[NDS32] new attribute no_prologue and new option -mret-in-naked-func.
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob3d8849a0491e34c08299df0f91922735890a9cd8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch9; use Sem_Ch9;
64 with Sem_Ch10; use Sem_Ch10;
65 with Sem_Ch12; use Sem_Ch12;
66 with Sem_Ch13; use Sem_Ch13;
67 with Sem_Dim; use Sem_Dim;
68 with Sem_Disp; use Sem_Disp;
69 with Sem_Dist; use Sem_Dist;
70 with Sem_Elim; use Sem_Elim;
71 with Sem_Eval; use Sem_Eval;
72 with Sem_Mech; use Sem_Mech;
73 with Sem_Prag; use Sem_Prag;
74 with Sem_Res; use Sem_Res;
75 with Sem_Util; use Sem_Util;
76 with Sem_Type; use Sem_Type;
77 with Sem_Warn; use Sem_Warn;
78 with Sinput; use Sinput;
79 with Stand; use Stand;
80 with Sinfo; use Sinfo;
81 with Sinfo.CN; use Sinfo.CN;
82 with Snames; use Snames;
83 with Stringt; use Stringt;
84 with Style;
85 with Stylesw; use Stylesw;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
91 package body Sem_Ch6 is
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Function_Return (N : Node_Id);
107 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
108 -- applies to a [generic] function.
110 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111 -- Analyze a generic subprogram body. N is the body to be analyzed, and
112 -- Gen_Id is the defining entity Id for the corresponding spec.
114 procedure Analyze_Null_Procedure
115 (N : Node_Id;
116 Is_Completion : out Boolean);
117 -- A null procedure can be a declaration or (Ada 2012) a completion
119 procedure Analyze_Return_Statement (N : Node_Id);
120 -- Common processing for simple and extended return statements
122 procedure Analyze_Return_Type (N : Node_Id);
123 -- Subsidiary to Process_Formals: analyze subtype mark in function
124 -- specification in a context where the formals are visible and hide
125 -- outer homographs.
127 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
129 -- that we can use RETURN but not skip the debug output at the end.
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
155 procedure Check_Limited_Return
156 (N : Node_Id;
157 Expr : Node_Id;
158 R_Type : Entity_Id);
159 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160 -- types. Used only for simple return statements. Expr is the expression
161 -- returned.
163 procedure Check_Subprogram_Order (N : Node_Id);
164 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
165 -- the alpha ordering rule for N if this ordering requirement applicable.
167 procedure Check_Returns
168 (HSS : Node_Id;
169 Mode : Character;
170 Err : out Boolean;
171 Proc : Entity_Id := Empty);
172 -- Called to check for missing return statements in a function body, or for
173 -- returns present in a procedure body which has No_Return set. HSS is the
174 -- handled statement sequence for the subprogram body. This procedure
175 -- checks all flow paths to make sure they either have return (Mode = 'F',
176 -- used for functions) or do not have a return (Mode = 'P', used for
177 -- No_Return procedures). The flag Err is set if there are any control
178 -- paths not explicitly terminated by a return in the function case, and is
179 -- True otherwise. Proc is the entity for the procedure case and is used
180 -- in posting the warning message.
182 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183 -- In Ada 2012, a primitive equality operator on an untagged record type
184 -- must appear before the type is frozen, and have the same visibility as
185 -- that of the type. This procedure checks that this rule is met, and
186 -- otherwise emits an error on the subprogram declaration and a warning
187 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190 -- is set, otherwise the call has no effect.
192 procedure Enter_Overloaded_Entity (S : Entity_Id);
193 -- This procedure makes S, a new overloaded entity, into the first visible
194 -- entity with that name.
196 function Is_Non_Overriding_Operation
197 (Prev_E : Entity_Id;
198 New_E : Entity_Id) return Boolean;
199 -- Enforce the rule given in 12.3(18): a private operation in an instance
200 -- overrides an inherited operation only if the corresponding operation
201 -- was overriding in the generic. This needs to be checked for primitive
202 -- operations of types derived (in the generic unit) from formal private
203 -- or formal derived types.
205 procedure Make_Inequality_Operator (S : Entity_Id);
206 -- Create the declaration for an inequality operator that is implicitly
207 -- created by a user-defined equality operator that yields a boolean.
209 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
210 -- Formal_Id is an formal parameter entity. This procedure deals with
211 -- setting the proper validity status for this entity, which depends on
212 -- the kind of parameter and the validity checking mode.
214 ---------------------------------------------
215 -- Analyze_Abstract_Subprogram_Declaration --
216 ---------------------------------------------
218 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
219 Scop : constant Entity_Id := Current_Scope;
220 Subp_Id : constant Entity_Id :=
221 Analyze_Subprogram_Specification (Specification (N));
223 begin
224 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
226 Generate_Definition (Subp_Id);
228 -- Set the SPARK mode from the current context (may be overwritten later
229 -- with explicit pragma).
231 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
232 Set_SPARK_Pragma_Inherited (Subp_Id);
234 -- Preserve relevant elaboration-related attributes of the context which
235 -- are no longer available or very expensive to recompute once analysis,
236 -- resolution, and expansion are over.
238 Mark_Elaboration_Attributes
239 (N_Id => Subp_Id,
240 Checks => True,
241 Warnings => True);
243 Set_Is_Abstract_Subprogram (Subp_Id);
244 New_Overloaded_Entity (Subp_Id);
245 Check_Delayed_Subprogram (Subp_Id);
247 Set_Categorization_From_Scope (Subp_Id, Scop);
249 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
250 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
252 -- Issue a warning if the abstract subprogram is neither a dispatching
253 -- operation nor an operation that overrides an inherited subprogram or
254 -- predefined operator, since this most likely indicates a mistake.
256 elsif Warn_On_Redundant_Constructs
257 and then not Is_Dispatching_Operation (Subp_Id)
258 and then not Present (Overridden_Operation (Subp_Id))
259 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
260 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
261 then
262 Error_Msg_N
263 ("abstract subprogram is not dispatching or overriding?r?", N);
264 end if;
266 Generate_Reference_To_Formals (Subp_Id);
267 Check_Eliminated (Subp_Id);
269 if Has_Aspects (N) then
270 Analyze_Aspect_Specifications (N, Subp_Id);
271 end if;
272 end Analyze_Abstract_Subprogram_Declaration;
274 ---------------------------------
275 -- Analyze_Expression_Function --
276 ---------------------------------
278 procedure Analyze_Expression_Function (N : Node_Id) is
279 Expr : constant Node_Id := Expression (N);
280 Loc : constant Source_Ptr := Sloc (N);
281 LocX : constant Source_Ptr := Sloc (Expr);
282 Spec : constant Node_Id := Specification (N);
284 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
285 -- N is an expression function that is a completion and Def_Id its
286 -- defining entity. Freeze before N all the types referenced by the
287 -- expression of the function.
289 -----------------------
290 -- Freeze_Expr_Types --
291 -----------------------
293 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
294 function Cloned_Expression return Node_Id;
295 -- Build a duplicate of the expression of the return statement that
296 -- has no defining entities shared with the original expression.
298 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
299 -- Freeze all types referenced in the subtree rooted at Node
301 -----------------------
302 -- Cloned_Expression --
303 -----------------------
305 function Cloned_Expression return Node_Id is
306 function Clone_Id (Node : Node_Id) return Traverse_Result;
307 -- Tree traversal routine that clones the defining identifier of
308 -- iterator and loop parameter specification nodes.
310 --------------
311 -- Clone_Id --
312 --------------
314 function Clone_Id (Node : Node_Id) return Traverse_Result is
315 begin
316 if Nkind_In (Node, N_Iterator_Specification,
317 N_Loop_Parameter_Specification)
318 then
319 Set_Defining_Identifier (Node,
320 New_Copy (Defining_Identifier (Node)));
321 end if;
323 return OK;
324 end Clone_Id;
326 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
328 -- Local variable
330 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
332 -- Start of processing for Cloned_Expression
334 begin
335 -- We must duplicate the expression with semantic information to
336 -- inherit the decoration of global entities in generic instances.
337 -- Set the parent of the new node to be the parent of the original
338 -- to get the proper context, which is needed for complete error
339 -- reporting and for semantic analysis.
341 Set_Parent (Dup_Expr, Parent (Expr));
343 -- Replace the defining identifier of iterators and loop param
344 -- specifications by a clone to ensure that the cloned expression
345 -- and the original expression don't have shared identifiers;
346 -- otherwise, as part of the preanalysis of the expression, these
347 -- shared identifiers may be left decorated with itypes which
348 -- will not be available in the tree passed to the backend.
350 Clone_Def_Ids (Dup_Expr);
352 return Dup_Expr;
353 end Cloned_Expression;
355 ----------------------
356 -- Freeze_Type_Refs --
357 ----------------------
359 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
360 procedure Check_And_Freeze_Type (Typ : Entity_Id);
361 -- Check that Typ is fully declared and freeze it if so
363 ---------------------------
364 -- Check_And_Freeze_Type --
365 ---------------------------
367 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
368 begin
369 -- Skip Itypes created by the preanalysis, and itypes whose
370 -- scope is another type (i.e. component subtypes that depend
371 -- on a discriminant),
373 if Is_Itype (Typ)
374 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
375 or else Is_Type (Scope (Typ)))
376 then
377 return;
378 end if;
380 -- This provides a better error message than generating
381 -- primitives whose compilation fails much later. Refine
382 -- the error message if possible.
384 Check_Fully_Declared (Typ, Node);
386 if Error_Posted (Node) then
387 if Has_Private_Component (Typ)
388 and then not Is_Private_Type (Typ)
389 then
390 Error_Msg_NE ("\type& has private component", Node, Typ);
391 end if;
393 else
394 Freeze_Before (N, Typ);
395 end if;
396 end Check_And_Freeze_Type;
398 -- Start of processing for Freeze_Type_Refs
400 begin
401 -- Check that a type referenced by an entity can be frozen
403 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
404 Check_And_Freeze_Type (Etype (Entity (Node)));
406 -- Check that the enclosing record type can be frozen
408 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
409 Check_And_Freeze_Type (Scope (Entity (Node)));
410 end if;
412 -- Freezing an access type does not freeze the designated type,
413 -- but freezing conversions between access to interfaces requires
414 -- that the interface types themselves be frozen, so that dispatch
415 -- table entities are properly created.
417 -- Unclear whether a more general rule is needed ???
419 elsif Nkind (Node) = N_Type_Conversion
420 and then Is_Access_Type (Etype (Node))
421 and then Is_Interface (Designated_Type (Etype (Node)))
422 then
423 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
424 end if;
426 -- An implicit dereference freezes the designated type. In the
427 -- case of a dispatching call whose controlling argument is an
428 -- access type, the dereference is not made explicit, so we must
429 -- check for such a call and freeze the designated type.
431 if Nkind (Node) in N_Has_Etype
432 and then Present (Etype (Node))
433 and then Is_Access_Type (Etype (Node))
434 and then Nkind (Parent (Node)) = N_Function_Call
435 and then Node = Controlling_Argument (Parent (Node))
436 then
437 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
438 end if;
440 -- No point in posting several errors on the same expression
442 if Serious_Errors_Detected > 0 then
443 return Abandon;
444 else
445 return OK;
446 end if;
447 end Freeze_Type_Refs;
449 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
451 -- Local variables
453 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
454 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
455 Dup_Expr : constant Node_Id := Cloned_Expression;
457 -- Start of processing for Freeze_Expr_Types
459 begin
460 -- Preanalyze a duplicate of the expression to have available the
461 -- minimum decoration needed to locate referenced unfrozen types
462 -- without adding any decoration to the function expression.
464 Push_Scope (Def_Id);
465 Install_Formals (Def_Id);
467 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
468 End_Scope;
470 -- Restore certain attributes of Def_Id since the preanalysis may
471 -- have introduced itypes to this scope, thus modifying attributes
472 -- First_Entity and Last_Entity.
474 Set_First_Entity (Def_Id, Saved_First_Entity);
475 Set_Last_Entity (Def_Id, Saved_Last_Entity);
477 if Present (Last_Entity (Def_Id)) then
478 Set_Next_Entity (Last_Entity (Def_Id), Empty);
479 end if;
481 -- Freeze all types referenced in the expression
483 Freeze_References (Dup_Expr);
484 end Freeze_Expr_Types;
486 -- Local variables
488 Asp : Node_Id;
489 New_Body : Node_Id;
490 New_Spec : Node_Id;
491 Orig_N : Node_Id;
492 Ret : Node_Id;
494 Def_Id : Entity_Id := Empty;
495 Prev : Entity_Id;
496 -- If the expression is a completion, Prev is the entity whose
497 -- declaration is completed. Def_Id is needed to analyze the spec.
499 -- Start of processing for Analyze_Expression_Function
501 begin
502 -- This is one of the occasions on which we transform the tree during
503 -- semantic analysis. If this is a completion, transform the expression
504 -- function into an equivalent subprogram body, and analyze it.
506 -- Expression functions are inlined unconditionally. The back-end will
507 -- determine whether this is possible.
509 Inline_Processing_Required := True;
511 -- Create a specification for the generated body. This must be done
512 -- prior to the analysis of the initial declaration.
514 New_Spec := Copy_Subprogram_Spec (Spec);
515 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
517 -- If there are previous overloadable entities with the same name,
518 -- check whether any of them is completed by the expression function.
519 -- In a generic context a formal subprogram has no completion.
521 if Present (Prev)
522 and then Is_Overloadable (Prev)
523 and then not Is_Formal_Subprogram (Prev)
524 then
525 Def_Id := Analyze_Subprogram_Specification (Spec);
526 Prev := Find_Corresponding_Spec (N);
528 -- The previous entity may be an expression function as well, in
529 -- which case the redeclaration is illegal.
531 if Present (Prev)
532 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
533 N_Expression_Function
534 then
535 Error_Msg_Sloc := Sloc (Prev);
536 Error_Msg_N ("& conflicts with declaration#", Def_Id);
537 return;
538 end if;
539 end if;
541 Ret := Make_Simple_Return_Statement (LocX, Expr);
543 New_Body :=
544 Make_Subprogram_Body (Loc,
545 Specification => New_Spec,
546 Declarations => Empty_List,
547 Handled_Statement_Sequence =>
548 Make_Handled_Sequence_Of_Statements (LocX,
549 Statements => New_List (Ret)));
550 Set_Was_Expression_Function (New_Body);
552 -- If the expression completes a generic subprogram, we must create a
553 -- separate node for the body, because at instantiation the original
554 -- node of the generic copy must be a generic subprogram body, and
555 -- cannot be a expression function. Otherwise we just rewrite the
556 -- expression with the non-generic body.
558 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
559 Insert_After (N, New_Body);
561 -- Propagate any aspects or pragmas that apply to the expression
562 -- function to the proper body when the expression function acts
563 -- as a completion.
565 if Has_Aspects (N) then
566 Move_Aspects (N, To => New_Body);
567 end if;
569 Relocate_Pragmas_To_Body (New_Body);
571 Rewrite (N, Make_Null_Statement (Loc));
572 Set_Has_Completion (Prev, False);
573 Analyze (N);
574 Analyze (New_Body);
575 Set_Is_Inlined (Prev);
577 -- If the expression function is a completion, the previous declaration
578 -- must come from source. We know already that it appears in the current
579 -- scope. The entity itself may be internally created if within a body
580 -- to be inlined.
582 elsif Present (Prev)
583 and then Is_Overloadable (Prev)
584 and then not Is_Formal_Subprogram (Prev)
585 and then Comes_From_Source (Parent (Prev))
586 then
587 Set_Has_Completion (Prev, False);
588 Set_Is_Inlined (Prev);
590 -- AI12-0103: Expression functions that are a completion freeze their
591 -- expression but don't freeze anything else (unlike regular bodies).
593 -- Note that we cannot defer this freezing to the analysis of the
594 -- expression itself, because a freeze node might appear in a nested
595 -- scope, leading to an elaboration order issue in gigi.
596 -- As elsewhere, we do not emit freeze nodes within a generic unit.
598 if not Inside_A_Generic then
599 Freeze_Expr_Types (Def_Id);
600 end if;
602 -- For navigation purposes, indicate that the function is a body
604 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
605 Rewrite (N, New_Body);
607 -- Remove any existing aspects from the original node because the act
608 -- of rewriting causes the list to be shared between the two nodes.
610 Orig_N := Original_Node (N);
611 Remove_Aspects (Orig_N);
613 -- Propagate any pragmas that apply to expression function to the
614 -- proper body when the expression function acts as a completion.
615 -- Aspects are automatically transfered because of node rewriting.
617 Relocate_Pragmas_To_Body (N);
618 Analyze (N);
620 -- Once the aspects of the generated body have been analyzed, create
621 -- a copy for ASIS purposes and associate it with the original node.
623 if Has_Aspects (N) then
624 Set_Aspect_Specifications (Orig_N,
625 New_Copy_List_Tree (Aspect_Specifications (N)));
626 end if;
628 -- Prev is the previous entity with the same name, but it is can
629 -- be an unrelated spec that is not completed by the expression
630 -- function. In that case the relevant entity is the one in the body.
631 -- Not clear that the backend can inline it in this case ???
633 if Has_Completion (Prev) then
635 -- The formals of the expression function are body formals,
636 -- and do not appear in the ali file, which will only contain
637 -- references to the formals of the original subprogram spec.
639 declare
640 F1 : Entity_Id;
641 F2 : Entity_Id;
643 begin
644 F1 := First_Formal (Def_Id);
645 F2 := First_Formal (Prev);
647 while Present (F1) loop
648 Set_Spec_Entity (F1, F2);
649 Next_Formal (F1);
650 Next_Formal (F2);
651 end loop;
652 end;
654 else
655 Set_Is_Inlined (Defining_Entity (New_Body));
656 end if;
658 -- If this is not a completion, create both a declaration and a body, so
659 -- that the expression can be inlined whenever possible.
661 else
662 -- An expression function that is not a completion is not a
663 -- subprogram declaration, and thus cannot appear in a protected
664 -- definition.
666 if Nkind (Parent (N)) = N_Protected_Definition then
667 Error_Msg_N
668 ("an expression function is not a legal protected operation", N);
669 end if;
671 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
673 -- Remove any existing aspects from the original node because the act
674 -- of rewriting causes the list to be shared between the two nodes.
676 Orig_N := Original_Node (N);
677 Remove_Aspects (Orig_N);
679 Analyze (N);
681 -- Once the aspects of the generated spec have been analyzed, create
682 -- a copy for ASIS purposes and associate it with the original node.
684 if Has_Aspects (N) then
685 Set_Aspect_Specifications (Orig_N,
686 New_Copy_List_Tree (Aspect_Specifications (N)));
687 end if;
689 -- If aspect SPARK_Mode was specified on the body, it needs to be
690 -- repeated both on the generated spec and the body.
692 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
694 if Present (Asp) then
695 Asp := New_Copy_Tree (Asp);
696 Set_Analyzed (Asp, False);
697 Set_Aspect_Specifications (New_Body, New_List (Asp));
698 end if;
700 Def_Id := Defining_Entity (N);
701 Set_Is_Inlined (Def_Id);
703 -- Establish the linkages between the spec and the body. These are
704 -- used when the expression function acts as the prefix of attribute
705 -- 'Access in order to freeze the original expression which has been
706 -- moved to the generated body.
708 Set_Corresponding_Body (N, Defining_Entity (New_Body));
709 Set_Corresponding_Spec (New_Body, Def_Id);
711 -- Within a generic pre-analyze the original expression for name
712 -- capture. The body is also generated but plays no role in
713 -- this because it is not part of the original source.
715 if Inside_A_Generic then
716 Set_Has_Completion (Def_Id);
717 Push_Scope (Def_Id);
718 Install_Formals (Def_Id);
719 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
720 End_Scope;
721 end if;
723 -- To prevent premature freeze action, insert the new body at the end
724 -- of the current declarations, or at the end of the package spec.
725 -- However, resolve usage names now, to prevent spurious visibility
726 -- on later entities. Note that the function can now be called in
727 -- the current declarative part, which will appear to be prior to
728 -- the presence of the body in the code. There are nevertheless no
729 -- order of elaboration issues because all name resolution has taken
730 -- place at the point of declaration.
732 declare
733 Decls : List_Id := List_Containing (N);
734 Expr : constant Node_Id := Expression (Ret);
735 Par : constant Node_Id := Parent (Decls);
736 Typ : constant Entity_Id := Etype (Def_Id);
738 begin
739 -- If this is a wrapper created for in an instance for a formal
740 -- subprogram, insert body after declaration, to be analyzed when
741 -- the enclosing instance is analyzed.
743 if GNATprove_Mode
744 and then Is_Generic_Actual_Subprogram (Def_Id)
745 then
746 Insert_After (N, New_Body);
748 else
749 if Nkind (Par) = N_Package_Specification
750 and then Decls = Visible_Declarations (Par)
751 and then Present (Private_Declarations (Par))
752 and then not Is_Empty_List (Private_Declarations (Par))
753 then
754 Decls := Private_Declarations (Par);
755 end if;
757 Insert_After (Last (Decls), New_Body);
759 -- Preanalyze the expression if not already done above
761 if not Inside_A_Generic then
762 Push_Scope (Def_Id);
763 Install_Formals (Def_Id);
764 Preanalyze_Spec_Expression (Expr, Typ);
765 Check_Limited_Return (Original_Node (N), Expr, Typ);
766 End_Scope;
767 end if;
768 end if;
769 end;
770 end if;
772 -- Check incorrect use of dynamically tagged expression. This doesn't
773 -- fall out automatically when analyzing the generated function body,
774 -- because Check_Dynamically_Tagged_Expression deliberately ignores
775 -- nodes that don't come from source.
777 if Present (Def_Id)
778 and then Nkind (Def_Id) in N_Has_Etype
779 and then Is_Tagged_Type (Etype (Def_Id))
780 then
781 Check_Dynamically_Tagged_Expression
782 (Expr => Expr,
783 Typ => Etype (Def_Id),
784 Related_Nod => Original_Node (N));
785 end if;
787 -- We must enforce checks for unreferenced formals in our newly
788 -- generated function, so we propagate the referenced flag from the
789 -- original spec to the new spec as well as setting Comes_From_Source.
791 if Present (Parameter_Specifications (New_Spec)) then
792 declare
793 Form_New_Def : Entity_Id;
794 Form_New_Spec : Entity_Id;
795 Form_Old_Def : Entity_Id;
796 Form_Old_Spec : Entity_Id;
797 begin
799 Form_New_Spec := First (Parameter_Specifications (New_Spec));
800 Form_Old_Spec := First (Parameter_Specifications (Spec));
802 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
803 Form_New_Def := Defining_Identifier (Form_New_Spec);
804 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
806 Set_Comes_From_Source (Form_New_Def, True);
808 -- Because of the usefulness of unreferenced controlling
809 -- formals we exempt them from unreferenced warnings by marking
810 -- them as always referenced.
812 Set_Referenced
813 (Form_Old_Def,
814 (Is_Formal (Form_Old_Def)
815 and then Is_Controlling_Formal (Form_Old_Def))
816 or else Referenced (Form_Old_Def));
817 -- or else Is_Dispatching_Operation
818 -- (Corresponding_Spec (New_Body)));
820 Next (Form_New_Spec);
821 Next (Form_Old_Spec);
822 end loop;
823 end;
824 end if;
825 end Analyze_Expression_Function;
827 ----------------------------------------
828 -- Analyze_Extended_Return_Statement --
829 ----------------------------------------
831 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
832 begin
833 Check_Compiler_Unit ("extended return statement", N);
834 Analyze_Return_Statement (N);
835 end Analyze_Extended_Return_Statement;
837 ----------------------------
838 -- Analyze_Function_Call --
839 ----------------------------
841 procedure Analyze_Function_Call (N : Node_Id) is
842 Actuals : constant List_Id := Parameter_Associations (N);
843 Func_Nam : constant Node_Id := Name (N);
844 Actual : Node_Id;
846 begin
847 Analyze (Func_Nam);
849 -- A call of the form A.B (X) may be an Ada 2005 call, which is
850 -- rewritten as B (A, X). If the rewriting is successful, the call
851 -- has been analyzed and we just return.
853 if Nkind (Func_Nam) = N_Selected_Component
854 and then Name (N) /= Func_Nam
855 and then Is_Rewrite_Substitution (N)
856 and then Present (Etype (N))
857 then
858 return;
859 end if;
861 -- If error analyzing name, then set Any_Type as result type and return
863 if Etype (Func_Nam) = Any_Type then
864 Set_Etype (N, Any_Type);
865 return;
866 end if;
868 -- Otherwise analyze the parameters
870 if Present (Actuals) then
871 Actual := First (Actuals);
872 while Present (Actual) loop
873 Analyze (Actual);
874 Check_Parameterless_Call (Actual);
875 Next (Actual);
876 end loop;
877 end if;
879 Analyze_Call (N);
880 end Analyze_Function_Call;
882 -----------------------------
883 -- Analyze_Function_Return --
884 -----------------------------
886 procedure Analyze_Function_Return (N : Node_Id) is
887 Loc : constant Source_Ptr := Sloc (N);
888 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
889 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
891 R_Type : constant Entity_Id := Etype (Scope_Id);
892 -- Function result subtype
894 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
895 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
896 -- aggregate in a return statement.
898 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
899 -- Check that the return_subtype_indication properly matches the result
900 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
902 -----------------------------------
903 -- Check_Aggregate_Accessibility --
904 -----------------------------------
906 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
907 Typ : constant Entity_Id := Etype (Aggr);
908 Assoc : Node_Id;
909 Discr : Entity_Id;
910 Expr : Node_Id;
911 Obj : Node_Id;
913 begin
914 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
915 Discr := First_Discriminant (Typ);
916 Assoc := First (Component_Associations (Aggr));
917 while Present (Discr) loop
918 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
919 Expr := Expression (Assoc);
921 if Nkind (Expr) = N_Attribute_Reference
922 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
923 then
924 Obj := Prefix (Expr);
925 while Nkind_In (Obj, N_Indexed_Component,
926 N_Selected_Component)
927 loop
928 Obj := Prefix (Obj);
929 end loop;
931 -- Do not check aliased formals or function calls. A
932 -- run-time check may still be needed ???
934 if Is_Entity_Name (Obj)
935 and then Comes_From_Source (Obj)
936 then
937 if Is_Formal (Entity (Obj))
938 and then Is_Aliased (Entity (Obj))
939 then
940 null;
942 elsif Object_Access_Level (Obj) >
943 Scope_Depth (Scope (Scope_Id))
944 then
945 Error_Msg_N
946 ("access discriminant in return aggregate would "
947 & "be a dangling reference", Obj);
948 end if;
949 end if;
950 end if;
951 end if;
953 Next_Discriminant (Discr);
954 end loop;
955 end if;
956 end Check_Aggregate_Accessibility;
958 -------------------------------------
959 -- Check_Return_Subtype_Indication --
960 -------------------------------------
962 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
963 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
965 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
966 -- Subtype given in the extended return statement (must match R_Type)
968 Subtype_Ind : constant Node_Id :=
969 Object_Definition (Original_Node (Obj_Decl));
971 procedure Error_No_Match (N : Node_Id);
972 -- Output error messages for case where types do not statically
973 -- match. N is the location for the messages.
975 --------------------
976 -- Error_No_Match --
977 --------------------
979 procedure Error_No_Match (N : Node_Id) is
980 begin
981 Error_Msg_N
982 ("subtype must statically match function result subtype", N);
984 if not Predicates_Match (R_Stm_Type, R_Type) then
985 Error_Msg_Node_2 := R_Type;
986 Error_Msg_NE
987 ("\predicate of& does not match predicate of&",
988 N, R_Stm_Type);
989 end if;
990 end Error_No_Match;
992 -- Start of processing for Check_Return_Subtype_Indication
994 begin
995 -- First, avoid cascaded errors
997 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
998 return;
999 end if;
1001 -- "return access T" case; check that the return statement also has
1002 -- "access T", and that the subtypes statically match:
1003 -- if this is an access to subprogram the signatures must match.
1005 if Is_Anonymous_Access_Type (R_Type) then
1006 if Is_Anonymous_Access_Type (R_Stm_Type) then
1007 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
1008 then
1009 if Base_Type (Designated_Type (R_Stm_Type)) /=
1010 Base_Type (Designated_Type (R_Type))
1011 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
1012 then
1013 Error_No_Match (Subtype_Mark (Subtype_Ind));
1014 end if;
1016 else
1017 -- For two anonymous access to subprogram types, the types
1018 -- themselves must be type conformant.
1020 if not Conforming_Types
1021 (R_Stm_Type, R_Type, Fully_Conformant)
1022 then
1023 Error_No_Match (Subtype_Ind);
1024 end if;
1025 end if;
1027 else
1028 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
1029 end if;
1031 -- If the return object is of an anonymous access type, then report
1032 -- an error if the function's result type is not also anonymous.
1034 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
1035 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
1036 Error_Msg_N
1037 ("anonymous access not allowed for function with named access "
1038 & "result", Subtype_Ind);
1040 -- Subtype indication case: check that the return object's type is
1041 -- covered by the result type, and that the subtypes statically match
1042 -- when the result subtype is constrained. Also handle record types
1043 -- with unknown discriminants for which we have built the underlying
1044 -- record view. Coverage is needed to allow specific-type return
1045 -- objects when the result type is class-wide (see AI05-32).
1047 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
1048 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
1049 and then
1050 Covers
1051 (Base_Type (R_Type),
1052 Underlying_Record_View (Base_Type (R_Stm_Type))))
1053 then
1054 -- A null exclusion may be present on the return type, on the
1055 -- function specification, on the object declaration or on the
1056 -- subtype itself.
1058 if Is_Access_Type (R_Type)
1059 and then
1060 (Can_Never_Be_Null (R_Type)
1061 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1062 Can_Never_Be_Null (R_Stm_Type)
1063 then
1064 Error_No_Match (Subtype_Ind);
1065 end if;
1067 -- AI05-103: for elementary types, subtypes must statically match
1069 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1070 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1071 Error_No_Match (Subtype_Ind);
1072 end if;
1073 end if;
1075 -- All remaining cases are illegal
1077 -- Note: previous versions of this subprogram allowed the return
1078 -- value to be the ancestor of the return type if the return type
1079 -- was a null extension. This was plainly incorrect.
1081 else
1082 Error_Msg_N
1083 ("wrong type for return_subtype_indication", Subtype_Ind);
1084 end if;
1085 end Check_Return_Subtype_Indication;
1087 ---------------------
1088 -- Local Variables --
1089 ---------------------
1091 Expr : Node_Id;
1092 Obj_Decl : Node_Id := Empty;
1094 -- Start of processing for Analyze_Function_Return
1096 begin
1097 Set_Return_Present (Scope_Id);
1099 if Nkind (N) = N_Simple_Return_Statement then
1100 Expr := Expression (N);
1102 -- Guard against a malformed expression. The parser may have tried to
1103 -- recover but the node is not analyzable.
1105 if Nkind (Expr) = N_Error then
1106 Set_Etype (Expr, Any_Type);
1107 Expander_Mode_Save_And_Set (False);
1108 return;
1110 else
1111 -- The resolution of a controlled [extension] aggregate associated
1112 -- with a return statement creates a temporary which needs to be
1113 -- finalized on function exit. Wrap the return statement inside a
1114 -- block so that the finalization machinery can detect this case.
1115 -- This early expansion is done only when the return statement is
1116 -- not part of a handled sequence of statements.
1118 if Nkind_In (Expr, N_Aggregate,
1119 N_Extension_Aggregate)
1120 and then Needs_Finalization (R_Type)
1121 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1122 then
1123 Rewrite (N,
1124 Make_Block_Statement (Loc,
1125 Handled_Statement_Sequence =>
1126 Make_Handled_Sequence_Of_Statements (Loc,
1127 Statements => New_List (Relocate_Node (N)))));
1129 Analyze (N);
1130 return;
1131 end if;
1133 Analyze (Expr);
1135 -- Ada 2005 (AI-251): If the type of the returned object is
1136 -- an access to an interface type then we add an implicit type
1137 -- conversion to force the displacement of the "this" pointer to
1138 -- reference the secondary dispatch table. We cannot delay the
1139 -- generation of this implicit conversion until the expansion
1140 -- because in this case the type resolution changes the decoration
1141 -- of the expression node to match R_Type; by contrast, if the
1142 -- returned object is a class-wide interface type then it is too
1143 -- early to generate here the implicit conversion since the return
1144 -- statement may be rewritten by the expander into an extended
1145 -- return statement whose expansion takes care of adding the
1146 -- implicit type conversion to displace the pointer to the object.
1148 if Expander_Active
1149 and then Serious_Errors_Detected = 0
1150 and then Is_Access_Type (R_Type)
1151 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1152 and then Is_Interface (Designated_Type (R_Type))
1153 and then Is_Progenitor (Designated_Type (R_Type),
1154 Designated_Type (Etype (Expr)))
1155 then
1156 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1157 Analyze (Expr);
1158 end if;
1160 Resolve (Expr, R_Type);
1161 Check_Limited_Return (N, Expr, R_Type);
1163 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1164 Check_Aggregate_Accessibility (Expr);
1165 end if;
1166 end if;
1168 -- RETURN only allowed in SPARK as the last statement in function
1170 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1171 and then
1172 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1173 or else Present (Next (N)))
1174 then
1175 Check_SPARK_05_Restriction
1176 ("RETURN should be the last statement in function", N);
1177 end if;
1179 else
1180 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1181 Obj_Decl := Last (Return_Object_Declarations (N));
1183 -- Analyze parts specific to extended_return_statement:
1185 declare
1186 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1187 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1189 begin
1190 Expr := Expression (Obj_Decl);
1192 -- Note: The check for OK_For_Limited_Init will happen in
1193 -- Analyze_Object_Declaration; we treat it as a normal
1194 -- object declaration.
1196 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1197 Analyze (Obj_Decl);
1199 Check_Return_Subtype_Indication (Obj_Decl);
1201 if Present (HSS) then
1202 Analyze (HSS);
1204 if Present (Exception_Handlers (HSS)) then
1206 -- ???Has_Nested_Block_With_Handler needs to be set.
1207 -- Probably by creating an actual N_Block_Statement.
1208 -- Probably in Expand.
1210 null;
1211 end if;
1212 end if;
1214 -- Mark the return object as referenced, since the return is an
1215 -- implicit reference of the object.
1217 Set_Referenced (Defining_Identifier (Obj_Decl));
1219 Check_References (Stm_Entity);
1221 -- Check RM 6.5 (5.9/3)
1223 if Has_Aliased then
1224 if Ada_Version < Ada_2012 then
1226 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1227 -- Can it really happen (extended return???)
1229 Error_Msg_N
1230 ("aliased only allowed for limited return objects "
1231 & "in Ada 2012??", N);
1233 elsif not Is_Limited_View (R_Type) then
1234 Error_Msg_N
1235 ("aliased only allowed for limited return objects", N);
1236 end if;
1237 end if;
1238 end;
1239 end if;
1241 -- Case of Expr present
1243 if Present (Expr) then
1245 -- Defend against previous errors
1247 if Nkind (Expr) = N_Empty
1248 or else No (Etype (Expr))
1249 then
1250 return;
1251 end if;
1253 -- Apply constraint check. Note that this is done before the implicit
1254 -- conversion of the expression done for anonymous access types to
1255 -- ensure correct generation of the null-excluding check associated
1256 -- with null-excluding expressions found in return statements.
1258 Apply_Constraint_Check (Expr, R_Type);
1260 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1261 -- type, apply an implicit conversion of the expression to that type
1262 -- to force appropriate static and run-time accessibility checks.
1264 if Ada_Version >= Ada_2005
1265 and then Ekind (R_Type) = E_Anonymous_Access_Type
1266 then
1267 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1268 Analyze_And_Resolve (Expr, R_Type);
1270 -- If this is a local anonymous access to subprogram, the
1271 -- accessibility check can be applied statically. The return is
1272 -- illegal if the access type of the return expression is declared
1273 -- inside of the subprogram (except if it is the subtype indication
1274 -- of an extended return statement).
1276 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1277 if not Comes_From_Source (Current_Scope)
1278 or else Ekind (Current_Scope) = E_Return_Statement
1279 then
1280 null;
1282 elsif
1283 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1284 then
1285 Error_Msg_N ("cannot return local access to subprogram", N);
1286 end if;
1288 -- The expression cannot be of a formal incomplete type
1290 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1291 and then Is_Generic_Type (Etype (Expr))
1292 then
1293 Error_Msg_N
1294 ("cannot return expression of a formal incomplete type", N);
1295 end if;
1297 -- If the result type is class-wide, then check that the return
1298 -- expression's type is not declared at a deeper level than the
1299 -- function (RM05-6.5(5.6/2)).
1301 if Ada_Version >= Ada_2005
1302 and then Is_Class_Wide_Type (R_Type)
1303 then
1304 if Type_Access_Level (Etype (Expr)) >
1305 Subprogram_Access_Level (Scope_Id)
1306 then
1307 Error_Msg_N
1308 ("level of return expression type is deeper than "
1309 & "class-wide function!", Expr);
1310 end if;
1311 end if;
1313 -- Check incorrect use of dynamically tagged expression
1315 if Is_Tagged_Type (R_Type) then
1316 Check_Dynamically_Tagged_Expression
1317 (Expr => Expr,
1318 Typ => R_Type,
1319 Related_Nod => N);
1320 end if;
1322 -- ??? A real run-time accessibility check is needed in cases
1323 -- involving dereferences of access parameters. For now we just
1324 -- check the static cases.
1326 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1327 and then Is_Limited_View (Etype (Scope_Id))
1328 and then Object_Access_Level (Expr) >
1329 Subprogram_Access_Level (Scope_Id)
1330 then
1331 -- Suppress the message in a generic, where the rewriting
1332 -- is irrelevant.
1334 if Inside_A_Generic then
1335 null;
1337 else
1338 Rewrite (N,
1339 Make_Raise_Program_Error (Loc,
1340 Reason => PE_Accessibility_Check_Failed));
1341 Analyze (N);
1343 Error_Msg_Warn := SPARK_Mode /= On;
1344 Error_Msg_N ("cannot return a local value by reference<<", N);
1345 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1346 end if;
1347 end if;
1349 if Known_Null (Expr)
1350 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1351 and then Null_Exclusion_Present (Parent (Scope_Id))
1352 then
1353 Apply_Compile_Time_Constraint_Error
1354 (N => Expr,
1355 Msg => "(Ada 2005) null not allowed for "
1356 & "null-excluding return??",
1357 Reason => CE_Null_Not_Allowed);
1358 end if;
1360 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1361 -- has no initializing expression.
1363 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1364 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1365 Subprogram_Access_Level (Scope_Id)
1366 then
1367 Error_Msg_N
1368 ("level of return expression type is deeper than "
1369 & "class-wide function!", Obj_Decl);
1370 end if;
1371 end if;
1372 end Analyze_Function_Return;
1374 -------------------------------------
1375 -- Analyze_Generic_Subprogram_Body --
1376 -------------------------------------
1378 procedure Analyze_Generic_Subprogram_Body
1379 (N : Node_Id;
1380 Gen_Id : Entity_Id)
1382 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1383 Kind : constant Entity_Kind := Ekind (Gen_Id);
1384 Body_Id : Entity_Id;
1385 New_N : Node_Id;
1386 Spec : Node_Id;
1388 begin
1389 -- Copy body and disable expansion while analyzing the generic For a
1390 -- stub, do not copy the stub (which would load the proper body), this
1391 -- will be done when the proper body is analyzed.
1393 if Nkind (N) /= N_Subprogram_Body_Stub then
1394 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1395 Rewrite (N, New_N);
1397 -- Once the contents of the generic copy and the template are
1398 -- swapped, do the same for their respective aspect specifications.
1400 Exchange_Aspects (N, New_N);
1402 -- Collect all contract-related source pragmas found within the
1403 -- template and attach them to the contract of the subprogram body.
1404 -- This contract is used in the capture of global references within
1405 -- annotations.
1407 Create_Generic_Contract (N);
1409 Start_Generic;
1410 end if;
1412 Spec := Specification (N);
1414 -- Within the body of the generic, the subprogram is callable, and
1415 -- behaves like the corresponding non-generic unit.
1417 Body_Id := Defining_Entity (Spec);
1419 if Kind = E_Generic_Procedure
1420 and then Nkind (Spec) /= N_Procedure_Specification
1421 then
1422 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1423 return;
1425 elsif Kind = E_Generic_Function
1426 and then Nkind (Spec) /= N_Function_Specification
1427 then
1428 Error_Msg_N ("invalid body for generic function ", Body_Id);
1429 return;
1430 end if;
1432 Set_Corresponding_Body (Gen_Decl, Body_Id);
1434 if Has_Completion (Gen_Id)
1435 and then Nkind (Parent (N)) /= N_Subunit
1436 then
1437 Error_Msg_N ("duplicate generic body", N);
1438 return;
1439 else
1440 Set_Has_Completion (Gen_Id);
1441 end if;
1443 if Nkind (N) = N_Subprogram_Body_Stub then
1444 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1445 else
1446 Set_Corresponding_Spec (N, Gen_Id);
1447 end if;
1449 if Nkind (Parent (N)) = N_Compilation_Unit then
1450 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1451 end if;
1453 -- Make generic parameters immediately visible in the body. They are
1454 -- needed to process the formals declarations. Then make the formals
1455 -- visible in a separate step.
1457 Push_Scope (Gen_Id);
1459 declare
1460 E : Entity_Id;
1461 First_Ent : Entity_Id;
1463 begin
1464 First_Ent := First_Entity (Gen_Id);
1466 E := First_Ent;
1467 while Present (E) and then not Is_Formal (E) loop
1468 Install_Entity (E);
1469 Next_Entity (E);
1470 end loop;
1472 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1474 -- Now generic formals are visible, and the specification can be
1475 -- analyzed, for subsequent conformance check.
1477 Body_Id := Analyze_Subprogram_Specification (Spec);
1479 -- Make formal parameters visible
1481 if Present (E) then
1483 -- E is the first formal parameter, we loop through the formals
1484 -- installing them so that they will be visible.
1486 Set_First_Entity (Gen_Id, E);
1487 while Present (E) loop
1488 Install_Entity (E);
1489 Next_Formal (E);
1490 end loop;
1491 end if;
1493 -- Visible generic entity is callable within its own body
1495 Set_Ekind (Gen_Id, Ekind (Body_Id));
1496 Set_Ekind (Body_Id, E_Subprogram_Body);
1497 Set_Convention (Body_Id, Convention (Gen_Id));
1498 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1499 Set_Scope (Body_Id, Scope (Gen_Id));
1501 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1503 if Nkind (N) = N_Subprogram_Body_Stub then
1505 -- No body to analyze, so restore state of generic unit
1507 Set_Ekind (Gen_Id, Kind);
1508 Set_Ekind (Body_Id, Kind);
1510 if Present (First_Ent) then
1511 Set_First_Entity (Gen_Id, First_Ent);
1512 end if;
1514 End_Scope;
1515 return;
1516 end if;
1518 -- If this is a compilation unit, it must be made visible explicitly,
1519 -- because the compilation of the declaration, unlike other library
1520 -- unit declarations, does not. If it is not a unit, the following
1521 -- is redundant but harmless.
1523 Set_Is_Immediately_Visible (Gen_Id);
1524 Reference_Body_Formals (Gen_Id, Body_Id);
1526 if Is_Child_Unit (Gen_Id) then
1527 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1528 end if;
1530 Set_Actual_Subtypes (N, Current_Scope);
1532 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1533 Set_SPARK_Pragma_Inherited (Body_Id);
1535 -- Analyze any aspect specifications that appear on the generic
1536 -- subprogram body.
1538 if Has_Aspects (N) then
1539 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1540 end if;
1542 Analyze_Declarations (Declarations (N));
1543 Check_Completion;
1545 -- Process the contract of the subprogram body after all declarations
1546 -- have been analyzed. This ensures that any contract-related pragmas
1547 -- are available through the N_Contract node of the body.
1549 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1551 Analyze (Handled_Statement_Sequence (N));
1552 Save_Global_References (Original_Node (N));
1554 -- Prior to exiting the scope, include generic formals again (if any
1555 -- are present) in the set of local entities.
1557 if Present (First_Ent) then
1558 Set_First_Entity (Gen_Id, First_Ent);
1559 end if;
1561 Check_References (Gen_Id);
1562 end;
1564 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1565 Update_Use_Clause_Chain;
1566 Validate_Categorization_Dependency (N, Gen_Id);
1567 End_Scope;
1568 Check_Subprogram_Order (N);
1570 -- Outside of its body, unit is generic again
1572 Set_Ekind (Gen_Id, Kind);
1573 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1575 if Style_Check then
1576 Style.Check_Identifier (Body_Id, Gen_Id);
1577 end if;
1579 End_Generic;
1580 end Analyze_Generic_Subprogram_Body;
1582 ----------------------------
1583 -- Analyze_Null_Procedure --
1584 ----------------------------
1586 procedure Analyze_Null_Procedure
1587 (N : Node_Id;
1588 Is_Completion : out Boolean)
1590 Loc : constant Source_Ptr := Sloc (N);
1591 Spec : constant Node_Id := Specification (N);
1592 Designator : Entity_Id;
1593 Form : Node_Id;
1594 Null_Body : Node_Id := Empty;
1595 Null_Stmt : Node_Id := Null_Statement (Spec);
1596 Prev : Entity_Id;
1598 begin
1599 -- Capture the profile of the null procedure before analysis, for
1600 -- expansion at the freeze point and at each point of call. The body is
1601 -- used if the procedure has preconditions, or if it is a completion. In
1602 -- the first case the body is analyzed at the freeze point, in the other
1603 -- it replaces the null procedure declaration.
1605 -- For a null procedure that comes from source, a NULL statement is
1606 -- provided by the parser, which carries the source location of the
1607 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1608 -- from expansion, create one now.
1610 if No (Null_Stmt) then
1611 Null_Stmt := Make_Null_Statement (Loc);
1612 end if;
1614 Null_Body :=
1615 Make_Subprogram_Body (Loc,
1616 Specification => New_Copy_Tree (Spec),
1617 Declarations => New_List,
1618 Handled_Statement_Sequence =>
1619 Make_Handled_Sequence_Of_Statements (Loc,
1620 Statements => New_List (Null_Stmt)));
1622 -- Create new entities for body and formals
1624 Set_Defining_Unit_Name (Specification (Null_Body),
1625 Make_Defining_Identifier
1626 (Sloc (Defining_Entity (N)),
1627 Chars (Defining_Entity (N))));
1629 Form := First (Parameter_Specifications (Specification (Null_Body)));
1630 while Present (Form) loop
1631 Set_Defining_Identifier (Form,
1632 Make_Defining_Identifier
1633 (Sloc (Defining_Identifier (Form)),
1634 Chars (Defining_Identifier (Form))));
1635 Next (Form);
1636 end loop;
1638 -- Determine whether the null procedure may be a completion of a generic
1639 -- suprogram, in which case we use the new null body as the completion
1640 -- and set minimal semantic information on the original declaration,
1641 -- which is rewritten as a null statement.
1643 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1645 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1646 Insert_Before (N, Null_Body);
1647 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1649 Rewrite (N, Make_Null_Statement (Loc));
1650 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1651 Is_Completion := True;
1652 return;
1654 else
1655 -- Resolve the types of the formals now, because the freeze point may
1656 -- appear in a different context, e.g. an instantiation.
1658 Form := First (Parameter_Specifications (Specification (Null_Body)));
1659 while Present (Form) loop
1660 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1661 Find_Type (Parameter_Type (Form));
1663 elsif No (Access_To_Subprogram_Definition
1664 (Parameter_Type (Form)))
1665 then
1666 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1668 -- The case of a null procedure with a formal that is an
1669 -- access-to-subprogram type, and that is used as an actual
1670 -- in an instantiation is left to the enthusiastic reader.
1672 else
1673 null;
1674 end if;
1676 Next (Form);
1677 end loop;
1678 end if;
1680 -- If there are previous overloadable entities with the same name, check
1681 -- whether any of them is completed by the null procedure.
1683 if Present (Prev) and then Is_Overloadable (Prev) then
1684 Designator := Analyze_Subprogram_Specification (Spec);
1685 Prev := Find_Corresponding_Spec (N);
1686 end if;
1688 if No (Prev) or else not Comes_From_Source (Prev) then
1689 Designator := Analyze_Subprogram_Specification (Spec);
1690 Set_Has_Completion (Designator);
1692 -- Signal to caller that this is a procedure declaration
1694 Is_Completion := False;
1696 -- Null procedures are always inlined, but generic formal subprograms
1697 -- which appear as such in the internal instance of formal packages,
1698 -- need no completion and are not marked Inline.
1700 if Expander_Active
1701 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1702 then
1703 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1704 Set_Body_To_Inline (N, Null_Body);
1705 Set_Is_Inlined (Designator);
1706 end if;
1708 else
1709 -- The null procedure is a completion. We unconditionally rewrite
1710 -- this as a null body (even if expansion is not active), because
1711 -- there are various error checks that are applied on this body
1712 -- when it is analyzed (e.g. correct aspect placement).
1714 if Has_Completion (Prev) then
1715 Error_Msg_Sloc := Sloc (Prev);
1716 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1717 end if;
1719 Check_Previous_Null_Procedure (N, Prev);
1721 Is_Completion := True;
1722 Rewrite (N, Null_Body);
1723 Analyze (N);
1724 end if;
1725 end Analyze_Null_Procedure;
1727 -----------------------------
1728 -- Analyze_Operator_Symbol --
1729 -----------------------------
1731 -- An operator symbol such as "+" or "and" may appear in context where the
1732 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1733 -- is just a string, as in (conjunction = "or"). In these cases the parser
1734 -- generates this node, and the semantics does the disambiguation. Other
1735 -- such case are actuals in an instantiation, the generic unit in an
1736 -- instantiation, and pragma arguments.
1738 procedure Analyze_Operator_Symbol (N : Node_Id) is
1739 Par : constant Node_Id := Parent (N);
1741 begin
1742 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1743 or else Nkind (Par) = N_Function_Instantiation
1744 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1745 or else (Nkind (Par) = N_Pragma_Argument_Association
1746 and then not Is_Pragma_String_Literal (Par))
1747 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1748 or else (Nkind (Par) = N_Attribute_Reference
1749 and then Attribute_Name (Par) /= Name_Value)
1750 then
1751 Find_Direct_Name (N);
1753 else
1754 Change_Operator_Symbol_To_String_Literal (N);
1755 Analyze (N);
1756 end if;
1757 end Analyze_Operator_Symbol;
1759 -----------------------------------
1760 -- Analyze_Parameter_Association --
1761 -----------------------------------
1763 procedure Analyze_Parameter_Association (N : Node_Id) is
1764 begin
1765 Analyze (Explicit_Actual_Parameter (N));
1766 end Analyze_Parameter_Association;
1768 ----------------------------
1769 -- Analyze_Procedure_Call --
1770 ----------------------------
1772 -- WARNING: This routine manages Ghost regions. Return statements must be
1773 -- replaced by gotos which jump to the end of the routine and restore the
1774 -- Ghost mode.
1776 procedure Analyze_Procedure_Call (N : Node_Id) is
1777 procedure Analyze_Call_And_Resolve;
1778 -- Do Analyze and Resolve calls for procedure call. At the end, check
1779 -- for illegal order dependence.
1780 -- ??? where is the check for illegal order dependencies?
1782 ------------------------------
1783 -- Analyze_Call_And_Resolve --
1784 ------------------------------
1786 procedure Analyze_Call_And_Resolve is
1787 begin
1788 if Nkind (N) = N_Procedure_Call_Statement then
1789 Analyze_Call (N);
1790 Resolve (N, Standard_Void_Type);
1791 else
1792 Analyze (N);
1793 end if;
1794 end Analyze_Call_And_Resolve;
1796 -- Local variables
1798 Actuals : constant List_Id := Parameter_Associations (N);
1799 Loc : constant Source_Ptr := Sloc (N);
1800 P : constant Node_Id := Name (N);
1802 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1803 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1804 -- Save the Ghost-related attributes to restore on exit
1806 Actual : Node_Id;
1807 New_N : Node_Id;
1809 -- Start of processing for Analyze_Procedure_Call
1811 begin
1812 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1813 -- a procedure call or an entry call. The prefix may denote an access
1814 -- to subprogram type, in which case an implicit dereference applies.
1815 -- If the prefix is an indexed component (without implicit dereference)
1816 -- then the construct denotes a call to a member of an entire family.
1817 -- If the prefix is a simple name, it may still denote a call to a
1818 -- parameterless member of an entry family. Resolution of these various
1819 -- interpretations is delicate.
1821 -- Do not analyze machine code statements to avoid rejecting them in
1822 -- CodePeer mode.
1824 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1825 Set_Etype (P, Standard_Void_Type);
1826 else
1827 Analyze (P);
1828 end if;
1830 -- If this is a call of the form Obj.Op, the call may have been analyzed
1831 -- and possibly rewritten into a block, in which case we are done.
1833 if Analyzed (N) then
1834 return;
1836 -- If there is an error analyzing the name (which may have been
1837 -- rewritten if the original call was in prefix notation) then error
1838 -- has been emitted already, mark node and return.
1840 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1841 Set_Etype (N, Any_Type);
1842 return;
1843 end if;
1845 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1846 -- Set the mode now to ensure that any nodes generated during analysis
1847 -- and expansion are properly marked as Ghost.
1849 Mark_And_Set_Ghost_Procedure_Call (N);
1851 -- Otherwise analyze the parameters
1853 if Present (Actuals) then
1854 Actual := First (Actuals);
1856 while Present (Actual) loop
1857 Analyze (Actual);
1858 Check_Parameterless_Call (Actual);
1859 Next (Actual);
1860 end loop;
1861 end if;
1863 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1865 if Nkind (P) = N_Attribute_Reference
1866 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1867 Name_Elab_Body,
1868 Name_Elab_Subp_Body)
1869 then
1870 if Present (Actuals) then
1871 Error_Msg_N
1872 ("no parameters allowed for this call", First (Actuals));
1873 goto Leave;
1874 end if;
1876 Set_Etype (N, Standard_Void_Type);
1877 Set_Analyzed (N);
1879 elsif Is_Entity_Name (P)
1880 and then Is_Record_Type (Etype (Entity (P)))
1881 and then Remote_AST_I_Dereference (P)
1882 then
1883 goto Leave;
1885 elsif Is_Entity_Name (P)
1886 and then Ekind (Entity (P)) /= E_Entry_Family
1887 then
1888 if Is_Access_Type (Etype (P))
1889 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1890 and then No (Actuals)
1891 and then Comes_From_Source (N)
1892 then
1893 Error_Msg_N ("missing explicit dereference in call", N);
1894 end if;
1896 Analyze_Call_And_Resolve;
1898 -- If the prefix is the simple name of an entry family, this is a
1899 -- parameterless call from within the task body itself.
1901 elsif Is_Entity_Name (P)
1902 and then Nkind (P) = N_Identifier
1903 and then Ekind (Entity (P)) = E_Entry_Family
1904 and then Present (Actuals)
1905 and then No (Next (First (Actuals)))
1906 then
1907 -- Can be call to parameterless entry family. What appears to be the
1908 -- sole argument is in fact the entry index. Rewrite prefix of node
1909 -- accordingly. Source representation is unchanged by this
1910 -- transformation.
1912 New_N :=
1913 Make_Indexed_Component (Loc,
1914 Prefix =>
1915 Make_Selected_Component (Loc,
1916 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1917 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1918 Expressions => Actuals);
1919 Set_Name (N, New_N);
1920 Set_Etype (New_N, Standard_Void_Type);
1921 Set_Parameter_Associations (N, No_List);
1922 Analyze_Call_And_Resolve;
1924 elsif Nkind (P) = N_Explicit_Dereference then
1925 if Ekind (Etype (P)) = E_Subprogram_Type then
1926 Analyze_Call_And_Resolve;
1927 else
1928 Error_Msg_N ("expect access to procedure in call", P);
1929 end if;
1931 -- The name can be a selected component or an indexed component that
1932 -- yields an access to subprogram. Such a prefix is legal if the call
1933 -- has parameter associations.
1935 elsif Is_Access_Type (Etype (P))
1936 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1937 then
1938 if Present (Actuals) then
1939 Analyze_Call_And_Resolve;
1940 else
1941 Error_Msg_N ("missing explicit dereference in call ", N);
1942 end if;
1944 -- If not an access to subprogram, then the prefix must resolve to the
1945 -- name of an entry, entry family, or protected operation.
1947 -- For the case of a simple entry call, P is a selected component where
1948 -- the prefix is the task and the selector name is the entry. A call to
1949 -- a protected procedure will have the same syntax. If the protected
1950 -- object contains overloaded operations, the entity may appear as a
1951 -- function, the context will select the operation whose type is Void.
1953 elsif Nkind (P) = N_Selected_Component
1954 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1955 E_Function,
1956 E_Procedure)
1957 then
1958 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1959 -- in prefix notation may still be missing its controlling argument,
1960 -- so perform the transformation now.
1962 if SPARK_Mode = On and then In_Inlined_Body then
1963 declare
1964 Subp : constant Entity_Id := Entity (Selector_Name (P));
1965 Typ : constant Entity_Id := Etype (Prefix (P));
1967 begin
1968 if Is_Tagged_Type (Typ)
1969 and then Present (First_Formal (Subp))
1970 and then (Etype (First_Formal (Subp)) = Typ
1971 or else
1972 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1973 and then Try_Object_Operation (P)
1974 then
1975 return;
1977 else
1978 Analyze_Call_And_Resolve;
1979 end if;
1980 end;
1982 else
1983 Analyze_Call_And_Resolve;
1984 end if;
1986 elsif Nkind (P) = N_Selected_Component
1987 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1988 and then Present (Actuals)
1989 and then No (Next (First (Actuals)))
1990 then
1991 -- Can be call to parameterless entry family. What appears to be the
1992 -- sole argument is in fact the entry index. Rewrite prefix of node
1993 -- accordingly. Source representation is unchanged by this
1994 -- transformation.
1996 New_N :=
1997 Make_Indexed_Component (Loc,
1998 Prefix => New_Copy (P),
1999 Expressions => Actuals);
2000 Set_Name (N, New_N);
2001 Set_Etype (New_N, Standard_Void_Type);
2002 Set_Parameter_Associations (N, No_List);
2003 Analyze_Call_And_Resolve;
2005 -- For the case of a reference to an element of an entry family, P is
2006 -- an indexed component whose prefix is a selected component (task and
2007 -- entry family), and whose index is the entry family index.
2009 elsif Nkind (P) = N_Indexed_Component
2010 and then Nkind (Prefix (P)) = N_Selected_Component
2011 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
2012 then
2013 Analyze_Call_And_Resolve;
2015 -- If the prefix is the name of an entry family, it is a call from
2016 -- within the task body itself.
2018 elsif Nkind (P) = N_Indexed_Component
2019 and then Nkind (Prefix (P)) = N_Identifier
2020 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
2021 then
2022 New_N :=
2023 Make_Selected_Component (Loc,
2024 Prefix =>
2025 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
2026 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
2027 Rewrite (Prefix (P), New_N);
2028 Analyze (P);
2029 Analyze_Call_And_Resolve;
2031 -- In Ada 2012. a qualified expression is a name, but it cannot be a
2032 -- procedure name, so the construct can only be a qualified expression.
2034 elsif Nkind (P) = N_Qualified_Expression
2035 and then Ada_Version >= Ada_2012
2036 then
2037 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2038 Analyze (N);
2040 -- Anything else is an error
2042 else
2043 Error_Msg_N ("invalid procedure or entry call", N);
2044 end if;
2046 <<Leave>>
2047 Restore_Ghost_Region (Saved_GM, Saved_IGR);
2048 end Analyze_Procedure_Call;
2050 ------------------------------
2051 -- Analyze_Return_Statement --
2052 ------------------------------
2054 procedure Analyze_Return_Statement (N : Node_Id) is
2055 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2056 N_Simple_Return_Statement));
2058 Returns_Object : constant Boolean :=
2059 Nkind (N) = N_Extended_Return_Statement
2060 or else
2061 (Nkind (N) = N_Simple_Return_Statement
2062 and then Present (Expression (N)));
2063 -- True if we're returning something; that is, "return <expression>;"
2064 -- or "return Result : T [:= ...]". False for "return;". Used for error
2065 -- checking: If Returns_Object is True, N should apply to a function
2066 -- body; otherwise N should apply to a procedure body, entry body,
2067 -- accept statement, or extended return statement.
2069 function Find_What_It_Applies_To return Entity_Id;
2070 -- Find the entity representing the innermost enclosing body, accept
2071 -- statement, or extended return statement. If the result is a callable
2072 -- construct or extended return statement, then this will be the value
2073 -- of the Return_Applies_To attribute. Otherwise, the program is
2074 -- illegal. See RM-6.5(4/2).
2076 -----------------------------
2077 -- Find_What_It_Applies_To --
2078 -----------------------------
2080 function Find_What_It_Applies_To return Entity_Id is
2081 Result : Entity_Id := Empty;
2083 begin
2084 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2085 -- and postconditions.
2087 for J in reverse 0 .. Scope_Stack.Last loop
2088 Result := Scope_Stack.Table (J).Entity;
2089 exit when not Ekind_In (Result, E_Block, E_Loop)
2090 and then Chars (Result) /= Name_uPostconditions;
2091 end loop;
2093 pragma Assert (Present (Result));
2094 return Result;
2095 end Find_What_It_Applies_To;
2097 -- Local declarations
2099 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2100 Kind : constant Entity_Kind := Ekind (Scope_Id);
2101 Loc : constant Source_Ptr := Sloc (N);
2102 Stm_Entity : constant Entity_Id :=
2103 New_Internal_Entity
2104 (E_Return_Statement, Current_Scope, Loc, 'R');
2106 -- Start of processing for Analyze_Return_Statement
2108 begin
2109 Set_Return_Statement_Entity (N, Stm_Entity);
2111 Set_Etype (Stm_Entity, Standard_Void_Type);
2112 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2114 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2115 -- (4/2): an inner return statement will apply to this extended return.
2117 if Nkind (N) = N_Extended_Return_Statement then
2118 Push_Scope (Stm_Entity);
2119 end if;
2121 -- Check that pragma No_Return is obeyed. Don't complain about the
2122 -- implicitly-generated return that is placed at the end.
2124 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2125 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2126 end if;
2128 -- Warn on any unassigned OUT parameters if in procedure
2130 if Ekind (Scope_Id) = E_Procedure then
2131 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2132 end if;
2134 -- Check that functions return objects, and other things do not
2136 if Kind = E_Function or else Kind = E_Generic_Function then
2137 if not Returns_Object then
2138 Error_Msg_N ("missing expression in return from function", N);
2139 end if;
2141 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2142 if Returns_Object then
2143 Error_Msg_N ("procedure cannot return value (use function)", N);
2144 end if;
2146 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2147 if Returns_Object then
2148 if Is_Protected_Type (Scope (Scope_Id)) then
2149 Error_Msg_N ("entry body cannot return value", N);
2150 else
2151 Error_Msg_N ("accept statement cannot return value", N);
2152 end if;
2153 end if;
2155 elsif Kind = E_Return_Statement then
2157 -- We are nested within another return statement, which must be an
2158 -- extended_return_statement.
2160 if Returns_Object then
2161 if Nkind (N) = N_Extended_Return_Statement then
2162 Error_Msg_N
2163 ("extended return statement cannot be nested (use `RETURN;`)",
2166 -- Case of a simple return statement with a value inside extended
2167 -- return statement.
2169 else
2170 Error_Msg_N
2171 ("return nested in extended return statement cannot return "
2172 & "value (use `RETURN;`)", N);
2173 end if;
2174 end if;
2176 else
2177 Error_Msg_N ("illegal context for return statement", N);
2178 end if;
2180 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2181 Analyze_Function_Return (N);
2183 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2184 Set_Return_Present (Scope_Id);
2185 end if;
2187 if Nkind (N) = N_Extended_Return_Statement then
2188 End_Scope;
2189 end if;
2191 Kill_Current_Values (Last_Assignment_Only => True);
2192 Check_Unreachable_Code (N);
2194 Analyze_Dimension (N);
2195 end Analyze_Return_Statement;
2197 -------------------------------------
2198 -- Analyze_Simple_Return_Statement --
2199 -------------------------------------
2201 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2202 begin
2203 if Present (Expression (N)) then
2204 Mark_Coextensions (N, Expression (N));
2205 end if;
2207 Analyze_Return_Statement (N);
2208 end Analyze_Simple_Return_Statement;
2210 -------------------------
2211 -- Analyze_Return_Type --
2212 -------------------------
2214 procedure Analyze_Return_Type (N : Node_Id) is
2215 Designator : constant Entity_Id := Defining_Entity (N);
2216 Typ : Entity_Id := Empty;
2218 begin
2219 -- Normal case where result definition does not indicate an error
2221 if Result_Definition (N) /= Error then
2222 if Nkind (Result_Definition (N)) = N_Access_Definition then
2223 Check_SPARK_05_Restriction
2224 ("access result is not allowed", Result_Definition (N));
2226 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2228 declare
2229 AD : constant Node_Id :=
2230 Access_To_Subprogram_Definition (Result_Definition (N));
2231 begin
2232 if Present (AD) and then Protected_Present (AD) then
2233 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2234 else
2235 Typ := Access_Definition (N, Result_Definition (N));
2236 end if;
2237 end;
2239 Set_Parent (Typ, Result_Definition (N));
2240 Set_Is_Local_Anonymous_Access (Typ);
2241 Set_Etype (Designator, Typ);
2243 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2245 Null_Exclusion_Static_Checks (N);
2247 -- Subtype_Mark case
2249 else
2250 Find_Type (Result_Definition (N));
2251 Typ := Entity (Result_Definition (N));
2252 Set_Etype (Designator, Typ);
2254 -- Unconstrained array as result is not allowed in SPARK
2256 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2257 Check_SPARK_05_Restriction
2258 ("returning an unconstrained array is not allowed",
2259 Result_Definition (N));
2260 end if;
2262 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2264 Null_Exclusion_Static_Checks (N);
2266 -- If a null exclusion is imposed on the result type, then create
2267 -- a null-excluding itype (an access subtype) and use it as the
2268 -- function's Etype. Note that the null exclusion checks are done
2269 -- right before this, because they don't get applied to types that
2270 -- do not come from source.
2272 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2273 Set_Etype (Designator,
2274 Create_Null_Excluding_Itype
2275 (T => Typ,
2276 Related_Nod => N,
2277 Scope_Id => Scope (Current_Scope)));
2279 -- The new subtype must be elaborated before use because
2280 -- it is visible outside of the function. However its base
2281 -- type may not be frozen yet, so the reference that will
2282 -- force elaboration must be attached to the freezing of
2283 -- the base type.
2285 -- If the return specification appears on a proper body,
2286 -- the subtype will have been created already on the spec.
2288 if Is_Frozen (Typ) then
2289 if Nkind (Parent (N)) = N_Subprogram_Body
2290 and then Nkind (Parent (Parent (N))) = N_Subunit
2291 then
2292 null;
2293 else
2294 Build_Itype_Reference (Etype (Designator), Parent (N));
2295 end if;
2297 else
2298 Ensure_Freeze_Node (Typ);
2300 declare
2301 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2302 begin
2303 Set_Itype (IR, Etype (Designator));
2304 Append_Freeze_Actions (Typ, New_List (IR));
2305 end;
2306 end if;
2308 else
2309 Set_Etype (Designator, Typ);
2310 end if;
2312 if Ekind (Typ) = E_Incomplete_Type
2313 or else (Is_Class_Wide_Type (Typ)
2314 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2315 then
2316 -- AI05-0151: Tagged incomplete types are allowed in all formal
2317 -- parts. Untagged incomplete types are not allowed in bodies.
2318 -- As a consequence, limited views cannot appear in a basic
2319 -- declaration that is itself within a body, because there is
2320 -- no point at which the non-limited view will become visible.
2322 if Ada_Version >= Ada_2012 then
2323 if From_Limited_With (Typ) and then In_Package_Body then
2324 Error_Msg_NE
2325 ("invalid use of incomplete type&",
2326 Result_Definition (N), Typ);
2328 -- The return type of a subprogram body cannot be of a
2329 -- formal incomplete type.
2331 elsif Is_Generic_Type (Typ)
2332 and then Nkind (Parent (N)) = N_Subprogram_Body
2333 then
2334 Error_Msg_N
2335 ("return type cannot be a formal incomplete type",
2336 Result_Definition (N));
2338 elsif Is_Class_Wide_Type (Typ)
2339 and then Is_Generic_Type (Root_Type (Typ))
2340 and then Nkind (Parent (N)) = N_Subprogram_Body
2341 then
2342 Error_Msg_N
2343 ("return type cannot be a formal incomplete type",
2344 Result_Definition (N));
2346 elsif Is_Tagged_Type (Typ) then
2347 null;
2349 -- Use is legal in a thunk generated for an operation
2350 -- inherited from a progenitor.
2352 elsif Is_Thunk (Designator)
2353 and then Present (Non_Limited_View (Typ))
2354 then
2355 null;
2357 elsif Nkind (Parent (N)) = N_Subprogram_Body
2358 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2359 N_Entry_Body)
2360 then
2361 Error_Msg_NE
2362 ("invalid use of untagged incomplete type&",
2363 Designator, Typ);
2364 end if;
2366 -- The type must be completed in the current package. This
2367 -- is checked at the end of the package declaration when
2368 -- Taft-amendment types are identified. If the return type
2369 -- is class-wide, there is no required check, the type can
2370 -- be a bona fide TAT.
2372 if Ekind (Scope (Current_Scope)) = E_Package
2373 and then In_Private_Part (Scope (Current_Scope))
2374 and then not Is_Class_Wide_Type (Typ)
2375 then
2376 Append_Elmt (Designator, Private_Dependents (Typ));
2377 end if;
2379 else
2380 Error_Msg_NE
2381 ("invalid use of incomplete type&", Designator, Typ);
2382 end if;
2383 end if;
2384 end if;
2386 -- Case where result definition does indicate an error
2388 else
2389 Set_Etype (Designator, Any_Type);
2390 end if;
2391 end Analyze_Return_Type;
2393 -----------------------------
2394 -- Analyze_Subprogram_Body --
2395 -----------------------------
2397 procedure Analyze_Subprogram_Body (N : Node_Id) is
2398 Loc : constant Source_Ptr := Sloc (N);
2399 Body_Spec : constant Node_Id := Specification (N);
2400 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2402 begin
2403 if Debug_Flag_C then
2404 Write_Str ("==> subprogram body ");
2405 Write_Name (Chars (Body_Id));
2406 Write_Str (" from ");
2407 Write_Location (Loc);
2408 Write_Eol;
2409 Indent;
2410 end if;
2412 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2414 -- The real work is split out into the helper, so it can do "return;"
2415 -- without skipping the debug output:
2417 Analyze_Subprogram_Body_Helper (N);
2419 if Debug_Flag_C then
2420 Outdent;
2421 Write_Str ("<== subprogram body ");
2422 Write_Name (Chars (Body_Id));
2423 Write_Str (" from ");
2424 Write_Location (Loc);
2425 Write_Eol;
2426 end if;
2427 end Analyze_Subprogram_Body;
2429 ------------------------------------
2430 -- Analyze_Subprogram_Body_Helper --
2431 ------------------------------------
2433 -- This procedure is called for regular subprogram bodies, generic bodies,
2434 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2435 -- specification matters, and is used to create a proper declaration for
2436 -- the subprogram, or to perform conformance checks.
2438 -- WARNING: This routine manages Ghost regions. Return statements must be
2439 -- replaced by gotos which jump to the end of the routine and restore the
2440 -- Ghost mode.
2442 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2443 Body_Spec : Node_Id := Specification (N);
2444 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2445 Loc : constant Source_Ptr := Sloc (N);
2446 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2448 Conformant : Boolean;
2449 Desig_View : Entity_Id := Empty;
2450 Exch_Views : Elist_Id := No_Elist;
2451 HSS : Node_Id;
2452 Mask_Types : Elist_Id := No_Elist;
2453 Prot_Typ : Entity_Id := Empty;
2454 Spec_Decl : Node_Id := Empty;
2455 Spec_Id : Entity_Id;
2457 Last_Real_Spec_Entity : Entity_Id := Empty;
2458 -- When we analyze a separate spec, the entity chain ends up containing
2459 -- the formals, as well as any itypes generated during analysis of the
2460 -- default expressions for parameters, or the arguments of associated
2461 -- precondition/postcondition pragmas (which are analyzed in the context
2462 -- of the spec since they have visibility on formals).
2464 -- These entities belong with the spec and not the body. However we do
2465 -- the analysis of the body in the context of the spec (again to obtain
2466 -- visibility to the formals), and all the entities generated during
2467 -- this analysis end up also chained to the entity chain of the spec.
2468 -- But they really belong to the body, and there is circuitry to move
2469 -- them from the spec to the body.
2471 -- However, when we do this move, we don't want to move the real spec
2472 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2473 -- variable points to the last real spec entity, so we only move those
2474 -- chained beyond that point. It is initialized to Empty to deal with
2475 -- the case where there is no separate spec.
2477 function Body_Has_Contract return Boolean;
2478 -- Check whether unanalyzed body has an aspect or pragma that may
2479 -- generate a SPARK contract.
2481 function Body_Has_SPARK_Mode_On return Boolean;
2482 -- Check whether SPARK_Mode On applies to the subprogram body, either
2483 -- because it is specified directly on the body, or because it is
2484 -- inherited from the enclosing subprogram or package.
2486 procedure Build_Subprogram_Declaration;
2487 -- Create a matching subprogram declaration for subprogram body N
2489 procedure Check_Anonymous_Return;
2490 -- Ada 2005: if a function returns an access type that denotes a task,
2491 -- or a type that contains tasks, we must create a master entity for
2492 -- the anonymous type, which typically will be used in an allocator
2493 -- in the body of the function.
2495 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2496 -- Look ahead to recognize a pragma that may appear after the body.
2497 -- If there is a previous spec, check that it appears in the same
2498 -- declarative part. If the pragma is Inline_Always, perform inlining
2499 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2500 -- If the body acts as a spec, and inlining is required, we create a
2501 -- subprogram declaration for it, in order to attach the body to inline.
2502 -- If pragma does not appear after the body, check whether there is
2503 -- an inline pragma before any local declarations.
2505 procedure Check_Missing_Return;
2506 -- Checks for a function with a no return statements, and also performs
2507 -- the warning checks implemented by Check_Returns. In formal mode, also
2508 -- verify that a function ends with a RETURN and that a procedure does
2509 -- not contain any RETURN.
2511 function Disambiguate_Spec return Entity_Id;
2512 -- When a primitive is declared between the private view and the full
2513 -- view of a concurrent type which implements an interface, a special
2514 -- mechanism is used to find the corresponding spec of the primitive
2515 -- body.
2517 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2518 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2519 -- incomplete types coming from a limited context and replace their
2520 -- limited views with the non-limited ones. Return the list of changes
2521 -- to be used to undo the transformation.
2523 function Is_Private_Concurrent_Primitive
2524 (Subp_Id : Entity_Id) return Boolean;
2525 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2526 -- type that implements an interface and has a private view.
2528 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2529 -- N is the body generated for an expression function that is not a
2530 -- completion and Spec_Id the defining entity of its spec. Mark all
2531 -- the not-yet-frozen types referenced by the simple return statement
2532 -- of the function as formally frozen.
2534 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2535 -- Undo the transformation done by Exchange_Limited_Views.
2537 procedure Set_Trivial_Subprogram (N : Node_Id);
2538 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2539 -- subprogram whose body is being analyzed. N is the statement node
2540 -- causing the flag to be set, if the following statement is a return
2541 -- of an entity, we mark the entity as set in source to suppress any
2542 -- warning on the stylized use of function stubs with a dummy return.
2544 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2545 -- Undo the transformation done by Mask_Unfrozen_Types
2547 procedure Verify_Overriding_Indicator;
2548 -- If there was a previous spec, the entity has been entered in the
2549 -- current scope previously. If the body itself carries an overriding
2550 -- indicator, check that it is consistent with the known status of the
2551 -- entity.
2553 -----------------------
2554 -- Body_Has_Contract --
2555 -----------------------
2557 function Body_Has_Contract return Boolean is
2558 Decls : constant List_Id := Declarations (N);
2559 Item : Node_Id;
2561 begin
2562 -- Check for aspects that may generate a contract
2564 if Present (Aspect_Specifications (N)) then
2565 Item := First (Aspect_Specifications (N));
2566 while Present (Item) loop
2567 if Is_Subprogram_Contract_Annotation (Item) then
2568 return True;
2569 end if;
2571 Next (Item);
2572 end loop;
2573 end if;
2575 -- Check for pragmas that may generate a contract
2577 if Present (Decls) then
2578 Item := First (Decls);
2579 while Present (Item) loop
2580 if Nkind (Item) = N_Pragma
2581 and then Is_Subprogram_Contract_Annotation (Item)
2582 then
2583 return True;
2584 end if;
2586 Next (Item);
2587 end loop;
2588 end if;
2590 return False;
2591 end Body_Has_Contract;
2593 ----------------------------
2594 -- Body_Has_SPARK_Mode_On --
2595 ----------------------------
2597 function Body_Has_SPARK_Mode_On return Boolean is
2598 Decls : constant List_Id := Declarations (N);
2599 Item : Node_Id;
2601 begin
2602 -- Check for SPARK_Mode aspect
2604 if Present (Aspect_Specifications (N)) then
2605 Item := First (Aspect_Specifications (N));
2606 while Present (Item) loop
2607 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2608 return Get_SPARK_Mode_From_Annotation (Item) = On;
2609 end if;
2611 Next (Item);
2612 end loop;
2613 end if;
2615 -- Check for SPARK_Mode pragma
2617 if Present (Decls) then
2618 Item := First (Decls);
2619 while Present (Item) loop
2621 -- Pragmas that apply to a subprogram body are usually grouped
2622 -- together. Look for a potential pragma SPARK_Mode among them.
2624 if Nkind (Item) = N_Pragma then
2625 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2626 return Get_SPARK_Mode_From_Annotation (Item) = On;
2627 end if;
2629 -- Otherwise the first non-pragma declarative item terminates
2630 -- the region where pragma SPARK_Mode may appear.
2632 else
2633 exit;
2634 end if;
2636 Next (Item);
2637 end loop;
2638 end if;
2640 -- Otherwise, the applicable SPARK_Mode is inherited from the
2641 -- enclosing subprogram or package.
2643 return SPARK_Mode = On;
2644 end Body_Has_SPARK_Mode_On;
2646 ----------------------------------
2647 -- Build_Subprogram_Declaration --
2648 ----------------------------------
2650 procedure Build_Subprogram_Declaration is
2651 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2652 -- Relocate certain categorization pragmas from the declarative list
2653 -- of subprogram body From and insert them after node To. The pragmas
2654 -- in question are:
2655 -- Ghost
2656 -- Volatile_Function
2657 -- Also copy pragma SPARK_Mode if present in the declarative list
2658 -- of subprogram body From and insert it after node To. This pragma
2659 -- should not be moved, as it applies to the body too.
2661 ------------------
2662 -- Move_Pragmas --
2663 ------------------
2665 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2666 Decl : Node_Id;
2667 Next_Decl : Node_Id;
2669 begin
2670 pragma Assert (Nkind (From) = N_Subprogram_Body);
2672 -- The destination node must be part of a list, as the pragmas are
2673 -- inserted after it.
2675 pragma Assert (Is_List_Member (To));
2677 -- Inspect the declarations of the subprogram body looking for
2678 -- specific pragmas.
2680 Decl := First (Declarations (N));
2681 while Present (Decl) loop
2682 Next_Decl := Next (Decl);
2684 if Nkind (Decl) = N_Pragma then
2685 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2686 Insert_After (To, New_Copy_Tree (Decl));
2688 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2689 Name_Ghost,
2690 Name_Volatile_Function)
2691 then
2692 Remove (Decl);
2693 Insert_After (To, Decl);
2694 end if;
2695 end if;
2697 Decl := Next_Decl;
2698 end loop;
2699 end Move_Pragmas;
2701 -- Local variables
2703 Decl : Node_Id;
2704 Subp_Decl : Node_Id;
2706 -- Start of processing for Build_Subprogram_Declaration
2708 begin
2709 -- Create a matching subprogram spec using the profile of the body.
2710 -- The structure of the tree is identical, but has new entities for
2711 -- the defining unit name and formal parameters.
2713 Subp_Decl :=
2714 Make_Subprogram_Declaration (Loc,
2715 Specification => Copy_Subprogram_Spec (Body_Spec));
2716 Set_Comes_From_Source (Subp_Decl, True);
2718 -- Relocate the aspects and relevant pragmas from the subprogram body
2719 -- to the generated spec because it acts as the initial declaration.
2721 Insert_Before (N, Subp_Decl);
2722 Move_Aspects (N, To => Subp_Decl);
2723 Move_Pragmas (N, To => Subp_Decl);
2725 -- Ensure that the generated corresponding spec and original body
2726 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2727 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2728 -- correctly set for local subprograms.
2730 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2732 Analyze (Subp_Decl);
2734 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2735 -- the body since the expander may generate calls using that entity.
2736 -- Required to ensure that Expand_Call rewrites calls to this
2737 -- function by calls to the built procedure.
2739 if Modify_Tree_For_C
2740 and then Nkind (Body_Spec) = N_Function_Specification
2741 and then
2742 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2743 then
2744 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2745 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2746 Corresponding_Procedure
2747 (Defining_Entity (Specification (Subp_Decl))));
2748 end if;
2750 -- Analyze any relocated source pragmas or pragmas created for aspect
2751 -- specifications.
2753 Decl := Next (Subp_Decl);
2754 while Present (Decl) loop
2756 -- Stop the search for pragmas once the body has been reached as
2757 -- this terminates the region where pragmas may appear.
2759 if Decl = N then
2760 exit;
2762 elsif Nkind (Decl) = N_Pragma then
2763 Analyze (Decl);
2764 end if;
2766 Next (Decl);
2767 end loop;
2769 Spec_Id := Defining_Entity (Subp_Decl);
2770 Set_Corresponding_Spec (N, Spec_Id);
2772 -- Mark the generated spec as a source construct to ensure that all
2773 -- calls to it are properly registered in ALI files for GNATprove.
2775 Set_Comes_From_Source (Spec_Id, True);
2777 -- Ensure that the specs of the subprogram declaration and its body
2778 -- are identical, otherwise they will appear non-conformant due to
2779 -- rewritings in the default values of formal parameters.
2781 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2782 Set_Specification (N, Body_Spec);
2783 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2784 end Build_Subprogram_Declaration;
2786 ----------------------------
2787 -- Check_Anonymous_Return --
2788 ----------------------------
2790 procedure Check_Anonymous_Return is
2791 Decl : Node_Id;
2792 Par : Node_Id;
2793 Scop : Entity_Id;
2795 begin
2796 if Present (Spec_Id) then
2797 Scop := Spec_Id;
2798 else
2799 Scop := Body_Id;
2800 end if;
2802 if Ekind (Scop) = E_Function
2803 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2804 and then not Is_Thunk (Scop)
2806 -- Skip internally built functions which handle the case of
2807 -- a null access (see Expand_Interface_Conversion)
2809 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2810 and then not Comes_From_Source (Parent (Scop)))
2812 and then (Has_Task (Designated_Type (Etype (Scop)))
2813 or else
2814 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2815 and then
2816 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2817 and then Expander_Active
2819 -- Avoid cases with no tasking support
2821 and then RTE_Available (RE_Current_Master)
2822 and then not Restriction_Active (No_Task_Hierarchy)
2823 then
2824 Decl :=
2825 Make_Object_Declaration (Loc,
2826 Defining_Identifier =>
2827 Make_Defining_Identifier (Loc, Name_uMaster),
2828 Constant_Present => True,
2829 Object_Definition =>
2830 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2831 Expression =>
2832 Make_Explicit_Dereference (Loc,
2833 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2835 if Present (Declarations (N)) then
2836 Prepend (Decl, Declarations (N));
2837 else
2838 Set_Declarations (N, New_List (Decl));
2839 end if;
2841 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2842 Set_Has_Master_Entity (Scop);
2844 -- Now mark the containing scope as a task master
2846 Par := N;
2847 while Nkind (Par) /= N_Compilation_Unit loop
2848 Par := Parent (Par);
2849 pragma Assert (Present (Par));
2851 -- If we fall off the top, we are at the outer level, and
2852 -- the environment task is our effective master, so nothing
2853 -- to mark.
2855 if Nkind_In
2856 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2857 then
2858 Set_Is_Task_Master (Par, True);
2859 exit;
2860 end if;
2861 end loop;
2862 end if;
2863 end Check_Anonymous_Return;
2865 -------------------------
2866 -- Check_Inline_Pragma --
2867 -------------------------
2869 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2870 Prag : Node_Id;
2871 Plist : List_Id;
2873 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2874 -- True when N is a pragma Inline or Inline_Always that applies
2875 -- to this subprogram.
2877 -----------------------
2878 -- Is_Inline_Pragma --
2879 -----------------------
2881 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2882 begin
2883 if Nkind (N) = N_Pragma
2884 and then
2885 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2886 or else (Pragma_Name_Unmapped (N) = Name_Inline
2887 and then
2888 (Front_End_Inlining or else Optimization_Level > 0)))
2889 and then Present (Pragma_Argument_Associations (N))
2890 then
2891 declare
2892 Pragma_Arg : Node_Id :=
2893 Expression (First (Pragma_Argument_Associations (N)));
2894 begin
2895 if Nkind (Pragma_Arg) = N_Selected_Component then
2896 Pragma_Arg := Selector_Name (Pragma_Arg);
2897 end if;
2899 return Chars (Pragma_Arg) = Chars (Body_Id);
2900 end;
2902 else
2903 return False;
2904 end if;
2905 end Is_Inline_Pragma;
2907 -- Start of processing for Check_Inline_Pragma
2909 begin
2910 if not Expander_Active then
2911 return;
2912 end if;
2914 if Is_List_Member (N)
2915 and then Present (Next (N))
2916 and then Is_Inline_Pragma (Next (N))
2917 then
2918 Prag := Next (N);
2920 elsif Nkind (N) /= N_Subprogram_Body_Stub
2921 and then Present (Declarations (N))
2922 and then Is_Inline_Pragma (First (Declarations (N)))
2923 then
2924 Prag := First (Declarations (N));
2926 else
2927 Prag := Empty;
2928 end if;
2930 if Present (Prag) then
2931 if Present (Spec_Id) then
2932 if Is_List_Member (N)
2933 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2934 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2935 then
2936 Analyze (Prag);
2937 end if;
2939 else
2940 -- Create a subprogram declaration, to make treatment uniform.
2941 -- Make the sloc of the subprogram name that of the entity in
2942 -- the body, so that style checks find identical strings.
2944 declare
2945 Subp : constant Entity_Id :=
2946 Make_Defining_Identifier
2947 (Sloc (Body_Id), Chars (Body_Id));
2948 Decl : constant Node_Id :=
2949 Make_Subprogram_Declaration (Loc,
2950 Specification =>
2951 New_Copy_Tree (Specification (N)));
2953 begin
2954 -- Link the body and the generated spec
2956 Set_Corresponding_Body (Decl, Body_Id);
2957 Set_Corresponding_Spec (N, Subp);
2959 Set_Defining_Unit_Name (Specification (Decl), Subp);
2961 -- To ensure proper coverage when body is inlined, indicate
2962 -- whether the subprogram comes from source.
2964 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2966 if Present (First_Formal (Body_Id)) then
2967 Plist := Copy_Parameter_List (Body_Id);
2968 Set_Parameter_Specifications
2969 (Specification (Decl), Plist);
2970 end if;
2972 -- Move aspects to the new spec
2974 if Has_Aspects (N) then
2975 Move_Aspects (N, To => Decl);
2976 end if;
2978 Insert_Before (N, Decl);
2979 Analyze (Decl);
2980 Analyze (Prag);
2981 Set_Has_Pragma_Inline (Subp);
2983 if Pragma_Name (Prag) = Name_Inline_Always then
2984 Set_Is_Inlined (Subp);
2985 Set_Has_Pragma_Inline_Always (Subp);
2986 end if;
2988 -- Prior to copying the subprogram body to create a template
2989 -- for it for subsequent inlining, remove the pragma from
2990 -- the current body so that the copy that will produce the
2991 -- new body will start from a completely unanalyzed tree.
2993 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2994 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2995 end if;
2997 Spec := Subp;
2998 end;
2999 end if;
3000 end if;
3001 end Check_Inline_Pragma;
3003 --------------------------
3004 -- Check_Missing_Return --
3005 --------------------------
3007 procedure Check_Missing_Return is
3008 Id : Entity_Id;
3009 Missing_Ret : Boolean;
3011 begin
3012 if Nkind (Body_Spec) = N_Function_Specification then
3013 if Present (Spec_Id) then
3014 Id := Spec_Id;
3015 else
3016 Id := Body_Id;
3017 end if;
3019 if Return_Present (Id) then
3020 Check_Returns (HSS, 'F', Missing_Ret);
3022 if Missing_Ret then
3023 Set_Has_Missing_Return (Id);
3024 end if;
3026 -- Within a premature instantiation of a package with no body, we
3027 -- build completions of the functions therein, with a Raise
3028 -- statement. No point in complaining about a missing return in
3029 -- this case.
3031 elsif Ekind (Id) = E_Function
3032 and then In_Instance
3033 and then Present (Statements (HSS))
3034 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
3035 then
3036 null;
3038 elsif Is_Generic_Subprogram (Id)
3039 or else not Is_Machine_Code_Subprogram (Id)
3040 then
3041 Error_Msg_N ("missing RETURN statement in function body", N);
3042 end if;
3044 -- If procedure with No_Return, check returns
3046 elsif Nkind (Body_Spec) = N_Procedure_Specification
3047 and then Present (Spec_Id)
3048 and then No_Return (Spec_Id)
3049 then
3050 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
3051 end if;
3053 -- Special checks in SPARK mode
3055 if Nkind (Body_Spec) = N_Function_Specification then
3057 -- In SPARK mode, last statement of a function should be a return
3059 declare
3060 Stat : constant Node_Id := Last_Source_Statement (HSS);
3061 begin
3062 if Present (Stat)
3063 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3064 N_Extended_Return_Statement)
3065 then
3066 Check_SPARK_05_Restriction
3067 ("last statement in function should be RETURN", Stat);
3068 end if;
3069 end;
3071 -- In SPARK mode, verify that a procedure has no return
3073 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3074 if Present (Spec_Id) then
3075 Id := Spec_Id;
3076 else
3077 Id := Body_Id;
3078 end if;
3080 -- Would be nice to point to return statement here, can we
3081 -- borrow the Check_Returns procedure here ???
3083 if Return_Present (Id) then
3084 Check_SPARK_05_Restriction
3085 ("procedure should not have RETURN", N);
3086 end if;
3087 end if;
3088 end Check_Missing_Return;
3090 -----------------------
3091 -- Disambiguate_Spec --
3092 -----------------------
3094 function Disambiguate_Spec return Entity_Id is
3095 Priv_Spec : Entity_Id;
3096 Spec_N : Entity_Id;
3098 procedure Replace_Types (To_Corresponding : Boolean);
3099 -- Depending on the flag, replace the type of formal parameters of
3100 -- Body_Id if it is a concurrent type implementing interfaces with
3101 -- the corresponding record type or the other way around.
3103 procedure Replace_Types (To_Corresponding : Boolean) is
3104 Formal : Entity_Id;
3105 Formal_Typ : Entity_Id;
3107 begin
3108 Formal := First_Formal (Body_Id);
3109 while Present (Formal) loop
3110 Formal_Typ := Etype (Formal);
3112 if Is_Class_Wide_Type (Formal_Typ) then
3113 Formal_Typ := Root_Type (Formal_Typ);
3114 end if;
3116 -- From concurrent type to corresponding record
3118 if To_Corresponding then
3119 if Is_Concurrent_Type (Formal_Typ)
3120 and then Present (Corresponding_Record_Type (Formal_Typ))
3121 and then
3122 Present (Interfaces
3123 (Corresponding_Record_Type (Formal_Typ)))
3124 then
3125 Set_Etype (Formal,
3126 Corresponding_Record_Type (Formal_Typ));
3127 end if;
3129 -- From corresponding record to concurrent type
3131 else
3132 if Is_Concurrent_Record_Type (Formal_Typ)
3133 and then Present (Interfaces (Formal_Typ))
3134 then
3135 Set_Etype (Formal,
3136 Corresponding_Concurrent_Type (Formal_Typ));
3137 end if;
3138 end if;
3140 Next_Formal (Formal);
3141 end loop;
3142 end Replace_Types;
3144 -- Start of processing for Disambiguate_Spec
3146 begin
3147 -- Try to retrieve the specification of the body as is. All error
3148 -- messages are suppressed because the body may not have a spec in
3149 -- its current state.
3151 Spec_N := Find_Corresponding_Spec (N, False);
3153 -- It is possible that this is the body of a primitive declared
3154 -- between a private and a full view of a concurrent type. The
3155 -- controlling parameter of the spec carries the concurrent type,
3156 -- not the corresponding record type as transformed by Analyze_
3157 -- Subprogram_Specification. In such cases, we undo the change
3158 -- made by the analysis of the specification and try to find the
3159 -- spec again.
3161 -- Note that wrappers already have their corresponding specs and
3162 -- bodies set during their creation, so if the candidate spec is
3163 -- a wrapper, then we definitely need to swap all types to their
3164 -- original concurrent status.
3166 if No (Spec_N)
3167 or else Is_Primitive_Wrapper (Spec_N)
3168 then
3169 -- Restore all references of corresponding record types to the
3170 -- original concurrent types.
3172 Replace_Types (To_Corresponding => False);
3173 Priv_Spec := Find_Corresponding_Spec (N, False);
3175 -- The current body truly belongs to a primitive declared between
3176 -- a private and a full view. We leave the modified body as is,
3177 -- and return the true spec.
3179 if Present (Priv_Spec)
3180 and then Is_Private_Primitive (Priv_Spec)
3181 then
3182 return Priv_Spec;
3183 end if;
3185 -- In case that this is some sort of error, restore the original
3186 -- state of the body.
3188 Replace_Types (To_Corresponding => True);
3189 end if;
3191 return Spec_N;
3192 end Disambiguate_Spec;
3194 ----------------------------
3195 -- Exchange_Limited_Views --
3196 ----------------------------
3198 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3199 Result : Elist_Id := No_Elist;
3201 procedure Detect_And_Exchange (Id : Entity_Id);
3202 -- Determine whether Id's type denotes an incomplete type associated
3203 -- with a limited with clause and exchange the limited view with the
3204 -- non-limited one when available. Note that the non-limited view
3205 -- may exist because of a with_clause in another unit in the context,
3206 -- but cannot be used because the current view of the enclosing unit
3207 -- is still a limited view.
3209 -------------------------
3210 -- Detect_And_Exchange --
3211 -------------------------
3213 procedure Detect_And_Exchange (Id : Entity_Id) is
3214 Typ : constant Entity_Id := Etype (Id);
3215 begin
3216 if From_Limited_With (Typ)
3217 and then Has_Non_Limited_View (Typ)
3218 and then not From_Limited_With (Scope (Typ))
3219 then
3220 if No (Result) then
3221 Result := New_Elmt_List;
3222 end if;
3224 Prepend_Elmt (Typ, Result);
3225 Prepend_Elmt (Id, Result);
3226 Set_Etype (Id, Non_Limited_View (Typ));
3227 end if;
3228 end Detect_And_Exchange;
3230 -- Local variables
3232 Formal : Entity_Id;
3234 -- Start of processing for Exchange_Limited_Views
3236 begin
3237 -- Do not process subprogram bodies as they already use the non-
3238 -- limited view of types.
3240 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3241 return No_Elist;
3242 end if;
3244 -- Examine all formals and swap views when applicable
3246 Formal := First_Formal (Subp_Id);
3247 while Present (Formal) loop
3248 Detect_And_Exchange (Formal);
3250 Next_Formal (Formal);
3251 end loop;
3253 -- Process the return type of a function
3255 if Ekind (Subp_Id) = E_Function then
3256 Detect_And_Exchange (Subp_Id);
3257 end if;
3259 return Result;
3260 end Exchange_Limited_Views;
3262 -------------------------------------
3263 -- Is_Private_Concurrent_Primitive --
3264 -------------------------------------
3266 function Is_Private_Concurrent_Primitive
3267 (Subp_Id : Entity_Id) return Boolean
3269 Formal_Typ : Entity_Id;
3271 begin
3272 if Present (First_Formal (Subp_Id)) then
3273 Formal_Typ := Etype (First_Formal (Subp_Id));
3275 if Is_Concurrent_Record_Type (Formal_Typ) then
3276 if Is_Class_Wide_Type (Formal_Typ) then
3277 Formal_Typ := Root_Type (Formal_Typ);
3278 end if;
3280 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3281 end if;
3283 -- The type of the first formal is a concurrent tagged type with
3284 -- a private view.
3286 return
3287 Is_Concurrent_Type (Formal_Typ)
3288 and then Is_Tagged_Type (Formal_Typ)
3289 and then Has_Private_Declaration (Formal_Typ);
3290 end if;
3292 return False;
3293 end Is_Private_Concurrent_Primitive;
3295 -------------------------
3296 -- Mask_Unfrozen_Types --
3297 -------------------------
3299 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3300 Result : Elist_Id := No_Elist;
3302 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3303 -- Mask all types referenced in the subtree rooted at Node
3305 --------------------
3306 -- Mask_Type_Refs --
3307 --------------------
3309 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3310 procedure Mask_Type (Typ : Entity_Id);
3311 -- ??? what does this do?
3313 ---------------
3314 -- Mask_Type --
3315 ---------------
3317 procedure Mask_Type (Typ : Entity_Id) is
3318 begin
3319 -- Skip Itypes created by the preanalysis
3321 if Is_Itype (Typ)
3322 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3323 then
3324 return;
3325 end if;
3327 if not Is_Frozen (Typ) then
3328 Set_Is_Frozen (Typ);
3329 Append_New_Elmt (Typ, Result);
3330 end if;
3331 end Mask_Type;
3333 -- Start of processing for Mask_Type_Refs
3335 begin
3336 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3337 Mask_Type (Etype (Entity (Node)));
3339 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3340 Mask_Type (Scope (Entity (Node)));
3341 end if;
3343 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3344 and then Present (Etype (Node))
3345 then
3346 Mask_Type (Etype (Node));
3347 end if;
3349 return OK;
3350 end Mask_Type_Refs;
3352 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3354 -- Local variables
3356 Return_Stmt : constant Node_Id :=
3357 First (Statements (Handled_Statement_Sequence (N)));
3359 -- Start of processing for Mask_Unfrozen_Types
3361 begin
3362 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3364 Mask_References (Expression (Return_Stmt));
3366 return Result;
3367 end Mask_Unfrozen_Types;
3369 ---------------------------
3370 -- Restore_Limited_Views --
3371 ---------------------------
3373 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3374 Elmt : Elmt_Id := First_Elmt (Restore_List);
3375 Id : Entity_Id;
3377 begin
3378 while Present (Elmt) loop
3379 Id := Node (Elmt);
3380 Next_Elmt (Elmt);
3381 Set_Etype (Id, Node (Elmt));
3382 Next_Elmt (Elmt);
3383 end loop;
3384 end Restore_Limited_Views;
3386 ----------------------------
3387 -- Set_Trivial_Subprogram --
3388 ----------------------------
3390 procedure Set_Trivial_Subprogram (N : Node_Id) is
3391 Nxt : constant Node_Id := Next (N);
3393 begin
3394 Set_Is_Trivial_Subprogram (Body_Id);
3396 if Present (Spec_Id) then
3397 Set_Is_Trivial_Subprogram (Spec_Id);
3398 end if;
3400 if Present (Nxt)
3401 and then Nkind (Nxt) = N_Simple_Return_Statement
3402 and then No (Next (Nxt))
3403 and then Present (Expression (Nxt))
3404 and then Is_Entity_Name (Expression (Nxt))
3405 then
3406 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3407 end if;
3408 end Set_Trivial_Subprogram;
3410 ---------------------------
3411 -- Unmask_Unfrozen_Types --
3412 ---------------------------
3414 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3415 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3417 begin
3418 while Present (Elmt) loop
3419 Set_Is_Frozen (Node (Elmt), False);
3420 Next_Elmt (Elmt);
3421 end loop;
3422 end Unmask_Unfrozen_Types;
3424 ---------------------------------
3425 -- Verify_Overriding_Indicator --
3426 ---------------------------------
3428 procedure Verify_Overriding_Indicator is
3429 begin
3430 if Must_Override (Body_Spec) then
3431 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3432 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3433 then
3434 null;
3436 elsif not Present (Overridden_Operation (Spec_Id)) then
3437 Error_Msg_NE
3438 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3440 -- Overriding indicators aren't allowed for protected subprogram
3441 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3442 -- this to a warning if -gnatd.E is enabled.
3444 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3445 Error_Msg_Warn := Error_To_Warning;
3446 Error_Msg_N
3447 ("<<overriding indicator not allowed for protected "
3448 & "subprogram body", Body_Spec);
3449 end if;
3451 elsif Must_Not_Override (Body_Spec) then
3452 if Present (Overridden_Operation (Spec_Id)) then
3453 Error_Msg_NE
3454 ("subprogram& overrides inherited operation",
3455 Body_Spec, Spec_Id);
3457 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3458 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3459 then
3460 Error_Msg_NE
3461 ("subprogram& overrides predefined operator ",
3462 Body_Spec, Spec_Id);
3464 -- Overriding indicators aren't allowed for protected subprogram
3465 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3466 -- this to a warning if -gnatd.E is enabled.
3468 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3469 Error_Msg_Warn := Error_To_Warning;
3471 Error_Msg_N
3472 ("<<overriding indicator not allowed "
3473 & "for protected subprogram body", Body_Spec);
3475 -- If this is not a primitive operation, then the overriding
3476 -- indicator is altogether illegal.
3478 elsif not Is_Primitive (Spec_Id) then
3479 Error_Msg_N
3480 ("overriding indicator only allowed "
3481 & "if subprogram is primitive", Body_Spec);
3482 end if;
3484 -- If checking the style rule and the operation overrides, then
3485 -- issue a warning about a missing overriding_indicator. Protected
3486 -- subprogram bodies are excluded from this style checking, since
3487 -- they aren't primitives (even though their declarations can
3488 -- override) and aren't allowed to have an overriding_indicator.
3490 elsif Style_Check
3491 and then Present (Overridden_Operation (Spec_Id))
3492 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3493 then
3494 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3495 Style.Missing_Overriding (N, Body_Id);
3497 elsif Style_Check
3498 and then Can_Override_Operator (Spec_Id)
3499 and then not In_Predefined_Unit (Spec_Id)
3500 then
3501 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3502 Style.Missing_Overriding (N, Body_Id);
3503 end if;
3504 end Verify_Overriding_Indicator;
3506 -- Local variables
3508 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3509 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3510 Saved_ISMP : constant Boolean :=
3511 Ignore_SPARK_Mode_Pragmas_In_Instance;
3512 -- Save the Ghost and SPARK mode-related data to restore on exit
3514 -- Start of processing for Analyze_Subprogram_Body_Helper
3516 begin
3517 -- A [generic] subprogram body freezes the contract of the nearest
3518 -- enclosing package body and all other contracts encountered in the
3519 -- same declarative part up to and excluding the subprogram body:
3521 -- package body Nearest_Enclosing_Package
3522 -- with Refined_State => (State => Constit)
3523 -- is
3524 -- Constit : ...;
3526 -- procedure Freezes_Enclosing_Package_Body
3527 -- with Refined_Depends => (Input => Constit) ...
3529 -- This ensures that any annotations referenced by the contract of the
3530 -- [generic] subprogram body are available. This form of freezing is
3531 -- decoupled from the usual Freeze_xxx mechanism because it must also
3532 -- work in the context of generics where normal freezing is disabled.
3534 -- Only bodies coming from source should cause this type of freezing.
3535 -- Expression functions that act as bodies and complete an initial
3536 -- declaration must be included in this category, hence the use of
3537 -- Original_Node.
3539 if Comes_From_Source (Original_Node (N)) then
3540 Freeze_Previous_Contracts (N);
3541 end if;
3543 -- Generic subprograms are handled separately. They always have a
3544 -- generic specification. Determine whether current scope has a
3545 -- previous declaration.
3547 -- If the subprogram body is defined within an instance of the same
3548 -- name, the instance appears as a package renaming, and will be hidden
3549 -- within the subprogram.
3551 if Present (Prev_Id)
3552 and then not Is_Overloadable (Prev_Id)
3553 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3554 or else Comes_From_Source (Prev_Id))
3555 then
3556 if Is_Generic_Subprogram (Prev_Id) then
3557 Spec_Id := Prev_Id;
3559 -- A subprogram body is Ghost when it is stand alone and subject
3560 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3561 -- the mode now to ensure that any nodes generated during analysis
3562 -- and expansion are properly marked as Ghost.
3564 Mark_And_Set_Ghost_Body (N, Spec_Id);
3566 -- If the body completes the initial declaration of a compilation
3567 -- unit which is subject to pragma Elaboration_Checks, set the
3568 -- model specified by the pragma because it applies to all parts
3569 -- of the unit.
3571 Install_Elaboration_Model (Spec_Id);
3573 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3574 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3576 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3578 if Nkind (N) = N_Subprogram_Body then
3579 HSS := Handled_Statement_Sequence (N);
3580 Check_Missing_Return;
3581 end if;
3583 goto Leave;
3585 -- Otherwise a previous entity conflicts with the subprogram name.
3586 -- Attempting to enter name will post error.
3588 else
3589 Enter_Name (Body_Id);
3590 goto Leave;
3591 end if;
3593 -- Non-generic case, find the subprogram declaration, if one was seen,
3594 -- or enter new overloaded entity in the current scope. If the
3595 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3596 -- part of the context of one of its subunits. No need to redo the
3597 -- analysis.
3599 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3600 goto Leave;
3602 else
3603 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3605 if Nkind (N) = N_Subprogram_Body_Stub
3606 or else No (Corresponding_Spec (N))
3607 then
3608 if Is_Private_Concurrent_Primitive (Body_Id) then
3609 Spec_Id := Disambiguate_Spec;
3611 -- A subprogram body is Ghost when it is stand alone and
3612 -- subject to pragma Ghost or when the corresponding spec is
3613 -- Ghost. Set the mode now to ensure that any nodes generated
3614 -- during analysis and expansion are properly marked as Ghost.
3616 Mark_And_Set_Ghost_Body (N, Spec_Id);
3618 -- If the body completes a compilation unit which is subject
3619 -- to pragma Elaboration_Checks, set the model specified by
3620 -- the pragma because it applies to all parts of the unit.
3622 Install_Elaboration_Model (Spec_Id);
3624 else
3625 Spec_Id := Find_Corresponding_Spec (N);
3627 -- A subprogram body is Ghost when it is stand alone and
3628 -- subject to pragma Ghost or when the corresponding spec is
3629 -- Ghost. Set the mode now to ensure that any nodes generated
3630 -- during analysis and expansion are properly marked as Ghost.
3632 Mark_And_Set_Ghost_Body (N, Spec_Id);
3634 -- If the body completes a compilation unit which is subject
3635 -- to pragma Elaboration_Checks, set the model specified by
3636 -- the pragma because it applies to all parts of the unit.
3638 Install_Elaboration_Model (Spec_Id);
3640 -- In GNATprove mode, if the body has no previous spec, create
3641 -- one so that the inlining machinery can operate properly.
3642 -- Transfer aspects, if any, to the new spec, so that they
3643 -- are legal and can be processed ahead of the body.
3644 -- We make two copies of the given spec, one for the new
3645 -- declaration, and one for the body.
3647 if No (Spec_Id) and then GNATprove_Mode
3649 -- Inlining does not apply during pre-analysis of code
3651 and then Full_Analysis
3653 -- Inlining only applies to full bodies, not stubs
3655 and then Nkind (N) /= N_Subprogram_Body_Stub
3657 -- Inlining only applies to bodies in the source code, not to
3658 -- those generated by the compiler. In particular, expression
3659 -- functions, whose body is generated by the compiler, are
3660 -- treated specially by GNATprove.
3662 and then Comes_From_Source (Body_Id)
3664 -- This cannot be done for a compilation unit, which is not
3665 -- in a context where we can insert a new spec.
3667 and then Is_List_Member (N)
3669 -- Inlining only applies to subprograms without contracts,
3670 -- as a contract is a sign that GNATprove should perform a
3671 -- modular analysis of the subprogram instead of a contextual
3672 -- analysis at each call site. The same test is performed in
3673 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3674 -- here in another form (because the contract has not been
3675 -- attached to the body) to avoid front-end errors in case
3676 -- pragmas are used instead of aspects, because the
3677 -- corresponding pragmas in the body would not be transferred
3678 -- to the spec, leading to legality errors.
3680 and then not Body_Has_Contract
3681 and then not Inside_A_Generic
3682 then
3683 Build_Subprogram_Declaration;
3685 -- If this is a function that returns a constrained array, and
3686 -- we are generating SPARK_For_C, create subprogram declaration
3687 -- to simplify subsequent C generation.
3689 elsif No (Spec_Id)
3690 and then Modify_Tree_For_C
3691 and then Nkind (Body_Spec) = N_Function_Specification
3692 and then Is_Array_Type (Etype (Body_Id))
3693 and then Is_Constrained (Etype (Body_Id))
3694 then
3695 Build_Subprogram_Declaration;
3696 end if;
3697 end if;
3699 -- If this is a duplicate body, no point in analyzing it
3701 if Error_Posted (N) then
3702 goto Leave;
3703 end if;
3705 -- A subprogram body should cause freezing of its own declaration,
3706 -- but if there was no previous explicit declaration, then the
3707 -- subprogram will get frozen too late (there may be code within
3708 -- the body that depends on the subprogram having been frozen,
3709 -- such as uses of extra formals), so we force it to be frozen
3710 -- here. Same holds if the body and spec are compilation units.
3711 -- Finally, if the return type is an anonymous access to protected
3712 -- subprogram, it must be frozen before the body because its
3713 -- expansion has generated an equivalent type that is used when
3714 -- elaborating the body.
3716 -- An exception in the case of Ada 2012, AI05-177: The bodies
3717 -- created for expression functions do not freeze.
3719 if No (Spec_Id)
3720 and then Nkind (Original_Node (N)) /= N_Expression_Function
3721 then
3722 Freeze_Before (N, Body_Id);
3724 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3725 Freeze_Before (N, Spec_Id);
3727 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3728 Freeze_Before (N, Etype (Body_Id));
3729 end if;
3731 else
3732 Spec_Id := Corresponding_Spec (N);
3734 -- A subprogram body is Ghost when it is stand alone and subject
3735 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3736 -- the mode now to ensure that any nodes generated during analysis
3737 -- and expansion are properly marked as Ghost.
3739 Mark_And_Set_Ghost_Body (N, Spec_Id);
3741 -- If the body completes the initial declaration of a compilation
3742 -- unit which is subject to pragma Elaboration_Checks, set the
3743 -- model specified by the pragma because it applies to all parts
3744 -- of the unit.
3746 Install_Elaboration_Model (Spec_Id);
3747 end if;
3748 end if;
3750 -- Previously we scanned the body to look for nested subprograms, and
3751 -- rejected an inline directive if nested subprograms were present,
3752 -- because the back-end would generate conflicting symbols for the
3753 -- nested bodies. This is now unnecessary.
3755 -- Look ahead to recognize a pragma Inline that appears after the body
3757 Check_Inline_Pragma (Spec_Id);
3759 -- Deal with special case of a fully private operation in the body of
3760 -- the protected type. We must create a declaration for the subprogram,
3761 -- in order to attach the protected subprogram that will be used in
3762 -- internal calls. We exclude compiler generated bodies from the
3763 -- expander since the issue does not arise for those cases.
3765 if No (Spec_Id)
3766 and then Comes_From_Source (N)
3767 and then Is_Protected_Type (Current_Scope)
3768 then
3769 Spec_Id := Build_Private_Protected_Declaration (N);
3770 end if;
3772 -- If we are generating C and this is a function returning a constrained
3773 -- array type for which we must create a procedure with an extra out
3774 -- parameter, build and analyze the body now. The procedure declaration
3775 -- has already been created. We reuse the source body of the function,
3776 -- because in an instance it may contain global references that cannot
3777 -- be reanalyzed. The source function itself is not used any further,
3778 -- so we mark it as having a completion. If the subprogram is a stub the
3779 -- transformation is done later, when the proper body is analyzed.
3781 if Expander_Active
3782 and then Modify_Tree_For_C
3783 and then Present (Spec_Id)
3784 and then Ekind (Spec_Id) = E_Function
3785 and then Nkind (N) /= N_Subprogram_Body_Stub
3786 and then Rewritten_For_C (Spec_Id)
3787 then
3788 Set_Has_Completion (Spec_Id);
3790 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3791 Analyze (N);
3793 -- The entity for the created procedure must remain invisible, so it
3794 -- does not participate in resolution of subsequent references to the
3795 -- function.
3797 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3798 goto Leave;
3799 end if;
3801 -- If a separate spec is present, then deal with freezing issues
3803 if Present (Spec_Id) then
3804 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3805 Verify_Overriding_Indicator;
3807 -- In general, the spec will be frozen when we start analyzing the
3808 -- body. However, for internally generated operations, such as
3809 -- wrapper functions for inherited operations with controlling
3810 -- results, the spec may not have been frozen by the time we expand
3811 -- the freeze actions that include the bodies. In particular, extra
3812 -- formals for accessibility or for return-in-place may need to be
3813 -- generated. Freeze nodes, if any, are inserted before the current
3814 -- body. These freeze actions are also needed in ASIS mode and in
3815 -- Compile_Only mode to enable the proper back-end type annotations.
3816 -- They are necessary in any case to insure order of elaboration
3817 -- in gigi.
3819 if not Is_Frozen (Spec_Id)
3820 and then (Expander_Active
3821 or else ASIS_Mode
3822 or else (Operating_Mode = Check_Semantics
3823 and then Serious_Errors_Detected = 0))
3824 then
3825 -- The body generated for an expression function that is not a
3826 -- completion is a freeze point neither for the profile nor for
3827 -- anything else. That's why, in order to prevent any freezing
3828 -- during analysis, we need to mask types declared outside the
3829 -- expression that are not yet frozen.
3831 if Nkind (N) = N_Subprogram_Body
3832 and then Was_Expression_Function (N)
3833 and then not Has_Completion (Spec_Id)
3834 then
3835 Set_Is_Frozen (Spec_Id);
3836 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3837 else
3838 Set_Has_Delayed_Freeze (Spec_Id);
3839 Freeze_Before (N, Spec_Id);
3840 end if;
3841 end if;
3842 end if;
3844 -- If the subprogram has a class-wide clone, build its body as a copy
3845 -- of the original body, and rewrite body of original subprogram as a
3846 -- wrapper that calls the clone.
3847 -- If N is a stub, this construction will take place when the proper
3848 -- body is analyzed.
3850 if Present (Spec_Id)
3851 and then Present (Class_Wide_Clone (Spec_Id))
3852 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3853 and then Nkind (N) /= N_Subprogram_Body_Stub
3854 then
3855 Build_Class_Wide_Clone_Body (Spec_Id, N);
3857 -- This is the new body for the existing primitive operation
3859 Rewrite (N, Build_Class_Wide_Clone_Call
3860 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3861 Set_Has_Completion (Spec_Id, False);
3862 Analyze (N);
3863 return;
3864 end if;
3866 -- Place subprogram on scope stack, and make formals visible. If there
3867 -- is a spec, the visible entity remains that of the spec.
3869 if Present (Spec_Id) then
3870 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3872 if Is_Child_Unit (Spec_Id) then
3873 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3874 end if;
3876 if Style_Check then
3877 Style.Check_Identifier (Body_Id, Spec_Id);
3878 end if;
3880 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3881 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3883 if Is_Abstract_Subprogram (Spec_Id) then
3884 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3885 goto Leave;
3887 else
3888 Set_Convention (Body_Id, Convention (Spec_Id));
3889 Set_Has_Completion (Spec_Id);
3891 if Is_Protected_Type (Scope (Spec_Id)) then
3892 Prot_Typ := Scope (Spec_Id);
3893 end if;
3895 -- If this is a body generated for a renaming, do not check for
3896 -- full conformance. The check is redundant, because the spec of
3897 -- the body is a copy of the spec in the renaming declaration,
3898 -- and the test can lead to spurious errors on nested defaults.
3900 if Present (Spec_Decl)
3901 and then not Comes_From_Source (N)
3902 and then
3903 (Nkind (Original_Node (Spec_Decl)) =
3904 N_Subprogram_Renaming_Declaration
3905 or else (Present (Corresponding_Body (Spec_Decl))
3906 and then
3907 Nkind (Unit_Declaration_Node
3908 (Corresponding_Body (Spec_Decl))) =
3909 N_Subprogram_Renaming_Declaration))
3910 then
3911 Conformant := True;
3913 -- Conversely, the spec may have been generated for specless body
3914 -- with an inline pragma. The entity comes from source, which is
3915 -- both semantically correct and necessary for proper inlining.
3916 -- The subprogram declaration itself is not in the source.
3918 elsif Comes_From_Source (N)
3919 and then Present (Spec_Decl)
3920 and then not Comes_From_Source (Spec_Decl)
3921 and then Has_Pragma_Inline (Spec_Id)
3922 then
3923 Conformant := True;
3925 else
3926 Check_Conformance
3927 (Body_Id, Spec_Id,
3928 Fully_Conformant, True, Conformant, Body_Id);
3929 end if;
3931 -- If the body is not fully conformant, we have to decide if we
3932 -- should analyze it or not. If it has a really messed up profile
3933 -- then we probably should not analyze it, since we will get too
3934 -- many bogus messages.
3936 -- Our decision is to go ahead in the non-fully conformant case
3937 -- only if it is at least mode conformant with the spec. Note
3938 -- that the call to Check_Fully_Conformant has issued the proper
3939 -- error messages to complain about the lack of conformance.
3941 if not Conformant
3942 and then not Mode_Conformant (Body_Id, Spec_Id)
3943 then
3944 goto Leave;
3945 end if;
3946 end if;
3948 -- In the case we are dealing with an expression function we check
3949 -- the formals attached to the spec instead of the body - so we don't
3950 -- reference body formals.
3952 if Spec_Id /= Body_Id
3953 and then not Is_Expression_Function (Spec_Id)
3954 then
3955 Reference_Body_Formals (Spec_Id, Body_Id);
3956 end if;
3958 Set_Ekind (Body_Id, E_Subprogram_Body);
3960 if Nkind (N) = N_Subprogram_Body_Stub then
3961 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3963 -- Regular body
3965 else
3966 Set_Corresponding_Spec (N, Spec_Id);
3968 -- Ada 2005 (AI-345): If the operation is a primitive operation
3969 -- of a concurrent type, the type of the first parameter has been
3970 -- replaced with the corresponding record, which is the proper
3971 -- run-time structure to use. However, within the body there may
3972 -- be uses of the formals that depend on primitive operations
3973 -- of the type (in particular calls in prefixed form) for which
3974 -- we need the original concurrent type. The operation may have
3975 -- several controlling formals, so the replacement must be done
3976 -- for all of them.
3978 if Comes_From_Source (Spec_Id)
3979 and then Present (First_Entity (Spec_Id))
3980 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3981 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3982 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3983 and then Present (Corresponding_Concurrent_Type
3984 (Etype (First_Entity (Spec_Id))))
3985 then
3986 declare
3987 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3988 Form : Entity_Id;
3990 begin
3991 Form := First_Formal (Spec_Id);
3992 while Present (Form) loop
3993 if Etype (Form) = Typ then
3994 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3995 end if;
3997 Next_Formal (Form);
3998 end loop;
3999 end;
4000 end if;
4002 -- Make the formals visible, and place subprogram on scope stack.
4003 -- This is also the point at which we set Last_Real_Spec_Entity
4004 -- to mark the entities which will not be moved to the body.
4006 Install_Formals (Spec_Id);
4007 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4009 -- Within an instance, add local renaming declarations so that
4010 -- gdb can retrieve the values of actuals more easily. This is
4011 -- only relevant if generating code (and indeed we definitely
4012 -- do not want these definitions -gnatc mode, because that would
4013 -- confuse ASIS).
4015 if Is_Generic_Instance (Spec_Id)
4016 and then Is_Wrapper_Package (Current_Scope)
4017 and then Expander_Active
4018 then
4019 Build_Subprogram_Instance_Renamings (N, Current_Scope);
4020 end if;
4022 Push_Scope (Spec_Id);
4024 -- Make sure that the subprogram is immediately visible. For
4025 -- child units that have no separate spec this is indispensable.
4026 -- Otherwise it is safe albeit redundant.
4028 Set_Is_Immediately_Visible (Spec_Id);
4029 end if;
4031 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4032 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4033 Set_Scope (Body_Id, Scope (Spec_Id));
4035 -- Case of subprogram body with no previous spec
4037 else
4038 -- Check for style warning required
4040 if Style_Check
4042 -- Only apply check for source level subprograms for which checks
4043 -- have not been suppressed.
4045 and then Comes_From_Source (Body_Id)
4046 and then not Suppress_Style_Checks (Body_Id)
4048 -- No warnings within an instance
4050 and then not In_Instance
4052 -- No warnings for expression functions
4054 and then Nkind (Original_Node (N)) /= N_Expression_Function
4055 then
4056 Style.Body_With_No_Spec (N);
4057 end if;
4059 New_Overloaded_Entity (Body_Id);
4061 if Nkind (N) /= N_Subprogram_Body_Stub then
4062 Set_Acts_As_Spec (N);
4063 Generate_Definition (Body_Id);
4064 Generate_Reference
4065 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4067 -- If the body is an entry wrapper created for an entry with
4068 -- preconditions, it must be compiled in the context of the
4069 -- enclosing synchronized object, because it may mention other
4070 -- operations of the type.
4072 if Is_Entry_Wrapper (Body_Id) then
4073 declare
4074 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4075 begin
4076 Push_Scope (Prot);
4077 Install_Declarations (Prot);
4078 end;
4079 end if;
4081 Install_Formals (Body_Id);
4083 Push_Scope (Body_Id);
4084 end if;
4086 -- For stubs and bodies with no previous spec, generate references to
4087 -- formals.
4089 Generate_Reference_To_Formals (Body_Id);
4090 end if;
4092 -- Entry barrier functions are generated outside the protected type and
4093 -- should not carry the SPARK_Mode of the enclosing context.
4095 if Nkind (N) = N_Subprogram_Body
4096 and then Is_Entry_Barrier_Function (N)
4097 then
4098 null;
4100 -- The body is generated as part of expression function expansion. When
4101 -- the expression function appears in the visible declarations of a
4102 -- package, the body is added to the private declarations. Since both
4103 -- declarative lists may be subject to a different SPARK_Mode, inherit
4104 -- the mode of the spec.
4106 -- package P with SPARK_Mode is
4107 -- function Expr_Func ... is (...); -- original
4108 -- [function Expr_Func ...;] -- generated spec
4109 -- -- mode is ON
4110 -- private
4111 -- pragma SPARK_Mode (Off);
4112 -- [function Expr_Func ... is return ...;] -- generated body
4113 -- end P; -- mode is ON
4115 elsif not Comes_From_Source (N)
4116 and then Present (Spec_Id)
4117 and then Is_Expression_Function (Spec_Id)
4118 then
4119 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4120 Set_SPARK_Pragma_Inherited
4121 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4123 -- Set the SPARK_Mode from the current context (may be overwritten later
4124 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4125 -- initially on a stand-alone subprogram body, but is then relocated to
4126 -- a generated corresponding spec. In this scenario the mode is shared
4127 -- between the spec and body.
4129 elsif No (SPARK_Pragma (Body_Id)) then
4130 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4131 Set_SPARK_Pragma_Inherited (Body_Id);
4132 end if;
4134 -- A subprogram body may be instantiated or inlined at a later pass.
4135 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4136 -- applied to the initial declaration of the body.
4138 if Present (Spec_Id) then
4139 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4140 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4141 end if;
4143 else
4144 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4145 -- case the body is instantiated or inlined later and out of context.
4146 -- The body uses this attribute to restore the value of the global
4147 -- flag.
4149 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4150 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4152 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4153 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4154 end if;
4155 end if;
4157 -- Preserve relevant elaboration-related attributes of the context which
4158 -- are no longer available or very expensive to recompute once analysis,
4159 -- resolution, and expansion are over.
4161 if No (Spec_Id) then
4162 Mark_Elaboration_Attributes
4163 (N_Id => Body_Id,
4164 Checks => True,
4165 Warnings => True);
4166 end if;
4168 -- If this is the proper body of a stub, we must verify that the stub
4169 -- conforms to the body, and to the previous spec if one was present.
4170 -- We know already that the body conforms to that spec. This test is
4171 -- only required for subprograms that come from source.
4173 if Nkind (Parent (N)) = N_Subunit
4174 and then Comes_From_Source (N)
4175 and then not Error_Posted (Body_Id)
4176 and then Nkind (Corresponding_Stub (Parent (N))) =
4177 N_Subprogram_Body_Stub
4178 then
4179 declare
4180 Old_Id : constant Entity_Id :=
4181 Defining_Entity
4182 (Specification (Corresponding_Stub (Parent (N))));
4184 Conformant : Boolean := False;
4186 begin
4187 if No (Spec_Id) then
4188 Check_Fully_Conformant (Body_Id, Old_Id);
4190 else
4191 Check_Conformance
4192 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4194 if not Conformant then
4196 -- The stub was taken to be a new declaration. Indicate that
4197 -- it lacks a body.
4199 Set_Has_Completion (Old_Id, False);
4200 end if;
4201 end if;
4202 end;
4203 end if;
4205 Set_Has_Completion (Body_Id);
4206 Check_Eliminated (Body_Id);
4208 -- Analyze any aspect specifications that appear on the subprogram body
4209 -- stub. Stop the analysis now as the stub does not have a declarative
4210 -- or a statement part, and it cannot be inlined.
4212 if Nkind (N) = N_Subprogram_Body_Stub then
4213 if Has_Aspects (N) then
4214 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4215 end if;
4217 goto Leave;
4218 end if;
4220 -- Handle inlining
4222 -- Note: Normally we don't do any inlining if expansion is off, since
4223 -- we won't generate code in any case. An exception arises in GNATprove
4224 -- mode where we want to expand some calls in place, even with expansion
4225 -- disabled, since the inlining eases formal verification.
4227 if not GNATprove_Mode
4228 and then Expander_Active
4229 and then Serious_Errors_Detected = 0
4230 and then Present (Spec_Id)
4231 and then Has_Pragma_Inline (Spec_Id)
4232 then
4233 -- Legacy implementation (relying on front-end inlining)
4235 if not Back_End_Inlining then
4236 if (Has_Pragma_Inline_Always (Spec_Id)
4237 and then not Opt.Disable_FE_Inline_Always)
4238 or else (Front_End_Inlining
4239 and then not Opt.Disable_FE_Inline)
4240 then
4241 Build_Body_To_Inline (N, Spec_Id);
4242 end if;
4244 -- New implementation (relying on back-end inlining)
4246 else
4247 if Has_Pragma_Inline_Always (Spec_Id)
4248 or else Optimization_Level > 0
4249 then
4250 -- Handle function returning an unconstrained type
4252 if Comes_From_Source (Body_Id)
4253 and then Ekind (Spec_Id) = E_Function
4254 and then Returns_Unconstrained_Type (Spec_Id)
4256 -- If function builds in place, i.e. returns a limited type,
4257 -- inlining cannot be done.
4259 and then not Is_Limited_Type (Etype (Spec_Id))
4260 then
4261 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4263 else
4264 declare
4265 Subp_Body : constant Node_Id :=
4266 Unit_Declaration_Node (Body_Id);
4267 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4269 begin
4270 -- Do not pass inlining to the backend if the subprogram
4271 -- has declarations or statements which cannot be inlined
4272 -- by the backend. This check is done here to emit an
4273 -- error instead of the generic warning message reported
4274 -- by the GCC backend (ie. "function might not be
4275 -- inlinable").
4277 if Present (Subp_Decl)
4278 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4279 then
4280 null;
4282 elsif Has_Excluded_Statement
4283 (Spec_Id,
4284 Statements
4285 (Handled_Statement_Sequence (Subp_Body)))
4286 then
4287 null;
4289 -- If the backend inlining is available then at this
4290 -- stage we only have to mark the subprogram as inlined.
4291 -- The expander will take care of registering it in the
4292 -- table of subprograms inlined by the backend a part of
4293 -- processing calls to it (cf. Expand_Call)
4295 else
4296 Set_Is_Inlined (Spec_Id);
4297 end if;
4298 end;
4299 end if;
4300 end if;
4301 end if;
4303 -- In GNATprove mode, inline only when there is a separate subprogram
4304 -- declaration for now, as inlining of subprogram bodies acting as
4305 -- declarations, or subprogram stubs, are not supported by front-end
4306 -- inlining. This inlining should occur after analysis of the body, so
4307 -- that it is known whether the value of SPARK_Mode, which can be
4308 -- defined by a pragma inside the body, is applicable to the body.
4309 -- Inlining can be disabled with switch -gnatdm
4311 elsif GNATprove_Mode
4312 and then Full_Analysis
4313 and then not Inside_A_Generic
4314 and then Present (Spec_Id)
4315 and then
4316 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4317 and then Body_Has_SPARK_Mode_On
4318 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4319 and then not Body_Has_Contract
4320 and then not Debug_Flag_M
4321 then
4322 Build_Body_To_Inline (N, Spec_Id);
4323 end if;
4325 -- When generating code, inherited pre/postconditions are handled when
4326 -- expanding the corresponding contract.
4328 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4329 -- of the specification we have to install the private withed units.
4330 -- This holds for child units as well.
4332 if Is_Compilation_Unit (Body_Id)
4333 or else Nkind (Parent (N)) = N_Compilation_Unit
4334 then
4335 Install_Private_With_Clauses (Body_Id);
4336 end if;
4338 Check_Anonymous_Return;
4340 -- Set the Protected_Formal field of each extra formal of the protected
4341 -- subprogram to reference the corresponding extra formal of the
4342 -- subprogram that implements it. For regular formals this occurs when
4343 -- the protected subprogram's declaration is expanded, but the extra
4344 -- formals don't get created until the subprogram is frozen. We need to
4345 -- do this before analyzing the protected subprogram's body so that any
4346 -- references to the original subprogram's extra formals will be changed
4347 -- refer to the implementing subprogram's formals (see Expand_Formal).
4349 if Present (Spec_Id)
4350 and then Is_Protected_Type (Scope (Spec_Id))
4351 and then Present (Protected_Body_Subprogram (Spec_Id))
4352 then
4353 declare
4354 Impl_Subp : constant Entity_Id :=
4355 Protected_Body_Subprogram (Spec_Id);
4356 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4357 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4359 begin
4360 while Present (Prot_Ext_Formal) loop
4361 pragma Assert (Present (Impl_Ext_Formal));
4362 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4363 Next_Formal_With_Extras (Prot_Ext_Formal);
4364 Next_Formal_With_Extras (Impl_Ext_Formal);
4365 end loop;
4366 end;
4367 end if;
4369 -- Now we can go on to analyze the body
4371 HSS := Handled_Statement_Sequence (N);
4372 Set_Actual_Subtypes (N, Current_Scope);
4374 -- Add a declaration for the Protection object, renaming declarations
4375 -- for discriminals and privals and finally a declaration for the entry
4376 -- family index (if applicable). This form of early expansion is done
4377 -- when the Expander is active because Install_Private_Data_Declarations
4378 -- references entities which were created during regular expansion. The
4379 -- subprogram entity must come from source, and not be an internally
4380 -- generated subprogram.
4382 if Expander_Active
4383 and then Present (Prot_Typ)
4384 and then Present (Spec_Id)
4385 and then Comes_From_Source (Spec_Id)
4386 and then not Is_Eliminated (Spec_Id)
4387 then
4388 Install_Private_Data_Declarations
4389 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4390 end if;
4392 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4393 -- may now appear in parameter and result profiles. Since the analysis
4394 -- of a subprogram body may use the parameter and result profile of the
4395 -- spec, swap any limited views with their non-limited counterpart.
4397 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4398 Exch_Views := Exchange_Limited_Views (Spec_Id);
4399 end if;
4401 -- If the return type is an anonymous access type whose designated type
4402 -- is the limited view of a class-wide type and the non-limited view is
4403 -- available, update the return type accordingly.
4405 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4406 declare
4407 Etyp : Entity_Id;
4408 Rtyp : Entity_Id;
4410 begin
4411 Rtyp := Etype (Spec_Id);
4413 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4414 Etyp := Directly_Designated_Type (Rtyp);
4416 if Is_Class_Wide_Type (Etyp)
4417 and then From_Limited_With (Etyp)
4418 then
4419 Desig_View := Etyp;
4420 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4421 end if;
4422 end if;
4423 end;
4424 end if;
4426 -- Analyze any aspect specifications that appear on the subprogram body
4428 if Has_Aspects (N) then
4429 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4430 end if;
4432 Analyze_Declarations (Declarations (N));
4434 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4436 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4437 if Present (SPARK_Pragma (Spec_Id)) then
4438 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4439 and then
4440 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4441 then
4442 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4443 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4444 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4445 Error_Msg_NE
4446 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4447 end if;
4449 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4450 null;
4452 else
4453 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4454 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4455 Error_Msg_Sloc := Sloc (Spec_Id);
4456 Error_Msg_NE
4457 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4458 end if;
4459 end if;
4461 -- A subprogram body freezes its own contract. Analyze the contract
4462 -- after the declarations of the body have been processed as pragmas
4463 -- are now chained on the contract of the subprogram body.
4465 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4467 -- Check completion, and analyze the statements
4469 Check_Completion;
4470 Inspect_Deferred_Constant_Completion (Declarations (N));
4471 Analyze (HSS);
4473 -- Deal with end of scope processing for the body
4475 Process_End_Label (HSS, 't', Current_Scope);
4476 Update_Use_Clause_Chain;
4477 End_Scope;
4479 -- If we are compiling an entry wrapper, remove the enclosing
4480 -- synchronized object from the stack.
4482 if Is_Entry_Wrapper (Body_Id) then
4483 End_Scope;
4484 end if;
4486 Check_Subprogram_Order (N);
4487 Set_Analyzed (Body_Id);
4489 -- If we have a separate spec, then the analysis of the declarations
4490 -- caused the entities in the body to be chained to the spec id, but
4491 -- we want them chained to the body id. Only the formal parameters
4492 -- end up chained to the spec id in this case.
4494 if Present (Spec_Id) then
4496 -- We must conform to the categorization of our spec
4498 Validate_Categorization_Dependency (N, Spec_Id);
4500 -- And if this is a child unit, the parent units must conform
4502 if Is_Child_Unit (Spec_Id) then
4503 Validate_Categorization_Dependency
4504 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4505 end if;
4507 -- Here is where we move entities from the spec to the body
4509 -- Case where there are entities that stay with the spec
4511 if Present (Last_Real_Spec_Entity) then
4513 -- No body entities (happens when the only real spec entities come
4514 -- from precondition and postcondition pragmas).
4516 if No (Last_Entity (Body_Id)) then
4517 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4519 -- Body entities present (formals), so chain stuff past them
4521 else
4522 Link_Entities
4523 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4524 end if;
4526 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4527 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4528 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4530 -- Case where there are no spec entities, in this case there can be
4531 -- no body entities either, so just move everything.
4533 -- If the body is generated for an expression function, it may have
4534 -- been preanalyzed already, if 'access was applied to it.
4536 else
4537 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4538 N_Expression_Function
4539 then
4540 pragma Assert (No (Last_Entity (Body_Id)));
4541 null;
4542 end if;
4544 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4545 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4546 Set_First_Entity (Spec_Id, Empty);
4547 Set_Last_Entity (Spec_Id, Empty);
4548 end if;
4550 -- Otherwise the body does not complete a previous declaration. Check
4551 -- the categorization of the body against the units it withs.
4553 else
4554 Validate_Categorization_Dependency (N, Body_Id);
4555 end if;
4557 Check_Missing_Return;
4559 -- Now we are going to check for variables that are never modified in
4560 -- the body of the procedure. But first we deal with a special case
4561 -- where we want to modify this check. If the body of the subprogram
4562 -- starts with a raise statement or its equivalent, or if the body
4563 -- consists entirely of a null statement, then it is pretty obvious that
4564 -- it is OK to not reference the parameters. For example, this might be
4565 -- the following common idiom for a stubbed function: statement of the
4566 -- procedure raises an exception. In particular this deals with the
4567 -- common idiom of a stubbed function, which appears something like:
4569 -- function F (A : Integer) return Some_Type;
4570 -- X : Some_Type;
4571 -- begin
4572 -- raise Program_Error;
4573 -- return X;
4574 -- end F;
4576 -- Here the purpose of X is simply to satisfy the annoying requirement
4577 -- in Ada that there be at least one return, and we certainly do not
4578 -- want to go posting warnings on X that it is not initialized. On
4579 -- the other hand, if X is entirely unreferenced that should still
4580 -- get a warning.
4582 -- What we do is to detect these cases, and if we find them, flag the
4583 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4584 -- suppress unwanted warnings. For the case of the function stub above
4585 -- we have a special test to set X as apparently assigned to suppress
4586 -- the warning.
4588 declare
4589 Stm : Node_Id;
4591 begin
4592 -- Skip call markers installed by the ABE mechanism, labels, and
4593 -- Push_xxx_Error_Label to find the first real statement.
4595 Stm := First (Statements (HSS));
4596 while Nkind_In (Stm, N_Call_Marker, N_Label)
4597 or else Nkind (Stm) in N_Push_xxx_Label
4598 loop
4599 Next (Stm);
4600 end loop;
4602 -- Do the test on the original statement before expansion
4604 declare
4605 Ostm : constant Node_Id := Original_Node (Stm);
4607 begin
4608 -- If explicit raise statement, turn on flag
4610 if Nkind (Ostm) = N_Raise_Statement then
4611 Set_Trivial_Subprogram (Stm);
4613 -- If null statement, and no following statements, turn on flag
4615 elsif Nkind (Stm) = N_Null_Statement
4616 and then Comes_From_Source (Stm)
4617 and then No (Next (Stm))
4618 then
4619 Set_Trivial_Subprogram (Stm);
4621 -- Check for explicit call cases which likely raise an exception
4623 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4624 if Is_Entity_Name (Name (Ostm)) then
4625 declare
4626 Ent : constant Entity_Id := Entity (Name (Ostm));
4628 begin
4629 -- If the procedure is marked No_Return, then likely it
4630 -- raises an exception, but in any case it is not coming
4631 -- back here, so turn on the flag.
4633 if Present (Ent)
4634 and then Ekind (Ent) = E_Procedure
4635 and then No_Return (Ent)
4636 then
4637 Set_Trivial_Subprogram (Stm);
4638 end if;
4639 end;
4640 end if;
4641 end if;
4642 end;
4643 end;
4645 -- Check for variables that are never modified
4647 declare
4648 E1 : Entity_Id;
4649 E2 : Entity_Id;
4651 begin
4652 -- If there is a separate spec, then transfer Never_Set_In_Source
4653 -- flags from out parameters to the corresponding entities in the
4654 -- body. The reason we do that is we want to post error flags on
4655 -- the body entities, not the spec entities.
4657 if Present (Spec_Id) then
4658 E1 := First_Entity (Spec_Id);
4659 while Present (E1) loop
4660 if Ekind (E1) = E_Out_Parameter then
4661 E2 := First_Entity (Body_Id);
4662 while Present (E2) loop
4663 exit when Chars (E1) = Chars (E2);
4664 Next_Entity (E2);
4665 end loop;
4667 if Present (E2) then
4668 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4669 end if;
4670 end if;
4672 Next_Entity (E1);
4673 end loop;
4674 end if;
4676 -- Check references of the subprogram spec when we are dealing with
4677 -- an expression function due to it having a generated body.
4678 -- Otherwise, we simply check the formals of the subprogram body.
4680 if Present (Spec_Id)
4681 and then Is_Expression_Function (Spec_Id)
4682 then
4683 Check_References (Spec_Id);
4684 else
4685 Check_References (Body_Id);
4686 end if;
4687 end;
4689 -- Check for nested subprogram, and mark outer level subprogram if so
4691 declare
4692 Ent : Entity_Id;
4694 begin
4695 if Present (Spec_Id) then
4696 Ent := Spec_Id;
4697 else
4698 Ent := Body_Id;
4699 end if;
4701 loop
4702 Ent := Enclosing_Subprogram (Ent);
4703 exit when No (Ent) or else Is_Subprogram (Ent);
4704 end loop;
4706 if Present (Ent) then
4707 Set_Has_Nested_Subprogram (Ent);
4708 end if;
4709 end;
4711 -- Restore the limited views in the spec, if any, to let the back end
4712 -- process it without running into circularities.
4714 if Exch_Views /= No_Elist then
4715 Restore_Limited_Views (Exch_Views);
4716 end if;
4718 if Mask_Types /= No_Elist then
4719 Unmask_Unfrozen_Types (Mask_Types);
4720 end if;
4722 if Present (Desig_View) then
4723 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4724 end if;
4726 <<Leave>>
4727 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4728 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4729 end Analyze_Subprogram_Body_Helper;
4731 ------------------------------------
4732 -- Analyze_Subprogram_Declaration --
4733 ------------------------------------
4735 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4736 Scop : constant Entity_Id := Current_Scope;
4737 Designator : Entity_Id;
4739 Is_Completion : Boolean;
4740 -- Indicates whether a null procedure declaration is a completion
4742 begin
4743 -- Null procedures are not allowed in SPARK
4745 if Nkind (Specification (N)) = N_Procedure_Specification
4746 and then Null_Present (Specification (N))
4747 then
4748 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4750 -- Null procedures are allowed in protected types, following the
4751 -- recent AI12-0147.
4753 if Is_Protected_Type (Current_Scope)
4754 and then Ada_Version < Ada_2012
4755 then
4756 Error_Msg_N ("protected operation cannot be a null procedure", N);
4757 end if;
4759 Analyze_Null_Procedure (N, Is_Completion);
4761 -- The null procedure acts as a body, nothing further is needed
4763 if Is_Completion then
4764 return;
4765 end if;
4766 end if;
4768 Designator := Analyze_Subprogram_Specification (Specification (N));
4770 -- A reference may already have been generated for the unit name, in
4771 -- which case the following call is redundant. However it is needed for
4772 -- declarations that are the rewriting of an expression function.
4774 Generate_Definition (Designator);
4776 -- Set the SPARK mode from the current context (may be overwritten later
4777 -- with explicit pragma). This is not done for entry barrier functions
4778 -- because they are generated outside the protected type and should not
4779 -- carry the mode of the enclosing context.
4781 if Nkind (N) = N_Subprogram_Declaration
4782 and then Is_Entry_Barrier_Function (N)
4783 then
4784 null;
4786 else
4787 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4788 Set_SPARK_Pragma_Inherited (Designator);
4789 end if;
4791 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4792 -- the body of this subprogram is instantiated or inlined later and out
4793 -- of context. The body uses this attribute to restore the value of the
4794 -- global flag.
4796 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4797 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4798 end if;
4800 -- Preserve relevant elaboration-related attributes of the context which
4801 -- are no longer available or very expensive to recompute once analysis,
4802 -- resolution, and expansion are over.
4804 Mark_Elaboration_Attributes
4805 (N_Id => Designator,
4806 Checks => True,
4807 Warnings => True);
4809 if Debug_Flag_C then
4810 Write_Str ("==> subprogram spec ");
4811 Write_Name (Chars (Designator));
4812 Write_Str (" from ");
4813 Write_Location (Sloc (N));
4814 Write_Eol;
4815 Indent;
4816 end if;
4818 Validate_RCI_Subprogram_Declaration (N);
4819 New_Overloaded_Entity (Designator);
4820 Check_Delayed_Subprogram (Designator);
4822 -- If the type of the first formal of the current subprogram is a non-
4823 -- generic tagged private type, mark the subprogram as being a private
4824 -- primitive. Ditto if this is a function with controlling result, and
4825 -- the return type is currently private. In both cases, the type of the
4826 -- controlling argument or result must be in the current scope for the
4827 -- operation to be primitive.
4829 if Has_Controlling_Result (Designator)
4830 and then Is_Private_Type (Etype (Designator))
4831 and then Scope (Etype (Designator)) = Current_Scope
4832 and then not Is_Generic_Actual_Type (Etype (Designator))
4833 then
4834 Set_Is_Private_Primitive (Designator);
4836 elsif Present (First_Formal (Designator)) then
4837 declare
4838 Formal_Typ : constant Entity_Id :=
4839 Etype (First_Formal (Designator));
4840 begin
4841 Set_Is_Private_Primitive (Designator,
4842 Is_Tagged_Type (Formal_Typ)
4843 and then Scope (Formal_Typ) = Current_Scope
4844 and then Is_Private_Type (Formal_Typ)
4845 and then not Is_Generic_Actual_Type (Formal_Typ));
4846 end;
4847 end if;
4849 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4850 -- or null.
4852 if Ada_Version >= Ada_2005
4853 and then Comes_From_Source (N)
4854 and then Is_Dispatching_Operation (Designator)
4855 then
4856 declare
4857 E : Entity_Id;
4858 Etyp : Entity_Id;
4860 begin
4861 if Has_Controlling_Result (Designator) then
4862 Etyp := Etype (Designator);
4864 else
4865 E := First_Entity (Designator);
4866 while Present (E)
4867 and then Is_Formal (E)
4868 and then not Is_Controlling_Formal (E)
4869 loop
4870 Next_Entity (E);
4871 end loop;
4873 Etyp := Etype (E);
4874 end if;
4876 if Is_Access_Type (Etyp) then
4877 Etyp := Directly_Designated_Type (Etyp);
4878 end if;
4880 if Is_Interface (Etyp)
4881 and then not Is_Abstract_Subprogram (Designator)
4882 and then not (Ekind (Designator) = E_Procedure
4883 and then Null_Present (Specification (N)))
4884 then
4885 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4887 -- Specialize error message based on procedures vs. functions,
4888 -- since functions can't be null subprograms.
4890 if Ekind (Designator) = E_Procedure then
4891 Error_Msg_N
4892 ("interface procedure % must be abstract or null", N);
4893 else
4894 Error_Msg_N
4895 ("interface function % must be abstract", N);
4896 end if;
4897 end if;
4898 end;
4899 end if;
4901 -- What is the following code for, it used to be
4903 -- ??? Set_Suppress_Elaboration_Checks
4904 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4906 -- The following seems equivalent, but a bit dubious
4908 if Elaboration_Checks_Suppressed (Designator) then
4909 Set_Kill_Elaboration_Checks (Designator);
4910 end if;
4912 -- For a compilation unit, set body required. This flag will only be
4913 -- reset if a valid Import or Interface pragma is processed later on.
4915 if Nkind (Parent (N)) = N_Compilation_Unit then
4916 Set_Body_Required (Parent (N), True);
4918 if Ada_Version >= Ada_2005
4919 and then Nkind (Specification (N)) = N_Procedure_Specification
4920 and then Null_Present (Specification (N))
4921 then
4922 Error_Msg_N
4923 ("null procedure cannot be declared at library level", N);
4924 end if;
4925 end if;
4927 Generate_Reference_To_Formals (Designator);
4928 Check_Eliminated (Designator);
4930 if Debug_Flag_C then
4931 Outdent;
4932 Write_Str ("<== subprogram spec ");
4933 Write_Name (Chars (Designator));
4934 Write_Str (" from ");
4935 Write_Location (Sloc (N));
4936 Write_Eol;
4937 end if;
4939 -- Indicate that this is a protected operation, because it may be used
4940 -- in subsequent declarations within the protected type.
4942 if Is_Protected_Type (Current_Scope) then
4943 Set_Convention (Designator, Convention_Protected);
4944 end if;
4946 List_Inherited_Pre_Post_Aspects (Designator);
4948 -- Process the aspects before establishing the proper categorization in
4949 -- case the subprogram is a compilation unit and one of its aspects is
4950 -- converted into a categorization pragma.
4952 if Has_Aspects (N) then
4953 Analyze_Aspect_Specifications (N, Designator);
4954 end if;
4956 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4957 Set_Categorization_From_Scope (Designator, Scop);
4959 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
4960 -- proper categorization of the unit based on its pragmas.
4962 else
4963 Push_Scope (Designator);
4964 Set_Categorization_From_Pragmas (N);
4965 Validate_Categorization_Dependency (N, Designator);
4966 Pop_Scope;
4967 end if;
4968 end Analyze_Subprogram_Declaration;
4970 --------------------------------------
4971 -- Analyze_Subprogram_Specification --
4972 --------------------------------------
4974 -- Reminder: N here really is a subprogram specification (not a subprogram
4975 -- declaration). This procedure is called to analyze the specification in
4976 -- both subprogram bodies and subprogram declarations (specs).
4978 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4979 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4980 -- Determine whether entity E denotes the spec or body of an invariant
4981 -- procedure.
4983 ------------------------------------
4984 -- Is_Invariant_Procedure_Or_Body --
4985 ------------------------------------
4987 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4988 Decl : constant Node_Id := Unit_Declaration_Node (E);
4989 Spec : Entity_Id;
4991 begin
4992 if Nkind (Decl) = N_Subprogram_Body then
4993 Spec := Corresponding_Spec (Decl);
4994 else
4995 Spec := E;
4996 end if;
4998 return
4999 Present (Spec)
5000 and then Ekind (Spec) = E_Procedure
5001 and then (Is_Partial_Invariant_Procedure (Spec)
5002 or else Is_Invariant_Procedure (Spec));
5003 end Is_Invariant_Procedure_Or_Body;
5005 -- Local variables
5007 Designator : constant Entity_Id := Defining_Entity (N);
5008 Formals : constant List_Id := Parameter_Specifications (N);
5010 -- Start of processing for Analyze_Subprogram_Specification
5012 begin
5013 -- User-defined operator is not allowed in SPARK, except as a renaming
5015 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
5016 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
5017 then
5018 Check_SPARK_05_Restriction
5019 ("user-defined operator is not allowed", N);
5020 end if;
5022 -- Proceed with analysis. Do not emit a cross-reference entry if the
5023 -- specification comes from an expression function, because it may be
5024 -- the completion of a previous declaration. If it is not, the cross-
5025 -- reference entry will be emitted for the new subprogram declaration.
5027 if Nkind (Parent (N)) /= N_Expression_Function then
5028 Generate_Definition (Designator);
5029 end if;
5031 if Nkind (N) = N_Function_Specification then
5032 Set_Ekind (Designator, E_Function);
5033 Set_Mechanism (Designator, Default_Mechanism);
5034 else
5035 Set_Ekind (Designator, E_Procedure);
5036 Set_Etype (Designator, Standard_Void_Type);
5037 end if;
5039 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5040 -- those subprograms which could be inlined in GNATprove mode (because
5041 -- Body_To_Inline is non-Empty) but should not be inlined.
5043 if GNATprove_Mode then
5044 Set_Is_Inlined_Always (Designator);
5045 end if;
5047 -- Introduce new scope for analysis of the formals and the return type
5049 Set_Scope (Designator, Current_Scope);
5051 if Present (Formals) then
5052 Push_Scope (Designator);
5053 Process_Formals (Formals, N);
5055 -- Check dimensions in N for formals with default expression
5057 Analyze_Dimension_Formals (N, Formals);
5059 -- Ada 2005 (AI-345): If this is an overriding operation of an
5060 -- inherited interface operation, and the controlling type is
5061 -- a synchronized type, replace the type with its corresponding
5062 -- record, to match the proper signature of an overriding operation.
5063 -- Same processing for an access parameter whose designated type is
5064 -- derived from a synchronized interface.
5066 -- This modification is not done for invariant procedures because
5067 -- the corresponding record may not necessarely be visible when the
5068 -- concurrent type acts as the full view of a private type.
5070 -- package Pack is
5071 -- type Prot is private with Type_Invariant => ...;
5072 -- procedure ConcInvariant (Obj : Prot);
5073 -- private
5074 -- protected type Prot is ...;
5075 -- type Concurrent_Record_Prot is record ...;
5076 -- procedure ConcInvariant (Obj : Prot) is
5077 -- ...
5078 -- end ConcInvariant;
5079 -- end Pack;
5081 -- In the example above, both the spec and body of the invariant
5082 -- procedure must utilize the private type as the controlling type.
5084 if Ada_Version >= Ada_2005
5085 and then not Is_Invariant_Procedure_Or_Body (Designator)
5086 then
5087 declare
5088 Formal : Entity_Id;
5089 Formal_Typ : Entity_Id;
5090 Rec_Typ : Entity_Id;
5091 Desig_Typ : Entity_Id;
5093 begin
5094 Formal := First_Formal (Designator);
5095 while Present (Formal) loop
5096 Formal_Typ := Etype (Formal);
5098 if Is_Concurrent_Type (Formal_Typ)
5099 and then Present (Corresponding_Record_Type (Formal_Typ))
5100 then
5101 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5103 if Present (Interfaces (Rec_Typ)) then
5104 Set_Etype (Formal, Rec_Typ);
5105 end if;
5107 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5108 Desig_Typ := Designated_Type (Formal_Typ);
5110 if Is_Concurrent_Type (Desig_Typ)
5111 and then Present (Corresponding_Record_Type (Desig_Typ))
5112 then
5113 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5115 if Present (Interfaces (Rec_Typ)) then
5116 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5117 end if;
5118 end if;
5119 end if;
5121 Next_Formal (Formal);
5122 end loop;
5123 end;
5124 end if;
5126 End_Scope;
5128 -- The subprogram scope is pushed and popped around the processing of
5129 -- the return type for consistency with call above to Process_Formals
5130 -- (which itself can call Analyze_Return_Type), and to ensure that any
5131 -- itype created for the return type will be associated with the proper
5132 -- scope.
5134 elsif Nkind (N) = N_Function_Specification then
5135 Push_Scope (Designator);
5136 Analyze_Return_Type (N);
5137 End_Scope;
5138 end if;
5140 -- Function case
5142 if Nkind (N) = N_Function_Specification then
5144 -- Deal with operator symbol case
5146 if Nkind (Designator) = N_Defining_Operator_Symbol then
5147 Valid_Operator_Definition (Designator);
5148 end if;
5150 May_Need_Actuals (Designator);
5152 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5153 -- the subprogram is abstract also. This does not apply to renaming
5154 -- declarations, where abstractness is inherited, and to subprogram
5155 -- bodies generated for stream operations, which become renamings as
5156 -- bodies.
5158 -- In case of primitives associated with abstract interface types
5159 -- the check is applied later (see Analyze_Subprogram_Declaration).
5161 if not Nkind_In (Original_Node (Parent (N)),
5162 N_Abstract_Subprogram_Declaration,
5163 N_Formal_Abstract_Subprogram_Declaration,
5164 N_Subprogram_Renaming_Declaration)
5165 then
5166 if Is_Abstract_Type (Etype (Designator))
5167 and then not Is_Interface (Etype (Designator))
5168 then
5169 Error_Msg_N
5170 ("function that returns abstract type must be abstract", N);
5172 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5173 -- access result whose designated type is abstract.
5175 elsif Ada_Version >= Ada_2012
5176 and then Nkind (Result_Definition (N)) = N_Access_Definition
5177 and then
5178 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5179 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5180 then
5181 Error_Msg_N
5182 ("function whose access result designates abstract type "
5183 & "must be abstract", N);
5184 end if;
5185 end if;
5186 end if;
5188 return Designator;
5189 end Analyze_Subprogram_Specification;
5191 -----------------------
5192 -- Check_Conformance --
5193 -----------------------
5195 procedure Check_Conformance
5196 (New_Id : Entity_Id;
5197 Old_Id : Entity_Id;
5198 Ctype : Conformance_Type;
5199 Errmsg : Boolean;
5200 Conforms : out Boolean;
5201 Err_Loc : Node_Id := Empty;
5202 Get_Inst : Boolean := False;
5203 Skip_Controlling_Formals : Boolean := False)
5205 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5206 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5207 -- If Errmsg is True, then processing continues to post an error message
5208 -- for conformance error on given node. Two messages are output. The
5209 -- first message points to the previous declaration with a general "no
5210 -- conformance" message. The second is the detailed reason, supplied as
5211 -- Msg. The parameter N provide information for a possible & insertion
5212 -- in the message, and also provides the location for posting the
5213 -- message in the absence of a specified Err_Loc location.
5215 function Conventions_Match
5216 (Id1 : Entity_Id;
5217 Id2 : Entity_Id) return Boolean;
5218 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5219 -- match.
5221 -----------------------
5222 -- Conformance_Error --
5223 -----------------------
5225 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5226 Enode : Node_Id;
5228 begin
5229 Conforms := False;
5231 if Errmsg then
5232 if No (Err_Loc) then
5233 Enode := N;
5234 else
5235 Enode := Err_Loc;
5236 end if;
5238 Error_Msg_Sloc := Sloc (Old_Id);
5240 case Ctype is
5241 when Type_Conformant =>
5242 Error_Msg_N -- CODEFIX
5243 ("not type conformant with declaration#!", Enode);
5245 when Mode_Conformant =>
5246 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5247 Error_Msg_N
5248 ("not mode conformant with operation inherited#!",
5249 Enode);
5250 else
5251 Error_Msg_N
5252 ("not mode conformant with declaration#!", Enode);
5253 end if;
5255 when Subtype_Conformant =>
5256 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5257 Error_Msg_N
5258 ("not subtype conformant with operation inherited#!",
5259 Enode);
5260 else
5261 Error_Msg_N
5262 ("not subtype conformant with declaration#!", Enode);
5263 end if;
5265 when Fully_Conformant =>
5266 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5267 Error_Msg_N -- CODEFIX
5268 ("not fully conformant with operation inherited#!",
5269 Enode);
5270 else
5271 Error_Msg_N -- CODEFIX
5272 ("not fully conformant with declaration#!", Enode);
5273 end if;
5274 end case;
5276 Error_Msg_NE (Msg, Enode, N);
5277 end if;
5278 end Conformance_Error;
5280 -----------------------
5281 -- Conventions_Match --
5282 -----------------------
5284 function Conventions_Match
5285 (Id1 : Entity_Id;
5286 Id2 : Entity_Id) return Boolean
5288 begin
5289 -- Ignore the conventions of anonymous access-to-subprogram types
5290 -- and subprogram types because these are internally generated and
5291 -- the only way these may receive a convention is if they inherit
5292 -- the convention of a related subprogram.
5294 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5295 E_Subprogram_Type)
5296 or else
5297 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5298 E_Subprogram_Type)
5299 then
5300 return True;
5302 -- Otherwise compare the conventions directly
5304 else
5305 return Convention (Id1) = Convention (Id2);
5306 end if;
5307 end Conventions_Match;
5309 -- Local Variables
5311 Old_Type : constant Entity_Id := Etype (Old_Id);
5312 New_Type : constant Entity_Id := Etype (New_Id);
5313 Old_Formal : Entity_Id;
5314 New_Formal : Entity_Id;
5315 Access_Types_Match : Boolean;
5316 Old_Formal_Base : Entity_Id;
5317 New_Formal_Base : Entity_Id;
5319 -- Start of processing for Check_Conformance
5321 begin
5322 Conforms := True;
5324 -- We need a special case for operators, since they don't appear
5325 -- explicitly.
5327 if Ctype = Type_Conformant then
5328 if Ekind (New_Id) = E_Operator
5329 and then Operator_Matches_Spec (New_Id, Old_Id)
5330 then
5331 return;
5332 end if;
5333 end if;
5335 -- If both are functions/operators, check return types conform
5337 if Old_Type /= Standard_Void_Type
5338 and then
5339 New_Type /= Standard_Void_Type
5340 then
5341 -- If we are checking interface conformance we omit controlling
5342 -- arguments and result, because we are only checking the conformance
5343 -- of the remaining parameters.
5345 if Has_Controlling_Result (Old_Id)
5346 and then Has_Controlling_Result (New_Id)
5347 and then Skip_Controlling_Formals
5348 then
5349 null;
5351 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5352 if Ctype >= Subtype_Conformant
5353 and then not Predicates_Match (Old_Type, New_Type)
5354 then
5355 Conformance_Error
5356 ("\predicate of return type does not match!", New_Id);
5357 else
5358 Conformance_Error
5359 ("\return type does not match!", New_Id);
5360 end if;
5362 return;
5363 end if;
5365 -- Ada 2005 (AI-231): In case of anonymous access types check the
5366 -- null-exclusion and access-to-constant attributes match.
5368 if Ada_Version >= Ada_2005
5369 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5370 and then
5371 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5372 or else Is_Access_Constant (Etype (Old_Type)) /=
5373 Is_Access_Constant (Etype (New_Type)))
5374 then
5375 Conformance_Error ("\return type does not match!", New_Id);
5376 return;
5377 end if;
5379 -- If either is a function/operator and the other isn't, error
5381 elsif Old_Type /= Standard_Void_Type
5382 or else New_Type /= Standard_Void_Type
5383 then
5384 Conformance_Error ("\functions can only match functions!", New_Id);
5385 return;
5386 end if;
5388 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5389 -- If this is a renaming as body, refine error message to indicate that
5390 -- the conflict is with the original declaration. If the entity is not
5391 -- frozen, the conventions don't have to match, the one of the renamed
5392 -- entity is inherited.
5394 if Ctype >= Subtype_Conformant then
5395 if not Conventions_Match (Old_Id, New_Id) then
5396 if not Is_Frozen (New_Id) then
5397 null;
5399 elsif Present (Err_Loc)
5400 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5401 and then Present (Corresponding_Spec (Err_Loc))
5402 then
5403 Error_Msg_Name_1 := Chars (New_Id);
5404 Error_Msg_Name_2 :=
5405 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5406 Conformance_Error ("\prior declaration for% has convention %!");
5408 else
5409 Conformance_Error ("\calling conventions do not match!");
5410 end if;
5412 return;
5414 elsif Is_Formal_Subprogram (Old_Id)
5415 or else Is_Formal_Subprogram (New_Id)
5416 or else (Is_Subprogram (New_Id)
5417 and then Present (Alias (New_Id))
5418 and then Is_Formal_Subprogram (Alias (New_Id)))
5419 then
5420 Conformance_Error
5421 ("\formal subprograms are not subtype conformant "
5422 & "(RM 6.3.1 (17/3))");
5423 end if;
5424 end if;
5426 -- Deal with parameters
5428 -- Note: we use the entity information, rather than going directly
5429 -- to the specification in the tree. This is not only simpler, but
5430 -- absolutely necessary for some cases of conformance tests between
5431 -- operators, where the declaration tree simply does not exist.
5433 Old_Formal := First_Formal (Old_Id);
5434 New_Formal := First_Formal (New_Id);
5435 while Present (Old_Formal) and then Present (New_Formal) loop
5436 if Is_Controlling_Formal (Old_Formal)
5437 and then Is_Controlling_Formal (New_Formal)
5438 and then Skip_Controlling_Formals
5439 then
5440 -- The controlling formals will have different types when
5441 -- comparing an interface operation with its match, but both
5442 -- or neither must be access parameters.
5444 if Is_Access_Type (Etype (Old_Formal))
5446 Is_Access_Type (Etype (New_Formal))
5447 then
5448 goto Skip_Controlling_Formal;
5449 else
5450 Conformance_Error
5451 ("\access parameter does not match!", New_Formal);
5452 end if;
5453 end if;
5455 -- Ada 2012: Mode conformance also requires that formal parameters
5456 -- be both aliased, or neither.
5458 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5459 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5460 Conformance_Error
5461 ("\aliased parameter mismatch!", New_Formal);
5462 end if;
5463 end if;
5465 if Ctype = Fully_Conformant then
5467 -- Names must match. Error message is more accurate if we do
5468 -- this before checking that the types of the formals match.
5470 if Chars (Old_Formal) /= Chars (New_Formal) then
5471 Conformance_Error ("\name& does not match!", New_Formal);
5473 -- Set error posted flag on new formal as well to stop
5474 -- junk cascaded messages in some cases.
5476 Set_Error_Posted (New_Formal);
5477 return;
5478 end if;
5480 -- Null exclusion must match
5482 if Null_Exclusion_Present (Parent (Old_Formal))
5484 Null_Exclusion_Present (Parent (New_Formal))
5485 then
5486 -- Only give error if both come from source. This should be
5487 -- investigated some time, since it should not be needed ???
5489 if Comes_From_Source (Old_Formal)
5490 and then
5491 Comes_From_Source (New_Formal)
5492 then
5493 Conformance_Error
5494 ("\null exclusion for& does not match", New_Formal);
5496 -- Mark error posted on the new formal to avoid duplicated
5497 -- complaint about types not matching.
5499 Set_Error_Posted (New_Formal);
5500 end if;
5501 end if;
5502 end if;
5504 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5505 -- case occurs whenever a subprogram is being renamed and one of its
5506 -- parameters imposes a null exclusion. For example:
5508 -- type T is null record;
5509 -- type Acc_T is access T;
5510 -- subtype Acc_T_Sub is Acc_T;
5512 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5513 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5514 -- renames P;
5516 Old_Formal_Base := Etype (Old_Formal);
5517 New_Formal_Base := Etype (New_Formal);
5519 if Get_Inst then
5520 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5521 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5522 end if;
5524 Access_Types_Match := Ada_Version >= Ada_2005
5526 -- Ensure that this rule is only applied when New_Id is a
5527 -- renaming of Old_Id.
5529 and then Nkind (Parent (Parent (New_Id))) =
5530 N_Subprogram_Renaming_Declaration
5531 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5532 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5533 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5535 -- Now handle the allowed access-type case
5537 and then Is_Access_Type (Old_Formal_Base)
5538 and then Is_Access_Type (New_Formal_Base)
5540 -- The type kinds must match. The only exception occurs with
5541 -- multiple generics of the form:
5543 -- generic generic
5544 -- type F is private; type A is private;
5545 -- type F_Ptr is access F; type A_Ptr is access A;
5546 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5547 -- package F_Pack is ... package A_Pack is
5548 -- package F_Inst is
5549 -- new F_Pack (A, A_Ptr, A_P);
5551 -- When checking for conformance between the parameters of A_P
5552 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5553 -- because the compiler has transformed A_Ptr into a subtype of
5554 -- F_Ptr. We catch this case in the code below.
5556 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5557 or else
5558 (Is_Generic_Type (Old_Formal_Base)
5559 and then Is_Generic_Type (New_Formal_Base)
5560 and then Is_Internal (New_Formal_Base)
5561 and then Etype (Etype (New_Formal_Base)) =
5562 Old_Formal_Base))
5563 and then Directly_Designated_Type (Old_Formal_Base) =
5564 Directly_Designated_Type (New_Formal_Base)
5565 and then ((Is_Itype (Old_Formal_Base)
5566 and then Can_Never_Be_Null (Old_Formal_Base))
5567 or else
5568 (Is_Itype (New_Formal_Base)
5569 and then Can_Never_Be_Null (New_Formal_Base)));
5571 -- Types must always match. In the visible part of an instance,
5572 -- usual overloading rules for dispatching operations apply, and
5573 -- we check base types (not the actual subtypes).
5575 if In_Instance_Visible_Part
5576 and then Is_Dispatching_Operation (New_Id)
5577 then
5578 if not Conforming_Types
5579 (T1 => Base_Type (Etype (Old_Formal)),
5580 T2 => Base_Type (Etype (New_Formal)),
5581 Ctype => Ctype,
5582 Get_Inst => Get_Inst)
5583 and then not Access_Types_Match
5584 then
5585 Conformance_Error ("\type of & does not match!", New_Formal);
5586 return;
5587 end if;
5589 elsif not Conforming_Types
5590 (T1 => Old_Formal_Base,
5591 T2 => New_Formal_Base,
5592 Ctype => Ctype,
5593 Get_Inst => Get_Inst)
5594 and then not Access_Types_Match
5595 then
5596 -- Don't give error message if old type is Any_Type. This test
5597 -- avoids some cascaded errors, e.g. in case of a bad spec.
5599 if Errmsg and then Old_Formal_Base = Any_Type then
5600 Conforms := False;
5601 else
5602 if Ctype >= Subtype_Conformant
5603 and then
5604 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5605 then
5606 Conformance_Error
5607 ("\predicate of & does not match!", New_Formal);
5608 else
5609 Conformance_Error
5610 ("\type of & does not match!", New_Formal);
5612 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5613 then
5614 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5615 end if;
5616 end if;
5617 end if;
5619 return;
5620 end if;
5622 -- For mode conformance, mode must match
5624 if Ctype >= Mode_Conformant then
5625 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5626 if not Ekind_In (New_Id, E_Function, E_Procedure)
5627 or else not Is_Primitive_Wrapper (New_Id)
5628 then
5629 Conformance_Error ("\mode of & does not match!", New_Formal);
5631 else
5632 declare
5633 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5634 begin
5635 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5636 then
5637 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5638 else
5639 Conformance_Error
5640 ("\mode of & does not match!", New_Formal);
5641 end if;
5642 end;
5643 end if;
5645 return;
5647 -- Part of mode conformance for access types is having the same
5648 -- constant modifier.
5650 elsif Access_Types_Match
5651 and then Is_Access_Constant (Old_Formal_Base) /=
5652 Is_Access_Constant (New_Formal_Base)
5653 then
5654 Conformance_Error
5655 ("\constant modifier does not match!", New_Formal);
5656 return;
5657 end if;
5658 end if;
5660 if Ctype >= Subtype_Conformant then
5662 -- Ada 2005 (AI-231): In case of anonymous access types check
5663 -- the null-exclusion and access-to-constant attributes must
5664 -- match. For null exclusion, we test the types rather than the
5665 -- formals themselves, since the attribute is only set reliably
5666 -- on the formals in the Ada 95 case, and we exclude the case
5667 -- where Old_Formal is marked as controlling, to avoid errors
5668 -- when matching completing bodies with dispatching declarations
5669 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5671 if Ada_Version >= Ada_2005
5672 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5673 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5674 and then
5675 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5676 Can_Never_Be_Null (Etype (New_Formal))
5677 and then
5678 not Is_Controlling_Formal (Old_Formal))
5679 or else
5680 Is_Access_Constant (Etype (Old_Formal)) /=
5681 Is_Access_Constant (Etype (New_Formal)))
5683 -- Do not complain if error already posted on New_Formal. This
5684 -- avoids some redundant error messages.
5686 and then not Error_Posted (New_Formal)
5687 then
5688 -- It is allowed to omit the null-exclusion in case of stream
5689 -- attribute subprograms. We recognize stream subprograms
5690 -- through their TSS-generated suffix.
5692 declare
5693 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5695 begin
5696 if TSS_Name /= TSS_Stream_Read
5697 and then TSS_Name /= TSS_Stream_Write
5698 and then TSS_Name /= TSS_Stream_Input
5699 and then TSS_Name /= TSS_Stream_Output
5700 then
5701 -- Here we have a definite conformance error. It is worth
5702 -- special casing the error message for the case of a
5703 -- controlling formal (which excludes null).
5705 if Is_Controlling_Formal (New_Formal) then
5706 Error_Msg_Node_2 := Scope (New_Formal);
5707 Conformance_Error
5708 ("\controlling formal & of & excludes null, "
5709 & "declaration must exclude null as well",
5710 New_Formal);
5712 -- Normal case (couldn't we give more detail here???)
5714 else
5715 Conformance_Error
5716 ("\type of & does not match!", New_Formal);
5717 end if;
5719 return;
5720 end if;
5721 end;
5722 end if;
5723 end if;
5725 -- Full conformance checks
5727 if Ctype = Fully_Conformant then
5729 -- We have checked already that names match
5731 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5733 -- Check default expressions for in parameters
5735 declare
5736 NewD : constant Boolean :=
5737 Present (Default_Value (New_Formal));
5738 OldD : constant Boolean :=
5739 Present (Default_Value (Old_Formal));
5740 begin
5741 if NewD or OldD then
5743 -- The old default value has been analyzed because the
5744 -- current full declaration will have frozen everything
5745 -- before. The new default value has not been analyzed,
5746 -- so analyze it now before we check for conformance.
5748 if NewD then
5749 Push_Scope (New_Id);
5750 Preanalyze_Spec_Expression
5751 (Default_Value (New_Formal), Etype (New_Formal));
5752 End_Scope;
5753 end if;
5755 if not (NewD and OldD)
5756 or else not Fully_Conformant_Expressions
5757 (Default_Value (Old_Formal),
5758 Default_Value (New_Formal))
5759 then
5760 Conformance_Error
5761 ("\default expression for & does not match!",
5762 New_Formal);
5763 return;
5764 end if;
5765 end if;
5766 end;
5767 end if;
5768 end if;
5770 -- A couple of special checks for Ada 83 mode. These checks are
5771 -- skipped if either entity is an operator in package Standard,
5772 -- or if either old or new instance is not from the source program.
5774 if Ada_Version = Ada_83
5775 and then Sloc (Old_Id) > Standard_Location
5776 and then Sloc (New_Id) > Standard_Location
5777 and then Comes_From_Source (Old_Id)
5778 and then Comes_From_Source (New_Id)
5779 then
5780 declare
5781 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5782 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5784 begin
5785 -- Explicit IN must be present or absent in both cases. This
5786 -- test is required only in the full conformance case.
5788 if In_Present (Old_Param) /= In_Present (New_Param)
5789 and then Ctype = Fully_Conformant
5790 then
5791 Conformance_Error
5792 ("\(Ada 83) IN must appear in both declarations",
5793 New_Formal);
5794 return;
5795 end if;
5797 -- Grouping (use of comma in param lists) must be the same
5798 -- This is where we catch a misconformance like:
5800 -- A, B : Integer
5801 -- A : Integer; B : Integer
5803 -- which are represented identically in the tree except
5804 -- for the setting of the flags More_Ids and Prev_Ids.
5806 if More_Ids (Old_Param) /= More_Ids (New_Param)
5807 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5808 then
5809 Conformance_Error
5810 ("\grouping of & does not match!", New_Formal);
5811 return;
5812 end if;
5813 end;
5814 end if;
5816 -- This label is required when skipping controlling formals
5818 <<Skip_Controlling_Formal>>
5820 Next_Formal (Old_Formal);
5821 Next_Formal (New_Formal);
5822 end loop;
5824 if Present (Old_Formal) then
5825 Conformance_Error ("\too few parameters!");
5826 return;
5828 elsif Present (New_Formal) then
5829 Conformance_Error ("\too many parameters!", New_Formal);
5830 return;
5831 end if;
5832 end Check_Conformance;
5834 -----------------------
5835 -- Check_Conventions --
5836 -----------------------
5838 procedure Check_Conventions (Typ : Entity_Id) is
5839 Ifaces_List : Elist_Id;
5841 procedure Check_Convention (Op : Entity_Id);
5842 -- Verify that the convention of inherited dispatching operation Op is
5843 -- consistent among all subprograms it overrides. In order to minimize
5844 -- the search, Search_From is utilized to designate a specific point in
5845 -- the list rather than iterating over the whole list once more.
5847 ----------------------
5848 -- Check_Convention --
5849 ----------------------
5851 procedure Check_Convention (Op : Entity_Id) is
5852 Op_Conv : constant Convention_Id := Convention (Op);
5853 Iface_Conv : Convention_Id;
5854 Iface_Elmt : Elmt_Id;
5855 Iface_Prim_Elmt : Elmt_Id;
5856 Iface_Prim : Entity_Id;
5858 begin
5859 Iface_Elmt := First_Elmt (Ifaces_List);
5860 while Present (Iface_Elmt) loop
5861 Iface_Prim_Elmt :=
5862 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5863 while Present (Iface_Prim_Elmt) loop
5864 Iface_Prim := Node (Iface_Prim_Elmt);
5865 Iface_Conv := Convention (Iface_Prim);
5867 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5868 and then Iface_Conv /= Op_Conv
5869 then
5870 Error_Msg_N
5871 ("inconsistent conventions in primitive operations", Typ);
5873 Error_Msg_Name_1 := Chars (Op);
5874 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5875 Error_Msg_Sloc := Sloc (Op);
5877 if Comes_From_Source (Op) or else No (Alias (Op)) then
5878 if not Present (Overridden_Operation (Op)) then
5879 Error_Msg_N ("\\primitive % defined #", Typ);
5880 else
5881 Error_Msg_N
5882 ("\\overriding operation % with "
5883 & "convention % defined #", Typ);
5884 end if;
5886 else pragma Assert (Present (Alias (Op)));
5887 Error_Msg_Sloc := Sloc (Alias (Op));
5888 Error_Msg_N ("\\inherited operation % with "
5889 & "convention % defined #", Typ);
5890 end if;
5892 Error_Msg_Name_1 := Chars (Op);
5893 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5894 Error_Msg_Sloc := Sloc (Iface_Prim);
5895 Error_Msg_N ("\\overridden operation % with "
5896 & "convention % defined #", Typ);
5898 -- Avoid cascading errors
5900 return;
5901 end if;
5903 Next_Elmt (Iface_Prim_Elmt);
5904 end loop;
5906 Next_Elmt (Iface_Elmt);
5907 end loop;
5908 end Check_Convention;
5910 -- Local variables
5912 Prim_Op : Entity_Id;
5913 Prim_Op_Elmt : Elmt_Id;
5915 -- Start of processing for Check_Conventions
5917 begin
5918 if not Has_Interfaces (Typ) then
5919 return;
5920 end if;
5922 Collect_Interfaces (Typ, Ifaces_List);
5924 -- The algorithm checks every overriding dispatching operation against
5925 -- all the corresponding overridden dispatching operations, detecting
5926 -- differences in conventions.
5928 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5929 while Present (Prim_Op_Elmt) loop
5930 Prim_Op := Node (Prim_Op_Elmt);
5932 -- A small optimization: skip the predefined dispatching operations
5933 -- since they always have the same convention.
5935 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5936 Check_Convention (Prim_Op);
5937 end if;
5939 Next_Elmt (Prim_Op_Elmt);
5940 end loop;
5941 end Check_Conventions;
5943 ------------------------------
5944 -- Check_Delayed_Subprogram --
5945 ------------------------------
5947 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5948 procedure Possible_Freeze (T : Entity_Id);
5949 -- T is the type of either a formal parameter or of the return type. If
5950 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5951 -- itself must be delayed.
5953 ---------------------
5954 -- Possible_Freeze --
5955 ---------------------
5957 procedure Possible_Freeze (T : Entity_Id) is
5958 Scop : constant Entity_Id := Scope (Designator);
5960 begin
5961 -- If the subprogram appears within a package instance (which may be
5962 -- the wrapper package of a subprogram instance) the freeze node for
5963 -- that package will freeze the subprogram at the proper place, so
5964 -- do not emit a freeze node for the subprogram, given that it may
5965 -- appear in the wrong scope.
5967 if Ekind (Scop) = E_Package
5968 and then not Comes_From_Source (Scop)
5969 and then Is_Generic_Instance (Scop)
5970 then
5971 null;
5973 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5974 Set_Has_Delayed_Freeze (Designator);
5976 elsif Is_Access_Type (T)
5977 and then Has_Delayed_Freeze (Designated_Type (T))
5978 and then not Is_Frozen (Designated_Type (T))
5979 then
5980 Set_Has_Delayed_Freeze (Designator);
5981 end if;
5982 end Possible_Freeze;
5984 -- Local variables
5986 F : Entity_Id;
5988 -- Start of processing for Check_Delayed_Subprogram
5990 begin
5991 -- All subprograms, including abstract subprograms, may need a freeze
5992 -- node if some formal type or the return type needs one.
5994 Possible_Freeze (Etype (Designator));
5995 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5997 -- Need delayed freeze if any of the formal types themselves need a
5998 -- delayed freeze and are not yet frozen.
6000 F := First_Formal (Designator);
6001 while Present (F) loop
6002 Possible_Freeze (Etype (F));
6003 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6004 Next_Formal (F);
6005 end loop;
6007 -- Mark functions that return by reference. Note that it cannot be done
6008 -- for delayed_freeze subprograms because the underlying returned type
6009 -- may not be known yet (for private types).
6011 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6012 declare
6013 Typ : constant Entity_Id := Etype (Designator);
6014 Utyp : constant Entity_Id := Underlying_Type (Typ);
6016 begin
6017 if Is_Limited_View (Typ) then
6018 Set_Returns_By_Ref (Designator);
6020 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6021 Set_Returns_By_Ref (Designator);
6022 end if;
6023 end;
6024 end if;
6025 end Check_Delayed_Subprogram;
6027 ------------------------------------
6028 -- Check_Discriminant_Conformance --
6029 ------------------------------------
6031 procedure Check_Discriminant_Conformance
6032 (N : Node_Id;
6033 Prev : Entity_Id;
6034 Prev_Loc : Node_Id)
6036 Old_Discr : Entity_Id := First_Discriminant (Prev);
6037 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6038 New_Discr_Id : Entity_Id;
6039 New_Discr_Type : Entity_Id;
6041 procedure Conformance_Error (Msg : String; N : Node_Id);
6042 -- Post error message for conformance error on given node. Two messages
6043 -- are output. The first points to the previous declaration with a
6044 -- general "no conformance" message. The second is the detailed reason,
6045 -- supplied as Msg. The parameter N provide information for a possible
6046 -- & insertion in the message.
6048 -----------------------
6049 -- Conformance_Error --
6050 -----------------------
6052 procedure Conformance_Error (Msg : String; N : Node_Id) is
6053 begin
6054 Error_Msg_Sloc := Sloc (Prev_Loc);
6055 Error_Msg_N -- CODEFIX
6056 ("not fully conformant with declaration#!", N);
6057 Error_Msg_NE (Msg, N, N);
6058 end Conformance_Error;
6060 -- Start of processing for Check_Discriminant_Conformance
6062 begin
6063 while Present (Old_Discr) and then Present (New_Discr) loop
6064 New_Discr_Id := Defining_Identifier (New_Discr);
6066 -- The subtype mark of the discriminant on the full type has not
6067 -- been analyzed so we do it here. For an access discriminant a new
6068 -- type is created.
6070 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6071 New_Discr_Type :=
6072 Access_Definition (N, Discriminant_Type (New_Discr));
6074 else
6075 Analyze (Discriminant_Type (New_Discr));
6076 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6078 -- Ada 2005: if the discriminant definition carries a null
6079 -- exclusion, create an itype to check properly for consistency
6080 -- with partial declaration.
6082 if Is_Access_Type (New_Discr_Type)
6083 and then Null_Exclusion_Present (New_Discr)
6084 then
6085 New_Discr_Type :=
6086 Create_Null_Excluding_Itype
6087 (T => New_Discr_Type,
6088 Related_Nod => New_Discr,
6089 Scope_Id => Current_Scope);
6090 end if;
6091 end if;
6093 if not Conforming_Types
6094 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6095 then
6096 Conformance_Error ("type of & does not match!", New_Discr_Id);
6097 return;
6098 else
6099 -- Treat the new discriminant as an occurrence of the old one,
6100 -- for navigation purposes, and fill in some semantic
6101 -- information, for completeness.
6103 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6104 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6105 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6106 end if;
6108 -- Names must match
6110 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6111 Conformance_Error ("name & does not match!", New_Discr_Id);
6112 return;
6113 end if;
6115 -- Default expressions must match
6117 declare
6118 NewD : constant Boolean :=
6119 Present (Expression (New_Discr));
6120 OldD : constant Boolean :=
6121 Present (Expression (Parent (Old_Discr)));
6123 begin
6124 if NewD or OldD then
6126 -- The old default value has been analyzed and expanded,
6127 -- because the current full declaration will have frozen
6128 -- everything before. The new default values have not been
6129 -- expanded, so expand now to check conformance.
6131 if NewD then
6132 Preanalyze_Spec_Expression
6133 (Expression (New_Discr), New_Discr_Type);
6134 end if;
6136 if not (NewD and OldD)
6137 or else not Fully_Conformant_Expressions
6138 (Expression (Parent (Old_Discr)),
6139 Expression (New_Discr))
6141 then
6142 Conformance_Error
6143 ("default expression for & does not match!",
6144 New_Discr_Id);
6145 return;
6146 end if;
6147 end if;
6148 end;
6150 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6152 if Ada_Version = Ada_83 then
6153 declare
6154 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6156 begin
6157 -- Grouping (use of comma in param lists) must be the same
6158 -- This is where we catch a misconformance like:
6160 -- A, B : Integer
6161 -- A : Integer; B : Integer
6163 -- which are represented identically in the tree except
6164 -- for the setting of the flags More_Ids and Prev_Ids.
6166 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6167 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6168 then
6169 Conformance_Error
6170 ("grouping of & does not match!", New_Discr_Id);
6171 return;
6172 end if;
6173 end;
6174 end if;
6176 Next_Discriminant (Old_Discr);
6177 Next (New_Discr);
6178 end loop;
6180 if Present (Old_Discr) then
6181 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6182 return;
6184 elsif Present (New_Discr) then
6185 Conformance_Error
6186 ("too many discriminants!", Defining_Identifier (New_Discr));
6187 return;
6188 end if;
6189 end Check_Discriminant_Conformance;
6191 ----------------------------
6192 -- Check_Fully_Conformant --
6193 ----------------------------
6195 procedure Check_Fully_Conformant
6196 (New_Id : Entity_Id;
6197 Old_Id : Entity_Id;
6198 Err_Loc : Node_Id := Empty)
6200 Result : Boolean;
6201 pragma Warnings (Off, Result);
6202 begin
6203 Check_Conformance
6204 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6205 end Check_Fully_Conformant;
6207 --------------------------
6208 -- Check_Limited_Return --
6209 --------------------------
6211 procedure Check_Limited_Return
6212 (N : Node_Id;
6213 Expr : Node_Id;
6214 R_Type : Entity_Id)
6216 begin
6217 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6218 -- replaced by anonymous access results. This is an incompatibility with
6219 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6220 -- controllable with special switch. ???
6222 -- A limited interface that is not immutably limited is OK
6224 if Is_Limited_Interface (R_Type)
6225 and then
6226 not (Is_Task_Interface (R_Type)
6227 or else Is_Protected_Interface (R_Type)
6228 or else Is_Synchronized_Interface (R_Type))
6229 then
6230 null;
6232 elsif Is_Limited_Type (R_Type)
6233 and then not Is_Interface (R_Type)
6234 and then Comes_From_Source (N)
6235 and then not In_Instance_Body
6236 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6237 then
6238 -- Error in Ada 2005
6240 if Ada_Version >= Ada_2005
6241 and then not Debug_Flag_Dot_L
6242 and then not GNAT_Mode
6243 then
6244 Error_Msg_N
6245 ("(Ada 2005) cannot copy object of a limited type "
6246 & "(RM-2005 6.5(5.5/2))", Expr);
6248 if Is_Limited_View (R_Type) then
6249 Error_Msg_N
6250 ("\return by reference not permitted in Ada 2005", Expr);
6251 end if;
6253 -- Warn in Ada 95 mode, to give folks a heads up about this
6254 -- incompatibility.
6256 -- In GNAT mode, this is just a warning, to allow it to be evilly
6257 -- turned off. Otherwise it is a real error.
6259 -- In a generic context, simplify the warning because it makes no
6260 -- sense to discuss pass-by-reference or copy.
6262 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6263 if Inside_A_Generic then
6264 Error_Msg_N
6265 ("return of limited object not permitted in Ada 2005 "
6266 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6268 elsif Is_Limited_View (R_Type) then
6269 Error_Msg_N
6270 ("return by reference not permitted in Ada 2005 "
6271 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6272 else
6273 Error_Msg_N
6274 ("cannot copy object of a limited type in Ada 2005 "
6275 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6276 end if;
6278 -- Ada 95 mode, and compatibility warnings disabled
6280 else
6281 pragma Assert (Ada_Version <= Ada_95);
6282 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6283 return; -- skip continuation messages below
6284 end if;
6286 if not Inside_A_Generic then
6287 Error_Msg_N
6288 ("\consider switching to return of access type", Expr);
6289 Explain_Limited_Type (R_Type, Expr);
6290 end if;
6291 end if;
6292 end Check_Limited_Return;
6294 ---------------------------
6295 -- Check_Mode_Conformant --
6296 ---------------------------
6298 procedure Check_Mode_Conformant
6299 (New_Id : Entity_Id;
6300 Old_Id : Entity_Id;
6301 Err_Loc : Node_Id := Empty;
6302 Get_Inst : Boolean := False)
6304 Result : Boolean;
6305 pragma Warnings (Off, Result);
6306 begin
6307 Check_Conformance
6308 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6309 end Check_Mode_Conformant;
6311 --------------------------------
6312 -- Check_Overriding_Indicator --
6313 --------------------------------
6315 procedure Check_Overriding_Indicator
6316 (Subp : Entity_Id;
6317 Overridden_Subp : Entity_Id;
6318 Is_Primitive : Boolean)
6320 Decl : Node_Id;
6321 Spec : Node_Id;
6323 begin
6324 -- No overriding indicator for literals
6326 if Ekind (Subp) = E_Enumeration_Literal then
6327 return;
6329 elsif Ekind (Subp) = E_Entry then
6330 Decl := Parent (Subp);
6332 -- No point in analyzing a malformed operator
6334 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6335 and then Error_Posted (Subp)
6336 then
6337 return;
6339 else
6340 Decl := Unit_Declaration_Node (Subp);
6341 end if;
6343 if Nkind_In (Decl, N_Subprogram_Body,
6344 N_Subprogram_Body_Stub,
6345 N_Subprogram_Declaration,
6346 N_Abstract_Subprogram_Declaration,
6347 N_Subprogram_Renaming_Declaration)
6348 then
6349 Spec := Specification (Decl);
6351 elsif Nkind (Decl) = N_Entry_Declaration then
6352 Spec := Decl;
6354 else
6355 return;
6356 end if;
6358 -- The overriding operation is type conformant with the overridden one,
6359 -- but the names of the formals are not required to match. If the names
6360 -- appear permuted in the overriding operation, this is a possible
6361 -- source of confusion that is worth diagnosing. Controlling formals
6362 -- often carry names that reflect the type, and it is not worthwhile
6363 -- requiring that their names match.
6365 if Present (Overridden_Subp)
6366 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6367 then
6368 declare
6369 Form1 : Entity_Id;
6370 Form2 : Entity_Id;
6372 begin
6373 Form1 := First_Formal (Subp);
6374 Form2 := First_Formal (Overridden_Subp);
6376 -- If the overriding operation is a synchronized operation, skip
6377 -- the first parameter of the overridden operation, which is
6378 -- implicit in the new one. If the operation is declared in the
6379 -- body it is not primitive and all formals must match.
6381 if Is_Concurrent_Type (Scope (Subp))
6382 and then Is_Tagged_Type (Scope (Subp))
6383 and then not Has_Completion (Scope (Subp))
6384 then
6385 Form2 := Next_Formal (Form2);
6386 end if;
6388 if Present (Form1) then
6389 Form1 := Next_Formal (Form1);
6390 Form2 := Next_Formal (Form2);
6391 end if;
6393 while Present (Form1) loop
6394 if not Is_Controlling_Formal (Form1)
6395 and then Present (Next_Formal (Form2))
6396 and then Chars (Form1) = Chars (Next_Formal (Form2))
6397 then
6398 Error_Msg_Node_2 := Alias (Overridden_Subp);
6399 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6400 Error_Msg_NE
6401 ("& does not match corresponding formal of&#",
6402 Form1, Form1);
6403 exit;
6404 end if;
6406 Next_Formal (Form1);
6407 Next_Formal (Form2);
6408 end loop;
6409 end;
6410 end if;
6412 -- If there is an overridden subprogram, then check that there is no
6413 -- "not overriding" indicator, and mark the subprogram as overriding.
6414 -- This is not done if the overridden subprogram is marked as hidden,
6415 -- which can occur for the case of inherited controlled operations
6416 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6417 -- subprogram is not itself hidden. (Note: This condition could probably
6418 -- be simplified, leaving out the testing for the specific controlled
6419 -- cases, but it seems safer and clearer this way, and echoes similar
6420 -- special-case tests of this kind in other places.)
6422 if Present (Overridden_Subp)
6423 and then (not Is_Hidden (Overridden_Subp)
6424 or else
6425 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6426 Name_Adjust,
6427 Name_Finalize)
6428 and then Present (Alias (Overridden_Subp))
6429 and then not Is_Hidden (Alias (Overridden_Subp))))
6430 then
6431 if Must_Not_Override (Spec) then
6432 Error_Msg_Sloc := Sloc (Overridden_Subp);
6434 if Ekind (Subp) = E_Entry then
6435 Error_Msg_NE
6436 ("entry & overrides inherited operation #", Spec, Subp);
6437 else
6438 Error_Msg_NE
6439 ("subprogram & overrides inherited operation #", Spec, Subp);
6440 end if;
6442 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6443 -- as an extension of Root_Controlled, and thus has a useless Adjust
6444 -- operation. This operation should not be inherited by other limited
6445 -- controlled types. An explicit Adjust for them is not overriding.
6447 elsif Must_Override (Spec)
6448 and then Chars (Overridden_Subp) = Name_Adjust
6449 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6450 and then Present (Alias (Overridden_Subp))
6451 and then In_Predefined_Unit (Alias (Overridden_Subp))
6452 then
6453 Get_Name_String
6454 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6455 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6457 elsif Is_Subprogram (Subp) then
6458 if Is_Init_Proc (Subp) then
6459 null;
6461 elsif No (Overridden_Operation (Subp)) then
6463 -- For entities generated by Derive_Subprograms the overridden
6464 -- operation is the inherited primitive (which is available
6465 -- through the attribute alias)
6467 if (Is_Dispatching_Operation (Subp)
6468 or else Is_Dispatching_Operation (Overridden_Subp))
6469 and then not Comes_From_Source (Overridden_Subp)
6470 and then Find_Dispatching_Type (Overridden_Subp) =
6471 Find_Dispatching_Type (Subp)
6472 and then Present (Alias (Overridden_Subp))
6473 and then Comes_From_Source (Alias (Overridden_Subp))
6474 then
6475 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6476 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6478 else
6479 Set_Overridden_Operation (Subp, Overridden_Subp);
6480 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6481 end if;
6482 end if;
6483 end if;
6485 -- If primitive flag is set or this is a protected operation, then
6486 -- the operation is overriding at the point of its declaration, so
6487 -- warn if necessary. Otherwise it may have been declared before the
6488 -- operation it overrides and no check is required.
6490 if Style_Check
6491 and then not Must_Override (Spec)
6492 and then (Is_Primitive
6493 or else Ekind (Scope (Subp)) = E_Protected_Type)
6494 then
6495 Style.Missing_Overriding (Decl, Subp);
6496 end if;
6498 -- If Subp is an operator, it may override a predefined operation, if
6499 -- it is defined in the same scope as the type to which it applies.
6500 -- In that case Overridden_Subp is empty because of our implicit
6501 -- representation for predefined operators. We have to check whether the
6502 -- signature of Subp matches that of a predefined operator. Note that
6503 -- first argument provides the name of the operator, and the second
6504 -- argument the signature that may match that of a standard operation.
6505 -- If the indicator is overriding, then the operator must match a
6506 -- predefined signature, because we know already that there is no
6507 -- explicit overridden operation.
6509 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6510 if Must_Not_Override (Spec) then
6512 -- If this is not a primitive or a protected subprogram, then
6513 -- "not overriding" is illegal.
6515 if not Is_Primitive
6516 and then Ekind (Scope (Subp)) /= E_Protected_Type
6517 then
6518 Error_Msg_N ("overriding indicator only allowed "
6519 & "if subprogram is primitive", Subp);
6521 elsif Can_Override_Operator (Subp) then
6522 Error_Msg_NE
6523 ("subprogram& overrides predefined operator ", Spec, Subp);
6524 end if;
6526 elsif Must_Override (Spec) then
6527 if No (Overridden_Operation (Subp))
6528 and then not Can_Override_Operator (Subp)
6529 then
6530 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6531 end if;
6533 elsif not Error_Posted (Subp)
6534 and then Style_Check
6535 and then Can_Override_Operator (Subp)
6536 and then not In_Predefined_Unit (Subp)
6537 then
6538 -- If style checks are enabled, indicate that the indicator is
6539 -- missing. However, at the point of declaration, the type of
6540 -- which this is a primitive operation may be private, in which
6541 -- case the indicator would be premature.
6543 if Has_Private_Declaration (Etype (Subp))
6544 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6545 then
6546 null;
6547 else
6548 Style.Missing_Overriding (Decl, Subp);
6549 end if;
6550 end if;
6552 elsif Must_Override (Spec) then
6553 if Ekind (Subp) = E_Entry then
6554 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6555 else
6556 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6557 end if;
6559 -- If the operation is marked "not overriding" and it's not primitive
6560 -- then an error is issued, unless this is an operation of a task or
6561 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6562 -- has been specified have already been checked above.
6564 elsif Must_Not_Override (Spec)
6565 and then not Is_Primitive
6566 and then Ekind (Subp) /= E_Entry
6567 and then Ekind (Scope (Subp)) /= E_Protected_Type
6568 then
6569 Error_Msg_N
6570 ("overriding indicator only allowed if subprogram is primitive",
6571 Subp);
6572 return;
6573 end if;
6574 end Check_Overriding_Indicator;
6576 -------------------
6577 -- Check_Returns --
6578 -------------------
6580 -- Note: this procedure needs to know far too much about how the expander
6581 -- messes with exceptions. The use of the flag Exception_Junk and the
6582 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6583 -- works, but is not very clean. It would be better if the expansion
6584 -- routines would leave Original_Node working nicely, and we could use
6585 -- Original_Node here to ignore all the peculiar expander messing ???
6587 procedure Check_Returns
6588 (HSS : Node_Id;
6589 Mode : Character;
6590 Err : out Boolean;
6591 Proc : Entity_Id := Empty)
6593 Handler : Node_Id;
6595 procedure Check_Statement_Sequence (L : List_Id);
6596 -- Internal recursive procedure to check a list of statements for proper
6597 -- termination by a return statement (or a transfer of control or a
6598 -- compound statement that is itself internally properly terminated).
6600 ------------------------------
6601 -- Check_Statement_Sequence --
6602 ------------------------------
6604 procedure Check_Statement_Sequence (L : List_Id) is
6605 Last_Stm : Node_Id;
6606 Stm : Node_Id;
6607 Kind : Node_Kind;
6609 function Assert_False return Boolean;
6610 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6611 -- rewritten as a null statement when assertions are off. The assert
6612 -- is not active, but it is still enough to kill the warning.
6614 ------------------
6615 -- Assert_False --
6616 ------------------
6618 function Assert_False return Boolean is
6619 Orig : constant Node_Id := Original_Node (Last_Stm);
6621 begin
6622 if Nkind (Orig) = N_Pragma
6623 and then Pragma_Name (Orig) = Name_Assert
6624 and then not Error_Posted (Orig)
6625 then
6626 declare
6627 Arg : constant Node_Id :=
6628 First (Pragma_Argument_Associations (Orig));
6629 Exp : constant Node_Id := Expression (Arg);
6630 begin
6631 return Nkind (Exp) = N_Identifier
6632 and then Chars (Exp) = Name_False;
6633 end;
6635 else
6636 return False;
6637 end if;
6638 end Assert_False;
6640 -- Local variables
6642 Raise_Exception_Call : Boolean;
6643 -- Set True if statement sequence terminated by Raise_Exception call
6644 -- or a Reraise_Occurrence call.
6646 -- Start of processing for Check_Statement_Sequence
6648 begin
6649 Raise_Exception_Call := False;
6651 -- Get last real statement
6653 Last_Stm := Last (L);
6655 -- Deal with digging out exception handler statement sequences that
6656 -- have been transformed by the local raise to goto optimization.
6657 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6658 -- optimization has occurred, we are looking at something like:
6660 -- begin
6661 -- original stmts in block
6663 -- exception \
6664 -- when excep1 => |
6665 -- goto L1; | omitted if No_Exception_Propagation
6666 -- when excep2 => |
6667 -- goto L2; /
6668 -- end;
6670 -- goto L3; -- skip handler when exception not raised
6672 -- <<L1>> -- target label for local exception
6673 -- begin
6674 -- estmts1
6675 -- end;
6677 -- goto L3;
6679 -- <<L2>>
6680 -- begin
6681 -- estmts2
6682 -- end;
6684 -- <<L3>>
6686 -- and what we have to do is to dig out the estmts1 and estmts2
6687 -- sequences (which were the original sequences of statements in
6688 -- the exception handlers) and check them.
6690 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6691 Stm := Last_Stm;
6692 loop
6693 Prev (Stm);
6694 exit when No (Stm);
6695 exit when Nkind (Stm) /= N_Block_Statement;
6696 exit when not Exception_Junk (Stm);
6697 Prev (Stm);
6698 exit when No (Stm);
6699 exit when Nkind (Stm) /= N_Label;
6700 exit when not Exception_Junk (Stm);
6701 Check_Statement_Sequence
6702 (Statements (Handled_Statement_Sequence (Next (Stm))));
6704 Prev (Stm);
6705 Last_Stm := Stm;
6706 exit when No (Stm);
6707 exit when Nkind (Stm) /= N_Goto_Statement;
6708 exit when not Exception_Junk (Stm);
6709 end loop;
6710 end if;
6712 -- Don't count pragmas
6714 while Nkind (Last_Stm) = N_Pragma
6716 -- Don't count call to SS_Release (can happen after Raise_Exception)
6718 or else
6719 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6720 and then
6721 Nkind (Name (Last_Stm)) = N_Identifier
6722 and then
6723 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6725 -- Don't count exception junk
6727 or else
6728 (Nkind_In (Last_Stm, N_Goto_Statement,
6729 N_Label,
6730 N_Object_Declaration)
6731 and then Exception_Junk (Last_Stm))
6732 or else Nkind (Last_Stm) in N_Push_xxx_Label
6733 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6735 -- Inserted code, such as finalization calls, is irrelevant: we only
6736 -- need to check original source.
6738 or else Is_Rewrite_Insertion (Last_Stm)
6739 loop
6740 Prev (Last_Stm);
6741 end loop;
6743 -- Here we have the "real" last statement
6745 Kind := Nkind (Last_Stm);
6747 -- Transfer of control, OK. Note that in the No_Return procedure
6748 -- case, we already diagnosed any explicit return statements, so
6749 -- we can treat them as OK in this context.
6751 if Is_Transfer (Last_Stm) then
6752 return;
6754 -- Check cases of explicit non-indirect procedure calls
6756 elsif Kind = N_Procedure_Call_Statement
6757 and then Is_Entity_Name (Name (Last_Stm))
6758 then
6759 -- Check call to Raise_Exception procedure which is treated
6760 -- specially, as is a call to Reraise_Occurrence.
6762 -- We suppress the warning in these cases since it is likely that
6763 -- the programmer really does not expect to deal with the case
6764 -- of Null_Occurrence, and thus would find a warning about a
6765 -- missing return curious, and raising Program_Error does not
6766 -- seem such a bad behavior if this does occur.
6768 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6769 -- behavior will be to raise Constraint_Error (see AI-329).
6771 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6772 or else
6773 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6774 then
6775 Raise_Exception_Call := True;
6777 -- For Raise_Exception call, test first argument, if it is
6778 -- an attribute reference for a 'Identity call, then we know
6779 -- that the call cannot possibly return.
6781 declare
6782 Arg : constant Node_Id :=
6783 Original_Node (First_Actual (Last_Stm));
6784 begin
6785 if Nkind (Arg) = N_Attribute_Reference
6786 and then Attribute_Name (Arg) = Name_Identity
6787 then
6788 return;
6789 end if;
6790 end;
6791 end if;
6793 -- If statement, need to look inside if there is an else and check
6794 -- each constituent statement sequence for proper termination.
6796 elsif Kind = N_If_Statement
6797 and then Present (Else_Statements (Last_Stm))
6798 then
6799 Check_Statement_Sequence (Then_Statements (Last_Stm));
6800 Check_Statement_Sequence (Else_Statements (Last_Stm));
6802 if Present (Elsif_Parts (Last_Stm)) then
6803 declare
6804 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6806 begin
6807 while Present (Elsif_Part) loop
6808 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6809 Next (Elsif_Part);
6810 end loop;
6811 end;
6812 end if;
6814 return;
6816 -- Case statement, check each case for proper termination
6818 elsif Kind = N_Case_Statement then
6819 declare
6820 Case_Alt : Node_Id;
6821 begin
6822 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6823 while Present (Case_Alt) loop
6824 Check_Statement_Sequence (Statements (Case_Alt));
6825 Next_Non_Pragma (Case_Alt);
6826 end loop;
6827 end;
6829 return;
6831 -- Block statement, check its handled sequence of statements
6833 elsif Kind = N_Block_Statement then
6834 declare
6835 Err1 : Boolean;
6837 begin
6838 Check_Returns
6839 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6841 if Err1 then
6842 Err := True;
6843 end if;
6845 return;
6846 end;
6848 -- Loop statement. If there is an iteration scheme, we can definitely
6849 -- fall out of the loop. Similarly if there is an exit statement, we
6850 -- can fall out. In either case we need a following return.
6852 elsif Kind = N_Loop_Statement then
6853 if Present (Iteration_Scheme (Last_Stm))
6854 or else Has_Exit (Entity (Identifier (Last_Stm)))
6855 then
6856 null;
6858 -- A loop with no exit statement or iteration scheme is either
6859 -- an infinite loop, or it has some other exit (raise/return).
6860 -- In either case, no warning is required.
6862 else
6863 return;
6864 end if;
6866 -- Timed entry call, check entry call and delay alternatives
6868 -- Note: in expanded code, the timed entry call has been converted
6869 -- to a set of expanded statements on which the check will work
6870 -- correctly in any case.
6872 elsif Kind = N_Timed_Entry_Call then
6873 declare
6874 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6875 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6877 begin
6878 -- If statement sequence of entry call alternative is missing,
6879 -- then we can definitely fall through, and we post the error
6880 -- message on the entry call alternative itself.
6882 if No (Statements (ECA)) then
6883 Last_Stm := ECA;
6885 -- If statement sequence of delay alternative is missing, then
6886 -- we can definitely fall through, and we post the error
6887 -- message on the delay alternative itself.
6889 -- Note: if both ECA and DCA are missing the return, then we
6890 -- post only one message, should be enough to fix the bugs.
6891 -- If not we will get a message next time on the DCA when the
6892 -- ECA is fixed.
6894 elsif No (Statements (DCA)) then
6895 Last_Stm := DCA;
6897 -- Else check both statement sequences
6899 else
6900 Check_Statement_Sequence (Statements (ECA));
6901 Check_Statement_Sequence (Statements (DCA));
6902 return;
6903 end if;
6904 end;
6906 -- Conditional entry call, check entry call and else part
6908 -- Note: in expanded code, the conditional entry call has been
6909 -- converted to a set of expanded statements on which the check
6910 -- will work correctly in any case.
6912 elsif Kind = N_Conditional_Entry_Call then
6913 declare
6914 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6916 begin
6917 -- If statement sequence of entry call alternative is missing,
6918 -- then we can definitely fall through, and we post the error
6919 -- message on the entry call alternative itself.
6921 if No (Statements (ECA)) then
6922 Last_Stm := ECA;
6924 -- Else check statement sequence and else part
6926 else
6927 Check_Statement_Sequence (Statements (ECA));
6928 Check_Statement_Sequence (Else_Statements (Last_Stm));
6929 return;
6930 end if;
6931 end;
6932 end if;
6934 -- If we fall through, issue appropriate message
6936 if Mode = 'F' then
6938 -- Kill warning if last statement is a raise exception call,
6939 -- or a pragma Assert (False). Note that with assertions enabled,
6940 -- such a pragma has been converted into a raise exception call
6941 -- already, so the Assert_False is for the assertions off case.
6943 if not Raise_Exception_Call and then not Assert_False then
6945 -- In GNATprove mode, it is an error to have a missing return
6947 Error_Msg_Warn := SPARK_Mode /= On;
6949 -- Issue error message or warning
6951 Error_Msg_N
6952 ("RETURN statement missing following this statement<<!",
6953 Last_Stm);
6954 Error_Msg_N
6955 ("\Program_Error ]<<!", Last_Stm);
6956 end if;
6958 -- Note: we set Err even though we have not issued a warning
6959 -- because we still have a case of a missing return. This is
6960 -- an extremely marginal case, probably will never be noticed
6961 -- but we might as well get it right.
6963 Err := True;
6965 -- Otherwise we have the case of a procedure marked No_Return
6967 else
6968 if not Raise_Exception_Call then
6969 if GNATprove_Mode then
6970 Error_Msg_N
6971 ("implied return after this statement would have raised "
6972 & "Program_Error", Last_Stm);
6974 -- In normal compilation mode, do not warn on a generated call
6975 -- (e.g. in the body of a renaming as completion).
6977 elsif Comes_From_Source (Last_Stm) then
6978 Error_Msg_N
6979 ("implied return after this statement will raise "
6980 & "Program_Error??", Last_Stm);
6981 end if;
6983 Error_Msg_Warn := SPARK_Mode /= On;
6984 Error_Msg_NE
6985 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6986 end if;
6988 declare
6989 RE : constant Node_Id :=
6990 Make_Raise_Program_Error (Sloc (Last_Stm),
6991 Reason => PE_Implicit_Return);
6992 begin
6993 Insert_After (Last_Stm, RE);
6994 Analyze (RE);
6995 end;
6996 end if;
6997 end Check_Statement_Sequence;
6999 -- Start of processing for Check_Returns
7001 begin
7002 Err := False;
7003 Check_Statement_Sequence (Statements (HSS));
7005 if Present (Exception_Handlers (HSS)) then
7006 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7007 while Present (Handler) loop
7008 Check_Statement_Sequence (Statements (Handler));
7009 Next_Non_Pragma (Handler);
7010 end loop;
7011 end if;
7012 end Check_Returns;
7014 ----------------------------
7015 -- Check_Subprogram_Order --
7016 ----------------------------
7018 procedure Check_Subprogram_Order (N : Node_Id) is
7020 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7021 -- This is used to check if S1 > S2 in the sense required by this test,
7022 -- for example nameab < namec, but name2 < name10.
7024 -----------------------------
7025 -- Subprogram_Name_Greater --
7026 -----------------------------
7028 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7029 L1, L2 : Positive;
7030 N1, N2 : Natural;
7032 begin
7033 -- Deal with special case where names are identical except for a
7034 -- numerical suffix. These are handled specially, taking the numeric
7035 -- ordering from the suffix into account.
7037 L1 := S1'Last;
7038 while S1 (L1) in '0' .. '9' loop
7039 L1 := L1 - 1;
7040 end loop;
7042 L2 := S2'Last;
7043 while S2 (L2) in '0' .. '9' loop
7044 L2 := L2 - 1;
7045 end loop;
7047 -- If non-numeric parts non-equal, do straight compare
7049 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7050 return S1 > S2;
7052 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7053 -- that a missing suffix is treated as numeric zero in this test.
7055 else
7056 N1 := 0;
7057 while L1 < S1'Last loop
7058 L1 := L1 + 1;
7059 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7060 end loop;
7062 N2 := 0;
7063 while L2 < S2'Last loop
7064 L2 := L2 + 1;
7065 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7066 end loop;
7068 return N1 > N2;
7069 end if;
7070 end Subprogram_Name_Greater;
7072 -- Start of processing for Check_Subprogram_Order
7074 begin
7075 -- Check body in alpha order if this is option
7077 if Style_Check
7078 and then Style_Check_Order_Subprograms
7079 and then Nkind (N) = N_Subprogram_Body
7080 and then Comes_From_Source (N)
7081 and then In_Extended_Main_Source_Unit (N)
7082 then
7083 declare
7084 LSN : String_Ptr
7085 renames Scope_Stack.Table
7086 (Scope_Stack.Last).Last_Subprogram_Name;
7088 Body_Id : constant Entity_Id :=
7089 Defining_Entity (Specification (N));
7091 begin
7092 Get_Decoded_Name_String (Chars (Body_Id));
7094 if LSN /= null then
7095 if Subprogram_Name_Greater
7096 (LSN.all, Name_Buffer (1 .. Name_Len))
7097 then
7098 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7099 end if;
7101 Free (LSN);
7102 end if;
7104 LSN := new String'(Name_Buffer (1 .. Name_Len));
7105 end;
7106 end if;
7107 end Check_Subprogram_Order;
7109 ------------------------------
7110 -- Check_Subtype_Conformant --
7111 ------------------------------
7113 procedure Check_Subtype_Conformant
7114 (New_Id : Entity_Id;
7115 Old_Id : Entity_Id;
7116 Err_Loc : Node_Id := Empty;
7117 Skip_Controlling_Formals : Boolean := False;
7118 Get_Inst : Boolean := False)
7120 Result : Boolean;
7121 pragma Warnings (Off, Result);
7122 begin
7123 Check_Conformance
7124 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7125 Skip_Controlling_Formals => Skip_Controlling_Formals,
7126 Get_Inst => Get_Inst);
7127 end Check_Subtype_Conformant;
7129 -----------------------------------
7130 -- Check_Synchronized_Overriding --
7131 -----------------------------------
7133 procedure Check_Synchronized_Overriding
7134 (Def_Id : Entity_Id;
7135 Overridden_Subp : out Entity_Id)
7137 Ifaces_List : Elist_Id;
7138 In_Scope : Boolean;
7139 Typ : Entity_Id;
7141 function Matches_Prefixed_View_Profile
7142 (Prim_Params : List_Id;
7143 Iface_Params : List_Id) return Boolean;
7144 -- Determine whether a subprogram's parameter profile Prim_Params
7145 -- matches that of a potentially overridden interface subprogram
7146 -- Iface_Params. Also determine if the type of first parameter of
7147 -- Iface_Params is an implemented interface.
7149 -----------------------------------
7150 -- Matches_Prefixed_View_Profile --
7151 -----------------------------------
7153 function Matches_Prefixed_View_Profile
7154 (Prim_Params : List_Id;
7155 Iface_Params : List_Id) return Boolean
7157 function Is_Implemented
7158 (Ifaces_List : Elist_Id;
7159 Iface : Entity_Id) return Boolean;
7160 -- Determine if Iface is implemented by the current task or
7161 -- protected type.
7163 --------------------
7164 -- Is_Implemented --
7165 --------------------
7167 function Is_Implemented
7168 (Ifaces_List : Elist_Id;
7169 Iface : Entity_Id) return Boolean
7171 Iface_Elmt : Elmt_Id;
7173 begin
7174 Iface_Elmt := First_Elmt (Ifaces_List);
7175 while Present (Iface_Elmt) loop
7176 if Node (Iface_Elmt) = Iface then
7177 return True;
7178 end if;
7180 Next_Elmt (Iface_Elmt);
7181 end loop;
7183 return False;
7184 end Is_Implemented;
7186 -- Local variables
7188 Iface_Id : Entity_Id;
7189 Iface_Param : Node_Id;
7190 Iface_Typ : Entity_Id;
7191 Prim_Id : Entity_Id;
7192 Prim_Param : Node_Id;
7193 Prim_Typ : Entity_Id;
7195 -- Start of processing for Matches_Prefixed_View_Profile
7197 begin
7198 Iface_Param := First (Iface_Params);
7199 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7201 if Is_Access_Type (Iface_Typ) then
7202 Iface_Typ := Designated_Type (Iface_Typ);
7203 end if;
7205 Prim_Param := First (Prim_Params);
7207 -- The first parameter of the potentially overridden subprogram must
7208 -- be an interface implemented by Prim.
7210 if not Is_Interface (Iface_Typ)
7211 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7212 then
7213 return False;
7214 end if;
7216 -- The checks on the object parameters are done, so move on to the
7217 -- rest of the parameters.
7219 if not In_Scope then
7220 Prim_Param := Next (Prim_Param);
7221 end if;
7223 Iface_Param := Next (Iface_Param);
7224 while Present (Iface_Param) and then Present (Prim_Param) loop
7225 Iface_Id := Defining_Identifier (Iface_Param);
7226 Iface_Typ := Find_Parameter_Type (Iface_Param);
7228 Prim_Id := Defining_Identifier (Prim_Param);
7229 Prim_Typ := Find_Parameter_Type (Prim_Param);
7231 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7232 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7233 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7234 then
7235 Iface_Typ := Designated_Type (Iface_Typ);
7236 Prim_Typ := Designated_Type (Prim_Typ);
7237 end if;
7239 -- Case of multiple interface types inside a parameter profile
7241 -- (Obj_Param : in out Iface; ...; Param : Iface)
7243 -- If the interface type is implemented, then the matching type in
7244 -- the primitive should be the implementing record type.
7246 if Ekind (Iface_Typ) = E_Record_Type
7247 and then Is_Interface (Iface_Typ)
7248 and then Is_Implemented (Ifaces_List, Iface_Typ)
7249 then
7250 if Prim_Typ /= Typ then
7251 return False;
7252 end if;
7254 -- The two parameters must be both mode and subtype conformant
7256 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7257 or else not
7258 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7259 then
7260 return False;
7261 end if;
7263 Next (Iface_Param);
7264 Next (Prim_Param);
7265 end loop;
7267 -- One of the two lists contains more parameters than the other
7269 if Present (Iface_Param) or else Present (Prim_Param) then
7270 return False;
7271 end if;
7273 return True;
7274 end Matches_Prefixed_View_Profile;
7276 -- Start of processing for Check_Synchronized_Overriding
7278 begin
7279 Overridden_Subp := Empty;
7281 -- Def_Id must be an entry or a subprogram. We should skip predefined
7282 -- primitives internally generated by the front end; however at this
7283 -- stage predefined primitives are still not fully decorated. As a
7284 -- minor optimization we skip here internally generated subprograms.
7286 if (Ekind (Def_Id) /= E_Entry
7287 and then Ekind (Def_Id) /= E_Function
7288 and then Ekind (Def_Id) /= E_Procedure)
7289 or else not Comes_From_Source (Def_Id)
7290 then
7291 return;
7292 end if;
7294 -- Search for the concurrent declaration since it contains the list of
7295 -- all implemented interfaces. In this case, the subprogram is declared
7296 -- within the scope of a protected or a task type.
7298 if Present (Scope (Def_Id))
7299 and then Is_Concurrent_Type (Scope (Def_Id))
7300 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7301 then
7302 Typ := Scope (Def_Id);
7303 In_Scope := True;
7305 -- The enclosing scope is not a synchronized type and the subprogram
7306 -- has no formals.
7308 elsif No (First_Formal (Def_Id)) then
7309 return;
7311 -- The subprogram has formals and hence it may be a primitive of a
7312 -- concurrent type.
7314 else
7315 Typ := Etype (First_Formal (Def_Id));
7317 if Is_Access_Type (Typ) then
7318 Typ := Directly_Designated_Type (Typ);
7319 end if;
7321 if Is_Concurrent_Type (Typ)
7322 and then not Is_Generic_Actual_Type (Typ)
7323 then
7324 In_Scope := False;
7326 -- This case occurs when the concurrent type is declared within a
7327 -- generic unit. As a result the corresponding record has been built
7328 -- and used as the type of the first formal, we just have to retrieve
7329 -- the corresponding concurrent type.
7331 elsif Is_Concurrent_Record_Type (Typ)
7332 and then not Is_Class_Wide_Type (Typ)
7333 and then Present (Corresponding_Concurrent_Type (Typ))
7334 then
7335 Typ := Corresponding_Concurrent_Type (Typ);
7336 In_Scope := False;
7338 else
7339 return;
7340 end if;
7341 end if;
7343 -- There is no overriding to check if this is an inherited operation in
7344 -- a type derivation for a generic actual.
7346 Collect_Interfaces (Typ, Ifaces_List);
7348 if Is_Empty_Elmt_List (Ifaces_List) then
7349 return;
7350 end if;
7352 -- Determine whether entry or subprogram Def_Id overrides a primitive
7353 -- operation that belongs to one of the interfaces in Ifaces_List.
7355 declare
7356 Candidate : Entity_Id := Empty;
7357 Hom : Entity_Id := Empty;
7358 Subp : Entity_Id := Empty;
7360 begin
7361 -- Traverse the homonym chain, looking for a potentially overridden
7362 -- subprogram that belongs to an implemented interface.
7364 Hom := Current_Entity_In_Scope (Def_Id);
7365 while Present (Hom) loop
7366 Subp := Hom;
7368 if Subp = Def_Id
7369 or else not Is_Overloadable (Subp)
7370 or else not Is_Primitive (Subp)
7371 or else not Is_Dispatching_Operation (Subp)
7372 or else not Present (Find_Dispatching_Type (Subp))
7373 or else not Is_Interface (Find_Dispatching_Type (Subp))
7374 then
7375 null;
7377 -- Entries and procedures can override abstract or null interface
7378 -- procedures.
7380 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7381 and then Ekind (Subp) = E_Procedure
7382 and then Matches_Prefixed_View_Profile
7383 (Parameter_Specifications (Parent (Def_Id)),
7384 Parameter_Specifications (Parent (Subp)))
7385 then
7386 Candidate := Subp;
7388 -- For an overridden subprogram Subp, check whether the mode
7389 -- of its first parameter is correct depending on the kind of
7390 -- synchronized type.
7392 declare
7393 Formal : constant Node_Id := First_Formal (Candidate);
7395 begin
7396 -- In order for an entry or a protected procedure to
7397 -- override, the first parameter of the overridden routine
7398 -- must be of mode "out", "in out", or access-to-variable.
7400 if Ekind_In (Candidate, E_Entry, E_Procedure)
7401 and then Is_Protected_Type (Typ)
7402 and then Ekind (Formal) /= E_In_Out_Parameter
7403 and then Ekind (Formal) /= E_Out_Parameter
7404 and then Nkind (Parameter_Type (Parent (Formal))) /=
7405 N_Access_Definition
7406 then
7407 null;
7409 -- All other cases are OK since a task entry or routine does
7410 -- not have a restriction on the mode of the first parameter
7411 -- of the overridden interface routine.
7413 else
7414 Overridden_Subp := Candidate;
7415 return;
7416 end if;
7417 end;
7419 -- Functions can override abstract interface functions
7421 elsif Ekind (Def_Id) = E_Function
7422 and then Ekind (Subp) = E_Function
7423 and then Matches_Prefixed_View_Profile
7424 (Parameter_Specifications (Parent (Def_Id)),
7425 Parameter_Specifications (Parent (Subp)))
7426 and then Etype (Def_Id) = Etype (Subp)
7427 then
7428 Candidate := Subp;
7430 -- If an inherited subprogram is implemented by a protected
7431 -- function, then the first parameter of the inherited
7432 -- subprogram shall be of mode in, but not an access-to-
7433 -- variable parameter (RM 9.4(11/9)).
7435 if Present (First_Formal (Subp))
7436 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7437 and then
7438 (not Is_Access_Type (Etype (First_Formal (Subp)))
7439 or else
7440 Is_Access_Constant (Etype (First_Formal (Subp))))
7441 then
7442 Overridden_Subp := Subp;
7443 return;
7444 end if;
7445 end if;
7447 Hom := Homonym (Hom);
7448 end loop;
7450 -- After examining all candidates for overriding, we are left with
7451 -- the best match, which is a mode-incompatible interface routine.
7453 if In_Scope and then Present (Candidate) then
7454 Error_Msg_PT (Def_Id, Candidate);
7455 end if;
7457 Overridden_Subp := Candidate;
7458 return;
7459 end;
7460 end Check_Synchronized_Overriding;
7462 ---------------------------
7463 -- Check_Type_Conformant --
7464 ---------------------------
7466 procedure Check_Type_Conformant
7467 (New_Id : Entity_Id;
7468 Old_Id : Entity_Id;
7469 Err_Loc : Node_Id := Empty)
7471 Result : Boolean;
7472 pragma Warnings (Off, Result);
7473 begin
7474 Check_Conformance
7475 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7476 end Check_Type_Conformant;
7478 ---------------------------
7479 -- Can_Override_Operator --
7480 ---------------------------
7482 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7483 Typ : Entity_Id;
7485 begin
7486 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7487 return False;
7489 else
7490 Typ := Base_Type (Etype (First_Formal (Subp)));
7492 -- Check explicitly that the operation is a primitive of the type
7494 return Operator_Matches_Spec (Subp, Subp)
7495 and then not Is_Generic_Type (Typ)
7496 and then Scope (Subp) = Scope (Typ)
7497 and then not Is_Class_Wide_Type (Typ);
7498 end if;
7499 end Can_Override_Operator;
7501 ----------------------
7502 -- Conforming_Types --
7503 ----------------------
7505 function Conforming_Types
7506 (T1 : Entity_Id;
7507 T2 : Entity_Id;
7508 Ctype : Conformance_Type;
7509 Get_Inst : Boolean := False) return Boolean
7511 function Base_Types_Match
7512 (Typ_1 : Entity_Id;
7513 Typ_2 : Entity_Id) return Boolean;
7514 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7515 -- in different scopes (e.g. parent and child instances), then verify
7516 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7517 -- the same subtype chain. The whole purpose of this procedure is to
7518 -- prevent spurious ambiguities in an instantiation that may arise if
7519 -- two distinct generic types are instantiated with the same actual.
7521 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7522 -- An access parameter can designate an incomplete type. If the
7523 -- incomplete type is the limited view of a type from a limited_
7524 -- with_clause, check whether the non-limited view is available.
7525 -- If it is a (non-limited) incomplete type, get the full view.
7527 function Matches_Limited_With_View
7528 (Typ_1 : Entity_Id;
7529 Typ_2 : Entity_Id) return Boolean;
7530 -- Returns True if and only if either Typ_1 denotes a limited view of
7531 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7532 -- the limited with view of a type is used in a subprogram declaration
7533 -- and the subprogram body is in the scope of a regular with clause for
7534 -- the same unit. In such a case, the two type entities are considered
7535 -- identical for purposes of conformance checking.
7537 ----------------------
7538 -- Base_Types_Match --
7539 ----------------------
7541 function Base_Types_Match
7542 (Typ_1 : Entity_Id;
7543 Typ_2 : Entity_Id) return Boolean
7545 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7546 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7548 begin
7549 if Typ_1 = Typ_2 then
7550 return True;
7552 elsif Base_1 = Base_2 then
7554 -- The following is too permissive. A more precise test should
7555 -- check that the generic actual is an ancestor subtype of the
7556 -- other ???.
7558 -- See code in Find_Corresponding_Spec that applies an additional
7559 -- filter to handle accidental amiguities in instances.
7561 return
7562 not Is_Generic_Actual_Type (Typ_1)
7563 or else not Is_Generic_Actual_Type (Typ_2)
7564 or else Scope (Typ_1) /= Scope (Typ_2);
7566 -- If Typ_2 is a generic actual type it is declared as the subtype of
7567 -- the actual. If that actual is itself a subtype we need to use its
7568 -- own base type to check for compatibility.
7570 elsif Ekind (Base_2) = Ekind (Typ_2)
7571 and then Base_1 = Base_Type (Base_2)
7572 then
7573 return True;
7575 elsif Ekind (Base_1) = Ekind (Typ_1)
7576 and then Base_2 = Base_Type (Base_1)
7577 then
7578 return True;
7580 else
7581 return False;
7582 end if;
7583 end Base_Types_Match;
7585 --------------------------
7586 -- Find_Designated_Type --
7587 --------------------------
7589 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7590 Desig : Entity_Id;
7592 begin
7593 Desig := Directly_Designated_Type (Typ);
7595 if Ekind (Desig) = E_Incomplete_Type then
7597 -- If regular incomplete type, get full view if available
7599 if Present (Full_View (Desig)) then
7600 Desig := Full_View (Desig);
7602 -- If limited view of a type, get non-limited view if available,
7603 -- and check again for a regular incomplete type.
7605 elsif Present (Non_Limited_View (Desig)) then
7606 Desig := Get_Full_View (Non_Limited_View (Desig));
7607 end if;
7608 end if;
7610 return Desig;
7611 end Find_Designated_Type;
7613 -------------------------------
7614 -- Matches_Limited_With_View --
7615 -------------------------------
7617 function Matches_Limited_With_View
7618 (Typ_1 : Entity_Id;
7619 Typ_2 : Entity_Id) return Boolean
7621 function Is_Matching_Limited_View
7622 (Typ : Entity_Id;
7623 View : Entity_Id) return Boolean;
7624 -- Determine whether non-limited view View denotes type Typ in some
7625 -- conformant fashion.
7627 ------------------------------
7628 -- Is_Matching_Limited_View --
7629 ------------------------------
7631 function Is_Matching_Limited_View
7632 (Typ : Entity_Id;
7633 View : Entity_Id) return Boolean
7635 Root_Typ : Entity_Id;
7636 Root_View : Entity_Id;
7638 begin
7639 -- The non-limited view directly denotes the type
7641 if Typ = View then
7642 return True;
7644 -- The type is a subtype of the non-limited view
7646 elsif Is_Subtype_Of (Typ, View) then
7647 return True;
7649 -- Both the non-limited view and the type denote class-wide types
7651 elsif Is_Class_Wide_Type (Typ)
7652 and then Is_Class_Wide_Type (View)
7653 then
7654 Root_Typ := Root_Type (Typ);
7655 Root_View := Root_Type (View);
7657 if Root_Typ = Root_View then
7658 return True;
7660 -- An incomplete tagged type and its full view may receive two
7661 -- distinct class-wide types when the related package has not
7662 -- been analyzed yet.
7664 -- package Pack is
7665 -- type T is tagged; -- CW_1
7666 -- type T is tagged null record; -- CW_2
7667 -- end Pack;
7669 -- This is because the package lacks any semantic information
7670 -- that may eventually link both views of T. As a consequence,
7671 -- a client of the limited view of Pack will see CW_2 while a
7672 -- client of the non-limited view of Pack will see CW_1.
7674 elsif Is_Incomplete_Type (Root_Typ)
7675 and then Present (Full_View (Root_Typ))
7676 and then Full_View (Root_Typ) = Root_View
7677 then
7678 return True;
7680 elsif Is_Incomplete_Type (Root_View)
7681 and then Present (Full_View (Root_View))
7682 and then Full_View (Root_View) = Root_Typ
7683 then
7684 return True;
7685 end if;
7686 end if;
7688 return False;
7689 end Is_Matching_Limited_View;
7691 -- Start of processing for Matches_Limited_With_View
7693 begin
7694 -- In some cases a type imported through a limited_with clause, and
7695 -- its non-limited view are both visible, for example in an anonymous
7696 -- access-to-class-wide type in a formal, or when building the body
7697 -- for a subprogram renaming after the subprogram has been frozen.
7698 -- In these cases both entities designate the same type. In addition,
7699 -- if one of them is an actual in an instance, it may be a subtype of
7700 -- the non-limited view of the other.
7702 if From_Limited_With (Typ_1)
7703 and then From_Limited_With (Typ_2)
7704 and then Available_View (Typ_1) = Available_View (Typ_2)
7705 then
7706 return True;
7708 elsif From_Limited_With (Typ_1) then
7709 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7711 elsif From_Limited_With (Typ_2) then
7712 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7714 else
7715 return False;
7716 end if;
7717 end Matches_Limited_With_View;
7719 -- Local variables
7721 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7723 Type_1 : Entity_Id := T1;
7724 Type_2 : Entity_Id := T2;
7726 -- Start of processing for Conforming_Types
7728 begin
7729 -- The context is an instance association for a formal access-to-
7730 -- subprogram type; the formal parameter types require mapping because
7731 -- they may denote other formal parameters of the generic unit.
7733 if Get_Inst then
7734 Type_1 := Get_Instance_Of (T1);
7735 Type_2 := Get_Instance_Of (T2);
7736 end if;
7738 -- If one of the types is a view of the other introduced by a limited
7739 -- with clause, treat these as conforming for all purposes.
7741 if Matches_Limited_With_View (T1, T2) then
7742 return True;
7744 elsif Base_Types_Match (Type_1, Type_2) then
7745 if Ctype <= Mode_Conformant then
7746 return True;
7748 else
7749 return
7750 Subtypes_Statically_Match (Type_1, Type_2)
7751 and then Dimensions_Match (Type_1, Type_2);
7752 end if;
7754 elsif Is_Incomplete_Or_Private_Type (Type_1)
7755 and then Present (Full_View (Type_1))
7756 and then Base_Types_Match (Full_View (Type_1), Type_2)
7757 then
7758 return
7759 Ctype <= Mode_Conformant
7760 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7762 elsif Ekind (Type_2) = E_Incomplete_Type
7763 and then Present (Full_View (Type_2))
7764 and then Base_Types_Match (Type_1, Full_View (Type_2))
7765 then
7766 return
7767 Ctype <= Mode_Conformant
7768 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7770 elsif Is_Private_Type (Type_2)
7771 and then In_Instance
7772 and then Present (Full_View (Type_2))
7773 and then Base_Types_Match (Type_1, Full_View (Type_2))
7774 then
7775 return
7776 Ctype <= Mode_Conformant
7777 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7779 -- Another confusion between views in a nested instance with an
7780 -- actual private type whose full view is not in scope.
7782 elsif Ekind (Type_2) = E_Private_Subtype
7783 and then In_Instance
7784 and then Etype (Type_2) = Type_1
7785 then
7786 return True;
7788 -- In Ada 2012, incomplete types (including limited views) can appear
7789 -- as actuals in instantiations, where they are conformant to the
7790 -- corresponding incomplete formal.
7792 elsif Is_Incomplete_Type (Type_1)
7793 and then Is_Incomplete_Type (Type_2)
7794 and then In_Instance
7795 and then (Used_As_Generic_Actual (Type_1)
7796 or else Used_As_Generic_Actual (Type_2))
7797 then
7798 return True;
7799 end if;
7801 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7802 -- treated recursively because they carry a signature. As far as
7803 -- conformance is concerned, convention plays no role, and either
7804 -- or both could be access to protected subprograms.
7806 Are_Anonymous_Access_To_Subprogram_Types :=
7807 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7808 E_Anonymous_Access_Protected_Subprogram_Type)
7809 and then
7810 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7811 E_Anonymous_Access_Protected_Subprogram_Type);
7813 -- Test anonymous access type case. For this case, static subtype
7814 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7815 -- the base types because we may have built internal subtype entities
7816 -- to handle null-excluding types (see Process_Formals).
7818 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7819 and then
7820 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7822 -- Ada 2005 (AI-254)
7824 or else Are_Anonymous_Access_To_Subprogram_Types
7825 then
7826 declare
7827 Desig_1 : Entity_Id;
7828 Desig_2 : Entity_Id;
7830 begin
7831 -- In Ada 2005, access constant indicators must match for
7832 -- subtype conformance.
7834 if Ada_Version >= Ada_2005
7835 and then Ctype >= Subtype_Conformant
7836 and then
7837 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7838 then
7839 return False;
7840 end if;
7842 Desig_1 := Find_Designated_Type (Type_1);
7843 Desig_2 := Find_Designated_Type (Type_2);
7845 -- If the context is an instance association for a formal
7846 -- access-to-subprogram type; formal access parameter designated
7847 -- types require mapping because they may denote other formal
7848 -- parameters of the generic unit.
7850 if Get_Inst then
7851 Desig_1 := Get_Instance_Of (Desig_1);
7852 Desig_2 := Get_Instance_Of (Desig_2);
7853 end if;
7855 -- It is possible for a Class_Wide_Type to be introduced for an
7856 -- incomplete type, in which case there is a separate class_ wide
7857 -- type for the full view. The types conform if their Etypes
7858 -- conform, i.e. one may be the full view of the other. This can
7859 -- only happen in the context of an access parameter, other uses
7860 -- of an incomplete Class_Wide_Type are illegal.
7862 if Is_Class_Wide_Type (Desig_1)
7863 and then
7864 Is_Class_Wide_Type (Desig_2)
7865 then
7866 return
7867 Conforming_Types
7868 (Etype (Base_Type (Desig_1)),
7869 Etype (Base_Type (Desig_2)), Ctype);
7871 elsif Are_Anonymous_Access_To_Subprogram_Types then
7872 if Ada_Version < Ada_2005 then
7873 return
7874 Ctype = Type_Conformant
7875 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7877 -- We must check the conformance of the signatures themselves
7879 else
7880 declare
7881 Conformant : Boolean;
7882 begin
7883 Check_Conformance
7884 (Desig_1, Desig_2, Ctype, False, Conformant);
7885 return Conformant;
7886 end;
7887 end if;
7889 -- A limited view of an actual matches the corresponding
7890 -- incomplete formal.
7892 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7893 and then From_Limited_With (Desig_2)
7894 and then Used_As_Generic_Actual (Etype (Desig_2))
7895 then
7896 return True;
7898 else
7899 return Base_Type (Desig_1) = Base_Type (Desig_2)
7900 and then (Ctype = Type_Conformant
7901 or else
7902 Subtypes_Statically_Match (Desig_1, Desig_2));
7903 end if;
7904 end;
7906 -- Otherwise definitely no match
7908 else
7909 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7910 and then Is_Access_Type (Type_2))
7911 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7912 and then Is_Access_Type (Type_1)))
7913 and then
7914 Conforming_Types
7915 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7916 then
7917 May_Hide_Profile := True;
7918 end if;
7920 return False;
7921 end if;
7922 end Conforming_Types;
7924 --------------------------
7925 -- Create_Extra_Formals --
7926 --------------------------
7928 procedure Create_Extra_Formals (E : Entity_Id) is
7929 First_Extra : Entity_Id := Empty;
7930 Formal : Entity_Id;
7931 Last_Extra : Entity_Id := Empty;
7933 function Add_Extra_Formal
7934 (Assoc_Entity : Entity_Id;
7935 Typ : Entity_Id;
7936 Scope : Entity_Id;
7937 Suffix : String) return Entity_Id;
7938 -- Add an extra formal to the current list of formals and extra formals.
7939 -- The extra formal is added to the end of the list of extra formals,
7940 -- and also returned as the result. These formals are always of mode IN.
7941 -- The new formal has the type Typ, is declared in Scope, and its name
7942 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7943 -- The following suffixes are currently used. They should not be changed
7944 -- without coordinating with CodePeer, which makes use of these to
7945 -- provide better messages.
7947 -- O denotes the Constrained bit.
7948 -- L denotes the accessibility level.
7949 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7950 -- the full list in exp_ch6.BIP_Formal_Kind.
7952 ----------------------
7953 -- Add_Extra_Formal --
7954 ----------------------
7956 function Add_Extra_Formal
7957 (Assoc_Entity : Entity_Id;
7958 Typ : Entity_Id;
7959 Scope : Entity_Id;
7960 Suffix : String) return Entity_Id
7962 EF : constant Entity_Id :=
7963 Make_Defining_Identifier (Sloc (Assoc_Entity),
7964 Chars => New_External_Name (Chars (Assoc_Entity),
7965 Suffix => Suffix));
7967 begin
7968 -- A little optimization. Never generate an extra formal for the
7969 -- _init operand of an initialization procedure, since it could
7970 -- never be used.
7972 if Chars (Formal) = Name_uInit then
7973 return Empty;
7974 end if;
7976 Set_Ekind (EF, E_In_Parameter);
7977 Set_Actual_Subtype (EF, Typ);
7978 Set_Etype (EF, Typ);
7979 Set_Scope (EF, Scope);
7980 Set_Mechanism (EF, Default_Mechanism);
7981 Set_Formal_Validity (EF);
7983 if No (First_Extra) then
7984 First_Extra := EF;
7985 Set_Extra_Formals (Scope, EF);
7986 end if;
7988 if Present (Last_Extra) then
7989 Set_Extra_Formal (Last_Extra, EF);
7990 end if;
7992 Last_Extra := EF;
7994 return EF;
7995 end Add_Extra_Formal;
7997 -- Local variables
7999 Formal_Type : Entity_Id;
8000 P_Formal : Entity_Id := Empty;
8002 -- Start of processing for Create_Extra_Formals
8004 begin
8005 -- We never generate extra formals if expansion is not active because we
8006 -- don't need them unless we are generating code.
8008 if not Expander_Active then
8009 return;
8010 end if;
8012 -- No need to generate extra formals in interface thunks whose target
8013 -- primitive has no extra formals.
8015 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
8016 return;
8017 end if;
8019 -- If this is a derived subprogram then the subtypes of the parent
8020 -- subprogram's formal parameters will be used to determine the need
8021 -- for extra formals.
8023 if Is_Overloadable (E) and then Present (Alias (E)) then
8024 P_Formal := First_Formal (Alias (E));
8025 end if;
8027 Formal := First_Formal (E);
8028 while Present (Formal) loop
8029 Last_Extra := Formal;
8030 Next_Formal (Formal);
8031 end loop;
8033 -- If Extra_Formals were already created, don't do it again. This
8034 -- situation may arise for subprogram types created as part of
8035 -- dispatching calls (see Expand_Dispatching_Call).
8037 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8038 return;
8039 end if;
8041 -- If the subprogram is a predefined dispatching subprogram then don't
8042 -- generate any extra constrained or accessibility level formals. In
8043 -- general we suppress these for internal subprograms (by not calling
8044 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8045 -- generated stream attributes do get passed through because extra
8046 -- build-in-place formals are needed in some cases (limited 'Input).
8048 if Is_Predefined_Internal_Operation (E) then
8049 goto Test_For_Func_Result_Extras;
8050 end if;
8052 Formal := First_Formal (E);
8053 while Present (Formal) loop
8055 -- Create extra formal for supporting the attribute 'Constrained.
8056 -- The case of a private type view without discriminants also
8057 -- requires the extra formal if the underlying type has defaulted
8058 -- discriminants.
8060 if Ekind (Formal) /= E_In_Parameter then
8061 if Present (P_Formal) then
8062 Formal_Type := Etype (P_Formal);
8063 else
8064 Formal_Type := Etype (Formal);
8065 end if;
8067 -- Do not produce extra formals for Unchecked_Union parameters.
8068 -- Jump directly to the end of the loop.
8070 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8071 goto Skip_Extra_Formal_Generation;
8072 end if;
8074 if not Has_Discriminants (Formal_Type)
8075 and then Ekind (Formal_Type) in Private_Kind
8076 and then Present (Underlying_Type (Formal_Type))
8077 then
8078 Formal_Type := Underlying_Type (Formal_Type);
8079 end if;
8081 -- Suppress the extra formal if formal's subtype is constrained or
8082 -- indefinite, or we're compiling for Ada 2012 and the underlying
8083 -- type is tagged and limited. In Ada 2012, a limited tagged type
8084 -- can have defaulted discriminants, but 'Constrained is required
8085 -- to return True, so the formal is never needed (see AI05-0214).
8086 -- Note that this ensures consistency of calling sequences for
8087 -- dispatching operations when some types in a class have defaults
8088 -- on discriminants and others do not (and requiring the extra
8089 -- formal would introduce distributed overhead).
8091 -- If the type does not have a completion yet, treat as prior to
8092 -- Ada 2012 for consistency.
8094 if Has_Discriminants (Formal_Type)
8095 and then not Is_Constrained (Formal_Type)
8096 and then Is_Definite_Subtype (Formal_Type)
8097 and then (Ada_Version < Ada_2012
8098 or else No (Underlying_Type (Formal_Type))
8099 or else not
8100 (Is_Limited_Type (Formal_Type)
8101 and then
8102 (Is_Tagged_Type
8103 (Underlying_Type (Formal_Type)))))
8104 then
8105 Set_Extra_Constrained
8106 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8107 end if;
8108 end if;
8110 -- Create extra formal for supporting accessibility checking. This
8111 -- is done for both anonymous access formals and formals of named
8112 -- access types that are marked as controlling formals. The latter
8113 -- case can occur when Expand_Dispatching_Call creates a subprogram
8114 -- type and substitutes the types of access-to-class-wide actuals
8115 -- for the anonymous access-to-specific-type of controlling formals.
8116 -- Base_Type is applied because in cases where there is a null
8117 -- exclusion the formal may have an access subtype.
8119 -- This is suppressed if we specifically suppress accessibility
8120 -- checks at the package level for either the subprogram, or the
8121 -- package in which it resides. However, we do not suppress it
8122 -- simply if the scope has accessibility checks suppressed, since
8123 -- this could cause trouble when clients are compiled with a
8124 -- different suppression setting. The explicit checks at the
8125 -- package level are safe from this point of view.
8127 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8128 or else (Is_Controlling_Formal (Formal)
8129 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8130 and then not
8131 (Explicit_Suppress (E, Accessibility_Check)
8132 or else
8133 Explicit_Suppress (Scope (E), Accessibility_Check))
8134 and then
8135 (No (P_Formal)
8136 or else Present (Extra_Accessibility (P_Formal)))
8137 then
8138 Set_Extra_Accessibility
8139 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8140 end if;
8142 -- This label is required when skipping extra formal generation for
8143 -- Unchecked_Union parameters.
8145 <<Skip_Extra_Formal_Generation>>
8147 if Present (P_Formal) then
8148 Next_Formal (P_Formal);
8149 end if;
8151 Next_Formal (Formal);
8152 end loop;
8154 <<Test_For_Func_Result_Extras>>
8156 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8157 -- function call is ... determined by the point of call ...".
8159 if Needs_Result_Accessibility_Level (E) then
8160 Set_Extra_Accessibility_Of_Result
8161 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8162 end if;
8164 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8165 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8167 if Is_Build_In_Place_Function (E) then
8168 declare
8169 Result_Subt : constant Entity_Id := Etype (E);
8170 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8171 Formal_Typ : Entity_Id;
8172 Subp_Decl : Node_Id;
8173 Discard : Entity_Id;
8175 begin
8176 -- In the case of functions with unconstrained result subtypes,
8177 -- add a 4-state formal indicating whether the return object is
8178 -- allocated by the caller (1), or should be allocated by the
8179 -- callee on the secondary stack (2), in the global heap (3), or
8180 -- in a user-defined storage pool (4). For the moment we just use
8181 -- Natural for the type of this formal. Note that this formal
8182 -- isn't usually needed in the case where the result subtype is
8183 -- constrained, but it is needed when the function has a tagged
8184 -- result, because generally such functions can be called in a
8185 -- dispatching context and such calls must be handled like calls
8186 -- to a class-wide function.
8188 if Needs_BIP_Alloc_Form (E) then
8189 Discard :=
8190 Add_Extra_Formal
8191 (E, Standard_Natural,
8192 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8194 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8195 -- use a user-defined pool. This formal is not added on
8196 -- ZFP as those targets do not support pools.
8198 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8199 Discard :=
8200 Add_Extra_Formal
8201 (E, RTE (RE_Root_Storage_Pool_Ptr),
8202 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8203 end if;
8204 end if;
8206 -- In the case of functions whose result type needs finalization,
8207 -- add an extra formal which represents the finalization master.
8209 if Needs_BIP_Finalization_Master (E) then
8210 Discard :=
8211 Add_Extra_Formal
8212 (E, RTE (RE_Finalization_Master_Ptr),
8213 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8214 end if;
8216 -- When the result type contains tasks, add two extra formals: the
8217 -- master of the tasks to be created, and the caller's activation
8218 -- chain.
8220 if Has_Task (Full_Subt) then
8221 Discard :=
8222 Add_Extra_Formal
8223 (E, RTE (RE_Master_Id),
8224 E, BIP_Formal_Suffix (BIP_Task_Master));
8225 Discard :=
8226 Add_Extra_Formal
8227 (E, RTE (RE_Activation_Chain_Access),
8228 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8229 end if;
8231 -- All build-in-place functions get an extra formal that will be
8232 -- passed the address of the return object within the caller.
8234 Formal_Typ :=
8235 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8237 -- Incomplete_View_From_Limited_With is needed here because
8238 -- gigi gets confused if the designated type is the full view
8239 -- coming from a limited-with'ed package. In the normal case,
8240 -- (no limited with) Incomplete_View_From_Limited_With
8241 -- returns Result_Subt.
8243 Set_Directly_Designated_Type
8244 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8245 Set_Etype (Formal_Typ, Formal_Typ);
8246 Set_Depends_On_Private
8247 (Formal_Typ, Has_Private_Component (Formal_Typ));
8248 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8249 Set_Is_Access_Constant (Formal_Typ, False);
8251 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8252 -- the designated type comes from the limited view (for back-end
8253 -- purposes).
8255 Set_From_Limited_With
8256 (Formal_Typ, From_Limited_With (Result_Subt));
8258 Layout_Type (Formal_Typ);
8260 -- Force the definition of the Itype in case of internal function
8261 -- calls within the same or nested scope.
8263 if Is_Subprogram_Or_Generic_Subprogram (E) then
8264 Subp_Decl := Parent (E);
8266 -- The insertion point for an Itype reference should be after
8267 -- the unit declaration node of the subprogram. An exception
8268 -- to this are inherited operations from a parent type in which
8269 -- case the derived type acts as their parent.
8271 if Nkind_In (Subp_Decl, N_Function_Specification,
8272 N_Procedure_Specification)
8273 then
8274 Subp_Decl := Parent (Subp_Decl);
8275 end if;
8277 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8278 end if;
8280 Discard :=
8281 Add_Extra_Formal
8282 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8283 end;
8284 end if;
8286 -- If this is an instance of a generic, we need to have extra formals
8287 -- for the Alias.
8289 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8290 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8291 end if;
8292 end Create_Extra_Formals;
8294 -----------------------------
8295 -- Enter_Overloaded_Entity --
8296 -----------------------------
8298 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8299 function Matches_Predefined_Op return Boolean;
8300 -- This returns an approximation of whether S matches a predefined
8301 -- operator, based on the operator symbol, and the parameter and result
8302 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8304 ---------------------------
8305 -- Matches_Predefined_Op --
8306 ---------------------------
8308 function Matches_Predefined_Op return Boolean is
8309 Formal_1 : constant Entity_Id := First_Formal (S);
8310 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8311 Op : constant Name_Id := Chars (S);
8312 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8313 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8315 begin
8316 -- Binary operator
8318 if Present (Formal_2) then
8319 declare
8320 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8322 begin
8323 -- All but "&" and "**" have same-types parameters
8325 case Op is
8326 when Name_Op_Concat
8327 | Name_Op_Expon
8329 null;
8331 when others =>
8332 if Type_1 /= Type_2 then
8333 return False;
8334 end if;
8335 end case;
8337 -- Check parameter and result types
8339 case Op is
8340 when Name_Op_And
8341 | Name_Op_Or
8342 | Name_Op_Xor
8344 return
8345 Is_Boolean_Type (Result_Type)
8346 and then Result_Type = Type_1;
8348 when Name_Op_Mod
8349 | Name_Op_Rem
8351 return
8352 Is_Integer_Type (Result_Type)
8353 and then Result_Type = Type_1;
8355 when Name_Op_Add
8356 | Name_Op_Divide
8357 | Name_Op_Multiply
8358 | Name_Op_Subtract
8360 return
8361 Is_Numeric_Type (Result_Type)
8362 and then Result_Type = Type_1;
8364 when Name_Op_Eq
8365 | Name_Op_Ne
8367 return
8368 Is_Boolean_Type (Result_Type)
8369 and then not Is_Limited_Type (Type_1);
8371 when Name_Op_Ge
8372 | Name_Op_Gt
8373 | Name_Op_Le
8374 | Name_Op_Lt
8376 return
8377 Is_Boolean_Type (Result_Type)
8378 and then (Is_Array_Type (Type_1)
8379 or else Is_Scalar_Type (Type_1));
8381 when Name_Op_Concat =>
8382 return Is_Array_Type (Result_Type);
8384 when Name_Op_Expon =>
8385 return
8386 (Is_Integer_Type (Result_Type)
8387 or else Is_Floating_Point_Type (Result_Type))
8388 and then Result_Type = Type_1
8389 and then Type_2 = Standard_Integer;
8391 when others =>
8392 raise Program_Error;
8393 end case;
8394 end;
8396 -- Unary operator
8398 else
8399 case Op is
8400 when Name_Op_Abs
8401 | Name_Op_Add
8402 | Name_Op_Subtract
8404 return
8405 Is_Numeric_Type (Result_Type)
8406 and then Result_Type = Type_1;
8408 when Name_Op_Not =>
8409 return
8410 Is_Boolean_Type (Result_Type)
8411 and then Result_Type = Type_1;
8413 when others =>
8414 raise Program_Error;
8415 end case;
8416 end if;
8417 end Matches_Predefined_Op;
8419 -- Local variables
8421 E : Entity_Id := Current_Entity_In_Scope (S);
8422 C_E : Entity_Id := Current_Entity (S);
8424 -- Start of processing for Enter_Overloaded_Entity
8426 begin
8427 if Present (E) then
8428 Set_Has_Homonym (E);
8429 Set_Has_Homonym (S);
8430 end if;
8432 Set_Is_Immediately_Visible (S);
8433 Set_Scope (S, Current_Scope);
8435 -- Chain new entity if front of homonym in current scope, so that
8436 -- homonyms are contiguous.
8438 if Present (E) and then E /= C_E then
8439 while Homonym (C_E) /= E loop
8440 C_E := Homonym (C_E);
8441 end loop;
8443 Set_Homonym (C_E, S);
8445 else
8446 E := C_E;
8447 Set_Current_Entity (S);
8448 end if;
8450 Set_Homonym (S, E);
8452 if Is_Inherited_Operation (S) then
8453 Append_Inherited_Subprogram (S);
8454 else
8455 Append_Entity (S, Current_Scope);
8456 end if;
8458 Set_Public_Status (S);
8460 if Debug_Flag_E then
8461 Write_Str ("New overloaded entity chain: ");
8462 Write_Name (Chars (S));
8464 E := S;
8465 while Present (E) loop
8466 Write_Str (" "); Write_Int (Int (E));
8467 E := Homonym (E);
8468 end loop;
8470 Write_Eol;
8471 end if;
8473 -- Generate warning for hiding
8475 if Warn_On_Hiding
8476 and then Comes_From_Source (S)
8477 and then In_Extended_Main_Source_Unit (S)
8478 then
8479 E := S;
8480 loop
8481 E := Homonym (E);
8482 exit when No (E);
8484 -- Warn unless genuine overloading. Do not emit warning on
8485 -- hiding predefined operators in Standard (these are either an
8486 -- (artifact of our implicit declarations, or simple noise) but
8487 -- keep warning on a operator defined on a local subtype, because
8488 -- of the real danger that different operators may be applied in
8489 -- various parts of the program.
8491 -- Note that if E and S have the same scope, there is never any
8492 -- hiding. Either the two conflict, and the program is illegal,
8493 -- or S is overriding an implicit inherited subprogram.
8495 if Scope (E) /= Scope (S)
8496 and then (not Is_Overloadable (E)
8497 or else Subtype_Conformant (E, S))
8498 and then (Is_Immediately_Visible (E)
8499 or else Is_Potentially_Use_Visible (S))
8500 then
8501 if Scope (E) = Standard_Standard then
8502 if Nkind (S) = N_Defining_Operator_Symbol
8503 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8504 Scope (S)
8505 and then Matches_Predefined_Op
8506 then
8507 Error_Msg_N
8508 ("declaration of & hides predefined operator?h?", S);
8509 end if;
8511 -- E not immediately within Standard
8513 else
8514 Error_Msg_Sloc := Sloc (E);
8515 Error_Msg_N ("declaration of & hides one #?h?", S);
8516 end if;
8517 end if;
8518 end loop;
8519 end if;
8520 end Enter_Overloaded_Entity;
8522 -----------------------------
8523 -- Check_Untagged_Equality --
8524 -----------------------------
8526 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8527 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8528 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8529 Obj_Decl : Node_Id;
8531 begin
8532 -- This check applies only if we have a subprogram declaration with an
8533 -- untagged record type.
8535 if Nkind (Decl) /= N_Subprogram_Declaration
8536 or else not Is_Record_Type (Typ)
8537 or else Is_Tagged_Type (Typ)
8538 then
8539 return;
8540 end if;
8542 -- In Ada 2012 case, we will output errors or warnings depending on
8543 -- the setting of debug flag -gnatd.E.
8545 if Ada_Version >= Ada_2012 then
8546 Error_Msg_Warn := Debug_Flag_Dot_EE;
8548 -- In earlier versions of Ada, nothing to do unless we are warning on
8549 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8551 else
8552 if not Warn_On_Ada_2012_Compatibility then
8553 return;
8554 end if;
8555 end if;
8557 -- Cases where the type has already been frozen
8559 if Is_Frozen (Typ) then
8561 -- If the type is not declared in a package, or if we are in the body
8562 -- of the package or in some other scope, the new operation is not
8563 -- primitive, and therefore legal, though suspicious. Should we
8564 -- generate a warning in this case ???
8566 if Ekind (Scope (Typ)) /= E_Package
8567 or else Scope (Typ) /= Current_Scope
8568 then
8569 return;
8571 -- If the type is a generic actual (sub)type, the operation is not
8572 -- primitive either because the base type is declared elsewhere.
8574 elsif Is_Generic_Actual_Type (Typ) then
8575 return;
8577 -- Here we have a definite error of declaration after freezing
8579 else
8580 if Ada_Version >= Ada_2012 then
8581 Error_Msg_NE
8582 ("equality operator must be declared before type & is "
8583 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8585 -- In Ada 2012 mode with error turned to warning, output one
8586 -- more warning to warn that the equality operation may not
8587 -- compose. This is the consequence of ignoring the error.
8589 if Error_Msg_Warn then
8590 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8591 end if;
8593 else
8594 Error_Msg_NE
8595 ("equality operator must be declared before type& is "
8596 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8597 end if;
8599 -- If we are in the package body, we could just move the
8600 -- declaration to the package spec, so add a message saying that.
8602 if In_Package_Body (Scope (Typ)) then
8603 if Ada_Version >= Ada_2012 then
8604 Error_Msg_N
8605 ("\move declaration to package spec<<", Eq_Op);
8606 else
8607 Error_Msg_N
8608 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8609 end if;
8611 -- Otherwise try to find the freezing point
8613 else
8614 Obj_Decl := Next (Parent (Typ));
8615 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8616 if Nkind (Obj_Decl) = N_Object_Declaration
8617 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8618 then
8619 -- Freezing point, output warnings
8621 if Ada_Version >= Ada_2012 then
8622 Error_Msg_NE
8623 ("type& is frozen by declaration??", Obj_Decl, Typ);
8624 Error_Msg_N
8625 ("\an equality operator cannot be declared after "
8626 & "this point??",
8627 Obj_Decl);
8628 else
8629 Error_Msg_NE
8630 ("type& is frozen by declaration (Ada 2012)?y?",
8631 Obj_Decl, Typ);
8632 Error_Msg_N
8633 ("\an equality operator cannot be declared after "
8634 & "this point (Ada 2012)?y?",
8635 Obj_Decl);
8636 end if;
8638 exit;
8639 end if;
8641 Next (Obj_Decl);
8642 end loop;
8643 end if;
8644 end if;
8646 -- Here if type is not frozen yet. It is illegal to have a primitive
8647 -- equality declared in the private part if the type is visible.
8649 elsif not In_Same_List (Parent (Typ), Decl)
8650 and then not Is_Limited_Type (Typ)
8651 then
8652 -- Shouldn't we give an RM reference here???
8654 if Ada_Version >= Ada_2012 then
8655 Error_Msg_N
8656 ("equality operator appears too late<<", Eq_Op);
8657 else
8658 Error_Msg_N
8659 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8660 end if;
8662 -- No error detected
8664 else
8665 return;
8666 end if;
8667 end Check_Untagged_Equality;
8669 -----------------------------
8670 -- Find_Corresponding_Spec --
8671 -----------------------------
8673 function Find_Corresponding_Spec
8674 (N : Node_Id;
8675 Post_Error : Boolean := True) return Entity_Id
8677 Spec : constant Node_Id := Specification (N);
8678 Designator : constant Entity_Id := Defining_Entity (Spec);
8680 E : Entity_Id;
8682 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8683 -- Even if fully conformant, a body may depend on a generic actual when
8684 -- the spec does not, or vice versa, in which case they were distinct
8685 -- entities in the generic.
8687 -------------------------------
8688 -- Different_Generic_Profile --
8689 -------------------------------
8691 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8692 F1, F2 : Entity_Id;
8694 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8695 -- Check that the types of corresponding formals have the same
8696 -- generic actual if any. We have to account for subtypes of a
8697 -- generic formal, declared between a spec and a body, which may
8698 -- appear distinct in an instance but matched in the generic, and
8699 -- the subtype may be used either in the spec or the body of the
8700 -- subprogram being checked.
8702 -------------------------
8703 -- Same_Generic_Actual --
8704 -------------------------
8706 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8708 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8709 -- Predicate to check whether S1 is a subtype of S2 in the source
8710 -- of the instance.
8712 -------------------------
8713 -- Is_Declared_Subtype --
8714 -------------------------
8716 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8717 begin
8718 return Comes_From_Source (Parent (S1))
8719 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8720 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8721 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8722 end Is_Declared_Subtype;
8724 -- Start of processing for Same_Generic_Actual
8726 begin
8727 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8728 or else Is_Declared_Subtype (T1, T2)
8729 or else Is_Declared_Subtype (T2, T1);
8730 end Same_Generic_Actual;
8732 -- Start of processing for Different_Generic_Profile
8734 begin
8735 if not In_Instance then
8736 return False;
8738 elsif Ekind (E) = E_Function
8739 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8740 then
8741 return True;
8742 end if;
8744 F1 := First_Formal (Designator);
8745 F2 := First_Formal (E);
8746 while Present (F1) loop
8747 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8748 return True;
8749 end if;
8751 Next_Formal (F1);
8752 Next_Formal (F2);
8753 end loop;
8755 return False;
8756 end Different_Generic_Profile;
8758 -- Start of processing for Find_Corresponding_Spec
8760 begin
8761 E := Current_Entity (Designator);
8762 while Present (E) loop
8764 -- We are looking for a matching spec. It must have the same scope,
8765 -- and the same name, and either be type conformant, or be the case
8766 -- of a library procedure spec and its body (which belong to one
8767 -- another regardless of whether they are type conformant or not).
8769 if Scope (E) = Current_Scope then
8770 if Current_Scope = Standard_Standard
8771 or else (Ekind (E) = Ekind (Designator)
8772 and then Type_Conformant (E, Designator))
8773 then
8774 -- Within an instantiation, we know that spec and body are
8775 -- subtype conformant, because they were subtype conformant in
8776 -- the generic. We choose the subtype-conformant entity here as
8777 -- well, to resolve spurious ambiguities in the instance that
8778 -- were not present in the generic (i.e. when two different
8779 -- types are given the same actual). If we are looking for a
8780 -- spec to match a body, full conformance is expected.
8782 if In_Instance then
8784 -- Inherit the convention and "ghostness" of the matching
8785 -- spec to ensure proper full and subtype conformance.
8787 Set_Convention (Designator, Convention (E));
8789 -- Skip past subprogram bodies and subprogram renamings that
8790 -- may appear to have a matching spec, but that aren't fully
8791 -- conformant with it. That can occur in cases where an
8792 -- actual type causes unrelated homographs in the instance.
8794 if Nkind_In (N, N_Subprogram_Body,
8795 N_Subprogram_Renaming_Declaration)
8796 and then Present (Homonym (E))
8797 and then not Fully_Conformant (Designator, E)
8798 then
8799 goto Next_Entity;
8801 elsif not Subtype_Conformant (Designator, E) then
8802 goto Next_Entity;
8804 elsif Different_Generic_Profile (E) then
8805 goto Next_Entity;
8806 end if;
8807 end if;
8809 -- Ada 2012 (AI05-0165): For internally generated bodies of
8810 -- null procedures locate the internally generated spec. We
8811 -- enforce mode conformance since a tagged type may inherit
8812 -- from interfaces several null primitives which differ only
8813 -- in the mode of the formals.
8815 if not (Comes_From_Source (E))
8816 and then Is_Null_Procedure (E)
8817 and then not Mode_Conformant (Designator, E)
8818 then
8819 null;
8821 -- For null procedures coming from source that are completions,
8822 -- analysis of the generated body will establish the link.
8824 elsif Comes_From_Source (E)
8825 and then Nkind (Spec) = N_Procedure_Specification
8826 and then Null_Present (Spec)
8827 then
8828 return E;
8830 -- Expression functions can be completions, but cannot be
8831 -- completed by an explicit body.
8833 elsif Comes_From_Source (E)
8834 and then Comes_From_Source (N)
8835 and then Nkind (N) = N_Subprogram_Body
8836 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8837 N_Expression_Function
8838 then
8839 Error_Msg_Sloc := Sloc (E);
8840 Error_Msg_N ("body conflicts with expression function#", N);
8841 return Empty;
8843 elsif not Has_Completion (E) then
8844 if Nkind (N) /= N_Subprogram_Body_Stub then
8845 Set_Corresponding_Spec (N, E);
8846 end if;
8848 Set_Has_Completion (E);
8849 return E;
8851 elsif Nkind (Parent (N)) = N_Subunit then
8853 -- If this is the proper body of a subunit, the completion
8854 -- flag is set when analyzing the stub.
8856 return E;
8858 -- If E is an internal function with a controlling result that
8859 -- was created for an operation inherited by a null extension,
8860 -- it may be overridden by a body without a previous spec (one
8861 -- more reason why these should be shunned). In that case we
8862 -- remove the generated body if present, because the current
8863 -- one is the explicit overriding.
8865 elsif Ekind (E) = E_Function
8866 and then Ada_Version >= Ada_2005
8867 and then not Comes_From_Source (E)
8868 and then Has_Controlling_Result (E)
8869 and then Is_Null_Extension (Etype (E))
8870 and then Comes_From_Source (Spec)
8871 then
8872 Set_Has_Completion (E, False);
8874 if Expander_Active
8875 and then Nkind (Parent (E)) = N_Function_Specification
8876 then
8877 Remove
8878 (Unit_Declaration_Node
8879 (Corresponding_Body (Unit_Declaration_Node (E))));
8881 return E;
8883 -- If expansion is disabled, or if the wrapper function has
8884 -- not been generated yet, this a late body overriding an
8885 -- inherited operation, or it is an overriding by some other
8886 -- declaration before the controlling result is frozen. In
8887 -- either case this is a declaration of a new entity.
8889 else
8890 return Empty;
8891 end if;
8893 -- If the body already exists, then this is an error unless
8894 -- the previous declaration is the implicit declaration of a
8895 -- derived subprogram. It is also legal for an instance to
8896 -- contain type conformant overloadable declarations (but the
8897 -- generic declaration may not), per 8.3(26/2).
8899 elsif No (Alias (E))
8900 and then not Is_Intrinsic_Subprogram (E)
8901 and then not In_Instance
8902 and then Post_Error
8903 then
8904 Error_Msg_Sloc := Sloc (E);
8906 if Is_Imported (E) then
8907 Error_Msg_NE
8908 ("body not allowed for imported subprogram & declared#",
8909 N, E);
8910 else
8911 Error_Msg_NE ("duplicate body for & declared#", N, E);
8912 end if;
8913 end if;
8915 -- Child units cannot be overloaded, so a conformance mismatch
8916 -- between body and a previous spec is an error.
8918 elsif Is_Child_Unit (E)
8919 and then
8920 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8921 and then
8922 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8923 N_Compilation_Unit
8924 and then Post_Error
8925 then
8926 Error_Msg_N
8927 ("body of child unit does not match previous declaration", N);
8928 end if;
8929 end if;
8931 <<Next_Entity>>
8932 E := Homonym (E);
8933 end loop;
8935 -- On exit, we know that no previous declaration of subprogram exists
8937 return Empty;
8938 end Find_Corresponding_Spec;
8940 ----------------------
8941 -- Fully_Conformant --
8942 ----------------------
8944 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8945 Result : Boolean;
8946 begin
8947 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8948 return Result;
8949 end Fully_Conformant;
8951 ----------------------------------
8952 -- Fully_Conformant_Expressions --
8953 ----------------------------------
8955 function Fully_Conformant_Expressions
8956 (Given_E1 : Node_Id;
8957 Given_E2 : Node_Id) return Boolean
8959 E1 : constant Node_Id := Original_Node (Given_E1);
8960 E2 : constant Node_Id := Original_Node (Given_E2);
8961 -- We always test conformance on original nodes, since it is possible
8962 -- for analysis and/or expansion to make things look as though they
8963 -- conform when they do not, e.g. by converting 1+2 into 3.
8965 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8966 renames Fully_Conformant_Expressions;
8968 function FCL (L1, L2 : List_Id) return Boolean;
8969 -- Compare elements of two lists for conformance. Elements have to be
8970 -- conformant, and actuals inserted as default parameters do not match
8971 -- explicit actuals with the same value.
8973 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8974 -- Compare an operator node with a function call
8976 ---------
8977 -- FCL --
8978 ---------
8980 function FCL (L1, L2 : List_Id) return Boolean is
8981 N1, N2 : Node_Id;
8983 begin
8984 if L1 = No_List then
8985 N1 := Empty;
8986 else
8987 N1 := First (L1);
8988 end if;
8990 if L2 = No_List then
8991 N2 := Empty;
8992 else
8993 N2 := First (L2);
8994 end if;
8996 -- Compare two lists, skipping rewrite insertions (we want to compare
8997 -- the original trees, not the expanded versions).
8999 loop
9000 if Is_Rewrite_Insertion (N1) then
9001 Next (N1);
9002 elsif Is_Rewrite_Insertion (N2) then
9003 Next (N2);
9004 elsif No (N1) then
9005 return No (N2);
9006 elsif No (N2) then
9007 return False;
9008 elsif not FCE (N1, N2) then
9009 return False;
9010 else
9011 Next (N1);
9012 Next (N2);
9013 end if;
9014 end loop;
9015 end FCL;
9017 ---------
9018 -- FCO --
9019 ---------
9021 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
9022 Actuals : constant List_Id := Parameter_Associations (Call_Node);
9023 Act : Node_Id;
9025 begin
9026 if No (Actuals)
9027 or else Entity (Op_Node) /= Entity (Name (Call_Node))
9028 then
9029 return False;
9031 else
9032 Act := First (Actuals);
9034 if Nkind (Op_Node) in N_Binary_Op then
9035 if not FCE (Left_Opnd (Op_Node), Act) then
9036 return False;
9037 end if;
9039 Next (Act);
9040 end if;
9042 return Present (Act)
9043 and then FCE (Right_Opnd (Op_Node), Act)
9044 and then No (Next (Act));
9045 end if;
9046 end FCO;
9048 -- Start of processing for Fully_Conformant_Expressions
9050 begin
9051 -- Nonconformant if paren count does not match. Note: if some idiot
9052 -- complains that we don't do this right for more than 3 levels of
9053 -- parentheses, they will be treated with the respect they deserve.
9055 if Paren_Count (E1) /= Paren_Count (E2) then
9056 return False;
9058 -- If same entities are referenced, then they are conformant even if
9059 -- they have different forms (RM 8.3.1(19-20)).
9061 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
9062 if Present (Entity (E1)) then
9063 return Entity (E1) = Entity (E2)
9065 -- One may be a discriminant that has been replaced by the
9066 -- corresponding discriminal.
9068 or else
9069 (Chars (Entity (E1)) = Chars (Entity (E2))
9070 and then Ekind (Entity (E1)) = E_Discriminant
9071 and then Ekind (Entity (E2)) = E_In_Parameter)
9073 -- The discriminant of a protected type is transformed into
9074 -- a local constant and then into a parameter of a protected
9075 -- operation.
9077 or else
9078 (Ekind (Entity (E1)) = E_Constant
9079 and then Ekind (Entity (E2)) = E_In_Parameter
9080 and then Present (Discriminal_Link (Entity (E1)))
9081 and then Discriminal_Link (Entity (E1)) =
9082 Discriminal_Link (Entity (E2)))
9084 -- AI12-050: The loop variables of quantified expressions
9085 -- match if they have the same identifier, even though they
9086 -- are different entities.
9088 or else
9089 (Chars (Entity (E1)) = Chars (Entity (E2))
9090 and then Ekind (Entity (E1)) = E_Loop_Parameter
9091 and then Ekind (Entity (E2)) = E_Loop_Parameter);
9093 elsif Nkind (E1) = N_Expanded_Name
9094 and then Nkind (E2) = N_Expanded_Name
9095 and then Nkind (Selector_Name (E1)) = N_Character_Literal
9096 and then Nkind (Selector_Name (E2)) = N_Character_Literal
9097 then
9098 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9100 else
9101 -- Identifiers in component associations don't always have
9102 -- entities, but their names must conform.
9104 return Nkind (E1) = N_Identifier
9105 and then Nkind (E2) = N_Identifier
9106 and then Chars (E1) = Chars (E2);
9107 end if;
9109 elsif Nkind (E1) = N_Character_Literal
9110 and then Nkind (E2) = N_Expanded_Name
9111 then
9112 return Nkind (Selector_Name (E2)) = N_Character_Literal
9113 and then Chars (E1) = Chars (Selector_Name (E2));
9115 elsif Nkind (E2) = N_Character_Literal
9116 and then Nkind (E1) = N_Expanded_Name
9117 then
9118 return Nkind (Selector_Name (E1)) = N_Character_Literal
9119 and then Chars (E2) = Chars (Selector_Name (E1));
9121 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9122 return FCO (E1, E2);
9124 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9125 return FCO (E2, E1);
9127 -- Otherwise we must have the same syntactic entity
9129 elsif Nkind (E1) /= Nkind (E2) then
9130 return False;
9132 -- At this point, we specialize by node type
9134 else
9135 case Nkind (E1) is
9136 when N_Aggregate =>
9137 return
9138 FCL (Expressions (E1), Expressions (E2))
9139 and then
9140 FCL (Component_Associations (E1),
9141 Component_Associations (E2));
9143 when N_Allocator =>
9144 if Nkind (Expression (E1)) = N_Qualified_Expression
9145 or else
9146 Nkind (Expression (E2)) = N_Qualified_Expression
9147 then
9148 return FCE (Expression (E1), Expression (E2));
9150 -- Check that the subtype marks and any constraints
9151 -- are conformant
9153 else
9154 declare
9155 Indic1 : constant Node_Id := Expression (E1);
9156 Indic2 : constant Node_Id := Expression (E2);
9157 Elt1 : Node_Id;
9158 Elt2 : Node_Id;
9160 begin
9161 if Nkind (Indic1) /= N_Subtype_Indication then
9162 return
9163 Nkind (Indic2) /= N_Subtype_Indication
9164 and then Entity (Indic1) = Entity (Indic2);
9166 elsif Nkind (Indic2) /= N_Subtype_Indication then
9167 return
9168 Nkind (Indic1) /= N_Subtype_Indication
9169 and then Entity (Indic1) = Entity (Indic2);
9171 else
9172 if Entity (Subtype_Mark (Indic1)) /=
9173 Entity (Subtype_Mark (Indic2))
9174 then
9175 return False;
9176 end if;
9178 Elt1 := First (Constraints (Constraint (Indic1)));
9179 Elt2 := First (Constraints (Constraint (Indic2)));
9180 while Present (Elt1) and then Present (Elt2) loop
9181 if not FCE (Elt1, Elt2) then
9182 return False;
9183 end if;
9185 Next (Elt1);
9186 Next (Elt2);
9187 end loop;
9189 return True;
9190 end if;
9191 end;
9192 end if;
9194 when N_Attribute_Reference =>
9195 return
9196 Attribute_Name (E1) = Attribute_Name (E2)
9197 and then FCL (Expressions (E1), Expressions (E2));
9199 when N_Binary_Op =>
9200 return
9201 Entity (E1) = Entity (E2)
9202 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9203 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9205 when N_Membership_Test
9206 | N_Short_Circuit
9208 return
9209 FCE (Left_Opnd (E1), Left_Opnd (E2))
9210 and then
9211 FCE (Right_Opnd (E1), Right_Opnd (E2));
9213 when N_Case_Expression =>
9214 declare
9215 Alt1 : Node_Id;
9216 Alt2 : Node_Id;
9218 begin
9219 if not FCE (Expression (E1), Expression (E2)) then
9220 return False;
9222 else
9223 Alt1 := First (Alternatives (E1));
9224 Alt2 := First (Alternatives (E2));
9225 loop
9226 if Present (Alt1) /= Present (Alt2) then
9227 return False;
9228 elsif No (Alt1) then
9229 return True;
9230 end if;
9232 if not FCE (Expression (Alt1), Expression (Alt2))
9233 or else not FCL (Discrete_Choices (Alt1),
9234 Discrete_Choices (Alt2))
9235 then
9236 return False;
9237 end if;
9239 Next (Alt1);
9240 Next (Alt2);
9241 end loop;
9242 end if;
9243 end;
9245 when N_Character_Literal =>
9246 return
9247 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9249 when N_Component_Association =>
9250 return
9251 FCL (Choices (E1), Choices (E2))
9252 and then
9253 FCE (Expression (E1), Expression (E2));
9255 when N_Explicit_Dereference =>
9256 return
9257 FCE (Prefix (E1), Prefix (E2));
9259 when N_Extension_Aggregate =>
9260 return
9261 FCL (Expressions (E1), Expressions (E2))
9262 and then Null_Record_Present (E1) =
9263 Null_Record_Present (E2)
9264 and then FCL (Component_Associations (E1),
9265 Component_Associations (E2));
9267 when N_Function_Call =>
9268 return
9269 FCE (Name (E1), Name (E2))
9270 and then
9271 FCL (Parameter_Associations (E1),
9272 Parameter_Associations (E2));
9274 when N_If_Expression =>
9275 return
9276 FCL (Expressions (E1), Expressions (E2));
9278 when N_Indexed_Component =>
9279 return
9280 FCE (Prefix (E1), Prefix (E2))
9281 and then
9282 FCL (Expressions (E1), Expressions (E2));
9284 when N_Integer_Literal =>
9285 return (Intval (E1) = Intval (E2));
9287 when N_Null =>
9288 return True;
9290 when N_Operator_Symbol =>
9291 return
9292 Chars (E1) = Chars (E2);
9294 when N_Others_Choice =>
9295 return True;
9297 when N_Parameter_Association =>
9298 return
9299 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9300 and then FCE (Explicit_Actual_Parameter (E1),
9301 Explicit_Actual_Parameter (E2));
9303 when N_Qualified_Expression
9304 | N_Type_Conversion
9305 | N_Unchecked_Type_Conversion
9307 return
9308 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9309 and then
9310 FCE (Expression (E1), Expression (E2));
9312 when N_Quantified_Expression =>
9313 if not FCE (Condition (E1), Condition (E2)) then
9314 return False;
9315 end if;
9317 if Present (Loop_Parameter_Specification (E1))
9318 and then Present (Loop_Parameter_Specification (E2))
9319 then
9320 declare
9321 L1 : constant Node_Id :=
9322 Loop_Parameter_Specification (E1);
9323 L2 : constant Node_Id :=
9324 Loop_Parameter_Specification (E2);
9326 begin
9327 return
9328 Reverse_Present (L1) = Reverse_Present (L2)
9329 and then
9330 FCE (Defining_Identifier (L1),
9331 Defining_Identifier (L2))
9332 and then
9333 FCE (Discrete_Subtype_Definition (L1),
9334 Discrete_Subtype_Definition (L2));
9335 end;
9337 elsif Present (Iterator_Specification (E1))
9338 and then Present (Iterator_Specification (E2))
9339 then
9340 declare
9341 I1 : constant Node_Id := Iterator_Specification (E1);
9342 I2 : constant Node_Id := Iterator_Specification (E2);
9344 begin
9345 return
9346 FCE (Defining_Identifier (I1),
9347 Defining_Identifier (I2))
9348 and then
9349 Of_Present (I1) = Of_Present (I2)
9350 and then
9351 Reverse_Present (I1) = Reverse_Present (I2)
9352 and then FCE (Name (I1), Name (I2))
9353 and then FCE (Subtype_Indication (I1),
9354 Subtype_Indication (I2));
9355 end;
9357 -- The quantified expressions used different specifications to
9358 -- walk their respective ranges.
9360 else
9361 return False;
9362 end if;
9364 when N_Range =>
9365 return
9366 FCE (Low_Bound (E1), Low_Bound (E2))
9367 and then
9368 FCE (High_Bound (E1), High_Bound (E2));
9370 when N_Real_Literal =>
9371 return (Realval (E1) = Realval (E2));
9373 when N_Selected_Component =>
9374 return
9375 FCE (Prefix (E1), Prefix (E2))
9376 and then
9377 FCE (Selector_Name (E1), Selector_Name (E2));
9379 when N_Slice =>
9380 return
9381 FCE (Prefix (E1), Prefix (E2))
9382 and then
9383 FCE (Discrete_Range (E1), Discrete_Range (E2));
9385 when N_String_Literal =>
9386 declare
9387 S1 : constant String_Id := Strval (E1);
9388 S2 : constant String_Id := Strval (E2);
9389 L1 : constant Nat := String_Length (S1);
9390 L2 : constant Nat := String_Length (S2);
9392 begin
9393 if L1 /= L2 then
9394 return False;
9396 else
9397 for J in 1 .. L1 loop
9398 if Get_String_Char (S1, J) /=
9399 Get_String_Char (S2, J)
9400 then
9401 return False;
9402 end if;
9403 end loop;
9405 return True;
9406 end if;
9407 end;
9409 when N_Unary_Op =>
9410 return
9411 Entity (E1) = Entity (E2)
9412 and then
9413 FCE (Right_Opnd (E1), Right_Opnd (E2));
9415 -- All other node types cannot appear in this context. Strictly
9416 -- we should raise a fatal internal error. Instead we just ignore
9417 -- the nodes. This means that if anyone makes a mistake in the
9418 -- expander and mucks an expression tree irretrievably, the result
9419 -- will be a failure to detect a (probably very obscure) case
9420 -- of non-conformance, which is better than bombing on some
9421 -- case where two expressions do in fact conform.
9423 when others =>
9424 return True;
9425 end case;
9426 end if;
9427 end Fully_Conformant_Expressions;
9429 ----------------------------------------
9430 -- Fully_Conformant_Discrete_Subtypes --
9431 ----------------------------------------
9433 function Fully_Conformant_Discrete_Subtypes
9434 (Given_S1 : Node_Id;
9435 Given_S2 : Node_Id) return Boolean
9437 S1 : constant Node_Id := Original_Node (Given_S1);
9438 S2 : constant Node_Id := Original_Node (Given_S2);
9440 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9441 -- Special-case for a bound given by a discriminant, which in the body
9442 -- is replaced with the discriminal of the enclosing type.
9444 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9445 -- Check both bounds
9447 -----------------------
9448 -- Conforming_Bounds --
9449 -----------------------
9451 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9452 begin
9453 if Is_Entity_Name (B1)
9454 and then Is_Entity_Name (B2)
9455 and then Ekind (Entity (B1)) = E_Discriminant
9456 then
9457 return Chars (B1) = Chars (B2);
9459 else
9460 return Fully_Conformant_Expressions (B1, B2);
9461 end if;
9462 end Conforming_Bounds;
9464 -----------------------
9465 -- Conforming_Ranges --
9466 -----------------------
9468 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9469 begin
9470 return
9471 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9472 and then
9473 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9474 end Conforming_Ranges;
9476 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9478 begin
9479 if Nkind (S1) /= Nkind (S2) then
9480 return False;
9482 elsif Is_Entity_Name (S1) then
9483 return Entity (S1) = Entity (S2);
9485 elsif Nkind (S1) = N_Range then
9486 return Conforming_Ranges (S1, S2);
9488 elsif Nkind (S1) = N_Subtype_Indication then
9489 return
9490 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9491 and then
9492 Conforming_Ranges
9493 (Range_Expression (Constraint (S1)),
9494 Range_Expression (Constraint (S2)));
9495 else
9496 return True;
9497 end if;
9498 end Fully_Conformant_Discrete_Subtypes;
9500 --------------------
9501 -- Install_Entity --
9502 --------------------
9504 procedure Install_Entity (E : Entity_Id) is
9505 Prev : constant Entity_Id := Current_Entity (E);
9506 begin
9507 Set_Is_Immediately_Visible (E);
9508 Set_Current_Entity (E);
9509 Set_Homonym (E, Prev);
9510 end Install_Entity;
9512 ---------------------
9513 -- Install_Formals --
9514 ---------------------
9516 procedure Install_Formals (Id : Entity_Id) is
9517 F : Entity_Id;
9518 begin
9519 F := First_Formal (Id);
9520 while Present (F) loop
9521 Install_Entity (F);
9522 Next_Formal (F);
9523 end loop;
9524 end Install_Formals;
9526 -----------------------------
9527 -- Is_Interface_Conformant --
9528 -----------------------------
9530 function Is_Interface_Conformant
9531 (Tagged_Type : Entity_Id;
9532 Iface_Prim : Entity_Id;
9533 Prim : Entity_Id) return Boolean
9535 -- The operation may in fact be an inherited (implicit) operation
9536 -- rather than the original interface primitive, so retrieve the
9537 -- ultimate ancestor.
9539 Iface : constant Entity_Id :=
9540 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9541 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9543 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9544 -- Return the controlling formal of Prim
9546 ------------------------
9547 -- Controlling_Formal --
9548 ------------------------
9550 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9551 E : Entity_Id;
9553 begin
9554 E := First_Entity (Prim);
9555 while Present (E) loop
9556 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9557 return E;
9558 end if;
9560 Next_Entity (E);
9561 end loop;
9563 return Empty;
9564 end Controlling_Formal;
9566 -- Local variables
9568 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9569 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9571 -- Start of processing for Is_Interface_Conformant
9573 begin
9574 pragma Assert (Is_Subprogram (Iface_Prim)
9575 and then Is_Subprogram (Prim)
9576 and then Is_Dispatching_Operation (Iface_Prim)
9577 and then Is_Dispatching_Operation (Prim));
9579 pragma Assert (Is_Interface (Iface)
9580 or else (Present (Alias (Iface_Prim))
9581 and then
9582 Is_Interface
9583 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9585 if Prim = Iface_Prim
9586 or else not Is_Subprogram (Prim)
9587 or else Ekind (Prim) /= Ekind (Iface_Prim)
9588 or else not Is_Dispatching_Operation (Prim)
9589 or else Scope (Prim) /= Scope (Tagged_Type)
9590 or else No (Typ)
9591 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9592 or else not Primitive_Names_Match (Iface_Prim, Prim)
9593 then
9594 return False;
9596 -- The mode of the controlling formals must match
9598 elsif Present (Iface_Ctrl_F)
9599 and then Present (Prim_Ctrl_F)
9600 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9601 then
9602 return False;
9604 -- Case of a procedure, or a function whose result type matches the
9605 -- result type of the interface primitive, or a function that has no
9606 -- controlling result (I or access I).
9608 elsif Ekind (Iface_Prim) = E_Procedure
9609 or else Etype (Prim) = Etype (Iface_Prim)
9610 or else not Has_Controlling_Result (Prim)
9611 then
9612 return Type_Conformant
9613 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9615 -- Case of a function returning an interface, or an access to one. Check
9616 -- that the return types correspond.
9618 elsif Implements_Interface (Typ, Iface) then
9619 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9621 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9622 then
9623 return False;
9624 else
9625 return
9626 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9627 Skip_Controlling_Formals => True);
9628 end if;
9630 else
9631 return False;
9632 end if;
9633 end Is_Interface_Conformant;
9635 ---------------------------------
9636 -- Is_Non_Overriding_Operation --
9637 ---------------------------------
9639 function Is_Non_Overriding_Operation
9640 (Prev_E : Entity_Id;
9641 New_E : Entity_Id) return Boolean
9643 Formal : Entity_Id;
9644 F_Typ : Entity_Id;
9645 G_Typ : Entity_Id := Empty;
9647 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9648 -- If F_Type is a derived type associated with a generic actual subtype,
9649 -- then return its Generic_Parent_Type attribute, else return Empty.
9651 function Types_Correspond
9652 (P_Type : Entity_Id;
9653 N_Type : Entity_Id) return Boolean;
9654 -- Returns true if and only if the types (or designated types in the
9655 -- case of anonymous access types) are the same or N_Type is derived
9656 -- directly or indirectly from P_Type.
9658 -----------------------------
9659 -- Get_Generic_Parent_Type --
9660 -----------------------------
9662 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9663 G_Typ : Entity_Id;
9664 Defn : Node_Id;
9665 Indic : Node_Id;
9667 begin
9668 if Is_Derived_Type (F_Typ)
9669 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9670 then
9671 -- The tree must be traversed to determine the parent subtype in
9672 -- the generic unit, which unfortunately isn't always available
9673 -- via semantic attributes. ??? (Note: The use of Original_Node
9674 -- is needed for cases where a full derived type has been
9675 -- rewritten.)
9677 -- If the parent type is a scalar type, the derivation creates
9678 -- an anonymous base type for it, and the source type is its
9679 -- first subtype.
9681 if Is_Scalar_Type (F_Typ)
9682 and then not Comes_From_Source (F_Typ)
9683 then
9684 Defn :=
9685 Type_Definition
9686 (Original_Node (Parent (First_Subtype (F_Typ))));
9687 else
9688 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9689 end if;
9690 if Nkind (Defn) = N_Derived_Type_Definition then
9691 Indic := Subtype_Indication (Defn);
9693 if Nkind (Indic) = N_Subtype_Indication then
9694 G_Typ := Entity (Subtype_Mark (Indic));
9695 else
9696 G_Typ := Entity (Indic);
9697 end if;
9699 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9700 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9701 then
9702 return Generic_Parent_Type (Parent (G_Typ));
9703 end if;
9704 end if;
9705 end if;
9707 return Empty;
9708 end Get_Generic_Parent_Type;
9710 ----------------------
9711 -- Types_Correspond --
9712 ----------------------
9714 function Types_Correspond
9715 (P_Type : Entity_Id;
9716 N_Type : Entity_Id) return Boolean
9718 Prev_Type : Entity_Id := Base_Type (P_Type);
9719 New_Type : Entity_Id := Base_Type (N_Type);
9721 begin
9722 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9723 Prev_Type := Designated_Type (Prev_Type);
9724 end if;
9726 if Ekind (New_Type) = E_Anonymous_Access_Type then
9727 New_Type := Designated_Type (New_Type);
9728 end if;
9730 if Prev_Type = New_Type then
9731 return True;
9733 elsif not Is_Class_Wide_Type (New_Type) then
9734 while Etype (New_Type) /= New_Type loop
9735 New_Type := Etype (New_Type);
9737 if New_Type = Prev_Type then
9738 return True;
9739 end if;
9740 end loop;
9741 end if;
9742 return False;
9743 end Types_Correspond;
9745 -- Start of processing for Is_Non_Overriding_Operation
9747 begin
9748 -- In the case where both operations are implicit derived subprograms
9749 -- then neither overrides the other. This can only occur in certain
9750 -- obscure cases (e.g., derivation from homographs created in a generic
9751 -- instantiation).
9753 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9754 return True;
9756 elsif Ekind (Current_Scope) = E_Package
9757 and then Is_Generic_Instance (Current_Scope)
9758 and then In_Private_Part (Current_Scope)
9759 and then Comes_From_Source (New_E)
9760 then
9761 -- We examine the formals and result type of the inherited operation,
9762 -- to determine whether their type is derived from (the instance of)
9763 -- a generic type. The first such formal or result type is the one
9764 -- tested.
9766 Formal := First_Formal (Prev_E);
9767 F_Typ := Empty;
9768 while Present (Formal) loop
9769 F_Typ := Base_Type (Etype (Formal));
9771 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9772 F_Typ := Designated_Type (F_Typ);
9773 end if;
9775 G_Typ := Get_Generic_Parent_Type (F_Typ);
9776 exit when Present (G_Typ);
9778 Next_Formal (Formal);
9779 end loop;
9781 -- If the function dispatches on result check the result type
9783 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9784 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9785 end if;
9787 if No (G_Typ) then
9788 return False;
9789 end if;
9791 -- If the generic type is a private type, then the original operation
9792 -- was not overriding in the generic, because there was no primitive
9793 -- operation to override.
9795 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9796 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9797 N_Formal_Private_Type_Definition
9798 then
9799 return True;
9801 -- The generic parent type is the ancestor of a formal derived
9802 -- type declaration. We need to check whether it has a primitive
9803 -- operation that should be overridden by New_E in the generic.
9805 else
9806 declare
9807 P_Formal : Entity_Id;
9808 N_Formal : Entity_Id;
9809 P_Typ : Entity_Id;
9810 N_Typ : Entity_Id;
9811 P_Prim : Entity_Id;
9812 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9814 begin
9815 while Present (Prim_Elt) loop
9816 P_Prim := Node (Prim_Elt);
9818 if Chars (P_Prim) = Chars (New_E)
9819 and then Ekind (P_Prim) = Ekind (New_E)
9820 then
9821 P_Formal := First_Formal (P_Prim);
9822 N_Formal := First_Formal (New_E);
9823 while Present (P_Formal) and then Present (N_Formal) loop
9824 P_Typ := Etype (P_Formal);
9825 N_Typ := Etype (N_Formal);
9827 if not Types_Correspond (P_Typ, N_Typ) then
9828 exit;
9829 end if;
9831 Next_Entity (P_Formal);
9832 Next_Entity (N_Formal);
9833 end loop;
9835 -- Found a matching primitive operation belonging to the
9836 -- formal ancestor type, so the new subprogram is
9837 -- overriding.
9839 if No (P_Formal)
9840 and then No (N_Formal)
9841 and then (Ekind (New_E) /= E_Function
9842 or else
9843 Types_Correspond
9844 (Etype (P_Prim), Etype (New_E)))
9845 then
9846 return False;
9847 end if;
9848 end if;
9850 Next_Elmt (Prim_Elt);
9851 end loop;
9853 -- If no match found, then the new subprogram does not override
9854 -- in the generic (nor in the instance).
9856 -- If the type in question is not abstract, and the subprogram
9857 -- is, this will be an error if the new operation is in the
9858 -- private part of the instance. Emit a warning now, which will
9859 -- make the subsequent error message easier to understand.
9861 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9862 and then Is_Abstract_Subprogram (Prev_E)
9863 and then In_Private_Part (Current_Scope)
9864 then
9865 Error_Msg_Node_2 := F_Typ;
9866 Error_Msg_NE
9867 ("private operation& in generic unit does not override "
9868 & "any primitive operation of& (RM 12.3 (18))??",
9869 New_E, New_E);
9870 end if;
9872 return True;
9873 end;
9874 end if;
9875 else
9876 return False;
9877 end if;
9878 end Is_Non_Overriding_Operation;
9880 -------------------------------------
9881 -- List_Inherited_Pre_Post_Aspects --
9882 -------------------------------------
9884 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9885 begin
9886 if Opt.List_Inherited_Aspects
9887 and then Is_Subprogram_Or_Generic_Subprogram (E)
9888 then
9889 declare
9890 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9891 Items : Node_Id;
9892 Prag : Node_Id;
9894 begin
9895 for Index in Subps'Range loop
9896 Items := Contract (Subps (Index));
9898 if Present (Items) then
9899 Prag := Pre_Post_Conditions (Items);
9900 while Present (Prag) loop
9901 Error_Msg_Sloc := Sloc (Prag);
9903 if Class_Present (Prag)
9904 and then not Split_PPC (Prag)
9905 then
9906 if Pragma_Name (Prag) = Name_Precondition then
9907 Error_Msg_N
9908 ("info: & inherits `Pre''Class` aspect from "
9909 & "#?L?", E);
9910 else
9911 Error_Msg_N
9912 ("info: & inherits `Post''Class` aspect from "
9913 & "#?L?", E);
9914 end if;
9915 end if;
9917 Prag := Next_Pragma (Prag);
9918 end loop;
9919 end if;
9920 end loop;
9921 end;
9922 end if;
9923 end List_Inherited_Pre_Post_Aspects;
9925 ------------------------------
9926 -- Make_Inequality_Operator --
9927 ------------------------------
9929 -- S is the defining identifier of an equality operator. We build a
9930 -- subprogram declaration with the right signature. This operation is
9931 -- intrinsic, because it is always expanded as the negation of the
9932 -- call to the equality function.
9934 procedure Make_Inequality_Operator (S : Entity_Id) is
9935 Loc : constant Source_Ptr := Sloc (S);
9936 Decl : Node_Id;
9937 Formals : List_Id;
9938 Op_Name : Entity_Id;
9940 FF : constant Entity_Id := First_Formal (S);
9941 NF : constant Entity_Id := Next_Formal (FF);
9943 begin
9944 -- Check that equality was properly defined, ignore call if not
9946 if No (NF) then
9947 return;
9948 end if;
9950 declare
9951 A : constant Entity_Id :=
9952 Make_Defining_Identifier (Sloc (FF),
9953 Chars => Chars (FF));
9955 B : constant Entity_Id :=
9956 Make_Defining_Identifier (Sloc (NF),
9957 Chars => Chars (NF));
9959 begin
9960 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9962 Formals := New_List (
9963 Make_Parameter_Specification (Loc,
9964 Defining_Identifier => A,
9965 Parameter_Type =>
9966 New_Occurrence_Of (Etype (First_Formal (S)),
9967 Sloc (Etype (First_Formal (S))))),
9969 Make_Parameter_Specification (Loc,
9970 Defining_Identifier => B,
9971 Parameter_Type =>
9972 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9973 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9975 Decl :=
9976 Make_Subprogram_Declaration (Loc,
9977 Specification =>
9978 Make_Function_Specification (Loc,
9979 Defining_Unit_Name => Op_Name,
9980 Parameter_Specifications => Formals,
9981 Result_Definition =>
9982 New_Occurrence_Of (Standard_Boolean, Loc)));
9984 -- Insert inequality right after equality if it is explicit or after
9985 -- the derived type when implicit. These entities are created only
9986 -- for visibility purposes, and eventually replaced in the course
9987 -- of expansion, so they do not need to be attached to the tree and
9988 -- seen by the back-end. Keeping them internal also avoids spurious
9989 -- freezing problems. The declaration is inserted in the tree for
9990 -- analysis, and removed afterwards. If the equality operator comes
9991 -- from an explicit declaration, attach the inequality immediately
9992 -- after. Else the equality is inherited from a derived type
9993 -- declaration, so insert inequality after that declaration.
9995 if No (Alias (S)) then
9996 Insert_After (Unit_Declaration_Node (S), Decl);
9997 elsif Is_List_Member (Parent (S)) then
9998 Insert_After (Parent (S), Decl);
9999 else
10000 Insert_After (Parent (Etype (First_Formal (S))), Decl);
10001 end if;
10003 Mark_Rewrite_Insertion (Decl);
10004 Set_Is_Intrinsic_Subprogram (Op_Name);
10005 Analyze (Decl);
10006 Remove (Decl);
10007 Set_Has_Completion (Op_Name);
10008 Set_Corresponding_Equality (Op_Name, S);
10009 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
10010 end;
10011 end Make_Inequality_Operator;
10013 ----------------------
10014 -- May_Need_Actuals --
10015 ----------------------
10017 procedure May_Need_Actuals (Fun : Entity_Id) is
10018 F : Entity_Id;
10019 B : Boolean;
10021 begin
10022 F := First_Formal (Fun);
10023 B := True;
10024 while Present (F) loop
10025 if No (Default_Value (F)) then
10026 B := False;
10027 exit;
10028 end if;
10030 Next_Formal (F);
10031 end loop;
10033 Set_Needs_No_Actuals (Fun, B);
10034 end May_Need_Actuals;
10036 ---------------------
10037 -- Mode_Conformant --
10038 ---------------------
10040 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10041 Result : Boolean;
10042 begin
10043 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
10044 return Result;
10045 end Mode_Conformant;
10047 ---------------------------
10048 -- New_Overloaded_Entity --
10049 ---------------------------
10051 procedure New_Overloaded_Entity
10052 (S : Entity_Id;
10053 Derived_Type : Entity_Id := Empty)
10055 Overridden_Subp : Entity_Id := Empty;
10056 -- Set if the current scope has an operation that is type-conformant
10057 -- with S, and becomes hidden by S.
10059 Is_Primitive_Subp : Boolean;
10060 -- Set to True if the new subprogram is primitive
10062 E : Entity_Id;
10063 -- Entity that S overrides
10065 procedure Check_For_Primitive_Subprogram
10066 (Is_Primitive : out Boolean;
10067 Is_Overriding : Boolean := False);
10068 -- If the subprogram being analyzed is a primitive operation of the type
10069 -- of a formal or result, set the Has_Primitive_Operations flag on the
10070 -- type, and set Is_Primitive to True (otherwise set to False). Set the
10071 -- corresponding flag on the entity itself for later use.
10073 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
10074 -- True if a) E is a subprogram whose first formal is a concurrent type
10075 -- defined in the scope of E that has some entry or subprogram whose
10076 -- profile matches E, or b) E is an internally built dispatching
10077 -- subprogram of a protected type and there is a matching subprogram
10078 -- defined in the enclosing scope of the protected type, or c) E is
10079 -- an entry of a synchronized type and a matching procedure has been
10080 -- previously defined in the enclosing scope of the synchronized type.
10082 function Is_Private_Declaration (E : Entity_Id) return Boolean;
10083 -- Check that E is declared in the private part of the current package,
10084 -- or in the package body, where it may hide a previous declaration.
10085 -- We can't use In_Private_Part by itself because this flag is also
10086 -- set when freezing entities, so we must examine the place of the
10087 -- declaration in the tree, and recognize wrapper packages as well.
10089 function Is_Overriding_Alias
10090 (Old_E : Entity_Id;
10091 New_E : Entity_Id) return Boolean;
10092 -- Check whether new subprogram and old subprogram are both inherited
10093 -- from subprograms that have distinct dispatch table entries. This can
10094 -- occur with derivations from instances with accidental homonyms. The
10095 -- function is conservative given that the converse is only true within
10096 -- instances that contain accidental overloadings.
10098 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10099 -- Report conflict between entities S and E
10101 ------------------------------------
10102 -- Check_For_Primitive_Subprogram --
10103 ------------------------------------
10105 procedure Check_For_Primitive_Subprogram
10106 (Is_Primitive : out Boolean;
10107 Is_Overriding : Boolean := False)
10109 Formal : Entity_Id;
10110 F_Typ : Entity_Id;
10111 B_Typ : Entity_Id;
10113 function Visible_Part_Type (T : Entity_Id) return Boolean;
10114 -- Returns true if T is declared in the visible part of the current
10115 -- package scope; otherwise returns false. Assumes that T is declared
10116 -- in a package.
10118 procedure Check_Private_Overriding (T : Entity_Id);
10119 -- Checks that if a primitive abstract subprogram of a visible
10120 -- abstract type is declared in a private part, then it must override
10121 -- an abstract subprogram declared in the visible part. Also checks
10122 -- that if a primitive function with a controlling result is declared
10123 -- in a private part, then it must override a function declared in
10124 -- the visible part.
10126 ------------------------------
10127 -- Check_Private_Overriding --
10128 ------------------------------
10130 procedure Check_Private_Overriding (T : Entity_Id) is
10131 function Overrides_Private_Part_Op return Boolean;
10132 -- This detects the special case where the overriding subprogram
10133 -- is overriding a subprogram that was declared in the same
10134 -- private part. That case is illegal by 3.9.3(10).
10136 function Overrides_Visible_Function
10137 (Partial_View : Entity_Id) return Boolean;
10138 -- True if S overrides a function in the visible part. The
10139 -- overridden function could be explicitly or implicitly declared.
10141 -------------------------------
10142 -- Overrides_Private_Part_Op --
10143 -------------------------------
10145 function Overrides_Private_Part_Op return Boolean is
10146 Over_Decl : constant Node_Id :=
10147 Unit_Declaration_Node (Overridden_Operation (S));
10148 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10150 begin
10151 pragma Assert (Is_Overriding);
10152 pragma Assert
10153 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10154 pragma Assert
10155 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10157 return In_Same_List (Over_Decl, Subp_Decl);
10158 end Overrides_Private_Part_Op;
10160 --------------------------------
10161 -- Overrides_Visible_Function --
10162 --------------------------------
10164 function Overrides_Visible_Function
10165 (Partial_View : Entity_Id) return Boolean
10167 begin
10168 if not Is_Overriding or else not Has_Homonym (S) then
10169 return False;
10170 end if;
10172 if not Present (Partial_View) then
10173 return True;
10174 end if;
10176 -- Search through all the homonyms H of S in the current
10177 -- package spec, and return True if we find one that matches.
10178 -- Note that Parent (H) will be the declaration of the
10179 -- partial view of T for a match.
10181 declare
10182 H : Entity_Id := S;
10183 begin
10184 loop
10185 H := Homonym (H);
10186 exit when not Present (H) or else Scope (H) /= Scope (S);
10188 if Nkind_In
10189 (Parent (H),
10190 N_Private_Extension_Declaration,
10191 N_Private_Type_Declaration)
10192 and then Defining_Identifier (Parent (H)) = Partial_View
10193 then
10194 return True;
10195 end if;
10196 end loop;
10197 end;
10199 return False;
10200 end Overrides_Visible_Function;
10202 -- Start of processing for Check_Private_Overriding
10204 begin
10205 if Is_Package_Or_Generic_Package (Current_Scope)
10206 and then In_Private_Part (Current_Scope)
10207 and then Visible_Part_Type (T)
10208 and then not In_Instance
10209 then
10210 if Is_Abstract_Type (T)
10211 and then Is_Abstract_Subprogram (S)
10212 and then (not Is_Overriding
10213 or else not Is_Abstract_Subprogram (E)
10214 or else Overrides_Private_Part_Op)
10215 then
10216 Error_Msg_N
10217 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10220 elsif Ekind (S) = E_Function then
10221 declare
10222 Partial_View : constant Entity_Id :=
10223 Incomplete_Or_Partial_View (T);
10225 begin
10226 if not Overrides_Visible_Function (Partial_View) then
10228 -- Here, S is "function ... return T;" declared in
10229 -- the private part, not overriding some visible
10230 -- operation. That's illegal in the tagged case
10231 -- (but not if the private type is untagged).
10233 if ((Present (Partial_View)
10234 and then Is_Tagged_Type (Partial_View))
10235 or else (not Present (Partial_View)
10236 and then Is_Tagged_Type (T)))
10237 and then T = Base_Type (Etype (S))
10238 then
10239 Error_Msg_N
10240 ("private function with tagged result must"
10241 & " override visible-part function", S);
10242 Error_Msg_N
10243 ("\move subprogram to the visible part"
10244 & " (RM 3.9.3(10))", S);
10246 -- AI05-0073: extend this test to the case of a
10247 -- function with a controlling access result.
10249 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10250 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10251 and then
10252 not Is_Class_Wide_Type
10253 (Designated_Type (Etype (S)))
10254 and then Ada_Version >= Ada_2012
10255 then
10256 Error_Msg_N
10257 ("private function with controlling access "
10258 & "result must override visible-part function",
10260 Error_Msg_N
10261 ("\move subprogram to the visible part"
10262 & " (RM 3.9.3(10))", S);
10263 end if;
10264 end if;
10265 end;
10266 end if;
10267 end if;
10268 end Check_Private_Overriding;
10270 -----------------------
10271 -- Visible_Part_Type --
10272 -----------------------
10274 function Visible_Part_Type (T : Entity_Id) return Boolean is
10275 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10277 begin
10278 -- If the entity is a private type, then it must be declared in a
10279 -- visible part.
10281 if Ekind (T) in Private_Kind then
10282 return True;
10284 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10285 return True;
10287 elsif Is_List_Member (Declaration_Node (T))
10288 and then List_Containing (Declaration_Node (T)) =
10289 Visible_Declarations (Specification (P))
10290 then
10291 return True;
10293 else
10294 return False;
10295 end if;
10296 end Visible_Part_Type;
10298 -- Start of processing for Check_For_Primitive_Subprogram
10300 begin
10301 Is_Primitive := False;
10303 if not Comes_From_Source (S) then
10304 null;
10306 -- If subprogram is at library level, it is not primitive operation
10308 elsif Current_Scope = Standard_Standard then
10309 null;
10311 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10312 and then not In_Package_Body (Current_Scope))
10313 or else Is_Overriding
10314 then
10315 -- For function, check return type
10317 if Ekind (S) = E_Function then
10318 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10319 F_Typ := Designated_Type (Etype (S));
10320 else
10321 F_Typ := Etype (S);
10322 end if;
10324 B_Typ := Base_Type (F_Typ);
10326 if Scope (B_Typ) = Current_Scope
10327 and then not Is_Class_Wide_Type (B_Typ)
10328 and then not Is_Generic_Type (B_Typ)
10329 then
10330 Is_Primitive := True;
10331 Set_Has_Primitive_Operations (B_Typ);
10332 Set_Is_Primitive (S);
10333 Check_Private_Overriding (B_Typ);
10335 -- The Ghost policy in effect at the point of declaration
10336 -- or a tagged type and a primitive operation must match
10337 -- (SPARK RM 6.9(16)).
10339 Check_Ghost_Primitive (S, B_Typ);
10340 end if;
10341 end if;
10343 -- For all subprograms, check formals
10345 Formal := First_Formal (S);
10346 while Present (Formal) loop
10347 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10348 F_Typ := Designated_Type (Etype (Formal));
10349 else
10350 F_Typ := Etype (Formal);
10351 end if;
10353 B_Typ := Base_Type (F_Typ);
10355 if Ekind (B_Typ) = E_Access_Subtype then
10356 B_Typ := Base_Type (B_Typ);
10357 end if;
10359 if Scope (B_Typ) = Current_Scope
10360 and then not Is_Class_Wide_Type (B_Typ)
10361 and then not Is_Generic_Type (B_Typ)
10362 then
10363 Is_Primitive := True;
10364 Set_Is_Primitive (S);
10365 Set_Has_Primitive_Operations (B_Typ);
10366 Check_Private_Overriding (B_Typ);
10368 -- The Ghost policy in effect at the point of declaration
10369 -- of a tagged type and a primitive operation must match
10370 -- (SPARK RM 6.9(16)).
10372 Check_Ghost_Primitive (S, B_Typ);
10373 end if;
10375 Next_Formal (Formal);
10376 end loop;
10378 -- Special case: An equality function can be redefined for a type
10379 -- occurring in a declarative part, and won't otherwise be treated as
10380 -- a primitive because it doesn't occur in a package spec and doesn't
10381 -- override an inherited subprogram. It's important that we mark it
10382 -- primitive so it can be returned by Collect_Primitive_Operations
10383 -- and be used in composing the equality operation of later types
10384 -- that have a component of the type.
10386 elsif Chars (S) = Name_Op_Eq
10387 and then Etype (S) = Standard_Boolean
10388 then
10389 B_Typ := Base_Type (Etype (First_Formal (S)));
10391 if Scope (B_Typ) = Current_Scope
10392 and then
10393 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10394 and then not Is_Limited_Type (B_Typ)
10395 then
10396 Is_Primitive := True;
10397 Set_Is_Primitive (S);
10398 Set_Has_Primitive_Operations (B_Typ);
10399 Check_Private_Overriding (B_Typ);
10401 -- The Ghost policy in effect at the point of declaration of a
10402 -- tagged type and a primitive operation must match
10403 -- (SPARK RM 6.9(16)).
10405 Check_Ghost_Primitive (S, B_Typ);
10406 end if;
10407 end if;
10408 end Check_For_Primitive_Subprogram;
10410 --------------------------------------
10411 -- Has_Matching_Entry_Or_Subprogram --
10412 --------------------------------------
10414 function Has_Matching_Entry_Or_Subprogram
10415 (E : Entity_Id) return Boolean
10417 function Check_Conforming_Parameters
10418 (E1_Param : Node_Id;
10419 E2_Param : Node_Id) return Boolean;
10420 -- Starting from the given parameters, check that all the parameters
10421 -- of two entries or subprograms are subtype conformant. Used to skip
10422 -- the check on the controlling argument.
10424 function Matching_Entry_Or_Subprogram
10425 (Conc_Typ : Entity_Id;
10426 Subp : Entity_Id) return Entity_Id;
10427 -- Return the first entry or subprogram of the given concurrent type
10428 -- whose name matches the name of Subp and has a profile conformant
10429 -- with Subp; return Empty if not found.
10431 function Matching_Dispatching_Subprogram
10432 (Conc_Typ : Entity_Id;
10433 Ent : Entity_Id) return Entity_Id;
10434 -- Return the first dispatching primitive of Conc_Type defined in the
10435 -- enclosing scope of Conc_Type (i.e. before the full definition of
10436 -- this concurrent type) whose name matches the entry Ent and has a
10437 -- profile conformant with the profile of the corresponding (not yet
10438 -- built) dispatching primitive of Ent; return Empty if not found.
10440 function Matching_Original_Protected_Subprogram
10441 (Prot_Typ : Entity_Id;
10442 Subp : Entity_Id) return Entity_Id;
10443 -- Return the first subprogram defined in the enclosing scope of
10444 -- Prot_Typ (before the full definition of this protected type)
10445 -- whose name matches the original name of Subp and has a profile
10446 -- conformant with the profile of Subp; return Empty if not found.
10448 ---------------------------------
10449 -- Check_Conforming_Parameters --
10450 ---------------------------------
10452 function Check_Conforming_Parameters
10453 (E1_Param : Node_Id;
10454 E2_Param : Node_Id) return Boolean
10456 Param_E1 : Node_Id := E1_Param;
10457 Param_E2 : Node_Id := E2_Param;
10459 begin
10460 while Present (Param_E1) and then Present (Param_E2) loop
10461 if Ekind (Defining_Identifier (Param_E1)) /=
10462 Ekind (Defining_Identifier (Param_E2))
10463 or else not
10464 Conforming_Types
10465 (Find_Parameter_Type (Param_E1),
10466 Find_Parameter_Type (Param_E2),
10467 Subtype_Conformant)
10468 then
10469 return False;
10470 end if;
10472 Next (Param_E1);
10473 Next (Param_E2);
10474 end loop;
10476 -- The candidate is not valid if one of the two lists contains
10477 -- more parameters than the other
10479 return No (Param_E1) and then No (Param_E2);
10480 end Check_Conforming_Parameters;
10482 ----------------------------------
10483 -- Matching_Entry_Or_Subprogram --
10484 ----------------------------------
10486 function Matching_Entry_Or_Subprogram
10487 (Conc_Typ : Entity_Id;
10488 Subp : Entity_Id) return Entity_Id
10490 E : Entity_Id;
10492 begin
10493 E := First_Entity (Conc_Typ);
10494 while Present (E) loop
10495 if Chars (Subp) = Chars (E)
10496 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10497 and then
10498 Check_Conforming_Parameters
10499 (First (Parameter_Specifications (Parent (E))),
10500 Next (First (Parameter_Specifications (Parent (Subp)))))
10501 then
10502 return E;
10503 end if;
10505 Next_Entity (E);
10506 end loop;
10508 return Empty;
10509 end Matching_Entry_Or_Subprogram;
10511 -------------------------------------
10512 -- Matching_Dispatching_Subprogram --
10513 -------------------------------------
10515 function Matching_Dispatching_Subprogram
10516 (Conc_Typ : Entity_Id;
10517 Ent : Entity_Id) return Entity_Id
10519 E : Entity_Id;
10521 begin
10522 -- Search for entities in the enclosing scope of this synchonized
10523 -- type.
10525 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10526 Push_Scope (Scope (Conc_Typ));
10527 E := Current_Entity_In_Scope (Ent);
10528 Pop_Scope;
10530 while Present (E) loop
10531 if Scope (E) = Scope (Conc_Typ)
10532 and then Comes_From_Source (E)
10533 and then Ekind (E) = E_Procedure
10534 and then Present (First_Entity (E))
10535 and then Is_Controlling_Formal (First_Entity (E))
10536 and then Etype (First_Entity (E)) = Conc_Typ
10537 and then
10538 Check_Conforming_Parameters
10539 (First (Parameter_Specifications (Parent (Ent))),
10540 Next (First (Parameter_Specifications (Parent (E)))))
10541 then
10542 return E;
10543 end if;
10545 E := Homonym (E);
10546 end loop;
10548 return Empty;
10549 end Matching_Dispatching_Subprogram;
10551 --------------------------------------------
10552 -- Matching_Original_Protected_Subprogram --
10553 --------------------------------------------
10555 function Matching_Original_Protected_Subprogram
10556 (Prot_Typ : Entity_Id;
10557 Subp : Entity_Id) return Entity_Id
10559 ICF : constant Boolean :=
10560 Is_Controlling_Formal (First_Entity (Subp));
10561 E : Entity_Id;
10563 begin
10564 -- Temporarily decorate the first parameter of Subp as controlling
10565 -- formal, required to invoke Subtype_Conformant.
10567 Set_Is_Controlling_Formal (First_Entity (Subp));
10569 E :=
10570 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10572 while Present (E) loop
10573 if Scope (E) = Scope (Prot_Typ)
10574 and then Comes_From_Source (E)
10575 and then Ekind (Subp) = Ekind (E)
10576 and then Present (First_Entity (E))
10577 and then Is_Controlling_Formal (First_Entity (E))
10578 and then Etype (First_Entity (E)) = Prot_Typ
10579 and then Subtype_Conformant (Subp, E,
10580 Skip_Controlling_Formals => True)
10581 then
10582 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10583 return E;
10584 end if;
10586 E := Homonym (E);
10587 end loop;
10589 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10591 return Empty;
10592 end Matching_Original_Protected_Subprogram;
10594 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10596 begin
10597 -- Case 1: E is a subprogram whose first formal is a concurrent type
10598 -- defined in the scope of E that has an entry or subprogram whose
10599 -- profile matches E.
10601 if Comes_From_Source (E)
10602 and then Is_Subprogram (E)
10603 and then Present (First_Entity (E))
10604 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10605 then
10606 if Scope (E) =
10607 Scope (Corresponding_Concurrent_Type
10608 (Etype (First_Entity (E))))
10609 and then
10610 Present
10611 (Matching_Entry_Or_Subprogram
10612 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10613 Subp => E))
10614 then
10615 Report_Conflict (E,
10616 Matching_Entry_Or_Subprogram
10617 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10618 Subp => E));
10619 return True;
10620 end if;
10622 -- Case 2: E is an internally built dispatching subprogram of a
10623 -- protected type and there is a subprogram defined in the enclosing
10624 -- scope of the protected type that has the original name of E and
10625 -- its profile is conformant with the profile of E. We check the
10626 -- name of the original protected subprogram associated with E since
10627 -- the expander builds dispatching primitives of protected functions
10628 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10630 elsif not Comes_From_Source (E)
10631 and then Is_Subprogram (E)
10632 and then Present (First_Entity (E))
10633 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10634 and then Present (Original_Protected_Subprogram (E))
10635 and then
10636 Present
10637 (Matching_Original_Protected_Subprogram
10638 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10639 Subp => E))
10640 then
10641 Report_Conflict (E,
10642 Matching_Original_Protected_Subprogram
10643 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10644 Subp => E));
10645 return True;
10647 -- Case 3: E is an entry of a synchronized type and a matching
10648 -- procedure has been previously defined in the enclosing scope
10649 -- of the synchronized type.
10651 elsif Comes_From_Source (E)
10652 and then Ekind (E) = E_Entry
10653 and then
10654 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10655 then
10656 Report_Conflict (E,
10657 Matching_Dispatching_Subprogram (Current_Scope, E));
10658 return True;
10659 end if;
10661 return False;
10662 end Has_Matching_Entry_Or_Subprogram;
10664 ----------------------------
10665 -- Is_Private_Declaration --
10666 ----------------------------
10668 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10669 Decl : constant Node_Id := Unit_Declaration_Node (E);
10670 Priv_Decls : List_Id;
10672 begin
10673 if Is_Package_Or_Generic_Package (Current_Scope)
10674 and then In_Private_Part (Current_Scope)
10675 then
10676 Priv_Decls :=
10677 Private_Declarations (Package_Specification (Current_Scope));
10679 return In_Package_Body (Current_Scope)
10680 or else
10681 (Is_List_Member (Decl)
10682 and then List_Containing (Decl) = Priv_Decls)
10683 or else (Nkind (Parent (Decl)) = N_Package_Specification
10684 and then not
10685 Is_Compilation_Unit
10686 (Defining_Entity (Parent (Decl)))
10687 and then List_Containing (Parent (Parent (Decl))) =
10688 Priv_Decls);
10689 else
10690 return False;
10691 end if;
10692 end Is_Private_Declaration;
10694 --------------------------
10695 -- Is_Overriding_Alias --
10696 --------------------------
10698 function Is_Overriding_Alias
10699 (Old_E : Entity_Id;
10700 New_E : Entity_Id) return Boolean
10702 AO : constant Entity_Id := Alias (Old_E);
10703 AN : constant Entity_Id := Alias (New_E);
10705 begin
10706 return Scope (AO) /= Scope (AN)
10707 or else No (DTC_Entity (AO))
10708 or else No (DTC_Entity (AN))
10709 or else DT_Position (AO) = DT_Position (AN);
10710 end Is_Overriding_Alias;
10712 ---------------------
10713 -- Report_Conflict --
10714 ---------------------
10716 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10717 begin
10718 Error_Msg_Sloc := Sloc (E);
10720 -- Generate message, with useful additional warning if in generic
10722 if Is_Generic_Unit (E) then
10723 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10724 Error_Msg_N ("\& conflicts with declaration#", S);
10725 else
10726 Error_Msg_N ("& conflicts with declaration#", S);
10727 end if;
10728 end Report_Conflict;
10730 -- Start of processing for New_Overloaded_Entity
10732 begin
10733 -- We need to look for an entity that S may override. This must be a
10734 -- homonym in the current scope, so we look for the first homonym of
10735 -- S in the current scope as the starting point for the search.
10737 E := Current_Entity_In_Scope (S);
10739 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10740 -- They are directly added to the list of primitive operations of
10741 -- Derived_Type, unless this is a rederivation in the private part
10742 -- of an operation that was already derived in the visible part of
10743 -- the current package.
10745 if Ada_Version >= Ada_2005
10746 and then Present (Derived_Type)
10747 and then Present (Alias (S))
10748 and then Is_Dispatching_Operation (Alias (S))
10749 and then Present (Find_Dispatching_Type (Alias (S)))
10750 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10751 then
10752 -- For private types, when the full-view is processed we propagate to
10753 -- the full view the non-overridden entities whose attribute "alias"
10754 -- references an interface primitive. These entities were added by
10755 -- Derive_Subprograms to ensure that interface primitives are
10756 -- covered.
10758 -- Inside_Freeze_Actions is non zero when S corresponds with an
10759 -- internal entity that links an interface primitive with its
10760 -- covering primitive through attribute Interface_Alias (see
10761 -- Add_Internal_Interface_Entities).
10763 if Inside_Freezing_Actions = 0
10764 and then Is_Package_Or_Generic_Package (Current_Scope)
10765 and then In_Private_Part (Current_Scope)
10766 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10767 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10768 and then Full_View (Defining_Identifier (Parent (E)))
10769 = Defining_Identifier (Parent (S))
10770 and then Alias (E) = Alias (S)
10771 then
10772 Check_Operation_From_Private_View (S, E);
10773 Set_Is_Dispatching_Operation (S);
10775 -- Common case
10777 else
10778 Enter_Overloaded_Entity (S);
10779 Check_Dispatching_Operation (S, Empty);
10780 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10781 end if;
10783 return;
10784 end if;
10786 -- For synchronized types check conflicts of this entity with previously
10787 -- defined entities.
10789 if Ada_Version >= Ada_2005
10790 and then Has_Matching_Entry_Or_Subprogram (S)
10791 then
10792 return;
10793 end if;
10795 -- If there is no homonym then this is definitely not overriding
10797 if No (E) then
10798 Enter_Overloaded_Entity (S);
10799 Check_Dispatching_Operation (S, Empty);
10800 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10802 -- If subprogram has an explicit declaration, check whether it has an
10803 -- overriding indicator.
10805 if Comes_From_Source (S) then
10806 Check_Synchronized_Overriding (S, Overridden_Subp);
10808 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10809 -- it may have overridden some hidden inherited primitive. Update
10810 -- Overridden_Subp to avoid spurious errors when checking the
10811 -- overriding indicator.
10813 if Ada_Version >= Ada_2012
10814 and then No (Overridden_Subp)
10815 and then Is_Dispatching_Operation (S)
10816 and then Present (Overridden_Operation (S))
10817 then
10818 Overridden_Subp := Overridden_Operation (S);
10819 end if;
10821 Check_Overriding_Indicator
10822 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10824 -- The Ghost policy in effect at the point of declaration of a
10825 -- parent subprogram and an overriding subprogram must match
10826 -- (SPARK RM 6.9(17)).
10828 Check_Ghost_Overriding (S, Overridden_Subp);
10829 end if;
10831 -- If there is a homonym that is not overloadable, then we have an
10832 -- error, except for the special cases checked explicitly below.
10834 elsif not Is_Overloadable (E) then
10836 -- Check for spurious conflict produced by a subprogram that has the
10837 -- same name as that of the enclosing generic package. The conflict
10838 -- occurs within an instance, between the subprogram and the renaming
10839 -- declaration for the package. After the subprogram, the package
10840 -- renaming declaration becomes hidden.
10842 if Ekind (E) = E_Package
10843 and then Present (Renamed_Object (E))
10844 and then Renamed_Object (E) = Current_Scope
10845 and then Nkind (Parent (Renamed_Object (E))) =
10846 N_Package_Specification
10847 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10848 then
10849 Set_Is_Hidden (E);
10850 Set_Is_Immediately_Visible (E, False);
10851 Enter_Overloaded_Entity (S);
10852 Set_Homonym (S, Homonym (E));
10853 Check_Dispatching_Operation (S, Empty);
10854 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10856 -- If the subprogram is implicit it is hidden by the previous
10857 -- declaration. However if it is dispatching, it must appear in the
10858 -- dispatch table anyway, because it can be dispatched to even if it
10859 -- cannot be called directly.
10861 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10862 Set_Scope (S, Current_Scope);
10864 if Is_Dispatching_Operation (Alias (S)) then
10865 Check_Dispatching_Operation (S, Empty);
10866 end if;
10868 return;
10870 else
10871 Report_Conflict (S, E);
10872 return;
10873 end if;
10875 -- E exists and is overloadable
10877 else
10878 Check_Synchronized_Overriding (S, Overridden_Subp);
10880 -- Loop through E and its homonyms to determine if any of them is
10881 -- the candidate for overriding by S.
10883 while Present (E) loop
10885 -- Definitely not interesting if not in the current scope
10887 if Scope (E) /= Current_Scope then
10888 null;
10890 -- A function can overload the name of an abstract state. The
10891 -- state can be viewed as a function with a profile that cannot
10892 -- be matched by anything.
10894 elsif Ekind (S) = E_Function
10895 and then Ekind (E) = E_Abstract_State
10896 then
10897 Enter_Overloaded_Entity (S);
10898 return;
10900 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10901 -- procedures locate the internally generated spec. We enforce
10902 -- mode conformance since a tagged type may inherit from
10903 -- interfaces several null primitives which differ only in
10904 -- the mode of the formals.
10906 elsif not Comes_From_Source (S)
10907 and then Is_Null_Procedure (S)
10908 and then not Mode_Conformant (E, S)
10909 then
10910 null;
10912 -- Check if we have type conformance
10914 elsif Type_Conformant (E, S) then
10916 -- If the old and new entities have the same profile and one
10917 -- is not the body of the other, then this is an error, unless
10918 -- one of them is implicitly declared.
10920 -- There are some cases when both can be implicit, for example
10921 -- when both a literal and a function that overrides it are
10922 -- inherited in a derivation, or when an inherited operation
10923 -- of a tagged full type overrides the inherited operation of
10924 -- a private extension. Ada 83 had a special rule for the
10925 -- literal case. In Ada 95, the later implicit operation hides
10926 -- the former, and the literal is always the former. In the
10927 -- odd case where both are derived operations declared at the
10928 -- same point, both operations should be declared, and in that
10929 -- case we bypass the following test and proceed to the next
10930 -- part. This can only occur for certain obscure cases in
10931 -- instances, when an operation on a type derived from a formal
10932 -- private type does not override a homograph inherited from
10933 -- the actual. In subsequent derivations of such a type, the
10934 -- DT positions of these operations remain distinct, if they
10935 -- have been set.
10937 if Present (Alias (S))
10938 and then (No (Alias (E))
10939 or else Comes_From_Source (E)
10940 or else Is_Abstract_Subprogram (S)
10941 or else
10942 (Is_Dispatching_Operation (E)
10943 and then Is_Overriding_Alias (E, S)))
10944 and then Ekind (E) /= E_Enumeration_Literal
10945 then
10946 -- When an derived operation is overloaded it may be due to
10947 -- the fact that the full view of a private extension
10948 -- re-inherits. It has to be dealt with.
10950 if Is_Package_Or_Generic_Package (Current_Scope)
10951 and then In_Private_Part (Current_Scope)
10952 then
10953 Check_Operation_From_Private_View (S, E);
10954 end if;
10956 -- In any case the implicit operation remains hidden by the
10957 -- existing declaration, which is overriding. Indicate that
10958 -- E overrides the operation from which S is inherited.
10960 if Present (Alias (S)) then
10961 Set_Overridden_Operation (E, Alias (S));
10962 Inherit_Subprogram_Contract (E, Alias (S));
10964 else
10965 Set_Overridden_Operation (E, S);
10966 Inherit_Subprogram_Contract (E, S);
10967 end if;
10969 if Comes_From_Source (E) then
10970 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10972 -- The Ghost policy in effect at the point of declaration
10973 -- of a parent subprogram and an overriding subprogram
10974 -- must match (SPARK RM 6.9(17)).
10976 Check_Ghost_Overriding (E, S);
10977 end if;
10979 return;
10981 -- Within an instance, the renaming declarations for actual
10982 -- subprograms may become ambiguous, but they do not hide each
10983 -- other.
10985 elsif Ekind (E) /= E_Entry
10986 and then not Comes_From_Source (E)
10987 and then not Is_Generic_Instance (E)
10988 and then (Present (Alias (E))
10989 or else Is_Intrinsic_Subprogram (E))
10990 and then (not In_Instance
10991 or else No (Parent (E))
10992 or else Nkind (Unit_Declaration_Node (E)) /=
10993 N_Subprogram_Renaming_Declaration)
10994 then
10995 -- A subprogram child unit is not allowed to override an
10996 -- inherited subprogram (10.1.1(20)).
10998 if Is_Child_Unit (S) then
10999 Error_Msg_N
11000 ("child unit overrides inherited subprogram in parent",
11002 return;
11003 end if;
11005 if Is_Non_Overriding_Operation (E, S) then
11006 Enter_Overloaded_Entity (S);
11008 if No (Derived_Type)
11009 or else Is_Tagged_Type (Derived_Type)
11010 then
11011 Check_Dispatching_Operation (S, Empty);
11012 end if;
11014 return;
11015 end if;
11017 -- E is a derived operation or an internal operator which
11018 -- is being overridden. Remove E from further visibility.
11019 -- Furthermore, if E is a dispatching operation, it must be
11020 -- replaced in the list of primitive operations of its type
11021 -- (see Override_Dispatching_Operation).
11023 Overridden_Subp := E;
11025 -- It is possible for E to be in the current scope and
11026 -- yet not in the entity chain. This can only occur in a
11027 -- generic context where E is an implicit concatenation
11028 -- in the formal part, because in a generic body the
11029 -- entity chain starts with the formals.
11031 -- In GNATprove mode, a wrapper for an operation with
11032 -- axiomatization may be a homonym of another declaration
11033 -- for an actual subprogram (needs refinement ???).
11035 if No (Prev_Entity (E)) then
11036 if In_Instance
11037 and then GNATprove_Mode
11038 and then
11039 Nkind (Original_Node (Unit_Declaration_Node (S))) =
11040 N_Subprogram_Renaming_Declaration
11041 then
11042 return;
11043 else
11044 pragma Assert (Chars (E) = Name_Op_Concat);
11045 null;
11046 end if;
11047 end if;
11049 -- E must be removed both from the entity_list of the
11050 -- current scope, and from the visibility chain.
11052 if Debug_Flag_E then
11053 Write_Str ("Override implicit operation ");
11054 Write_Int (Int (E));
11055 Write_Eol;
11056 end if;
11058 -- If E is a predefined concatenation, it stands for four
11059 -- different operations. As a result, a single explicit
11060 -- declaration does not hide it. In a possible ambiguous
11061 -- situation, Disambiguate chooses the user-defined op,
11062 -- so it is correct to retain the previous internal one.
11064 if Chars (E) /= Name_Op_Concat
11065 or else Ekind (E) /= E_Operator
11066 then
11067 -- For nondispatching derived operations that are
11068 -- overridden by a subprogram declared in the private
11069 -- part of a package, we retain the derived subprogram
11070 -- but mark it as not immediately visible. If the
11071 -- derived operation was declared in the visible part
11072 -- then this ensures that it will still be visible
11073 -- outside the package with the proper signature
11074 -- (calls from outside must also be directed to this
11075 -- version rather than the overriding one, unlike the
11076 -- dispatching case). Calls from inside the package
11077 -- will still resolve to the overriding subprogram
11078 -- since the derived one is marked as not visible
11079 -- within the package.
11081 -- If the private operation is dispatching, we achieve
11082 -- the overriding by keeping the implicit operation
11083 -- but setting its alias to be the overriding one. In
11084 -- this fashion the proper body is executed in all
11085 -- cases, but the original signature is used outside
11086 -- of the package.
11088 -- If the overriding is not in the private part, we
11089 -- remove the implicit operation altogether.
11091 if Is_Private_Declaration (S) then
11092 if not Is_Dispatching_Operation (E) then
11093 Set_Is_Immediately_Visible (E, False);
11094 else
11095 -- Work done in Override_Dispatching_Operation, so
11096 -- nothing else needs to be done here.
11098 null;
11099 end if;
11101 else
11102 Remove_Entity_And_Homonym (E);
11103 end if;
11104 end if;
11106 Enter_Overloaded_Entity (S);
11108 -- For entities generated by Derive_Subprograms the
11109 -- overridden operation is the inherited primitive
11110 -- (which is available through the attribute alias).
11112 if not (Comes_From_Source (E))
11113 and then Is_Dispatching_Operation (E)
11114 and then Find_Dispatching_Type (E) =
11115 Find_Dispatching_Type (S)
11116 and then Present (Alias (E))
11117 and then Comes_From_Source (Alias (E))
11118 then
11119 Set_Overridden_Operation (S, Alias (E));
11120 Inherit_Subprogram_Contract (S, Alias (E));
11122 -- Normal case of setting entity as overridden
11124 -- Note: Static_Initialization and Overridden_Operation
11125 -- attributes use the same field in subprogram entities.
11126 -- Static_Initialization is only defined for internal
11127 -- initialization procedures, where Overridden_Operation
11128 -- is irrelevant. Therefore the setting of this attribute
11129 -- must check whether the target is an init_proc.
11131 elsif not Is_Init_Proc (S) then
11132 Set_Overridden_Operation (S, E);
11133 Inherit_Subprogram_Contract (S, E);
11134 end if;
11136 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11138 -- The Ghost policy in effect at the point of declaration
11139 -- of a parent subprogram and an overriding subprogram
11140 -- must match (SPARK RM 6.9(17)).
11142 Check_Ghost_Overriding (S, E);
11144 -- If S is a user-defined subprogram or a null procedure
11145 -- expanded to override an inherited null procedure, or a
11146 -- predefined dispatching primitive then indicate that E
11147 -- overrides the operation from which S is inherited.
11149 if Comes_From_Source (S)
11150 or else
11151 (Present (Parent (S))
11152 and then Nkind (Parent (S)) = N_Procedure_Specification
11153 and then Null_Present (Parent (S)))
11154 or else
11155 (Present (Alias (E))
11156 and then
11157 Is_Predefined_Dispatching_Operation (Alias (E)))
11158 then
11159 if Present (Alias (E)) then
11160 Set_Overridden_Operation (S, Alias (E));
11161 Inherit_Subprogram_Contract (S, Alias (E));
11162 end if;
11163 end if;
11165 if Is_Dispatching_Operation (E) then
11167 -- An overriding dispatching subprogram inherits the
11168 -- convention of the overridden subprogram (AI-117).
11170 Set_Convention (S, Convention (E));
11171 Check_Dispatching_Operation (S, E);
11173 else
11174 Check_Dispatching_Operation (S, Empty);
11175 end if;
11177 Check_For_Primitive_Subprogram
11178 (Is_Primitive_Subp, Is_Overriding => True);
11179 goto Check_Inequality;
11181 -- Apparent redeclarations in instances can occur when two
11182 -- formal types get the same actual type. The subprograms in
11183 -- in the instance are legal, even if not callable from the
11184 -- outside. Calls from within are disambiguated elsewhere.
11185 -- For dispatching operations in the visible part, the usual
11186 -- rules apply, and operations with the same profile are not
11187 -- legal (B830001).
11189 elsif (In_Instance_Visible_Part
11190 and then not Is_Dispatching_Operation (E))
11191 or else In_Instance_Not_Visible
11192 then
11193 null;
11195 -- Here we have a real error (identical profile)
11197 else
11198 Error_Msg_Sloc := Sloc (E);
11200 -- Avoid cascaded errors if the entity appears in
11201 -- subsequent calls.
11203 Set_Scope (S, Current_Scope);
11205 -- Generate error, with extra useful warning for the case
11206 -- of a generic instance with no completion.
11208 if Is_Generic_Instance (S)
11209 and then not Has_Completion (E)
11210 then
11211 Error_Msg_N
11212 ("instantiation cannot provide body for&", S);
11213 Error_Msg_N ("\& conflicts with declaration#", S);
11214 else
11215 Error_Msg_N ("& conflicts with declaration#", S);
11216 end if;
11218 return;
11219 end if;
11221 else
11222 -- If one subprogram has an access parameter and the other
11223 -- a parameter of an access type, calls to either might be
11224 -- ambiguous. Verify that parameters match except for the
11225 -- access parameter.
11227 if May_Hide_Profile then
11228 declare
11229 F1 : Entity_Id;
11230 F2 : Entity_Id;
11232 begin
11233 F1 := First_Formal (S);
11234 F2 := First_Formal (E);
11235 while Present (F1) and then Present (F2) loop
11236 if Is_Access_Type (Etype (F1)) then
11237 if not Is_Access_Type (Etype (F2))
11238 or else not Conforming_Types
11239 (Designated_Type (Etype (F1)),
11240 Designated_Type (Etype (F2)),
11241 Type_Conformant)
11242 then
11243 May_Hide_Profile := False;
11244 end if;
11246 elsif
11247 not Conforming_Types
11248 (Etype (F1), Etype (F2), Type_Conformant)
11249 then
11250 May_Hide_Profile := False;
11251 end if;
11253 Next_Formal (F1);
11254 Next_Formal (F2);
11255 end loop;
11257 if May_Hide_Profile
11258 and then No (F1)
11259 and then No (F2)
11260 then
11261 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11262 end if;
11263 end;
11264 end if;
11265 end if;
11267 E := Homonym (E);
11268 end loop;
11270 -- On exit, we know that S is a new entity
11272 Enter_Overloaded_Entity (S);
11273 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11274 Check_Overriding_Indicator
11275 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11277 -- The Ghost policy in effect at the point of declaration of a parent
11278 -- subprogram and an overriding subprogram must match
11279 -- (SPARK RM 6.9(17)).
11281 Check_Ghost_Overriding (S, Overridden_Subp);
11283 -- Overloading is not allowed in SPARK, except for operators
11285 if Nkind (S) /= N_Defining_Operator_Symbol then
11286 Error_Msg_Sloc := Sloc (Homonym (S));
11287 Check_SPARK_05_Restriction
11288 ("overloading not allowed with entity#", S);
11289 end if;
11291 -- If S is a derived operation for an untagged type then by
11292 -- definition it's not a dispatching operation (even if the parent
11293 -- operation was dispatching), so Check_Dispatching_Operation is not
11294 -- called in that case.
11296 if No (Derived_Type)
11297 or else Is_Tagged_Type (Derived_Type)
11298 then
11299 Check_Dispatching_Operation (S, Empty);
11300 end if;
11301 end if;
11303 -- If this is a user-defined equality operator that is not a derived
11304 -- subprogram, create the corresponding inequality. If the operation is
11305 -- dispatching, the expansion is done elsewhere, and we do not create
11306 -- an explicit inequality operation.
11308 <<Check_Inequality>>
11309 if Chars (S) = Name_Op_Eq
11310 and then Etype (S) = Standard_Boolean
11311 and then Present (Parent (S))
11312 and then not Is_Dispatching_Operation (S)
11313 then
11314 Make_Inequality_Operator (S);
11315 Check_Untagged_Equality (S);
11316 end if;
11317 end New_Overloaded_Entity;
11319 ---------------------
11320 -- Process_Formals --
11321 ---------------------
11323 procedure Process_Formals
11324 (T : List_Id;
11325 Related_Nod : Node_Id)
11327 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11328 -- Determine whether an access type designates a type coming from a
11329 -- limited view.
11331 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11332 -- Check whether the default has a class-wide type. After analysis the
11333 -- default has the type of the formal, so we must also check explicitly
11334 -- for an access attribute.
11336 ----------------------------------
11337 -- Designates_From_Limited_With --
11338 ----------------------------------
11340 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11341 Desig : Entity_Id := Typ;
11343 begin
11344 if Is_Access_Type (Desig) then
11345 Desig := Directly_Designated_Type (Desig);
11346 end if;
11348 if Is_Class_Wide_Type (Desig) then
11349 Desig := Root_Type (Desig);
11350 end if;
11352 return
11353 Ekind (Desig) = E_Incomplete_Type
11354 and then From_Limited_With (Desig);
11355 end Designates_From_Limited_With;
11357 ---------------------------
11358 -- Is_Class_Wide_Default --
11359 ---------------------------
11361 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11362 begin
11363 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11364 or else (Nkind (D) = N_Attribute_Reference
11365 and then Attribute_Name (D) = Name_Access
11366 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11367 end Is_Class_Wide_Default;
11369 -- Local variables
11371 Context : constant Node_Id := Parent (Parent (T));
11372 Default : Node_Id;
11373 Formal : Entity_Id;
11374 Formal_Type : Entity_Id;
11375 Param_Spec : Node_Id;
11376 Ptype : Entity_Id;
11378 Num_Out_Params : Nat := 0;
11379 First_Out_Param : Entity_Id := Empty;
11380 -- Used for setting Is_Only_Out_Parameter
11382 -- Start of processing for Process_Formals
11384 begin
11385 -- In order to prevent premature use of the formals in the same formal
11386 -- part, the Ekind is left undefined until all default expressions are
11387 -- analyzed. The Ekind is established in a separate loop at the end.
11389 Param_Spec := First (T);
11390 while Present (Param_Spec) loop
11391 Formal := Defining_Identifier (Param_Spec);
11392 Set_Never_Set_In_Source (Formal, True);
11393 Enter_Name (Formal);
11395 -- Case of ordinary parameters
11397 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11398 Find_Type (Parameter_Type (Param_Spec));
11399 Ptype := Parameter_Type (Param_Spec);
11401 if Ptype = Error then
11402 goto Continue;
11403 end if;
11405 Formal_Type := Entity (Ptype);
11407 if Is_Incomplete_Type (Formal_Type)
11408 or else
11409 (Is_Class_Wide_Type (Formal_Type)
11410 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11411 then
11412 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11413 -- primitive operations, as long as their completion is
11414 -- in the same declarative part. If in the private part
11415 -- this means that the type cannot be a Taft-amendment type.
11416 -- Check is done on package exit. For access to subprograms,
11417 -- the use is legal for Taft-amendment types.
11419 -- Ada 2012: tagged incomplete types are allowed as generic
11420 -- formal types. They do not introduce dependencies and the
11421 -- corresponding generic subprogram does not have a delayed
11422 -- freeze, because it does not need a freeze node. However,
11423 -- it is still the case that untagged incomplete types cannot
11424 -- be Taft-amendment types and must be completed in private
11425 -- part, so the subprogram must appear in the list of private
11426 -- dependents of the type.
11428 if Is_Tagged_Type (Formal_Type)
11429 or else (Ada_Version >= Ada_2012
11430 and then not From_Limited_With (Formal_Type)
11431 and then not Is_Generic_Type (Formal_Type))
11432 then
11433 if Ekind (Scope (Current_Scope)) = E_Package
11434 and then not Is_Generic_Type (Formal_Type)
11435 and then not Is_Class_Wide_Type (Formal_Type)
11436 then
11437 if not Nkind_In
11438 (Parent (T), N_Access_Function_Definition,
11439 N_Access_Procedure_Definition)
11440 then
11441 Append_Elmt (Current_Scope,
11442 Private_Dependents (Base_Type (Formal_Type)));
11444 -- Freezing is delayed to ensure that Register_Prim
11445 -- will get called for this operation, which is needed
11446 -- in cases where static dispatch tables aren't built.
11447 -- (Note that the same is done for controlling access
11448 -- parameter cases in function Access_Definition.)
11450 if not Is_Thunk (Current_Scope) then
11451 Set_Has_Delayed_Freeze (Current_Scope);
11452 end if;
11453 end if;
11454 end if;
11456 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11457 N_Access_Procedure_Definition)
11458 then
11459 -- AI05-0151: Tagged incomplete types are allowed in all
11460 -- formal parts. Untagged incomplete types are not allowed
11461 -- in bodies. Limited views of either kind are not allowed
11462 -- if there is no place at which the non-limited view can
11463 -- become available.
11465 -- Incomplete formal untagged types are not allowed in
11466 -- subprogram bodies (but are legal in their declarations).
11467 -- This excludes bodies created for null procedures, which
11468 -- are basic declarations.
11470 if Is_Generic_Type (Formal_Type)
11471 and then not Is_Tagged_Type (Formal_Type)
11472 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11473 then
11474 Error_Msg_N
11475 ("invalid use of formal incomplete type", Param_Spec);
11477 elsif Ada_Version >= Ada_2012 then
11478 if Is_Tagged_Type (Formal_Type)
11479 and then (not From_Limited_With (Formal_Type)
11480 or else not In_Package_Body)
11481 then
11482 null;
11484 elsif Nkind_In (Context, N_Accept_Statement,
11485 N_Accept_Alternative,
11486 N_Entry_Body)
11487 or else (Nkind (Context) = N_Subprogram_Body
11488 and then Comes_From_Source (Context))
11489 then
11490 Error_Msg_NE
11491 ("invalid use of untagged incomplete type &",
11492 Ptype, Formal_Type);
11493 end if;
11495 else
11496 Error_Msg_NE
11497 ("invalid use of incomplete type&",
11498 Param_Spec, Formal_Type);
11500 -- Further checks on the legality of incomplete types
11501 -- in formal parts are delayed until the freeze point
11502 -- of the enclosing subprogram or access to subprogram.
11503 end if;
11504 end if;
11506 elsif Ekind (Formal_Type) = E_Void then
11507 Error_Msg_NE
11508 ("premature use of&",
11509 Parameter_Type (Param_Spec), Formal_Type);
11510 end if;
11512 -- Ada 2012 (AI-142): Handle aliased parameters
11514 if Ada_Version >= Ada_2012
11515 and then Aliased_Present (Param_Spec)
11516 then
11517 Set_Is_Aliased (Formal);
11518 end if;
11520 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11521 -- declaration corresponding to the null-excluding type of the
11522 -- formal in the enclosing scope. Finally, replace the parameter
11523 -- type of the formal with the internal subtype.
11525 if Ada_Version >= Ada_2005
11526 and then Null_Exclusion_Present (Param_Spec)
11527 then
11528 if not Is_Access_Type (Formal_Type) then
11529 Error_Msg_N
11530 ("`NOT NULL` allowed only for an access type", Param_Spec);
11532 else
11533 if Can_Never_Be_Null (Formal_Type)
11534 and then Comes_From_Source (Related_Nod)
11535 then
11536 Error_Msg_NE
11537 ("`NOT NULL` not allowed (& already excludes null)",
11538 Param_Spec, Formal_Type);
11539 end if;
11541 Formal_Type :=
11542 Create_Null_Excluding_Itype
11543 (T => Formal_Type,
11544 Related_Nod => Related_Nod,
11545 Scope_Id => Scope (Current_Scope));
11547 -- If the designated type of the itype is an itype that is
11548 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11549 -- on the access subtype, to prevent order-of-elaboration
11550 -- issues in the backend.
11552 -- Example:
11553 -- type T is access procedure;
11554 -- procedure Op (O : not null T);
11556 if Is_Itype (Directly_Designated_Type (Formal_Type))
11557 and then
11558 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11559 then
11560 Set_Has_Delayed_Freeze (Formal_Type);
11561 end if;
11562 end if;
11563 end if;
11565 -- An access formal type
11567 else
11568 Formal_Type :=
11569 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11571 -- No need to continue if we already notified errors
11573 if not Present (Formal_Type) then
11574 return;
11575 end if;
11577 -- Ada 2005 (AI-254)
11579 declare
11580 AD : constant Node_Id :=
11581 Access_To_Subprogram_Definition
11582 (Parameter_Type (Param_Spec));
11583 begin
11584 if Present (AD) and then Protected_Present (AD) then
11585 Formal_Type :=
11586 Replace_Anonymous_Access_To_Protected_Subprogram
11587 (Param_Spec);
11588 end if;
11589 end;
11590 end if;
11592 Set_Etype (Formal, Formal_Type);
11594 -- Deal with default expression if present
11596 Default := Expression (Param_Spec);
11598 if Present (Default) then
11599 Check_SPARK_05_Restriction
11600 ("default expression is not allowed", Default);
11602 if Out_Present (Param_Spec) then
11603 Error_Msg_N
11604 ("default initialization only allowed for IN parameters",
11605 Param_Spec);
11606 end if;
11608 -- Do the special preanalysis of the expression (see section on
11609 -- "Handling of Default Expressions" in the spec of package Sem).
11611 Preanalyze_Spec_Expression (Default, Formal_Type);
11613 -- An access to constant cannot be the default for
11614 -- an access parameter that is an access to variable.
11616 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11617 and then not Is_Access_Constant (Formal_Type)
11618 and then Is_Access_Type (Etype (Default))
11619 and then Is_Access_Constant (Etype (Default))
11620 then
11621 Error_Msg_N
11622 ("formal that is access to variable cannot be initialized "
11623 & "with an access-to-constant expression", Default);
11624 end if;
11626 -- Check that the designated type of an access parameter's default
11627 -- is not a class-wide type unless the parameter's designated type
11628 -- is also class-wide.
11630 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11631 and then not Designates_From_Limited_With (Formal_Type)
11632 and then Is_Class_Wide_Default (Default)
11633 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11634 then
11635 Error_Msg_N
11636 ("access to class-wide expression not allowed here", Default);
11637 end if;
11639 -- Check incorrect use of dynamically tagged expressions
11641 if Is_Tagged_Type (Formal_Type) then
11642 Check_Dynamically_Tagged_Expression
11643 (Expr => Default,
11644 Typ => Formal_Type,
11645 Related_Nod => Default);
11646 end if;
11647 end if;
11649 -- Ada 2005 (AI-231): Static checks
11651 if Ada_Version >= Ada_2005
11652 and then Is_Access_Type (Etype (Formal))
11653 and then Can_Never_Be_Null (Etype (Formal))
11654 then
11655 Null_Exclusion_Static_Checks (Param_Spec);
11656 end if;
11658 -- The following checks are relevant only when SPARK_Mode is on as
11659 -- these are not standard Ada legality rules.
11661 if SPARK_Mode = On then
11662 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11664 -- A function cannot have a parameter of mode IN OUT or OUT
11665 -- (SPARK RM 6.1).
11667 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11668 Error_Msg_N
11669 ("function cannot have parameter of mode `OUT` or "
11670 & "`IN OUT`", Formal);
11671 end if;
11673 -- A procedure cannot have an effectively volatile formal
11674 -- parameter of mode IN because it behaves as a constant
11675 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11677 elsif Ekind (Scope (Formal)) = E_Procedure
11678 and then Ekind (Formal) = E_In_Parameter
11679 and then Is_Effectively_Volatile (Formal)
11680 then
11681 Error_Msg_N
11682 ("formal parameter of mode `IN` cannot be volatile", Formal);
11683 end if;
11684 end if;
11686 <<Continue>>
11687 Next (Param_Spec);
11688 end loop;
11690 -- If this is the formal part of a function specification, analyze the
11691 -- subtype mark in the context where the formals are visible but not
11692 -- yet usable, and may hide outer homographs.
11694 if Nkind (Related_Nod) = N_Function_Specification then
11695 Analyze_Return_Type (Related_Nod);
11696 end if;
11698 -- Now set the kind (mode) of each formal
11700 Param_Spec := First (T);
11701 while Present (Param_Spec) loop
11702 Formal := Defining_Identifier (Param_Spec);
11703 Set_Formal_Mode (Formal);
11705 if Ekind (Formal) = E_In_Parameter then
11706 Set_Default_Value (Formal, Expression (Param_Spec));
11708 if Present (Expression (Param_Spec)) then
11709 Default := Expression (Param_Spec);
11711 if Is_Scalar_Type (Etype (Default)) then
11712 if Nkind (Parameter_Type (Param_Spec)) /=
11713 N_Access_Definition
11714 then
11715 Formal_Type := Entity (Parameter_Type (Param_Spec));
11716 else
11717 Formal_Type :=
11718 Access_Definition
11719 (Related_Nod, Parameter_Type (Param_Spec));
11720 end if;
11722 Apply_Scalar_Range_Check (Default, Formal_Type);
11723 end if;
11724 end if;
11726 elsif Ekind (Formal) = E_Out_Parameter then
11727 Num_Out_Params := Num_Out_Params + 1;
11729 if Num_Out_Params = 1 then
11730 First_Out_Param := Formal;
11731 end if;
11733 elsif Ekind (Formal) = E_In_Out_Parameter then
11734 Num_Out_Params := Num_Out_Params + 1;
11735 end if;
11737 -- Skip remaining processing if formal type was in error
11739 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11740 goto Next_Parameter;
11741 end if;
11743 -- Force call by reference if aliased
11745 declare
11746 Conv : constant Convention_Id := Convention (Etype (Formal));
11747 begin
11748 if Is_Aliased (Formal) then
11749 Set_Mechanism (Formal, By_Reference);
11751 -- Warn if user asked this to be passed by copy
11753 if Conv = Convention_Ada_Pass_By_Copy then
11754 Error_Msg_N
11755 ("cannot pass aliased parameter & by copy??", Formal);
11756 end if;
11758 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11760 elsif Conv = Convention_Ada_Pass_By_Copy then
11761 Set_Mechanism (Formal, By_Copy);
11763 elsif Conv = Convention_Ada_Pass_By_Reference then
11764 Set_Mechanism (Formal, By_Reference);
11765 end if;
11766 end;
11768 <<Next_Parameter>>
11769 Next (Param_Spec);
11770 end loop;
11772 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11773 Set_Is_Only_Out_Parameter (First_Out_Param);
11774 end if;
11775 end Process_Formals;
11777 ----------------------------
11778 -- Reference_Body_Formals --
11779 ----------------------------
11781 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11782 Fs : Entity_Id;
11783 Fb : Entity_Id;
11785 begin
11786 if Error_Posted (Spec) then
11787 return;
11788 end if;
11790 -- Iterate over both lists. They may be of different lengths if the two
11791 -- specs are not conformant.
11793 Fs := First_Formal (Spec);
11794 Fb := First_Formal (Bod);
11795 while Present (Fs) and then Present (Fb) loop
11796 Generate_Reference (Fs, Fb, 'b');
11798 if Style_Check then
11799 Style.Check_Identifier (Fb, Fs);
11800 end if;
11802 Set_Spec_Entity (Fb, Fs);
11803 Set_Referenced (Fs, False);
11804 Next_Formal (Fs);
11805 Next_Formal (Fb);
11806 end loop;
11807 end Reference_Body_Formals;
11809 -------------------------
11810 -- Set_Actual_Subtypes --
11811 -------------------------
11813 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11814 Decl : Node_Id;
11815 Formal : Entity_Id;
11816 T : Entity_Id;
11817 First_Stmt : Node_Id := Empty;
11818 AS_Needed : Boolean;
11820 begin
11821 -- If this is an empty initialization procedure, no need to create
11822 -- actual subtypes (small optimization).
11824 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11825 return;
11827 -- Within a predicate function we do not want to generate local
11828 -- subtypes that may generate nested predicate functions.
11830 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11831 return;
11832 end if;
11834 -- The subtype declarations may freeze the formals. The body generated
11835 -- for an expression function is not a freeze point, so do not emit
11836 -- these declarations (small loss of efficiency in rare cases).
11838 if Nkind (N) = N_Subprogram_Body
11839 and then Was_Expression_Function (N)
11840 then
11841 return;
11842 end if;
11844 Formal := First_Formal (Subp);
11845 while Present (Formal) loop
11846 T := Etype (Formal);
11848 -- We never need an actual subtype for a constrained formal
11850 if Is_Constrained (T) then
11851 AS_Needed := False;
11853 -- If we have unknown discriminants, then we do not need an actual
11854 -- subtype, or more accurately we cannot figure it out. Note that
11855 -- all class-wide types have unknown discriminants.
11857 elsif Has_Unknown_Discriminants (T) then
11858 AS_Needed := False;
11860 -- At this stage we have an unconstrained type that may need an
11861 -- actual subtype. For sure the actual subtype is needed if we have
11862 -- an unconstrained array type. However, in an instance, the type
11863 -- may appear as a subtype of the full view, while the actual is
11864 -- in fact private (in which case no actual subtype is needed) so
11865 -- check the kind of the base type.
11867 elsif Is_Array_Type (Base_Type (T)) then
11868 AS_Needed := True;
11870 -- The only other case needing an actual subtype is an unconstrained
11871 -- record type which is an IN parameter (we cannot generate actual
11872 -- subtypes for the OUT or IN OUT case, since an assignment can
11873 -- change the discriminant values. However we exclude the case of
11874 -- initialization procedures, since discriminants are handled very
11875 -- specially in this context, see the section entitled "Handling of
11876 -- Discriminants" in Einfo.
11878 -- We also exclude the case of Discrim_SO_Functions (functions used
11879 -- in front-end layout mode for size/offset values), since in such
11880 -- functions only discriminants are referenced, and not only are such
11881 -- subtypes not needed, but they cannot always be generated, because
11882 -- of order of elaboration issues.
11884 elsif Is_Record_Type (T)
11885 and then Ekind (Formal) = E_In_Parameter
11886 and then Chars (Formal) /= Name_uInit
11887 and then not Is_Unchecked_Union (T)
11888 and then not Is_Discrim_SO_Function (Subp)
11889 then
11890 AS_Needed := True;
11892 -- All other cases do not need an actual subtype
11894 else
11895 AS_Needed := False;
11896 end if;
11898 -- Generate actual subtypes for unconstrained arrays and
11899 -- unconstrained discriminated records.
11901 if AS_Needed then
11902 if Nkind (N) = N_Accept_Statement then
11904 -- If expansion is active, the formal is replaced by a local
11905 -- variable that renames the corresponding entry of the
11906 -- parameter block, and it is this local variable that may
11907 -- require an actual subtype.
11909 if Expander_Active then
11910 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11911 else
11912 Decl := Build_Actual_Subtype (T, Formal);
11913 end if;
11915 if Present (Handled_Statement_Sequence (N)) then
11916 First_Stmt :=
11917 First (Statements (Handled_Statement_Sequence (N)));
11918 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11919 Mark_Rewrite_Insertion (Decl);
11920 else
11921 -- If the accept statement has no body, there will be no
11922 -- reference to the actuals, so no need to compute actual
11923 -- subtypes.
11925 return;
11926 end if;
11928 else
11929 Decl := Build_Actual_Subtype (T, Formal);
11930 Prepend (Decl, Declarations (N));
11931 Mark_Rewrite_Insertion (Decl);
11932 end if;
11934 -- The declaration uses the bounds of an existing object, and
11935 -- therefore needs no constraint checks.
11937 Analyze (Decl, Suppress => All_Checks);
11938 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11940 -- We need to freeze manually the generated type when it is
11941 -- inserted anywhere else than in a declarative part.
11943 if Present (First_Stmt) then
11944 Insert_List_Before_And_Analyze (First_Stmt,
11945 Freeze_Entity (Defining_Identifier (Decl), N));
11947 -- Ditto if the type has a dynamic predicate, because the
11948 -- generated function will mention the actual subtype. The
11949 -- predicate may come from an explicit aspect of be inherited.
11951 elsif Has_Predicates (T) then
11952 Insert_List_Before_And_Analyze (Decl,
11953 Freeze_Entity (Defining_Identifier (Decl), N));
11954 end if;
11956 if Nkind (N) = N_Accept_Statement
11957 and then Expander_Active
11958 then
11959 Set_Actual_Subtype (Renamed_Object (Formal),
11960 Defining_Identifier (Decl));
11961 else
11962 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11963 end if;
11964 end if;
11966 Next_Formal (Formal);
11967 end loop;
11968 end Set_Actual_Subtypes;
11970 ---------------------
11971 -- Set_Formal_Mode --
11972 ---------------------
11974 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11975 Spec : constant Node_Id := Parent (Formal_Id);
11976 Id : constant Entity_Id := Scope (Formal_Id);
11978 begin
11979 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11980 -- since we ensure that corresponding actuals are always valid at the
11981 -- point of the call.
11983 if Out_Present (Spec) then
11984 if Ekind_In (Id, E_Entry, E_Entry_Family)
11985 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11986 then
11987 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11988 end if;
11990 if Ekind_In (Id, E_Function, E_Generic_Function) then
11992 -- [IN] OUT parameters allowed for functions in Ada 2012
11994 if Ada_Version >= Ada_2012 then
11996 -- Even in Ada 2012 operators can only have IN parameters
11998 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11999 Error_Msg_N ("operators can only have IN parameters", Spec);
12000 end if;
12002 if In_Present (Spec) then
12003 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12004 else
12005 Set_Ekind (Formal_Id, E_Out_Parameter);
12006 end if;
12008 -- But not in earlier versions of Ada
12010 else
12011 Error_Msg_N ("functions can only have IN parameters", Spec);
12012 Set_Ekind (Formal_Id, E_In_Parameter);
12013 end if;
12015 elsif In_Present (Spec) then
12016 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12018 else
12019 Set_Ekind (Formal_Id, E_Out_Parameter);
12020 Set_Never_Set_In_Source (Formal_Id, True);
12021 Set_Is_True_Constant (Formal_Id, False);
12022 Set_Current_Value (Formal_Id, Empty);
12023 end if;
12025 else
12026 Set_Ekind (Formal_Id, E_In_Parameter);
12027 end if;
12029 -- Set Is_Known_Non_Null for access parameters since the language
12030 -- guarantees that access parameters are always non-null. We also set
12031 -- Can_Never_Be_Null, since there is no way to change the value.
12033 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12035 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12036 -- null; In Ada 2005, only if then null_exclusion is explicit.
12038 if Ada_Version < Ada_2005
12039 or else Can_Never_Be_Null (Etype (Formal_Id))
12040 then
12041 Set_Is_Known_Non_Null (Formal_Id);
12042 Set_Can_Never_Be_Null (Formal_Id);
12043 end if;
12045 -- Ada 2005 (AI-231): Null-exclusion access subtype
12047 elsif Is_Access_Type (Etype (Formal_Id))
12048 and then Can_Never_Be_Null (Etype (Formal_Id))
12049 then
12050 Set_Is_Known_Non_Null (Formal_Id);
12052 -- We can also set Can_Never_Be_Null (thus preventing some junk
12053 -- access checks) for the case of an IN parameter, which cannot
12054 -- be changed, or for an IN OUT parameter, which can be changed but
12055 -- not to a null value. But for an OUT parameter, the initial value
12056 -- passed in can be null, so we can't set this flag in that case.
12058 if Ekind (Formal_Id) /= E_Out_Parameter then
12059 Set_Can_Never_Be_Null (Formal_Id);
12060 end if;
12061 end if;
12063 Set_Mechanism (Formal_Id, Default_Mechanism);
12064 Set_Formal_Validity (Formal_Id);
12065 end Set_Formal_Mode;
12067 -------------------------
12068 -- Set_Formal_Validity --
12069 -------------------------
12071 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12072 begin
12073 -- If no validity checking, then we cannot assume anything about the
12074 -- validity of parameters, since we do not know there is any checking
12075 -- of the validity on the call side.
12077 if not Validity_Checks_On then
12078 return;
12080 -- If validity checking for parameters is enabled, this means we are
12081 -- not supposed to make any assumptions about argument values.
12083 elsif Validity_Check_Parameters then
12084 return;
12086 -- If we are checking in parameters, we will assume that the caller is
12087 -- also checking parameters, so we can assume the parameter is valid.
12089 elsif Ekind (Formal_Id) = E_In_Parameter
12090 and then Validity_Check_In_Params
12091 then
12092 Set_Is_Known_Valid (Formal_Id, True);
12094 -- Similar treatment for IN OUT parameters
12096 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12097 and then Validity_Check_In_Out_Params
12098 then
12099 Set_Is_Known_Valid (Formal_Id, True);
12100 end if;
12101 end Set_Formal_Validity;
12103 ------------------------
12104 -- Subtype_Conformant --
12105 ------------------------
12107 function Subtype_Conformant
12108 (New_Id : Entity_Id;
12109 Old_Id : Entity_Id;
12110 Skip_Controlling_Formals : Boolean := False) return Boolean
12112 Result : Boolean;
12113 begin
12114 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12115 Skip_Controlling_Formals => Skip_Controlling_Formals);
12116 return Result;
12117 end Subtype_Conformant;
12119 ---------------------
12120 -- Type_Conformant --
12121 ---------------------
12123 function Type_Conformant
12124 (New_Id : Entity_Id;
12125 Old_Id : Entity_Id;
12126 Skip_Controlling_Formals : Boolean := False) return Boolean
12128 Result : Boolean;
12129 begin
12130 May_Hide_Profile := False;
12131 Check_Conformance
12132 (New_Id, Old_Id, Type_Conformant, False, Result,
12133 Skip_Controlling_Formals => Skip_Controlling_Formals);
12134 return Result;
12135 end Type_Conformant;
12137 -------------------------------
12138 -- Valid_Operator_Definition --
12139 -------------------------------
12141 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12142 N : Integer := 0;
12143 F : Entity_Id;
12144 Id : constant Name_Id := Chars (Designator);
12145 N_OK : Boolean;
12147 begin
12148 F := First_Formal (Designator);
12149 while Present (F) loop
12150 N := N + 1;
12152 if Present (Default_Value (F)) then
12153 Error_Msg_N
12154 ("default values not allowed for operator parameters",
12155 Parent (F));
12157 -- For function instantiations that are operators, we must check
12158 -- separately that the corresponding generic only has in-parameters.
12159 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12160 -- an error could not arise in earlier versions of the language.
12162 elsif Ekind (F) /= E_In_Parameter then
12163 Error_Msg_N ("operators can only have IN parameters", F);
12164 end if;
12166 Next_Formal (F);
12167 end loop;
12169 -- Verify that user-defined operators have proper number of arguments
12170 -- First case of operators which can only be unary
12172 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12173 N_OK := (N = 1);
12175 -- Case of operators which can be unary or binary
12177 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12178 N_OK := (N in 1 .. 2);
12180 -- All other operators can only be binary
12182 else
12183 N_OK := (N = 2);
12184 end if;
12186 if not N_OK then
12187 Error_Msg_N
12188 ("incorrect number of arguments for operator", Designator);
12189 end if;
12191 if Id = Name_Op_Ne
12192 and then Base_Type (Etype (Designator)) = Standard_Boolean
12193 and then not Is_Intrinsic_Subprogram (Designator)
12194 then
12195 Error_Msg_N
12196 ("explicit definition of inequality not allowed", Designator);
12197 end if;
12198 end Valid_Operator_Definition;
12200 end Sem_Ch6;