, Ltyp);
8949 end if;
8951 Next (Alt);
8952 end loop;
8954 -- Check for duplicates for discrete case
8956 if Is_Discrete_Type (Ltyp) then
8957 declare
8958 type Ent is record
8959 Alt : Node_Id;
8960 Val : Uint;
8961 end record;
8963 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8964 Nalts : Nat;
8966 begin
8967 -- Loop checking duplicates. This is quadratic, but giant sets
8968 -- are unlikely in this context so it's a reasonable choice.
8970 Nalts := 0;
8971 Alt := First (Alternatives (N));
8972 while Present (Alt) loop
8973 if Is_OK_Static_Expression (Alt)
8974 and then (Nkind_In (Alt, N_Integer_Literal,
8975 N_Character_Literal)
8976 or else Nkind (Alt) in N_Has_Entity)
8977 then
8978 Nalts := Nalts + 1;
8979 Alts (Nalts) := (Alt, Expr_Value (Alt));
8981 for J in 1 .. Nalts - 1 loop
8982 if Alts (J).Val = Alts (Nalts).Val then
8983 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8984 Error_Msg_N ("duplicate of value given#??", Alt);
8985 end if;
8986 end loop;
8987 end if;
8989 Alt := Next (Alt);
8990 end loop;
8991 end;
8992 end if;
8994 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
8995 -- limited types, evaluation of a membership test uses the predefined
8996 -- equality for the type. This may be confusing to users, and the
8997 -- following warning appears useful for the most common case.
8999 if Is_Scalar_Type (Ltyp)
9000 and then Present (Get_User_Defined_Eq (Ltyp))
9001 then
9002 Error_Msg_NE
9003 ("membership test on& uses predefined equality?", N, Ltyp);
9004 Error_Msg_N
9005 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9006 end if;
9007 end Resolve_Set_Membership;
9009 -- Start of processing for Resolve_Membership_Op
9011 begin
9012 if L = Error or else R = Error then
9013 return;
9014 end if;
9016 if Present (Alternatives (N)) then
9017 Resolve_Set_Membership;
9018 goto SM_Exit;
9020 elsif not Is_Overloaded (R)
9021 and then
9022 (Etype (R) = Universal_Integer
9023 or else
9024 Etype (R) = Universal_Real)
9025 and then Is_Overloaded (L)
9026 then
9027 T := Etype (R);
9029 -- Ada 2005 (AI-251): Support the following case:
9031 -- type I is interface;
9032 -- type T is tagged ...
9034 -- function Test (O : I'Class) is
9035 -- begin
9036 -- return O in T'Class.
9037 -- end Test;
9039 -- In this case we have nothing else to do. The membership test will be
9040 -- done at run time.
9042 elsif Ada_Version >= Ada_2005
9043 and then Is_Class_Wide_Type (Etype (L))
9044 and then Is_Interface (Etype (L))
9045 and then not Is_Interface (Etype (R))
9046 then
9047 return;
9048 else
9049 T := Intersect_Types (L, R);
9050 end if;
9052 -- If mixed-mode operations are present and operands are all literal,
9053 -- the only interpretation involves Duration, which is probably not
9054 -- the intention of the programmer.
9056 if T = Any_Fixed then
9057 T := Unique_Fixed_Point_Type (N);
9059 if T = Any_Type then
9060 return;
9061 end if;
9062 end if;
9064 Resolve (L, T);
9065 Check_Unset_Reference (L);
9067 if Nkind (R) = N_Range
9068 and then not Is_Scalar_Type (T)
9069 then
9070 Error_Msg_N ("scalar type required for range", R);
9071 end if;
9073 if Is_Entity_Name (R) then
9074 Freeze_Expression (R);
9075 else
9076 Resolve (R, T);
9077 Check_Unset_Reference (R);
9078 end if;
9080 -- Here after resolving membership operation
9082 <<SM_Exit>>
9084 Eval_Membership_Op (N);
9085 end Resolve_Membership_Op;
9087 ------------------
9088 -- Resolve_Null --
9089 ------------------
9091 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9092 Loc : constant Source_Ptr := Sloc (N);
9094 begin
9095 -- Handle restriction against anonymous null access values This
9096 -- restriction can be turned off using -gnatdj.
9098 -- Ada 2005 (AI-231): Remove restriction
9100 if Ada_Version < Ada_2005
9101 and then not Debug_Flag_J
9102 and then Ekind (Typ) = E_Anonymous_Access_Type
9103 and then Comes_From_Source (N)
9104 then
9105 -- In the common case of a call which uses an explicitly null value
9106 -- for an access parameter, give specialized error message.
9108 if Nkind (Parent (N)) in N_Subprogram_Call then
9109 Error_Msg_N
9110 ("null is not allowed as argument for an access parameter", N);
9112 -- Standard message for all other cases (are there any?)
9114 else
9115 Error_Msg_N
9116 ("null cannot be of an anonymous access type", N);
9117 end if;
9118 end if;
9120 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9121 -- assignment to a null-excluding object
9123 if Ada_Version >= Ada_2005
9124 and then Can_Never_Be_Null (Typ)
9125 and then Nkind (Parent (N)) = N_Assignment_Statement
9126 then
9127 if not Inside_Init_Proc then
9128 Insert_Action
9129 (Compile_Time_Constraint_Error (N,
9130 "(Ada 2005) null not allowed in null-excluding objects??"),
9131 Make_Raise_Constraint_Error (Loc,
9132 Reason => CE_Access_Check_Failed));
9133 else
9134 Insert_Action (N,
9135 Make_Raise_Constraint_Error (Loc,
9136 Reason => CE_Access_Check_Failed));
9137 end if;
9138 end if;
9140 -- In a distributed context, null for a remote access to subprogram may
9141 -- need to be replaced with a special record aggregate. In this case,
9142 -- return after having done the transformation.
9144 if (Ekind (Typ) = E_Record_Type
9145 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9146 and then Remote_AST_Null_Value (N, Typ)
9147 then
9148 return;
9149 end if;
9151 -- The null literal takes its type from the context
9153 Set_Etype (N, Typ);
9154 end Resolve_Null;
9156 -----------------------
9157 -- Resolve_Op_Concat --
9158 -----------------------
9160 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9162 -- We wish to avoid deep recursion, because concatenations are often
9163 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9164 -- operands nonrecursively until we find something that is not a simple
9165 -- concatenation (A in this case). We resolve that, and then walk back
9166 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9167 -- to do the rest of the work at each level. The Parent pointers allow
9168 -- us to avoid recursion, and thus avoid running out of memory. See also
9169 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9171 NN : Node_Id := N;
9172 Op1 : Node_Id;
9174 begin
9175 -- The following code is equivalent to:
9177 -- Resolve_Op_Concat_First (NN, Typ);
9178 -- Resolve_Op_Concat_Arg (N, ...);
9179 -- Resolve_Op_Concat_Rest (N, Typ);
9181 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9182 -- operand is a concatenation.
9184 -- Walk down left operands
9186 loop
9187 Resolve_Op_Concat_First (NN, Typ);
9188 Op1 := Left_Opnd (NN);
9189 exit when not (Nkind (Op1) = N_Op_Concat
9190 and then not Is_Array_Type (Component_Type (Typ))
9191 and then Entity (Op1) = Entity (NN));
9192 NN := Op1;
9193 end loop;
9195 -- Now (given the above example) NN is A&B and Op1 is A
9197 -- First resolve Op1 ...
9199 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9201 -- ... then walk NN back up until we reach N (where we started), calling
9202 -- Resolve_Op_Concat_Rest along the way.
9204 loop
9205 Resolve_Op_Concat_Rest (NN, Typ);
9206 exit when NN = N;
9207 NN := Parent (NN);
9208 end loop;
9210 if Base_Type (Etype (N)) /= Standard_String then
9211 Check_SPARK_05_Restriction
9212 ("result of concatenation should have type String", N);
9213 end if;
9214 end Resolve_Op_Concat;
9216 ---------------------------
9217 -- Resolve_Op_Concat_Arg --
9218 ---------------------------
9220 procedure Resolve_Op_Concat_Arg
9221 (N : Node_Id;
9222 Arg : Node_Id;
9223 Typ : Entity_Id;
9224 Is_Comp : Boolean)
9226 Btyp : constant Entity_Id := Base_Type (Typ);
9227 Ctyp : constant Entity_Id := Component_Type (Typ);
9229 begin
9230 if In_Instance then
9231 if Is_Comp
9232 or else (not Is_Overloaded (Arg)
9233 and then Etype (Arg) /= Any_Composite
9234 and then Covers (Ctyp, Etype (Arg)))
9235 then
9236 Resolve (Arg, Ctyp);
9237 else
9238 Resolve (Arg, Btyp);
9239 end if;
9241 -- If both Array & Array and Array & Component are visible, there is a
9242 -- potential ambiguity that must be reported.
9244 elsif Has_Compatible_Type (Arg, Ctyp) then
9245 if Nkind (Arg) = N_Aggregate
9246 and then Is_Composite_Type (Ctyp)
9247 then
9248 if Is_Private_Type (Ctyp) then
9249 Resolve (Arg, Btyp);
9251 -- If the operation is user-defined and not overloaded use its
9252 -- profile. The operation may be a renaming, in which case it has
9253 -- been rewritten, and we want the original profile.
9255 elsif not Is_Overloaded (N)
9256 and then Comes_From_Source (Entity (Original_Node (N)))
9257 and then Ekind (Entity (Original_Node (N))) = E_Function
9258 then
9259 Resolve (Arg,
9260 Etype
9261 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9262 return;
9264 -- Otherwise an aggregate may match both the array type and the
9265 -- component type.
9267 else
9268 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9269 Set_Etype (Arg, Any_Type);
9270 end if;
9272 else
9273 if Is_Overloaded (Arg)
9274 and then Has_Compatible_Type (Arg, Typ)
9275 and then Etype (Arg) /= Any_Type
9276 then
9277 declare
9278 I : Interp_Index;
9279 It : Interp;
9280 Func : Entity_Id;
9282 begin
9283 Get_First_Interp (Arg, I, It);
9284 Func := It.Nam;
9285 Get_Next_Interp (I, It);
9287 -- Special-case the error message when the overloading is
9288 -- caused by a function that yields an array and can be
9289 -- called without parameters.
9291 if It.Nam = Func then
9292 Error_Msg_Sloc := Sloc (Func);
9293 Error_Msg_N ("ambiguous call to function#", Arg);
9294 Error_Msg_NE
9295 ("\\interpretation as call yields&", Arg, Typ);
9296 Error_Msg_NE
9297 ("\\interpretation as indexing of call yields&",
9298 Arg, Component_Type (Typ));
9300 else
9301 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9303 Get_First_Interp (Arg, I, It);
9304 while Present (It.Nam) loop
9305 Error_Msg_Sloc := Sloc (It.Nam);
9307 if Base_Type (It.Typ) = Btyp
9308 or else
9309 Base_Type (It.Typ) = Base_Type (Ctyp)
9310 then
9311 Error_Msg_N -- CODEFIX
9312 ("\\possible interpretation#", Arg);
9313 end if;
9315 Get_Next_Interp (I, It);
9316 end loop;
9317 end if;
9318 end;
9319 end if;
9321 Resolve (Arg, Component_Type (Typ));
9323 if Nkind (Arg) = N_String_Literal then
9324 Set_Etype (Arg, Component_Type (Typ));
9325 end if;
9327 if Arg = Left_Opnd (N) then
9328 Set_Is_Component_Left_Opnd (N);
9329 else
9330 Set_Is_Component_Right_Opnd (N);
9331 end if;
9332 end if;
9334 else
9335 Resolve (Arg, Btyp);
9336 end if;
9338 -- Concatenation is restricted in SPARK: each operand must be either a
9339 -- string literal, the name of a string constant, a static character or
9340 -- string expression, or another concatenation. Arg cannot be a
9341 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9342 -- separately on each final operand, past concatenation operations.
9344 if Is_Character_Type (Etype (Arg)) then
9345 if not Is_OK_Static_Expression (Arg) then
9346 Check_SPARK_05_Restriction
9347 ("character operand for concatenation should be static", Arg);
9348 end if;
9350 elsif Is_String_Type (Etype (Arg)) then
9351 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9352 and then Is_Constant_Object (Entity (Arg)))
9353 and then not Is_OK_Static_Expression (Arg)
9354 then
9355 Check_SPARK_05_Restriction
9356 ("string operand for concatenation should be static", Arg);
9357 end if;
9359 -- Do not issue error on an operand that is neither a character nor a
9360 -- string, as the error is issued in Resolve_Op_Concat.
9362 else
9363 null;
9364 end if;
9366 Check_Unset_Reference (Arg);
9367 end Resolve_Op_Concat_Arg;
9369 -----------------------------
9370 -- Resolve_Op_Concat_First --
9371 -----------------------------
9373 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9374 Btyp : constant Entity_Id := Base_Type (Typ);
9375 Op1 : constant Node_Id := Left_Opnd (N);
9376 Op2 : constant Node_Id := Right_Opnd (N);
9378 begin
9379 -- The parser folds an enormous sequence of concatenations of string
9380 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9381 -- in the right operand. If the expression resolves to a predefined "&"
9382 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9383 -- we give an error. See P_Simple_Expression in Par.Ch4.
9385 if Nkind (Op2) = N_String_Literal
9386 and then Is_Folded_In_Parser (Op2)
9387 and then Ekind (Entity (N)) = E_Function
9388 then
9389 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9390 and then String_Length (Strval (Op1)) = 0);
9391 Error_Msg_N ("too many user-defined concatenations", N);
9392 return;
9393 end if;
9395 Set_Etype (N, Btyp);
9397 if Is_Limited_Composite (Btyp) then
9398 Error_Msg_N ("concatenation not available for limited array", N);
9399 Explain_Limited_Type (Btyp, N);
9400 end if;
9401 end Resolve_Op_Concat_First;
9403 ----------------------------
9404 -- Resolve_Op_Concat_Rest --
9405 ----------------------------
9407 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9408 Op1 : constant Node_Id := Left_Opnd (N);
9409 Op2 : constant Node_Id := Right_Opnd (N);
9411 begin
9412 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9414 Generate_Operator_Reference (N, Typ);
9416 if Is_String_Type (Typ) then
9417 Eval_Concatenation (N);
9418 end if;
9420 -- If this is not a static concatenation, but the result is a string
9421 -- type (and not an array of strings) ensure that static string operands
9422 -- have their subtypes properly constructed.
9424 if Nkind (N) /= N_String_Literal
9425 and then Is_Character_Type (Component_Type (Typ))
9426 then
9427 Set_String_Literal_Subtype (Op1, Typ);
9428 Set_String_Literal_Subtype (Op2, Typ);
9429 end if;
9430 end Resolve_Op_Concat_Rest;
9432 ----------------------
9433 -- Resolve_Op_Expon --
9434 ----------------------
9436 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9437 B_Typ : constant Entity_Id := Base_Type (Typ);
9439 begin
9440 -- Catch attempts to do fixed-point exponentiation with universal
9441 -- operands, which is a case where the illegality is not caught during
9442 -- normal operator analysis. This is not done in preanalysis mode
9443 -- since the tree is not fully decorated during preanalysis.
9445 if Full_Analysis then
9446 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9447 Error_Msg_N ("exponentiation not available for fixed point", N);
9448 return;
9450 elsif Nkind (Parent (N)) in N_Op
9451 and then Present (Etype (Parent (N)))
9452 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9453 and then Etype (N) = Universal_Real
9454 and then Comes_From_Source (N)
9455 then
9456 Error_Msg_N ("exponentiation not available for fixed point", N);
9457 return;
9458 end if;
9459 end if;
9461 if Comes_From_Source (N)
9462 and then Ekind (Entity (N)) = E_Function
9463 and then Is_Imported (Entity (N))
9464 and then Is_Intrinsic_Subprogram (Entity (N))
9465 then
9466 Resolve_Intrinsic_Operator (N, Typ);
9467 return;
9468 end if;
9470 if Etype (Left_Opnd (N)) = Universal_Integer
9471 or else Etype (Left_Opnd (N)) = Universal_Real
9472 then
9473 Check_For_Visible_Operator (N, B_Typ);
9474 end if;
9476 -- We do the resolution using the base type, because intermediate values
9477 -- in expressions are always of the base type, not a subtype of it.
9479 Resolve (Left_Opnd (N), B_Typ);
9480 Resolve (Right_Opnd (N), Standard_Integer);
9482 -- For integer types, right argument must be in Natural range
9484 if Is_Integer_Type (Typ) then
9485 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9486 end if;
9488 Check_Unset_Reference (Left_Opnd (N));
9489 Check_Unset_Reference (Right_Opnd (N));
9491 Set_Etype (N, B_Typ);
9492 Generate_Operator_Reference (N, B_Typ);
9494 Analyze_Dimension (N);
9496 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9497 -- Evaluate the exponentiation operator for dimensioned type
9499 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9500 else
9501 Eval_Op_Expon (N);
9502 end if;
9504 -- Set overflow checking bit. Much cleverer code needed here eventually
9505 -- and perhaps the Resolve routines should be separated for the various
9506 -- arithmetic operations, since they will need different processing. ???
9508 if Nkind (N) in N_Op then
9509 if not Overflow_Checks_Suppressed (Etype (N)) then
9510 Enable_Overflow_Check (N);
9511 end if;
9512 end if;
9513 end Resolve_Op_Expon;
9515 --------------------
9516 -- Resolve_Op_Not --
9517 --------------------
9519 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9520 B_Typ : Entity_Id;
9522 function Parent_Is_Boolean return Boolean;
9523 -- This function determines if the parent node is a boolean operator or
9524 -- operation (comparison op, membership test, or short circuit form) and
9525 -- the not in question is the left operand of this operation. Note that
9526 -- if the not is in parens, then false is returned.
9528 -----------------------
9529 -- Parent_Is_Boolean --
9530 -----------------------
9532 function Parent_Is_Boolean return Boolean is
9533 begin
9534 if Paren_Count (N) /= 0 then
9535 return False;
9537 else
9538 case Nkind (Parent (N)) is
9539 when N_And_Then
9540 | N_In
9541 | N_Not_In
9542 | N_Op_And
9543 | N_Op_Eq
9544 | N_Op_Ge
9545 | N_Op_Gt
9546 | N_Op_Le
9547 | N_Op_Lt
9548 | N_Op_Ne
9549 | N_Op_Or
9550 | N_Op_Xor
9551 | N_Or_Else
9553 return Left_Opnd (Parent (N)) = N;
9555 when others =>
9556 return False;
9557 end case;
9558 end if;
9559 end Parent_Is_Boolean;
9561 -- Start of processing for Resolve_Op_Not
9563 begin
9564 -- Predefined operations on scalar types yield the base type. On the
9565 -- other hand, logical operations on arrays yield the type of the
9566 -- arguments (and the context).
9568 if Is_Array_Type (Typ) then
9569 B_Typ := Typ;
9570 else
9571 B_Typ := Base_Type (Typ);
9572 end if;
9574 -- Straightforward case of incorrect arguments
9576 if not Valid_Boolean_Arg (Typ) then
9577 Error_Msg_N ("invalid operand type for operator&", N);
9578 Set_Etype (N, Any_Type);
9579 return;
9581 -- Special case of probable missing parens
9583 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9584 if Parent_Is_Boolean then
9585 Error_Msg_N
9586 ("operand of not must be enclosed in parentheses",
9587 Right_Opnd (N));
9588 else
9589 Error_Msg_N
9590 ("no modular type available in this context", N);
9591 end if;
9593 Set_Etype (N, Any_Type);
9594 return;
9596 -- OK resolution of NOT
9598 else
9599 -- Warn if non-boolean types involved. This is a case like not a < b
9600 -- where a and b are modular, where we will get (not a) < b and most
9601 -- likely not (a < b) was intended.
9603 if Warn_On_Questionable_Missing_Parens
9604 and then not Is_Boolean_Type (Typ)
9605 and then Parent_Is_Boolean
9606 then
9607 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9608 end if;
9610 -- Warn on double negation if checking redundant constructs
9612 if Warn_On_Redundant_Constructs
9613 and then Comes_From_Source (N)
9614 and then Comes_From_Source (Right_Opnd (N))
9615 and then Root_Type (Typ) = Standard_Boolean
9616 and then Nkind (Right_Opnd (N)) = N_Op_Not
9617 then
9618 Error_Msg_N ("redundant double negation?r?", N);
9619 end if;
9621 -- Complete resolution and evaluation of NOT
9623 Resolve (Right_Opnd (N), B_Typ);
9624 Check_Unset_Reference (Right_Opnd (N));
9625 Set_Etype (N, B_Typ);
9626 Generate_Operator_Reference (N, B_Typ);
9627 Eval_Op_Not (N);
9628 end if;
9629 end Resolve_Op_Not;
9631 -----------------------------
9632 -- Resolve_Operator_Symbol --
9633 -----------------------------
9635 -- Nothing to be done, all resolved already
9637 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9638 pragma Warnings (Off, N);
9639 pragma Warnings (Off, Typ);
9641 begin
9642 null;
9643 end Resolve_Operator_Symbol;
9645 ----------------------------------
9646 -- Resolve_Qualified_Expression --
9647 ----------------------------------
9649 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9650 pragma Warnings (Off, Typ);
9652 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9653 Expr : constant Node_Id := Expression (N);
9655 begin
9656 Resolve (Expr, Target_Typ);
9658 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9659 -- operation if not needed.
9661 if Restriction_Check_Required (SPARK_05)
9662 and then Is_Array_Type (Target_Typ)
9663 and then Is_Array_Type (Etype (Expr))
9664 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9665 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9666 then
9667 Check_SPARK_05_Restriction
9668 ("array types should have matching static bounds", N);
9669 end if;
9671 -- A qualified expression requires an exact match of the type, class-
9672 -- wide matching is not allowed. However, if the qualifying type is
9673 -- specific and the expression has a class-wide type, it may still be
9674 -- okay, since it can be the result of the expansion of a call to a
9675 -- dispatching function, so we also have to check class-wideness of the
9676 -- type of the expression's original node.
9678 if (Is_Class_Wide_Type (Target_Typ)
9679 or else
9680 (Is_Class_Wide_Type (Etype (Expr))
9681 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9682 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9683 then
9684 Wrong_Type (Expr, Target_Typ);
9685 end if;
9687 -- If the target type is unconstrained, then we reset the type of the
9688 -- result from the type of the expression. For other cases, the actual
9689 -- subtype of the expression is the target type.
9691 if Is_Composite_Type (Target_Typ)
9692 and then not Is_Constrained (Target_Typ)
9693 then
9694 Set_Etype (N, Etype (Expr));
9695 end if;
9697 Analyze_Dimension (N);
9698 Eval_Qualified_Expression (N);
9700 -- If we still have a qualified expression after the static evaluation,
9701 -- then apply a scalar range check if needed. The reason that we do this
9702 -- after the Eval call is that otherwise, the application of the range
9703 -- check may convert an illegal static expression and result in warning
9704 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9706 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9707 Apply_Scalar_Range_Check (Expr, Typ);
9708 end if;
9710 -- Finally, check whether a predicate applies to the target type. This
9711 -- comes from AI12-0100. As for type conversions, check the enclosing
9712 -- context to prevent an infinite expansion.
9714 if Has_Predicates (Target_Typ) then
9715 if Nkind (Parent (N)) = N_Function_Call
9716 and then Present (Name (Parent (N)))
9717 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9718 or else
9719 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9720 then
9721 null;
9723 -- In the case of a qualified expression in an allocator, the check
9724 -- is applied when expanding the allocator, so avoid redundant check.
9726 elsif Nkind (N) = N_Qualified_Expression
9727 and then Nkind (Parent (N)) /= N_Allocator
9728 then
9729 Apply_Predicate_Check (N, Target_Typ);
9730 end if;
9731 end if;
9732 end Resolve_Qualified_Expression;
9734 ------------------------------
9735 -- Resolve_Raise_Expression --
9736 ------------------------------
9738 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9739 begin
9740 if Typ = Raise_Type then
9741 Error_Msg_N ("cannot find unique type for raise expression", N);
9742 Set_Etype (N, Any_Type);
9743 else
9744 Set_Etype (N, Typ);
9745 end if;
9746 end Resolve_Raise_Expression;
9748 -------------------
9749 -- Resolve_Range --
9750 -------------------
9752 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9753 L : constant Node_Id := Low_Bound (N);
9754 H : constant Node_Id := High_Bound (N);
9756 function First_Last_Ref return Boolean;
9757 -- Returns True if N is of the form X'First .. X'Last where X is the
9758 -- same entity for both attributes.
9760 --------------------
9761 -- First_Last_Ref --
9762 --------------------
9764 function First_Last_Ref return Boolean is
9765 Lorig : constant Node_Id := Original_Node (L);
9766 Horig : constant Node_Id := Original_Node (H);
9768 begin
9769 if Nkind (Lorig) = N_Attribute_Reference
9770 and then Nkind (Horig) = N_Attribute_Reference
9771 and then Attribute_Name (Lorig) = Name_First
9772 and then Attribute_Name (Horig) = Name_Last
9773 then
9774 declare
9775 PL : constant Node_Id := Prefix (Lorig);
9776 PH : constant Node_Id := Prefix (Horig);
9777 begin
9778 if Is_Entity_Name (PL)
9779 and then Is_Entity_Name (PH)
9780 and then Entity (PL) = Entity (PH)
9781 then
9782 return True;
9783 end if;
9784 end;
9785 end if;
9787 return False;
9788 end First_Last_Ref;
9790 -- Start of processing for Resolve_Range
9792 begin
9793 Set_Etype (N, Typ);
9795 -- The lower bound should be in Typ. The higher bound can be in Typ's
9796 -- base type if the range is null. It may still be invalid if it is
9797 -- higher than the lower bound. This is checked later in the context in
9798 -- which the range appears.
9800 Resolve (L, Typ);
9801 Resolve (H, Base_Type (Typ));
9803 -- Check for inappropriate range on unordered enumeration type
9805 if Bad_Unordered_Enumeration_Reference (N, Typ)
9807 -- Exclude X'First .. X'Last if X is the same entity for both
9809 and then not First_Last_Ref
9810 then
9811 Error_Msg_Sloc := Sloc (Typ);
9812 Error_Msg_NE
9813 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9814 end if;
9816 Check_Unset_Reference (L);
9817 Check_Unset_Reference (H);
9819 -- We have to check the bounds for being within the base range as
9820 -- required for a non-static context. Normally this is automatic and
9821 -- done as part of evaluating expressions, but the N_Range node is an
9822 -- exception, since in GNAT we consider this node to be a subexpression,
9823 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9824 -- this, but that would put the test on the main evaluation path for
9825 -- expressions.
9827 Check_Non_Static_Context (L);
9828 Check_Non_Static_Context (H);
9830 -- Check for an ambiguous range over character literals. This will
9831 -- happen with a membership test involving only literals.
9833 if Typ = Any_Character then
9834 Ambiguous_Character (L);
9835 Set_Etype (N, Any_Type);
9836 return;
9837 end if;
9839 -- If bounds are static, constant-fold them, so size computations are
9840 -- identical between front-end and back-end. Do not perform this
9841 -- transformation while analyzing generic units, as type information
9842 -- would be lost when reanalyzing the constant node in the instance.
9844 if Is_Discrete_Type (Typ) and then Expander_Active then
9845 if Is_OK_Static_Expression (L) then
9846 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9847 end if;
9849 if Is_OK_Static_Expression (H) then
9850 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9851 end if;
9852 end if;
9853 end Resolve_Range;
9855 --------------------------
9856 -- Resolve_Real_Literal --
9857 --------------------------
9859 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9860 Actual_Typ : constant Entity_Id := Etype (N);
9862 begin
9863 -- Special processing for fixed-point literals to make sure that the
9864 -- value is an exact multiple of small where this is required. We skip
9865 -- this for the universal real case, and also for generic types.
9867 if Is_Fixed_Point_Type (Typ)
9868 and then Typ /= Universal_Fixed
9869 and then Typ /= Any_Fixed
9870 and then not Is_Generic_Type (Typ)
9871 then
9872 declare
9873 Val : constant Ureal := Realval (N);
9874 Cintr : constant Ureal := Val / Small_Value (Typ);
9875 Cint : constant Uint := UR_Trunc (Cintr);
9876 Den : constant Uint := Norm_Den (Cintr);
9877 Stat : Boolean;
9879 begin
9880 -- Case of literal is not an exact multiple of the Small
9882 if Den /= 1 then
9884 -- For a source program literal for a decimal fixed-point type,
9885 -- this is statically illegal (RM 4.9(36)).
9887 if Is_Decimal_Fixed_Point_Type (Typ)
9888 and then Actual_Typ = Universal_Real
9889 and then Comes_From_Source (N)
9890 then
9891 Error_Msg_N ("value has extraneous low order digits", N);
9892 end if;
9894 -- Generate a warning if literal from source
9896 if Is_OK_Static_Expression (N)
9897 and then Warn_On_Bad_Fixed_Value
9898 then
9899 Error_Msg_N
9900 ("?b?static fixed-point value is not a multiple of Small!",
9902 end if;
9904 -- Replace literal by a value that is the exact representation
9905 -- of a value of the type, i.e. a multiple of the small value,
9906 -- by truncation, since Machine_Rounds is false for all GNAT
9907 -- fixed-point types (RM 4.9(38)).
9909 Stat := Is_OK_Static_Expression (N);
9910 Rewrite (N,
9911 Make_Real_Literal (Sloc (N),
9912 Realval => Small_Value (Typ) * Cint));
9914 Set_Is_Static_Expression (N, Stat);
9915 end if;
9917 -- In all cases, set the corresponding integer field
9919 Set_Corresponding_Integer_Value (N, Cint);
9920 end;
9921 end if;
9923 -- Now replace the actual type by the expected type as usual
9925 Set_Etype (N, Typ);
9926 Eval_Real_Literal (N);
9927 end Resolve_Real_Literal;
9929 -----------------------
9930 -- Resolve_Reference --
9931 -----------------------
9933 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9934 P : constant Node_Id := Prefix (N);
9936 begin
9937 -- Replace general access with specific type
9939 if Ekind (Etype (N)) = E_Allocator_Type then
9940 Set_Etype (N, Base_Type (Typ));
9941 end if;
9943 Resolve (P, Designated_Type (Etype (N)));
9945 -- If we are taking the reference of a volatile entity, then treat it as
9946 -- a potential modification of this entity. This is too conservative,
9947 -- but necessary because remove side effects can cause transformations
9948 -- of normal assignments into reference sequences that otherwise fail to
9949 -- notice the modification.
9951 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9952 Note_Possible_Modification (P, Sure => False);
9953 end if;
9954 end Resolve_Reference;
9956 --------------------------------
9957 -- Resolve_Selected_Component --
9958 --------------------------------
9960 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9961 Comp : Entity_Id;
9962 Comp1 : Entity_Id := Empty; -- prevent junk warning
9963 P : constant Node_Id := Prefix (N);
9964 S : constant Node_Id := Selector_Name (N);
9965 T : Entity_Id := Etype (P);
9966 I : Interp_Index;
9967 I1 : Interp_Index := 0; -- prevent junk warning
9968 It : Interp;
9969 It1 : Interp;
9970 Found : Boolean;
9972 function Init_Component return Boolean;
9973 -- Check whether this is the initialization of a component within an
9974 -- init proc (by assignment or call to another init proc). If true,
9975 -- there is no need for a discriminant check.
9977 --------------------
9978 -- Init_Component --
9979 --------------------
9981 function Init_Component return Boolean is
9982 begin
9983 return Inside_Init_Proc
9984 and then Nkind (Prefix (N)) = N_Identifier
9985 and then Chars (Prefix (N)) = Name_uInit
9986 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9987 end Init_Component;
9989 -- Start of processing for Resolve_Selected_Component
9991 begin
9992 if Is_Overloaded (P) then
9994 -- Use the context type to select the prefix that has a selector
9995 -- of the correct name and type.
9997 Found := False;
9998 Get_First_Interp (P, I, It);
10000 Search : while Present (It.Typ) loop
10001 if Is_Access_Type (It.Typ) then
10002 T := Designated_Type (It.Typ);
10003 else
10004 T := It.Typ;
10005 end if;
10007 -- Locate selected component. For a private prefix the selector
10008 -- can denote a discriminant.
10010 if Is_Record_Type (T) or else Is_Private_Type (T) then
10012 -- The visible components of a class-wide type are those of
10013 -- the root type.
10015 if Is_Class_Wide_Type (T) then
10016 T := Etype (T);
10017 end if;
10019 Comp := First_Entity (T);
10020 while Present (Comp) loop
10021 if Chars (Comp) = Chars (S)
10022 and then Covers (Typ, Etype (Comp))
10023 then
10024 if not Found then
10025 Found := True;
10026 I1 := I;
10027 It1 := It;
10028 Comp1 := Comp;
10030 else
10031 It := Disambiguate (P, I1, I, Any_Type);
10033 if It = No_Interp then
10034 Error_Msg_N
10035 ("ambiguous prefix for selected component", N);
10036 Set_Etype (N, Typ);
10037 return;
10039 else
10040 It1 := It;
10042 -- There may be an implicit dereference. Retrieve
10043 -- designated record type.
10045 if Is_Access_Type (It1.Typ) then
10046 T := Designated_Type (It1.Typ);
10047 else
10048 T := It1.Typ;
10049 end if;
10051 if Scope (Comp1) /= T then
10053 -- Resolution chooses the new interpretation.
10054 -- Find the component with the right name.
10056 Comp1 := First_Entity (T);
10057 while Present (Comp1)
10058 and then Chars (Comp1) /= Chars (S)
10059 loop
10060 Comp1 := Next_Entity (Comp1);
10061 end loop;
10062 end if;
10064 exit Search;
10065 end if;
10066 end if;
10067 end if;
10069 Comp := Next_Entity (Comp);
10070 end loop;
10071 end if;
10073 Get_Next_Interp (I, It);
10074 end loop Search;
10076 -- There must be a legal interpretation at this point
10078 pragma Assert (Found);
10079 Resolve (P, It1.Typ);
10080 Set_Etype (N, Typ);
10081 Set_Entity_With_Checks (S, Comp1);
10083 else
10084 -- Resolve prefix with its type
10086 Resolve (P, T);
10087 end if;
10089 -- Generate cross-reference. We needed to wait until full overloading
10090 -- resolution was complete to do this, since otherwise we can't tell if
10091 -- we are an lvalue or not.
10093 if May_Be_Lvalue (N) then
10094 Generate_Reference (Entity (S), S, 'm');
10095 else
10096 Generate_Reference (Entity (S), S, 'r');
10097 end if;
10099 -- If prefix is an access type, the node will be transformed into an
10100 -- explicit dereference during expansion. The type of the node is the
10101 -- designated type of that of the prefix.
10103 if Is_Access_Type (Etype (P)) then
10104 T := Designated_Type (Etype (P));
10105 Check_Fully_Declared_Prefix (T, P);
10106 else
10107 T := Etype (P);
10108 end if;
10110 -- Set flag for expander if discriminant check required on a component
10111 -- appearing within a variant.
10113 if Has_Discriminants (T)
10114 and then Ekind (Entity (S)) = E_Component
10115 and then Present (Original_Record_Component (Entity (S)))
10116 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10117 and then
10118 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10119 and then not Discriminant_Checks_Suppressed (T)
10120 and then not Init_Component
10121 then
10122 Set_Do_Discriminant_Check (N);
10123 end if;
10125 if Ekind (Entity (S)) = E_Void then
10126 Error_Msg_N ("premature use of component", S);
10127 end if;
10129 -- If the prefix is a record conversion, this may be a renamed
10130 -- discriminant whose bounds differ from those of the original
10131 -- one, so we must ensure that a range check is performed.
10133 if Nkind (P) = N_Type_Conversion
10134 and then Ekind (Entity (S)) = E_Discriminant
10135 and then Is_Discrete_Type (Typ)
10136 then
10137 Set_Etype (N, Base_Type (Typ));
10138 end if;
10140 -- Note: No Eval processing is required, because the prefix is of a
10141 -- record type, or protected type, and neither can possibly be static.
10143 -- If the record type is atomic, and the component is non-atomic, then
10144 -- this is worth a warning, since we have a situation where the access
10145 -- to the component may cause extra read/writes of the atomic array
10146 -- object, or partial word accesses, both of which may be unexpected.
10148 if Nkind (N) = N_Selected_Component
10149 and then Is_Atomic_Ref_With_Address (N)
10150 and then not Is_Atomic (Entity (S))
10151 and then not Is_Atomic (Etype (Entity (S)))
10152 then
10153 Error_Msg_N
10154 ("??access to non-atomic component of atomic record",
10155 Prefix (N));
10156 Error_Msg_N
10157 ("\??may cause unexpected accesses to atomic object",
10158 Prefix (N));
10159 end if;
10161 Analyze_Dimension (N);
10162 end Resolve_Selected_Component;
10164 -------------------
10165 -- Resolve_Shift --
10166 -------------------
10168 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10169 B_Typ : constant Entity_Id := Base_Type (Typ);
10170 L : constant Node_Id := Left_Opnd (N);
10171 R : constant Node_Id := Right_Opnd (N);
10173 begin
10174 -- We do the resolution using the base type, because intermediate values
10175 -- in expressions always are of the base type, not a subtype of it.
10177 Resolve (L, B_Typ);
10178 Resolve (R, Standard_Natural);
10180 Check_Unset_Reference (L);
10181 Check_Unset_Reference (R);
10183 Set_Etype (N, B_Typ);
10184 Generate_Operator_Reference (N, B_Typ);
10185 Eval_Shift (N);
10186 end Resolve_Shift;
10188 ---------------------------
10189 -- Resolve_Short_Circuit --
10190 ---------------------------
10192 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10193 B_Typ : constant Entity_Id := Base_Type (Typ);
10194 L : constant Node_Id := Left_Opnd (N);
10195 R : constant Node_Id := Right_Opnd (N);
10197 begin
10198 -- Ensure all actions associated with the left operand (e.g.
10199 -- finalization of transient objects) are fully evaluated locally within
10200 -- an expression with actions. This is particularly helpful for coverage
10201 -- analysis. However this should not happen in generics or if option
10202 -- Minimize_Expression_With_Actions is set.
10204 if Expander_Active and not Minimize_Expression_With_Actions then
10205 declare
10206 Reloc_L : constant Node_Id := Relocate_Node (L);
10207 begin
10208 Save_Interps (Old_N => L, New_N => Reloc_L);
10210 Rewrite (L,
10211 Make_Expression_With_Actions (Sloc (L),
10212 Actions => New_List,
10213 Expression => Reloc_L));
10215 -- Set Comes_From_Source on L to preserve warnings for unset
10216 -- reference.
10218 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10219 end;
10220 end if;
10222 Resolve (L, B_Typ);
10223 Resolve (R, B_Typ);
10225 -- Check for issuing warning for always False assert/check, this happens
10226 -- when assertions are turned off, in which case the pragma Assert/Check
10227 -- was transformed into:
10229 -- if False and then <condition> then ...
10231 -- and we detect this pattern
10233 if Warn_On_Assertion_Failure
10234 and then Is_Entity_Name (R)
10235 and then Entity (R) = Standard_False
10236 and then Nkind (Parent (N)) = N_If_Statement
10237 and then Nkind (N) = N_And_Then
10238 and then Is_Entity_Name (L)
10239 and then Entity (L) = Standard_False
10240 then
10241 declare
10242 Orig : constant Node_Id := Original_Node (Parent (N));
10244 begin
10245 -- Special handling of Asssert pragma
10247 if Nkind (Orig) = N_Pragma
10248 and then Pragma_Name (Orig) = Name_Assert
10249 then
10250 declare
10251 Expr : constant Node_Id :=
10252 Original_Node
10253 (Expression
10254 (First (Pragma_Argument_Associations (Orig))));
10256 begin
10257 -- Don't warn if original condition is explicit False,
10258 -- since obviously the failure is expected in this case.
10260 if Is_Entity_Name (Expr)
10261 and then Entity (Expr) = Standard_False
10262 then
10263 null;
10265 -- Issue warning. We do not want the deletion of the
10266 -- IF/AND-THEN to take this message with it. We achieve this
10267 -- by making sure that the expanded code points to the Sloc
10268 -- of the expression, not the original pragma.
10270 else
10271 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10272 -- The source location of the expression is not usually
10273 -- the best choice here. For example, it gets located on
10274 -- the last AND keyword in a chain of boolean expressiond
10275 -- AND'ed together. It is best to put the message on the
10276 -- first character of the assertion, which is the effect
10277 -- of the First_Node call here.
10279 Error_Msg_F
10280 ("?A?assertion would fail at run time!",
10281 Expression
10282 (First (Pragma_Argument_Associations (Orig))));
10283 end if;
10284 end;
10286 -- Similar processing for Check pragma
10288 elsif Nkind (Orig) = N_Pragma
10289 and then Pragma_Name (Orig) = Name_Check
10290 then
10291 -- Don't want to warn if original condition is explicit False
10293 declare
10294 Expr : constant Node_Id :=
10295 Original_Node
10296 (Expression
10297 (Next (First (Pragma_Argument_Associations (Orig)))));
10298 begin
10299 if Is_Entity_Name (Expr)
10300 and then Entity (Expr) = Standard_False
10301 then
10302 null;
10304 -- Post warning
10306 else
10307 -- Again use Error_Msg_F rather than Error_Msg_N, see
10308 -- comment above for an explanation of why we do this.
10310 Error_Msg_F
10311 ("?A?check would fail at run time!",
10312 Expression
10313 (Last (Pragma_Argument_Associations (Orig))));
10314 end if;
10315 end;
10316 end if;
10317 end;
10318 end if;
10320 -- Continue with processing of short circuit
10322 Check_Unset_Reference (L);
10323 Check_Unset_Reference (R);
10325 Set_Etype (N, B_Typ);
10326 Eval_Short_Circuit (N);
10327 end Resolve_Short_Circuit;
10329 -------------------
10330 -- Resolve_Slice --
10331 -------------------
10333 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10334 Drange : constant Node_Id := Discrete_Range (N);
10335 Name : constant Node_Id := Prefix (N);
10336 Array_Type : Entity_Id := Empty;
10337 Dexpr : Node_Id := Empty;
10338 Index_Type : Entity_Id;
10340 begin
10341 if Is_Overloaded (Name) then
10343 -- Use the context type to select the prefix that yields the correct
10344 -- array type.
10346 declare
10347 I : Interp_Index;
10348 I1 : Interp_Index := 0;
10349 It : Interp;
10350 P : constant Node_Id := Prefix (N);
10351 Found : Boolean := False;
10353 begin
10354 Get_First_Interp (P, I, It);
10355 while Present (It.Typ) loop
10356 if (Is_Array_Type (It.Typ)
10357 and then Covers (Typ, It.Typ))
10358 or else (Is_Access_Type (It.Typ)
10359 and then Is_Array_Type (Designated_Type (It.Typ))
10360 and then Covers (Typ, Designated_Type (It.Typ)))
10361 then
10362 if Found then
10363 It := Disambiguate (P, I1, I, Any_Type);
10365 if It = No_Interp then
10366 Error_Msg_N ("ambiguous prefix for slicing", N);
10367 Set_Etype (N, Typ);
10368 return;
10369 else
10370 Found := True;
10371 Array_Type := It.Typ;
10372 I1 := I;
10373 end if;
10374 else
10375 Found := True;
10376 Array_Type := It.Typ;
10377 I1 := I;
10378 end if;
10379 end if;
10381 Get_Next_Interp (I, It);
10382 end loop;
10383 end;
10385 else
10386 Array_Type := Etype (Name);
10387 end if;
10389 Resolve (Name, Array_Type);
10391 if Is_Access_Type (Array_Type) then
10392 Apply_Access_Check (N);
10393 Array_Type := Designated_Type (Array_Type);
10395 -- If the prefix is an access to an unconstrained array, we must use
10396 -- the actual subtype of the object to perform the index checks. The
10397 -- object denoted by the prefix is implicit in the node, so we build
10398 -- an explicit representation for it in order to compute the actual
10399 -- subtype.
10401 if not Is_Constrained (Array_Type) then
10402 Remove_Side_Effects (Prefix (N));
10404 declare
10405 Obj : constant Node_Id :=
10406 Make_Explicit_Dereference (Sloc (N),
10407 Prefix => New_Copy_Tree (Prefix (N)));
10408 begin
10409 Set_Etype (Obj, Array_Type);
10410 Set_Parent (Obj, Parent (N));
10411 Array_Type := Get_Actual_Subtype (Obj);
10412 end;
10413 end if;
10415 elsif Is_Entity_Name (Name)
10416 or else Nkind (Name) = N_Explicit_Dereference
10417 or else (Nkind (Name) = N_Function_Call
10418 and then not Is_Constrained (Etype (Name)))
10419 then
10420 Array_Type := Get_Actual_Subtype (Name);
10422 -- If the name is a selected component that depends on discriminants,
10423 -- build an actual subtype for it. This can happen only when the name
10424 -- itself is overloaded; otherwise the actual subtype is created when
10425 -- the selected component is analyzed.
10427 elsif Nkind (Name) = N_Selected_Component
10428 and then Full_Analysis
10429 and then Depends_On_Discriminant (First_Index (Array_Type))
10430 then
10431 declare
10432 Act_Decl : constant Node_Id :=
10433 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10434 begin
10435 Insert_Action (N, Act_Decl);
10436 Array_Type := Defining_Identifier (Act_Decl);
10437 end;
10439 -- Maybe this should just be "else", instead of checking for the
10440 -- specific case of slice??? This is needed for the case where the
10441 -- prefix is an Image attribute, which gets expanded to a slice, and so
10442 -- has a constrained subtype which we want to use for the slice range
10443 -- check applied below (the range check won't get done if the
10444 -- unconstrained subtype of the 'Image is used).
10446 elsif Nkind (Name) = N_Slice then
10447 Array_Type := Etype (Name);
10448 end if;
10450 -- Obtain the type of the array index
10452 if Ekind (Array_Type) = E_String_Literal_Subtype then
10453 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10454 else
10455 Index_Type := Etype (First_Index (Array_Type));
10456 end if;
10458 -- If name was overloaded, set slice type correctly now
10460 Set_Etype (N, Array_Type);
10462 -- Handle the generation of a range check that compares the array index
10463 -- against the discrete_range. The check is not applied to internally
10464 -- built nodes associated with the expansion of dispatch tables. Check
10465 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10466 -- the unit.
10468 if Tagged_Type_Expansion
10469 and then RTU_Loaded (Ada_Tags)
10470 and then Nkind (Prefix (N)) = N_Selected_Component
10471 and then Present (Entity (Selector_Name (Prefix (N))))
10472 and then Entity (Selector_Name (Prefix (N))) =
10473 RTE_Record_Component (RE_Prims_Ptr)
10474 then
10475 null;
10477 -- The discrete_range is specified by a subtype indication. Create a
10478 -- shallow copy and inherit the type, parent and source location from
10479 -- the discrete_range. This ensures that the range check is inserted
10480 -- relative to the slice and that the runtime exception points to the
10481 -- proper construct.
10483 elsif Is_Entity_Name (Drange) then
10484 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10486 Set_Etype (Dexpr, Etype (Drange));
10487 Set_Parent (Dexpr, Parent (Drange));
10488 Set_Sloc (Dexpr, Sloc (Drange));
10490 -- The discrete_range is a regular range. Resolve the bounds and remove
10491 -- their side effects.
10493 else
10494 Resolve (Drange, Base_Type (Index_Type));
10496 if Nkind (Drange) = N_Range then
10497 Force_Evaluation (Low_Bound (Drange));
10498 Force_Evaluation (High_Bound (Drange));
10500 Dexpr := Drange;
10501 end if;
10502 end if;
10504 if Present (Dexpr) then
10505 Apply_Range_Check (Dexpr, Index_Type);
10506 end if;
10508 Set_Slice_Subtype (N);
10510 -- Check bad use of type with predicates
10512 declare
10513 Subt : Entity_Id;
10515 begin
10516 if Nkind (Drange) = N_Subtype_Indication
10517 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10518 then
10519 Subt := Entity (Subtype_Mark (Drange));
10520 else
10521 Subt := Etype (Drange);
10522 end if;
10524 if Has_Predicates (Subt) then
10525 Bad_Predicated_Subtype_Use
10526 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10527 end if;
10528 end;
10530 -- Otherwise here is where we check suspicious indexes
10532 if Nkind (Drange) = N_Range then
10533 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10534 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10535 end if;
10537 Analyze_Dimension (N);
10538 Eval_Slice (N);
10539 end Resolve_Slice;
10541 ----------------------------
10542 -- Resolve_String_Literal --
10543 ----------------------------
10545 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10546 C_Typ : constant Entity_Id := Component_Type (Typ);
10547 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10548 Loc : constant Source_Ptr := Sloc (N);
10549 Str : constant String_Id := Strval (N);
10550 Strlen : constant Nat := String_Length (Str);
10551 Subtype_Id : Entity_Id;
10552 Need_Check : Boolean;
10554 begin
10555 -- For a string appearing in a concatenation, defer creation of the
10556 -- string_literal_subtype until the end of the resolution of the
10557 -- concatenation, because the literal may be constant-folded away. This
10558 -- is a useful optimization for long concatenation expressions.
10560 -- If the string is an aggregate built for a single character (which
10561 -- happens in a non-static context) or a is null string to which special
10562 -- checks may apply, we build the subtype. Wide strings must also get a
10563 -- string subtype if they come from a one character aggregate. Strings
10564 -- generated by attributes might be static, but it is often hard to
10565 -- determine whether the enclosing context is static, so we generate
10566 -- subtypes for them as well, thus losing some rarer optimizations ???
10567 -- Same for strings that come from a static conversion.
10569 Need_Check :=
10570 (Strlen = 0 and then Typ /= Standard_String)
10571 or else Nkind (Parent (N)) /= N_Op_Concat
10572 or else (N /= Left_Opnd (Parent (N))
10573 and then N /= Right_Opnd (Parent (N)))
10574 or else ((Typ = Standard_Wide_String
10575 or else Typ = Standard_Wide_Wide_String)
10576 and then Nkind (Original_Node (N)) /= N_String_Literal);
10578 -- If the resolving type is itself a string literal subtype, we can just
10579 -- reuse it, since there is no point in creating another.
10581 if Ekind (Typ) = E_String_Literal_Subtype then
10582 Subtype_Id := Typ;
10584 elsif Nkind (Parent (N)) = N_Op_Concat
10585 and then not Need_Check
10586 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10587 N_Attribute_Reference,
10588 N_Qualified_Expression,
10589 N_Type_Conversion)
10590 then
10591 Subtype_Id := Typ;
10593 -- Do not generate a string literal subtype for the default expression
10594 -- of a formal parameter in GNATprove mode. This is because the string
10595 -- subtype is associated with the freezing actions of the subprogram,
10596 -- however freezing is disabled in GNATprove mode and as a result the
10597 -- subtype is unavailable.
10599 elsif GNATprove_Mode
10600 and then Nkind (Parent (N)) = N_Parameter_Specification
10601 then
10602 Subtype_Id := Typ;
10604 -- Otherwise we must create a string literal subtype. Note that the
10605 -- whole idea of string literal subtypes is simply to avoid the need
10606 -- for building a full fledged array subtype for each literal.
10608 else
10609 Set_String_Literal_Subtype (N, Typ);
10610 Subtype_Id := Etype (N);
10611 end if;
10613 if Nkind (Parent (N)) /= N_Op_Concat
10614 or else Need_Check
10615 then
10616 Set_Etype (N, Subtype_Id);
10617 Eval_String_Literal (N);
10618 end if;
10620 if Is_Limited_Composite (Typ)
10621 or else Is_Private_Composite (Typ)
10622 then
10623 Error_Msg_N ("string literal not available for private array", N);
10624 Set_Etype (N, Any_Type);
10625 return;
10626 end if;
10628 -- The validity of a null string has been checked in the call to
10629 -- Eval_String_Literal.
10631 if Strlen = 0 then
10632 return;
10634 -- Always accept string literal with component type Any_Character, which
10635 -- occurs in error situations and in comparisons of literals, both of
10636 -- which should accept all literals.
10638 elsif R_Typ = Any_Character then
10639 return;
10641 -- If the type is bit-packed, then we always transform the string
10642 -- literal into a full fledged aggregate.
10644 elsif Is_Bit_Packed_Array (Typ) then
10645 null;
10647 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10649 else
10650 -- For Standard.Wide_Wide_String, or any other type whose component
10651 -- type is Standard.Wide_Wide_Character, we know that all the
10652 -- characters in the string must be acceptable, since the parser
10653 -- accepted the characters as valid character literals.
10655 if R_Typ = Standard_Wide_Wide_Character then
10656 null;
10658 -- For the case of Standard.String, or any other type whose component
10659 -- type is Standard.Character, we must make sure that there are no
10660 -- wide characters in the string, i.e. that it is entirely composed
10661 -- of characters in range of type Character.
10663 -- If the string literal is the result of a static concatenation, the
10664 -- test has already been performed on the components, and need not be
10665 -- repeated.
10667 elsif R_Typ = Standard_Character
10668 and then Nkind (Original_Node (N)) /= N_Op_Concat
10669 then
10670 for J in 1 .. Strlen loop
10671 if not In_Character_Range (Get_String_Char (Str, J)) then
10673 -- If we are out of range, post error. This is one of the
10674 -- very few places that we place the flag in the middle of
10675 -- a token, right under the offending wide character. Not
10676 -- quite clear if this is right wrt wide character encoding
10677 -- sequences, but it's only an error message.
10679 Error_Msg
10680 ("literal out of range of type Standard.Character",
10681 Source_Ptr (Int (Loc) + J));
10682 return;
10683 end if;
10684 end loop;
10686 -- For the case of Standard.Wide_String, or any other type whose
10687 -- component type is Standard.Wide_Character, we must make sure that
10688 -- there are no wide characters in the string, i.e. that it is
10689 -- entirely composed of characters in range of type Wide_Character.
10691 -- If the string literal is the result of a static concatenation,
10692 -- the test has already been performed on the components, and need
10693 -- not be repeated.
10695 elsif R_Typ = Standard_Wide_Character
10696 and then Nkind (Original_Node (N)) /= N_Op_Concat
10697 then
10698 for J in 1 .. Strlen loop
10699 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10701 -- If we are out of range, post error. This is one of the
10702 -- very few places that we place the flag in the middle of
10703 -- a token, right under the offending wide character.
10705 -- This is not quite right, because characters in general
10706 -- will take more than one character position ???
10708 Error_Msg
10709 ("literal out of range of type Standard.Wide_Character",
10710 Source_Ptr (Int (Loc) + J));
10711 return;
10712 end if;
10713 end loop;
10715 -- If the root type is not a standard character, then we will convert
10716 -- the string into an aggregate and will let the aggregate code do
10717 -- the checking. Standard Wide_Wide_Character is also OK here.
10719 else
10720 null;
10721 end if;
10723 -- See if the component type of the array corresponding to the string
10724 -- has compile time known bounds. If yes we can directly check
10725 -- whether the evaluation of the string will raise constraint error.
10726 -- Otherwise we need to transform the string literal into the
10727 -- corresponding character aggregate and let the aggregate code do
10728 -- the checking.
10730 if Is_Standard_Character_Type (R_Typ) then
10732 -- Check for the case of full range, where we are definitely OK
10734 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10735 return;
10736 end if;
10738 -- Here the range is not the complete base type range, so check
10740 declare
10741 Comp_Typ_Lo : constant Node_Id :=
10742 Type_Low_Bound (Component_Type (Typ));
10743 Comp_Typ_Hi : constant Node_Id :=
10744 Type_High_Bound (Component_Type (Typ));
10746 Char_Val : Uint;
10748 begin
10749 if Compile_Time_Known_Value (Comp_Typ_Lo)
10750 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10751 then
10752 for J in 1 .. Strlen loop
10753 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10755 if Char_Val < Expr_Value (Comp_Typ_Lo)
10756 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10757 then
10758 Apply_Compile_Time_Constraint_Error
10759 (N, "character out of range??",
10760 CE_Range_Check_Failed,
10761 Loc => Source_Ptr (Int (Loc) + J));
10762 end if;
10763 end loop;
10765 return;
10766 end if;
10767 end;
10768 end if;
10769 end if;
10771 -- If we got here we meed to transform the string literal into the
10772 -- equivalent qualified positional array aggregate. This is rather
10773 -- heavy artillery for this situation, but it is hard work to avoid.
10775 declare
10776 Lits : constant List_Id := New_List;
10777 P : Source_Ptr := Loc + 1;
10778 C : Char_Code;
10780 begin
10781 -- Build the character literals, we give them source locations that
10782 -- correspond to the string positions, which is a bit tricky given
10783 -- the possible presence of wide character escape sequences.
10785 for J in 1 .. Strlen loop
10786 C := Get_String_Char (Str, J);
10787 Set_Character_Literal_Name (C);
10789 Append_To (Lits,
10790 Make_Character_Literal (P,
10791 Chars => Name_Find,
10792 Char_Literal_Value => UI_From_CC (C)));
10794 if In_Character_Range (C) then
10795 P := P + 1;
10797 -- Should we have a call to Skip_Wide here ???
10799 -- ??? else
10800 -- Skip_Wide (P);
10802 end if;
10803 end loop;
10805 Rewrite (N,
10806 Make_Qualified_Expression (Loc,
10807 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10808 Expression =>
10809 Make_Aggregate (Loc, Expressions => Lits)));
10811 Analyze_And_Resolve (N, Typ);
10812 end;
10813 end Resolve_String_Literal;
10815 -------------------------
10816 -- Resolve_Target_Name --
10817 -------------------------
10819 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10820 begin
10821 Set_Etype (N, Typ);
10822 end Resolve_Target_Name;
10824 -----------------------------
10825 -- Resolve_Type_Conversion --
10826 -----------------------------
10828 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10829 Conv_OK : constant Boolean := Conversion_OK (N);
10830 Operand : constant Node_Id := Expression (N);
10831 Operand_Typ : constant Entity_Id := Etype (Operand);
10832 Target_Typ : constant Entity_Id := Etype (N);
10833 Rop : Node_Id;
10834 Orig_N : Node_Id;
10835 Orig_T : Node_Id;
10837 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10838 -- Set to False to suppress cases where we want to suppress the test
10839 -- for redundancy to avoid possible false positives on this warning.
10841 begin
10842 if not Conv_OK
10843 and then not Valid_Conversion (N, Target_Typ, Operand)
10844 then
10845 return;
10846 end if;
10848 -- If the Operand Etype is Universal_Fixed, then the conversion is
10849 -- never redundant. We need this check because by the time we have
10850 -- finished the rather complex transformation, the conversion looks
10851 -- redundant when it is not.
10853 if Operand_Typ = Universal_Fixed then
10854 Test_Redundant := False;
10856 -- If the operand is marked as Any_Fixed, then special processing is
10857 -- required. This is also a case where we suppress the test for a
10858 -- redundant conversion, since most certainly it is not redundant.
10860 elsif Operand_Typ = Any_Fixed then
10861 Test_Redundant := False;
10863 -- Mixed-mode operation involving a literal. Context must be a fixed
10864 -- type which is applied to the literal subsequently.
10866 -- Multiplication and division involving two fixed type operands must
10867 -- yield a universal real because the result is computed in arbitrary
10868 -- precision.
10870 if Is_Fixed_Point_Type (Typ)
10871 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10872 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10873 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10874 then
10875 Set_Etype (Operand, Universal_Real);
10877 elsif Is_Numeric_Type (Typ)
10878 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10879 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10880 or else
10881 Etype (Left_Opnd (Operand)) = Universal_Real)
10882 then
10883 -- Return if expression is ambiguous
10885 if Unique_Fixed_Point_Type (N) = Any_Type then
10886 return;
10888 -- If nothing else, the available fixed type is Duration
10890 else
10891 Set_Etype (Operand, Standard_Duration);
10892 end if;
10894 -- Resolve the real operand with largest available precision
10896 if Etype (Right_Opnd (Operand)) = Universal_Real then
10897 Rop := New_Copy_Tree (Right_Opnd (Operand));
10898 else
10899 Rop := New_Copy_Tree (Left_Opnd (Operand));
10900 end if;
10902 Resolve (Rop, Universal_Real);
10904 -- If the operand is a literal (it could be a non-static and
10905 -- illegal exponentiation) check whether the use of Duration
10906 -- is potentially inaccurate.
10908 if Nkind (Rop) = N_Real_Literal
10909 and then Realval (Rop) /= Ureal_0
10910 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10911 then
10912 Error_Msg_N
10913 ("??universal real operand can only "
10914 & "be interpreted as Duration!", Rop);
10915 Error_Msg_N
10916 ("\??precision will be lost in the conversion!", Rop);
10917 end if;
10919 elsif Is_Numeric_Type (Typ)
10920 and then Nkind (Operand) in N_Op
10921 and then Unique_Fixed_Point_Type (N) /= Any_Type
10922 then
10923 Set_Etype (Operand, Standard_Duration);
10925 else
10926 Error_Msg_N ("invalid context for mixed mode operation", N);
10927 Set_Etype (Operand, Any_Type);
10928 return;
10929 end if;
10930 end if;
10932 Resolve (Operand);
10934 -- In SPARK, a type conversion between array types should be restricted
10935 -- to types which have matching static bounds.
10937 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10938 -- operation if not needed.
10940 if Restriction_Check_Required (SPARK_05)
10941 and then Is_Array_Type (Target_Typ)
10942 and then Is_Array_Type (Operand_Typ)
10943 and then Operand_Typ /= Any_Composite -- or else Operand in error
10944 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10945 then
10946 Check_SPARK_05_Restriction
10947 ("array types should have matching static bounds", N);
10948 end if;
10950 -- In formal mode, the operand of an ancestor type conversion must be an
10951 -- object (not an expression).
10953 if Is_Tagged_Type (Target_Typ)
10954 and then not Is_Class_Wide_Type (Target_Typ)
10955 and then Is_Tagged_Type (Operand_Typ)
10956 and then not Is_Class_Wide_Type (Operand_Typ)
10957 and then Is_Ancestor (Target_Typ, Operand_Typ)
10958 and then not Is_SPARK_05_Object_Reference (Operand)
10959 then
10960 Check_SPARK_05_Restriction ("object required", Operand);
10961 end if;
10963 Analyze_Dimension (N);
10965 -- Note: we do the Eval_Type_Conversion call before applying the
10966 -- required checks for a subtype conversion. This is important, since
10967 -- both are prepared under certain circumstances to change the type
10968 -- conversion to a constraint error node, but in the case of
10969 -- Eval_Type_Conversion this may reflect an illegality in the static
10970 -- case, and we would miss the illegality (getting only a warning
10971 -- message), if we applied the type conversion checks first.
10973 Eval_Type_Conversion (N);
10975 -- Even when evaluation is not possible, we may be able to simplify the
10976 -- conversion or its expression. This needs to be done before applying
10977 -- checks, since otherwise the checks may use the original expression
10978 -- and defeat the simplifications. This is specifically the case for
10979 -- elimination of the floating-point Truncation attribute in
10980 -- float-to-int conversions.
10982 Simplify_Type_Conversion (N);
10984 -- If after evaluation we still have a type conversion, then we may need
10985 -- to apply checks required for a subtype conversion.
10987 -- Skip these type conversion checks if universal fixed operands
10988 -- operands involved, since range checks are handled separately for
10989 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10991 if Nkind (N) = N_Type_Conversion
10992 and then not Is_Generic_Type (Root_Type (Target_Typ))
10993 and then Target_Typ /= Universal_Fixed
10994 and then Operand_Typ /= Universal_Fixed
10995 then
10996 Apply_Type_Conversion_Checks (N);
10997 end if;
10999 -- Issue warning for conversion of simple object to its own type. We
11000 -- have to test the original nodes, since they may have been rewritten
11001 -- by various optimizations.
11003 Orig_N := Original_Node (N);
11005 -- Here we test for a redundant conversion if the warning mode is
11006 -- active (and was not locally reset), and we have a type conversion
11007 -- from source not appearing in a generic instance.
11009 if Test_Redundant
11010 and then Nkind (Orig_N) = N_Type_Conversion
11011 and then Comes_From_Source (Orig_N)
11012 and then not In_Instance
11013 then
11014 Orig_N := Original_Node (Expression (Orig_N));
11015 Orig_T := Target_Typ;
11017 -- If the node is part of a larger expression, the Target_Type
11018 -- may not be the original type of the node if the context is a
11019 -- condition. Recover original type to see if conversion is needed.
11021 if Is_Boolean_Type (Orig_T)
11022 and then Nkind (Parent (N)) in N_Op
11023 then
11024 Orig_T := Etype (Parent (N));
11025 end if;
11027 -- If we have an entity name, then give the warning if the entity
11028 -- is the right type, or if it is a loop parameter covered by the
11029 -- original type (that's needed because loop parameters have an
11030 -- odd subtype coming from the bounds).
11032 if (Is_Entity_Name (Orig_N)
11033 and then
11034 (Etype (Entity (Orig_N)) = Orig_T
11035 or else
11036 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11037 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11039 -- If not an entity, then type of expression must match
11041 or else Etype (Orig_N) = Orig_T
11042 then
11043 -- One more check, do not give warning if the analyzed conversion
11044 -- has an expression with non-static bounds, and the bounds of the
11045 -- target are static. This avoids junk warnings in cases where the
11046 -- conversion is necessary to establish staticness, for example in
11047 -- a case statement.
11049 if not Is_OK_Static_Subtype (Operand_Typ)
11050 and then Is_OK_Static_Subtype (Target_Typ)
11051 then
11052 null;
11054 -- Finally, if this type conversion occurs in a context requiring
11055 -- a prefix, and the expression is a qualified expression then the
11056 -- type conversion is not redundant, since a qualified expression
11057 -- is not a prefix, whereas a type conversion is. For example, "X
11058 -- := T'(Funx(...)).Y;" is illegal because a selected component
11059 -- requires a prefix, but a type conversion makes it legal: "X :=
11060 -- T(T'(Funx(...))).Y;"
11062 -- In Ada 2012, a qualified expression is a name, so this idiom is
11063 -- no longer needed, but we still suppress the warning because it
11064 -- seems unfriendly for warnings to pop up when you switch to the
11065 -- newer language version.
11067 elsif Nkind (Orig_N) = N_Qualified_Expression
11068 and then Nkind_In (Parent (N), N_Attribute_Reference,
11069 N_Indexed_Component,
11070 N_Selected_Component,
11071 N_Slice,
11072 N_Explicit_Dereference)
11073 then
11074 null;
11076 -- Never warn on conversion to Long_Long_Integer'Base since
11077 -- that is most likely an artifact of the extended overflow
11078 -- checking and comes from complex expanded code.
11080 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11081 null;
11083 -- Here we give the redundant conversion warning. If it is an
11084 -- entity, give the name of the entity in the message. If not,
11085 -- just mention the expression.
11087 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11089 else
11090 if Is_Entity_Name (Orig_N) then
11091 Error_Msg_Node_2 := Orig_T;
11092 Error_Msg_NE -- CODEFIX
11093 ("??redundant conversion, & is of type &!",
11094 N, Entity (Orig_N));
11095 else
11096 Error_Msg_NE
11097 ("??redundant conversion, expression is of type&!",
11098 N, Orig_T);
11099 end if;
11100 end if;
11101 end if;
11102 end if;
11104 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11105 -- No need to perform any interface conversion if the type of the
11106 -- expression coincides with the target type.
11108 if Ada_Version >= Ada_2005
11109 and then Expander_Active
11110 and then Operand_Typ /= Target_Typ
11111 then
11112 declare
11113 Opnd : Entity_Id := Operand_Typ;
11114 Target : Entity_Id := Target_Typ;
11116 begin
11117 -- If the type of the operand is a limited view, use nonlimited
11118 -- view when available. If it is a class-wide type, recover the
11119 -- class-wide type of the nonlimited view.
11121 if From_Limited_With (Opnd)
11122 and then Has_Non_Limited_View (Opnd)
11123 then
11124 Opnd := Non_Limited_View (Opnd);
11125 Set_Etype (Expression (N), Opnd);
11126 end if;
11128 if Is_Access_Type (Opnd) then
11129 Opnd := Designated_Type (Opnd);
11130 end if;
11132 if Is_Access_Type (Target_Typ) then
11133 Target := Designated_Type (Target);
11134 end if;
11136 if Opnd = Target then
11137 null;
11139 -- Conversion from interface type
11141 elsif Is_Interface (Opnd) then
11143 -- Ada 2005 (AI-217): Handle entities from limited views
11145 if From_Limited_With (Opnd) then
11146 Error_Msg_Qual_Level := 99;
11147 Error_Msg_NE -- CODEFIX
11148 ("missing WITH clause on package &", N,
11149 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11150 Error_Msg_N
11151 ("type conversions require visibility of the full view",
11154 elsif From_Limited_With (Target)
11155 and then not
11156 (Is_Access_Type (Target_Typ)
11157 and then Present (Non_Limited_View (Etype (Target))))
11158 then
11159 Error_Msg_Qual_Level := 99;
11160 Error_Msg_NE -- CODEFIX
11161 ("missing WITH clause on package &", N,
11162 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11163 Error_Msg_N
11164 ("type conversions require visibility of the full view",
11167 else
11168 Expand_Interface_Conversion (N);
11169 end if;
11171 -- Conversion to interface type
11173 elsif Is_Interface (Target) then
11175 -- Handle subtypes
11177 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11178 Opnd := Etype (Opnd);
11179 end if;
11181 if Is_Class_Wide_Type (Opnd)
11182 or else Interface_Present_In_Ancestor
11183 (Typ => Opnd,
11184 Iface => Target)
11185 then
11186 Expand_Interface_Conversion (N);
11187 else
11188 Error_Msg_Name_1 := Chars (Etype (Target));
11189 Error_Msg_Name_2 := Chars (Opnd);
11190 Error_Msg_N
11191 ("wrong interface conversion (% is not a progenitor "
11192 & "of %)", N);
11193 end if;
11194 end if;
11195 end;
11196 end if;
11198 -- Ada 2012: once the type conversion is resolved, check whether the
11199 -- operand statisfies the static predicate of the target type.
11201 if Has_Predicates (Target_Typ) then
11202 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11203 end if;
11205 -- If at this stage we have a real to integer conversion, make sure that
11206 -- the Do_Range_Check flag is set, because such conversions in general
11207 -- need a range check. We only need this if expansion is off.
11208 -- In GNATprove mode, we only do that when converting from fixed-point
11209 -- (as floating-point to integer conversions are now handled in
11210 -- GNATprove mode).
11212 if Nkind (N) = N_Type_Conversion
11213 and then not Expander_Active
11214 and then Is_Integer_Type (Target_Typ)
11215 and then (Is_Fixed_Point_Type (Operand_Typ)
11216 or else (not GNATprove_Mode
11217 and then Is_Floating_Point_Type (Operand_Typ)))
11218 then
11219 Set_Do_Range_Check (Operand);
11220 end if;
11222 -- Generating C code a type conversion of an access to constrained
11223 -- array type to access to unconstrained array type involves building
11224 -- a fat pointer which in general cannot be generated on the fly. We
11225 -- remove side effects in order to store the result of the conversion
11226 -- into a temporary.
11228 if Modify_Tree_For_C
11229 and then Nkind (N) = N_Type_Conversion
11230 and then Nkind (Parent (N)) /= N_Object_Declaration
11231 and then Is_Access_Type (Etype (N))
11232 and then Is_Array_Type (Designated_Type (Etype (N)))
11233 and then not Is_Constrained (Designated_Type (Etype (N)))
11234 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11235 then
11236 Remove_Side_Effects (N);
11237 end if;
11238 end Resolve_Type_Conversion;
11240 ----------------------
11241 -- Resolve_Unary_Op --
11242 ----------------------
11244 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11245 B_Typ : constant Entity_Id := Base_Type (Typ);
11246 R : constant Node_Id := Right_Opnd (N);
11247 OK : Boolean;
11248 Lo : Uint;
11249 Hi : Uint;
11251 begin
11252 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11253 Error_Msg_Name_1 := Chars (Typ);
11254 Check_SPARK_05_Restriction
11255 ("unary operator not defined for modular type%", N);
11256 end if;
11258 -- Deal with intrinsic unary operators
11260 if Comes_From_Source (N)
11261 and then Ekind (Entity (N)) = E_Function
11262 and then Is_Imported (Entity (N))
11263 and then Is_Intrinsic_Subprogram (Entity (N))
11264 then
11265 Resolve_Intrinsic_Unary_Operator (N, Typ);
11266 return;
11267 end if;
11269 -- Deal with universal cases
11271 if Etype (R) = Universal_Integer
11272 or else
11273 Etype (R) = Universal_Real
11274 then
11275 Check_For_Visible_Operator (N, B_Typ);
11276 end if;
11278 Set_Etype (N, B_Typ);
11279 Resolve (R, B_Typ);
11281 -- Generate warning for expressions like abs (x mod 2)
11283 if Warn_On_Redundant_Constructs
11284 and then Nkind (N) = N_Op_Abs
11285 then
11286 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11288 if OK and then Hi >= Lo and then Lo >= 0 then
11289 Error_Msg_N -- CODEFIX
11290 ("?r?abs applied to known non-negative value has no effect", N);
11291 end if;
11292 end if;
11294 -- Deal with reference generation
11296 Check_Unset_Reference (R);
11297 Generate_Operator_Reference (N, B_Typ);
11298 Analyze_Dimension (N);
11299 Eval_Unary_Op (N);
11301 -- Set overflow checking bit. Much cleverer code needed here eventually
11302 -- and perhaps the Resolve routines should be separated for the various
11303 -- arithmetic operations, since they will need different processing ???
11305 if Nkind (N) in N_Op then
11306 if not Overflow_Checks_Suppressed (Etype (N)) then
11307 Enable_Overflow_Check (N);
11308 end if;
11309 end if;
11311 -- Generate warning for expressions like -5 mod 3 for integers. No need
11312 -- to worry in the floating-point case, since parens do not affect the
11313 -- result so there is no point in giving in a warning.
11315 declare
11316 Norig : constant Node_Id := Original_Node (N);
11317 Rorig : Node_Id;
11318 Val : Uint;
11319 HB : Uint;
11320 LB : Uint;
11321 Lval : Uint;
11322 Opnd : Node_Id;
11324 begin
11325 if Warn_On_Questionable_Missing_Parens
11326 and then Comes_From_Source (Norig)
11327 and then Is_Integer_Type (Typ)
11328 and then Nkind (Norig) = N_Op_Minus
11329 then
11330 Rorig := Original_Node (Right_Opnd (Norig));
11332 -- We are looking for cases where the right operand is not
11333 -- parenthesized, and is a binary operator, multiply, divide, or
11334 -- mod. These are the cases where the grouping can affect results.
11336 if Paren_Count (Rorig) = 0
11337 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11338 then
11339 -- For mod, we always give the warning, since the value is
11340 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11341 -- -(5 mod 315)). But for the other cases, the only concern is
11342 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11343 -- overflows, but (-2) * 64 does not). So we try to give the
11344 -- message only when overflow is possible.
11346 if Nkind (Rorig) /= N_Op_Mod
11347 and then Compile_Time_Known_Value (R)
11348 then
11349 Val := Expr_Value (R);
11351 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11352 HB := Expr_Value (Type_High_Bound (Typ));
11353 else
11354 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11355 end if;
11357 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11358 LB := Expr_Value (Type_Low_Bound (Typ));
11359 else
11360 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11361 end if;
11363 -- Note that the test below is deliberately excluding the
11364 -- largest negative number, since that is a potentially
11365 -- troublesome case (e.g. -2 * x, where the result is the
11366 -- largest negative integer has an overflow with 2 * x).
11368 if Val > LB and then Val <= HB then
11369 return;
11370 end if;
11371 end if;
11373 -- For the multiplication case, the only case we have to worry
11374 -- about is when (-a)*b is exactly the largest negative number
11375 -- so that -(a*b) can cause overflow. This can only happen if
11376 -- a is a power of 2, and more generally if any operand is a
11377 -- constant that is not a power of 2, then the parentheses
11378 -- cannot affect whether overflow occurs. We only bother to
11379 -- test the left most operand
11381 -- Loop looking at left operands for one that has known value
11383 Opnd := Rorig;
11384 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11385 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11386 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11388 -- Operand value of 0 or 1 skips warning
11390 if Lval <= 1 then
11391 return;
11393 -- Otherwise check power of 2, if power of 2, warn, if
11394 -- anything else, skip warning.
11396 else
11397 while Lval /= 2 loop
11398 if Lval mod 2 = 1 then
11399 return;
11400 else
11401 Lval := Lval / 2;
11402 end if;
11403 end loop;
11405 exit Opnd_Loop;
11406 end if;
11407 end if;
11409 -- Keep looking at left operands
11411 Opnd := Left_Opnd (Opnd);
11412 end loop Opnd_Loop;
11414 -- For rem or "/" we can only have a problematic situation
11415 -- if the divisor has a value of minus one or one. Otherwise
11416 -- overflow is impossible (divisor > 1) or we have a case of
11417 -- division by zero in any case.
11419 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11420 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11421 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11422 then
11423 return;
11424 end if;
11426 -- If we fall through warning should be issued
11428 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11430 Error_Msg_N
11431 ("??unary minus expression should be parenthesized here!", N);
11432 end if;
11433 end if;
11434 end;
11435 end Resolve_Unary_Op;
11437 ----------------------------------
11438 -- Resolve_Unchecked_Expression --
11439 ----------------------------------
11441 procedure Resolve_Unchecked_Expression
11442 (N : Node_Id;
11443 Typ : Entity_Id)
11445 begin
11446 Resolve (Expression (N), Typ, Suppress => All_Checks);
11447 Set_Etype (N, Typ);
11448 end Resolve_Unchecked_Expression;
11450 ---------------------------------------
11451 -- Resolve_Unchecked_Type_Conversion --
11452 ---------------------------------------
11454 procedure Resolve_Unchecked_Type_Conversion
11455 (N : Node_Id;
11456 Typ : Entity_Id)
11458 pragma Warnings (Off, Typ);
11460 Operand : constant Node_Id := Expression (N);
11461 Opnd_Type : constant Entity_Id := Etype (Operand);
11463 begin
11464 -- Resolve operand using its own type
11466 Resolve (Operand, Opnd_Type);
11468 -- In an inlined context, the unchecked conversion may be applied
11469 -- to a literal, in which case its type is the type of the context.
11470 -- (In other contexts conversions cannot apply to literals).
11472 if In_Inlined_Body
11473 and then (Opnd_Type = Any_Character or else
11474 Opnd_Type = Any_Integer or else
11475 Opnd_Type = Any_Real)
11476 then
11477 Set_Etype (Operand, Typ);
11478 end if;
11480 Analyze_Dimension (N);
11481 Eval_Unchecked_Conversion (N);
11482 end Resolve_Unchecked_Type_Conversion;
11484 ------------------------------
11485 -- Rewrite_Operator_As_Call --
11486 ------------------------------
11488 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11489 Loc : constant Source_Ptr := Sloc (N);
11490 Actuals : constant List_Id := New_List;
11491 New_N : Node_Id;
11493 begin
11494 if Nkind (N) in N_Binary_Op then
11495 Append (Left_Opnd (N), Actuals);
11496 end if;
11498 Append (Right_Opnd (N), Actuals);
11500 New_N :=
11501 Make_Function_Call (Sloc => Loc,
11502 Name => New_Occurrence_Of (Nam, Loc),
11503 Parameter_Associations => Actuals);
11505 Preserve_Comes_From_Source (New_N, N);
11506 Preserve_Comes_From_Source (Name (New_N), N);
11507 Rewrite (N, New_N);
11508 Set_Etype (N, Etype (Nam));
11509 end Rewrite_Operator_As_Call;
11511 ------------------------------
11512 -- Rewrite_Renamed_Operator --
11513 ------------------------------
11515 procedure Rewrite_Renamed_Operator
11516 (N : Node_Id;
11517 Op : Entity_Id;
11518 Typ : Entity_Id)
11520 Nam : constant Name_Id := Chars (Op);
11521 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11522 Op_Node : Node_Id;
11524 begin
11525 -- Do not perform this transformation within a pre/postcondition,
11526 -- because the expression will be reanalyzed, and the transformation
11527 -- might affect the visibility of the operator, e.g. in an instance.
11528 -- Note that fully analyzed and expanded pre/postconditions appear as
11529 -- pragma Check equivalents.
11531 if In_Pre_Post_Condition (N) then
11532 return;
11533 end if;
11535 -- Likewise when an expression function is being preanalyzed, since the
11536 -- expression will be reanalyzed as part of the generated body.
11538 if In_Spec_Expression then
11539 declare
11540 S : constant Entity_Id := Current_Scope_No_Loops;
11541 begin
11542 if Ekind (S) = E_Function
11543 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11544 N_Expression_Function
11545 then
11546 return;
11547 end if;
11548 end;
11549 end if;
11551 -- Rewrite the operator node using the real operator, not its renaming.
11552 -- Exclude user-defined intrinsic operations of the same name, which are
11553 -- treated separately and rewritten as calls.
11555 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11556 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11557 Set_Chars (Op_Node, Nam);
11558 Set_Etype (Op_Node, Etype (N));
11559 Set_Entity (Op_Node, Op);
11560 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11562 -- Indicate that both the original entity and its renaming are
11563 -- referenced at this point.
11565 Generate_Reference (Entity (N), N);
11566 Generate_Reference (Op, N);
11568 if Is_Binary then
11569 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11570 end if;
11572 Rewrite (N, Op_Node);
11574 -- If the context type is private, add the appropriate conversions so
11575 -- that the operator is applied to the full view. This is done in the
11576 -- routines that resolve intrinsic operators.
11578 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11579 case Nkind (N) is
11580 when N_Op_Add
11581 | N_Op_Divide
11582 | N_Op_Expon
11583 | N_Op_Mod
11584 | N_Op_Multiply
11585 | N_Op_Rem
11586 | N_Op_Subtract
11588 Resolve_Intrinsic_Operator (N, Typ);
11590 when N_Op_Abs
11591 | N_Op_Minus
11592 | N_Op_Plus
11594 Resolve_Intrinsic_Unary_Operator (N, Typ);
11596 when others =>
11597 Resolve (N, Typ);
11598 end case;
11599 end if;
11601 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11603 -- Operator renames a user-defined operator of the same name. Use the
11604 -- original operator in the node, which is the one Gigi knows about.
11606 Set_Entity (N, Op);
11607 Set_Is_Overloaded (N, False);
11608 end if;
11609 end Rewrite_Renamed_Operator;
11611 -----------------------
11612 -- Set_Slice_Subtype --
11613 -----------------------
11615 -- Build an implicit subtype declaration to represent the type delivered by
11616 -- the slice. This is an abbreviated version of an array subtype. We define
11617 -- an index subtype for the slice, using either the subtype name or the
11618 -- discrete range of the slice. To be consistent with index usage elsewhere
11619 -- we create a list header to hold the single index. This list is not
11620 -- otherwise attached to the syntax tree.
11622 procedure Set_Slice_Subtype (N : Node_Id) is
11623 Loc : constant Source_Ptr := Sloc (N);
11624 Index_List : constant List_Id := New_List;
11625 Index : Node_Id;
11626 Index_Subtype : Entity_Id;
11627 Index_Type : Entity_Id;
11628 Slice_Subtype : Entity_Id;
11629 Drange : constant Node_Id := Discrete_Range (N);
11631 begin
11632 Index_Type := Base_Type (Etype (Drange));
11634 if Is_Entity_Name (Drange) then
11635 Index_Subtype := Entity (Drange);
11637 else
11638 -- We force the evaluation of a range. This is definitely needed in
11639 -- the renamed case, and seems safer to do unconditionally. Note in
11640 -- any case that since we will create and insert an Itype referring
11641 -- to this range, we must make sure any side effect removal actions
11642 -- are inserted before the Itype definition.
11644 if Nkind (Drange) = N_Range then
11645 Force_Evaluation (Low_Bound (Drange));
11646 Force_Evaluation (High_Bound (Drange));
11648 -- If the discrete range is given by a subtype indication, the
11649 -- type of the slice is the base of the subtype mark.
11651 elsif Nkind (Drange) = N_Subtype_Indication then
11652 declare
11653 R : constant Node_Id := Range_Expression (Constraint (Drange));
11654 begin
11655 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11656 Force_Evaluation (Low_Bound (R));
11657 Force_Evaluation (High_Bound (R));
11658 end;
11659 end if;
11661 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11663 -- Take a new copy of Drange (where bounds have been rewritten to
11664 -- reference side-effect-free names). Using a separate tree ensures
11665 -- that further expansion (e.g. while rewriting a slice assignment
11666 -- into a FOR loop) does not attempt to remove side effects on the
11667 -- bounds again (which would cause the bounds in the index subtype
11668 -- definition to refer to temporaries before they are defined) (the
11669 -- reason is that some names are considered side effect free here
11670 -- for the subtype, but not in the context of a loop iteration
11671 -- scheme).
11673 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11674 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11675 Set_Etype (Index_Subtype, Index_Type);
11676 Set_Size_Info (Index_Subtype, Index_Type);
11677 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11678 end if;
11680 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11682 Index := New_Occurrence_Of (Index_Subtype, Loc);
11683 Set_Etype (Index, Index_Subtype);
11684 Append (Index, Index_List);
11686 Set_First_Index (Slice_Subtype, Index);
11687 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11688 Set_Is_Constrained (Slice_Subtype, True);
11690 Check_Compile_Time_Size (Slice_Subtype);
11692 -- The Etype of the existing Slice node is reset to this slice subtype.
11693 -- Its bounds are obtained from its first index.
11695 Set_Etype (N, Slice_Subtype);
11697 -- For bit-packed slice subtypes, freeze immediately (except in the case
11698 -- of being in a "spec expression" where we never freeze when we first
11699 -- see the expression).
11701 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11702 Freeze_Itype (Slice_Subtype, N);
11704 -- For all other cases insert an itype reference in the slice's actions
11705 -- so that the itype is frozen at the proper place in the tree (i.e. at
11706 -- the point where actions for the slice are analyzed). Note that this
11707 -- is different from freezing the itype immediately, which might be
11708 -- premature (e.g. if the slice is within a transient scope). This needs
11709 -- to be done only if expansion is enabled.
11711 elsif Expander_Active then
11712 Ensure_Defined (Typ => Slice_Subtype, N => N);
11713 end if;
11714 end Set_Slice_Subtype;
11716 --------------------------------
11717 -- Set_String_Literal_Subtype --
11718 --------------------------------
11720 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11721 Loc : constant Source_Ptr := Sloc (N);
11722 Low_Bound : constant Node_Id :=
11723 Type_Low_Bound (Etype (First_Index (Typ)));
11724 Subtype_Id : Entity_Id;
11726 begin
11727 if Nkind (N) /= N_String_Literal then
11728 return;
11729 end if;
11731 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11732 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11733 (String_Length (Strval (N))));
11734 Set_Etype (Subtype_Id, Base_Type (Typ));
11735 Set_Is_Constrained (Subtype_Id);
11736 Set_Etype (N, Subtype_Id);
11738 -- The low bound is set from the low bound of the corresponding index
11739 -- type. Note that we do not store the high bound in the string literal
11740 -- subtype, but it can be deduced if necessary from the length and the
11741 -- low bound.
11743 if Is_OK_Static_Expression (Low_Bound) then
11744 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11746 -- If the lower bound is not static we create a range for the string
11747 -- literal, using the index type and the known length of the literal.
11748 -- The index type is not necessarily Positive, so the upper bound is
11749 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11751 else
11752 declare
11753 Index_List : constant List_Id := New_List;
11754 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11755 High_Bound : constant Node_Id :=
11756 Make_Attribute_Reference (Loc,
11757 Attribute_Name => Name_Val,
11758 Prefix =>
11759 New_Occurrence_Of (Index_Type, Loc),
11760 Expressions => New_List (
11761 Make_Op_Add (Loc,
11762 Left_Opnd =>
11763 Make_Attribute_Reference (Loc,
11764 Attribute_Name => Name_Pos,
11765 Prefix =>
11766 New_Occurrence_Of (Index_Type, Loc),
11767 Expressions =>
11768 New_List (New_Copy_Tree (Low_Bound))),
11769 Right_Opnd =>
11770 Make_Integer_Literal (Loc,
11771 String_Length (Strval (N)) - 1))));
11773 Array_Subtype : Entity_Id;
11774 Drange : Node_Id;
11775 Index : Node_Id;
11776 Index_Subtype : Entity_Id;
11778 begin
11779 if Is_Integer_Type (Index_Type) then
11780 Set_String_Literal_Low_Bound
11781 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11783 else
11784 -- If the index type is an enumeration type, build bounds
11785 -- expression with attributes.
11787 Set_String_Literal_Low_Bound
11788 (Subtype_Id,
11789 Make_Attribute_Reference (Loc,
11790 Attribute_Name => Name_First,
11791 Prefix =>
11792 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11793 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11794 end if;
11796 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11798 -- Build bona fide subtype for the string, and wrap it in an
11799 -- unchecked conversion, because the backend expects the
11800 -- String_Literal_Subtype to have a static lower bound.
11802 Index_Subtype :=
11803 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11804 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11805 Set_Scalar_Range (Index_Subtype, Drange);
11806 Set_Parent (Drange, N);
11807 Analyze_And_Resolve (Drange, Index_Type);
11809 -- In the context, the Index_Type may already have a constraint,
11810 -- so use common base type on string subtype. The base type may
11811 -- be used when generating attributes of the string, for example
11812 -- in the context of a slice assignment.
11814 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11815 Set_Size_Info (Index_Subtype, Index_Type);
11816 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11818 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11820 Index := New_Occurrence_Of (Index_Subtype, Loc);
11821 Set_Etype (Index, Index_Subtype);
11822 Append (Index, Index_List);
11824 Set_First_Index (Array_Subtype, Index);
11825 Set_Etype (Array_Subtype, Base_Type (Typ));
11826 Set_Is_Constrained (Array_Subtype, True);
11828 Rewrite (N,
11829 Make_Unchecked_Type_Conversion (Loc,
11830 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11831 Expression => Relocate_Node (N)));
11832 Set_Etype (N, Array_Subtype);
11833 end;
11834 end if;
11835 end Set_String_Literal_Subtype;
11837 ------------------------------
11838 -- Simplify_Type_Conversion --
11839 ------------------------------
11841 procedure Simplify_Type_Conversion (N : Node_Id) is
11842 begin
11843 if Nkind (N) = N_Type_Conversion then
11844 declare
11845 Operand : constant Node_Id := Expression (N);
11846 Target_Typ : constant Entity_Id := Etype (N);
11847 Opnd_Typ : constant Entity_Id := Etype (Operand);
11849 begin
11850 -- Special processing if the conversion is the expression of a
11851 -- Rounding or Truncation attribute reference. In this case we
11852 -- replace:
11854 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11856 -- by
11858 -- ityp (x)
11860 -- with the Float_Truncate flag set to False or True respectively,
11861 -- which is more efficient.
11863 if Is_Floating_Point_Type (Opnd_Typ)
11864 and then
11865 (Is_Integer_Type (Target_Typ)
11866 or else (Is_Fixed_Point_Type (Target_Typ)
11867 and then Conversion_OK (N)))
11868 and then Nkind (Operand) = N_Attribute_Reference
11869 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11870 Name_Truncation)
11871 then
11872 declare
11873 Truncate : constant Boolean :=
11874 Attribute_Name (Operand) = Name_Truncation;
11875 begin
11876 Rewrite (Operand,
11877 Relocate_Node (First (Expressions (Operand))));
11878 Set_Float_Truncate (N, Truncate);
11879 end;
11880 end if;
11881 end;
11882 end if;
11883 end Simplify_Type_Conversion;
11885 -----------------------------
11886 -- Unique_Fixed_Point_Type --
11887 -----------------------------
11889 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11890 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11891 -- Give error messages for true ambiguity. Messages are posted on node
11892 -- N, and entities T1, T2 are the possible interpretations.
11894 -----------------------
11895 -- Fixed_Point_Error --
11896 -----------------------
11898 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11899 begin
11900 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11901 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11902 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11903 end Fixed_Point_Error;
11905 -- Local variables
11907 ErrN : Node_Id;
11908 Item : Node_Id;
11909 Scop : Entity_Id;
11910 T1 : Entity_Id;
11911 T2 : Entity_Id;
11913 -- Start of processing for Unique_Fixed_Point_Type
11915 begin
11916 -- The operations on Duration are visible, so Duration is always a
11917 -- possible interpretation.
11919 T1 := Standard_Duration;
11921 -- Look for fixed-point types in enclosing scopes
11923 Scop := Current_Scope;
11924 while Scop /= Standard_Standard loop
11925 T2 := First_Entity (Scop);
11926 while Present (T2) loop
11927 if Is_Fixed_Point_Type (T2)
11928 and then Current_Entity (T2) = T2
11929 and then Scope (Base_Type (T2)) = Scop
11930 then
11931 if Present (T1) then
11932 Fixed_Point_Error (T1, T2);
11933 return Any_Type;
11934 else
11935 T1 := T2;
11936 end if;
11937 end if;
11939 Next_Entity (T2);
11940 end loop;
11942 Scop := Scope (Scop);
11943 end loop;
11945 -- Look for visible fixed type declarations in the context
11947 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11948 while Present (Item) loop
11949 if Nkind (Item) = N_With_Clause then
11950 Scop := Entity (Name (Item));
11951 T2 := First_Entity (Scop);
11952 while Present (T2) loop
11953 if Is_Fixed_Point_Type (T2)
11954 and then Scope (Base_Type (T2)) = Scop
11955 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11956 then
11957 if Present (T1) then
11958 Fixed_Point_Error (T1, T2);
11959 return Any_Type;
11960 else
11961 T1 := T2;
11962 end if;
11963 end if;
11965 Next_Entity (T2);
11966 end loop;
11967 end if;
11969 Next (Item);
11970 end loop;
11972 if Nkind (N) = N_Real_Literal then
11973 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
11975 else
11976 -- When the context is a type conversion, issue the warning on the
11977 -- expression of the conversion because it is the actual operation.
11979 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
11980 ErrN := Expression (N);
11981 else
11982 ErrN := N;
11983 end if;
11985 Error_Msg_NE
11986 ("??universal_fixed expression interpreted as }!", ErrN, T1);
11987 end if;
11989 return T1;
11990 end Unique_Fixed_Point_Type;
11992 ----------------------
11993 -- Valid_Conversion --
11994 ----------------------
11996 function Valid_Conversion
11997 (N : Node_Id;
11998 Target : Entity_Id;
11999 Operand : Node_Id;
12000 Report_Errs : Boolean := True) return Boolean
12002 Target_Type : constant Entity_Id := Base_Type (Target);
12003 Opnd_Type : Entity_Id := Etype (Operand);
12004 Inc_Ancestor : Entity_Id;
12006 function Conversion_Check
12007 (Valid : Boolean;
12008 Msg : String) return Boolean;
12009 -- Little routine to post Msg if Valid is False, returns Valid value
12011 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12012 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12014 procedure Conversion_Error_NE
12015 (Msg : String;
12016 N : Node_Or_Entity_Id;
12017 E : Node_Or_Entity_Id);
12018 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12020 function In_Instance_Code return Boolean;
12021 -- Return True if expression is within an instance but is not in one of
12022 -- the actuals of the instantiation. Type conversions within an instance
12023 -- are not rechecked because type visbility may lead to spurious errors,
12024 -- but conversions in an actual for a formal object must be checked.
12026 function Valid_Tagged_Conversion
12027 (Target_Type : Entity_Id;
12028 Opnd_Type : Entity_Id) return Boolean;
12029 -- Specifically test for validity of tagged conversions
12031 function Valid_Array_Conversion return Boolean;
12032 -- Check index and component conformance, and accessibility levels if
12033 -- the component types are anonymous access types (Ada 2005).
12035 ----------------------
12036 -- Conversion_Check --
12037 ----------------------
12039 function Conversion_Check
12040 (Valid : Boolean;
12041 Msg : String) return Boolean
12043 begin
12044 if not Valid
12046 -- A generic unit has already been analyzed and we have verified
12047 -- that a particular conversion is OK in that context. Since the
12048 -- instance is reanalyzed without relying on the relationships
12049 -- established during the analysis of the generic, it is possible
12050 -- to end up with inconsistent views of private types. Do not emit
12051 -- the error message in such cases. The rest of the machinery in
12052 -- Valid_Conversion still ensures the proper compatibility of
12053 -- target and operand types.
12055 and then not In_Instance_Code
12056 then
12057 Conversion_Error_N (Msg, Operand);
12058 end if;
12060 return Valid;
12061 end Conversion_Check;
12063 ------------------------
12064 -- Conversion_Error_N --
12065 ------------------------
12067 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12068 begin
12069 if Report_Errs then
12070 Error_Msg_N (Msg, N);
12071 end if;
12072 end Conversion_Error_N;
12074 -------------------------
12075 -- Conversion_Error_NE --
12076 -------------------------
12078 procedure Conversion_Error_NE
12079 (Msg : String;
12080 N : Node_Or_Entity_Id;
12081 E : Node_Or_Entity_Id)
12083 begin
12084 if Report_Errs then
12085 Error_Msg_NE (Msg, N, E);
12086 end if;
12087 end Conversion_Error_NE;
12089 ----------------------
12090 -- In_Instance_Code --
12091 ----------------------
12093 function In_Instance_Code return Boolean is
12094 Par : Node_Id;
12096 begin
12097 if not In_Instance then
12098 return False;
12100 else
12101 Par := Parent (N);
12102 while Present (Par) loop
12104 -- The expression is part of an actual object if it appears in
12105 -- the generated object declaration in the instance.
12107 if Nkind (Par) = N_Object_Declaration
12108 and then Present (Corresponding_Generic_Association (Par))
12109 then
12110 return False;
12112 else
12113 exit when
12114 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12115 or else Nkind (Par) in N_Subprogram_Call
12116 or else Nkind (Par) in N_Declaration;
12117 end if;
12119 Par := Parent (Par);
12120 end loop;
12122 -- Otherwise the expression appears within the instantiated unit
12124 return True;
12125 end if;
12126 end In_Instance_Code;
12128 ----------------------------
12129 -- Valid_Array_Conversion --
12130 ----------------------------
12132 function Valid_Array_Conversion return Boolean is
12133 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12134 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12136 Opnd_Index : Node_Id;
12137 Opnd_Index_Type : Entity_Id;
12139 Target_Comp_Type : constant Entity_Id :=
12140 Component_Type (Target_Type);
12141 Target_Comp_Base : constant Entity_Id :=
12142 Base_Type (Target_Comp_Type);
12144 Target_Index : Node_Id;
12145 Target_Index_Type : Entity_Id;
12147 begin
12148 -- Error if wrong number of dimensions
12151 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12152 then
12153 Conversion_Error_N
12154 ("incompatible number of dimensions for conversion", Operand);
12155 return False;
12157 -- Number of dimensions matches
12159 else
12160 -- Loop through indexes of the two arrays
12162 Target_Index := First_Index (Target_Type);
12163 Opnd_Index := First_Index (Opnd_Type);
12164 while Present (Target_Index) and then Present (Opnd_Index) loop
12165 Target_Index_Type := Etype (Target_Index);
12166 Opnd_Index_Type := Etype (Opnd_Index);
12168 -- Error if index types are incompatible
12170 if not (Is_Integer_Type (Target_Index_Type)
12171 and then Is_Integer_Type (Opnd_Index_Type))
12172 and then (Root_Type (Target_Index_Type)
12173 /= Root_Type (Opnd_Index_Type))
12174 then
12175 Conversion_Error_N
12176 ("incompatible index types for array conversion",
12177 Operand);
12178 return False;
12179 end if;
12181 Next_Index (Target_Index);
12182 Next_Index (Opnd_Index);
12183 end loop;
12185 -- If component types have same base type, all set
12187 if Target_Comp_Base = Opnd_Comp_Base then
12188 null;
12190 -- Here if base types of components are not the same. The only
12191 -- time this is allowed is if we have anonymous access types.
12193 -- The conversion of arrays of anonymous access types can lead
12194 -- to dangling pointers. AI-392 formalizes the accessibility
12195 -- checks that must be applied to such conversions to prevent
12196 -- out-of-scope references.
12198 elsif Ekind_In
12199 (Target_Comp_Base, E_Anonymous_Access_Type,
12200 E_Anonymous_Access_Subprogram_Type)
12201 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12202 and then
12203 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12204 then
12205 if Type_Access_Level (Target_Type) <
12206 Deepest_Type_Access_Level (Opnd_Type)
12207 then
12208 if In_Instance_Body then
12209 Error_Msg_Warn := SPARK_Mode /= On;
12210 Conversion_Error_N
12211 ("source array type has deeper accessibility "
12212 & "level than target<<", Operand);
12213 Conversion_Error_N ("\Program_Error [<<", Operand);
12214 Rewrite (N,
12215 Make_Raise_Program_Error (Sloc (N),
12216 Reason => PE_Accessibility_Check_Failed));
12217 Set_Etype (N, Target_Type);
12218 return False;
12220 -- Conversion not allowed because of accessibility levels
12222 else
12223 Conversion_Error_N
12224 ("source array type has deeper accessibility "
12225 & "level than target", Operand);
12226 return False;
12227 end if;
12229 else
12230 null;
12231 end if;
12233 -- All other cases where component base types do not match
12235 else
12236 Conversion_Error_N
12237 ("incompatible component types for array conversion",
12238 Operand);
12239 return False;
12240 end if;
12242 -- Check that component subtypes statically match. For numeric
12243 -- types this means that both must be either constrained or
12244 -- unconstrained. For enumeration types the bounds must match.
12245 -- All of this is checked in Subtypes_Statically_Match.
12247 if not Subtypes_Statically_Match
12248 (Target_Comp_Type, Opnd_Comp_Type)
12249 then
12250 Conversion_Error_N
12251 ("component subtypes must statically match", Operand);
12252 return False;
12253 end if;
12254 end if;
12256 return True;
12257 end Valid_Array_Conversion;
12259 -----------------------------
12260 -- Valid_Tagged_Conversion --
12261 -----------------------------
12263 function Valid_Tagged_Conversion
12264 (Target_Type : Entity_Id;
12265 Opnd_Type : Entity_Id) return Boolean
12267 begin
12268 -- Upward conversions are allowed (RM 4.6(22))
12270 if Covers (Target_Type, Opnd_Type)
12271 or else Is_Ancestor (Target_Type, Opnd_Type)
12272 then
12273 return True;
12275 -- Downward conversion are allowed if the operand is class-wide
12276 -- (RM 4.6(23)).
12278 elsif Is_Class_Wide_Type (Opnd_Type)
12279 and then Covers (Opnd_Type, Target_Type)
12280 then
12281 return True;
12283 elsif Covers (Opnd_Type, Target_Type)
12284 or else Is_Ancestor (Opnd_Type, Target_Type)
12285 then
12286 return
12287 Conversion_Check (False,
12288 "downward conversion of tagged objects not allowed");
12290 -- Ada 2005 (AI-251): The conversion to/from interface types is
12291 -- always valid. The types involved may be class-wide (sub)types.
12293 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12294 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12295 then
12296 return True;
12298 -- If the operand is a class-wide type obtained through a limited_
12299 -- with clause, and the context includes the nonlimited view, use
12300 -- it to determine whether the conversion is legal.
12302 elsif Is_Class_Wide_Type (Opnd_Type)
12303 and then From_Limited_With (Opnd_Type)
12304 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12305 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12306 then
12307 return True;
12309 elsif Is_Access_Type (Opnd_Type)
12310 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12311 then
12312 return True;
12314 else
12315 Conversion_Error_NE
12316 ("invalid tagged conversion, not compatible with}",
12317 N, First_Subtype (Opnd_Type));
12318 return False;
12319 end if;
12320 end Valid_Tagged_Conversion;
12322 -- Start of processing for Valid_Conversion
12324 begin
12325 Check_Parameterless_Call (Operand);
12327 if Is_Overloaded (Operand) then
12328 declare
12329 I : Interp_Index;
12330 I1 : Interp_Index;
12331 It : Interp;
12332 It1 : Interp;
12333 N1 : Entity_Id;
12334 T1 : Entity_Id;
12336 begin
12337 -- Remove procedure calls, which syntactically cannot appear in
12338 -- this context, but which cannot be removed by type checking,
12339 -- because the context does not impose a type.
12341 -- The node may be labelled overloaded, but still contain only one
12342 -- interpretation because others were discarded earlier. If this
12343 -- is the case, retain the single interpretation if legal.
12345 Get_First_Interp (Operand, I, It);
12346 Opnd_Type := It.Typ;
12347 Get_Next_Interp (I, It);
12349 if Present (It.Typ)
12350 and then Opnd_Type /= Standard_Void_Type
12351 then
12352 -- More than one candidate interpretation is available
12354 Get_First_Interp (Operand, I, It);
12355 while Present (It.Typ) loop
12356 if It.Typ = Standard_Void_Type then
12357 Remove_Interp (I);
12358 end if;
12360 -- When compiling for a system where Address is of a visible
12361 -- integer type, spurious ambiguities can be produced when
12362 -- arithmetic operations have a literal operand and return
12363 -- System.Address or a descendant of it. These ambiguities
12364 -- are usually resolved by the context, but for conversions
12365 -- there is no context type and the removal of the spurious
12366 -- operations must be done explicitly here.
12368 if not Address_Is_Private
12369 and then Is_Descendant_Of_Address (It.Typ)
12370 then
12371 Remove_Interp (I);
12372 end if;
12374 Get_Next_Interp (I, It);
12375 end loop;
12376 end if;
12378 Get_First_Interp (Operand, I, It);
12379 I1 := I;
12380 It1 := It;
12382 if No (It.Typ) then
12383 Conversion_Error_N ("illegal operand in conversion", Operand);
12384 return False;
12385 end if;
12387 Get_Next_Interp (I, It);
12389 if Present (It.Typ) then
12390 N1 := It1.Nam;
12391 T1 := It1.Typ;
12392 It1 := Disambiguate (Operand, I1, I, Any_Type);
12394 if It1 = No_Interp then
12395 Conversion_Error_N
12396 ("ambiguous operand in conversion", Operand);
12398 -- If the interpretation involves a standard operator, use
12399 -- the location of the type, which may be user-defined.
12401 if Sloc (It.Nam) = Standard_Location then
12402 Error_Msg_Sloc := Sloc (It.Typ);
12403 else
12404 Error_Msg_Sloc := Sloc (It.Nam);
12405 end if;
12407 Conversion_Error_N -- CODEFIX
12408 ("\\possible interpretation#!", Operand);
12410 if Sloc (N1) = Standard_Location then
12411 Error_Msg_Sloc := Sloc (T1);
12412 else
12413 Error_Msg_Sloc := Sloc (N1);
12414 end if;
12416 Conversion_Error_N -- CODEFIX
12417 ("\\possible interpretation#!", Operand);
12419 return False;
12420 end if;
12421 end if;
12423 Set_Etype (Operand, It1.Typ);
12424 Opnd_Type := It1.Typ;
12425 end;
12426 end if;
12428 -- Deal with conversion of integer type to address if the pragma
12429 -- Allow_Integer_Address is in effect. We convert the conversion to
12430 -- an unchecked conversion in this case and we are all done.
12432 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12433 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12434 Analyze_And_Resolve (N, Target_Type);
12435 return True;
12436 end if;
12438 -- If we are within a child unit, check whether the type of the
12439 -- expression has an ancestor in a parent unit, in which case it
12440 -- belongs to its derivation class even if the ancestor is private.
12441 -- See RM 7.3.1 (5.2/3).
12443 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12445 -- Numeric types
12447 if Is_Numeric_Type (Target_Type) then
12449 -- A universal fixed expression can be converted to any numeric type
12451 if Opnd_Type = Universal_Fixed then
12452 return True;
12454 -- Also no need to check when in an instance or inlined body, because
12455 -- the legality has been established when the template was analyzed.
12456 -- Furthermore, numeric conversions may occur where only a private
12457 -- view of the operand type is visible at the instantiation point.
12458 -- This results in a spurious error if we check that the operand type
12459 -- is a numeric type.
12461 -- Note: in a previous version of this unit, the following tests were
12462 -- applied only for generated code (Comes_From_Source set to False),
12463 -- but in fact the test is required for source code as well, since
12464 -- this situation can arise in source code.
12466 elsif In_Instance_Code or else In_Inlined_Body then
12467 return True;
12469 -- Otherwise we need the conversion check
12471 else
12472 return Conversion_Check
12473 (Is_Numeric_Type (Opnd_Type)
12474 or else
12475 (Present (Inc_Ancestor)
12476 and then Is_Numeric_Type (Inc_Ancestor)),
12477 "illegal operand for numeric conversion");
12478 end if;
12480 -- Array types
12482 elsif Is_Array_Type (Target_Type) then
12483 if not Is_Array_Type (Opnd_Type)
12484 or else Opnd_Type = Any_Composite
12485 or else Opnd_Type = Any_String
12486 then
12487 Conversion_Error_N
12488 ("illegal operand for array conversion", Operand);
12489 return False;
12491 else
12492 return Valid_Array_Conversion;
12493 end if;
12495 -- Ada 2005 (AI-251): Internally generated conversions of access to
12496 -- interface types added to force the displacement of the pointer to
12497 -- reference the corresponding dispatch table.
12499 elsif not Comes_From_Source (N)
12500 and then Is_Access_Type (Target_Type)
12501 and then Is_Interface (Designated_Type (Target_Type))
12502 then
12503 return True;
12505 -- Ada 2005 (AI-251): Anonymous access types where target references an
12506 -- interface type.
12508 elsif Is_Access_Type (Opnd_Type)
12509 and then Ekind_In (Target_Type, E_General_Access_Type,
12510 E_Anonymous_Access_Type)
12511 and then Is_Interface (Directly_Designated_Type (Target_Type))
12512 then
12513 -- Check the static accessibility rule of 4.6(17). Note that the
12514 -- check is not enforced when within an instance body, since the
12515 -- RM requires such cases to be caught at run time.
12517 -- If the operand is a rewriting of an allocator no check is needed
12518 -- because there are no accessibility issues.
12520 if Nkind (Original_Node (N)) = N_Allocator then
12521 null;
12523 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12524 if Type_Access_Level (Opnd_Type) >
12525 Deepest_Type_Access_Level (Target_Type)
12526 then
12527 -- In an instance, this is a run-time check, but one we know
12528 -- will fail, so generate an appropriate warning. The raise
12529 -- will be generated by Expand_N_Type_Conversion.
12531 if In_Instance_Body then
12532 Error_Msg_Warn := SPARK_Mode /= On;
12533 Conversion_Error_N
12534 ("cannot convert local pointer to non-local access type<<",
12535 Operand);
12536 Conversion_Error_N ("\Program_Error [<<", Operand);
12538 else
12539 Conversion_Error_N
12540 ("cannot convert local pointer to non-local access type",
12541 Operand);
12542 return False;
12543 end if;
12545 -- Special accessibility checks are needed in the case of access
12546 -- discriminants declared for a limited type.
12548 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12549 and then not Is_Local_Anonymous_Access (Opnd_Type)
12550 then
12551 -- When the operand is a selected access discriminant the check
12552 -- needs to be made against the level of the object denoted by
12553 -- the prefix of the selected name (Object_Access_Level handles
12554 -- checking the prefix of the operand for this case).
12556 if Nkind (Operand) = N_Selected_Component
12557 and then Object_Access_Level (Operand) >
12558 Deepest_Type_Access_Level (Target_Type)
12559 then
12560 -- In an instance, this is a run-time check, but one we know
12561 -- will fail, so generate an appropriate warning. The raise
12562 -- will be generated by Expand_N_Type_Conversion.
12564 if In_Instance_Body then
12565 Error_Msg_Warn := SPARK_Mode /= On;
12566 Conversion_Error_N
12567 ("cannot convert access discriminant to non-local "
12568 & "access type<<", Operand);
12569 Conversion_Error_N ("\Program_Error [<<", Operand);
12571 -- Real error if not in instance body
12573 else
12574 Conversion_Error_N
12575 ("cannot convert access discriminant to non-local "
12576 & "access type", Operand);
12577 return False;
12578 end if;
12579 end if;
12581 -- The case of a reference to an access discriminant from
12582 -- within a limited type declaration (which will appear as
12583 -- a discriminal) is always illegal because the level of the
12584 -- discriminant is considered to be deeper than any (nameable)
12585 -- access type.
12587 if Is_Entity_Name (Operand)
12588 and then not Is_Local_Anonymous_Access (Opnd_Type)
12589 and then
12590 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12591 and then Present (Discriminal_Link (Entity (Operand)))
12592 then
12593 Conversion_Error_N
12594 ("discriminant has deeper accessibility level than target",
12595 Operand);
12596 return False;
12597 end if;
12598 end if;
12599 end if;
12601 return True;
12603 -- General and anonymous access types
12605 elsif Ekind_In (Target_Type, E_General_Access_Type,
12606 E_Anonymous_Access_Type)
12607 and then
12608 Conversion_Check
12609 (Is_Access_Type (Opnd_Type)
12610 and then not
12611 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12612 E_Access_Protected_Subprogram_Type),
12613 "must be an access-to-object type")
12614 then
12615 if Is_Access_Constant (Opnd_Type)
12616 and then not Is_Access_Constant (Target_Type)
12617 then
12618 Conversion_Error_N
12619 ("access-to-constant operand type not allowed", Operand);
12620 return False;
12621 end if;
12623 -- Check the static accessibility rule of 4.6(17). Note that the
12624 -- check is not enforced when within an instance body, since the RM
12625 -- requires such cases to be caught at run time.
12627 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12628 or else Is_Local_Anonymous_Access (Target_Type)
12629 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12630 N_Object_Declaration
12631 then
12632 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12633 -- conversions from an anonymous access type to a named general
12634 -- access type. Such conversions are not allowed in the case of
12635 -- access parameters and stand-alone objects of an anonymous
12636 -- access type. The implicit conversion case is recognized by
12637 -- testing that Comes_From_Source is False and that it's been
12638 -- rewritten. The Comes_From_Source test isn't sufficient because
12639 -- nodes in inlined calls to predefined library routines can have
12640 -- Comes_From_Source set to False. (Is there a better way to test
12641 -- for implicit conversions???)
12643 if Ada_Version >= Ada_2012
12644 and then not Comes_From_Source (N)
12645 and then N /= Original_Node (N)
12646 and then Ekind (Target_Type) = E_General_Access_Type
12647 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12648 then
12649 if Is_Itype (Opnd_Type) then
12651 -- Implicit conversions aren't allowed for objects of an
12652 -- anonymous access type, since such objects have nonstatic
12653 -- levels in Ada 2012.
12655 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12656 N_Object_Declaration
12657 then
12658 Conversion_Error_N
12659 ("implicit conversion of stand-alone anonymous "
12660 & "access object not allowed", Operand);
12661 return False;
12663 -- Implicit conversions aren't allowed for anonymous access
12664 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12665 -- is done to exclude anonymous access results.
12667 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12668 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12669 N_Function_Specification,
12670 N_Procedure_Specification)
12671 then
12672 Conversion_Error_N
12673 ("implicit conversion of anonymous access formal "
12674 & "not allowed", Operand);
12675 return False;
12677 -- This is a case where there's an enclosing object whose
12678 -- to which the "statically deeper than" relationship does
12679 -- not apply (such as an access discriminant selected from
12680 -- a dereference of an access parameter).
12682 elsif Object_Access_Level (Operand)
12683 = Scope_Depth (Standard_Standard)
12684 then
12685 Conversion_Error_N
12686 ("implicit conversion of anonymous access value "
12687 & "not allowed", Operand);
12688 return False;
12690 -- In other cases, the level of the operand's type must be
12691 -- statically less deep than that of the target type, else
12692 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12694 elsif Type_Access_Level (Opnd_Type) >
12695 Deepest_Type_Access_Level (Target_Type)
12696 then
12697 Conversion_Error_N
12698 ("implicit conversion of anonymous access value "
12699 & "violates accessibility", Operand);
12700 return False;
12701 end if;
12702 end if;
12704 elsif Type_Access_Level (Opnd_Type) >
12705 Deepest_Type_Access_Level (Target_Type)
12706 then
12707 -- In an instance, this is a run-time check, but one we know
12708 -- will fail, so generate an appropriate warning. The raise
12709 -- will be generated by Expand_N_Type_Conversion.
12711 if In_Instance_Body then
12712 Error_Msg_Warn := SPARK_Mode /= On;
12713 Conversion_Error_N
12714 ("cannot convert local pointer to non-local access type<<",
12715 Operand);
12716 Conversion_Error_N ("\Program_Error [<<", Operand);
12718 -- If not in an instance body, this is a real error
12720 else
12721 -- Avoid generation of spurious error message
12723 if not Error_Posted (N) then
12724 Conversion_Error_N
12725 ("cannot convert local pointer to non-local access type",
12726 Operand);
12727 end if;
12729 return False;
12730 end if;
12732 -- Special accessibility checks are needed in the case of access
12733 -- discriminants declared for a limited type.
12735 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12736 and then not Is_Local_Anonymous_Access (Opnd_Type)
12737 then
12738 -- When the operand is a selected access discriminant the check
12739 -- needs to be made against the level of the object denoted by
12740 -- the prefix of the selected name (Object_Access_Level handles
12741 -- checking the prefix of the operand for this case).
12743 if Nkind (Operand) = N_Selected_Component
12744 and then Object_Access_Level (Operand) >
12745 Deepest_Type_Access_Level (Target_Type)
12746 then
12747 -- In an instance, this is a run-time check, but one we know
12748 -- will fail, so generate an appropriate warning. The raise
12749 -- will be generated by Expand_N_Type_Conversion.
12751 if In_Instance_Body then
12752 Error_Msg_Warn := SPARK_Mode /= On;
12753 Conversion_Error_N
12754 ("cannot convert access discriminant to non-local "
12755 & "access type<<", Operand);
12756 Conversion_Error_N ("\Program_Error [<<", Operand);
12758 -- If not in an instance body, this is a real error
12760 else
12761 Conversion_Error_N
12762 ("cannot convert access discriminant to non-local "
12763 & "access type", Operand);
12764 return False;
12765 end if;
12766 end if;
12768 -- The case of a reference to an access discriminant from
12769 -- within a limited type declaration (which will appear as
12770 -- a discriminal) is always illegal because the level of the
12771 -- discriminant is considered to be deeper than any (nameable)
12772 -- access type.
12774 if Is_Entity_Name (Operand)
12775 and then
12776 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12777 and then Present (Discriminal_Link (Entity (Operand)))
12778 then
12779 Conversion_Error_N
12780 ("discriminant has deeper accessibility level than target",
12781 Operand);
12782 return False;
12783 end if;
12784 end if;
12785 end if;
12787 -- In the presence of limited_with clauses we have to use nonlimited
12788 -- views, if available.
12790 Check_Limited : declare
12791 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12792 -- Helper function to handle limited views
12794 --------------------------
12795 -- Full_Designated_Type --
12796 --------------------------
12798 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12799 Desig : constant Entity_Id := Designated_Type (T);
12801 begin
12802 -- Handle the limited view of a type
12804 if From_Limited_With (Desig)
12805 and then Has_Non_Limited_View (Desig)
12806 then
12807 return Available_View (Desig);
12808 else
12809 return Desig;
12810 end if;
12811 end Full_Designated_Type;
12813 -- Local Declarations
12815 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12816 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12818 Same_Base : constant Boolean :=
12819 Base_Type (Target) = Base_Type (Opnd);
12821 -- Start of processing for Check_Limited
12823 begin
12824 if Is_Tagged_Type (Target) then
12825 return Valid_Tagged_Conversion (Target, Opnd);
12827 else
12828 if not Same_Base then
12829 Conversion_Error_NE
12830 ("target designated type not compatible with }",
12831 N, Base_Type (Opnd));
12832 return False;
12834 -- Ada 2005 AI-384: legality rule is symmetric in both
12835 -- designated types. The conversion is legal (with possible
12836 -- constraint check) if either designated type is
12837 -- unconstrained.
12839 elsif Subtypes_Statically_Match (Target, Opnd)
12840 or else
12841 (Has_Discriminants (Target)
12842 and then
12843 (not Is_Constrained (Opnd)
12844 or else not Is_Constrained (Target)))
12845 then
12846 -- Special case, if Value_Size has been used to make the
12847 -- sizes different, the conversion is not allowed even
12848 -- though the subtypes statically match.
12850 if Known_Static_RM_Size (Target)
12851 and then Known_Static_RM_Size (Opnd)
12852 and then RM_Size (Target) /= RM_Size (Opnd)
12853 then
12854 Conversion_Error_NE
12855 ("target designated subtype not compatible with }",
12856 N, Opnd);
12857 Conversion_Error_NE
12858 ("\because sizes of the two designated subtypes differ",
12859 N, Opnd);
12860 return False;
12862 -- Normal case where conversion is allowed
12864 else
12865 return True;
12866 end if;
12868 else
12869 Error_Msg_NE
12870 ("target designated subtype not compatible with }",
12871 N, Opnd);
12872 return False;
12873 end if;
12874 end if;
12875 end Check_Limited;
12877 -- Access to subprogram types. If the operand is an access parameter,
12878 -- the type has a deeper accessibility that any master, and cannot be
12879 -- assigned. We must make an exception if the conversion is part of an
12880 -- assignment and the target is the return object of an extended return
12881 -- statement, because in that case the accessibility check takes place
12882 -- after the return.
12884 elsif Is_Access_Subprogram_Type (Target_Type)
12886 -- Note: this test of Opnd_Type is there to prevent entering this
12887 -- branch in the case of a remote access to subprogram type, which
12888 -- is internally represented as an E_Record_Type.
12890 and then Is_Access_Type (Opnd_Type)
12891 then
12892 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12893 and then Is_Entity_Name (Operand)
12894 and then Ekind (Entity (Operand)) = E_In_Parameter
12895 and then
12896 (Nkind (Parent (N)) /= N_Assignment_Statement
12897 or else not Is_Entity_Name (Name (Parent (N)))
12898 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12899 then
12900 Conversion_Error_N
12901 ("illegal attempt to store anonymous access to subprogram",
12902 Operand);
12903 Conversion_Error_N
12904 ("\value has deeper accessibility than any master "
12905 & "(RM 3.10.2 (13))",
12906 Operand);
12908 Error_Msg_NE
12909 ("\use named access type for& instead of access parameter",
12910 Operand, Entity (Operand));
12911 end if;
12913 -- Check that the designated types are subtype conformant
12915 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12916 Old_Id => Designated_Type (Opnd_Type),
12917 Err_Loc => N);
12919 -- Check the static accessibility rule of 4.6(20)
12921 if Type_Access_Level (Opnd_Type) >
12922 Deepest_Type_Access_Level (Target_Type)
12923 then
12924 Conversion_Error_N
12925 ("operand type has deeper accessibility level than target",
12926 Operand);
12928 -- Check that if the operand type is declared in a generic body,
12929 -- then the target type must be declared within that same body
12930 -- (enforces last sentence of 4.6(20)).
12932 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12933 declare
12934 O_Gen : constant Node_Id :=
12935 Enclosing_Generic_Body (Opnd_Type);
12937 T_Gen : Node_Id;
12939 begin
12940 T_Gen := Enclosing_Generic_Body (Target_Type);
12941 while Present (T_Gen) and then T_Gen /= O_Gen loop
12942 T_Gen := Enclosing_Generic_Body (T_Gen);
12943 end loop;
12945 if T_Gen /= O_Gen then
12946 Conversion_Error_N
12947 ("target type must be declared in same generic body "
12948 & "as operand type", N);
12949 end if;
12950 end;
12951 end if;
12953 return True;
12955 -- Remote access to subprogram types
12957 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12958 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12959 then
12960 -- It is valid to convert from one RAS type to another provided
12961 -- that their specification statically match.
12963 -- Note: at this point, remote access to subprogram types have been
12964 -- expanded to their E_Record_Type representation, and we need to
12965 -- go back to the original access type definition using the
12966 -- Corresponding_Remote_Type attribute in order to check that the
12967 -- designated profiles match.
12969 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12970 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12972 Check_Subtype_Conformant
12973 (New_Id =>
12974 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12975 Old_Id =>
12976 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12977 Err_Loc =>
12979 return True;
12981 -- If it was legal in the generic, it's legal in the instance
12983 elsif In_Instance_Body then
12984 return True;
12986 -- If both are tagged types, check legality of view conversions
12988 elsif Is_Tagged_Type (Target_Type)
12989 and then
12990 Is_Tagged_Type (Opnd_Type)
12991 then
12992 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12994 -- Types derived from the same root type are convertible
12996 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12997 return True;
12999 -- In an instance or an inlined body, there may be inconsistent views of
13000 -- the same type, or of types derived from a common root.
13002 elsif (In_Instance or In_Inlined_Body)
13003 and then
13004 Root_Type (Underlying_Type (Target_Type)) =
13005 Root_Type (Underlying_Type (Opnd_Type))
13006 then
13007 return True;
13009 -- Special check for common access type error case
13011 elsif Ekind (Target_Type) = E_Access_Type
13012 and then Is_Access_Type (Opnd_Type)
13013 then
13014 Conversion_Error_N ("target type must be general access type!", N);
13015 Conversion_Error_NE -- CODEFIX
13016 ("add ALL to }!", N, Target_Type);
13017 return False;
13019 -- Here we have a real conversion error
13021 else
13022 -- Check for missing regular with_clause when only a limited view of
13023 -- target is available.
13025 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13026 Conversion_Error_NE
13027 ("invalid conversion, not compatible with limited view of }",
13028 N, Opnd_Type);
13029 Conversion_Error_NE
13030 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13032 elsif Is_Access_Type (Opnd_Type)
13033 and then From_Limited_With (Designated_Type (Opnd_Type))
13034 and then In_Package_Body
13035 then
13036 Conversion_Error_NE
13037 ("invalid conversion, not compatible with }", N, Opnd_Type);
13038 Conversion_Error_NE
13039 ("\add with_clause for& to current unit!",
13040 N, Scope (Designated_Type (Opnd_Type)));
13042 else
13043 Conversion_Error_NE
13044 ("invalid conversion, not compatible with }", N, Opnd_Type);
13045 end if;
13047 return False;
13048 end if;
13049 end Valid_Conversion;
13051 end Sem_Res;