[NDS32] new attribute no_prologue and new option -mret-in-naked-func.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob8c5b26d500140224259d7843febd30a232ce76e9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Record_Type_Declaration
650 (T : Entity_Id;
651 N : Node_Id;
652 Prev : Entity_Id);
653 -- Process a record type declaration (for both untagged and tagged
654 -- records). Parameters T and N are exactly like in procedure
655 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
656 -- for this routine. If this is the completion of an incomplete type
657 -- declaration, Prev is the entity of the incomplete declaration, used for
658 -- cross-referencing. Otherwise Prev = T.
660 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
661 -- This routine is used to process the actual record type definition (both
662 -- for untagged and tagged records). Def is a record type definition node.
663 -- This procedure analyzes the components in this record type definition.
664 -- Prev_T is the entity for the enclosing record type. It is provided so
665 -- that its Has_Task flag can be set if any of the component have Has_Task
666 -- set. If the declaration is the completion of an incomplete type
667 -- declaration, Prev_T is the original incomplete type, whose full view is
668 -- the record type.
670 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
671 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
672 -- build a copy of the declaration tree of the parent, and we create
673 -- independently the list of components for the derived type. Semantic
674 -- information uses the component entities, but record representation
675 -- clauses are validated on the declaration tree. This procedure replaces
676 -- discriminants and components in the declaration with those that have
677 -- been created by Inherit_Components.
679 procedure Set_Fixed_Range
680 (E : Entity_Id;
681 Loc : Source_Ptr;
682 Lo : Ureal;
683 Hi : Ureal);
684 -- Build a range node with the given bounds and set it as the Scalar_Range
685 -- of the given fixed-point type entity. Loc is the source location used
686 -- for the constructed range. See body for further details.
688 procedure Set_Scalar_Range_For_Subtype
689 (Def_Id : Entity_Id;
690 R : Node_Id;
691 Subt : Entity_Id);
692 -- This routine is used to set the scalar range field for a subtype given
693 -- Def_Id, the entity for the subtype, and R, the range expression for the
694 -- scalar range. Subt provides the parent subtype to be used to analyze,
695 -- resolve, and check the given range.
697 procedure Set_Default_SSO (T : Entity_Id);
698 -- T is the entity for an array or record being declared. This procedure
699 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
700 -- to the setting of Opt.Default_SSO.
702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 (E : Entity_Id);
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
715 -----------------------
716 -- Access_Definition --
717 -----------------------
719 function Access_Definition
720 (Related_Nod : Node_Id;
721 N : Node_Id) return Entity_Id
723 Anon_Type : Entity_Id;
724 Anon_Scope : Entity_Id;
725 Desig_Type : Entity_Id;
726 Enclosing_Prot_Type : Entity_Id := Empty;
728 begin
729 Check_SPARK_05_Restriction ("access type is not allowed", N);
731 if Is_Entry (Current_Scope)
732 and then Is_Task_Type (Etype (Scope (Current_Scope)))
733 then
734 Error_Msg_N ("task entries cannot have access parameters", N);
735 return Empty;
736 end if;
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
745 if Nkind_In (Related_Nod, N_Object_Declaration,
746 N_Access_Function_Definition)
747 then
748 Anon_Scope := Current_Scope;
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
754 declare
755 Par : Node_Id;
757 begin
758 Par := Related_Nod;
759 while Nkind_In (Par, N_Access_Function_Definition,
760 N_Access_Definition)
761 loop
762 Par := Parent (Par);
763 end loop;
765 if Nkind (Par) = N_Function_Specification then
766 Anon_Scope := Scope (Defining_Entity (Par));
767 end if;
768 end;
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
778 elsif Nkind (Related_Nod) = N_Function_Specification
779 and then Nkind (Parent (N)) /= N_Parameter_Specification
780 then
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
791 if Ekind (Current_Scope) = E_Protected_Type then
792 Enclosing_Prot_Type := Current_Scope;
794 elsif Ekind (Current_Scope) = E_Function
795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796 then
797 Enclosing_Prot_Type := Scope (Current_Scope);
798 end if;
800 if Present (Enclosing_Prot_Type) then
801 Anon_Scope := Scope (Enclosing_Prot_Type);
803 else
804 Anon_Scope := Scope (Defining_Entity (Related_Nod));
805 end if;
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
810 elsif Is_Compilation_Unit (Current_Scope) then
811 Anon_Scope := Current_Scope;
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
816 else
817 Anon_Scope := Scope (Current_Scope);
818 end if;
820 Anon_Type :=
821 Create_Itype
822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
824 if All_Present (N)
825 and then Ada_Version >= Ada_2005
826 then
827 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828 end if;
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
833 if Present (Access_To_Subprogram_Definition (N)) then
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
839 Check_Compiler_Unit ("anonymous access to subprogram", N);
841 Access_Subprogram_Declaration
842 (T_Name => Anon_Type,
843 T_Def => Access_To_Subprogram_Definition (N));
845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846 Set_Ekind
847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848 else
849 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850 end if;
852 Set_Can_Use_Internal_Rep
853 (Anon_Type, not Always_Compatible_Rep_On_Target);
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
859 -- If the anonymous access itself is protected, a full type
860 -- declaratiton will be created for it, so that the equivalent
861 -- record type can be constructed. For further details, see
862 -- Replace_Anonymous_Access_To_Protected-Subprogram.
864 if Ekind (Current_Scope) = E_Protected_Type
865 and then not Protected_Present (Access_To_Subprogram_Definition (N))
866 then
867 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
868 end if;
870 return Anon_Type;
871 end if;
873 Find_Type (Subtype_Mark (N));
874 Desig_Type := Entity (Subtype_Mark (N));
876 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
877 Set_Etype (Anon_Type, Anon_Type);
879 -- Make sure the anonymous access type has size and alignment fields
880 -- set, as required by gigi. This is necessary in the case of the
881 -- Task_Body_Procedure.
883 if not Has_Private_Component (Desig_Type) then
884 Layout_Type (Anon_Type);
885 end if;
887 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
888 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
889 -- the null value is allowed. In Ada 95 the null value is never allowed.
891 if Ada_Version >= Ada_2005 then
892 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
893 else
894 Set_Can_Never_Be_Null (Anon_Type, True);
895 end if;
897 -- The anonymous access type is as public as the discriminated type or
898 -- subprogram that defines it. It is imported (for back-end purposes)
899 -- if the designated type is.
901 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
903 -- Ada 2005 (AI-231): Propagate the access-constant attribute
905 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
907 -- The context is either a subprogram declaration, object declaration,
908 -- or an access discriminant, in a private or a full type declaration.
909 -- In the case of a subprogram, if the designated type is incomplete,
910 -- the operation will be a primitive operation of the full type, to be
911 -- updated subsequently. If the type is imported through a limited_with
912 -- clause, the subprogram is not a primitive operation of the type
913 -- (which is declared elsewhere in some other scope).
915 if Ekind (Desig_Type) = E_Incomplete_Type
916 and then not From_Limited_With (Desig_Type)
917 and then Is_Overloadable (Current_Scope)
918 then
919 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
920 Set_Has_Delayed_Freeze (Current_Scope);
921 end if;
923 -- Ada 2005: If the designated type is an interface that may contain
924 -- tasks, create a Master entity for the declaration. This must be done
925 -- before expansion of the full declaration, because the declaration may
926 -- include an expression that is an allocator, whose expansion needs the
927 -- proper Master for the created tasks.
929 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
930 then
931 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
932 then
933 Build_Class_Wide_Master (Anon_Type);
935 -- Similarly, if the type is an anonymous access that designates
936 -- tasks, create a master entity for it in the current context.
938 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
939 then
940 Build_Master_Entity (Defining_Identifier (Related_Nod));
941 Build_Master_Renaming (Anon_Type);
942 end if;
943 end if;
945 -- For a private component of a protected type, it is imperative that
946 -- the back-end elaborate the type immediately after the protected
947 -- declaration, because this type will be used in the declarations
948 -- created for the component within each protected body, so we must
949 -- create an itype reference for it now.
951 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
952 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
954 -- Similarly, if the access definition is the return result of a
955 -- function, create an itype reference for it because it will be used
956 -- within the function body. For a regular function that is not a
957 -- compilation unit, insert reference after the declaration. For a
958 -- protected operation, insert it after the enclosing protected type
959 -- declaration. In either case, do not create a reference for a type
960 -- obtained through a limited_with clause, because this would introduce
961 -- semantic dependencies.
963 -- Similarly, do not create a reference if the designated type is a
964 -- generic formal, because no use of it will reach the backend.
966 elsif Nkind (Related_Nod) = N_Function_Specification
967 and then not From_Limited_With (Desig_Type)
968 and then not Is_Generic_Type (Desig_Type)
969 then
970 if Present (Enclosing_Prot_Type) then
971 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
973 elsif Is_List_Member (Parent (Related_Nod))
974 and then Nkind (Parent (N)) /= N_Parameter_Specification
975 then
976 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
977 end if;
979 -- Finally, create an itype reference for an object declaration of an
980 -- anonymous access type. This is strictly necessary only for deferred
981 -- constants, but in any case will avoid out-of-scope problems in the
982 -- back-end.
984 elsif Nkind (Related_Nod) = N_Object_Declaration then
985 Build_Itype_Reference (Anon_Type, Related_Nod);
986 end if;
988 return Anon_Type;
989 end Access_Definition;
991 -----------------------------------
992 -- Access_Subprogram_Declaration --
993 -----------------------------------
995 procedure Access_Subprogram_Declaration
996 (T_Name : Entity_Id;
997 T_Def : Node_Id)
999 procedure Check_For_Premature_Usage (Def : Node_Id);
1000 -- Check that type T_Name is not used, directly or recursively, as a
1001 -- parameter or a return type in Def. Def is either a subtype, an
1002 -- access_definition, or an access_to_subprogram_definition.
1004 -------------------------------
1005 -- Check_For_Premature_Usage --
1006 -------------------------------
1008 procedure Check_For_Premature_Usage (Def : Node_Id) is
1009 Param : Node_Id;
1011 begin
1012 -- Check for a subtype mark
1014 if Nkind (Def) in N_Has_Etype then
1015 if Etype (Def) = T_Name then
1016 Error_Msg_N
1017 ("type& cannot be used before end of its declaration", Def);
1018 end if;
1020 -- If this is not a subtype, then this is an access_definition
1022 elsif Nkind (Def) = N_Access_Definition then
1023 if Present (Access_To_Subprogram_Definition (Def)) then
1024 Check_For_Premature_Usage
1025 (Access_To_Subprogram_Definition (Def));
1026 else
1027 Check_For_Premature_Usage (Subtype_Mark (Def));
1028 end if;
1030 -- The only cases left are N_Access_Function_Definition and
1031 -- N_Access_Procedure_Definition.
1033 else
1034 if Present (Parameter_Specifications (Def)) then
1035 Param := First (Parameter_Specifications (Def));
1036 while Present (Param) loop
1037 Check_For_Premature_Usage (Parameter_Type (Param));
1038 Param := Next (Param);
1039 end loop;
1040 end if;
1042 if Nkind (Def) = N_Access_Function_Definition then
1043 Check_For_Premature_Usage (Result_Definition (Def));
1044 end if;
1045 end if;
1046 end Check_For_Premature_Usage;
1048 -- Local variables
1050 Formals : constant List_Id := Parameter_Specifications (T_Def);
1051 Formal : Entity_Id;
1052 D_Ityp : Node_Id;
1053 Desig_Type : constant Entity_Id :=
1054 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1056 -- Start of processing for Access_Subprogram_Declaration
1058 begin
1059 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1061 -- Associate the Itype node with the inner full-type declaration or
1062 -- subprogram spec or entry body. This is required to handle nested
1063 -- anonymous declarations. For example:
1065 -- procedure P
1066 -- (X : access procedure
1067 -- (Y : access procedure
1068 -- (Z : access T)))
1070 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1071 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1072 N_Private_Type_Declaration,
1073 N_Private_Extension_Declaration,
1074 N_Procedure_Specification,
1075 N_Function_Specification,
1076 N_Entry_Body)
1078 or else
1079 Nkind_In (D_Ityp, N_Object_Declaration,
1080 N_Object_Renaming_Declaration,
1081 N_Formal_Object_Declaration,
1082 N_Formal_Type_Declaration,
1083 N_Task_Type_Declaration,
1084 N_Protected_Type_Declaration))
1085 loop
1086 D_Ityp := Parent (D_Ityp);
1087 pragma Assert (D_Ityp /= Empty);
1088 end loop;
1090 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1092 if Nkind_In (D_Ityp, N_Procedure_Specification,
1093 N_Function_Specification)
1094 then
1095 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1097 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1098 N_Object_Declaration,
1099 N_Object_Renaming_Declaration,
1100 N_Formal_Type_Declaration)
1101 then
1102 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1103 end if;
1105 if Nkind (T_Def) = N_Access_Function_Definition then
1106 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1107 declare
1108 Acc : constant Node_Id := Result_Definition (T_Def);
1110 begin
1111 if Present (Access_To_Subprogram_Definition (Acc))
1112 and then
1113 Protected_Present (Access_To_Subprogram_Definition (Acc))
1114 then
1115 Set_Etype
1116 (Desig_Type,
1117 Replace_Anonymous_Access_To_Protected_Subprogram
1118 (T_Def));
1120 else
1121 Set_Etype
1122 (Desig_Type,
1123 Access_Definition (T_Def, Result_Definition (T_Def)));
1124 end if;
1125 end;
1127 else
1128 Analyze (Result_Definition (T_Def));
1130 declare
1131 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1133 begin
1134 -- If a null exclusion is imposed on the result type, then
1135 -- create a null-excluding itype (an access subtype) and use
1136 -- it as the function's Etype.
1138 if Is_Access_Type (Typ)
1139 and then Null_Exclusion_In_Return_Present (T_Def)
1140 then
1141 Set_Etype (Desig_Type,
1142 Create_Null_Excluding_Itype
1143 (T => Typ,
1144 Related_Nod => T_Def,
1145 Scope_Id => Current_Scope));
1147 else
1148 if From_Limited_With (Typ) then
1150 -- AI05-151: Incomplete types are allowed in all basic
1151 -- declarations, including access to subprograms.
1153 if Ada_Version >= Ada_2012 then
1154 null;
1156 else
1157 Error_Msg_NE
1158 ("illegal use of incomplete type&",
1159 Result_Definition (T_Def), Typ);
1160 end if;
1162 elsif Ekind (Current_Scope) = E_Package
1163 and then In_Private_Part (Current_Scope)
1164 then
1165 if Ekind (Typ) = E_Incomplete_Type then
1166 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1168 elsif Is_Class_Wide_Type (Typ)
1169 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1170 then
1171 Append_Elmt
1172 (Desig_Type, Private_Dependents (Etype (Typ)));
1173 end if;
1174 end if;
1176 Set_Etype (Desig_Type, Typ);
1177 end if;
1178 end;
1179 end if;
1181 if not (Is_Type (Etype (Desig_Type))) then
1182 Error_Msg_N
1183 ("expect type in function specification",
1184 Result_Definition (T_Def));
1185 end if;
1187 else
1188 Set_Etype (Desig_Type, Standard_Void_Type);
1189 end if;
1191 if Present (Formals) then
1192 Push_Scope (Desig_Type);
1194 -- Some special tests here. These special tests can be removed
1195 -- if and when Itypes always have proper parent pointers to their
1196 -- declarations???
1198 -- Special test 1) Link defining_identifier of formals. Required by
1199 -- First_Formal to provide its functionality.
1201 declare
1202 F : Node_Id;
1204 begin
1205 F := First (Formals);
1207 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1208 -- when it is part of an unconstrained type and subtype expansion
1209 -- is disabled. To avoid back-end problems with shared profiles,
1210 -- use previous subprogram type as the designated type, and then
1211 -- remove scope added above.
1213 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1214 then
1215 Set_Etype (T_Name, T_Name);
1216 Init_Size_Align (T_Name);
1217 Set_Directly_Designated_Type (T_Name,
1218 Scope (Defining_Identifier (F)));
1219 End_Scope;
1220 return;
1221 end if;
1223 while Present (F) loop
1224 if No (Parent (Defining_Identifier (F))) then
1225 Set_Parent (Defining_Identifier (F), F);
1226 end if;
1228 Next (F);
1229 end loop;
1230 end;
1232 Process_Formals (Formals, Parent (T_Def));
1234 -- Special test 2) End_Scope requires that the parent pointer be set
1235 -- to something reasonable, but Itypes don't have parent pointers. So
1236 -- we set it and then unset it ???
1238 Set_Parent (Desig_Type, T_Name);
1239 End_Scope;
1240 Set_Parent (Desig_Type, Empty);
1241 end if;
1243 -- Check for premature usage of the type being defined
1245 Check_For_Premature_Usage (T_Def);
1247 -- The return type and/or any parameter type may be incomplete. Mark the
1248 -- subprogram_type as depending on the incomplete type, so that it can
1249 -- be updated when the full type declaration is seen. This only applies
1250 -- to incomplete types declared in some enclosing scope, not to limited
1251 -- views from other packages.
1253 -- Prior to Ada 2012, access to functions can only have in_parameters.
1255 if Present (Formals) then
1256 Formal := First_Formal (Desig_Type);
1257 while Present (Formal) loop
1258 if Ekind (Formal) /= E_In_Parameter
1259 and then Nkind (T_Def) = N_Access_Function_Definition
1260 and then Ada_Version < Ada_2012
1261 then
1262 Error_Msg_N ("functions can only have IN parameters", Formal);
1263 end if;
1265 if Ekind (Etype (Formal)) = E_Incomplete_Type
1266 and then In_Open_Scopes (Scope (Etype (Formal)))
1267 then
1268 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1269 Set_Has_Delayed_Freeze (Desig_Type);
1270 end if;
1272 Next_Formal (Formal);
1273 end loop;
1274 end if;
1276 -- Check whether an indirect call without actuals may be possible. This
1277 -- is used when resolving calls whose result is then indexed.
1279 May_Need_Actuals (Desig_Type);
1281 -- If the return type is incomplete, this is legal as long as the type
1282 -- is declared in the current scope and will be completed in it (rather
1283 -- than being part of limited view).
1285 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1286 and then not Has_Delayed_Freeze (Desig_Type)
1287 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1288 then
1289 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1290 Set_Has_Delayed_Freeze (Desig_Type);
1291 end if;
1293 Check_Delayed_Subprogram (Desig_Type);
1295 if Protected_Present (T_Def) then
1296 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1297 Set_Convention (Desig_Type, Convention_Protected);
1298 else
1299 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1300 end if;
1302 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1304 Set_Etype (T_Name, T_Name);
1305 Init_Size_Align (T_Name);
1306 Set_Directly_Designated_Type (T_Name, Desig_Type);
1308 Generate_Reference_To_Formals (T_Name);
1310 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1312 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1314 Check_Restriction (No_Access_Subprograms, T_Def);
1315 end Access_Subprogram_Declaration;
1317 ----------------------------
1318 -- Access_Type_Declaration --
1319 ----------------------------
1321 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1322 P : constant Node_Id := Parent (Def);
1323 S : constant Node_Id := Subtype_Indication (Def);
1325 Full_Desig : Entity_Id;
1327 begin
1328 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1330 -- Check for permissible use of incomplete type
1332 if Nkind (S) /= N_Subtype_Indication then
1333 Analyze (S);
1335 if Present (Entity (S))
1336 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1337 then
1338 Set_Directly_Designated_Type (T, Entity (S));
1340 -- If the designated type is a limited view, we cannot tell if
1341 -- the full view contains tasks, and there is no way to handle
1342 -- that full view in a client. We create a master entity for the
1343 -- scope, which will be used when a client determines that one
1344 -- is needed.
1346 if From_Limited_With (Entity (S))
1347 and then not Is_Class_Wide_Type (Entity (S))
1348 then
1349 Set_Ekind (T, E_Access_Type);
1350 Build_Master_Entity (T);
1351 Build_Master_Renaming (T);
1352 end if;
1354 else
1355 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1356 end if;
1358 -- If the access definition is of the form: ACCESS NOT NULL ..
1359 -- the subtype indication must be of an access type. Create
1360 -- a null-excluding subtype of it.
1362 if Null_Excluding_Subtype (Def) then
1363 if not Is_Access_Type (Entity (S)) then
1364 Error_Msg_N ("null exclusion must apply to access type", Def);
1366 else
1367 declare
1368 Loc : constant Source_Ptr := Sloc (S);
1369 Decl : Node_Id;
1370 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1372 begin
1373 Decl :=
1374 Make_Subtype_Declaration (Loc,
1375 Defining_Identifier => Nam,
1376 Subtype_Indication =>
1377 New_Occurrence_Of (Entity (S), Loc));
1378 Set_Null_Exclusion_Present (Decl);
1379 Insert_Before (Parent (Def), Decl);
1380 Analyze (Decl);
1381 Set_Entity (S, Nam);
1382 end;
1383 end if;
1384 end if;
1386 else
1387 Set_Directly_Designated_Type (T,
1388 Process_Subtype (S, P, T, 'P'));
1389 end if;
1391 if All_Present (Def) or Constant_Present (Def) then
1392 Set_Ekind (T, E_General_Access_Type);
1393 else
1394 Set_Ekind (T, E_Access_Type);
1395 end if;
1397 Full_Desig := Designated_Type (T);
1399 if Base_Type (Full_Desig) = T then
1400 Error_Msg_N ("access type cannot designate itself", S);
1402 -- In Ada 2005, the type may have a limited view through some unit in
1403 -- its own context, allowing the following circularity that cannot be
1404 -- detected earlier.
1406 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1407 then
1408 Error_Msg_N
1409 ("access type cannot designate its own class-wide type", S);
1411 -- Clean up indication of tagged status to prevent cascaded errors
1413 Set_Is_Tagged_Type (T, False);
1414 end if;
1416 Set_Etype (T, T);
1418 -- If the type has appeared already in a with_type clause, it is frozen
1419 -- and the pointer size is already set. Else, initialize.
1421 if not From_Limited_With (T) then
1422 Init_Size_Align (T);
1423 end if;
1425 -- Note that Has_Task is always false, since the access type itself
1426 -- is not a task type. See Einfo for more description on this point.
1427 -- Exactly the same consideration applies to Has_Controlled_Component
1428 -- and to Has_Protected.
1430 Set_Has_Task (T, False);
1431 Set_Has_Protected (T, False);
1432 Set_Has_Timing_Event (T, False);
1433 Set_Has_Controlled_Component (T, False);
1435 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1436 -- problems where an incomplete view of this entity has been previously
1437 -- established by a limited with and an overlaid version of this field
1438 -- (Stored_Constraint) was initialized for the incomplete view.
1440 -- This reset is performed in most cases except where the access type
1441 -- has been created for the purposes of allocating or deallocating a
1442 -- build-in-place object. Such access types have explicitly set pools
1443 -- and finalization masters.
1445 if No (Associated_Storage_Pool (T)) then
1446 Set_Finalization_Master (T, Empty);
1447 end if;
1449 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1450 -- attributes
1452 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1453 Set_Is_Access_Constant (T, Constant_Present (Def));
1454 end Access_Type_Declaration;
1456 ----------------------------------
1457 -- Add_Interface_Tag_Components --
1458 ----------------------------------
1460 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1461 Loc : constant Source_Ptr := Sloc (N);
1462 L : List_Id;
1463 Last_Tag : Node_Id;
1465 procedure Add_Tag (Iface : Entity_Id);
1466 -- Add tag for one of the progenitor interfaces
1468 -------------
1469 -- Add_Tag --
1470 -------------
1472 procedure Add_Tag (Iface : Entity_Id) is
1473 Decl : Node_Id;
1474 Def : Node_Id;
1475 Tag : Entity_Id;
1476 Offset : Entity_Id;
1478 begin
1479 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1481 -- This is a reasonable place to propagate predicates
1483 if Has_Predicates (Iface) then
1484 Set_Has_Predicates (Typ);
1485 end if;
1487 Def :=
1488 Make_Component_Definition (Loc,
1489 Aliased_Present => True,
1490 Subtype_Indication =>
1491 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1493 Tag := Make_Temporary (Loc, 'V');
1495 Decl :=
1496 Make_Component_Declaration (Loc,
1497 Defining_Identifier => Tag,
1498 Component_Definition => Def);
1500 Analyze_Component_Declaration (Decl);
1502 Set_Analyzed (Decl);
1503 Set_Ekind (Tag, E_Component);
1504 Set_Is_Tag (Tag);
1505 Set_Is_Aliased (Tag);
1506 Set_Related_Type (Tag, Iface);
1507 Init_Component_Location (Tag);
1509 pragma Assert (Is_Frozen (Iface));
1511 Set_DT_Entry_Count (Tag,
1512 DT_Entry_Count (First_Entity (Iface)));
1514 if No (Last_Tag) then
1515 Prepend (Decl, L);
1516 else
1517 Insert_After (Last_Tag, Decl);
1518 end if;
1520 Last_Tag := Decl;
1522 -- If the ancestor has discriminants we need to give special support
1523 -- to store the offset_to_top value of the secondary dispatch tables.
1524 -- For this purpose we add a supplementary component just after the
1525 -- field that contains the tag associated with each secondary DT.
1527 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1528 Def :=
1529 Make_Component_Definition (Loc,
1530 Subtype_Indication =>
1531 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1533 Offset := Make_Temporary (Loc, 'V');
1535 Decl :=
1536 Make_Component_Declaration (Loc,
1537 Defining_Identifier => Offset,
1538 Component_Definition => Def);
1540 Analyze_Component_Declaration (Decl);
1542 Set_Analyzed (Decl);
1543 Set_Ekind (Offset, E_Component);
1544 Set_Is_Aliased (Offset);
1545 Set_Related_Type (Offset, Iface);
1546 Init_Component_Location (Offset);
1547 Insert_After (Last_Tag, Decl);
1548 Last_Tag := Decl;
1549 end if;
1550 end Add_Tag;
1552 -- Local variables
1554 Elmt : Elmt_Id;
1555 Ext : Node_Id;
1556 Comp : Node_Id;
1558 -- Start of processing for Add_Interface_Tag_Components
1560 begin
1561 if not RTE_Available (RE_Interface_Tag) then
1562 Error_Msg
1563 ("(Ada 2005) interface types not supported by this run-time!",
1564 Sloc (N));
1565 return;
1566 end if;
1568 if Ekind (Typ) /= E_Record_Type
1569 or else (Is_Concurrent_Record_Type (Typ)
1570 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1571 or else (not Is_Concurrent_Record_Type (Typ)
1572 and then No (Interfaces (Typ))
1573 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1574 then
1575 return;
1576 end if;
1578 -- Find the current last tag
1580 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1581 Ext := Record_Extension_Part (Type_Definition (N));
1582 else
1583 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1584 Ext := Type_Definition (N);
1585 end if;
1587 Last_Tag := Empty;
1589 if not (Present (Component_List (Ext))) then
1590 Set_Null_Present (Ext, False);
1591 L := New_List;
1592 Set_Component_List (Ext,
1593 Make_Component_List (Loc,
1594 Component_Items => L,
1595 Null_Present => False));
1596 else
1597 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1598 L := Component_Items
1599 (Component_List
1600 (Record_Extension_Part
1601 (Type_Definition (N))));
1602 else
1603 L := Component_Items
1604 (Component_List
1605 (Type_Definition (N)));
1606 end if;
1608 -- Find the last tag component
1610 Comp := First (L);
1611 while Present (Comp) loop
1612 if Nkind (Comp) = N_Component_Declaration
1613 and then Is_Tag (Defining_Identifier (Comp))
1614 then
1615 Last_Tag := Comp;
1616 end if;
1618 Next (Comp);
1619 end loop;
1620 end if;
1622 -- At this point L references the list of components and Last_Tag
1623 -- references the current last tag (if any). Now we add the tag
1624 -- corresponding with all the interfaces that are not implemented
1625 -- by the parent.
1627 if Present (Interfaces (Typ)) then
1628 Elmt := First_Elmt (Interfaces (Typ));
1629 while Present (Elmt) loop
1630 Add_Tag (Node (Elmt));
1631 Next_Elmt (Elmt);
1632 end loop;
1633 end if;
1634 end Add_Interface_Tag_Components;
1636 -------------------------------------
1637 -- Add_Internal_Interface_Entities --
1638 -------------------------------------
1640 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1641 Elmt : Elmt_Id;
1642 Iface : Entity_Id;
1643 Iface_Elmt : Elmt_Id;
1644 Iface_Prim : Entity_Id;
1645 Ifaces_List : Elist_Id;
1646 New_Subp : Entity_Id := Empty;
1647 Prim : Entity_Id;
1648 Restore_Scope : Boolean := False;
1650 begin
1651 pragma Assert (Ada_Version >= Ada_2005
1652 and then Is_Record_Type (Tagged_Type)
1653 and then Is_Tagged_Type (Tagged_Type)
1654 and then Has_Interfaces (Tagged_Type)
1655 and then not Is_Interface (Tagged_Type));
1657 -- Ensure that the internal entities are added to the scope of the type
1659 if Scope (Tagged_Type) /= Current_Scope then
1660 Push_Scope (Scope (Tagged_Type));
1661 Restore_Scope := True;
1662 end if;
1664 Collect_Interfaces (Tagged_Type, Ifaces_List);
1666 Iface_Elmt := First_Elmt (Ifaces_List);
1667 while Present (Iface_Elmt) loop
1668 Iface := Node (Iface_Elmt);
1670 -- Originally we excluded here from this processing interfaces that
1671 -- are parents of Tagged_Type because their primitives are located
1672 -- in the primary dispatch table (and hence no auxiliary internal
1673 -- entities are required to handle secondary dispatch tables in such
1674 -- case). However, these auxiliary entities are also required to
1675 -- handle derivations of interfaces in formals of generics (see
1676 -- Derive_Subprograms).
1678 Elmt := First_Elmt (Primitive_Operations (Iface));
1679 while Present (Elmt) loop
1680 Iface_Prim := Node (Elmt);
1682 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1683 Prim :=
1684 Find_Primitive_Covering_Interface
1685 (Tagged_Type => Tagged_Type,
1686 Iface_Prim => Iface_Prim);
1688 if No (Prim) and then Serious_Errors_Detected > 0 then
1689 goto Continue;
1690 end if;
1692 pragma Assert (Present (Prim));
1694 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1695 -- differs from the name of the interface primitive then it is
1696 -- a private primitive inherited from a parent type. In such
1697 -- case, given that Tagged_Type covers the interface, the
1698 -- inherited private primitive becomes visible. For such
1699 -- purpose we add a new entity that renames the inherited
1700 -- private primitive.
1702 if Chars (Prim) /= Chars (Iface_Prim) then
1703 pragma Assert (Has_Suffix (Prim, 'P'));
1704 Derive_Subprogram
1705 (New_Subp => New_Subp,
1706 Parent_Subp => Iface_Prim,
1707 Derived_Type => Tagged_Type,
1708 Parent_Type => Iface);
1709 Set_Alias (New_Subp, Prim);
1710 Set_Is_Abstract_Subprogram
1711 (New_Subp, Is_Abstract_Subprogram (Prim));
1712 end if;
1714 Derive_Subprogram
1715 (New_Subp => New_Subp,
1716 Parent_Subp => Iface_Prim,
1717 Derived_Type => Tagged_Type,
1718 Parent_Type => Iface);
1720 declare
1721 Anc : Entity_Id;
1722 begin
1723 if Is_Inherited_Operation (Prim)
1724 and then Present (Alias (Prim))
1725 then
1726 Anc := Alias (Prim);
1727 else
1728 Anc := Overridden_Operation (Prim);
1729 end if;
1731 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1732 -- nonconforming preconditions in both an ancestor and
1733 -- a progenitor operation.
1735 -- If the operation is a primitive wrapper it is an explicit
1736 -- (overriding) operqtion and all is fine.
1738 if Present (Anc)
1739 and then Has_Non_Trivial_Precondition (Anc)
1740 and then Has_Non_Trivial_Precondition (Iface_Prim)
1741 then
1742 if Is_Abstract_Subprogram (Prim)
1743 or else
1744 (Ekind (Prim) = E_Procedure
1745 and then Nkind (Parent (Prim)) =
1746 N_Procedure_Specification
1747 and then Null_Present (Parent (Prim)))
1748 or else Is_Primitive_Wrapper (Prim)
1749 then
1750 null;
1752 -- The operation is inherited and must be overridden
1754 elsif not Comes_From_Source (Prim) then
1755 Error_Msg_NE
1756 ("&inherits non-conforming preconditions and must "
1757 & "be overridden (RM 6.1.1 (10-16)",
1758 Parent (Tagged_Type), Prim);
1759 end if;
1760 end if;
1761 end;
1763 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1764 -- associated with interface types. These entities are
1765 -- only registered in the list of primitives of its
1766 -- corresponding tagged type because they are only used
1767 -- to fill the contents of the secondary dispatch tables.
1768 -- Therefore they are removed from the homonym chains.
1770 Set_Is_Hidden (New_Subp);
1771 Set_Is_Internal (New_Subp);
1772 Set_Alias (New_Subp, Prim);
1773 Set_Is_Abstract_Subprogram
1774 (New_Subp, Is_Abstract_Subprogram (Prim));
1775 Set_Interface_Alias (New_Subp, Iface_Prim);
1777 -- If the returned type is an interface then propagate it to
1778 -- the returned type. Needed by the thunk to generate the code
1779 -- which displaces "this" to reference the corresponding
1780 -- secondary dispatch table in the returned object.
1782 if Is_Interface (Etype (Iface_Prim)) then
1783 Set_Etype (New_Subp, Etype (Iface_Prim));
1784 end if;
1786 -- Internal entities associated with interface types are only
1787 -- registered in the list of primitives of the tagged type.
1788 -- They are only used to fill the contents of the secondary
1789 -- dispatch tables. Therefore they are not needed in the
1790 -- homonym chains.
1792 Remove_Homonym (New_Subp);
1794 -- Hidden entities associated with interfaces must have set
1795 -- the Has_Delay_Freeze attribute to ensure that, in case
1796 -- of locally defined tagged types (or compiling with static
1797 -- dispatch tables generation disabled) the corresponding
1798 -- entry of the secondary dispatch table is filled when such
1799 -- an entity is frozen. This is an expansion activity that must
1800 -- be suppressed for ASIS because it leads to gigi elaboration
1801 -- issues in annotate mode.
1803 if not ASIS_Mode then
1804 Set_Has_Delayed_Freeze (New_Subp);
1805 end if;
1806 end if;
1808 <<Continue>>
1809 Next_Elmt (Elmt);
1810 end loop;
1812 Next_Elmt (Iface_Elmt);
1813 end loop;
1815 if Restore_Scope then
1816 Pop_Scope;
1817 end if;
1818 end Add_Internal_Interface_Entities;
1820 -----------------------------------
1821 -- Analyze_Component_Declaration --
1822 -----------------------------------
1824 procedure Analyze_Component_Declaration (N : Node_Id) is
1825 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1826 Id : constant Entity_Id := Defining_Identifier (N);
1827 E : constant Node_Id := Expression (N);
1828 Typ : constant Node_Id :=
1829 Subtype_Indication (Component_Definition (N));
1830 T : Entity_Id;
1831 P : Entity_Id;
1833 function Contains_POC (Constr : Node_Id) return Boolean;
1834 -- Determines whether a constraint uses the discriminant of a record
1835 -- type thus becoming a per-object constraint (POC).
1837 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1838 -- Typ is the type of the current component, check whether this type is
1839 -- a limited type. Used to validate declaration against that of
1840 -- enclosing record.
1842 ------------------
1843 -- Contains_POC --
1844 ------------------
1846 function Contains_POC (Constr : Node_Id) return Boolean is
1847 begin
1848 -- Prevent cascaded errors
1850 if Error_Posted (Constr) then
1851 return False;
1852 end if;
1854 case Nkind (Constr) is
1855 when N_Attribute_Reference =>
1856 return Attribute_Name (Constr) = Name_Access
1857 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1859 when N_Discriminant_Association =>
1860 return Denotes_Discriminant (Expression (Constr));
1862 when N_Identifier =>
1863 return Denotes_Discriminant (Constr);
1865 when N_Index_Or_Discriminant_Constraint =>
1866 declare
1867 IDC : Node_Id;
1869 begin
1870 IDC := First (Constraints (Constr));
1871 while Present (IDC) loop
1873 -- One per-object constraint is sufficient
1875 if Contains_POC (IDC) then
1876 return True;
1877 end if;
1879 Next (IDC);
1880 end loop;
1882 return False;
1883 end;
1885 when N_Range =>
1886 return Denotes_Discriminant (Low_Bound (Constr))
1887 or else
1888 Denotes_Discriminant (High_Bound (Constr));
1890 when N_Range_Constraint =>
1891 return Denotes_Discriminant (Range_Expression (Constr));
1893 when others =>
1894 return False;
1895 end case;
1896 end Contains_POC;
1898 ----------------------
1899 -- Is_Known_Limited --
1900 ----------------------
1902 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1903 P : constant Entity_Id := Etype (Typ);
1904 R : constant Entity_Id := Root_Type (Typ);
1906 begin
1907 if Is_Limited_Record (Typ) then
1908 return True;
1910 -- If the root type is limited (and not a limited interface)
1911 -- so is the current type
1913 elsif Is_Limited_Record (R)
1914 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1915 then
1916 return True;
1918 -- Else the type may have a limited interface progenitor, but a
1919 -- limited record parent.
1921 elsif R /= P and then Is_Limited_Record (P) then
1922 return True;
1924 else
1925 return False;
1926 end if;
1927 end Is_Known_Limited;
1929 -- Start of processing for Analyze_Component_Declaration
1931 begin
1932 Generate_Definition (Id);
1933 Enter_Name (Id);
1935 if Present (Typ) then
1936 T := Find_Type_Of_Object
1937 (Subtype_Indication (Component_Definition (N)), N);
1939 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1940 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1941 end if;
1943 -- Ada 2005 (AI-230): Access Definition case
1945 else
1946 pragma Assert (Present
1947 (Access_Definition (Component_Definition (N))));
1949 T := Access_Definition
1950 (Related_Nod => N,
1951 N => Access_Definition (Component_Definition (N)));
1952 Set_Is_Local_Anonymous_Access (T);
1954 -- Ada 2005 (AI-254)
1956 if Present (Access_To_Subprogram_Definition
1957 (Access_Definition (Component_Definition (N))))
1958 and then Protected_Present (Access_To_Subprogram_Definition
1959 (Access_Definition
1960 (Component_Definition (N))))
1961 then
1962 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1963 end if;
1964 end if;
1966 -- If the subtype is a constrained subtype of the enclosing record,
1967 -- (which must have a partial view) the back-end does not properly
1968 -- handle the recursion. Rewrite the component declaration with an
1969 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1970 -- the tree directly because side effects have already been removed from
1971 -- discriminant constraints.
1973 if Ekind (T) = E_Access_Subtype
1974 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1975 and then Comes_From_Source (T)
1976 and then Nkind (Parent (T)) = N_Subtype_Declaration
1977 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1978 then
1979 Rewrite
1980 (Subtype_Indication (Component_Definition (N)),
1981 New_Copy_Tree (Subtype_Indication (Parent (T))));
1982 T := Find_Type_Of_Object
1983 (Subtype_Indication (Component_Definition (N)), N);
1984 end if;
1986 -- If the component declaration includes a default expression, then we
1987 -- check that the component is not of a limited type (RM 3.7(5)),
1988 -- and do the special preanalysis of the expression (see section on
1989 -- "Handling of Default and Per-Object Expressions" in the spec of
1990 -- package Sem).
1992 if Present (E) then
1993 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1994 Preanalyze_Default_Expression (E, T);
1995 Check_Initialization (T, E);
1997 if Ada_Version >= Ada_2005
1998 and then Ekind (T) = E_Anonymous_Access_Type
1999 and then Etype (E) /= Any_Type
2000 then
2001 -- Check RM 3.9.2(9): "if the expected type for an expression is
2002 -- an anonymous access-to-specific tagged type, then the object
2003 -- designated by the expression shall not be dynamically tagged
2004 -- unless it is a controlling operand in a call on a dispatching
2005 -- operation"
2007 if Is_Tagged_Type (Directly_Designated_Type (T))
2008 and then
2009 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2010 and then
2011 Ekind (Directly_Designated_Type (Etype (E))) =
2012 E_Class_Wide_Type
2013 then
2014 Error_Msg_N
2015 ("access to specific tagged type required (RM 3.9.2(9))", E);
2016 end if;
2018 -- (Ada 2005: AI-230): Accessibility check for anonymous
2019 -- components
2021 if Type_Access_Level (Etype (E)) >
2022 Deepest_Type_Access_Level (T)
2023 then
2024 Error_Msg_N
2025 ("expression has deeper access level than component " &
2026 "(RM 3.10.2 (12.2))", E);
2027 end if;
2029 -- The initialization expression is a reference to an access
2030 -- discriminant. The type of the discriminant is always deeper
2031 -- than any access type.
2033 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2034 and then Is_Entity_Name (E)
2035 and then Ekind (Entity (E)) = E_In_Parameter
2036 and then Present (Discriminal_Link (Entity (E)))
2037 then
2038 Error_Msg_N
2039 ("discriminant has deeper accessibility level than target",
2041 end if;
2042 end if;
2043 end if;
2045 -- The parent type may be a private view with unknown discriminants,
2046 -- and thus unconstrained. Regular components must be constrained.
2048 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2049 if Is_Class_Wide_Type (T) then
2050 Error_Msg_N
2051 ("class-wide subtype with unknown discriminants" &
2052 " in component declaration",
2053 Subtype_Indication (Component_Definition (N)));
2054 else
2055 Error_Msg_N
2056 ("unconstrained subtype in component declaration",
2057 Subtype_Indication (Component_Definition (N)));
2058 end if;
2060 -- Components cannot be abstract, except for the special case of
2061 -- the _Parent field (case of extending an abstract tagged type)
2063 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2064 Error_Msg_N ("type of a component cannot be abstract", N);
2065 end if;
2067 Set_Etype (Id, T);
2068 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2070 -- The component declaration may have a per-object constraint, set
2071 -- the appropriate flag in the defining identifier of the subtype.
2073 if Present (Subtype_Indication (Component_Definition (N))) then
2074 declare
2075 Sindic : constant Node_Id :=
2076 Subtype_Indication (Component_Definition (N));
2077 begin
2078 if Nkind (Sindic) = N_Subtype_Indication
2079 and then Present (Constraint (Sindic))
2080 and then Contains_POC (Constraint (Sindic))
2081 then
2082 Set_Has_Per_Object_Constraint (Id);
2083 end if;
2084 end;
2085 end if;
2087 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2088 -- out some static checks.
2090 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2091 Null_Exclusion_Static_Checks (N);
2092 end if;
2094 -- If this component is private (or depends on a private type), flag the
2095 -- record type to indicate that some operations are not available.
2097 P := Private_Component (T);
2099 if Present (P) then
2101 -- Check for circular definitions
2103 if P = Any_Type then
2104 Set_Etype (Id, Any_Type);
2106 -- There is a gap in the visibility of operations only if the
2107 -- component type is not defined in the scope of the record type.
2109 elsif Scope (P) = Scope (Current_Scope) then
2110 null;
2112 elsif Is_Limited_Type (P) then
2113 Set_Is_Limited_Composite (Current_Scope);
2115 else
2116 Set_Is_Private_Composite (Current_Scope);
2117 end if;
2118 end if;
2120 if P /= Any_Type
2121 and then Is_Limited_Type (T)
2122 and then Chars (Id) /= Name_uParent
2123 and then Is_Tagged_Type (Current_Scope)
2124 then
2125 if Is_Derived_Type (Current_Scope)
2126 and then not Is_Known_Limited (Current_Scope)
2127 then
2128 Error_Msg_N
2129 ("extension of nonlimited type cannot have limited components",
2132 if Is_Interface (Root_Type (Current_Scope)) then
2133 Error_Msg_N
2134 ("\limitedness is not inherited from limited interface", N);
2135 Error_Msg_N ("\add LIMITED to type indication", N);
2136 end if;
2138 Explain_Limited_Type (T, N);
2139 Set_Etype (Id, Any_Type);
2140 Set_Is_Limited_Composite (Current_Scope, False);
2142 elsif not Is_Derived_Type (Current_Scope)
2143 and then not Is_Limited_Record (Current_Scope)
2144 and then not Is_Concurrent_Type (Current_Scope)
2145 then
2146 Error_Msg_N
2147 ("nonlimited tagged type cannot have limited components", N);
2148 Explain_Limited_Type (T, N);
2149 Set_Etype (Id, Any_Type);
2150 Set_Is_Limited_Composite (Current_Scope, False);
2151 end if;
2152 end if;
2154 -- If the component is an unconstrained task or protected type with
2155 -- discriminants, the component and the enclosing record are limited
2156 -- and the component is constrained by its default values. Compute
2157 -- its actual subtype, else it may be allocated the maximum size by
2158 -- the backend, and possibly overflow.
2160 if Is_Concurrent_Type (T)
2161 and then not Is_Constrained (T)
2162 and then Has_Discriminants (T)
2163 and then not Has_Discriminants (Current_Scope)
2164 then
2165 declare
2166 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2168 begin
2169 Set_Etype (Id, Act_T);
2171 -- Rewrite component definition to use the constrained subtype
2173 Rewrite (Component_Definition (N),
2174 Make_Component_Definition (Loc,
2175 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2176 end;
2177 end if;
2179 Set_Original_Record_Component (Id, Id);
2181 if Has_Aspects (N) then
2182 Analyze_Aspect_Specifications (N, Id);
2183 end if;
2185 Analyze_Dimension (N);
2186 end Analyze_Component_Declaration;
2188 --------------------------
2189 -- Analyze_Declarations --
2190 --------------------------
2192 procedure Analyze_Declarations (L : List_Id) is
2193 Decl : Node_Id;
2195 procedure Adjust_Decl;
2196 -- Adjust Decl not to include implicit label declarations, since these
2197 -- have strange Sloc values that result in elaboration check problems.
2198 -- (They have the sloc of the label as found in the source, and that
2199 -- is ahead of the current declarative part).
2201 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2202 -- Create the subprogram bodies which verify the run-time semantics of
2203 -- the pragmas listed below for each elibigle type found in declarative
2204 -- list Decls. The pragmas are:
2206 -- Default_Initial_Condition
2207 -- Invariant
2208 -- Type_Invariant
2210 -- Context denotes the owner of the declarative list.
2212 procedure Check_Entry_Contracts;
2213 -- Perform a pre-analysis of the pre- and postconditions of an entry
2214 -- declaration. This must be done before full resolution and creation
2215 -- of the parameter block, etc. to catch illegal uses within the
2216 -- contract expression. Full analysis of the expression is done when
2217 -- the contract is processed.
2219 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2220 -- Check if a nested package has entities within it that rely on library
2221 -- level private types where the full view has not been completed for
2222 -- the purposes of checking if it is acceptable to freeze an expression
2223 -- function at the point of declaration.
2225 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2226 -- Determine whether Body_Decl denotes the body of a late controlled
2227 -- primitive (either Initialize, Adjust or Finalize). If this is the
2228 -- case, add a proper spec if the body lacks one. The spec is inserted
2229 -- before Body_Decl and immediately analyzed.
2231 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2232 -- Spec_Id is the entity of a package that may define abstract states,
2233 -- and in the case of a child unit, whose ancestors may define abstract
2234 -- states. If the states have partial visible refinement, remove the
2235 -- partial visibility of each constituent at the end of the package
2236 -- spec and body declarations.
2238 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2239 -- Spec_Id is the entity of a package that may define abstract states.
2240 -- If the states have visible refinement, remove the visibility of each
2241 -- constituent at the end of the package body declaration.
2243 procedure Resolve_Aspects;
2244 -- Utility to resolve the expressions of aspects at the end of a list of
2245 -- declarations, or before a declaration that freezes previous entities,
2246 -- such as in a subprogram body.
2248 -----------------
2249 -- Adjust_Decl --
2250 -----------------
2252 procedure Adjust_Decl is
2253 begin
2254 while Present (Prev (Decl))
2255 and then Nkind (Decl) = N_Implicit_Label_Declaration
2256 loop
2257 Prev (Decl);
2258 end loop;
2259 end Adjust_Decl;
2261 ----------------------------
2262 -- Build_Assertion_Bodies --
2263 ----------------------------
2265 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2266 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2267 -- Create the subprogram bodies which verify the run-time semantics
2268 -- of the pragmas listed below for type Typ. The pragmas are:
2270 -- Default_Initial_Condition
2271 -- Invariant
2272 -- Type_Invariant
2274 -------------------------------------
2275 -- Build_Assertion_Bodies_For_Type --
2276 -------------------------------------
2278 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2279 begin
2280 -- Preanalyze and resolve the Default_Initial_Condition assertion
2281 -- expression at the end of the declarations to catch any errors.
2283 if Has_DIC (Typ) then
2284 Build_DIC_Procedure_Body (Typ);
2285 end if;
2287 if Nkind (Context) = N_Package_Specification then
2289 -- Preanalyze and resolve the class-wide invariants of an
2290 -- interface at the end of whichever declarative part has the
2291 -- interface type. Note that an interface may be declared in
2292 -- any non-package declarative part, but reaching the end of
2293 -- such a declarative part will always freeze the type and
2294 -- generate the invariant procedure (see Freeze_Type).
2296 if Is_Interface (Typ) then
2298 -- Interfaces are treated as the partial view of a private
2299 -- type, in order to achieve uniformity with the general
2300 -- case. As a result, an interface receives only a "partial"
2301 -- invariant procedure, which is never called.
2303 if Has_Own_Invariants (Typ) then
2304 Build_Invariant_Procedure_Body
2305 (Typ => Typ,
2306 Partial_Invariant => True);
2307 end if;
2309 -- Preanalyze and resolve the invariants of a private type
2310 -- at the end of the visible declarations to catch potential
2311 -- errors. Inherited class-wide invariants are not included
2312 -- because they have already been resolved.
2314 elsif Decls = Visible_Declarations (Context)
2315 and then Ekind_In (Typ, E_Limited_Private_Type,
2316 E_Private_Type,
2317 E_Record_Type_With_Private)
2318 and then Has_Own_Invariants (Typ)
2319 then
2320 Build_Invariant_Procedure_Body
2321 (Typ => Typ,
2322 Partial_Invariant => True);
2324 -- Preanalyze and resolve the invariants of a private type's
2325 -- full view at the end of the private declarations to catch
2326 -- potential errors.
2328 elsif Decls = Private_Declarations (Context)
2329 and then not Is_Private_Type (Typ)
2330 and then Has_Private_Declaration (Typ)
2331 and then Has_Invariants (Typ)
2332 then
2333 Build_Invariant_Procedure_Body (Typ);
2334 end if;
2335 end if;
2336 end Build_Assertion_Bodies_For_Type;
2338 -- Local variables
2340 Decl : Node_Id;
2341 Decl_Id : Entity_Id;
2343 -- Start of processing for Build_Assertion_Bodies
2345 begin
2346 Decl := First (Decls);
2347 while Present (Decl) loop
2348 if Is_Declaration (Decl) then
2349 Decl_Id := Defining_Entity (Decl);
2351 if Is_Type (Decl_Id) then
2352 Build_Assertion_Bodies_For_Type (Decl_Id);
2353 end if;
2354 end if;
2356 Next (Decl);
2357 end loop;
2358 end Build_Assertion_Bodies;
2360 ---------------------------
2361 -- Check_Entry_Contracts --
2362 ---------------------------
2364 procedure Check_Entry_Contracts is
2365 ASN : Node_Id;
2366 Ent : Entity_Id;
2367 Exp : Node_Id;
2369 begin
2370 Ent := First_Entity (Current_Scope);
2371 while Present (Ent) loop
2373 -- This only concerns entries with pre/postconditions
2375 if Ekind (Ent) = E_Entry
2376 and then Present (Contract (Ent))
2377 and then Present (Pre_Post_Conditions (Contract (Ent)))
2378 then
2379 ASN := Pre_Post_Conditions (Contract (Ent));
2380 Push_Scope (Ent);
2381 Install_Formals (Ent);
2383 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2384 -- is performed on a copy of the pragma expression, to prevent
2385 -- modifying the original expression.
2387 while Present (ASN) loop
2388 if Nkind (ASN) = N_Pragma then
2389 Exp :=
2390 New_Copy_Tree
2391 (Expression
2392 (First (Pragma_Argument_Associations (ASN))));
2393 Set_Parent (Exp, ASN);
2395 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2396 end if;
2398 ASN := Next_Pragma (ASN);
2399 end loop;
2401 End_Scope;
2402 end if;
2404 Next_Entity (Ent);
2405 end loop;
2406 end Check_Entry_Contracts;
2408 ----------------------------------
2409 -- Contains_Lib_Incomplete_Type --
2410 ----------------------------------
2412 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2413 Curr : Entity_Id;
2415 begin
2416 -- Avoid looking through scopes that do not meet the precondition of
2417 -- Pkg not being within a library unit spec.
2419 if not Is_Compilation_Unit (Pkg)
2420 and then not Is_Generic_Instance (Pkg)
2421 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2422 then
2423 -- Loop through all entities in the current scope to identify
2424 -- an entity that depends on a private type.
2426 Curr := First_Entity (Pkg);
2427 loop
2428 if Nkind (Curr) in N_Entity
2429 and then Depends_On_Private (Curr)
2430 then
2431 return True;
2432 end if;
2434 exit when Last_Entity (Current_Scope) = Curr;
2435 Curr := Next_Entity (Curr);
2436 end loop;
2437 end if;
2439 return False;
2440 end Contains_Lib_Incomplete_Type;
2442 --------------------------------------
2443 -- Handle_Late_Controlled_Primitive --
2444 --------------------------------------
2446 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2447 Body_Spec : constant Node_Id := Specification (Body_Decl);
2448 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2449 Loc : constant Source_Ptr := Sloc (Body_Id);
2450 Params : constant List_Id :=
2451 Parameter_Specifications (Body_Spec);
2452 Spec : Node_Id;
2453 Spec_Id : Entity_Id;
2454 Typ : Node_Id;
2456 begin
2457 -- Consider only procedure bodies whose name matches one of the three
2458 -- controlled primitives.
2460 if Nkind (Body_Spec) /= N_Procedure_Specification
2461 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2462 Name_Finalize,
2463 Name_Initialize)
2464 then
2465 return;
2467 -- A controlled primitive must have exactly one formal which is not
2468 -- an anonymous access type.
2470 elsif List_Length (Params) /= 1 then
2471 return;
2472 end if;
2474 Typ := Parameter_Type (First (Params));
2476 if Nkind (Typ) = N_Access_Definition then
2477 return;
2478 end if;
2480 Find_Type (Typ);
2482 -- The type of the formal must be derived from [Limited_]Controlled
2484 if not Is_Controlled (Entity (Typ)) then
2485 return;
2486 end if;
2488 -- Check whether a specification exists for this body. We do not
2489 -- analyze the spec of the body in full, because it will be analyzed
2490 -- again when the body is properly analyzed, and we cannot create
2491 -- duplicate entries in the formals chain. We look for an explicit
2492 -- specification because the body may be an overriding operation and
2493 -- an inherited spec may be present.
2495 Spec_Id := Current_Entity (Body_Id);
2497 while Present (Spec_Id) loop
2498 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2499 and then Scope (Spec_Id) = Current_Scope
2500 and then Present (First_Formal (Spec_Id))
2501 and then No (Next_Formal (First_Formal (Spec_Id)))
2502 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2503 and then Comes_From_Source (Spec_Id)
2504 then
2505 return;
2506 end if;
2508 Spec_Id := Homonym (Spec_Id);
2509 end loop;
2511 -- At this point the body is known to be a late controlled primitive.
2512 -- Generate a matching spec and insert it before the body. Note the
2513 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2514 -- tree in this case.
2516 Spec := Copy_Separate_Tree (Body_Spec);
2518 -- Ensure that the subprogram declaration does not inherit the null
2519 -- indicator from the body as we now have a proper spec/body pair.
2521 Set_Null_Present (Spec, False);
2523 -- Ensure that the freeze node is inserted after the declaration of
2524 -- the primitive since its expansion will freeze the primitive.
2526 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2528 Insert_Before_And_Analyze (Body_Decl, Decl);
2529 end Handle_Late_Controlled_Primitive;
2531 ----------------------------------------
2532 -- Remove_Partial_Visible_Refinements --
2533 ----------------------------------------
2535 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2536 State_Elmt : Elmt_Id;
2537 begin
2538 if Present (Abstract_States (Spec_Id)) then
2539 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2540 while Present (State_Elmt) loop
2541 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2542 Next_Elmt (State_Elmt);
2543 end loop;
2544 end if;
2546 -- For a child unit, also hide the partial state refinement from
2547 -- ancestor packages.
2549 if Is_Child_Unit (Spec_Id) then
2550 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2551 end if;
2552 end Remove_Partial_Visible_Refinements;
2554 --------------------------------
2555 -- Remove_Visible_Refinements --
2556 --------------------------------
2558 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2559 State_Elmt : Elmt_Id;
2560 begin
2561 if Present (Abstract_States (Spec_Id)) then
2562 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2563 while Present (State_Elmt) loop
2564 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2565 Next_Elmt (State_Elmt);
2566 end loop;
2567 end if;
2568 end Remove_Visible_Refinements;
2570 ---------------------
2571 -- Resolve_Aspects --
2572 ---------------------
2574 procedure Resolve_Aspects is
2575 E : Entity_Id;
2577 begin
2578 E := First_Entity (Current_Scope);
2579 while Present (E) loop
2580 Resolve_Aspect_Expressions (E);
2581 Next_Entity (E);
2582 end loop;
2583 end Resolve_Aspects;
2585 -- Local variables
2587 Context : Node_Id := Empty;
2588 Freeze_From : Entity_Id := Empty;
2589 Next_Decl : Node_Id;
2591 Body_Seen : Boolean := False;
2592 -- Flag set when the first body [stub] is encountered
2594 -- Start of processing for Analyze_Declarations
2596 begin
2597 if Restriction_Check_Required (SPARK_05) then
2598 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2599 end if;
2601 Decl := First (L);
2602 while Present (Decl) loop
2604 -- Package spec cannot contain a package declaration in SPARK
2606 if Nkind (Decl) = N_Package_Declaration
2607 and then Nkind (Parent (L)) = N_Package_Specification
2608 then
2609 Check_SPARK_05_Restriction
2610 ("package specification cannot contain a package declaration",
2611 Decl);
2612 end if;
2614 -- Complete analysis of declaration
2616 Analyze (Decl);
2617 Next_Decl := Next (Decl);
2619 if No (Freeze_From) then
2620 Freeze_From := First_Entity (Current_Scope);
2621 end if;
2623 -- At the end of a declarative part, freeze remaining entities
2624 -- declared in it. The end of the visible declarations of package
2625 -- specification is not the end of a declarative part if private
2626 -- declarations are present. The end of a package declaration is a
2627 -- freezing point only if it a library package. A task definition or
2628 -- protected type definition is not a freeze point either. Finally,
2629 -- we do not freeze entities in generic scopes, because there is no
2630 -- code generated for them and freeze nodes will be generated for
2631 -- the instance.
2633 -- The end of a package instantiation is not a freeze point, but
2634 -- for now we make it one, because the generic body is inserted
2635 -- (currently) immediately after. Generic instantiations will not
2636 -- be a freeze point once delayed freezing of bodies is implemented.
2637 -- (This is needed in any case for early instantiations ???).
2639 if No (Next_Decl) then
2640 if Nkind (Parent (L)) = N_Component_List then
2641 null;
2643 elsif Nkind_In (Parent (L), N_Protected_Definition,
2644 N_Task_Definition)
2645 then
2646 Check_Entry_Contracts;
2648 elsif Nkind (Parent (L)) /= N_Package_Specification then
2649 if Nkind (Parent (L)) = N_Package_Body then
2650 Freeze_From := First_Entity (Current_Scope);
2651 end if;
2653 -- There may have been several freezing points previously,
2654 -- for example object declarations or subprogram bodies, but
2655 -- at the end of a declarative part we check freezing from
2656 -- the beginning, even though entities may already be frozen,
2657 -- in order to perform visibility checks on delayed aspects.
2659 Adjust_Decl;
2661 -- If the current scope is a generic subprogram body. Skip the
2662 -- generic formal parameters that are not frozen here.
2664 if Is_Subprogram (Current_Scope)
2665 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2666 N_Generic_Subprogram_Declaration
2667 and then Present (First_Entity (Current_Scope))
2668 then
2669 while Is_Generic_Formal (Freeze_From) loop
2670 Freeze_From := Next_Entity (Freeze_From);
2671 end loop;
2673 Freeze_All (Freeze_From, Decl);
2674 Freeze_From := Last_Entity (Current_Scope);
2676 else
2677 -- For declarations in a subprogram body there is no issue
2678 -- with name resolution in aspect specifications, but in
2679 -- ASIS mode we need to preanalyze aspect specifications
2680 -- that may otherwise only be analyzed during expansion
2681 -- (e.g. during generation of a related subprogram).
2683 if ASIS_Mode then
2684 Resolve_Aspects;
2685 end if;
2687 Freeze_All (First_Entity (Current_Scope), Decl);
2688 Freeze_From := Last_Entity (Current_Scope);
2689 end if;
2691 -- Current scope is a package specification
2693 elsif Scope (Current_Scope) /= Standard_Standard
2694 and then not Is_Child_Unit (Current_Scope)
2695 and then No (Generic_Parent (Parent (L)))
2696 then
2697 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2698 -- resolved at the end of the immediately enclosing declaration
2699 -- list (AI05-0183-1).
2701 Resolve_Aspects;
2703 elsif L /= Visible_Declarations (Parent (L))
2704 or else No (Private_Declarations (Parent (L)))
2705 or else Is_Empty_List (Private_Declarations (Parent (L)))
2706 then
2707 Adjust_Decl;
2709 -- End of a package declaration
2711 -- In compilation mode the expansion of freeze node takes care
2712 -- of resolving expressions of all aspects in the list. In ASIS
2713 -- mode this must be done explicitly.
2715 if ASIS_Mode
2716 and then Scope (Current_Scope) = Standard_Standard
2717 then
2718 Resolve_Aspects;
2719 end if;
2721 -- This is a freeze point because it is the end of a
2722 -- compilation unit.
2724 Freeze_All (First_Entity (Current_Scope), Decl);
2725 Freeze_From := Last_Entity (Current_Scope);
2727 -- At the end of the visible declarations the expressions in
2728 -- aspects of all entities declared so far must be resolved.
2729 -- The entities themselves might be frozen later, and the
2730 -- generated pragmas and attribute definition clauses analyzed
2731 -- in full at that point, but name resolution must take place
2732 -- now.
2733 -- In addition to being the proper semantics, this is mandatory
2734 -- within generic units, because global name capture requires
2735 -- those expressions to be analyzed, given that the generated
2736 -- pragmas do not appear in the original generic tree.
2738 elsif Serious_Errors_Detected = 0 then
2739 Resolve_Aspects;
2740 end if;
2742 -- If next node is a body then freeze all types before the body.
2743 -- An exception occurs for some expander-generated bodies. If these
2744 -- are generated at places where in general language rules would not
2745 -- allow a freeze point, then we assume that the expander has
2746 -- explicitly checked that all required types are properly frozen,
2747 -- and we do not cause general freezing here. This special circuit
2748 -- is used when the encountered body is marked as having already
2749 -- been analyzed.
2751 -- In all other cases (bodies that come from source, and expander
2752 -- generated bodies that have not been analyzed yet), freeze all
2753 -- types now. Note that in the latter case, the expander must take
2754 -- care to attach the bodies at a proper place in the tree so as to
2755 -- not cause unwanted freezing at that point.
2757 -- It is also necessary to check for a case where both an expression
2758 -- function is used and the current scope depends on an incomplete
2759 -- private type from a library unit, otherwise premature freezing of
2760 -- the private type will occur.
2762 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2763 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2764 or else not Was_Expression_Function (Next_Decl))
2765 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2766 and then not Contains_Lib_Incomplete_Type
2767 (Current_Scope)))
2768 then
2769 -- When a controlled type is frozen, the expander generates stream
2770 -- and controlled-type support routines. If the freeze is caused
2771 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2772 -- expander will end up using the wrong version of these routines,
2773 -- as the body has not been processed yet. To remedy this, detect
2774 -- a late controlled primitive and create a proper spec for it.
2775 -- This ensures that the primitive will override its inherited
2776 -- counterpart before the freeze takes place.
2778 -- If the declaration we just processed is a body, do not attempt
2779 -- to examine Next_Decl as the late primitive idiom can only apply
2780 -- to the first encountered body.
2782 -- The spec of the late primitive is not generated in ASIS mode to
2783 -- ensure a consistent list of primitives that indicates the true
2784 -- semantic structure of the program (which is not relevant when
2785 -- generating executable code).
2787 -- ??? A cleaner approach may be possible and/or this solution
2788 -- could be extended to general-purpose late primitives, TBD.
2790 if not ASIS_Mode
2791 and then not Body_Seen
2792 and then not Is_Body (Decl)
2793 then
2794 Body_Seen := True;
2796 if Nkind (Next_Decl) = N_Subprogram_Body then
2797 Handle_Late_Controlled_Primitive (Next_Decl);
2798 end if;
2800 else
2801 -- In ASIS mode, if the next declaration is a body, complete
2802 -- the analysis of declarations so far.
2804 Resolve_Aspects;
2805 end if;
2807 Adjust_Decl;
2809 -- The generated body of an expression function does not freeze,
2810 -- unless it is a completion, in which case only the expression
2811 -- itself freezes. This is handled when the body itself is
2812 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2814 Freeze_All (Freeze_From, Decl);
2815 Freeze_From := Last_Entity (Current_Scope);
2816 end if;
2818 Decl := Next_Decl;
2819 end loop;
2821 -- Post-freezing actions
2823 if Present (L) then
2824 Context := Parent (L);
2826 -- Certain contract annocations have forward visibility semantics and
2827 -- must be analyzed after all declarative items have been processed.
2828 -- This timing ensures that entities referenced by such contracts are
2829 -- visible.
2831 -- Analyze the contract of an immediately enclosing package spec or
2832 -- body first because other contracts may depend on its information.
2834 if Nkind (Context) = N_Package_Body then
2835 Analyze_Package_Body_Contract (Defining_Entity (Context));
2837 elsif Nkind (Context) = N_Package_Specification then
2838 Analyze_Package_Contract (Defining_Entity (Context));
2839 end if;
2841 -- Analyze the contracts of various constructs in the declarative
2842 -- list.
2844 Analyze_Contracts (L);
2846 if Nkind (Context) = N_Package_Body then
2848 -- Ensure that all abstract states and objects declared in the
2849 -- state space of a package body are utilized as constituents.
2851 Check_Unused_Body_States (Defining_Entity (Context));
2853 -- State refinements are visible up to the end of the package body
2854 -- declarations. Hide the state refinements from visibility to
2855 -- restore the original state conditions.
2857 Remove_Visible_Refinements (Corresponding_Spec (Context));
2858 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2860 elsif Nkind (Context) = N_Package_Specification then
2862 -- Partial state refinements are visible up to the end of the
2863 -- package spec declarations. Hide the partial state refinements
2864 -- from visibility to restore the original state conditions.
2866 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2867 end if;
2869 -- Verify that all abstract states found in any package declared in
2870 -- the input declarative list have proper refinements. The check is
2871 -- performed only when the context denotes a block, entry, package,
2872 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2874 Check_State_Refinements (Context);
2876 -- Create the subprogram bodies which verify the run-time semantics
2877 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2878 -- types within the current declarative list. This ensures that all
2879 -- assertion expressions are preanalyzed and resolved at the end of
2880 -- the declarative part. Note that the resolution happens even when
2881 -- freezing does not take place.
2883 Build_Assertion_Bodies (L, Context);
2884 end if;
2885 end Analyze_Declarations;
2887 -----------------------------------
2888 -- Analyze_Full_Type_Declaration --
2889 -----------------------------------
2891 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2892 Def : constant Node_Id := Type_Definition (N);
2893 Def_Id : constant Entity_Id := Defining_Identifier (N);
2894 T : Entity_Id;
2895 Prev : Entity_Id;
2897 Is_Remote : constant Boolean :=
2898 (Is_Remote_Types (Current_Scope)
2899 or else Is_Remote_Call_Interface (Current_Scope))
2900 and then not (In_Private_Part (Current_Scope)
2901 or else In_Package_Body (Current_Scope));
2903 procedure Check_Nonoverridable_Aspects;
2904 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2905 -- be overridden, and can only be confirmed on derivation.
2907 procedure Check_Ops_From_Incomplete_Type;
2908 -- If there is a tagged incomplete partial view of the type, traverse
2909 -- the primitives of the incomplete view and change the type of any
2910 -- controlling formals and result to indicate the full view. The
2911 -- primitives will be added to the full type's primitive operations
2912 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2913 -- is called from Process_Incomplete_Dependents).
2915 ----------------------------------
2916 -- Check_Nonoverridable_Aspects --
2917 ----------------------------------
2919 procedure Check_Nonoverridable_Aspects is
2920 function Get_Aspect_Spec
2921 (Specs : List_Id;
2922 Aspect_Name : Name_Id) return Node_Id;
2923 -- Check whether a list of aspect specifications includes an entry
2924 -- for a specific aspect. The list is either that of a partial or
2925 -- a full view.
2927 ---------------------
2928 -- Get_Aspect_Spec --
2929 ---------------------
2931 function Get_Aspect_Spec
2932 (Specs : List_Id;
2933 Aspect_Name : Name_Id) return Node_Id
2935 Spec : Node_Id;
2937 begin
2938 Spec := First (Specs);
2939 while Present (Spec) loop
2940 if Chars (Identifier (Spec)) = Aspect_Name then
2941 return Spec;
2942 end if;
2943 Next (Spec);
2944 end loop;
2946 return Empty;
2947 end Get_Aspect_Spec;
2949 -- Local variables
2951 Prev_Aspects : constant List_Id :=
2952 Aspect_Specifications (Parent (Def_Id));
2953 Par_Type : Entity_Id;
2954 Prev_Aspect : Node_Id;
2956 -- Start of processing for Check_Nonoverridable_Aspects
2958 begin
2959 -- Get parent type of derived type. Note that Prev is the entity in
2960 -- the partial declaration, but its contents are now those of full
2961 -- view, while Def_Id reflects the partial view.
2963 if Is_Private_Type (Def_Id) then
2964 Par_Type := Etype (Full_View (Def_Id));
2965 else
2966 Par_Type := Etype (Def_Id);
2967 end if;
2969 -- If there is an inherited Implicit_Dereference, verify that it is
2970 -- made explicit in the partial view.
2972 if Has_Discriminants (Base_Type (Par_Type))
2973 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2974 and then Present (Discriminant_Specifications (Parent (Prev)))
2975 and then Present (Get_Reference_Discriminant (Par_Type))
2976 then
2977 Prev_Aspect :=
2978 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2980 if No (Prev_Aspect)
2981 and then Present
2982 (Discriminant_Specifications
2983 (Original_Node (Parent (Prev))))
2984 then
2985 Error_Msg_N
2986 ("type does not inherit implicit dereference", Prev);
2988 else
2989 -- If one of the views has the aspect specified, verify that it
2990 -- is consistent with that of the parent.
2992 declare
2993 Par_Discr : constant Entity_Id :=
2994 Get_Reference_Discriminant (Par_Type);
2995 Cur_Discr : constant Entity_Id :=
2996 Get_Reference_Discriminant (Prev);
2998 begin
2999 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3000 Error_Msg_N ("aspect incosistent with that of parent", N);
3001 end if;
3003 -- Check that specification in partial view matches the
3004 -- inherited aspect. Compare names directly because aspect
3005 -- expression may not be analyzed.
3007 if Present (Prev_Aspect)
3008 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3009 and then Chars (Expression (Prev_Aspect)) /=
3010 Chars (Cur_Discr)
3011 then
3012 Error_Msg_N
3013 ("aspect incosistent with that of parent", N);
3014 end if;
3015 end;
3016 end if;
3017 end if;
3019 -- TBD : other nonoverridable aspects.
3020 end Check_Nonoverridable_Aspects;
3022 ------------------------------------
3023 -- Check_Ops_From_Incomplete_Type --
3024 ------------------------------------
3026 procedure Check_Ops_From_Incomplete_Type is
3027 Elmt : Elmt_Id;
3028 Formal : Entity_Id;
3029 Op : Entity_Id;
3031 begin
3032 if Prev /= T
3033 and then Ekind (Prev) = E_Incomplete_Type
3034 and then Is_Tagged_Type (Prev)
3035 and then Is_Tagged_Type (T)
3036 then
3037 Elmt := First_Elmt (Primitive_Operations (Prev));
3038 while Present (Elmt) loop
3039 Op := Node (Elmt);
3041 Formal := First_Formal (Op);
3042 while Present (Formal) loop
3043 if Etype (Formal) = Prev then
3044 Set_Etype (Formal, T);
3045 end if;
3047 Next_Formal (Formal);
3048 end loop;
3050 if Etype (Op) = Prev then
3051 Set_Etype (Op, T);
3052 end if;
3054 Next_Elmt (Elmt);
3055 end loop;
3056 end if;
3057 end Check_Ops_From_Incomplete_Type;
3059 -- Start of processing for Analyze_Full_Type_Declaration
3061 begin
3062 Prev := Find_Type_Name (N);
3064 -- The full view, if present, now points to the current type. If there
3065 -- is an incomplete partial view, set a link to it, to simplify the
3066 -- retrieval of primitive operations of the type.
3068 -- Ada 2005 (AI-50217): If the type was previously decorated when
3069 -- imported through a LIMITED WITH clause, it appears as incomplete
3070 -- but has no full view.
3072 if Ekind (Prev) = E_Incomplete_Type
3073 and then Present (Full_View (Prev))
3074 then
3075 T := Full_View (Prev);
3076 Set_Incomplete_View (N, Parent (Prev));
3077 else
3078 T := Prev;
3079 end if;
3081 Set_Is_Pure (T, Is_Pure (Current_Scope));
3083 -- We set the flag Is_First_Subtype here. It is needed to set the
3084 -- corresponding flag for the Implicit class-wide-type created
3085 -- during tagged types processing.
3087 Set_Is_First_Subtype (T, True);
3089 -- Only composite types other than array types are allowed to have
3090 -- discriminants.
3092 case Nkind (Def) is
3094 -- For derived types, the rule will be checked once we've figured
3095 -- out the parent type.
3097 when N_Derived_Type_Definition =>
3098 null;
3100 -- For record types, discriminants are allowed, unless we are in
3101 -- SPARK.
3103 when N_Record_Definition =>
3104 if Present (Discriminant_Specifications (N)) then
3105 Check_SPARK_05_Restriction
3106 ("discriminant type is not allowed",
3107 Defining_Identifier
3108 (First (Discriminant_Specifications (N))));
3109 end if;
3111 when others =>
3112 if Present (Discriminant_Specifications (N)) then
3113 Error_Msg_N
3114 ("elementary or array type cannot have discriminants",
3115 Defining_Identifier
3116 (First (Discriminant_Specifications (N))));
3117 end if;
3118 end case;
3120 -- Elaborate the type definition according to kind, and generate
3121 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3122 -- already done (this happens during the reanalysis that follows a call
3123 -- to the high level optimizer).
3125 if not Analyzed (T) then
3126 Set_Analyzed (T);
3128 -- Set the SPARK mode from the current context
3130 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3131 Set_SPARK_Pragma_Inherited (T);
3133 case Nkind (Def) is
3134 when N_Access_To_Subprogram_Definition =>
3135 Access_Subprogram_Declaration (T, Def);
3137 -- If this is a remote access to subprogram, we must create the
3138 -- equivalent fat pointer type, and related subprograms.
3140 if Is_Remote then
3141 Process_Remote_AST_Declaration (N);
3142 end if;
3144 -- Validate categorization rule against access type declaration
3145 -- usually a violation in Pure unit, Shared_Passive unit.
3147 Validate_Access_Type_Declaration (T, N);
3149 when N_Access_To_Object_Definition =>
3150 Access_Type_Declaration (T, Def);
3152 -- Validate categorization rule against access type declaration
3153 -- usually a violation in Pure unit, Shared_Passive unit.
3155 Validate_Access_Type_Declaration (T, N);
3157 -- If we are in a Remote_Call_Interface package and define a
3158 -- RACW, then calling stubs and specific stream attributes
3159 -- must be added.
3161 if Is_Remote
3162 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3163 then
3164 Add_RACW_Features (Def_Id);
3165 end if;
3167 when N_Array_Type_Definition =>
3168 Array_Type_Declaration (T, Def);
3170 when N_Derived_Type_Definition =>
3171 Derived_Type_Declaration (T, N, T /= Def_Id);
3173 -- Inherit predicates from parent, and protect against illegal
3174 -- derivations.
3176 if Is_Type (T) and then Has_Predicates (T) then
3177 Set_Has_Predicates (Def_Id);
3178 end if;
3180 -- Save the scenario for examination by the ABE Processing
3181 -- phase.
3183 Record_Elaboration_Scenario (N);
3185 when N_Enumeration_Type_Definition =>
3186 Enumeration_Type_Declaration (T, Def);
3188 when N_Floating_Point_Definition =>
3189 Floating_Point_Type_Declaration (T, Def);
3191 when N_Decimal_Fixed_Point_Definition =>
3192 Decimal_Fixed_Point_Type_Declaration (T, Def);
3194 when N_Ordinary_Fixed_Point_Definition =>
3195 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3197 when N_Signed_Integer_Type_Definition =>
3198 Signed_Integer_Type_Declaration (T, Def);
3200 when N_Modular_Type_Definition =>
3201 Modular_Type_Declaration (T, Def);
3203 when N_Record_Definition =>
3204 Record_Type_Declaration (T, N, Prev);
3206 -- If declaration has a parse error, nothing to elaborate.
3208 when N_Error =>
3209 null;
3211 when others =>
3212 raise Program_Error;
3213 end case;
3214 end if;
3216 if Etype (T) = Any_Type then
3217 return;
3218 end if;
3220 -- Controlled type is not allowed in SPARK
3222 if Is_Visibly_Controlled (T) then
3223 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3224 end if;
3226 -- Some common processing for all types
3228 Set_Depends_On_Private (T, Has_Private_Component (T));
3229 Check_Ops_From_Incomplete_Type;
3231 -- Both the declared entity, and its anonymous base type if one was
3232 -- created, need freeze nodes allocated.
3234 declare
3235 B : constant Entity_Id := Base_Type (T);
3237 begin
3238 -- In the case where the base type differs from the first subtype, we
3239 -- pre-allocate a freeze node, and set the proper link to the first
3240 -- subtype. Freeze_Entity will use this preallocated freeze node when
3241 -- it freezes the entity.
3243 -- This does not apply if the base type is a generic type, whose
3244 -- declaration is independent of the current derived definition.
3246 if B /= T and then not Is_Generic_Type (B) then
3247 Ensure_Freeze_Node (B);
3248 Set_First_Subtype_Link (Freeze_Node (B), T);
3249 end if;
3251 -- A type that is imported through a limited_with clause cannot
3252 -- generate any code, and thus need not be frozen. However, an access
3253 -- type with an imported designated type needs a finalization list,
3254 -- which may be referenced in some other package that has non-limited
3255 -- visibility on the designated type. Thus we must create the
3256 -- finalization list at the point the access type is frozen, to
3257 -- prevent unsatisfied references at link time.
3259 if not From_Limited_With (T) or else Is_Access_Type (T) then
3260 Set_Has_Delayed_Freeze (T);
3261 end if;
3262 end;
3264 -- Case where T is the full declaration of some private type which has
3265 -- been swapped in Defining_Identifier (N).
3267 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3268 Process_Full_View (N, T, Def_Id);
3270 -- Record the reference. The form of this is a little strange, since
3271 -- the full declaration has been swapped in. So the first parameter
3272 -- here represents the entity to which a reference is made which is
3273 -- the "real" entity, i.e. the one swapped in, and the second
3274 -- parameter provides the reference location.
3276 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3277 -- since we don't want a complaint about the full type being an
3278 -- unwanted reference to the private type
3280 declare
3281 B : constant Boolean := Has_Pragma_Unreferenced (T);
3282 begin
3283 Set_Has_Pragma_Unreferenced (T, False);
3284 Generate_Reference (T, T, 'c');
3285 Set_Has_Pragma_Unreferenced (T, B);
3286 end;
3288 Set_Completion_Referenced (Def_Id);
3290 -- For completion of incomplete type, process incomplete dependents
3291 -- and always mark the full type as referenced (it is the incomplete
3292 -- type that we get for any real reference).
3294 elsif Ekind (Prev) = E_Incomplete_Type then
3295 Process_Incomplete_Dependents (N, T, Prev);
3296 Generate_Reference (Prev, Def_Id, 'c');
3297 Set_Completion_Referenced (Def_Id);
3299 -- If not private type or incomplete type completion, this is a real
3300 -- definition of a new entity, so record it.
3302 else
3303 Generate_Definition (Def_Id);
3304 end if;
3306 -- Propagate any pending access types whose finalization masters need to
3307 -- be fully initialized from the partial to the full view. Guard against
3308 -- an illegal full view that remains unanalyzed.
3310 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3311 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3312 end if;
3314 if Chars (Scope (Def_Id)) = Name_System
3315 and then Chars (Def_Id) = Name_Address
3316 and then In_Predefined_Unit (N)
3317 then
3318 Set_Is_Descendant_Of_Address (Def_Id);
3319 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3320 Set_Is_Descendant_Of_Address (Prev);
3321 end if;
3323 Set_Optimize_Alignment_Flags (Def_Id);
3324 Check_Eliminated (Def_Id);
3326 -- If the declaration is a completion and aspects are present, apply
3327 -- them to the entity for the type which is currently the partial
3328 -- view, but which is the one that will be frozen.
3330 if Has_Aspects (N) then
3332 -- In most cases the partial view is a private type, and both views
3333 -- appear in different declarative parts. In the unusual case where
3334 -- the partial view is incomplete, perform the analysis on the
3335 -- full view, to prevent freezing anomalies with the corresponding
3336 -- class-wide type, which otherwise might be frozen before the
3337 -- dispatch table is built.
3339 if Prev /= Def_Id
3340 and then Ekind (Prev) /= E_Incomplete_Type
3341 then
3342 Analyze_Aspect_Specifications (N, Prev);
3344 -- Normal case
3346 else
3347 Analyze_Aspect_Specifications (N, Def_Id);
3348 end if;
3349 end if;
3351 if Is_Derived_Type (Prev)
3352 and then Def_Id /= Prev
3353 then
3354 Check_Nonoverridable_Aspects;
3355 end if;
3356 end Analyze_Full_Type_Declaration;
3358 ----------------------------------
3359 -- Analyze_Incomplete_Type_Decl --
3360 ----------------------------------
3362 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3363 F : constant Boolean := Is_Pure (Current_Scope);
3364 T : Entity_Id;
3366 begin
3367 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3369 Generate_Definition (Defining_Identifier (N));
3371 -- Process an incomplete declaration. The identifier must not have been
3372 -- declared already in the scope. However, an incomplete declaration may
3373 -- appear in the private part of a package, for a private type that has
3374 -- already been declared.
3376 -- In this case, the discriminants (if any) must match
3378 T := Find_Type_Name (N);
3380 Set_Ekind (T, E_Incomplete_Type);
3381 Set_Etype (T, T);
3382 Set_Is_First_Subtype (T);
3383 Init_Size_Align (T);
3385 -- Set the SPARK mode from the current context
3387 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3388 Set_SPARK_Pragma_Inherited (T);
3390 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3391 -- incomplete types.
3393 if Tagged_Present (N) then
3394 Set_Is_Tagged_Type (T, True);
3395 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3396 Make_Class_Wide_Type (T);
3397 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3398 end if;
3400 Set_Stored_Constraint (T, No_Elist);
3402 if Present (Discriminant_Specifications (N)) then
3403 Push_Scope (T);
3404 Process_Discriminants (N);
3405 End_Scope;
3406 end if;
3408 -- If the type has discriminants, nontrivial subtypes may be declared
3409 -- before the full view of the type. The full views of those subtypes
3410 -- will be built after the full view of the type.
3412 Set_Private_Dependents (T, New_Elmt_List);
3413 Set_Is_Pure (T, F);
3414 end Analyze_Incomplete_Type_Decl;
3416 -----------------------------------
3417 -- Analyze_Interface_Declaration --
3418 -----------------------------------
3420 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3421 CW : constant Entity_Id := Class_Wide_Type (T);
3423 begin
3424 Set_Is_Tagged_Type (T);
3425 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3427 Set_Is_Limited_Record (T, Limited_Present (Def)
3428 or else Task_Present (Def)
3429 or else Protected_Present (Def)
3430 or else Synchronized_Present (Def));
3432 -- Type is abstract if full declaration carries keyword, or if previous
3433 -- partial view did.
3435 Set_Is_Abstract_Type (T);
3436 Set_Is_Interface (T);
3438 -- Type is a limited interface if it includes the keyword limited, task,
3439 -- protected, or synchronized.
3441 Set_Is_Limited_Interface
3442 (T, Limited_Present (Def)
3443 or else Protected_Present (Def)
3444 or else Synchronized_Present (Def)
3445 or else Task_Present (Def));
3447 Set_Interfaces (T, New_Elmt_List);
3448 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3450 -- Complete the decoration of the class-wide entity if it was already
3451 -- built (i.e. during the creation of the limited view)
3453 if Present (CW) then
3454 Set_Is_Interface (CW);
3455 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3456 end if;
3458 -- Check runtime support for synchronized interfaces
3460 if (Is_Task_Interface (T)
3461 or else Is_Protected_Interface (T)
3462 or else Is_Synchronized_Interface (T))
3463 and then not RTE_Available (RE_Select_Specific_Data)
3464 then
3465 Error_Msg_CRT ("synchronized interfaces", T);
3466 end if;
3467 end Analyze_Interface_Declaration;
3469 -----------------------------
3470 -- Analyze_Itype_Reference --
3471 -----------------------------
3473 -- Nothing to do. This node is placed in the tree only for the benefit of
3474 -- back end processing, and has no effect on the semantic processing.
3476 procedure Analyze_Itype_Reference (N : Node_Id) is
3477 begin
3478 pragma Assert (Is_Itype (Itype (N)));
3479 null;
3480 end Analyze_Itype_Reference;
3482 --------------------------------
3483 -- Analyze_Number_Declaration --
3484 --------------------------------
3486 procedure Analyze_Number_Declaration (N : Node_Id) is
3487 E : constant Node_Id := Expression (N);
3488 Id : constant Entity_Id := Defining_Identifier (N);
3489 Index : Interp_Index;
3490 It : Interp;
3491 T : Entity_Id;
3493 begin
3494 Generate_Definition (Id);
3495 Enter_Name (Id);
3497 -- This is an optimization of a common case of an integer literal
3499 if Nkind (E) = N_Integer_Literal then
3500 Set_Is_Static_Expression (E, True);
3501 Set_Etype (E, Universal_Integer);
3503 Set_Etype (Id, Universal_Integer);
3504 Set_Ekind (Id, E_Named_Integer);
3505 Set_Is_Frozen (Id, True);
3506 return;
3507 end if;
3509 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3511 -- Process expression, replacing error by integer zero, to avoid
3512 -- cascaded errors or aborts further along in the processing
3514 -- Replace Error by integer zero, which seems least likely to cause
3515 -- cascaded errors.
3517 if E = Error then
3518 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3519 Set_Error_Posted (E);
3520 end if;
3522 Analyze (E);
3524 -- Verify that the expression is static and numeric. If
3525 -- the expression is overloaded, we apply the preference
3526 -- rule that favors root numeric types.
3528 if not Is_Overloaded (E) then
3529 T := Etype (E);
3530 if Has_Dynamic_Predicate_Aspect (T) then
3531 Error_Msg_N
3532 ("subtype has dynamic predicate, "
3533 & "not allowed in number declaration", N);
3534 end if;
3536 else
3537 T := Any_Type;
3539 Get_First_Interp (E, Index, It);
3540 while Present (It.Typ) loop
3541 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3542 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3543 then
3544 if T = Any_Type then
3545 T := It.Typ;
3547 elsif It.Typ = Universal_Real
3548 or else
3549 It.Typ = Universal_Integer
3550 then
3551 -- Choose universal interpretation over any other
3553 T := It.Typ;
3554 exit;
3555 end if;
3556 end if;
3558 Get_Next_Interp (Index, It);
3559 end loop;
3560 end if;
3562 if Is_Integer_Type (T) then
3563 Resolve (E, T);
3564 Set_Etype (Id, Universal_Integer);
3565 Set_Ekind (Id, E_Named_Integer);
3567 elsif Is_Real_Type (T) then
3569 -- Because the real value is converted to universal_real, this is a
3570 -- legal context for a universal fixed expression.
3572 if T = Universal_Fixed then
3573 declare
3574 Loc : constant Source_Ptr := Sloc (N);
3575 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3576 Subtype_Mark =>
3577 New_Occurrence_Of (Universal_Real, Loc),
3578 Expression => Relocate_Node (E));
3580 begin
3581 Rewrite (E, Conv);
3582 Analyze (E);
3583 end;
3585 elsif T = Any_Fixed then
3586 Error_Msg_N ("illegal context for mixed mode operation", E);
3588 -- Expression is of the form : universal_fixed * integer. Try to
3589 -- resolve as universal_real.
3591 T := Universal_Real;
3592 Set_Etype (E, T);
3593 end if;
3595 Resolve (E, T);
3596 Set_Etype (Id, Universal_Real);
3597 Set_Ekind (Id, E_Named_Real);
3599 else
3600 Wrong_Type (E, Any_Numeric);
3601 Resolve (E, T);
3603 Set_Etype (Id, T);
3604 Set_Ekind (Id, E_Constant);
3605 Set_Never_Set_In_Source (Id, True);
3606 Set_Is_True_Constant (Id, True);
3607 return;
3608 end if;
3610 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3611 Set_Etype (E, Etype (Id));
3612 end if;
3614 if not Is_OK_Static_Expression (E) then
3615 Flag_Non_Static_Expr
3616 ("non-static expression used in number declaration!", E);
3617 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3618 Set_Etype (E, Any_Type);
3619 end if;
3621 Analyze_Dimension (N);
3622 end Analyze_Number_Declaration;
3624 --------------------------------
3625 -- Analyze_Object_Declaration --
3626 --------------------------------
3628 -- WARNING: This routine manages Ghost regions. Return statements must be
3629 -- replaced by gotos which jump to the end of the routine and restore the
3630 -- Ghost mode.
3632 procedure Analyze_Object_Declaration (N : Node_Id) is
3633 Loc : constant Source_Ptr := Sloc (N);
3634 Id : constant Entity_Id := Defining_Identifier (N);
3635 Act_T : Entity_Id;
3636 T : Entity_Id;
3638 E : Node_Id := Expression (N);
3639 -- E is set to Expression (N) throughout this routine. When Expression
3640 -- (N) is modified, E is changed accordingly.
3642 Prev_Entity : Entity_Id := Empty;
3644 procedure Check_Dynamic_Object (Typ : Entity_Id);
3645 -- A library-level object with non-static discriminant constraints may
3646 -- require dynamic allocation. The declaration is illegal if the
3647 -- profile includes the restriction No_Implicit_Heap_Allocations.
3649 procedure Check_For_Null_Excluding_Components
3650 (Obj_Typ : Entity_Id;
3651 Obj_Decl : Node_Id);
3652 -- Verify that each null-excluding component of object declaration
3653 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3654 -- a compile-time warning if this is not the case.
3656 function Count_Tasks (T : Entity_Id) return Uint;
3657 -- This function is called when a non-generic library level object of a
3658 -- task type is declared. Its function is to count the static number of
3659 -- tasks declared within the type (it is only called if Has_Task is set
3660 -- for T). As a side effect, if an array of tasks with non-static bounds
3661 -- or a variant record type is encountered, Check_Restriction is called
3662 -- indicating the count is unknown.
3664 function Delayed_Aspect_Present return Boolean;
3665 -- If the declaration has an expression that is an aggregate, and it
3666 -- has aspects that require delayed analysis, the resolution of the
3667 -- aggregate must be deferred to the freeze point of the object. This
3668 -- special processing was created for address clauses, but it must
3669 -- also apply to Alignment. This must be done before the aspect
3670 -- specifications are analyzed because we must handle the aggregate
3671 -- before the analysis of the object declaration is complete.
3673 -- Any other relevant delayed aspects on object declarations ???
3675 --------------------------
3676 -- Check_Dynamic_Object --
3677 --------------------------
3679 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3680 Comp : Entity_Id;
3681 Obj_Type : Entity_Id;
3683 begin
3684 Obj_Type := Typ;
3686 if Is_Private_Type (Obj_Type)
3687 and then Present (Full_View (Obj_Type))
3688 then
3689 Obj_Type := Full_View (Obj_Type);
3690 end if;
3692 if Known_Static_Esize (Obj_Type) then
3693 return;
3694 end if;
3696 if Restriction_Active (No_Implicit_Heap_Allocations)
3697 and then Expander_Active
3698 and then Has_Discriminants (Obj_Type)
3699 then
3700 Comp := First_Component (Obj_Type);
3701 while Present (Comp) loop
3702 if Known_Static_Esize (Etype (Comp))
3703 or else Size_Known_At_Compile_Time (Etype (Comp))
3704 then
3705 null;
3707 elsif not Discriminated_Size (Comp)
3708 and then Comes_From_Source (Comp)
3709 then
3710 Error_Msg_NE
3711 ("component& of non-static size will violate restriction "
3712 & "No_Implicit_Heap_Allocation?", N, Comp);
3714 elsif Is_Record_Type (Etype (Comp)) then
3715 Check_Dynamic_Object (Etype (Comp));
3716 end if;
3718 Next_Component (Comp);
3719 end loop;
3720 end if;
3721 end Check_Dynamic_Object;
3723 -----------------------------------------
3724 -- Check_For_Null_Excluding_Components --
3725 -----------------------------------------
3727 procedure Check_For_Null_Excluding_Components
3728 (Obj_Typ : Entity_Id;
3729 Obj_Decl : Node_Id)
3731 procedure Check_Component
3732 (Comp_Typ : Entity_Id;
3733 Comp_Decl : Node_Id := Empty;
3734 Array_Comp : Boolean := False);
3735 -- Apply a compile-time null-exclusion check on a component denoted
3736 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3737 -- subcomponents (if any).
3739 ---------------------
3740 -- Check_Component --
3741 ---------------------
3743 procedure Check_Component
3744 (Comp_Typ : Entity_Id;
3745 Comp_Decl : Node_Id := Empty;
3746 Array_Comp : Boolean := False)
3748 Comp : Entity_Id;
3749 T : Entity_Id;
3751 begin
3752 -- Do not consider internally-generated components or those that
3753 -- are already initialized.
3755 if Present (Comp_Decl)
3756 and then (not Comes_From_Source (Comp_Decl)
3757 or else Present (Expression (Comp_Decl)))
3758 then
3759 return;
3760 end if;
3762 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3763 and then Present (Full_View (Comp_Typ))
3764 then
3765 T := Full_View (Comp_Typ);
3766 else
3767 T := Comp_Typ;
3768 end if;
3770 -- Verify a component of a null-excluding access type
3772 if Is_Access_Type (T)
3773 and then Can_Never_Be_Null (T)
3774 then
3775 if Comp_Decl = Obj_Decl then
3776 Null_Exclusion_Static_Checks
3777 (N => Obj_Decl,
3778 Comp => Empty,
3779 Array_Comp => Array_Comp);
3781 else
3782 Null_Exclusion_Static_Checks
3783 (N => Obj_Decl,
3784 Comp => Comp_Decl,
3785 Array_Comp => Array_Comp);
3786 end if;
3788 -- Check array components
3790 elsif Is_Array_Type (T) then
3792 -- There is no suitable component when the object is of an
3793 -- array type. However, a namable component may appear at some
3794 -- point during the recursive inspection, but not at the top
3795 -- level. At the top level just indicate array component case.
3797 if Comp_Decl = Obj_Decl then
3798 Check_Component (Component_Type (T), Array_Comp => True);
3799 else
3800 Check_Component (Component_Type (T), Comp_Decl);
3801 end if;
3803 -- Verify all components of type T
3805 -- Note: No checks are performed on types with discriminants due
3806 -- to complexities involving variants. ???
3808 elsif (Is_Concurrent_Type (T)
3809 or else Is_Incomplete_Or_Private_Type (T)
3810 or else Is_Record_Type (T))
3811 and then not Has_Discriminants (T)
3812 then
3813 Comp := First_Component (T);
3814 while Present (Comp) loop
3815 Check_Component (Etype (Comp), Parent (Comp));
3817 Comp := Next_Component (Comp);
3818 end loop;
3819 end if;
3820 end Check_Component;
3822 -- Start processing for Check_For_Null_Excluding_Components
3824 begin
3825 Check_Component (Obj_Typ, Obj_Decl);
3826 end Check_For_Null_Excluding_Components;
3828 -----------------
3829 -- Count_Tasks --
3830 -----------------
3832 function Count_Tasks (T : Entity_Id) return Uint is
3833 C : Entity_Id;
3834 X : Node_Id;
3835 V : Uint;
3837 begin
3838 if Is_Task_Type (T) then
3839 return Uint_1;
3841 elsif Is_Record_Type (T) then
3842 if Has_Discriminants (T) then
3843 Check_Restriction (Max_Tasks, N);
3844 return Uint_0;
3846 else
3847 V := Uint_0;
3848 C := First_Component (T);
3849 while Present (C) loop
3850 V := V + Count_Tasks (Etype (C));
3851 Next_Component (C);
3852 end loop;
3854 return V;
3855 end if;
3857 elsif Is_Array_Type (T) then
3858 X := First_Index (T);
3859 V := Count_Tasks (Component_Type (T));
3860 while Present (X) loop
3861 C := Etype (X);
3863 if not Is_OK_Static_Subtype (C) then
3864 Check_Restriction (Max_Tasks, N);
3865 return Uint_0;
3866 else
3867 V := V * (UI_Max (Uint_0,
3868 Expr_Value (Type_High_Bound (C)) -
3869 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3870 end if;
3872 Next_Index (X);
3873 end loop;
3875 return V;
3877 else
3878 return Uint_0;
3879 end if;
3880 end Count_Tasks;
3882 ----------------------------
3883 -- Delayed_Aspect_Present --
3884 ----------------------------
3886 function Delayed_Aspect_Present return Boolean is
3887 A : Node_Id;
3888 A_Id : Aspect_Id;
3890 begin
3891 if Present (Aspect_Specifications (N)) then
3892 A := First (Aspect_Specifications (N));
3893 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3894 while Present (A) loop
3895 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3896 return True;
3897 end if;
3899 Next (A);
3900 end loop;
3901 end if;
3903 return False;
3904 end Delayed_Aspect_Present;
3906 -- Local variables
3908 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3909 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3910 -- Save the Ghost-related attributes to restore on exit
3912 Related_Id : Entity_Id;
3914 -- Start of processing for Analyze_Object_Declaration
3916 begin
3917 -- There are three kinds of implicit types generated by an
3918 -- object declaration:
3920 -- 1. Those generated by the original Object Definition
3922 -- 2. Those generated by the Expression
3924 -- 3. Those used to constrain the Object Definition with the
3925 -- expression constraints when the definition is unconstrained.
3927 -- They must be generated in this order to avoid order of elaboration
3928 -- issues. Thus the first step (after entering the name) is to analyze
3929 -- the object definition.
3931 if Constant_Present (N) then
3932 Prev_Entity := Current_Entity_In_Scope (Id);
3934 if Present (Prev_Entity)
3935 and then
3936 -- If the homograph is an implicit subprogram, it is overridden
3937 -- by the current declaration.
3939 ((Is_Overloadable (Prev_Entity)
3940 and then Is_Inherited_Operation (Prev_Entity))
3942 -- The current object is a discriminal generated for an entry
3943 -- family index. Even though the index is a constant, in this
3944 -- particular context there is no true constant redeclaration.
3945 -- Enter_Name will handle the visibility.
3947 or else
3948 (Is_Discriminal (Id)
3949 and then Ekind (Discriminal_Link (Id)) =
3950 E_Entry_Index_Parameter)
3952 -- The current object is the renaming for a generic declared
3953 -- within the instance.
3955 or else
3956 (Ekind (Prev_Entity) = E_Package
3957 and then Nkind (Parent (Prev_Entity)) =
3958 N_Package_Renaming_Declaration
3959 and then not Comes_From_Source (Prev_Entity)
3960 and then
3961 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3963 -- The entity may be a homonym of a private component of the
3964 -- enclosing protected object, for which we create a local
3965 -- renaming declaration. The declaration is legal, even if
3966 -- useless when it just captures that component.
3968 or else
3969 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3970 and then Nkind (Parent (Prev_Entity)) =
3971 N_Object_Renaming_Declaration))
3972 then
3973 Prev_Entity := Empty;
3974 end if;
3975 end if;
3977 if Present (Prev_Entity) then
3979 -- The object declaration is Ghost when it completes a deferred Ghost
3980 -- constant.
3982 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3984 Constant_Redeclaration (Id, N, T);
3986 Generate_Reference (Prev_Entity, Id, 'c');
3987 Set_Completion_Referenced (Id);
3989 if Error_Posted (N) then
3991 -- Type mismatch or illegal redeclaration; do not analyze
3992 -- expression to avoid cascaded errors.
3994 T := Find_Type_Of_Object (Object_Definition (N), N);
3995 Set_Etype (Id, T);
3996 Set_Ekind (Id, E_Variable);
3997 goto Leave;
3998 end if;
4000 -- In the normal case, enter identifier at the start to catch premature
4001 -- usage in the initialization expression.
4003 else
4004 Generate_Definition (Id);
4005 Enter_Name (Id);
4007 Mark_Coextensions (N, Object_Definition (N));
4009 T := Find_Type_Of_Object (Object_Definition (N), N);
4011 if Nkind (Object_Definition (N)) = N_Access_Definition
4012 and then Present
4013 (Access_To_Subprogram_Definition (Object_Definition (N)))
4014 and then Protected_Present
4015 (Access_To_Subprogram_Definition (Object_Definition (N)))
4016 then
4017 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4018 end if;
4020 if Error_Posted (Id) then
4021 Set_Etype (Id, T);
4022 Set_Ekind (Id, E_Variable);
4023 goto Leave;
4024 end if;
4025 end if;
4027 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4028 -- out some static checks.
4030 if Ada_Version >= Ada_2005 then
4032 -- In case of aggregates we must also take care of the correct
4033 -- initialization of nested aggregates bug this is done at the
4034 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4036 if Can_Never_Be_Null (T) then
4037 if Present (Expression (N))
4038 and then Nkind (Expression (N)) = N_Aggregate
4039 then
4040 null;
4042 else
4043 declare
4044 Save_Typ : constant Entity_Id := Etype (Id);
4045 begin
4046 Set_Etype (Id, T); -- Temp. decoration for static checks
4047 Null_Exclusion_Static_Checks (N);
4048 Set_Etype (Id, Save_Typ);
4049 end;
4050 end if;
4052 -- We might be dealing with an object of a composite type containing
4053 -- null-excluding components without an aggregate, so we must verify
4054 -- that such components have default initialization.
4056 else
4057 Check_For_Null_Excluding_Components (T, N);
4058 end if;
4059 end if;
4061 -- Object is marked pure if it is in a pure scope
4063 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4065 -- If deferred constant, make sure context is appropriate. We detect
4066 -- a deferred constant as a constant declaration with no expression.
4067 -- A deferred constant can appear in a package body if its completion
4068 -- is by means of an interface pragma.
4070 if Constant_Present (N) and then No (E) then
4072 -- A deferred constant may appear in the declarative part of the
4073 -- following constructs:
4075 -- blocks
4076 -- entry bodies
4077 -- extended return statements
4078 -- package specs
4079 -- package bodies
4080 -- subprogram bodies
4081 -- task bodies
4083 -- When declared inside a package spec, a deferred constant must be
4084 -- completed by a full constant declaration or pragma Import. In all
4085 -- other cases, the only proper completion is pragma Import. Extended
4086 -- return statements are flagged as invalid contexts because they do
4087 -- not have a declarative part and so cannot accommodate the pragma.
4089 if Ekind (Current_Scope) = E_Return_Statement then
4090 Error_Msg_N
4091 ("invalid context for deferred constant declaration (RM 7.4)",
4093 Error_Msg_N
4094 ("\declaration requires an initialization expression",
4096 Set_Constant_Present (N, False);
4098 -- In Ada 83, deferred constant must be of private type
4100 elsif not Is_Private_Type (T) then
4101 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4102 Error_Msg_N
4103 ("(Ada 83) deferred constant must be private type", N);
4104 end if;
4105 end if;
4107 -- If not a deferred constant, then the object declaration freezes
4108 -- its type, unless the object is of an anonymous type and has delayed
4109 -- aspects. In that case the type is frozen when the object itself is.
4111 else
4112 Check_Fully_Declared (T, N);
4114 if Has_Delayed_Aspects (Id)
4115 and then Is_Array_Type (T)
4116 and then Is_Itype (T)
4117 then
4118 Set_Has_Delayed_Freeze (T);
4119 else
4120 Freeze_Before (N, T);
4121 end if;
4122 end if;
4124 -- If the object was created by a constrained array definition, then
4125 -- set the link in both the anonymous base type and anonymous subtype
4126 -- that are built to represent the array type to point to the object.
4128 if Nkind (Object_Definition (Declaration_Node (Id))) =
4129 N_Constrained_Array_Definition
4130 then
4131 Set_Related_Array_Object (T, Id);
4132 Set_Related_Array_Object (Base_Type (T), Id);
4133 end if;
4135 -- Special checks for protected objects not at library level
4137 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4138 Check_Restriction (No_Local_Protected_Objects, Id);
4140 -- Protected objects with interrupt handlers must be at library level
4142 -- Ada 2005: This test is not needed (and the corresponding clause
4143 -- in the RM is removed) because accessibility checks are sufficient
4144 -- to make handlers not at the library level illegal.
4146 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4147 -- applies to the '95 version of the language as well.
4149 if Is_Protected_Type (T)
4150 and then Has_Interrupt_Handler (T)
4151 and then Ada_Version < Ada_95
4152 then
4153 Error_Msg_N
4154 ("interrupt object can only be declared at library level", Id);
4155 end if;
4156 end if;
4158 -- Check for violation of No_Local_Timing_Events
4160 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4161 Check_Restriction (No_Local_Timing_Events, Id);
4162 end if;
4164 -- The actual subtype of the object is the nominal subtype, unless
4165 -- the nominal one is unconstrained and obtained from the expression.
4167 Act_T := T;
4169 -- These checks should be performed before the initialization expression
4170 -- is considered, so that the Object_Definition node is still the same
4171 -- as in source code.
4173 -- In SPARK, the nominal subtype is always given by a subtype mark
4174 -- and must not be unconstrained. (The only exception to this is the
4175 -- acceptance of declarations of constants of type String.)
4177 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4178 then
4179 Check_SPARK_05_Restriction
4180 ("subtype mark required", Object_Definition (N));
4182 elsif Is_Array_Type (T)
4183 and then not Is_Constrained (T)
4184 and then T /= Standard_String
4185 then
4186 Check_SPARK_05_Restriction
4187 ("subtype mark of constrained type expected",
4188 Object_Definition (N));
4189 end if;
4191 if Is_Library_Level_Entity (Id) then
4192 Check_Dynamic_Object (T);
4193 end if;
4195 -- There are no aliased objects in SPARK
4197 if Aliased_Present (N) then
4198 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4199 end if;
4201 -- Process initialization expression if present and not in error
4203 if Present (E) and then E /= Error then
4205 -- Generate an error in case of CPP class-wide object initialization.
4206 -- Required because otherwise the expansion of the class-wide
4207 -- assignment would try to use 'size to initialize the object
4208 -- (primitive that is not available in CPP tagged types).
4210 if Is_Class_Wide_Type (Act_T)
4211 and then
4212 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4213 or else
4214 (Present (Full_View (Root_Type (Etype (Act_T))))
4215 and then
4216 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4217 then
4218 Error_Msg_N
4219 ("predefined assignment not available for 'C'P'P tagged types",
4221 end if;
4223 Mark_Coextensions (N, E);
4224 Analyze (E);
4226 -- In case of errors detected in the analysis of the expression,
4227 -- decorate it with the expected type to avoid cascaded errors
4229 if No (Etype (E)) then
4230 Set_Etype (E, T);
4231 end if;
4233 -- If an initialization expression is present, then we set the
4234 -- Is_True_Constant flag. It will be reset if this is a variable
4235 -- and it is indeed modified.
4237 Set_Is_True_Constant (Id, True);
4239 -- If we are analyzing a constant declaration, set its completion
4240 -- flag after analyzing and resolving the expression.
4242 if Constant_Present (N) then
4243 Set_Has_Completion (Id);
4244 end if;
4246 -- Set type and resolve (type may be overridden later on). Note:
4247 -- Ekind (Id) must still be E_Void at this point so that incorrect
4248 -- early usage within E is properly diagnosed.
4250 Set_Etype (Id, T);
4252 -- If the expression is an aggregate we must look ahead to detect
4253 -- the possible presence of an address clause, and defer resolution
4254 -- and expansion of the aggregate to the freeze point of the entity.
4256 -- This is not always legal because the aggregate may contain other
4257 -- references that need freezing, e.g. references to other entities
4258 -- with address clauses. In any case, when compiling with -gnatI the
4259 -- presence of the address clause must be ignored.
4261 if Comes_From_Source (N)
4262 and then Expander_Active
4263 and then Nkind (E) = N_Aggregate
4264 and then
4265 ((Present (Following_Address_Clause (N))
4266 and then not Ignore_Rep_Clauses)
4267 or else Delayed_Aspect_Present)
4268 then
4269 Set_Etype (E, T);
4271 else
4273 -- If the expression is a formal that is a "subprogram pointer"
4274 -- this is illegal in accessibility terms. Add an explicit
4275 -- conversion to force the corresponding check, as is done for
4276 -- assignments.
4278 if Comes_From_Source (N)
4279 and then Is_Entity_Name (E)
4280 and then Present (Entity (E))
4281 and then Is_Formal (Entity (E))
4282 and then
4283 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4284 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4285 then
4286 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4287 end if;
4289 Resolve (E, T);
4290 end if;
4292 -- No further action needed if E is a call to an inlined function
4293 -- which returns an unconstrained type and it has been expanded into
4294 -- a procedure call. In that case N has been replaced by an object
4295 -- declaration without initializing expression and it has been
4296 -- analyzed (see Expand_Inlined_Call).
4298 if Back_End_Inlining
4299 and then Expander_Active
4300 and then Nkind (E) = N_Function_Call
4301 and then Nkind (Name (E)) in N_Has_Entity
4302 and then Is_Inlined (Entity (Name (E)))
4303 and then not Is_Constrained (Etype (E))
4304 and then Analyzed (N)
4305 and then No (Expression (N))
4306 then
4307 goto Leave;
4308 end if;
4310 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4311 -- node (which was marked already-analyzed), we need to set the type
4312 -- to something other than Any_Access in order to keep gigi happy.
4314 if Etype (E) = Any_Access then
4315 Set_Etype (E, T);
4316 end if;
4318 -- If the object is an access to variable, the initialization
4319 -- expression cannot be an access to constant.
4321 if Is_Access_Type (T)
4322 and then not Is_Access_Constant (T)
4323 and then Is_Access_Type (Etype (E))
4324 and then Is_Access_Constant (Etype (E))
4325 then
4326 Error_Msg_N
4327 ("access to variable cannot be initialized with an "
4328 & "access-to-constant expression", E);
4329 end if;
4331 if not Assignment_OK (N) then
4332 Check_Initialization (T, E);
4333 end if;
4335 Check_Unset_Reference (E);
4337 -- If this is a variable, then set current value. If this is a
4338 -- declared constant of a scalar type with a static expression,
4339 -- indicate that it is always valid.
4341 if not Constant_Present (N) then
4342 if Compile_Time_Known_Value (E) then
4343 Set_Current_Value (Id, E);
4344 end if;
4346 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4347 Set_Is_Known_Valid (Id);
4348 end if;
4350 -- Deal with setting of null flags
4352 if Is_Access_Type (T) then
4353 if Known_Non_Null (E) then
4354 Set_Is_Known_Non_Null (Id, True);
4355 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4356 Set_Is_Known_Null (Id, True);
4357 end if;
4358 end if;
4360 -- Check incorrect use of dynamically tagged expressions
4362 if Is_Tagged_Type (T) then
4363 Check_Dynamically_Tagged_Expression
4364 (Expr => E,
4365 Typ => T,
4366 Related_Nod => N);
4367 end if;
4369 Apply_Scalar_Range_Check (E, T);
4370 Apply_Static_Length_Check (E, T);
4372 if Nkind (Original_Node (N)) = N_Object_Declaration
4373 and then Comes_From_Source (Original_Node (N))
4375 -- Only call test if needed
4377 and then Restriction_Check_Required (SPARK_05)
4378 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4379 then
4380 Check_SPARK_05_Restriction
4381 ("initialization expression is not appropriate", E);
4382 end if;
4384 -- A formal parameter of a specific tagged type whose related
4385 -- subprogram is subject to pragma Extensions_Visible with value
4386 -- "False" cannot be implicitly converted to a class-wide type by
4387 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4388 -- not consider internally generated expressions.
4390 if Is_Class_Wide_Type (T)
4391 and then Comes_From_Source (E)
4392 and then Is_EVF_Expression (E)
4393 then
4394 Error_Msg_N
4395 ("formal parameter cannot be implicitly converted to "
4396 & "class-wide type when Extensions_Visible is False", E);
4397 end if;
4398 end if;
4400 -- If the No_Streams restriction is set, check that the type of the
4401 -- object is not, and does not contain, any subtype derived from
4402 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4403 -- Has_Stream just for efficiency reasons. There is no point in
4404 -- spending time on a Has_Stream check if the restriction is not set.
4406 if Restriction_Check_Required (No_Streams) then
4407 if Has_Stream (T) then
4408 Check_Restriction (No_Streams, N);
4409 end if;
4410 end if;
4412 -- Deal with predicate check before we start to do major rewriting. It
4413 -- is OK to initialize and then check the initialized value, since the
4414 -- object goes out of scope if we get a predicate failure. Note that we
4415 -- do this in the analyzer and not the expander because the analyzer
4416 -- does some substantial rewriting in some cases.
4418 -- We need a predicate check if the type has predicates that are not
4419 -- ignored, and if either there is an initializing expression, or for
4420 -- default initialization when we have at least one case of an explicit
4421 -- default initial value and then this is not an internal declaration
4422 -- whose initialization comes later (as for an aggregate expansion).
4424 if not Suppress_Assignment_Checks (N)
4425 and then Present (Predicate_Function (T))
4426 and then not Predicates_Ignored (T)
4427 and then not No_Initialization (N)
4428 and then
4429 (Present (E)
4430 or else
4431 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4432 then
4433 -- If the type has a static predicate and the expression is known at
4434 -- compile time, see if the expression satisfies the predicate.
4436 if Present (E) then
4437 Check_Expression_Against_Static_Predicate (E, T);
4438 end if;
4440 -- If the type is a null record and there is no explicit initial
4441 -- expression, no predicate check applies.
4443 if No (E) and then Is_Null_Record_Type (T) then
4444 null;
4446 -- Do not generate a predicate check if the initialization expression
4447 -- is a type conversion because the conversion has been subjected to
4448 -- the same check. This is a small optimization which avoid redundant
4449 -- checks.
4451 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4452 null;
4454 else
4455 Insert_After (N,
4456 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4457 end if;
4458 end if;
4460 -- Case of unconstrained type
4462 if not Is_Definite_Subtype (T) then
4464 -- In SPARK, a declaration of unconstrained type is allowed
4465 -- only for constants of type string.
4467 if Is_String_Type (T) and then not Constant_Present (N) then
4468 Check_SPARK_05_Restriction
4469 ("declaration of object of unconstrained type not allowed", N);
4470 end if;
4472 -- Nothing to do in deferred constant case
4474 if Constant_Present (N) and then No (E) then
4475 null;
4477 -- Case of no initialization present
4479 elsif No (E) then
4480 if No_Initialization (N) then
4481 null;
4483 elsif Is_Class_Wide_Type (T) then
4484 Error_Msg_N
4485 ("initialization required in class-wide declaration ", N);
4487 else
4488 Error_Msg_N
4489 ("unconstrained subtype not allowed (need initialization)",
4490 Object_Definition (N));
4492 if Is_Record_Type (T) and then Has_Discriminants (T) then
4493 Error_Msg_N
4494 ("\provide initial value or explicit discriminant values",
4495 Object_Definition (N));
4497 Error_Msg_NE
4498 ("\or give default discriminant values for type&",
4499 Object_Definition (N), T);
4501 elsif Is_Array_Type (T) then
4502 Error_Msg_N
4503 ("\provide initial value or explicit array bounds",
4504 Object_Definition (N));
4505 end if;
4506 end if;
4508 -- Case of initialization present but in error. Set initial
4509 -- expression as absent (but do not make above complaints)
4511 elsif E = Error then
4512 Set_Expression (N, Empty);
4513 E := Empty;
4515 -- Case of initialization present
4517 else
4518 -- Check restrictions in Ada 83
4520 if not Constant_Present (N) then
4522 -- Unconstrained variables not allowed in Ada 83 mode
4524 if Ada_Version = Ada_83
4525 and then Comes_From_Source (Object_Definition (N))
4526 then
4527 Error_Msg_N
4528 ("(Ada 83) unconstrained variable not allowed",
4529 Object_Definition (N));
4530 end if;
4531 end if;
4533 -- Now we constrain the variable from the initializing expression
4535 -- If the expression is an aggregate, it has been expanded into
4536 -- individual assignments. Retrieve the actual type from the
4537 -- expanded construct.
4539 if Is_Array_Type (T)
4540 and then No_Initialization (N)
4541 and then Nkind (Original_Node (E)) = N_Aggregate
4542 then
4543 Act_T := Etype (E);
4545 -- In case of class-wide interface object declarations we delay
4546 -- the generation of the equivalent record type declarations until
4547 -- its expansion because there are cases in they are not required.
4549 elsif Is_Interface (T) then
4550 null;
4552 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4553 -- we should prevent the generation of another Itype with the
4554 -- same name as the one already generated, or we end up with
4555 -- two identical types in GNATprove.
4557 elsif GNATprove_Mode then
4558 null;
4560 -- If the type is an unchecked union, no subtype can be built from
4561 -- the expression. Rewrite declaration as a renaming, which the
4562 -- back-end can handle properly. This is a rather unusual case,
4563 -- because most unchecked_union declarations have default values
4564 -- for discriminants and are thus not indefinite.
4566 elsif Is_Unchecked_Union (T) then
4567 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4568 Set_Ekind (Id, E_Constant);
4569 else
4570 Set_Ekind (Id, E_Variable);
4571 end if;
4573 Rewrite (N,
4574 Make_Object_Renaming_Declaration (Loc,
4575 Defining_Identifier => Id,
4576 Subtype_Mark => New_Occurrence_Of (T, Loc),
4577 Name => E));
4579 Set_Renamed_Object (Id, E);
4580 Freeze_Before (N, T);
4581 Set_Is_Frozen (Id);
4582 goto Leave;
4584 else
4585 -- Ensure that the generated subtype has a unique external name
4586 -- when the related object is public. This guarantees that the
4587 -- subtype and its bounds will not be affected by switches or
4588 -- pragmas that may offset the internal counter due to extra
4589 -- generated code.
4591 if Is_Public (Id) then
4592 Related_Id := Id;
4593 else
4594 Related_Id := Empty;
4595 end if;
4597 Expand_Subtype_From_Expr
4598 (N => N,
4599 Unc_Type => T,
4600 Subtype_Indic => Object_Definition (N),
4601 Exp => E,
4602 Related_Id => Related_Id);
4604 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4605 end if;
4607 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4609 if Aliased_Present (N) then
4610 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4611 end if;
4613 Freeze_Before (N, Act_T);
4614 Freeze_Before (N, T);
4615 end if;
4617 elsif Is_Array_Type (T)
4618 and then No_Initialization (N)
4619 and then (Nkind (Original_Node (E)) = N_Aggregate
4620 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4621 and then Nkind (Original_Node (Expression
4622 (Original_Node (E)))) = N_Aggregate))
4623 then
4624 if not Is_Entity_Name (Object_Definition (N)) then
4625 Act_T := Etype (E);
4626 Check_Compile_Time_Size (Act_T);
4628 if Aliased_Present (N) then
4629 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4630 end if;
4631 end if;
4633 -- When the given object definition and the aggregate are specified
4634 -- independently, and their lengths might differ do a length check.
4635 -- This cannot happen if the aggregate is of the form (others =>...)
4637 if not Is_Constrained (T) then
4638 null;
4640 elsif Nkind (E) = N_Raise_Constraint_Error then
4642 -- Aggregate is statically illegal. Place back in declaration
4644 Set_Expression (N, E);
4645 Set_No_Initialization (N, False);
4647 elsif T = Etype (E) then
4648 null;
4650 elsif Nkind (E) = N_Aggregate
4651 and then Present (Component_Associations (E))
4652 and then Present (Choice_List (First (Component_Associations (E))))
4653 and then
4654 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4655 N_Others_Choice
4656 then
4657 null;
4659 else
4660 Apply_Length_Check (E, T);
4661 end if;
4663 -- If the type is limited unconstrained with defaulted discriminants and
4664 -- there is no expression, then the object is constrained by the
4665 -- defaults, so it is worthwhile building the corresponding subtype.
4667 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4668 and then not Is_Constrained (T)
4669 and then Has_Discriminants (T)
4670 then
4671 if No (E) then
4672 Act_T := Build_Default_Subtype (T, N);
4673 else
4674 -- Ada 2005: A limited object may be initialized by means of an
4675 -- aggregate. If the type has default discriminants it has an
4676 -- unconstrained nominal type, Its actual subtype will be obtained
4677 -- from the aggregate, and not from the default discriminants.
4679 Act_T := Etype (E);
4680 end if;
4682 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4684 elsif Nkind (E) = N_Function_Call
4685 and then Constant_Present (N)
4686 and then Has_Unconstrained_Elements (Etype (E))
4687 then
4688 -- The back-end has problems with constants of a discriminated type
4689 -- with defaults, if the initial value is a function call. We
4690 -- generate an intermediate temporary that will receive a reference
4691 -- to the result of the call. The initialization expression then
4692 -- becomes a dereference of that temporary.
4694 Remove_Side_Effects (E);
4696 -- If this is a constant declaration of an unconstrained type and
4697 -- the initialization is an aggregate, we can use the subtype of the
4698 -- aggregate for the declared entity because it is immutable.
4700 elsif not Is_Constrained (T)
4701 and then Has_Discriminants (T)
4702 and then Constant_Present (N)
4703 and then not Has_Unchecked_Union (T)
4704 and then Nkind (E) = N_Aggregate
4705 then
4706 Act_T := Etype (E);
4707 end if;
4709 -- Check No_Wide_Characters restriction
4711 Check_Wide_Character_Restriction (T, Object_Definition (N));
4713 -- Indicate this is not set in source. Certainly true for constants, and
4714 -- true for variables so far (will be reset for a variable if and when
4715 -- we encounter a modification in the source).
4717 Set_Never_Set_In_Source (Id);
4719 -- Now establish the proper kind and type of the object
4721 if Constant_Present (N) then
4722 Set_Ekind (Id, E_Constant);
4723 Set_Is_True_Constant (Id);
4725 else
4726 Set_Ekind (Id, E_Variable);
4728 -- A variable is set as shared passive if it appears in a shared
4729 -- passive package, and is at the outer level. This is not done for
4730 -- entities generated during expansion, because those are always
4731 -- manipulated locally.
4733 if Is_Shared_Passive (Current_Scope)
4734 and then Is_Library_Level_Entity (Id)
4735 and then Comes_From_Source (Id)
4736 then
4737 Set_Is_Shared_Passive (Id);
4738 Check_Shared_Var (Id, T, N);
4739 end if;
4741 -- Set Has_Initial_Value if initializing expression present. Note
4742 -- that if there is no initializing expression, we leave the state
4743 -- of this flag unchanged (usually it will be False, but notably in
4744 -- the case of exception choice variables, it will already be true).
4746 if Present (E) then
4747 Set_Has_Initial_Value (Id);
4748 end if;
4749 end if;
4751 -- Set the SPARK mode from the current context (may be overwritten later
4752 -- with explicit pragma).
4754 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4755 Set_SPARK_Pragma_Inherited (Id);
4757 -- Preserve relevant elaboration-related attributes of the context which
4758 -- are no longer available or very expensive to recompute once analysis,
4759 -- resolution, and expansion are over.
4761 Mark_Elaboration_Attributes
4762 (N_Id => Id,
4763 Checks => True,
4764 Warnings => True);
4766 -- Initialize alignment and size and capture alignment setting
4768 Init_Alignment (Id);
4769 Init_Esize (Id);
4770 Set_Optimize_Alignment_Flags (Id);
4772 -- Deal with aliased case
4774 if Aliased_Present (N) then
4775 Set_Is_Aliased (Id);
4777 -- If the object is aliased and the type is unconstrained with
4778 -- defaulted discriminants and there is no expression, then the
4779 -- object is constrained by the defaults, so it is worthwhile
4780 -- building the corresponding subtype.
4782 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4783 -- unconstrained, then only establish an actual subtype if the
4784 -- nominal subtype is indefinite. In definite cases the object is
4785 -- unconstrained in Ada 2005.
4787 if No (E)
4788 and then Is_Record_Type (T)
4789 and then not Is_Constrained (T)
4790 and then Has_Discriminants (T)
4791 and then (Ada_Version < Ada_2005
4792 or else not Is_Definite_Subtype (T))
4793 then
4794 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4795 end if;
4796 end if;
4798 -- Now we can set the type of the object
4800 Set_Etype (Id, Act_T);
4802 -- Non-constant object is marked to be treated as volatile if type is
4803 -- volatile and we clear the Current_Value setting that may have been
4804 -- set above. Doing so for constants isn't required and might interfere
4805 -- with possible uses of the object as a static expression in contexts
4806 -- incompatible with volatility (e.g. as a case-statement alternative).
4808 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4809 Set_Treat_As_Volatile (Id);
4810 Set_Current_Value (Id, Empty);
4811 end if;
4813 -- Deal with controlled types
4815 if Has_Controlled_Component (Etype (Id))
4816 or else Is_Controlled (Etype (Id))
4817 then
4818 if not Is_Library_Level_Entity (Id) then
4819 Check_Restriction (No_Nested_Finalization, N);
4820 else
4821 Validate_Controlled_Object (Id);
4822 end if;
4823 end if;
4825 if Has_Task (Etype (Id)) then
4826 Check_Restriction (No_Tasking, N);
4828 -- Deal with counting max tasks
4830 -- Nothing to do if inside a generic
4832 if Inside_A_Generic then
4833 null;
4835 -- If library level entity, then count tasks
4837 elsif Is_Library_Level_Entity (Id) then
4838 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4840 -- If not library level entity, then indicate we don't know max
4841 -- tasks and also check task hierarchy restriction and blocking
4842 -- operation (since starting a task is definitely blocking).
4844 else
4845 Check_Restriction (Max_Tasks, N);
4846 Check_Restriction (No_Task_Hierarchy, N);
4847 Check_Potentially_Blocking_Operation (N);
4848 end if;
4850 -- A rather specialized test. If we see two tasks being declared
4851 -- of the same type in the same object declaration, and the task
4852 -- has an entry with an address clause, we know that program error
4853 -- will be raised at run time since we can't have two tasks with
4854 -- entries at the same address.
4856 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4857 declare
4858 E : Entity_Id;
4860 begin
4861 E := First_Entity (Etype (Id));
4862 while Present (E) loop
4863 if Ekind (E) = E_Entry
4864 and then Present (Get_Attribute_Definition_Clause
4865 (E, Attribute_Address))
4866 then
4867 Error_Msg_Warn := SPARK_Mode /= On;
4868 Error_Msg_N
4869 ("more than one task with same entry address<<", N);
4870 Error_Msg_N ("\Program_Error [<<", N);
4871 Insert_Action (N,
4872 Make_Raise_Program_Error (Loc,
4873 Reason => PE_Duplicated_Entry_Address));
4874 exit;
4875 end if;
4877 Next_Entity (E);
4878 end loop;
4879 end;
4880 end if;
4881 end if;
4883 -- Some simple constant-propagation: if the expression is a constant
4884 -- string initialized with a literal, share the literal. This avoids
4885 -- a run-time copy.
4887 if Present (E)
4888 and then Is_Entity_Name (E)
4889 and then Ekind (Entity (E)) = E_Constant
4890 and then Base_Type (Etype (E)) = Standard_String
4891 then
4892 declare
4893 Val : constant Node_Id := Constant_Value (Entity (E));
4894 begin
4895 if Present (Val) and then Nkind (Val) = N_String_Literal then
4896 Rewrite (E, New_Copy (Val));
4897 end if;
4898 end;
4899 end if;
4901 -- Another optimization: if the nominal subtype is unconstrained and
4902 -- the expression is a function call that returns an unconstrained
4903 -- type, rewrite the declaration as a renaming of the result of the
4904 -- call. The exceptions below are cases where the copy is expected,
4905 -- either by the back end (Aliased case) or by the semantics, as for
4906 -- initializing controlled types or copying tags for class-wide types.
4908 if Present (E)
4909 and then Nkind (E) = N_Explicit_Dereference
4910 and then Nkind (Original_Node (E)) = N_Function_Call
4911 and then not Is_Library_Level_Entity (Id)
4912 and then not Is_Constrained (Underlying_Type (T))
4913 and then not Is_Aliased (Id)
4914 and then not Is_Class_Wide_Type (T)
4915 and then not Is_Controlled (T)
4916 and then not Has_Controlled_Component (Base_Type (T))
4917 and then Expander_Active
4918 then
4919 Rewrite (N,
4920 Make_Object_Renaming_Declaration (Loc,
4921 Defining_Identifier => Id,
4922 Access_Definition => Empty,
4923 Subtype_Mark => New_Occurrence_Of
4924 (Base_Type (Etype (Id)), Loc),
4925 Name => E));
4927 Set_Renamed_Object (Id, E);
4929 -- Force generation of debugging information for the constant and for
4930 -- the renamed function call.
4932 Set_Debug_Info_Needed (Id);
4933 Set_Debug_Info_Needed (Entity (Prefix (E)));
4934 end if;
4936 if Present (Prev_Entity)
4937 and then Is_Frozen (Prev_Entity)
4938 and then not Error_Posted (Id)
4939 then
4940 Error_Msg_N ("full constant declaration appears too late", N);
4941 end if;
4943 Check_Eliminated (Id);
4945 -- Deal with setting In_Private_Part flag if in private part
4947 if Ekind (Scope (Id)) = E_Package
4948 and then In_Private_Part (Scope (Id))
4949 then
4950 Set_In_Private_Part (Id);
4951 end if;
4953 <<Leave>>
4954 -- Initialize the refined state of a variable here because this is a
4955 -- common destination for legal and illegal object declarations.
4957 if Ekind (Id) = E_Variable then
4958 Set_Encapsulating_State (Id, Empty);
4959 end if;
4961 if Has_Aspects (N) then
4962 Analyze_Aspect_Specifications (N, Id);
4963 end if;
4965 Analyze_Dimension (N);
4967 -- Verify whether the object declaration introduces an illegal hidden
4968 -- state within a package subject to a null abstract state.
4970 if Ekind (Id) = E_Variable then
4971 Check_No_Hidden_State (Id);
4972 end if;
4974 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4975 end Analyze_Object_Declaration;
4977 ---------------------------
4978 -- Analyze_Others_Choice --
4979 ---------------------------
4981 -- Nothing to do for the others choice node itself, the semantic analysis
4982 -- of the others choice will occur as part of the processing of the parent
4984 procedure Analyze_Others_Choice (N : Node_Id) is
4985 pragma Warnings (Off, N);
4986 begin
4987 null;
4988 end Analyze_Others_Choice;
4990 -------------------------------------------
4991 -- Analyze_Private_Extension_Declaration --
4992 -------------------------------------------
4994 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4995 Indic : constant Node_Id := Subtype_Indication (N);
4996 T : constant Entity_Id := Defining_Identifier (N);
4997 Iface : Entity_Id;
4998 Iface_Elmt : Elmt_Id;
4999 Parent_Base : Entity_Id;
5000 Parent_Type : Entity_Id;
5002 begin
5003 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5005 if Is_Non_Empty_List (Interface_List (N)) then
5006 declare
5007 Intf : Node_Id;
5008 T : Entity_Id;
5010 begin
5011 Intf := First (Interface_List (N));
5012 while Present (Intf) loop
5013 T := Find_Type_Of_Subtype_Indic (Intf);
5015 Diagnose_Interface (Intf, T);
5016 Next (Intf);
5017 end loop;
5018 end;
5019 end if;
5021 Generate_Definition (T);
5023 -- For other than Ada 2012, just enter the name in the current scope
5025 if Ada_Version < Ada_2012 then
5026 Enter_Name (T);
5028 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5029 -- case of private type that completes an incomplete type.
5031 else
5032 declare
5033 Prev : Entity_Id;
5035 begin
5036 Prev := Find_Type_Name (N);
5038 pragma Assert (Prev = T
5039 or else (Ekind (Prev) = E_Incomplete_Type
5040 and then Present (Full_View (Prev))
5041 and then Full_View (Prev) = T));
5042 end;
5043 end if;
5045 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5046 Parent_Base := Base_Type (Parent_Type);
5048 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5049 Set_Ekind (T, Ekind (Parent_Type));
5050 Set_Etype (T, Any_Type);
5051 goto Leave;
5053 elsif not Is_Tagged_Type (Parent_Type) then
5054 Error_Msg_N
5055 ("parent of type extension must be a tagged type ", Indic);
5056 goto Leave;
5058 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5059 Error_Msg_N ("premature derivation of incomplete type", Indic);
5060 goto Leave;
5062 elsif Is_Concurrent_Type (Parent_Type) then
5063 Error_Msg_N
5064 ("parent type of a private extension cannot be a synchronized "
5065 & "tagged type (RM 3.9.1 (3/1))", N);
5067 Set_Etype (T, Any_Type);
5068 Set_Ekind (T, E_Limited_Private_Type);
5069 Set_Private_Dependents (T, New_Elmt_List);
5070 Set_Error_Posted (T);
5071 goto Leave;
5072 end if;
5074 -- Perhaps the parent type should be changed to the class-wide type's
5075 -- specific type in this case to prevent cascading errors ???
5077 if Is_Class_Wide_Type (Parent_Type) then
5078 Error_Msg_N
5079 ("parent of type extension must not be a class-wide type", Indic);
5080 goto Leave;
5081 end if;
5083 if (not Is_Package_Or_Generic_Package (Current_Scope)
5084 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5085 or else In_Private_Part (Current_Scope)
5086 then
5087 Error_Msg_N ("invalid context for private extension", N);
5088 end if;
5090 -- Set common attributes
5092 Set_Is_Pure (T, Is_Pure (Current_Scope));
5093 Set_Scope (T, Current_Scope);
5094 Set_Ekind (T, E_Record_Type_With_Private);
5095 Init_Size_Align (T);
5096 Set_Default_SSO (T);
5097 Set_No_Reordering (T, No_Component_Reordering);
5099 Set_Etype (T, Parent_Base);
5100 Propagate_Concurrent_Flags (T, Parent_Base);
5102 Set_Convention (T, Convention (Parent_Type));
5103 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5104 Set_Is_First_Subtype (T);
5105 Make_Class_Wide_Type (T);
5107 -- Set the SPARK mode from the current context
5109 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5110 Set_SPARK_Pragma_Inherited (T);
5112 if Unknown_Discriminants_Present (N) then
5113 Set_Discriminant_Constraint (T, No_Elist);
5114 end if;
5116 Build_Derived_Record_Type (N, Parent_Type, T);
5118 -- A private extension inherits the Default_Initial_Condition pragma
5119 -- coming from any parent type within the derivation chain.
5121 if Has_DIC (Parent_Type) then
5122 Set_Has_Inherited_DIC (T);
5123 end if;
5125 -- A private extension inherits any class-wide invariants coming from a
5126 -- parent type or an interface. Note that the invariant procedure of the
5127 -- parent type should not be inherited because the private extension may
5128 -- define invariants of its own.
5130 if Has_Inherited_Invariants (Parent_Type)
5131 or else Has_Inheritable_Invariants (Parent_Type)
5132 then
5133 Set_Has_Inherited_Invariants (T);
5135 elsif Present (Interfaces (T)) then
5136 Iface_Elmt := First_Elmt (Interfaces (T));
5137 while Present (Iface_Elmt) loop
5138 Iface := Node (Iface_Elmt);
5140 if Has_Inheritable_Invariants (Iface) then
5141 Set_Has_Inherited_Invariants (T);
5142 exit;
5143 end if;
5145 Next_Elmt (Iface_Elmt);
5146 end loop;
5147 end if;
5149 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5150 -- synchronized formal derived type.
5152 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5153 Set_Is_Limited_Record (T);
5155 -- Formal derived type case
5157 if Is_Generic_Type (T) then
5159 -- The parent must be a tagged limited type or a synchronized
5160 -- interface.
5162 if (not Is_Tagged_Type (Parent_Type)
5163 or else not Is_Limited_Type (Parent_Type))
5164 and then
5165 (not Is_Interface (Parent_Type)
5166 or else not Is_Synchronized_Interface (Parent_Type))
5167 then
5168 Error_Msg_NE
5169 ("parent type of & must be tagged limited or synchronized",
5170 N, T);
5171 end if;
5173 -- The progenitors (if any) must be limited or synchronized
5174 -- interfaces.
5176 if Present (Interfaces (T)) then
5177 Iface_Elmt := First_Elmt (Interfaces (T));
5178 while Present (Iface_Elmt) loop
5179 Iface := Node (Iface_Elmt);
5181 if not Is_Limited_Interface (Iface)
5182 and then not Is_Synchronized_Interface (Iface)
5183 then
5184 Error_Msg_NE
5185 ("progenitor & must be limited or synchronized",
5186 N, Iface);
5187 end if;
5189 Next_Elmt (Iface_Elmt);
5190 end loop;
5191 end if;
5193 -- Regular derived extension, the parent must be a limited or
5194 -- synchronized interface.
5196 else
5197 if not Is_Interface (Parent_Type)
5198 or else (not Is_Limited_Interface (Parent_Type)
5199 and then not Is_Synchronized_Interface (Parent_Type))
5200 then
5201 Error_Msg_NE
5202 ("parent type of & must be limited interface", N, T);
5203 end if;
5204 end if;
5206 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5207 -- extension with a synchronized parent must be explicitly declared
5208 -- synchronized, because the full view will be a synchronized type.
5209 -- This must be checked before the check for limited types below,
5210 -- to ensure that types declared limited are not allowed to extend
5211 -- synchronized interfaces.
5213 elsif Is_Interface (Parent_Type)
5214 and then Is_Synchronized_Interface (Parent_Type)
5215 and then not Synchronized_Present (N)
5216 then
5217 Error_Msg_NE
5218 ("private extension of& must be explicitly synchronized",
5219 N, Parent_Type);
5221 elsif Limited_Present (N) then
5222 Set_Is_Limited_Record (T);
5224 if not Is_Limited_Type (Parent_Type)
5225 and then
5226 (not Is_Interface (Parent_Type)
5227 or else not Is_Limited_Interface (Parent_Type))
5228 then
5229 Error_Msg_NE ("parent type& of limited extension must be limited",
5230 N, Parent_Type);
5231 end if;
5232 end if;
5234 -- Remember that its parent type has a private extension. Used to warn
5235 -- on public primitives of the parent type defined after its private
5236 -- extensions (see Check_Dispatching_Operation).
5238 Set_Has_Private_Extension (Parent_Type);
5240 <<Leave>>
5241 if Has_Aspects (N) then
5242 Analyze_Aspect_Specifications (N, T);
5243 end if;
5244 end Analyze_Private_Extension_Declaration;
5246 ---------------------------------
5247 -- Analyze_Subtype_Declaration --
5248 ---------------------------------
5250 procedure Analyze_Subtype_Declaration
5251 (N : Node_Id;
5252 Skip : Boolean := False)
5254 Id : constant Entity_Id := Defining_Identifier (N);
5255 R_Checks : Check_Result;
5256 T : Entity_Id;
5258 begin
5259 Generate_Definition (Id);
5260 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5261 Init_Size_Align (Id);
5263 -- The following guard condition on Enter_Name is to handle cases where
5264 -- the defining identifier has already been entered into the scope but
5265 -- the declaration as a whole needs to be analyzed.
5267 -- This case in particular happens for derived enumeration types. The
5268 -- derived enumeration type is processed as an inserted enumeration type
5269 -- declaration followed by a rewritten subtype declaration. The defining
5270 -- identifier, however, is entered into the name scope very early in the
5271 -- processing of the original type declaration and therefore needs to be
5272 -- avoided here, when the created subtype declaration is analyzed. (See
5273 -- Build_Derived_Types)
5275 -- This also happens when the full view of a private type is derived
5276 -- type with constraints. In this case the entity has been introduced
5277 -- in the private declaration.
5279 -- Finally this happens in some complex cases when validity checks are
5280 -- enabled, where the same subtype declaration may be analyzed twice.
5281 -- This can happen if the subtype is created by the pre-analysis of
5282 -- an attribute tht gives the range of a loop statement, and the loop
5283 -- itself appears within an if_statement that will be rewritten during
5284 -- expansion.
5286 if Skip
5287 or else (Present (Etype (Id))
5288 and then (Is_Private_Type (Etype (Id))
5289 or else Is_Task_Type (Etype (Id))
5290 or else Is_Rewrite_Substitution (N)))
5291 then
5292 null;
5294 elsif Current_Entity (Id) = Id then
5295 null;
5297 else
5298 Enter_Name (Id);
5299 end if;
5301 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5303 -- Class-wide equivalent types of records with unknown discriminants
5304 -- involve the generation of an itype which serves as the private view
5305 -- of a constrained record subtype. In such cases the base type of the
5306 -- current subtype we are processing is the private itype. Use the full
5307 -- of the private itype when decorating various attributes.
5309 if Is_Itype (T)
5310 and then Is_Private_Type (T)
5311 and then Present (Full_View (T))
5312 then
5313 T := Full_View (T);
5314 end if;
5316 -- Inherit common attributes
5318 Set_Is_Volatile (Id, Is_Volatile (T));
5319 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5320 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5321 Set_Convention (Id, Convention (T));
5323 -- If ancestor has predicates then so does the subtype, and in addition
5324 -- we must delay the freeze to properly arrange predicate inheritance.
5326 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5327 -- in which T = ID, so the above tests and assignments do nothing???
5329 if Has_Predicates (T)
5330 or else (Present (Ancestor_Subtype (T))
5331 and then Has_Predicates (Ancestor_Subtype (T)))
5332 then
5333 Set_Has_Predicates (Id);
5334 Set_Has_Delayed_Freeze (Id);
5336 -- Generated subtypes inherit the predicate function from the parent
5337 -- (no aspects to examine on the generated declaration).
5339 if not Comes_From_Source (N) then
5340 Set_Ekind (Id, Ekind (T));
5342 if Present (Predicate_Function (Id)) then
5343 null;
5345 elsif Present (Predicate_Function (T)) then
5346 Set_Predicate_Function (Id, Predicate_Function (T));
5348 elsif Present (Ancestor_Subtype (T))
5349 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5350 then
5351 Set_Predicate_Function (Id,
5352 Predicate_Function (Ancestor_Subtype (T)));
5353 end if;
5354 end if;
5355 end if;
5357 -- Subtype of Boolean cannot have a constraint in SPARK
5359 if Is_Boolean_Type (T)
5360 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5361 then
5362 Check_SPARK_05_Restriction
5363 ("subtype of Boolean cannot have constraint", N);
5364 end if;
5366 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5367 declare
5368 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5369 One_Cstr : Node_Id;
5370 Low : Node_Id;
5371 High : Node_Id;
5373 begin
5374 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5375 One_Cstr := First (Constraints (Cstr));
5376 while Present (One_Cstr) loop
5378 -- Index or discriminant constraint in SPARK must be a
5379 -- subtype mark.
5381 if not
5382 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5383 then
5384 Check_SPARK_05_Restriction
5385 ("subtype mark required", One_Cstr);
5387 -- String subtype must have a lower bound of 1 in SPARK.
5388 -- Note that we do not need to test for the non-static case
5389 -- here, since that was already taken care of in
5390 -- Process_Range_Expr_In_Decl.
5392 elsif Base_Type (T) = Standard_String then
5393 Get_Index_Bounds (One_Cstr, Low, High);
5395 if Is_OK_Static_Expression (Low)
5396 and then Expr_Value (Low) /= 1
5397 then
5398 Check_SPARK_05_Restriction
5399 ("String subtype must have lower bound of 1", N);
5400 end if;
5401 end if;
5403 Next (One_Cstr);
5404 end loop;
5405 end if;
5406 end;
5407 end if;
5409 -- In the case where there is no constraint given in the subtype
5410 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5411 -- semantic attributes must be established here.
5413 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5414 Set_Etype (Id, Base_Type (T));
5416 -- Subtype of unconstrained array without constraint is not allowed
5417 -- in SPARK.
5419 if Is_Array_Type (T) and then not Is_Constrained (T) then
5420 Check_SPARK_05_Restriction
5421 ("subtype of unconstrained array must have constraint", N);
5422 end if;
5424 case Ekind (T) is
5425 when Array_Kind =>
5426 Set_Ekind (Id, E_Array_Subtype);
5427 Copy_Array_Subtype_Attributes (Id, T);
5429 when Decimal_Fixed_Point_Kind =>
5430 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5431 Set_Digits_Value (Id, Digits_Value (T));
5432 Set_Delta_Value (Id, Delta_Value (T));
5433 Set_Scale_Value (Id, Scale_Value (T));
5434 Set_Small_Value (Id, Small_Value (T));
5435 Set_Scalar_Range (Id, Scalar_Range (T));
5436 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5437 Set_Is_Constrained (Id, Is_Constrained (T));
5438 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5439 Set_RM_Size (Id, RM_Size (T));
5441 when Enumeration_Kind =>
5442 Set_Ekind (Id, E_Enumeration_Subtype);
5443 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5444 Set_Scalar_Range (Id, Scalar_Range (T));
5445 Set_Is_Character_Type (Id, Is_Character_Type (T));
5446 Set_Is_Constrained (Id, Is_Constrained (T));
5447 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5448 Set_RM_Size (Id, RM_Size (T));
5450 when Ordinary_Fixed_Point_Kind =>
5451 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5452 Set_Scalar_Range (Id, Scalar_Range (T));
5453 Set_Small_Value (Id, Small_Value (T));
5454 Set_Delta_Value (Id, Delta_Value (T));
5455 Set_Is_Constrained (Id, Is_Constrained (T));
5456 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5457 Set_RM_Size (Id, RM_Size (T));
5459 when Float_Kind =>
5460 Set_Ekind (Id, E_Floating_Point_Subtype);
5461 Set_Scalar_Range (Id, Scalar_Range (T));
5462 Set_Digits_Value (Id, Digits_Value (T));
5463 Set_Is_Constrained (Id, Is_Constrained (T));
5465 -- If the floating point type has dimensions, these will be
5466 -- inherited subsequently when Analyze_Dimensions is called.
5468 when Signed_Integer_Kind =>
5469 Set_Ekind (Id, E_Signed_Integer_Subtype);
5470 Set_Scalar_Range (Id, Scalar_Range (T));
5471 Set_Is_Constrained (Id, Is_Constrained (T));
5472 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5473 Set_RM_Size (Id, RM_Size (T));
5475 when Modular_Integer_Kind =>
5476 Set_Ekind (Id, E_Modular_Integer_Subtype);
5477 Set_Scalar_Range (Id, Scalar_Range (T));
5478 Set_Is_Constrained (Id, Is_Constrained (T));
5479 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5480 Set_RM_Size (Id, RM_Size (T));
5482 when Class_Wide_Kind =>
5483 Set_Ekind (Id, E_Class_Wide_Subtype);
5484 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5485 Set_Cloned_Subtype (Id, T);
5486 Set_Is_Tagged_Type (Id, True);
5487 Set_Has_Unknown_Discriminants
5488 (Id, True);
5489 Set_No_Tagged_Streams_Pragma
5490 (Id, No_Tagged_Streams_Pragma (T));
5492 if Ekind (T) = E_Class_Wide_Subtype then
5493 Set_Equivalent_Type (Id, Equivalent_Type (T));
5494 end if;
5496 when E_Record_Subtype
5497 | E_Record_Type
5499 Set_Ekind (Id, E_Record_Subtype);
5501 if Ekind (T) = E_Record_Subtype
5502 and then Present (Cloned_Subtype (T))
5503 then
5504 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5505 else
5506 Set_Cloned_Subtype (Id, T);
5507 end if;
5509 Set_First_Entity (Id, First_Entity (T));
5510 Set_Last_Entity (Id, Last_Entity (T));
5511 Set_Has_Discriminants (Id, Has_Discriminants (T));
5512 Set_Is_Constrained (Id, Is_Constrained (T));
5513 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5514 Set_Has_Implicit_Dereference
5515 (Id, Has_Implicit_Dereference (T));
5516 Set_Has_Unknown_Discriminants
5517 (Id, Has_Unknown_Discriminants (T));
5519 if Has_Discriminants (T) then
5520 Set_Discriminant_Constraint
5521 (Id, Discriminant_Constraint (T));
5522 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5524 elsif Has_Unknown_Discriminants (Id) then
5525 Set_Discriminant_Constraint (Id, No_Elist);
5526 end if;
5528 if Is_Tagged_Type (T) then
5529 Set_Is_Tagged_Type (Id, True);
5530 Set_No_Tagged_Streams_Pragma
5531 (Id, No_Tagged_Streams_Pragma (T));
5532 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5533 Set_Direct_Primitive_Operations
5534 (Id, Direct_Primitive_Operations (T));
5535 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5537 if Is_Interface (T) then
5538 Set_Is_Interface (Id);
5539 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5540 end if;
5541 end if;
5543 when Private_Kind =>
5544 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5545 Set_Has_Discriminants (Id, Has_Discriminants (T));
5546 Set_Is_Constrained (Id, Is_Constrained (T));
5547 Set_First_Entity (Id, First_Entity (T));
5548 Set_Last_Entity (Id, Last_Entity (T));
5549 Set_Private_Dependents (Id, New_Elmt_List);
5550 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5551 Set_Has_Implicit_Dereference
5552 (Id, Has_Implicit_Dereference (T));
5553 Set_Has_Unknown_Discriminants
5554 (Id, Has_Unknown_Discriminants (T));
5555 Set_Known_To_Have_Preelab_Init
5556 (Id, Known_To_Have_Preelab_Init (T));
5558 if Is_Tagged_Type (T) then
5559 Set_Is_Tagged_Type (Id);
5560 Set_No_Tagged_Streams_Pragma (Id,
5561 No_Tagged_Streams_Pragma (T));
5562 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5563 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5564 Set_Direct_Primitive_Operations (Id,
5565 Direct_Primitive_Operations (T));
5566 end if;
5568 -- In general the attributes of the subtype of a private type
5569 -- are the attributes of the partial view of parent. However,
5570 -- the full view may be a discriminated type, and the subtype
5571 -- must share the discriminant constraint to generate correct
5572 -- calls to initialization procedures.
5574 if Has_Discriminants (T) then
5575 Set_Discriminant_Constraint
5576 (Id, Discriminant_Constraint (T));
5577 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5579 elsif Present (Full_View (T))
5580 and then Has_Discriminants (Full_View (T))
5581 then
5582 Set_Discriminant_Constraint
5583 (Id, Discriminant_Constraint (Full_View (T)));
5584 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5586 -- This would seem semantically correct, but apparently
5587 -- generates spurious errors about missing components ???
5589 -- Set_Has_Discriminants (Id);
5590 end if;
5592 Prepare_Private_Subtype_Completion (Id, N);
5594 -- If this is the subtype of a constrained private type with
5595 -- discriminants that has got a full view and we also have
5596 -- built a completion just above, show that the completion
5597 -- is a clone of the full view to the back-end.
5599 if Has_Discriminants (T)
5600 and then not Has_Unknown_Discriminants (T)
5601 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5602 and then Present (Full_View (T))
5603 and then Present (Full_View (Id))
5604 then
5605 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5606 end if;
5608 when Access_Kind =>
5609 Set_Ekind (Id, E_Access_Subtype);
5610 Set_Is_Constrained (Id, Is_Constrained (T));
5611 Set_Is_Access_Constant
5612 (Id, Is_Access_Constant (T));
5613 Set_Directly_Designated_Type
5614 (Id, Designated_Type (T));
5615 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5617 -- A Pure library_item must not contain the declaration of a
5618 -- named access type, except within a subprogram, generic
5619 -- subprogram, task unit, or protected unit, or if it has
5620 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5622 if Comes_From_Source (Id)
5623 and then In_Pure_Unit
5624 and then not In_Subprogram_Task_Protected_Unit
5625 and then not No_Pool_Assigned (Id)
5626 then
5627 Error_Msg_N
5628 ("named access types not allowed in pure unit", N);
5629 end if;
5631 when Concurrent_Kind =>
5632 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5633 Set_Corresponding_Record_Type (Id,
5634 Corresponding_Record_Type (T));
5635 Set_First_Entity (Id, First_Entity (T));
5636 Set_First_Private_Entity (Id, First_Private_Entity (T));
5637 Set_Has_Discriminants (Id, Has_Discriminants (T));
5638 Set_Is_Constrained (Id, Is_Constrained (T));
5639 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5640 Set_Last_Entity (Id, Last_Entity (T));
5642 if Is_Tagged_Type (T) then
5643 Set_No_Tagged_Streams_Pragma
5644 (Id, No_Tagged_Streams_Pragma (T));
5645 end if;
5647 if Has_Discriminants (T) then
5648 Set_Discriminant_Constraint
5649 (Id, Discriminant_Constraint (T));
5650 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5651 end if;
5653 when Incomplete_Kind =>
5654 if Ada_Version >= Ada_2005 then
5656 -- In Ada 2005 an incomplete type can be explicitly tagged:
5657 -- propagate indication. Note that we also have to include
5658 -- subtypes for Ada 2012 extended use of incomplete types.
5660 Set_Ekind (Id, E_Incomplete_Subtype);
5661 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5662 Set_Private_Dependents (Id, New_Elmt_List);
5664 if Is_Tagged_Type (Id) then
5665 Set_No_Tagged_Streams_Pragma
5666 (Id, No_Tagged_Streams_Pragma (T));
5667 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5668 end if;
5670 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5671 -- incomplete type visible through a limited with clause.
5673 if From_Limited_With (T)
5674 and then Present (Non_Limited_View (T))
5675 then
5676 Set_From_Limited_With (Id);
5677 Set_Non_Limited_View (Id, Non_Limited_View (T));
5679 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5680 -- to the private dependents of the original incomplete
5681 -- type for future transformation.
5683 else
5684 Append_Elmt (Id, Private_Dependents (T));
5685 end if;
5687 -- If the subtype name denotes an incomplete type an error
5688 -- was already reported by Process_Subtype.
5690 else
5691 Set_Etype (Id, Any_Type);
5692 end if;
5694 when others =>
5695 raise Program_Error;
5696 end case;
5698 -- If there is no constraint in the subtype indication, the
5699 -- declared entity inherits predicates from the parent.
5701 Inherit_Predicate_Flags (Id, T);
5702 end if;
5704 if Etype (Id) = Any_Type then
5705 goto Leave;
5706 end if;
5708 -- Some common processing on all types
5710 Set_Size_Info (Id, T);
5711 Set_First_Rep_Item (Id, First_Rep_Item (T));
5713 -- If the parent type is a generic actual, so is the subtype. This may
5714 -- happen in a nested instance. Why Comes_From_Source test???
5716 if not Comes_From_Source (N) then
5717 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5718 end if;
5720 -- If this is a subtype declaration for an actual in an instance,
5721 -- inherit static and dynamic predicates if any.
5723 -- If declaration has no aspect specifications, inherit predicate
5724 -- info as well. Unclear how to handle the case of both specified
5725 -- and inherited predicates ??? Other inherited aspects, such as
5726 -- invariants, should be OK, but the combination with later pragmas
5727 -- may also require special merging.
5729 if Has_Predicates (T)
5730 and then Present (Predicate_Function (T))
5731 and then
5732 ((In_Instance and then not Comes_From_Source (N))
5733 or else No (Aspect_Specifications (N)))
5734 then
5735 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5737 if Has_Static_Predicate (T) then
5738 Set_Has_Static_Predicate (Id);
5739 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5740 end if;
5741 end if;
5743 -- Remaining processing depends on characteristics of base type
5745 T := Etype (Id);
5747 Set_Is_Immediately_Visible (Id, True);
5748 Set_Depends_On_Private (Id, Has_Private_Component (T));
5749 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5751 if Is_Interface (T) then
5752 Set_Is_Interface (Id);
5753 end if;
5755 if Present (Generic_Parent_Type (N))
5756 and then
5757 (Nkind (Parent (Generic_Parent_Type (N))) /=
5758 N_Formal_Type_Declaration
5759 or else Nkind (Formal_Type_Definition
5760 (Parent (Generic_Parent_Type (N)))) /=
5761 N_Formal_Private_Type_Definition)
5762 then
5763 if Is_Tagged_Type (Id) then
5765 -- If this is a generic actual subtype for a synchronized type,
5766 -- the primitive operations are those of the corresponding record
5767 -- for which there is a separate subtype declaration.
5769 if Is_Concurrent_Type (Id) then
5770 null;
5771 elsif Is_Class_Wide_Type (Id) then
5772 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5773 else
5774 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5775 end if;
5777 elsif Scope (Etype (Id)) /= Standard_Standard then
5778 Derive_Subprograms (Generic_Parent_Type (N), Id);
5779 end if;
5780 end if;
5782 if Is_Private_Type (T) and then Present (Full_View (T)) then
5783 Conditional_Delay (Id, Full_View (T));
5785 -- The subtypes of components or subcomponents of protected types
5786 -- do not need freeze nodes, which would otherwise appear in the
5787 -- wrong scope (before the freeze node for the protected type). The
5788 -- proper subtypes are those of the subcomponents of the corresponding
5789 -- record.
5791 elsif Ekind (Scope (Id)) /= E_Protected_Type
5792 and then Present (Scope (Scope (Id))) -- error defense
5793 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5794 then
5795 Conditional_Delay (Id, T);
5796 end if;
5798 -- If we have a subtype of an incomplete type whose full type is a
5799 -- derived numeric type, we need to have a freeze node for the subtype.
5800 -- Otherwise gigi will complain while computing the (static) bounds of
5801 -- the subtype.
5803 if Is_Itype (T)
5804 and then Is_Elementary_Type (Id)
5805 and then Etype (Id) /= Id
5806 then
5807 declare
5808 Partial : constant Entity_Id :=
5809 Incomplete_Or_Partial_View (First_Subtype (Id));
5810 begin
5811 if Present (Partial)
5812 and then Ekind (Partial) = E_Incomplete_Type
5813 then
5814 Set_Has_Delayed_Freeze (Id);
5815 end if;
5816 end;
5817 end if;
5819 -- Check that Constraint_Error is raised for a scalar subtype indication
5820 -- when the lower or upper bound of a non-null range lies outside the
5821 -- range of the type mark.
5823 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5824 if Is_Scalar_Type (Etype (Id))
5825 and then Scalar_Range (Id) /=
5826 Scalar_Range
5827 (Etype (Subtype_Mark (Subtype_Indication (N))))
5828 then
5829 Apply_Range_Check
5830 (Scalar_Range (Id),
5831 Etype (Subtype_Mark (Subtype_Indication (N))));
5833 -- In the array case, check compatibility for each index
5835 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5836 then
5837 -- This really should be a subprogram that finds the indications
5838 -- to check???
5840 declare
5841 Subt_Index : Node_Id := First_Index (Id);
5842 Target_Index : Node_Id :=
5843 First_Index (Etype
5844 (Subtype_Mark (Subtype_Indication (N))));
5845 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5847 begin
5848 while Present (Subt_Index) loop
5849 if ((Nkind (Subt_Index) = N_Identifier
5850 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5851 or else Nkind (Subt_Index) = N_Subtype_Indication)
5852 and then
5853 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5854 then
5855 declare
5856 Target_Typ : constant Entity_Id :=
5857 Etype (Target_Index);
5858 begin
5859 R_Checks :=
5860 Get_Range_Checks
5861 (Scalar_Range (Etype (Subt_Index)),
5862 Target_Typ,
5863 Etype (Subt_Index),
5864 Defining_Identifier (N));
5866 -- Reset Has_Dynamic_Range_Check on the subtype to
5867 -- prevent elision of the index check due to a dynamic
5868 -- check generated for a preceding index (needed since
5869 -- Insert_Range_Checks tries to avoid generating
5870 -- redundant checks on a given declaration).
5872 Set_Has_Dynamic_Range_Check (N, False);
5874 Insert_Range_Checks
5875 (R_Checks,
5877 Target_Typ,
5878 Sloc (Defining_Identifier (N)));
5880 -- Record whether this index involved a dynamic check
5882 Has_Dyn_Chk :=
5883 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5884 end;
5885 end if;
5887 Next_Index (Subt_Index);
5888 Next_Index (Target_Index);
5889 end loop;
5891 -- Finally, mark whether the subtype involves dynamic checks
5893 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5894 end;
5895 end if;
5896 end if;
5898 Set_Optimize_Alignment_Flags (Id);
5899 Check_Eliminated (Id);
5901 <<Leave>>
5902 if Has_Aspects (N) then
5903 Analyze_Aspect_Specifications (N, Id);
5904 end if;
5906 Analyze_Dimension (N);
5908 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5909 -- indications on composite types where the constraints are dynamic.
5910 -- Note that object declarations and aggregates generate implicit
5911 -- subtype declarations, which this covers. One special case is that the
5912 -- implicitly generated "=" for discriminated types includes an
5913 -- offending subtype declaration, which is harmless, so we ignore it
5914 -- here.
5916 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5917 declare
5918 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5919 begin
5920 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5921 and then not (Is_Internal (Id)
5922 and then Is_TSS (Scope (Id),
5923 TSS_Composite_Equality))
5924 and then not Within_Init_Proc
5925 and then not All_Composite_Constraints_Static (Cstr)
5926 then
5927 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5928 end if;
5929 end;
5930 end if;
5931 end Analyze_Subtype_Declaration;
5933 --------------------------------
5934 -- Analyze_Subtype_Indication --
5935 --------------------------------
5937 procedure Analyze_Subtype_Indication (N : Node_Id) is
5938 T : constant Entity_Id := Subtype_Mark (N);
5939 R : constant Node_Id := Range_Expression (Constraint (N));
5941 begin
5942 Analyze (T);
5944 if R /= Error then
5945 Analyze (R);
5946 Set_Etype (N, Etype (R));
5947 Resolve (R, Entity (T));
5948 else
5949 Set_Error_Posted (R);
5950 Set_Error_Posted (T);
5951 end if;
5952 end Analyze_Subtype_Indication;
5954 --------------------------
5955 -- Analyze_Variant_Part --
5956 --------------------------
5958 procedure Analyze_Variant_Part (N : Node_Id) is
5959 Discr_Name : Node_Id;
5960 Discr_Type : Entity_Id;
5962 procedure Process_Variant (A : Node_Id);
5963 -- Analyze declarations for a single variant
5965 package Analyze_Variant_Choices is
5966 new Generic_Analyze_Choices (Process_Variant);
5967 use Analyze_Variant_Choices;
5969 ---------------------
5970 -- Process_Variant --
5971 ---------------------
5973 procedure Process_Variant (A : Node_Id) is
5974 CL : constant Node_Id := Component_List (A);
5975 begin
5976 if not Null_Present (CL) then
5977 Analyze_Declarations (Component_Items (CL));
5979 if Present (Variant_Part (CL)) then
5980 Analyze (Variant_Part (CL));
5981 end if;
5982 end if;
5983 end Process_Variant;
5985 -- Start of processing for Analyze_Variant_Part
5987 begin
5988 Discr_Name := Name (N);
5989 Analyze (Discr_Name);
5991 -- If Discr_Name bad, get out (prevent cascaded errors)
5993 if Etype (Discr_Name) = Any_Type then
5994 return;
5995 end if;
5997 -- Check invalid discriminant in variant part
5999 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6000 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6001 end if;
6003 Discr_Type := Etype (Entity (Discr_Name));
6005 if not Is_Discrete_Type (Discr_Type) then
6006 Error_Msg_N
6007 ("discriminant in a variant part must be of a discrete type",
6008 Name (N));
6009 return;
6010 end if;
6012 -- Now analyze the choices, which also analyzes the declarations that
6013 -- are associated with each choice.
6015 Analyze_Choices (Variants (N), Discr_Type);
6017 -- Note: we used to instantiate and call Check_Choices here to check
6018 -- that the choices covered the discriminant, but it's too early to do
6019 -- that because of statically predicated subtypes, whose analysis may
6020 -- be deferred to their freeze point which may be as late as the freeze
6021 -- point of the containing record. So this call is now to be found in
6022 -- Freeze_Record_Declaration.
6024 end Analyze_Variant_Part;
6026 ----------------------------
6027 -- Array_Type_Declaration --
6028 ----------------------------
6030 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6031 Component_Def : constant Node_Id := Component_Definition (Def);
6032 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6033 P : constant Node_Id := Parent (Def);
6034 Element_Type : Entity_Id;
6035 Implicit_Base : Entity_Id;
6036 Index : Node_Id;
6037 Nb_Index : Nat;
6038 Priv : Entity_Id;
6039 Related_Id : Entity_Id := Empty;
6041 begin
6042 if Nkind (Def) = N_Constrained_Array_Definition then
6043 Index := First (Discrete_Subtype_Definitions (Def));
6044 else
6045 Index := First (Subtype_Marks (Def));
6046 end if;
6048 -- Find proper names for the implicit types which may be public. In case
6049 -- of anonymous arrays we use the name of the first object of that type
6050 -- as prefix.
6052 if No (T) then
6053 Related_Id := Defining_Identifier (P);
6054 else
6055 Related_Id := T;
6056 end if;
6058 Nb_Index := 1;
6059 while Present (Index) loop
6060 Analyze (Index);
6062 -- Test for odd case of trying to index a type by the type itself
6064 if Is_Entity_Name (Index) and then Entity (Index) = T then
6065 Error_Msg_N ("type& cannot be indexed by itself", Index);
6066 Set_Entity (Index, Standard_Boolean);
6067 Set_Etype (Index, Standard_Boolean);
6068 end if;
6070 -- Check SPARK restriction requiring a subtype mark
6072 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6073 Check_SPARK_05_Restriction ("subtype mark required", Index);
6074 end if;
6076 -- Add a subtype declaration for each index of private array type
6077 -- declaration whose etype is also private. For example:
6079 -- package Pkg is
6080 -- type Index is private;
6081 -- private
6082 -- type Table is array (Index) of ...
6083 -- end;
6085 -- This is currently required by the expander for the internally
6086 -- generated equality subprogram of records with variant parts in
6087 -- which the etype of some component is such private type.
6089 if Ekind (Current_Scope) = E_Package
6090 and then In_Private_Part (Current_Scope)
6091 and then Has_Private_Declaration (Etype (Index))
6092 then
6093 declare
6094 Loc : constant Source_Ptr := Sloc (Def);
6095 Decl : Entity_Id;
6096 New_E : Entity_Id;
6098 begin
6099 New_E := Make_Temporary (Loc, 'T');
6100 Set_Is_Internal (New_E);
6102 Decl :=
6103 Make_Subtype_Declaration (Loc,
6104 Defining_Identifier => New_E,
6105 Subtype_Indication =>
6106 New_Occurrence_Of (Etype (Index), Loc));
6108 Insert_Before (Parent (Def), Decl);
6109 Analyze (Decl);
6110 Set_Etype (Index, New_E);
6112 -- If the index is a range or a subtype indication it carries
6113 -- no entity. Example:
6115 -- package Pkg is
6116 -- type T is private;
6117 -- private
6118 -- type T is new Natural;
6119 -- Table : array (T(1) .. T(10)) of Boolean;
6120 -- end Pkg;
6122 -- Otherwise the type of the reference is its entity.
6124 if Is_Entity_Name (Index) then
6125 Set_Entity (Index, New_E);
6126 end if;
6127 end;
6128 end if;
6130 Make_Index (Index, P, Related_Id, Nb_Index);
6132 -- Check error of subtype with predicate for index type
6134 Bad_Predicated_Subtype_Use
6135 ("subtype& has predicate, not allowed as index subtype",
6136 Index, Etype (Index));
6138 -- Move to next index
6140 Next_Index (Index);
6141 Nb_Index := Nb_Index + 1;
6142 end loop;
6144 -- Process subtype indication if one is present
6146 if Present (Component_Typ) then
6147 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6149 Set_Etype (Component_Typ, Element_Type);
6151 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6152 Check_SPARK_05_Restriction
6153 ("subtype mark required", Component_Typ);
6154 end if;
6156 -- Ada 2005 (AI-230): Access Definition case
6158 else pragma Assert (Present (Access_Definition (Component_Def)));
6160 -- Indicate that the anonymous access type is created by the
6161 -- array type declaration.
6163 Element_Type := Access_Definition
6164 (Related_Nod => P,
6165 N => Access_Definition (Component_Def));
6166 Set_Is_Local_Anonymous_Access (Element_Type);
6168 -- Propagate the parent. This field is needed if we have to generate
6169 -- the master_id associated with an anonymous access to task type
6170 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6172 Set_Parent (Element_Type, Parent (T));
6174 -- Ada 2005 (AI-230): In case of components that are anonymous access
6175 -- types the level of accessibility depends on the enclosing type
6176 -- declaration
6178 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6180 -- Ada 2005 (AI-254)
6182 declare
6183 CD : constant Node_Id :=
6184 Access_To_Subprogram_Definition
6185 (Access_Definition (Component_Def));
6186 begin
6187 if Present (CD) and then Protected_Present (CD) then
6188 Element_Type :=
6189 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6190 end if;
6191 end;
6192 end if;
6194 -- Constrained array case
6196 if No (T) then
6197 T := Create_Itype (E_Void, P, Related_Id, 'T');
6198 end if;
6200 if Nkind (Def) = N_Constrained_Array_Definition then
6202 -- Establish Implicit_Base as unconstrained base type
6204 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6206 Set_Etype (Implicit_Base, Implicit_Base);
6207 Set_Scope (Implicit_Base, Current_Scope);
6208 Set_Has_Delayed_Freeze (Implicit_Base);
6209 Set_Default_SSO (Implicit_Base);
6211 -- The constrained array type is a subtype of the unconstrained one
6213 Set_Ekind (T, E_Array_Subtype);
6214 Init_Size_Align (T);
6215 Set_Etype (T, Implicit_Base);
6216 Set_Scope (T, Current_Scope);
6217 Set_Is_Constrained (T);
6218 Set_First_Index (T,
6219 First (Discrete_Subtype_Definitions (Def)));
6220 Set_Has_Delayed_Freeze (T);
6222 -- Complete setup of implicit base type
6224 Set_Component_Size (Implicit_Base, Uint_0);
6225 Set_Component_Type (Implicit_Base, Element_Type);
6226 Set_Finalize_Storage_Only
6227 (Implicit_Base,
6228 Finalize_Storage_Only (Element_Type));
6229 Set_First_Index (Implicit_Base, First_Index (T));
6230 Set_Has_Controlled_Component
6231 (Implicit_Base,
6232 Has_Controlled_Component (Element_Type)
6233 or else Is_Controlled (Element_Type));
6234 Set_Packed_Array_Impl_Type
6235 (Implicit_Base, Empty);
6237 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6239 -- Unconstrained array case
6241 else
6242 Set_Ekind (T, E_Array_Type);
6243 Init_Size_Align (T);
6244 Set_Etype (T, T);
6245 Set_Scope (T, Current_Scope);
6246 Set_Component_Size (T, Uint_0);
6247 Set_Is_Constrained (T, False);
6248 Set_First_Index (T, First (Subtype_Marks (Def)));
6249 Set_Has_Delayed_Freeze (T, True);
6250 Propagate_Concurrent_Flags (T, Element_Type);
6251 Set_Has_Controlled_Component (T, Has_Controlled_Component
6252 (Element_Type)
6253 or else
6254 Is_Controlled (Element_Type));
6255 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6256 (Element_Type));
6257 Set_Default_SSO (T);
6258 end if;
6260 -- Common attributes for both cases
6262 Set_Component_Type (Base_Type (T), Element_Type);
6263 Set_Packed_Array_Impl_Type (T, Empty);
6265 if Aliased_Present (Component_Definition (Def)) then
6266 Check_SPARK_05_Restriction
6267 ("aliased is not allowed", Component_Definition (Def));
6268 Set_Has_Aliased_Components (Etype (T));
6269 end if;
6271 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6272 -- array type to ensure that objects of this type are initialized.
6274 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6275 Set_Can_Never_Be_Null (T);
6277 if Null_Exclusion_Present (Component_Definition (Def))
6279 -- No need to check itypes because in their case this check was
6280 -- done at their point of creation
6282 and then not Is_Itype (Element_Type)
6283 then
6284 Error_Msg_N
6285 ("`NOT NULL` not allowed (null already excluded)",
6286 Subtype_Indication (Component_Definition (Def)));
6287 end if;
6288 end if;
6290 Priv := Private_Component (Element_Type);
6292 if Present (Priv) then
6294 -- Check for circular definitions
6296 if Priv = Any_Type then
6297 Set_Component_Type (Etype (T), Any_Type);
6299 -- There is a gap in the visibility of operations on the composite
6300 -- type only if the component type is defined in a different scope.
6302 elsif Scope (Priv) = Current_Scope then
6303 null;
6305 elsif Is_Limited_Type (Priv) then
6306 Set_Is_Limited_Composite (Etype (T));
6307 Set_Is_Limited_Composite (T);
6308 else
6309 Set_Is_Private_Composite (Etype (T));
6310 Set_Is_Private_Composite (T);
6311 end if;
6312 end if;
6314 -- A syntax error in the declaration itself may lead to an empty index
6315 -- list, in which case do a minimal patch.
6317 if No (First_Index (T)) then
6318 Error_Msg_N ("missing index definition in array type declaration", T);
6320 declare
6321 Indexes : constant List_Id :=
6322 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6323 begin
6324 Set_Discrete_Subtype_Definitions (Def, Indexes);
6325 Set_First_Index (T, First (Indexes));
6326 return;
6327 end;
6328 end if;
6330 -- Create a concatenation operator for the new type. Internal array
6331 -- types created for packed entities do not need such, they are
6332 -- compatible with the user-defined type.
6334 if Number_Dimensions (T) = 1
6335 and then not Is_Packed_Array_Impl_Type (T)
6336 then
6337 New_Concatenation_Op (T);
6338 end if;
6340 -- In the case of an unconstrained array the parser has already verified
6341 -- that all the indexes are unconstrained but we still need to make sure
6342 -- that the element type is constrained.
6344 if not Is_Definite_Subtype (Element_Type) then
6345 Error_Msg_N
6346 ("unconstrained element type in array declaration",
6347 Subtype_Indication (Component_Def));
6349 elsif Is_Abstract_Type (Element_Type) then
6350 Error_Msg_N
6351 ("the type of a component cannot be abstract",
6352 Subtype_Indication (Component_Def));
6353 end if;
6355 -- There may be an invariant declared for the component type, but
6356 -- the construction of the component invariant checking procedure
6357 -- takes place during expansion.
6358 end Array_Type_Declaration;
6360 ------------------------------------------------------
6361 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6362 ------------------------------------------------------
6364 function Replace_Anonymous_Access_To_Protected_Subprogram
6365 (N : Node_Id) return Entity_Id
6367 Loc : constant Source_Ptr := Sloc (N);
6369 Curr_Scope : constant Scope_Stack_Entry :=
6370 Scope_Stack.Table (Scope_Stack.Last);
6372 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6374 Acc : Node_Id;
6375 -- Access definition in declaration
6377 Comp : Node_Id;
6378 -- Object definition or formal definition with an access definition
6380 Decl : Node_Id;
6381 -- Declaration of anonymous access to subprogram type
6383 Spec : Node_Id;
6384 -- Original specification in access to subprogram
6386 P : Node_Id;
6388 begin
6389 Set_Is_Internal (Anon);
6391 case Nkind (N) is
6392 when N_Constrained_Array_Definition
6393 | N_Component_Declaration
6394 | N_Unconstrained_Array_Definition
6396 Comp := Component_Definition (N);
6397 Acc := Access_Definition (Comp);
6399 when N_Discriminant_Specification =>
6400 Comp := Discriminant_Type (N);
6401 Acc := Comp;
6403 when N_Parameter_Specification =>
6404 Comp := Parameter_Type (N);
6405 Acc := Comp;
6407 when N_Access_Function_Definition =>
6408 Comp := Result_Definition (N);
6409 Acc := Comp;
6411 when N_Object_Declaration =>
6412 Comp := Object_Definition (N);
6413 Acc := Comp;
6415 when N_Function_Specification =>
6416 Comp := Result_Definition (N);
6417 Acc := Comp;
6419 when others =>
6420 raise Program_Error;
6421 end case;
6423 Spec := Access_To_Subprogram_Definition (Acc);
6425 Decl :=
6426 Make_Full_Type_Declaration (Loc,
6427 Defining_Identifier => Anon,
6428 Type_Definition => Copy_Separate_Tree (Spec));
6430 Mark_Rewrite_Insertion (Decl);
6432 -- In ASIS mode, analyze the profile on the original node, because
6433 -- the separate copy does not provide enough links to recover the
6434 -- original tree. Analysis is limited to type annotations, within
6435 -- a temporary scope that serves as an anonymous subprogram to collect
6436 -- otherwise useless temporaries and itypes.
6438 if ASIS_Mode then
6439 declare
6440 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6442 begin
6443 if Nkind (Spec) = N_Access_Function_Definition then
6444 Set_Ekind (Typ, E_Function);
6445 else
6446 Set_Ekind (Typ, E_Procedure);
6447 end if;
6449 Set_Parent (Typ, N);
6450 Set_Scope (Typ, Current_Scope);
6451 Push_Scope (Typ);
6453 -- Nothing to do if procedure is parameterless
6455 if Present (Parameter_Specifications (Spec)) then
6456 Process_Formals (Parameter_Specifications (Spec), Spec);
6457 end if;
6459 if Nkind (Spec) = N_Access_Function_Definition then
6460 declare
6461 Def : constant Node_Id := Result_Definition (Spec);
6463 begin
6464 -- The result might itself be an anonymous access type, so
6465 -- have to recurse.
6467 if Nkind (Def) = N_Access_Definition then
6468 if Present (Access_To_Subprogram_Definition (Def)) then
6469 Set_Etype
6470 (Def,
6471 Replace_Anonymous_Access_To_Protected_Subprogram
6472 (Spec));
6473 else
6474 Find_Type (Subtype_Mark (Def));
6475 end if;
6477 else
6478 Find_Type (Def);
6479 end if;
6480 end;
6481 end if;
6483 End_Scope;
6484 end;
6485 end if;
6487 -- Insert the new declaration in the nearest enclosing scope. If the
6488 -- parent is a body and N is its return type, the declaration belongs
6489 -- in the enclosing scope. Likewise if N is the type of a parameter.
6491 P := Parent (N);
6493 if Nkind (N) = N_Function_Specification
6494 and then Nkind (P) = N_Subprogram_Body
6495 then
6496 P := Parent (P);
6497 elsif Nkind (N) = N_Parameter_Specification
6498 and then Nkind (P) in N_Subprogram_Specification
6499 and then Nkind (Parent (P)) = N_Subprogram_Body
6500 then
6501 P := Parent (Parent (P));
6502 end if;
6504 while Present (P) and then not Has_Declarations (P) loop
6505 P := Parent (P);
6506 end loop;
6508 pragma Assert (Present (P));
6510 if Nkind (P) = N_Package_Specification then
6511 Prepend (Decl, Visible_Declarations (P));
6512 else
6513 Prepend (Decl, Declarations (P));
6514 end if;
6516 -- Replace the anonymous type with an occurrence of the new declaration.
6517 -- In all cases the rewritten node does not have the null-exclusion
6518 -- attribute because (if present) it was already inherited by the
6519 -- anonymous entity (Anon). Thus, in case of components we do not
6520 -- inherit this attribute.
6522 if Nkind (N) = N_Parameter_Specification then
6523 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6524 Set_Etype (Defining_Identifier (N), Anon);
6525 Set_Null_Exclusion_Present (N, False);
6527 elsif Nkind (N) = N_Object_Declaration then
6528 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6529 Set_Etype (Defining_Identifier (N), Anon);
6531 elsif Nkind (N) = N_Access_Function_Definition then
6532 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6534 elsif Nkind (N) = N_Function_Specification then
6535 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6536 Set_Etype (Defining_Unit_Name (N), Anon);
6538 else
6539 Rewrite (Comp,
6540 Make_Component_Definition (Loc,
6541 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6542 end if;
6544 Mark_Rewrite_Insertion (Comp);
6546 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6547 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6548 and then not Is_Type (Current_Scope))
6549 then
6551 -- Declaration can be analyzed in the current scope.
6553 Analyze (Decl);
6555 else
6556 -- Temporarily remove the current scope (record or subprogram) from
6557 -- the stack to add the new declarations to the enclosing scope.
6558 -- The anonymous entity is an Itype with the proper attributes.
6560 Scope_Stack.Decrement_Last;
6561 Analyze (Decl);
6562 Set_Is_Itype (Anon);
6563 Set_Associated_Node_For_Itype (Anon, N);
6564 Scope_Stack.Append (Curr_Scope);
6565 end if;
6567 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6568 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6569 return Anon;
6570 end Replace_Anonymous_Access_To_Protected_Subprogram;
6572 -------------------------------
6573 -- Build_Derived_Access_Type --
6574 -------------------------------
6576 procedure Build_Derived_Access_Type
6577 (N : Node_Id;
6578 Parent_Type : Entity_Id;
6579 Derived_Type : Entity_Id)
6581 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6583 Desig_Type : Entity_Id;
6584 Discr : Entity_Id;
6585 Discr_Con_Elist : Elist_Id;
6586 Discr_Con_El : Elmt_Id;
6587 Subt : Entity_Id;
6589 begin
6590 -- Set the designated type so it is available in case this is an access
6591 -- to a self-referential type, e.g. a standard list type with a next
6592 -- pointer. Will be reset after subtype is built.
6594 Set_Directly_Designated_Type
6595 (Derived_Type, Designated_Type (Parent_Type));
6597 Subt := Process_Subtype (S, N);
6599 if Nkind (S) /= N_Subtype_Indication
6600 and then Subt /= Base_Type (Subt)
6601 then
6602 Set_Ekind (Derived_Type, E_Access_Subtype);
6603 end if;
6605 if Ekind (Derived_Type) = E_Access_Subtype then
6606 declare
6607 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6608 Ibase : constant Entity_Id :=
6609 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6610 Svg_Chars : constant Name_Id := Chars (Ibase);
6611 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6612 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6614 begin
6615 Copy_Node (Pbase, Ibase);
6617 -- Restore Itype status after Copy_Node
6619 Set_Is_Itype (Ibase);
6620 Set_Associated_Node_For_Itype (Ibase, N);
6622 Set_Chars (Ibase, Svg_Chars);
6623 Set_Prev_Entity (Ibase, Svg_Prev_E);
6624 Set_Next_Entity (Ibase, Svg_Next_E);
6625 Set_Sloc (Ibase, Sloc (Derived_Type));
6626 Set_Scope (Ibase, Scope (Derived_Type));
6627 Set_Freeze_Node (Ibase, Empty);
6628 Set_Is_Frozen (Ibase, False);
6629 Set_Comes_From_Source (Ibase, False);
6630 Set_Is_First_Subtype (Ibase, False);
6632 Set_Etype (Ibase, Pbase);
6633 Set_Etype (Derived_Type, Ibase);
6634 end;
6635 end if;
6637 Set_Directly_Designated_Type
6638 (Derived_Type, Designated_Type (Subt));
6640 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6641 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6642 Set_Size_Info (Derived_Type, Parent_Type);
6643 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6644 Set_Depends_On_Private (Derived_Type,
6645 Has_Private_Component (Derived_Type));
6646 Conditional_Delay (Derived_Type, Subt);
6648 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6649 -- that it is not redundant.
6651 if Null_Exclusion_Present (Type_Definition (N)) then
6652 Set_Can_Never_Be_Null (Derived_Type);
6654 elsif Can_Never_Be_Null (Parent_Type) then
6655 Set_Can_Never_Be_Null (Derived_Type);
6656 end if;
6658 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6659 -- the root type for this information.
6661 -- Apply range checks to discriminants for derived record case
6662 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6664 Desig_Type := Designated_Type (Derived_Type);
6666 if Is_Composite_Type (Desig_Type)
6667 and then (not Is_Array_Type (Desig_Type))
6668 and then Has_Discriminants (Desig_Type)
6669 and then Base_Type (Desig_Type) /= Desig_Type
6670 then
6671 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6672 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6674 Discr := First_Discriminant (Base_Type (Desig_Type));
6675 while Present (Discr_Con_El) loop
6676 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6677 Next_Elmt (Discr_Con_El);
6678 Next_Discriminant (Discr);
6679 end loop;
6680 end if;
6681 end Build_Derived_Access_Type;
6683 ------------------------------
6684 -- Build_Derived_Array_Type --
6685 ------------------------------
6687 procedure Build_Derived_Array_Type
6688 (N : Node_Id;
6689 Parent_Type : Entity_Id;
6690 Derived_Type : Entity_Id)
6692 Loc : constant Source_Ptr := Sloc (N);
6693 Tdef : constant Node_Id := Type_Definition (N);
6694 Indic : constant Node_Id := Subtype_Indication (Tdef);
6695 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6696 Implicit_Base : Entity_Id := Empty;
6697 New_Indic : Node_Id;
6699 procedure Make_Implicit_Base;
6700 -- If the parent subtype is constrained, the derived type is a subtype
6701 -- of an implicit base type derived from the parent base.
6703 ------------------------
6704 -- Make_Implicit_Base --
6705 ------------------------
6707 procedure Make_Implicit_Base is
6708 begin
6709 Implicit_Base :=
6710 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6712 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6713 Set_Etype (Implicit_Base, Parent_Base);
6715 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6716 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6718 Set_Has_Delayed_Freeze (Implicit_Base, True);
6719 end Make_Implicit_Base;
6721 -- Start of processing for Build_Derived_Array_Type
6723 begin
6724 if not Is_Constrained (Parent_Type) then
6725 if Nkind (Indic) /= N_Subtype_Indication then
6726 Set_Ekind (Derived_Type, E_Array_Type);
6728 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6729 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6731 Set_Has_Delayed_Freeze (Derived_Type, True);
6733 else
6734 Make_Implicit_Base;
6735 Set_Etype (Derived_Type, Implicit_Base);
6737 New_Indic :=
6738 Make_Subtype_Declaration (Loc,
6739 Defining_Identifier => Derived_Type,
6740 Subtype_Indication =>
6741 Make_Subtype_Indication (Loc,
6742 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6743 Constraint => Constraint (Indic)));
6745 Rewrite (N, New_Indic);
6746 Analyze (N);
6747 end if;
6749 else
6750 if Nkind (Indic) /= N_Subtype_Indication then
6751 Make_Implicit_Base;
6753 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6754 Set_Etype (Derived_Type, Implicit_Base);
6755 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6757 else
6758 Error_Msg_N ("illegal constraint on constrained type", Indic);
6759 end if;
6760 end if;
6762 -- If parent type is not a derived type itself, and is declared in
6763 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6764 -- the new type's concatenation operator since Derive_Subprograms
6765 -- will not inherit the parent's operator. If the parent type is
6766 -- unconstrained, the operator is of the unconstrained base type.
6768 if Number_Dimensions (Parent_Type) = 1
6769 and then not Is_Limited_Type (Parent_Type)
6770 and then not Is_Derived_Type (Parent_Type)
6771 and then not Is_Package_Or_Generic_Package
6772 (Scope (Base_Type (Parent_Type)))
6773 then
6774 if not Is_Constrained (Parent_Type)
6775 and then Is_Constrained (Derived_Type)
6776 then
6777 New_Concatenation_Op (Implicit_Base);
6778 else
6779 New_Concatenation_Op (Derived_Type);
6780 end if;
6781 end if;
6782 end Build_Derived_Array_Type;
6784 -----------------------------------
6785 -- Build_Derived_Concurrent_Type --
6786 -----------------------------------
6788 procedure Build_Derived_Concurrent_Type
6789 (N : Node_Id;
6790 Parent_Type : Entity_Id;
6791 Derived_Type : Entity_Id)
6793 Loc : constant Source_Ptr := Sloc (N);
6795 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6796 Corr_Decl : Node_Id;
6797 Corr_Decl_Needed : Boolean;
6798 -- If the derived type has fewer discriminants than its parent, the
6799 -- corresponding record is also a derived type, in order to account for
6800 -- the bound discriminants. We create a full type declaration for it in
6801 -- this case.
6803 Constraint_Present : constant Boolean :=
6804 Nkind (Subtype_Indication (Type_Definition (N))) =
6805 N_Subtype_Indication;
6807 D_Constraint : Node_Id;
6808 New_Constraint : Elist_Id := No_Elist;
6809 Old_Disc : Entity_Id;
6810 New_Disc : Entity_Id;
6811 New_N : Node_Id;
6813 begin
6814 Set_Stored_Constraint (Derived_Type, No_Elist);
6815 Corr_Decl_Needed := False;
6816 Old_Disc := Empty;
6818 if Present (Discriminant_Specifications (N))
6819 and then Constraint_Present
6820 then
6821 Old_Disc := First_Discriminant (Parent_Type);
6822 New_Disc := First (Discriminant_Specifications (N));
6823 while Present (New_Disc) and then Present (Old_Disc) loop
6824 Next_Discriminant (Old_Disc);
6825 Next (New_Disc);
6826 end loop;
6827 end if;
6829 if Present (Old_Disc) and then Expander_Active then
6831 -- The new type has fewer discriminants, so we need to create a new
6832 -- corresponding record, which is derived from the corresponding
6833 -- record of the parent, and has a stored constraint that captures
6834 -- the values of the discriminant constraints. The corresponding
6835 -- record is needed only if expander is active and code generation is
6836 -- enabled.
6838 -- The type declaration for the derived corresponding record has the
6839 -- same discriminant part and constraints as the current declaration.
6840 -- Copy the unanalyzed tree to build declaration.
6842 Corr_Decl_Needed := True;
6843 New_N := Copy_Separate_Tree (N);
6845 Corr_Decl :=
6846 Make_Full_Type_Declaration (Loc,
6847 Defining_Identifier => Corr_Record,
6848 Discriminant_Specifications =>
6849 Discriminant_Specifications (New_N),
6850 Type_Definition =>
6851 Make_Derived_Type_Definition (Loc,
6852 Subtype_Indication =>
6853 Make_Subtype_Indication (Loc,
6854 Subtype_Mark =>
6855 New_Occurrence_Of
6856 (Corresponding_Record_Type (Parent_Type), Loc),
6857 Constraint =>
6858 Constraint
6859 (Subtype_Indication (Type_Definition (New_N))))));
6860 end if;
6862 -- Copy Storage_Size and Relative_Deadline variables if task case
6864 if Is_Task_Type (Parent_Type) then
6865 Set_Storage_Size_Variable (Derived_Type,
6866 Storage_Size_Variable (Parent_Type));
6867 Set_Relative_Deadline_Variable (Derived_Type,
6868 Relative_Deadline_Variable (Parent_Type));
6869 end if;
6871 if Present (Discriminant_Specifications (N)) then
6872 Push_Scope (Derived_Type);
6873 Check_Or_Process_Discriminants (N, Derived_Type);
6875 if Constraint_Present then
6876 New_Constraint :=
6877 Expand_To_Stored_Constraint
6878 (Parent_Type,
6879 Build_Discriminant_Constraints
6880 (Parent_Type,
6881 Subtype_Indication (Type_Definition (N)), True));
6882 end if;
6884 End_Scope;
6886 elsif Constraint_Present then
6888 -- Build constrained subtype, copying the constraint, and derive
6889 -- from it to create a derived constrained type.
6891 declare
6892 Loc : constant Source_Ptr := Sloc (N);
6893 Anon : constant Entity_Id :=
6894 Make_Defining_Identifier (Loc,
6895 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6896 Decl : Node_Id;
6898 begin
6899 Decl :=
6900 Make_Subtype_Declaration (Loc,
6901 Defining_Identifier => Anon,
6902 Subtype_Indication =>
6903 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6904 Insert_Before (N, Decl);
6905 Analyze (Decl);
6907 Rewrite (Subtype_Indication (Type_Definition (N)),
6908 New_Occurrence_Of (Anon, Loc));
6909 Set_Analyzed (Derived_Type, False);
6910 Analyze (N);
6911 return;
6912 end;
6913 end if;
6915 -- By default, operations and private data are inherited from parent.
6916 -- However, in the presence of bound discriminants, a new corresponding
6917 -- record will be created, see below.
6919 Set_Has_Discriminants
6920 (Derived_Type, Has_Discriminants (Parent_Type));
6921 Set_Corresponding_Record_Type
6922 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6924 -- Is_Constrained is set according the parent subtype, but is set to
6925 -- False if the derived type is declared with new discriminants.
6927 Set_Is_Constrained
6928 (Derived_Type,
6929 (Is_Constrained (Parent_Type) or else Constraint_Present)
6930 and then not Present (Discriminant_Specifications (N)));
6932 if Constraint_Present then
6933 if not Has_Discriminants (Parent_Type) then
6934 Error_Msg_N ("untagged parent must have discriminants", N);
6936 elsif Present (Discriminant_Specifications (N)) then
6938 -- Verify that new discriminants are used to constrain old ones
6940 D_Constraint :=
6941 First
6942 (Constraints
6943 (Constraint (Subtype_Indication (Type_Definition (N)))));
6945 Old_Disc := First_Discriminant (Parent_Type);
6947 while Present (D_Constraint) loop
6948 if Nkind (D_Constraint) /= N_Discriminant_Association then
6950 -- Positional constraint. If it is a reference to a new
6951 -- discriminant, it constrains the corresponding old one.
6953 if Nkind (D_Constraint) = N_Identifier then
6954 New_Disc := First_Discriminant (Derived_Type);
6955 while Present (New_Disc) loop
6956 exit when Chars (New_Disc) = Chars (D_Constraint);
6957 Next_Discriminant (New_Disc);
6958 end loop;
6960 if Present (New_Disc) then
6961 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6962 end if;
6963 end if;
6965 Next_Discriminant (Old_Disc);
6967 -- if this is a named constraint, search by name for the old
6968 -- discriminants constrained by the new one.
6970 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6972 -- Find new discriminant with that name
6974 New_Disc := First_Discriminant (Derived_Type);
6975 while Present (New_Disc) loop
6976 exit when
6977 Chars (New_Disc) = Chars (Expression (D_Constraint));
6978 Next_Discriminant (New_Disc);
6979 end loop;
6981 if Present (New_Disc) then
6983 -- Verify that new discriminant renames some discriminant
6984 -- of the parent type, and associate the new discriminant
6985 -- with one or more old ones that it renames.
6987 declare
6988 Selector : Node_Id;
6990 begin
6991 Selector := First (Selector_Names (D_Constraint));
6992 while Present (Selector) loop
6993 Old_Disc := First_Discriminant (Parent_Type);
6994 while Present (Old_Disc) loop
6995 exit when Chars (Old_Disc) = Chars (Selector);
6996 Next_Discriminant (Old_Disc);
6997 end loop;
6999 if Present (Old_Disc) then
7000 Set_Corresponding_Discriminant
7001 (New_Disc, Old_Disc);
7002 end if;
7004 Next (Selector);
7005 end loop;
7006 end;
7007 end if;
7008 end if;
7010 Next (D_Constraint);
7011 end loop;
7013 New_Disc := First_Discriminant (Derived_Type);
7014 while Present (New_Disc) loop
7015 if No (Corresponding_Discriminant (New_Disc)) then
7016 Error_Msg_NE
7017 ("new discriminant& must constrain old one", N, New_Disc);
7019 elsif not
7020 Subtypes_Statically_Compatible
7021 (Etype (New_Disc),
7022 Etype (Corresponding_Discriminant (New_Disc)))
7023 then
7024 Error_Msg_NE
7025 ("& not statically compatible with parent discriminant",
7026 N, New_Disc);
7027 end if;
7029 Next_Discriminant (New_Disc);
7030 end loop;
7031 end if;
7033 elsif Present (Discriminant_Specifications (N)) then
7034 Error_Msg_N
7035 ("missing discriminant constraint in untagged derivation", N);
7036 end if;
7038 -- The entity chain of the derived type includes the new discriminants
7039 -- but shares operations with the parent.
7041 if Present (Discriminant_Specifications (N)) then
7042 Old_Disc := First_Discriminant (Parent_Type);
7043 while Present (Old_Disc) loop
7044 if No (Next_Entity (Old_Disc))
7045 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7046 then
7047 Link_Entities
7048 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7049 exit;
7050 end if;
7052 Next_Discriminant (Old_Disc);
7053 end loop;
7055 else
7056 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7057 if Has_Discriminants (Parent_Type) then
7058 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7059 Set_Discriminant_Constraint (
7060 Derived_Type, Discriminant_Constraint (Parent_Type));
7061 end if;
7062 end if;
7064 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7066 Set_Has_Completion (Derived_Type);
7068 if Corr_Decl_Needed then
7069 Set_Stored_Constraint (Derived_Type, New_Constraint);
7070 Insert_After (N, Corr_Decl);
7071 Analyze (Corr_Decl);
7072 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7073 end if;
7074 end Build_Derived_Concurrent_Type;
7076 ------------------------------------
7077 -- Build_Derived_Enumeration_Type --
7078 ------------------------------------
7080 procedure Build_Derived_Enumeration_Type
7081 (N : Node_Id;
7082 Parent_Type : Entity_Id;
7083 Derived_Type : Entity_Id)
7085 Loc : constant Source_Ptr := Sloc (N);
7086 Def : constant Node_Id := Type_Definition (N);
7087 Indic : constant Node_Id := Subtype_Indication (Def);
7088 Implicit_Base : Entity_Id;
7089 Literal : Entity_Id;
7090 New_Lit : Entity_Id;
7091 Literals_List : List_Id;
7092 Type_Decl : Node_Id;
7093 Hi, Lo : Node_Id;
7094 Rang_Expr : Node_Id;
7096 begin
7097 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7098 -- not have explicit literals lists we need to process types derived
7099 -- from them specially. This is handled by Derived_Standard_Character.
7100 -- If the parent type is a generic type, there are no literals either,
7101 -- and we construct the same skeletal representation as for the generic
7102 -- parent type.
7104 if Is_Standard_Character_Type (Parent_Type) then
7105 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7107 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7108 declare
7109 Lo : Node_Id;
7110 Hi : Node_Id;
7112 begin
7113 if Nkind (Indic) /= N_Subtype_Indication then
7114 Lo :=
7115 Make_Attribute_Reference (Loc,
7116 Attribute_Name => Name_First,
7117 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7118 Set_Etype (Lo, Derived_Type);
7120 Hi :=
7121 Make_Attribute_Reference (Loc,
7122 Attribute_Name => Name_Last,
7123 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7124 Set_Etype (Hi, Derived_Type);
7126 Set_Scalar_Range (Derived_Type,
7127 Make_Range (Loc,
7128 Low_Bound => Lo,
7129 High_Bound => Hi));
7130 else
7132 -- Analyze subtype indication and verify compatibility
7133 -- with parent type.
7135 if Base_Type (Process_Subtype (Indic, N)) /=
7136 Base_Type (Parent_Type)
7137 then
7138 Error_Msg_N
7139 ("illegal constraint for formal discrete type", N);
7140 end if;
7141 end if;
7142 end;
7144 else
7145 -- If a constraint is present, analyze the bounds to catch
7146 -- premature usage of the derived literals.
7148 if Nkind (Indic) = N_Subtype_Indication
7149 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7150 then
7151 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7152 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7153 end if;
7155 -- Introduce an implicit base type for the derived type even if there
7156 -- is no constraint attached to it, since this seems closer to the
7157 -- Ada semantics. Build a full type declaration tree for the derived
7158 -- type using the implicit base type as the defining identifier. The
7159 -- build a subtype declaration tree which applies the constraint (if
7160 -- any) have it replace the derived type declaration.
7162 Literal := First_Literal (Parent_Type);
7163 Literals_List := New_List;
7164 while Present (Literal)
7165 and then Ekind (Literal) = E_Enumeration_Literal
7166 loop
7167 -- Literals of the derived type have the same representation as
7168 -- those of the parent type, but this representation can be
7169 -- overridden by an explicit representation clause. Indicate
7170 -- that there is no explicit representation given yet. These
7171 -- derived literals are implicit operations of the new type,
7172 -- and can be overridden by explicit ones.
7174 if Nkind (Literal) = N_Defining_Character_Literal then
7175 New_Lit :=
7176 Make_Defining_Character_Literal (Loc, Chars (Literal));
7177 else
7178 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7179 end if;
7181 Set_Ekind (New_Lit, E_Enumeration_Literal);
7182 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7183 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7184 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7185 Set_Alias (New_Lit, Literal);
7186 Set_Is_Known_Valid (New_Lit, True);
7188 Append (New_Lit, Literals_List);
7189 Next_Literal (Literal);
7190 end loop;
7192 Implicit_Base :=
7193 Make_Defining_Identifier (Sloc (Derived_Type),
7194 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7196 -- Indicate the proper nature of the derived type. This must be done
7197 -- before analysis of the literals, to recognize cases when a literal
7198 -- may be hidden by a previous explicit function definition (cf.
7199 -- c83031a).
7201 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7202 Set_Etype (Derived_Type, Implicit_Base);
7204 Type_Decl :=
7205 Make_Full_Type_Declaration (Loc,
7206 Defining_Identifier => Implicit_Base,
7207 Discriminant_Specifications => No_List,
7208 Type_Definition =>
7209 Make_Enumeration_Type_Definition (Loc, Literals_List));
7211 Mark_Rewrite_Insertion (Type_Decl);
7212 Insert_Before (N, Type_Decl);
7213 Analyze (Type_Decl);
7215 -- The anonymous base now has a full declaration, but this base
7216 -- is not a first subtype.
7218 Set_Is_First_Subtype (Implicit_Base, False);
7220 -- After the implicit base is analyzed its Etype needs to be changed
7221 -- to reflect the fact that it is derived from the parent type which
7222 -- was ignored during analysis. We also set the size at this point.
7224 Set_Etype (Implicit_Base, Parent_Type);
7226 Set_Size_Info (Implicit_Base, Parent_Type);
7227 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7228 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7230 -- Copy other flags from parent type
7232 Set_Has_Non_Standard_Rep
7233 (Implicit_Base, Has_Non_Standard_Rep
7234 (Parent_Type));
7235 Set_Has_Pragma_Ordered
7236 (Implicit_Base, Has_Pragma_Ordered
7237 (Parent_Type));
7238 Set_Has_Delayed_Freeze (Implicit_Base);
7240 -- Process the subtype indication including a validation check on the
7241 -- constraint, if any. If a constraint is given, its bounds must be
7242 -- implicitly converted to the new type.
7244 if Nkind (Indic) = N_Subtype_Indication then
7245 declare
7246 R : constant Node_Id :=
7247 Range_Expression (Constraint (Indic));
7249 begin
7250 if Nkind (R) = N_Range then
7251 Hi := Build_Scalar_Bound
7252 (High_Bound (R), Parent_Type, Implicit_Base);
7253 Lo := Build_Scalar_Bound
7254 (Low_Bound (R), Parent_Type, Implicit_Base);
7256 else
7257 -- Constraint is a Range attribute. Replace with explicit
7258 -- mention of the bounds of the prefix, which must be a
7259 -- subtype.
7261 Analyze (Prefix (R));
7262 Hi :=
7263 Convert_To (Implicit_Base,
7264 Make_Attribute_Reference (Loc,
7265 Attribute_Name => Name_Last,
7266 Prefix =>
7267 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7269 Lo :=
7270 Convert_To (Implicit_Base,
7271 Make_Attribute_Reference (Loc,
7272 Attribute_Name => Name_First,
7273 Prefix =>
7274 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7275 end if;
7276 end;
7278 else
7279 Hi :=
7280 Build_Scalar_Bound
7281 (Type_High_Bound (Parent_Type),
7282 Parent_Type, Implicit_Base);
7283 Lo :=
7284 Build_Scalar_Bound
7285 (Type_Low_Bound (Parent_Type),
7286 Parent_Type, Implicit_Base);
7287 end if;
7289 Rang_Expr :=
7290 Make_Range (Loc,
7291 Low_Bound => Lo,
7292 High_Bound => Hi);
7294 -- If we constructed a default range for the case where no range
7295 -- was given, then the expressions in the range must not freeze
7296 -- since they do not correspond to expressions in the source.
7297 -- However, if the type inherits predicates the expressions will
7298 -- be elaborated earlier and must freeze.
7300 if Nkind (Indic) /= N_Subtype_Indication
7301 and then not Has_Predicates (Derived_Type)
7302 then
7303 Set_Must_Not_Freeze (Lo);
7304 Set_Must_Not_Freeze (Hi);
7305 Set_Must_Not_Freeze (Rang_Expr);
7306 end if;
7308 Rewrite (N,
7309 Make_Subtype_Declaration (Loc,
7310 Defining_Identifier => Derived_Type,
7311 Subtype_Indication =>
7312 Make_Subtype_Indication (Loc,
7313 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7314 Constraint =>
7315 Make_Range_Constraint (Loc,
7316 Range_Expression => Rang_Expr))));
7318 Analyze (N);
7320 -- Propagate the aspects from the original type declaration to the
7321 -- declaration of the implicit base.
7323 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7325 -- Apply a range check. Since this range expression doesn't have an
7326 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7327 -- this right???
7329 if Nkind (Indic) = N_Subtype_Indication then
7330 Apply_Range_Check
7331 (Range_Expression (Constraint (Indic)), Parent_Type,
7332 Source_Typ => Entity (Subtype_Mark (Indic)));
7333 end if;
7334 end if;
7335 end Build_Derived_Enumeration_Type;
7337 --------------------------------
7338 -- Build_Derived_Numeric_Type --
7339 --------------------------------
7341 procedure Build_Derived_Numeric_Type
7342 (N : Node_Id;
7343 Parent_Type : Entity_Id;
7344 Derived_Type : Entity_Id)
7346 Loc : constant Source_Ptr := Sloc (N);
7347 Tdef : constant Node_Id := Type_Definition (N);
7348 Indic : constant Node_Id := Subtype_Indication (Tdef);
7349 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7350 No_Constraint : constant Boolean := Nkind (Indic) /=
7351 N_Subtype_Indication;
7352 Implicit_Base : Entity_Id;
7354 Lo : Node_Id;
7355 Hi : Node_Id;
7357 begin
7358 -- Process the subtype indication including a validation check on
7359 -- the constraint if any.
7361 Discard_Node (Process_Subtype (Indic, N));
7363 -- Introduce an implicit base type for the derived type even if there
7364 -- is no constraint attached to it, since this seems closer to the Ada
7365 -- semantics.
7367 Implicit_Base :=
7368 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7370 Set_Etype (Implicit_Base, Parent_Base);
7371 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7372 Set_Size_Info (Implicit_Base, Parent_Base);
7373 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7374 Set_Parent (Implicit_Base, Parent (Derived_Type));
7375 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7377 -- Set RM Size for discrete type or decimal fixed-point type
7378 -- Ordinary fixed-point is excluded, why???
7380 if Is_Discrete_Type (Parent_Base)
7381 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7382 then
7383 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7384 end if;
7386 Set_Has_Delayed_Freeze (Implicit_Base);
7388 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7389 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7391 Set_Scalar_Range (Implicit_Base,
7392 Make_Range (Loc,
7393 Low_Bound => Lo,
7394 High_Bound => Hi));
7396 if Has_Infinities (Parent_Base) then
7397 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7398 end if;
7400 -- The Derived_Type, which is the entity of the declaration, is a
7401 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7402 -- absence of an explicit constraint.
7404 Set_Etype (Derived_Type, Implicit_Base);
7406 -- If we did not have a constraint, then the Ekind is set from the
7407 -- parent type (otherwise Process_Subtype has set the bounds)
7409 if No_Constraint then
7410 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7411 end if;
7413 -- If we did not have a range constraint, then set the range from the
7414 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7416 if No_Constraint or else not Has_Range_Constraint (Indic) then
7417 Set_Scalar_Range (Derived_Type,
7418 Make_Range (Loc,
7419 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7420 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7421 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7423 if Has_Infinities (Parent_Type) then
7424 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7425 end if;
7427 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7428 end if;
7430 Set_Is_Descendant_Of_Address (Derived_Type,
7431 Is_Descendant_Of_Address (Parent_Type));
7432 Set_Is_Descendant_Of_Address (Implicit_Base,
7433 Is_Descendant_Of_Address (Parent_Type));
7435 -- Set remaining type-specific fields, depending on numeric type
7437 if Is_Modular_Integer_Type (Parent_Type) then
7438 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7440 Set_Non_Binary_Modulus
7441 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7443 Set_Is_Known_Valid
7444 (Implicit_Base, Is_Known_Valid (Parent_Base));
7446 elsif Is_Floating_Point_Type (Parent_Type) then
7448 -- Digits of base type is always copied from the digits value of
7449 -- the parent base type, but the digits of the derived type will
7450 -- already have been set if there was a constraint present.
7452 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7453 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7455 if No_Constraint then
7456 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7457 end if;
7459 elsif Is_Fixed_Point_Type (Parent_Type) then
7461 -- Small of base type and derived type are always copied from the
7462 -- parent base type, since smalls never change. The delta of the
7463 -- base type is also copied from the parent base type. However the
7464 -- delta of the derived type will have been set already if a
7465 -- constraint was present.
7467 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7468 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7469 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7471 if No_Constraint then
7472 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7473 end if;
7475 -- The scale and machine radix in the decimal case are always
7476 -- copied from the parent base type.
7478 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7479 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7480 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7482 Set_Machine_Radix_10
7483 (Derived_Type, Machine_Radix_10 (Parent_Base));
7484 Set_Machine_Radix_10
7485 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7487 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7489 if No_Constraint then
7490 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7492 else
7493 -- the analysis of the subtype_indication sets the
7494 -- digits value of the derived type.
7496 null;
7497 end if;
7498 end if;
7499 end if;
7501 if Is_Integer_Type (Parent_Type) then
7502 Set_Has_Shift_Operator
7503 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7504 end if;
7506 -- The type of the bounds is that of the parent type, and they
7507 -- must be converted to the derived type.
7509 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7511 -- The implicit_base should be frozen when the derived type is frozen,
7512 -- but note that it is used in the conversions of the bounds. For fixed
7513 -- types we delay the determination of the bounds until the proper
7514 -- freezing point. For other numeric types this is rejected by GCC, for
7515 -- reasons that are currently unclear (???), so we choose to freeze the
7516 -- implicit base now. In the case of integers and floating point types
7517 -- this is harmless because subsequent representation clauses cannot
7518 -- affect anything, but it is still baffling that we cannot use the
7519 -- same mechanism for all derived numeric types.
7521 -- There is a further complication: actually some representation
7522 -- clauses can affect the implicit base type. For example, attribute
7523 -- definition clauses for stream-oriented attributes need to set the
7524 -- corresponding TSS entries on the base type, and this normally
7525 -- cannot be done after the base type is frozen, so the circuitry in
7526 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7527 -- and not use Set_TSS in this case.
7529 -- There are also consequences for the case of delayed representation
7530 -- aspects for some cases. For example, a Size aspect is delayed and
7531 -- should not be evaluated to the freeze point. This early freezing
7532 -- means that the size attribute evaluation happens too early???
7534 if Is_Fixed_Point_Type (Parent_Type) then
7535 Conditional_Delay (Implicit_Base, Parent_Type);
7536 else
7537 Freeze_Before (N, Implicit_Base);
7538 end if;
7539 end Build_Derived_Numeric_Type;
7541 --------------------------------
7542 -- Build_Derived_Private_Type --
7543 --------------------------------
7545 procedure Build_Derived_Private_Type
7546 (N : Node_Id;
7547 Parent_Type : Entity_Id;
7548 Derived_Type : Entity_Id;
7549 Is_Completion : Boolean;
7550 Derive_Subps : Boolean := True)
7552 Loc : constant Source_Ptr := Sloc (N);
7553 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7554 Par_Scope : constant Entity_Id := Scope (Par_Base);
7555 Full_N : constant Node_Id := New_Copy_Tree (N);
7556 Full_Der : Entity_Id := New_Copy (Derived_Type);
7557 Full_P : Entity_Id;
7559 procedure Build_Full_Derivation;
7560 -- Build full derivation, i.e. derive from the full view
7562 procedure Copy_And_Build;
7563 -- Copy derived type declaration, replace parent with its full view,
7564 -- and build derivation
7566 ---------------------------
7567 -- Build_Full_Derivation --
7568 ---------------------------
7570 procedure Build_Full_Derivation is
7571 begin
7572 -- If parent scope is not open, install the declarations
7574 if not In_Open_Scopes (Par_Scope) then
7575 Install_Private_Declarations (Par_Scope);
7576 Install_Visible_Declarations (Par_Scope);
7577 Copy_And_Build;
7578 Uninstall_Declarations (Par_Scope);
7580 -- If parent scope is open and in another unit, and parent has a
7581 -- completion, then the derivation is taking place in the visible
7582 -- part of a child unit. In that case retrieve the full view of
7583 -- the parent momentarily.
7585 elsif not In_Same_Source_Unit (N, Parent_Type) then
7586 Full_P := Full_View (Parent_Type);
7587 Exchange_Declarations (Parent_Type);
7588 Copy_And_Build;
7589 Exchange_Declarations (Full_P);
7591 -- Otherwise it is a local derivation
7593 else
7594 Copy_And_Build;
7595 end if;
7596 end Build_Full_Derivation;
7598 --------------------
7599 -- Copy_And_Build --
7600 --------------------
7602 procedure Copy_And_Build is
7603 Full_Parent : Entity_Id := Parent_Type;
7605 begin
7606 -- If the parent is itself derived from another private type,
7607 -- installing the private declarations has not affected its
7608 -- privacy status, so use its own full view explicitly.
7610 if Is_Private_Type (Full_Parent)
7611 and then Present (Full_View (Full_Parent))
7612 then
7613 Full_Parent := Full_View (Full_Parent);
7614 end if;
7616 -- And its underlying full view if necessary
7618 if Is_Private_Type (Full_Parent)
7619 and then Present (Underlying_Full_View (Full_Parent))
7620 then
7621 Full_Parent := Underlying_Full_View (Full_Parent);
7622 end if;
7624 -- For record, access and most enumeration types, derivation from
7625 -- the full view requires a fully-fledged declaration. In the other
7626 -- cases, just use an itype.
7628 if Ekind (Full_Parent) in Record_Kind
7629 or else Ekind (Full_Parent) in Access_Kind
7630 or else
7631 (Ekind (Full_Parent) in Enumeration_Kind
7632 and then not Is_Standard_Character_Type (Full_Parent)
7633 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7634 then
7635 -- Copy and adjust declaration to provide a completion for what
7636 -- is originally a private declaration. Indicate that full view
7637 -- is internally generated.
7639 Set_Comes_From_Source (Full_N, False);
7640 Set_Comes_From_Source (Full_Der, False);
7641 Set_Parent (Full_Der, Full_N);
7642 Set_Defining_Identifier (Full_N, Full_Der);
7644 -- If there are no constraints, adjust the subtype mark
7646 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7647 N_Subtype_Indication
7648 then
7649 Set_Subtype_Indication
7650 (Type_Definition (Full_N),
7651 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7652 end if;
7654 Insert_After (N, Full_N);
7656 -- Build full view of derived type from full view of parent which
7657 -- is now installed. Subprograms have been derived on the partial
7658 -- view, the completion does not derive them anew.
7660 if Ekind (Full_Parent) in Record_Kind then
7662 -- If parent type is tagged, the completion inherits the proper
7663 -- primitive operations.
7665 if Is_Tagged_Type (Parent_Type) then
7666 Build_Derived_Record_Type
7667 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7668 else
7669 Build_Derived_Record_Type
7670 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7671 end if;
7673 else
7674 Build_Derived_Type
7675 (Full_N, Full_Parent, Full_Der,
7676 Is_Completion => False, Derive_Subps => False);
7677 end if;
7679 -- The full declaration has been introduced into the tree and
7680 -- processed in the step above. It should not be analyzed again
7681 -- (when encountered later in the current list of declarations)
7682 -- to prevent spurious name conflicts. The full entity remains
7683 -- invisible.
7685 Set_Analyzed (Full_N);
7687 else
7688 Full_Der :=
7689 Make_Defining_Identifier (Sloc (Derived_Type),
7690 Chars => Chars (Derived_Type));
7691 Set_Is_Itype (Full_Der);
7692 Set_Associated_Node_For_Itype (Full_Der, N);
7693 Set_Parent (Full_Der, N);
7694 Build_Derived_Type
7695 (N, Full_Parent, Full_Der,
7696 Is_Completion => False, Derive_Subps => False);
7697 end if;
7699 Set_Has_Private_Declaration (Full_Der);
7700 Set_Has_Private_Declaration (Derived_Type);
7702 Set_Scope (Full_Der, Scope (Derived_Type));
7703 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7704 Set_Has_Size_Clause (Full_Der, False);
7705 Set_Has_Alignment_Clause (Full_Der, False);
7706 Set_Has_Delayed_Freeze (Full_Der);
7707 Set_Is_Frozen (Full_Der, False);
7708 Set_Freeze_Node (Full_Der, Empty);
7709 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7710 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7712 -- The convention on the base type may be set in the private part
7713 -- and not propagated to the subtype until later, so we obtain the
7714 -- convention from the base type of the parent.
7716 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7717 end Copy_And_Build;
7719 -- Start of processing for Build_Derived_Private_Type
7721 begin
7722 if Is_Tagged_Type (Parent_Type) then
7723 Full_P := Full_View (Parent_Type);
7725 -- A type extension of a type with unknown discriminants is an
7726 -- indefinite type that the back-end cannot handle directly.
7727 -- We treat it as a private type, and build a completion that is
7728 -- derived from the full view of the parent, and hopefully has
7729 -- known discriminants.
7731 -- If the full view of the parent type has an underlying record view,
7732 -- use it to generate the underlying record view of this derived type
7733 -- (required for chains of derivations with unknown discriminants).
7735 -- Minor optimization: we avoid the generation of useless underlying
7736 -- record view entities if the private type declaration has unknown
7737 -- discriminants but its corresponding full view has no
7738 -- discriminants.
7740 if Has_Unknown_Discriminants (Parent_Type)
7741 and then Present (Full_P)
7742 and then (Has_Discriminants (Full_P)
7743 or else Present (Underlying_Record_View (Full_P)))
7744 and then not In_Open_Scopes (Par_Scope)
7745 and then Expander_Active
7746 then
7747 declare
7748 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7749 New_Ext : constant Node_Id :=
7750 Copy_Separate_Tree
7751 (Record_Extension_Part (Type_Definition (N)));
7752 Decl : Node_Id;
7754 begin
7755 Build_Derived_Record_Type
7756 (N, Parent_Type, Derived_Type, Derive_Subps);
7758 -- Build anonymous completion, as a derivation from the full
7759 -- view of the parent. This is not a completion in the usual
7760 -- sense, because the current type is not private.
7762 Decl :=
7763 Make_Full_Type_Declaration (Loc,
7764 Defining_Identifier => Full_Der,
7765 Type_Definition =>
7766 Make_Derived_Type_Definition (Loc,
7767 Subtype_Indication =>
7768 New_Copy_Tree
7769 (Subtype_Indication (Type_Definition (N))),
7770 Record_Extension_Part => New_Ext));
7772 -- If the parent type has an underlying record view, use it
7773 -- here to build the new underlying record view.
7775 if Present (Underlying_Record_View (Full_P)) then
7776 pragma Assert
7777 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7778 = N_Identifier);
7779 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7780 Underlying_Record_View (Full_P));
7781 end if;
7783 Install_Private_Declarations (Par_Scope);
7784 Install_Visible_Declarations (Par_Scope);
7785 Insert_Before (N, Decl);
7787 -- Mark entity as an underlying record view before analysis,
7788 -- to avoid generating the list of its primitive operations
7789 -- (which is not really required for this entity) and thus
7790 -- prevent spurious errors associated with missing overriding
7791 -- of abstract primitives (overridden only for Derived_Type).
7793 Set_Ekind (Full_Der, E_Record_Type);
7794 Set_Is_Underlying_Record_View (Full_Der);
7795 Set_Default_SSO (Full_Der);
7796 Set_No_Reordering (Full_Der, No_Component_Reordering);
7798 Analyze (Decl);
7800 pragma Assert (Has_Discriminants (Full_Der)
7801 and then not Has_Unknown_Discriminants (Full_Der));
7803 Uninstall_Declarations (Par_Scope);
7805 -- Freeze the underlying record view, to prevent generation of
7806 -- useless dispatching information, which is simply shared with
7807 -- the real derived type.
7809 Set_Is_Frozen (Full_Der);
7811 -- If the derived type has access discriminants, create
7812 -- references to their anonymous types now, to prevent
7813 -- back-end problems when their first use is in generated
7814 -- bodies of primitives.
7816 declare
7817 E : Entity_Id;
7819 begin
7820 E := First_Entity (Full_Der);
7822 while Present (E) loop
7823 if Ekind (E) = E_Discriminant
7824 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7825 then
7826 Build_Itype_Reference (Etype (E), Decl);
7827 end if;
7829 Next_Entity (E);
7830 end loop;
7831 end;
7833 -- Set up links between real entity and underlying record view
7835 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7836 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7837 end;
7839 -- If discriminants are known, build derived record
7841 else
7842 Build_Derived_Record_Type
7843 (N, Parent_Type, Derived_Type, Derive_Subps);
7844 end if;
7846 return;
7848 elsif Has_Discriminants (Parent_Type) then
7850 -- Build partial view of derived type from partial view of parent.
7851 -- This must be done before building the full derivation because the
7852 -- second derivation will modify the discriminants of the first and
7853 -- the discriminants are chained with the rest of the components in
7854 -- the full derivation.
7856 Build_Derived_Record_Type
7857 (N, Parent_Type, Derived_Type, Derive_Subps);
7859 -- Build the full derivation if this is not the anonymous derived
7860 -- base type created by Build_Derived_Record_Type in the constrained
7861 -- case (see point 5. of its head comment) since we build it for the
7862 -- derived subtype. And skip it for synchronized types altogether, as
7863 -- gigi does not use these types directly.
7865 if Present (Full_View (Parent_Type))
7866 and then not Is_Itype (Derived_Type)
7867 and then not Is_Concurrent_Type (Full_View (Parent_Type))
7868 then
7869 declare
7870 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7871 Discr : Entity_Id;
7872 Last_Discr : Entity_Id;
7874 begin
7875 -- If this is not a completion, construct the implicit full
7876 -- view by deriving from the full view of the parent type.
7877 -- But if this is a completion, the derived private type
7878 -- being built is a full view and the full derivation can
7879 -- only be its underlying full view.
7881 Build_Full_Derivation;
7883 if not Is_Completion then
7884 Set_Full_View (Derived_Type, Full_Der);
7885 else
7886 Set_Underlying_Full_View (Derived_Type, Full_Der);
7887 Set_Is_Underlying_Full_View (Full_Der);
7888 end if;
7890 if not Is_Base_Type (Derived_Type) then
7891 Set_Full_View (Der_Base, Base_Type (Full_Der));
7892 end if;
7894 -- Copy the discriminant list from full view to the partial
7895 -- view (base type and its subtype). Gigi requires that the
7896 -- partial and full views have the same discriminants.
7898 -- Note that since the partial view points to discriminants
7899 -- in the full view, their scope will be that of the full
7900 -- view. This might cause some front end problems and need
7901 -- adjustment???
7903 Discr := First_Discriminant (Base_Type (Full_Der));
7904 Set_First_Entity (Der_Base, Discr);
7906 loop
7907 Last_Discr := Discr;
7908 Next_Discriminant (Discr);
7909 exit when No (Discr);
7910 end loop;
7912 Set_Last_Entity (Der_Base, Last_Discr);
7913 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7914 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7915 end;
7916 end if;
7918 elsif Present (Full_View (Parent_Type))
7919 and then Has_Discriminants (Full_View (Parent_Type))
7920 then
7921 if Has_Unknown_Discriminants (Parent_Type)
7922 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7923 N_Subtype_Indication
7924 then
7925 Error_Msg_N
7926 ("cannot constrain type with unknown discriminants",
7927 Subtype_Indication (Type_Definition (N)));
7928 return;
7929 end if;
7931 -- If this is not a completion, construct the implicit full view by
7932 -- deriving from the full view of the parent type. But if this is a
7933 -- completion, the derived private type being built is a full view
7934 -- and the full derivation can only be its underlying full view.
7936 Build_Full_Derivation;
7938 if not Is_Completion then
7939 Set_Full_View (Derived_Type, Full_Der);
7940 else
7941 Set_Underlying_Full_View (Derived_Type, Full_Der);
7942 Set_Is_Underlying_Full_View (Full_Der);
7943 end if;
7945 -- In any case, the primitive operations are inherited from the
7946 -- parent type, not from the internal full view.
7948 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7950 if Derive_Subps then
7951 Derive_Subprograms (Parent_Type, Derived_Type);
7952 end if;
7954 Set_Stored_Constraint (Derived_Type, No_Elist);
7955 Set_Is_Constrained
7956 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7958 else
7959 -- Untagged type, No discriminants on either view
7961 if Nkind (Subtype_Indication (Type_Definition (N))) =
7962 N_Subtype_Indication
7963 then
7964 Error_Msg_N
7965 ("illegal constraint on type without discriminants", N);
7966 end if;
7968 if Present (Discriminant_Specifications (N))
7969 and then Present (Full_View (Parent_Type))
7970 and then not Is_Tagged_Type (Full_View (Parent_Type))
7971 then
7972 Error_Msg_N ("cannot add discriminants to untagged type", N);
7973 end if;
7975 Set_Stored_Constraint (Derived_Type, No_Elist);
7976 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7978 Set_Is_Controlled_Active
7979 (Derived_Type, Is_Controlled_Active (Parent_Type));
7981 Set_Disable_Controlled
7982 (Derived_Type, Disable_Controlled (Parent_Type));
7984 Set_Has_Controlled_Component
7985 (Derived_Type, Has_Controlled_Component (Parent_Type));
7987 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7989 if not Is_Controlled (Parent_Type) then
7990 Set_Finalize_Storage_Only
7991 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7992 end if;
7994 -- If this is not a completion, construct the implicit full view by
7995 -- deriving from the full view of the parent type.
7997 -- ??? If the parent is untagged private and its completion is
7998 -- tagged, this mechanism will not work because we cannot derive from
7999 -- the tagged full view unless we have an extension.
8001 if Present (Full_View (Parent_Type))
8002 and then not Is_Tagged_Type (Full_View (Parent_Type))
8003 and then not Is_Completion
8004 then
8005 Build_Full_Derivation;
8006 Set_Full_View (Derived_Type, Full_Der);
8007 end if;
8008 end if;
8010 Set_Has_Unknown_Discriminants (Derived_Type,
8011 Has_Unknown_Discriminants (Parent_Type));
8013 if Is_Private_Type (Derived_Type) then
8014 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8015 end if;
8017 -- If the parent base type is in scope, add the derived type to its
8018 -- list of private dependents, because its full view may become
8019 -- visible subsequently (in a nested private part, a body, or in a
8020 -- further child unit).
8022 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8023 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8025 -- Check for unusual case where a type completed by a private
8026 -- derivation occurs within a package nested in a child unit, and
8027 -- the parent is declared in an ancestor.
8029 if Is_Child_Unit (Scope (Current_Scope))
8030 and then Is_Completion
8031 and then In_Private_Part (Current_Scope)
8032 and then Scope (Parent_Type) /= Current_Scope
8034 -- Note that if the parent has a completion in the private part,
8035 -- (which is itself a derivation from some other private type)
8036 -- it is that completion that is visible, there is no full view
8037 -- available, and no special processing is needed.
8039 and then Present (Full_View (Parent_Type))
8040 then
8041 -- In this case, the full view of the parent type will become
8042 -- visible in the body of the enclosing child, and only then will
8043 -- the current type be possibly non-private. Build an underlying
8044 -- full view that will be installed when the enclosing child body
8045 -- is compiled.
8047 if Present (Underlying_Full_View (Derived_Type)) then
8048 Full_Der := Underlying_Full_View (Derived_Type);
8049 else
8050 Build_Full_Derivation;
8051 Set_Underlying_Full_View (Derived_Type, Full_Der);
8052 Set_Is_Underlying_Full_View (Full_Der);
8053 end if;
8055 -- The full view will be used to swap entities on entry/exit to
8056 -- the body, and must appear in the entity list for the package.
8058 Append_Entity (Full_Der, Scope (Derived_Type));
8059 end if;
8060 end if;
8061 end Build_Derived_Private_Type;
8063 -------------------------------
8064 -- Build_Derived_Record_Type --
8065 -------------------------------
8067 -- 1. INTRODUCTION
8069 -- Ideally we would like to use the same model of type derivation for
8070 -- tagged and untagged record types. Unfortunately this is not quite
8071 -- possible because the semantics of representation clauses is different
8072 -- for tagged and untagged records under inheritance. Consider the
8073 -- following:
8075 -- type R (...) is [tagged] record ... end record;
8076 -- type T (...) is new R (...) [with ...];
8078 -- The representation clauses for T can specify a completely different
8079 -- record layout from R's. Hence the same component can be placed in two
8080 -- very different positions in objects of type T and R. If R and T are
8081 -- tagged types, representation clauses for T can only specify the layout
8082 -- of non inherited components, thus components that are common in R and T
8083 -- have the same position in objects of type R and T.
8085 -- This has two implications. The first is that the entire tree for R's
8086 -- declaration needs to be copied for T in the untagged case, so that T
8087 -- can be viewed as a record type of its own with its own representation
8088 -- clauses. The second implication is the way we handle discriminants.
8089 -- Specifically, in the untagged case we need a way to communicate to Gigi
8090 -- what are the real discriminants in the record, while for the semantics
8091 -- we need to consider those introduced by the user to rename the
8092 -- discriminants in the parent type. This is handled by introducing the
8093 -- notion of stored discriminants. See below for more.
8095 -- Fortunately the way regular components are inherited can be handled in
8096 -- the same way in tagged and untagged types.
8098 -- To complicate things a bit more the private view of a private extension
8099 -- cannot be handled in the same way as the full view (for one thing the
8100 -- semantic rules are somewhat different). We will explain what differs
8101 -- below.
8103 -- 2. DISCRIMINANTS UNDER INHERITANCE
8105 -- The semantic rules governing the discriminants of derived types are
8106 -- quite subtle.
8108 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8109 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8111 -- If parent type has discriminants, then the discriminants that are
8112 -- declared in the derived type are [3.4 (11)]:
8114 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8115 -- there is one;
8117 -- o Otherwise, each discriminant of the parent type (implicitly declared
8118 -- in the same order with the same specifications). In this case, the
8119 -- discriminants are said to be "inherited", or if unknown in the parent
8120 -- are also unknown in the derived type.
8122 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8124 -- o The parent subtype must be constrained;
8126 -- o If the parent type is not a tagged type, then each discriminant of
8127 -- the derived type must be used in the constraint defining a parent
8128 -- subtype. [Implementation note: This ensures that the new discriminant
8129 -- can share storage with an existing discriminant.]
8131 -- For the derived type each discriminant of the parent type is either
8132 -- inherited, constrained to equal some new discriminant of the derived
8133 -- type, or constrained to the value of an expression.
8135 -- When inherited or constrained to equal some new discriminant, the
8136 -- parent discriminant and the discriminant of the derived type are said
8137 -- to "correspond".
8139 -- If a discriminant of the parent type is constrained to a specific value
8140 -- in the derived type definition, then the discriminant is said to be
8141 -- "specified" by that derived type definition.
8143 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8145 -- We have spoken about stored discriminants in point 1 (introduction)
8146 -- above. There are two sorts of stored discriminants: implicit and
8147 -- explicit. As long as the derived type inherits the same discriminants as
8148 -- the root record type, stored discriminants are the same as regular
8149 -- discriminants, and are said to be implicit. However, if any discriminant
8150 -- in the root type was renamed in the derived type, then the derived
8151 -- type will contain explicit stored discriminants. Explicit stored
8152 -- discriminants are discriminants in addition to the semantically visible
8153 -- discriminants defined for the derived type. Stored discriminants are
8154 -- used by Gigi to figure out what are the physical discriminants in
8155 -- objects of the derived type (see precise definition in einfo.ads).
8156 -- As an example, consider the following:
8158 -- type R (D1, D2, D3 : Int) is record ... end record;
8159 -- type T1 is new R;
8160 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8161 -- type T3 is new T2;
8162 -- type T4 (Y : Int) is new T3 (Y, 99);
8164 -- The following table summarizes the discriminants and stored
8165 -- discriminants in R and T1 through T4:
8167 -- Type Discrim Stored Discrim Comment
8168 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8169 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8170 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8171 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8172 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8174 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8175 -- find the corresponding discriminant in the parent type, while
8176 -- Original_Record_Component (abbreviated ORC below) the actual physical
8177 -- component that is renamed. Finally the field Is_Completely_Hidden
8178 -- (abbreviated ICH below) is set for all explicit stored discriminants
8179 -- (see einfo.ads for more info). For the above example this gives:
8181 -- Discrim CD ORC ICH
8182 -- ^^^^^^^ ^^ ^^^ ^^^
8183 -- D1 in R empty itself no
8184 -- D2 in R empty itself no
8185 -- D3 in R empty itself no
8187 -- D1 in T1 D1 in R itself no
8188 -- D2 in T1 D2 in R itself no
8189 -- D3 in T1 D3 in R itself no
8191 -- X1 in T2 D3 in T1 D3 in T2 no
8192 -- X2 in T2 D1 in T1 D1 in T2 no
8193 -- D1 in T2 empty itself yes
8194 -- D2 in T2 empty itself yes
8195 -- D3 in T2 empty itself yes
8197 -- X1 in T3 X1 in T2 D3 in T3 no
8198 -- X2 in T3 X2 in T2 D1 in T3 no
8199 -- D1 in T3 empty itself yes
8200 -- D2 in T3 empty itself yes
8201 -- D3 in T3 empty itself yes
8203 -- Y in T4 X1 in T3 D3 in T4 no
8204 -- D1 in T4 empty itself yes
8205 -- D2 in T4 empty itself yes
8206 -- D3 in T4 empty itself yes
8208 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8210 -- Type derivation for tagged types is fairly straightforward. If no
8211 -- discriminants are specified by the derived type, these are inherited
8212 -- from the parent. No explicit stored discriminants are ever necessary.
8213 -- The only manipulation that is done to the tree is that of adding a
8214 -- _parent field with parent type and constrained to the same constraint
8215 -- specified for the parent in the derived type definition. For instance:
8217 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8218 -- type T1 is new R with null record;
8219 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8221 -- are changed into:
8223 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8224 -- _parent : R (D1, D2, D3);
8225 -- end record;
8227 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8228 -- _parent : T1 (X2, 88, X1);
8229 -- end record;
8231 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8232 -- ORC and ICH fields are:
8234 -- Discrim CD ORC ICH
8235 -- ^^^^^^^ ^^ ^^^ ^^^
8236 -- D1 in R empty itself no
8237 -- D2 in R empty itself no
8238 -- D3 in R empty itself no
8240 -- D1 in T1 D1 in R D1 in R no
8241 -- D2 in T1 D2 in R D2 in R no
8242 -- D3 in T1 D3 in R D3 in R no
8244 -- X1 in T2 D3 in T1 D3 in R no
8245 -- X2 in T2 D1 in T1 D1 in R no
8247 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8249 -- Regardless of whether we dealing with a tagged or untagged type
8250 -- we will transform all derived type declarations of the form
8252 -- type T is new R (...) [with ...];
8253 -- or
8254 -- subtype S is R (...);
8255 -- type T is new S [with ...];
8256 -- into
8257 -- type BT is new R [with ...];
8258 -- subtype T is BT (...);
8260 -- That is, the base derived type is constrained only if it has no
8261 -- discriminants. The reason for doing this is that GNAT's semantic model
8262 -- assumes that a base type with discriminants is unconstrained.
8264 -- Note that, strictly speaking, the above transformation is not always
8265 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8267 -- procedure B34011A is
8268 -- type REC (D : integer := 0) is record
8269 -- I : Integer;
8270 -- end record;
8272 -- package P is
8273 -- type T6 is new Rec;
8274 -- function F return T6;
8275 -- end P;
8277 -- use P;
8278 -- package Q6 is
8279 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8280 -- end Q6;
8282 -- The definition of Q6.U is illegal. However transforming Q6.U into
8284 -- type BaseU is new T6;
8285 -- subtype U is BaseU (Q6.F.I)
8287 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8288 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8289 -- the transformation described above.
8291 -- There is another instance where the above transformation is incorrect.
8292 -- Consider:
8294 -- package Pack is
8295 -- type Base (D : Integer) is tagged null record;
8296 -- procedure P (X : Base);
8298 -- type Der is new Base (2) with null record;
8299 -- procedure P (X : Der);
8300 -- end Pack;
8302 -- Then the above transformation turns this into
8304 -- type Der_Base is new Base with null record;
8305 -- -- procedure P (X : Base) is implicitly inherited here
8306 -- -- as procedure P (X : Der_Base).
8308 -- subtype Der is Der_Base (2);
8309 -- procedure P (X : Der);
8310 -- -- The overriding of P (X : Der_Base) is illegal since we
8311 -- -- have a parameter conformance problem.
8313 -- To get around this problem, after having semantically processed Der_Base
8314 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8315 -- Discriminant_Constraint from Der so that when parameter conformance is
8316 -- checked when P is overridden, no semantic errors are flagged.
8318 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8320 -- Regardless of whether we are dealing with a tagged or untagged type
8321 -- we will transform all derived type declarations of the form
8323 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8324 -- type T is new R [with ...];
8325 -- into
8326 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8328 -- The reason for such transformation is that it allows us to implement a
8329 -- very clean form of component inheritance as explained below.
8331 -- Note that this transformation is not achieved by direct tree rewriting
8332 -- and manipulation, but rather by redoing the semantic actions that the
8333 -- above transformation will entail. This is done directly in routine
8334 -- Inherit_Components.
8336 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8338 -- In both tagged and untagged derived types, regular non discriminant
8339 -- components are inherited in the derived type from the parent type. In
8340 -- the absence of discriminants component, inheritance is straightforward
8341 -- as components can simply be copied from the parent.
8343 -- If the parent has discriminants, inheriting components constrained with
8344 -- these discriminants requires caution. Consider the following example:
8346 -- type R (D1, D2 : Positive) is [tagged] record
8347 -- S : String (D1 .. D2);
8348 -- end record;
8350 -- type T1 is new R [with null record];
8351 -- type T2 (X : positive) is new R (1, X) [with null record];
8353 -- As explained in 6. above, T1 is rewritten as
8354 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8355 -- which makes the treatment for T1 and T2 identical.
8357 -- What we want when inheriting S, is that references to D1 and D2 in R are
8358 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8359 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8360 -- with either discriminant references in the derived type or expressions.
8361 -- This replacement is achieved as follows: before inheriting R's
8362 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8363 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8364 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8365 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8366 -- by String (1 .. X).
8368 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8370 -- We explain here the rules governing private type extensions relevant to
8371 -- type derivation. These rules are explained on the following example:
8373 -- type D [(...)] is new A [(...)] with private; <-- partial view
8374 -- type D [(...)] is new P [(...)] with null record; <-- full view
8376 -- Type A is called the ancestor subtype of the private extension.
8377 -- Type P is the parent type of the full view of the private extension. It
8378 -- must be A or a type derived from A.
8380 -- The rules concerning the discriminants of private type extensions are
8381 -- [7.3(10-13)]:
8383 -- o If a private extension inherits known discriminants from the ancestor
8384 -- subtype, then the full view must also inherit its discriminants from
8385 -- the ancestor subtype and the parent subtype of the full view must be
8386 -- constrained if and only if the ancestor subtype is constrained.
8388 -- o If a partial view has unknown discriminants, then the full view may
8389 -- define a definite or an indefinite subtype, with or without
8390 -- discriminants.
8392 -- o If a partial view has neither known nor unknown discriminants, then
8393 -- the full view must define a definite subtype.
8395 -- o If the ancestor subtype of a private extension has constrained
8396 -- discriminants, then the parent subtype of the full view must impose a
8397 -- statically matching constraint on those discriminants.
8399 -- This means that only the following forms of private extensions are
8400 -- allowed:
8402 -- type D is new A with private; <-- partial view
8403 -- type D is new P with null record; <-- full view
8405 -- If A has no discriminants than P has no discriminants, otherwise P must
8406 -- inherit A's discriminants.
8408 -- type D is new A (...) with private; <-- partial view
8409 -- type D is new P (:::) with null record; <-- full view
8411 -- P must inherit A's discriminants and (...) and (:::) must statically
8412 -- match.
8414 -- subtype A is R (...);
8415 -- type D is new A with private; <-- partial view
8416 -- type D is new P with null record; <-- full view
8418 -- P must have inherited R's discriminants and must be derived from A or
8419 -- any of its subtypes.
8421 -- type D (..) is new A with private; <-- partial view
8422 -- type D (..) is new P [(:::)] with null record; <-- full view
8424 -- No specific constraints on P's discriminants or constraint (:::).
8425 -- Note that A can be unconstrained, but the parent subtype P must either
8426 -- be constrained or (:::) must be present.
8428 -- type D (..) is new A [(...)] with private; <-- partial view
8429 -- type D (..) is new P [(:::)] with null record; <-- full view
8431 -- P's constraints on A's discriminants must statically match those
8432 -- imposed by (...).
8434 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8436 -- The full view of a private extension is handled exactly as described
8437 -- above. The model chose for the private view of a private extension is
8438 -- the same for what concerns discriminants (i.e. they receive the same
8439 -- treatment as in the tagged case). However, the private view of the
8440 -- private extension always inherits the components of the parent base,
8441 -- without replacing any discriminant reference. Strictly speaking this is
8442 -- incorrect. However, Gigi never uses this view to generate code so this
8443 -- is a purely semantic issue. In theory, a set of transformations similar
8444 -- to those given in 5. and 6. above could be applied to private views of
8445 -- private extensions to have the same model of component inheritance as
8446 -- for non private extensions. However, this is not done because it would
8447 -- further complicate private type processing. Semantically speaking, this
8448 -- leaves us in an uncomfortable situation. As an example consider:
8450 -- package Pack is
8451 -- type R (D : integer) is tagged record
8452 -- S : String (1 .. D);
8453 -- end record;
8454 -- procedure P (X : R);
8455 -- type T is new R (1) with private;
8456 -- private
8457 -- type T is new R (1) with null record;
8458 -- end;
8460 -- This is transformed into:
8462 -- package Pack is
8463 -- type R (D : integer) is tagged record
8464 -- S : String (1 .. D);
8465 -- end record;
8466 -- procedure P (X : R);
8467 -- type T is new R (1) with private;
8468 -- private
8469 -- type BaseT is new R with null record;
8470 -- subtype T is BaseT (1);
8471 -- end;
8473 -- (strictly speaking the above is incorrect Ada)
8475 -- From the semantic standpoint the private view of private extension T
8476 -- should be flagged as constrained since one can clearly have
8478 -- Obj : T;
8480 -- in a unit withing Pack. However, when deriving subprograms for the
8481 -- private view of private extension T, T must be seen as unconstrained
8482 -- since T has discriminants (this is a constraint of the current
8483 -- subprogram derivation model). Thus, when processing the private view of
8484 -- a private extension such as T, we first mark T as unconstrained, we
8485 -- process it, we perform program derivation and just before returning from
8486 -- Build_Derived_Record_Type we mark T as constrained.
8488 -- ??? Are there are other uncomfortable cases that we will have to
8489 -- deal with.
8491 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8493 -- Types that are derived from a visible record type and have a private
8494 -- extension present other peculiarities. They behave mostly like private
8495 -- types, but if they have primitive operations defined, these will not
8496 -- have the proper signatures for further inheritance, because other
8497 -- primitive operations will use the implicit base that we define for
8498 -- private derivations below. This affect subprogram inheritance (see
8499 -- Derive_Subprograms for details). We also derive the implicit base from
8500 -- the base type of the full view, so that the implicit base is a record
8501 -- type and not another private type, This avoids infinite loops.
8503 procedure Build_Derived_Record_Type
8504 (N : Node_Id;
8505 Parent_Type : Entity_Id;
8506 Derived_Type : Entity_Id;
8507 Derive_Subps : Boolean := True)
8509 Discriminant_Specs : constant Boolean :=
8510 Present (Discriminant_Specifications (N));
8511 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8512 Loc : constant Source_Ptr := Sloc (N);
8513 Private_Extension : constant Boolean :=
8514 Nkind (N) = N_Private_Extension_Declaration;
8515 Assoc_List : Elist_Id;
8516 Constraint_Present : Boolean;
8517 Constrs : Elist_Id;
8518 Discrim : Entity_Id;
8519 Indic : Node_Id;
8520 Inherit_Discrims : Boolean := False;
8521 Last_Discrim : Entity_Id;
8522 New_Base : Entity_Id;
8523 New_Decl : Node_Id;
8524 New_Discrs : Elist_Id;
8525 New_Indic : Node_Id;
8526 Parent_Base : Entity_Id;
8527 Save_Etype : Entity_Id;
8528 Save_Discr_Constr : Elist_Id;
8529 Save_Next_Entity : Entity_Id;
8530 Type_Def : Node_Id;
8532 Discs : Elist_Id := New_Elmt_List;
8533 -- An empty Discs list means that there were no constraints in the
8534 -- subtype indication or that there was an error processing it.
8536 begin
8537 if Ekind (Parent_Type) = E_Record_Type_With_Private
8538 and then Present (Full_View (Parent_Type))
8539 and then Has_Discriminants (Parent_Type)
8540 then
8541 Parent_Base := Base_Type (Full_View (Parent_Type));
8542 else
8543 Parent_Base := Base_Type (Parent_Type);
8544 end if;
8546 -- AI05-0115: if this is a derivation from a private type in some
8547 -- other scope that may lead to invisible components for the derived
8548 -- type, mark it accordingly.
8550 if Is_Private_Type (Parent_Type) then
8551 if Scope (Parent_Base) = Scope (Derived_Type) then
8552 null;
8554 elsif In_Open_Scopes (Scope (Parent_Base))
8555 and then In_Private_Part (Scope (Parent_Base))
8556 then
8557 null;
8559 else
8560 Set_Has_Private_Ancestor (Derived_Type);
8561 end if;
8563 else
8564 Set_Has_Private_Ancestor
8565 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8566 end if;
8568 -- Before we start the previously documented transformations, here is
8569 -- little fix for size and alignment of tagged types. Normally when we
8570 -- derive type D from type P, we copy the size and alignment of P as the
8571 -- default for D, and in the absence of explicit representation clauses
8572 -- for D, the size and alignment are indeed the same as the parent.
8574 -- But this is wrong for tagged types, since fields may be added, and
8575 -- the default size may need to be larger, and the default alignment may
8576 -- need to be larger.
8578 -- We therefore reset the size and alignment fields in the tagged case.
8579 -- Note that the size and alignment will in any case be at least as
8580 -- large as the parent type (since the derived type has a copy of the
8581 -- parent type in the _parent field)
8583 -- The type is also marked as being tagged here, which is needed when
8584 -- processing components with a self-referential anonymous access type
8585 -- in the call to Check_Anonymous_Access_Components below. Note that
8586 -- this flag is also set later on for completeness.
8588 if Is_Tagged then
8589 Set_Is_Tagged_Type (Derived_Type);
8590 Init_Size_Align (Derived_Type);
8591 end if;
8593 -- STEP 0a: figure out what kind of derived type declaration we have
8595 if Private_Extension then
8596 Type_Def := N;
8597 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8598 Set_Default_SSO (Derived_Type);
8599 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8601 else
8602 Type_Def := Type_Definition (N);
8604 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8605 -- Parent_Base can be a private type or private extension. However,
8606 -- for tagged types with an extension the newly added fields are
8607 -- visible and hence the Derived_Type is always an E_Record_Type.
8608 -- (except that the parent may have its own private fields).
8609 -- For untagged types we preserve the Ekind of the Parent_Base.
8611 if Present (Record_Extension_Part (Type_Def)) then
8612 Set_Ekind (Derived_Type, E_Record_Type);
8613 Set_Default_SSO (Derived_Type);
8614 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8616 -- Create internal access types for components with anonymous
8617 -- access types.
8619 if Ada_Version >= Ada_2005 then
8620 Check_Anonymous_Access_Components
8621 (N, Derived_Type, Derived_Type,
8622 Component_List (Record_Extension_Part (Type_Def)));
8623 end if;
8625 else
8626 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8627 end if;
8628 end if;
8630 -- Indic can either be an N_Identifier if the subtype indication
8631 -- contains no constraint or an N_Subtype_Indication if the subtype
8632 -- indication has a constraint.
8634 Indic := Subtype_Indication (Type_Def);
8635 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8637 -- Check that the type has visible discriminants. The type may be
8638 -- a private type with unknown discriminants whose full view has
8639 -- discriminants which are invisible.
8641 if Constraint_Present then
8642 if not Has_Discriminants (Parent_Base)
8643 or else
8644 (Has_Unknown_Discriminants (Parent_Base)
8645 and then Is_Private_Type (Parent_Base))
8646 then
8647 Error_Msg_N
8648 ("invalid constraint: type has no discriminant",
8649 Constraint (Indic));
8651 Constraint_Present := False;
8652 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8654 elsif Is_Constrained (Parent_Type) then
8655 Error_Msg_N
8656 ("invalid constraint: parent type is already constrained",
8657 Constraint (Indic));
8659 Constraint_Present := False;
8660 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8661 end if;
8662 end if;
8664 -- STEP 0b: If needed, apply transformation given in point 5. above
8666 if not Private_Extension
8667 and then Has_Discriminants (Parent_Type)
8668 and then not Discriminant_Specs
8669 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8670 then
8671 -- First, we must analyze the constraint (see comment in point 5.)
8672 -- The constraint may come from the subtype indication of the full
8673 -- declaration.
8675 if Constraint_Present then
8676 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8678 -- If there is no explicit constraint, there might be one that is
8679 -- inherited from a constrained parent type. In that case verify that
8680 -- it conforms to the constraint in the partial view. In perverse
8681 -- cases the parent subtypes of the partial and full view can have
8682 -- different constraints.
8684 elsif Present (Stored_Constraint (Parent_Type)) then
8685 New_Discrs := Stored_Constraint (Parent_Type);
8687 else
8688 New_Discrs := No_Elist;
8689 end if;
8691 if Has_Discriminants (Derived_Type)
8692 and then Has_Private_Declaration (Derived_Type)
8693 and then Present (Discriminant_Constraint (Derived_Type))
8694 and then Present (New_Discrs)
8695 then
8696 -- Verify that constraints of the full view statically match
8697 -- those given in the partial view.
8699 declare
8700 C1, C2 : Elmt_Id;
8702 begin
8703 C1 := First_Elmt (New_Discrs);
8704 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8705 while Present (C1) and then Present (C2) loop
8706 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8707 or else
8708 (Is_OK_Static_Expression (Node (C1))
8709 and then Is_OK_Static_Expression (Node (C2))
8710 and then
8711 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8712 then
8713 null;
8715 else
8716 if Constraint_Present then
8717 Error_Msg_N
8718 ("constraint not conformant to previous declaration",
8719 Node (C1));
8720 else
8721 Error_Msg_N
8722 ("constraint of full view is incompatible "
8723 & "with partial view", N);
8724 end if;
8725 end if;
8727 Next_Elmt (C1);
8728 Next_Elmt (C2);
8729 end loop;
8730 end;
8731 end if;
8733 -- Insert and analyze the declaration for the unconstrained base type
8735 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8737 New_Decl :=
8738 Make_Full_Type_Declaration (Loc,
8739 Defining_Identifier => New_Base,
8740 Type_Definition =>
8741 Make_Derived_Type_Definition (Loc,
8742 Abstract_Present => Abstract_Present (Type_Def),
8743 Limited_Present => Limited_Present (Type_Def),
8744 Subtype_Indication =>
8745 New_Occurrence_Of (Parent_Base, Loc),
8746 Record_Extension_Part =>
8747 Relocate_Node (Record_Extension_Part (Type_Def)),
8748 Interface_List => Interface_List (Type_Def)));
8750 Set_Parent (New_Decl, Parent (N));
8751 Mark_Rewrite_Insertion (New_Decl);
8752 Insert_Before (N, New_Decl);
8754 -- In the extension case, make sure ancestor is frozen appropriately
8755 -- (see also non-discriminated case below).
8757 if Present (Record_Extension_Part (Type_Def))
8758 or else Is_Interface (Parent_Base)
8759 then
8760 Freeze_Before (New_Decl, Parent_Type);
8761 end if;
8763 -- Note that this call passes False for the Derive_Subps parameter
8764 -- because subprogram derivation is deferred until after creating
8765 -- the subtype (see below).
8767 Build_Derived_Type
8768 (New_Decl, Parent_Base, New_Base,
8769 Is_Completion => False, Derive_Subps => False);
8771 -- ??? This needs re-examination to determine whether the
8772 -- above call can simply be replaced by a call to Analyze.
8774 Set_Analyzed (New_Decl);
8776 -- Insert and analyze the declaration for the constrained subtype
8778 if Constraint_Present then
8779 New_Indic :=
8780 Make_Subtype_Indication (Loc,
8781 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8782 Constraint => Relocate_Node (Constraint (Indic)));
8784 else
8785 declare
8786 Constr_List : constant List_Id := New_List;
8787 C : Elmt_Id;
8788 Expr : Node_Id;
8790 begin
8791 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8792 while Present (C) loop
8793 Expr := Node (C);
8795 -- It is safe here to call New_Copy_Tree since we called
8796 -- Force_Evaluation on each constraint previously
8797 -- in Build_Discriminant_Constraints.
8799 Append (New_Copy_Tree (Expr), To => Constr_List);
8801 Next_Elmt (C);
8802 end loop;
8804 New_Indic :=
8805 Make_Subtype_Indication (Loc,
8806 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8807 Constraint =>
8808 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8809 end;
8810 end if;
8812 Rewrite (N,
8813 Make_Subtype_Declaration (Loc,
8814 Defining_Identifier => Derived_Type,
8815 Subtype_Indication => New_Indic));
8817 Analyze (N);
8819 -- Derivation of subprograms must be delayed until the full subtype
8820 -- has been established, to ensure proper overriding of subprograms
8821 -- inherited by full types. If the derivations occurred as part of
8822 -- the call to Build_Derived_Type above, then the check for type
8823 -- conformance would fail because earlier primitive subprograms
8824 -- could still refer to the full type prior the change to the new
8825 -- subtype and hence would not match the new base type created here.
8826 -- Subprograms are not derived, however, when Derive_Subps is False
8827 -- (since otherwise there could be redundant derivations).
8829 if Derive_Subps then
8830 Derive_Subprograms (Parent_Type, Derived_Type);
8831 end if;
8833 -- For tagged types the Discriminant_Constraint of the new base itype
8834 -- is inherited from the first subtype so that no subtype conformance
8835 -- problem arise when the first subtype overrides primitive
8836 -- operations inherited by the implicit base type.
8838 if Is_Tagged then
8839 Set_Discriminant_Constraint
8840 (New_Base, Discriminant_Constraint (Derived_Type));
8841 end if;
8843 return;
8844 end if;
8846 -- If we get here Derived_Type will have no discriminants or it will be
8847 -- a discriminated unconstrained base type.
8849 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8851 if Is_Tagged then
8853 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8854 -- The declaration of a specific descendant of an interface type
8855 -- freezes the interface type (RM 13.14).
8857 if not Private_Extension or else Is_Interface (Parent_Base) then
8858 Freeze_Before (N, Parent_Type);
8859 end if;
8861 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8862 -- cannot be declared at a deeper level than its parent type is
8863 -- removed. The check on derivation within a generic body is also
8864 -- relaxed, but there's a restriction that a derived tagged type
8865 -- cannot be declared in a generic body if it's derived directly
8866 -- or indirectly from a formal type of that generic.
8868 if Ada_Version >= Ada_2005 then
8869 if Present (Enclosing_Generic_Body (Derived_Type)) then
8870 declare
8871 Ancestor_Type : Entity_Id;
8873 begin
8874 -- Check to see if any ancestor of the derived type is a
8875 -- formal type.
8877 Ancestor_Type := Parent_Type;
8878 while not Is_Generic_Type (Ancestor_Type)
8879 and then Etype (Ancestor_Type) /= Ancestor_Type
8880 loop
8881 Ancestor_Type := Etype (Ancestor_Type);
8882 end loop;
8884 -- If the derived type does have a formal type as an
8885 -- ancestor, then it's an error if the derived type is
8886 -- declared within the body of the generic unit that
8887 -- declares the formal type in its generic formal part. It's
8888 -- sufficient to check whether the ancestor type is declared
8889 -- inside the same generic body as the derived type (such as
8890 -- within a nested generic spec), in which case the
8891 -- derivation is legal. If the formal type is declared
8892 -- outside of that generic body, then it's guaranteed that
8893 -- the derived type is declared within the generic body of
8894 -- the generic unit declaring the formal type.
8896 if Is_Generic_Type (Ancestor_Type)
8897 and then Enclosing_Generic_Body (Ancestor_Type) /=
8898 Enclosing_Generic_Body (Derived_Type)
8899 then
8900 Error_Msg_NE
8901 ("parent type of& must not be descendant of formal type"
8902 & " of an enclosing generic body",
8903 Indic, Derived_Type);
8904 end if;
8905 end;
8906 end if;
8908 elsif Type_Access_Level (Derived_Type) /=
8909 Type_Access_Level (Parent_Type)
8910 and then not Is_Generic_Type (Derived_Type)
8911 then
8912 if Is_Controlled (Parent_Type) then
8913 Error_Msg_N
8914 ("controlled type must be declared at the library level",
8915 Indic);
8916 else
8917 Error_Msg_N
8918 ("type extension at deeper accessibility level than parent",
8919 Indic);
8920 end if;
8922 else
8923 declare
8924 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8925 begin
8926 if Present (GB)
8927 and then GB /= Enclosing_Generic_Body (Parent_Base)
8928 then
8929 Error_Msg_NE
8930 ("parent type of& must not be outside generic body"
8931 & " (RM 3.9.1(4))",
8932 Indic, Derived_Type);
8933 end if;
8934 end;
8935 end if;
8936 end if;
8938 -- Ada 2005 (AI-251)
8940 if Ada_Version >= Ada_2005 and then Is_Tagged then
8942 -- "The declaration of a specific descendant of an interface type
8943 -- freezes the interface type" (RM 13.14).
8945 declare
8946 Iface : Node_Id;
8947 begin
8948 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8949 Iface := First (Interface_List (Type_Def));
8950 while Present (Iface) loop
8951 Freeze_Before (N, Etype (Iface));
8952 Next (Iface);
8953 end loop;
8954 end if;
8955 end;
8956 end if;
8958 -- STEP 1b : preliminary cleanup of the full view of private types
8960 -- If the type is already marked as having discriminants, then it's the
8961 -- completion of a private type or private extension and we need to
8962 -- retain the discriminants from the partial view if the current
8963 -- declaration has Discriminant_Specifications so that we can verify
8964 -- conformance. However, we must remove any existing components that
8965 -- were inherited from the parent (and attached in Copy_And_Swap)
8966 -- because the full type inherits all appropriate components anyway, and
8967 -- we do not want the partial view's components interfering.
8969 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8970 Discrim := First_Discriminant (Derived_Type);
8971 loop
8972 Last_Discrim := Discrim;
8973 Next_Discriminant (Discrim);
8974 exit when No (Discrim);
8975 end loop;
8977 Set_Last_Entity (Derived_Type, Last_Discrim);
8979 -- In all other cases wipe out the list of inherited components (even
8980 -- inherited discriminants), it will be properly rebuilt here.
8982 else
8983 Set_First_Entity (Derived_Type, Empty);
8984 Set_Last_Entity (Derived_Type, Empty);
8985 end if;
8987 -- STEP 1c: Initialize some flags for the Derived_Type
8989 -- The following flags must be initialized here so that
8990 -- Process_Discriminants can check that discriminants of tagged types do
8991 -- not have a default initial value and that access discriminants are
8992 -- only specified for limited records. For completeness, these flags are
8993 -- also initialized along with all the other flags below.
8995 -- AI-419: Limitedness is not inherited from an interface parent, so to
8996 -- be limited in that case the type must be explicitly declared as
8997 -- limited. However, task and protected interfaces are always limited.
8999 if Limited_Present (Type_Def) then
9000 Set_Is_Limited_Record (Derived_Type);
9002 elsif Is_Limited_Record (Parent_Type)
9003 or else (Present (Full_View (Parent_Type))
9004 and then Is_Limited_Record (Full_View (Parent_Type)))
9005 then
9006 if not Is_Interface (Parent_Type)
9007 or else Is_Synchronized_Interface (Parent_Type)
9008 or else Is_Protected_Interface (Parent_Type)
9009 or else Is_Task_Interface (Parent_Type)
9010 then
9011 Set_Is_Limited_Record (Derived_Type);
9012 end if;
9013 end if;
9015 -- STEP 2a: process discriminants of derived type if any
9017 Push_Scope (Derived_Type);
9019 if Discriminant_Specs then
9020 Set_Has_Unknown_Discriminants (Derived_Type, False);
9022 -- The following call initializes fields Has_Discriminants and
9023 -- Discriminant_Constraint, unless we are processing the completion
9024 -- of a private type declaration.
9026 Check_Or_Process_Discriminants (N, Derived_Type);
9028 -- For untagged types, the constraint on the Parent_Type must be
9029 -- present and is used to rename the discriminants.
9031 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9032 Error_Msg_N ("untagged parent must have discriminants", Indic);
9034 elsif not Is_Tagged and then not Constraint_Present then
9035 Error_Msg_N
9036 ("discriminant constraint needed for derived untagged records",
9037 Indic);
9039 -- Otherwise the parent subtype must be constrained unless we have a
9040 -- private extension.
9042 elsif not Constraint_Present
9043 and then not Private_Extension
9044 and then not Is_Constrained (Parent_Type)
9045 then
9046 Error_Msg_N
9047 ("unconstrained type not allowed in this context", Indic);
9049 elsif Constraint_Present then
9050 -- The following call sets the field Corresponding_Discriminant
9051 -- for the discriminants in the Derived_Type.
9053 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9055 -- For untagged types all new discriminants must rename
9056 -- discriminants in the parent. For private extensions new
9057 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9059 Discrim := First_Discriminant (Derived_Type);
9060 while Present (Discrim) loop
9061 if not Is_Tagged
9062 and then No (Corresponding_Discriminant (Discrim))
9063 then
9064 Error_Msg_N
9065 ("new discriminants must constrain old ones", Discrim);
9067 elsif Private_Extension
9068 and then Present (Corresponding_Discriminant (Discrim))
9069 then
9070 Error_Msg_N
9071 ("only static constraints allowed for parent"
9072 & " discriminants in the partial view", Indic);
9073 exit;
9074 end if;
9076 -- If a new discriminant is used in the constraint, then its
9077 -- subtype must be statically compatible with the parent
9078 -- discriminant's subtype (3.7(15)).
9080 -- However, if the record contains an array constrained by
9081 -- the discriminant but with some different bound, the compiler
9082 -- tries to create a smaller range for the discriminant type.
9083 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9084 -- the discriminant type is a scalar type, the check must use
9085 -- the original discriminant type in the parent declaration.
9087 declare
9088 Corr_Disc : constant Entity_Id :=
9089 Corresponding_Discriminant (Discrim);
9090 Disc_Type : constant Entity_Id := Etype (Discrim);
9091 Corr_Type : Entity_Id;
9093 begin
9094 if Present (Corr_Disc) then
9095 if Is_Scalar_Type (Disc_Type) then
9096 Corr_Type :=
9097 Entity (Discriminant_Type (Parent (Corr_Disc)));
9098 else
9099 Corr_Type := Etype (Corr_Disc);
9100 end if;
9102 if not
9103 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9104 then
9105 Error_Msg_N
9106 ("subtype must be compatible "
9107 & "with parent discriminant",
9108 Discrim);
9109 end if;
9110 end if;
9111 end;
9113 Next_Discriminant (Discrim);
9114 end loop;
9116 -- Check whether the constraints of the full view statically
9117 -- match those imposed by the parent subtype [7.3(13)].
9119 if Present (Stored_Constraint (Derived_Type)) then
9120 declare
9121 C1, C2 : Elmt_Id;
9123 begin
9124 C1 := First_Elmt (Discs);
9125 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9126 while Present (C1) and then Present (C2) loop
9127 if not
9128 Fully_Conformant_Expressions (Node (C1), Node (C2))
9129 then
9130 Error_Msg_N
9131 ("not conformant with previous declaration",
9132 Node (C1));
9133 end if;
9135 Next_Elmt (C1);
9136 Next_Elmt (C2);
9137 end loop;
9138 end;
9139 end if;
9140 end if;
9142 -- STEP 2b: No new discriminants, inherit discriminants if any
9144 else
9145 if Private_Extension then
9146 Set_Has_Unknown_Discriminants
9147 (Derived_Type,
9148 Has_Unknown_Discriminants (Parent_Type)
9149 or else Unknown_Discriminants_Present (N));
9151 -- The partial view of the parent may have unknown discriminants,
9152 -- but if the full view has discriminants and the parent type is
9153 -- in scope they must be inherited.
9155 elsif Has_Unknown_Discriminants (Parent_Type)
9156 and then
9157 (not Has_Discriminants (Parent_Type)
9158 or else not In_Open_Scopes (Scope (Parent_Base)))
9159 then
9160 Set_Has_Unknown_Discriminants (Derived_Type);
9161 end if;
9163 if not Has_Unknown_Discriminants (Derived_Type)
9164 and then not Has_Unknown_Discriminants (Parent_Base)
9165 and then Has_Discriminants (Parent_Type)
9166 then
9167 Inherit_Discrims := True;
9168 Set_Has_Discriminants
9169 (Derived_Type, True);
9170 Set_Discriminant_Constraint
9171 (Derived_Type, Discriminant_Constraint (Parent_Base));
9172 end if;
9174 -- The following test is true for private types (remember
9175 -- transformation 5. is not applied to those) and in an error
9176 -- situation.
9178 if Constraint_Present then
9179 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9180 end if;
9182 -- For now mark a new derived type as constrained only if it has no
9183 -- discriminants. At the end of Build_Derived_Record_Type we properly
9184 -- set this flag in the case of private extensions. See comments in
9185 -- point 9. just before body of Build_Derived_Record_Type.
9187 Set_Is_Constrained
9188 (Derived_Type,
9189 not (Inherit_Discrims
9190 or else Has_Unknown_Discriminants (Derived_Type)));
9191 end if;
9193 -- STEP 3: initialize fields of derived type
9195 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9196 Set_Stored_Constraint (Derived_Type, No_Elist);
9198 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9199 -- but cannot be interfaces
9201 if not Private_Extension
9202 and then Ekind (Derived_Type) /= E_Private_Type
9203 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9204 then
9205 if Interface_Present (Type_Def) then
9206 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9207 end if;
9209 Set_Interfaces (Derived_Type, No_Elist);
9210 end if;
9212 -- Fields inherited from the Parent_Type
9214 Set_Has_Specified_Layout
9215 (Derived_Type, Has_Specified_Layout (Parent_Type));
9216 Set_Is_Limited_Composite
9217 (Derived_Type, Is_Limited_Composite (Parent_Type));
9218 Set_Is_Private_Composite
9219 (Derived_Type, Is_Private_Composite (Parent_Type));
9221 if Is_Tagged_Type (Parent_Type) then
9222 Set_No_Tagged_Streams_Pragma
9223 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9224 end if;
9226 -- Fields inherited from the Parent_Base
9228 Set_Has_Controlled_Component
9229 (Derived_Type, Has_Controlled_Component (Parent_Base));
9230 Set_Has_Non_Standard_Rep
9231 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9232 Set_Has_Primitive_Operations
9233 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9235 -- Set fields for private derived types
9237 if Is_Private_Type (Derived_Type) then
9238 Set_Depends_On_Private (Derived_Type, True);
9239 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9240 end if;
9242 -- Inherit fields for non-private types. If this is the completion of a
9243 -- derivation from a private type, the parent itself is private and the
9244 -- attributes come from its full view, which must be present.
9246 if Is_Record_Type (Derived_Type) then
9247 declare
9248 Parent_Full : Entity_Id;
9250 begin
9251 if Is_Private_Type (Parent_Base)
9252 and then not Is_Record_Type (Parent_Base)
9253 then
9254 Parent_Full := Full_View (Parent_Base);
9255 else
9256 Parent_Full := Parent_Base;
9257 end if;
9259 Set_Component_Alignment
9260 (Derived_Type, Component_Alignment (Parent_Full));
9261 Set_C_Pass_By_Copy
9262 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9263 Set_Has_Complex_Representation
9264 (Derived_Type, Has_Complex_Representation (Parent_Full));
9266 -- For untagged types, inherit the layout by default to avoid
9267 -- costly changes of representation for type conversions.
9269 if not Is_Tagged then
9270 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9271 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9272 end if;
9273 end;
9274 end if;
9276 -- Set fields for tagged types
9278 if Is_Tagged then
9279 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9281 -- All tagged types defined in Ada.Finalization are controlled
9283 if Chars (Scope (Derived_Type)) = Name_Finalization
9284 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9285 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9286 then
9287 Set_Is_Controlled_Active (Derived_Type);
9288 else
9289 Set_Is_Controlled_Active
9290 (Derived_Type, Is_Controlled_Active (Parent_Base));
9291 end if;
9293 -- Minor optimization: there is no need to generate the class-wide
9294 -- entity associated with an underlying record view.
9296 if not Is_Underlying_Record_View (Derived_Type) then
9297 Make_Class_Wide_Type (Derived_Type);
9298 end if;
9300 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9302 if Has_Discriminants (Derived_Type)
9303 and then Constraint_Present
9304 then
9305 Set_Stored_Constraint
9306 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9307 end if;
9309 if Ada_Version >= Ada_2005 then
9310 declare
9311 Ifaces_List : Elist_Id;
9313 begin
9314 -- Checks rules 3.9.4 (13/2 and 14/2)
9316 if Comes_From_Source (Derived_Type)
9317 and then not Is_Private_Type (Derived_Type)
9318 and then Is_Interface (Parent_Type)
9319 and then not Is_Interface (Derived_Type)
9320 then
9321 if Is_Task_Interface (Parent_Type) then
9322 Error_Msg_N
9323 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9324 Derived_Type);
9326 elsif Is_Protected_Interface (Parent_Type) then
9327 Error_Msg_N
9328 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9329 Derived_Type);
9330 end if;
9331 end if;
9333 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9335 Check_Interfaces (N, Type_Def);
9337 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9338 -- not already in the parents.
9340 Collect_Interfaces
9341 (T => Derived_Type,
9342 Ifaces_List => Ifaces_List,
9343 Exclude_Parents => True);
9345 Set_Interfaces (Derived_Type, Ifaces_List);
9347 -- If the derived type is the anonymous type created for
9348 -- a declaration whose parent has a constraint, propagate
9349 -- the interface list to the source type. This must be done
9350 -- prior to the completion of the analysis of the source type
9351 -- because the components in the extension may contain current
9352 -- instances whose legality depends on some ancestor.
9354 if Is_Itype (Derived_Type) then
9355 declare
9356 Def : constant Node_Id :=
9357 Associated_Node_For_Itype (Derived_Type);
9358 begin
9359 if Present (Def)
9360 and then Nkind (Def) = N_Full_Type_Declaration
9361 then
9362 Set_Interfaces
9363 (Defining_Identifier (Def), Ifaces_List);
9364 end if;
9365 end;
9366 end if;
9368 -- A type extension is automatically Ghost when one of its
9369 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9370 -- also inherited when the parent type is Ghost, but this is
9371 -- done in Build_Derived_Type as the mechanism also handles
9372 -- untagged derivations.
9374 if Implements_Ghost_Interface (Derived_Type) then
9375 Set_Is_Ghost_Entity (Derived_Type);
9376 end if;
9377 end;
9378 end if;
9379 end if;
9381 -- STEP 4: Inherit components from the parent base and constrain them.
9382 -- Apply the second transformation described in point 6. above.
9384 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9385 or else not Has_Discriminants (Parent_Type)
9386 or else not Is_Constrained (Parent_Type)
9387 then
9388 Constrs := Discs;
9389 else
9390 Constrs := Discriminant_Constraint (Parent_Type);
9391 end if;
9393 Assoc_List :=
9394 Inherit_Components
9395 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9397 -- STEP 5a: Copy the parent record declaration for untagged types
9399 Set_Has_Implicit_Dereference
9400 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9402 if not Is_Tagged then
9404 -- Discriminant_Constraint (Derived_Type) has been properly
9405 -- constructed. Save it and temporarily set it to Empty because we
9406 -- do not want the call to New_Copy_Tree below to mess this list.
9408 if Has_Discriminants (Derived_Type) then
9409 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9410 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9411 else
9412 Save_Discr_Constr := No_Elist;
9413 end if;
9415 -- Save the Etype field of Derived_Type. It is correctly set now,
9416 -- but the call to New_Copy tree may remap it to point to itself,
9417 -- which is not what we want. Ditto for the Next_Entity field.
9419 Save_Etype := Etype (Derived_Type);
9420 Save_Next_Entity := Next_Entity (Derived_Type);
9422 -- Assoc_List maps all stored discriminants in the Parent_Base to
9423 -- stored discriminants in the Derived_Type. It is fundamental that
9424 -- no types or itypes with discriminants other than the stored
9425 -- discriminants appear in the entities declared inside
9426 -- Derived_Type, since the back end cannot deal with it.
9428 New_Decl :=
9429 New_Copy_Tree
9430 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9431 Copy_Dimensions_Of_Components (Derived_Type);
9433 -- Restore the fields saved prior to the New_Copy_Tree call
9434 -- and compute the stored constraint.
9436 Set_Etype (Derived_Type, Save_Etype);
9437 Link_Entities (Derived_Type, Save_Next_Entity);
9439 if Has_Discriminants (Derived_Type) then
9440 Set_Discriminant_Constraint
9441 (Derived_Type, Save_Discr_Constr);
9442 Set_Stored_Constraint
9443 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9444 Replace_Components (Derived_Type, New_Decl);
9445 end if;
9447 -- Insert the new derived type declaration
9449 Rewrite (N, New_Decl);
9451 -- STEP 5b: Complete the processing for record extensions in generics
9453 -- There is no completion for record extensions declared in the
9454 -- parameter part of a generic, so we need to complete processing for
9455 -- these generic record extensions here. The Record_Type_Definition call
9456 -- will change the Ekind of the components from E_Void to E_Component.
9458 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9459 Record_Type_Definition (Empty, Derived_Type);
9461 -- STEP 5c: Process the record extension for non private tagged types
9463 elsif not Private_Extension then
9464 Expand_Record_Extension (Derived_Type, Type_Def);
9466 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9467 -- derived type to propagate some semantic information. This led
9468 -- to other ASIS failures and has been removed.
9470 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9471 -- implemented interfaces if we are in expansion mode
9473 if Expander_Active
9474 and then Has_Interfaces (Derived_Type)
9475 then
9476 Add_Interface_Tag_Components (N, Derived_Type);
9477 end if;
9479 -- Analyze the record extension
9481 Record_Type_Definition
9482 (Record_Extension_Part (Type_Def), Derived_Type);
9483 end if;
9485 End_Scope;
9487 -- Nothing else to do if there is an error in the derivation.
9488 -- An unusual case: the full view may be derived from a type in an
9489 -- instance, when the partial view was used illegally as an actual
9490 -- in that instance, leading to a circular definition.
9492 if Etype (Derived_Type) = Any_Type
9493 or else Etype (Parent_Type) = Derived_Type
9494 then
9495 return;
9496 end if;
9498 -- Set delayed freeze and then derive subprograms, we need to do
9499 -- this in this order so that derived subprograms inherit the
9500 -- derived freeze if necessary.
9502 Set_Has_Delayed_Freeze (Derived_Type);
9504 if Derive_Subps then
9505 Derive_Subprograms (Parent_Type, Derived_Type);
9506 end if;
9508 -- If we have a private extension which defines a constrained derived
9509 -- type mark as constrained here after we have derived subprograms. See
9510 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9512 if Private_Extension and then Inherit_Discrims then
9513 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9514 Set_Is_Constrained (Derived_Type, True);
9515 Set_Discriminant_Constraint (Derived_Type, Discs);
9517 elsif Is_Constrained (Parent_Type) then
9518 Set_Is_Constrained
9519 (Derived_Type, True);
9520 Set_Discriminant_Constraint
9521 (Derived_Type, Discriminant_Constraint (Parent_Type));
9522 end if;
9523 end if;
9525 -- Update the class-wide type, which shares the now-completed entity
9526 -- list with its specific type. In case of underlying record views,
9527 -- we do not generate the corresponding class wide entity.
9529 if Is_Tagged
9530 and then not Is_Underlying_Record_View (Derived_Type)
9531 then
9532 Set_First_Entity
9533 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9534 Set_Last_Entity
9535 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9536 end if;
9538 Check_Function_Writable_Actuals (N);
9539 end Build_Derived_Record_Type;
9541 ------------------------
9542 -- Build_Derived_Type --
9543 ------------------------
9545 procedure Build_Derived_Type
9546 (N : Node_Id;
9547 Parent_Type : Entity_Id;
9548 Derived_Type : Entity_Id;
9549 Is_Completion : Boolean;
9550 Derive_Subps : Boolean := True)
9552 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9554 begin
9555 -- Set common attributes
9557 Set_Scope (Derived_Type, Current_Scope);
9558 Set_Etype (Derived_Type, Parent_Base);
9559 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9560 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9562 Set_Size_Info (Derived_Type, Parent_Type);
9563 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9565 Set_Is_Controlled_Active
9566 (Derived_Type, Is_Controlled_Active (Parent_Type));
9568 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9569 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9570 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9572 if Is_Tagged_Type (Derived_Type) then
9573 Set_No_Tagged_Streams_Pragma
9574 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9575 end if;
9577 -- If the parent has primitive routines, set the derived type link
9579 if Has_Primitive_Operations (Parent_Type) then
9580 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9581 end if;
9583 -- If the parent type is a private subtype, the convention on the base
9584 -- type may be set in the private part, and not propagated to the
9585 -- subtype until later, so we obtain the convention from the base type.
9587 Set_Convention (Derived_Type, Convention (Parent_Base));
9589 -- Set SSO default for record or array type
9591 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9592 and then Is_Base_Type (Derived_Type)
9593 then
9594 Set_Default_SSO (Derived_Type);
9595 end if;
9597 -- A derived type inherits the Default_Initial_Condition pragma coming
9598 -- from any parent type within the derivation chain.
9600 if Has_DIC (Parent_Type) then
9601 Set_Has_Inherited_DIC (Derived_Type);
9602 end if;
9604 -- A derived type inherits any class-wide invariants coming from a
9605 -- parent type or an interface. Note that the invariant procedure of
9606 -- the parent type should not be inherited because the derived type may
9607 -- define invariants of its own.
9609 if not Is_Interface (Derived_Type) then
9610 if Has_Inherited_Invariants (Parent_Type)
9611 or else Has_Inheritable_Invariants (Parent_Type)
9612 then
9613 Set_Has_Inherited_Invariants (Derived_Type);
9615 elsif Is_Concurrent_Type (Derived_Type)
9616 or else Is_Tagged_Type (Derived_Type)
9617 then
9618 declare
9619 Iface : Entity_Id;
9620 Ifaces : Elist_Id;
9621 Iface_Elmt : Elmt_Id;
9623 begin
9624 Collect_Interfaces
9625 (T => Derived_Type,
9626 Ifaces_List => Ifaces,
9627 Exclude_Parents => True);
9629 if Present (Ifaces) then
9630 Iface_Elmt := First_Elmt (Ifaces);
9631 while Present (Iface_Elmt) loop
9632 Iface := Node (Iface_Elmt);
9634 if Has_Inheritable_Invariants (Iface) then
9635 Set_Has_Inherited_Invariants (Derived_Type);
9636 exit;
9637 end if;
9639 Next_Elmt (Iface_Elmt);
9640 end loop;
9641 end if;
9642 end;
9643 end if;
9644 end if;
9646 -- We similarly inherit predicates. Note that for scalar derived types
9647 -- the predicate is inherited from the first subtype, and not from its
9648 -- (anonymous) base type.
9650 if Has_Predicates (Parent_Type)
9651 or else Has_Predicates (First_Subtype (Parent_Type))
9652 then
9653 Set_Has_Predicates (Derived_Type);
9654 end if;
9656 -- The derived type inherits representation clauses from the parent
9657 -- type, and from any interfaces.
9659 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9661 declare
9662 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9663 begin
9664 while Present (Iface) loop
9665 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9666 Next (Iface);
9667 end loop;
9668 end;
9670 -- If the parent type has delayed rep aspects, then mark the derived
9671 -- type as possibly inheriting a delayed rep aspect.
9673 if Has_Delayed_Rep_Aspects (Parent_Type) then
9674 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9675 end if;
9677 -- A derived type becomes Ghost when its parent type is also Ghost
9678 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9679 -- directly inherited because the Ghost policy in effect may differ.
9681 if Is_Ghost_Entity (Parent_Type) then
9682 Set_Is_Ghost_Entity (Derived_Type);
9683 end if;
9685 -- Type dependent processing
9687 case Ekind (Parent_Type) is
9688 when Numeric_Kind =>
9689 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9691 when Array_Kind =>
9692 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9694 when Class_Wide_Kind
9695 | E_Record_Subtype
9696 | E_Record_Type
9698 Build_Derived_Record_Type
9699 (N, Parent_Type, Derived_Type, Derive_Subps);
9700 return;
9702 when Enumeration_Kind =>
9703 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9705 when Access_Kind =>
9706 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9708 when Incomplete_Or_Private_Kind =>
9709 Build_Derived_Private_Type
9710 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9712 -- For discriminated types, the derivation includes deriving
9713 -- primitive operations. For others it is done below.
9715 if Is_Tagged_Type (Parent_Type)
9716 or else Has_Discriminants (Parent_Type)
9717 or else (Present (Full_View (Parent_Type))
9718 and then Has_Discriminants (Full_View (Parent_Type)))
9719 then
9720 return;
9721 end if;
9723 when Concurrent_Kind =>
9724 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9726 when others =>
9727 raise Program_Error;
9728 end case;
9730 -- Nothing more to do if some error occurred
9732 if Etype (Derived_Type) = Any_Type then
9733 return;
9734 end if;
9736 -- Set delayed freeze and then derive subprograms, we need to do this
9737 -- in this order so that derived subprograms inherit the derived freeze
9738 -- if necessary.
9740 Set_Has_Delayed_Freeze (Derived_Type);
9742 if Derive_Subps then
9743 Derive_Subprograms (Parent_Type, Derived_Type);
9744 end if;
9746 Set_Has_Primitive_Operations
9747 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9748 end Build_Derived_Type;
9750 -----------------------
9751 -- Build_Discriminal --
9752 -----------------------
9754 procedure Build_Discriminal (Discrim : Entity_Id) is
9755 D_Minal : Entity_Id;
9756 CR_Disc : Entity_Id;
9758 begin
9759 -- A discriminal has the same name as the discriminant
9761 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9763 Set_Ekind (D_Minal, E_In_Parameter);
9764 Set_Mechanism (D_Minal, Default_Mechanism);
9765 Set_Etype (D_Minal, Etype (Discrim));
9766 Set_Scope (D_Minal, Current_Scope);
9767 Set_Parent (D_Minal, Parent (Discrim));
9769 Set_Discriminal (Discrim, D_Minal);
9770 Set_Discriminal_Link (D_Minal, Discrim);
9772 -- For task types, build at once the discriminants of the corresponding
9773 -- record, which are needed if discriminants are used in entry defaults
9774 -- and in family bounds.
9776 if Is_Concurrent_Type (Current_Scope)
9777 or else
9778 Is_Limited_Type (Current_Scope)
9779 then
9780 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9782 Set_Ekind (CR_Disc, E_In_Parameter);
9783 Set_Mechanism (CR_Disc, Default_Mechanism);
9784 Set_Etype (CR_Disc, Etype (Discrim));
9785 Set_Scope (CR_Disc, Current_Scope);
9786 Set_Discriminal_Link (CR_Disc, Discrim);
9787 Set_CR_Discriminant (Discrim, CR_Disc);
9788 end if;
9789 end Build_Discriminal;
9791 ------------------------------------
9792 -- Build_Discriminant_Constraints --
9793 ------------------------------------
9795 function Build_Discriminant_Constraints
9796 (T : Entity_Id;
9797 Def : Node_Id;
9798 Derived_Def : Boolean := False) return Elist_Id
9800 C : constant Node_Id := Constraint (Def);
9801 Nb_Discr : constant Nat := Number_Discriminants (T);
9803 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9804 -- Saves the expression corresponding to a given discriminant in T
9806 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9807 -- Return the Position number within array Discr_Expr of a discriminant
9808 -- D within the discriminant list of the discriminated type T.
9810 procedure Process_Discriminant_Expression
9811 (Expr : Node_Id;
9812 D : Entity_Id);
9813 -- If this is a discriminant constraint on a partial view, do not
9814 -- generate an overflow check on the discriminant expression. The check
9815 -- will be generated when constraining the full view. Otherwise the
9816 -- backend creates duplicate symbols for the temporaries corresponding
9817 -- to the expressions to be checked, causing spurious assembler errors.
9819 ------------------
9820 -- Pos_Of_Discr --
9821 ------------------
9823 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9824 Disc : Entity_Id;
9826 begin
9827 Disc := First_Discriminant (T);
9828 for J in Discr_Expr'Range loop
9829 if Disc = D then
9830 return J;
9831 end if;
9833 Next_Discriminant (Disc);
9834 end loop;
9836 -- Note: Since this function is called on discriminants that are
9837 -- known to belong to the discriminated type, falling through the
9838 -- loop with no match signals an internal compiler error.
9840 raise Program_Error;
9841 end Pos_Of_Discr;
9843 -------------------------------------
9844 -- Process_Discriminant_Expression --
9845 -------------------------------------
9847 procedure Process_Discriminant_Expression
9848 (Expr : Node_Id;
9849 D : Entity_Id)
9851 BDT : constant Entity_Id := Base_Type (Etype (D));
9853 begin
9854 -- If this is a discriminant constraint on a partial view, do
9855 -- not generate an overflow on the discriminant expression. The
9856 -- check will be generated when constraining the full view.
9858 if Is_Private_Type (T)
9859 and then Present (Full_View (T))
9860 then
9861 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9862 else
9863 Analyze_And_Resolve (Expr, BDT);
9864 end if;
9865 end Process_Discriminant_Expression;
9867 -- Declarations local to Build_Discriminant_Constraints
9869 Discr : Entity_Id;
9870 E : Entity_Id;
9871 Elist : constant Elist_Id := New_Elmt_List;
9873 Constr : Node_Id;
9874 Expr : Node_Id;
9875 Id : Node_Id;
9876 Position : Nat;
9877 Found : Boolean;
9879 Discrim_Present : Boolean := False;
9881 -- Start of processing for Build_Discriminant_Constraints
9883 begin
9884 -- The following loop will process positional associations only.
9885 -- For a positional association, the (single) discriminant is
9886 -- implicitly specified by position, in textual order (RM 3.7.2).
9888 Discr := First_Discriminant (T);
9889 Constr := First (Constraints (C));
9890 for D in Discr_Expr'Range loop
9891 exit when Nkind (Constr) = N_Discriminant_Association;
9893 if No (Constr) then
9894 Error_Msg_N ("too few discriminants given in constraint", C);
9895 return New_Elmt_List;
9897 elsif Nkind (Constr) = N_Range
9898 or else (Nkind (Constr) = N_Attribute_Reference
9899 and then Attribute_Name (Constr) = Name_Range)
9900 then
9901 Error_Msg_N
9902 ("a range is not a valid discriminant constraint", Constr);
9903 Discr_Expr (D) := Error;
9905 elsif Nkind (Constr) = N_Subtype_Indication then
9906 Error_Msg_N
9907 ("a subtype indication is not a valid discriminant constraint",
9908 Constr);
9909 Discr_Expr (D) := Error;
9911 else
9912 Process_Discriminant_Expression (Constr, Discr);
9913 Discr_Expr (D) := Constr;
9914 end if;
9916 Next_Discriminant (Discr);
9917 Next (Constr);
9918 end loop;
9920 if No (Discr) and then Present (Constr) then
9921 Error_Msg_N ("too many discriminants given in constraint", Constr);
9922 return New_Elmt_List;
9923 end if;
9925 -- Named associations can be given in any order, but if both positional
9926 -- and named associations are used in the same discriminant constraint,
9927 -- then positional associations must occur first, at their normal
9928 -- position. Hence once a named association is used, the rest of the
9929 -- discriminant constraint must use only named associations.
9931 while Present (Constr) loop
9933 -- Positional association forbidden after a named association
9935 if Nkind (Constr) /= N_Discriminant_Association then
9936 Error_Msg_N ("positional association follows named one", Constr);
9937 return New_Elmt_List;
9939 -- Otherwise it is a named association
9941 else
9942 -- E records the type of the discriminants in the named
9943 -- association. All the discriminants specified in the same name
9944 -- association must have the same type.
9946 E := Empty;
9948 -- Search the list of discriminants in T to see if the simple name
9949 -- given in the constraint matches any of them.
9951 Id := First (Selector_Names (Constr));
9952 while Present (Id) loop
9953 Found := False;
9955 -- If Original_Discriminant is present, we are processing a
9956 -- generic instantiation and this is an instance node. We need
9957 -- to find the name of the corresponding discriminant in the
9958 -- actual record type T and not the name of the discriminant in
9959 -- the generic formal. Example:
9961 -- generic
9962 -- type G (D : int) is private;
9963 -- package P is
9964 -- subtype W is G (D => 1);
9965 -- end package;
9966 -- type Rec (X : int) is record ... end record;
9967 -- package Q is new P (G => Rec);
9969 -- At the point of the instantiation, formal type G is Rec
9970 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9971 -- which really looks like "subtype W is Rec (D => 1);" at
9972 -- the point of instantiation, we want to find the discriminant
9973 -- that corresponds to D in Rec, i.e. X.
9975 if Present (Original_Discriminant (Id))
9976 and then In_Instance
9977 then
9978 Discr := Find_Corresponding_Discriminant (Id, T);
9979 Found := True;
9981 else
9982 Discr := First_Discriminant (T);
9983 while Present (Discr) loop
9984 if Chars (Discr) = Chars (Id) then
9985 Found := True;
9986 exit;
9987 end if;
9989 Next_Discriminant (Discr);
9990 end loop;
9992 if not Found then
9993 Error_Msg_N ("& does not match any discriminant", Id);
9994 return New_Elmt_List;
9996 -- If the parent type is a generic formal, preserve the
9997 -- name of the discriminant for subsequent instances.
9998 -- see comment at the beginning of this if statement.
10000 elsif Is_Generic_Type (Root_Type (T)) then
10001 Set_Original_Discriminant (Id, Discr);
10002 end if;
10003 end if;
10005 Position := Pos_Of_Discr (T, Discr);
10007 if Present (Discr_Expr (Position)) then
10008 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10010 else
10011 -- Each discriminant specified in the same named association
10012 -- must be associated with a separate copy of the
10013 -- corresponding expression.
10015 if Present (Next (Id)) then
10016 Expr := New_Copy_Tree (Expression (Constr));
10017 Set_Parent (Expr, Parent (Expression (Constr)));
10018 else
10019 Expr := Expression (Constr);
10020 end if;
10022 Discr_Expr (Position) := Expr;
10023 Process_Discriminant_Expression (Expr, Discr);
10024 end if;
10026 -- A discriminant association with more than one discriminant
10027 -- name is only allowed if the named discriminants are all of
10028 -- the same type (RM 3.7.1(8)).
10030 if E = Empty then
10031 E := Base_Type (Etype (Discr));
10033 elsif Base_Type (Etype (Discr)) /= E then
10034 Error_Msg_N
10035 ("all discriminants in an association " &
10036 "must have the same type", Id);
10037 end if;
10039 Next (Id);
10040 end loop;
10041 end if;
10043 Next (Constr);
10044 end loop;
10046 -- A discriminant constraint must provide exactly one value for each
10047 -- discriminant of the type (RM 3.7.1(8)).
10049 for J in Discr_Expr'Range loop
10050 if No (Discr_Expr (J)) then
10051 Error_Msg_N ("too few discriminants given in constraint", C);
10052 return New_Elmt_List;
10053 end if;
10054 end loop;
10056 -- Determine if there are discriminant expressions in the constraint
10058 for J in Discr_Expr'Range loop
10059 if Denotes_Discriminant
10060 (Discr_Expr (J), Check_Concurrent => True)
10061 then
10062 Discrim_Present := True;
10063 end if;
10064 end loop;
10066 -- Build an element list consisting of the expressions given in the
10067 -- discriminant constraint and apply the appropriate checks. The list
10068 -- is constructed after resolving any named discriminant associations
10069 -- and therefore the expressions appear in the textual order of the
10070 -- discriminants.
10072 Discr := First_Discriminant (T);
10073 for J in Discr_Expr'Range loop
10074 if Discr_Expr (J) /= Error then
10075 Append_Elmt (Discr_Expr (J), Elist);
10077 -- If any of the discriminant constraints is given by a
10078 -- discriminant and we are in a derived type declaration we
10079 -- have a discriminant renaming. Establish link between new
10080 -- and old discriminant. The new discriminant has an implicit
10081 -- dereference if the old one does.
10083 if Denotes_Discriminant (Discr_Expr (J)) then
10084 if Derived_Def then
10085 declare
10086 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10088 begin
10089 Set_Corresponding_Discriminant (New_Discr, Discr);
10090 Set_Has_Implicit_Dereference (New_Discr,
10091 Has_Implicit_Dereference (Discr));
10092 end;
10093 end if;
10095 -- Force the evaluation of non-discriminant expressions.
10096 -- If we have found a discriminant in the constraint 3.4(26)
10097 -- and 3.8(18) demand that no range checks are performed are
10098 -- after evaluation. If the constraint is for a component
10099 -- definition that has a per-object constraint, expressions are
10100 -- evaluated but not checked either. In all other cases perform
10101 -- a range check.
10103 else
10104 if Discrim_Present then
10105 null;
10107 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10108 and then Has_Per_Object_Constraint
10109 (Defining_Identifier (Parent (Parent (Def))))
10110 then
10111 null;
10113 elsif Is_Access_Type (Etype (Discr)) then
10114 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10116 else
10117 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10118 end if;
10120 Force_Evaluation (Discr_Expr (J));
10121 end if;
10123 -- Check that the designated type of an access discriminant's
10124 -- expression is not a class-wide type unless the discriminant's
10125 -- designated type is also class-wide.
10127 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10128 and then not Is_Class_Wide_Type
10129 (Designated_Type (Etype (Discr)))
10130 and then Etype (Discr_Expr (J)) /= Any_Type
10131 and then Is_Class_Wide_Type
10132 (Designated_Type (Etype (Discr_Expr (J))))
10133 then
10134 Wrong_Type (Discr_Expr (J), Etype (Discr));
10136 elsif Is_Access_Type (Etype (Discr))
10137 and then not Is_Access_Constant (Etype (Discr))
10138 and then Is_Access_Type (Etype (Discr_Expr (J)))
10139 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10140 then
10141 Error_Msg_NE
10142 ("constraint for discriminant& must be access to variable",
10143 Def, Discr);
10144 end if;
10145 end if;
10147 Next_Discriminant (Discr);
10148 end loop;
10150 return Elist;
10151 end Build_Discriminant_Constraints;
10153 ---------------------------------
10154 -- Build_Discriminated_Subtype --
10155 ---------------------------------
10157 procedure Build_Discriminated_Subtype
10158 (T : Entity_Id;
10159 Def_Id : Entity_Id;
10160 Elist : Elist_Id;
10161 Related_Nod : Node_Id;
10162 For_Access : Boolean := False)
10164 Has_Discrs : constant Boolean := Has_Discriminants (T);
10165 Constrained : constant Boolean :=
10166 (Has_Discrs
10167 and then not Is_Empty_Elmt_List (Elist)
10168 and then not Is_Class_Wide_Type (T))
10169 or else Is_Constrained (T);
10171 begin
10172 if Ekind (T) = E_Record_Type then
10173 if For_Access then
10174 Set_Ekind (Def_Id, E_Private_Subtype);
10175 Set_Is_For_Access_Subtype (Def_Id, True);
10176 else
10177 Set_Ekind (Def_Id, E_Record_Subtype);
10178 end if;
10180 -- Inherit preelaboration flag from base, for types for which it
10181 -- may have been set: records, private types, protected types.
10183 Set_Known_To_Have_Preelab_Init
10184 (Def_Id, Known_To_Have_Preelab_Init (T));
10186 elsif Ekind (T) = E_Task_Type then
10187 Set_Ekind (Def_Id, E_Task_Subtype);
10189 elsif Ekind (T) = E_Protected_Type then
10190 Set_Ekind (Def_Id, E_Protected_Subtype);
10191 Set_Known_To_Have_Preelab_Init
10192 (Def_Id, Known_To_Have_Preelab_Init (T));
10194 elsif Is_Private_Type (T) then
10195 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10196 Set_Known_To_Have_Preelab_Init
10197 (Def_Id, Known_To_Have_Preelab_Init (T));
10199 -- Private subtypes may have private dependents
10201 Set_Private_Dependents (Def_Id, New_Elmt_List);
10203 elsif Is_Class_Wide_Type (T) then
10204 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10206 else
10207 -- Incomplete type. Attach subtype to list of dependents, to be
10208 -- completed with full view of parent type, unless is it the
10209 -- designated subtype of a record component within an init_proc.
10210 -- This last case arises for a component of an access type whose
10211 -- designated type is incomplete (e.g. a Taft Amendment type).
10212 -- The designated subtype is within an inner scope, and needs no
10213 -- elaboration, because only the access type is needed in the
10214 -- initialization procedure.
10216 if Ekind (T) = E_Incomplete_Type then
10217 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10218 else
10219 Set_Ekind (Def_Id, Ekind (T));
10220 end if;
10222 if For_Access and then Within_Init_Proc then
10223 null;
10224 else
10225 Append_Elmt (Def_Id, Private_Dependents (T));
10226 end if;
10227 end if;
10229 Set_Etype (Def_Id, T);
10230 Init_Size_Align (Def_Id);
10231 Set_Has_Discriminants (Def_Id, Has_Discrs);
10232 Set_Is_Constrained (Def_Id, Constrained);
10234 Set_First_Entity (Def_Id, First_Entity (T));
10235 Set_Last_Entity (Def_Id, Last_Entity (T));
10236 Set_Has_Implicit_Dereference
10237 (Def_Id, Has_Implicit_Dereference (T));
10238 Set_Has_Pragma_Unreferenced_Objects
10239 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10241 -- If the subtype is the completion of a private declaration, there may
10242 -- have been representation clauses for the partial view, and they must
10243 -- be preserved. Build_Derived_Type chains the inherited clauses with
10244 -- the ones appearing on the extension. If this comes from a subtype
10245 -- declaration, all clauses are inherited.
10247 if No (First_Rep_Item (Def_Id)) then
10248 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10249 end if;
10251 if Is_Tagged_Type (T) then
10252 Set_Is_Tagged_Type (Def_Id);
10253 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10254 Make_Class_Wide_Type (Def_Id);
10255 end if;
10257 Set_Stored_Constraint (Def_Id, No_Elist);
10259 if Has_Discrs then
10260 Set_Discriminant_Constraint (Def_Id, Elist);
10261 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10262 end if;
10264 if Is_Tagged_Type (T) then
10266 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10267 -- concurrent record type (which has the list of primitive
10268 -- operations).
10270 if Ada_Version >= Ada_2005
10271 and then Is_Concurrent_Type (T)
10272 then
10273 Set_Corresponding_Record_Type (Def_Id,
10274 Corresponding_Record_Type (T));
10275 else
10276 Set_Direct_Primitive_Operations (Def_Id,
10277 Direct_Primitive_Operations (T));
10278 end if;
10280 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10281 end if;
10283 -- Subtypes introduced by component declarations do not need to be
10284 -- marked as delayed, and do not get freeze nodes, because the semantics
10285 -- verifies that the parents of the subtypes are frozen before the
10286 -- enclosing record is frozen.
10288 if not Is_Type (Scope (Def_Id)) then
10289 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10291 if Is_Private_Type (T)
10292 and then Present (Full_View (T))
10293 then
10294 Conditional_Delay (Def_Id, Full_View (T));
10295 else
10296 Conditional_Delay (Def_Id, T);
10297 end if;
10298 end if;
10300 if Is_Record_Type (T) then
10301 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10303 if Has_Discrs
10304 and then not Is_Empty_Elmt_List (Elist)
10305 and then not For_Access
10306 then
10307 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10309 elsif not For_Access then
10310 Set_Cloned_Subtype (Def_Id, T);
10311 end if;
10312 end if;
10313 end Build_Discriminated_Subtype;
10315 ---------------------------
10316 -- Build_Itype_Reference --
10317 ---------------------------
10319 procedure Build_Itype_Reference
10320 (Ityp : Entity_Id;
10321 Nod : Node_Id)
10323 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10324 begin
10326 -- Itype references are only created for use by the back-end
10328 if Inside_A_Generic then
10329 return;
10330 else
10331 Set_Itype (IR, Ityp);
10333 -- If Nod is a library unit entity, then Insert_After won't work,
10334 -- because Nod is not a member of any list. Therefore, we use
10335 -- Add_Global_Declaration in this case. This can happen if we have a
10336 -- build-in-place library function.
10338 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10339 or else
10340 (Nkind (Nod) = N_Defining_Program_Unit_Name
10341 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10342 then
10343 Add_Global_Declaration (IR);
10344 else
10345 Insert_After (Nod, IR);
10346 end if;
10347 end if;
10348 end Build_Itype_Reference;
10350 ------------------------
10351 -- Build_Scalar_Bound --
10352 ------------------------
10354 function Build_Scalar_Bound
10355 (Bound : Node_Id;
10356 Par_T : Entity_Id;
10357 Der_T : Entity_Id) return Node_Id
10359 New_Bound : Entity_Id;
10361 begin
10362 -- Note: not clear why this is needed, how can the original bound
10363 -- be unanalyzed at this point? and if it is, what business do we
10364 -- have messing around with it? and why is the base type of the
10365 -- parent type the right type for the resolution. It probably is
10366 -- not. It is OK for the new bound we are creating, but not for
10367 -- the old one??? Still if it never happens, no problem.
10369 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10371 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10372 New_Bound := New_Copy (Bound);
10373 Set_Etype (New_Bound, Der_T);
10374 Set_Analyzed (New_Bound);
10376 elsif Is_Entity_Name (Bound) then
10377 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10379 -- The following is almost certainly wrong. What business do we have
10380 -- relocating a node (Bound) that is presumably still attached to
10381 -- the tree elsewhere???
10383 else
10384 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10385 end if;
10387 Set_Etype (New_Bound, Der_T);
10388 return New_Bound;
10389 end Build_Scalar_Bound;
10391 --------------------------------
10392 -- Build_Underlying_Full_View --
10393 --------------------------------
10395 procedure Build_Underlying_Full_View
10396 (N : Node_Id;
10397 Typ : Entity_Id;
10398 Par : Entity_Id)
10400 Loc : constant Source_Ptr := Sloc (N);
10401 Subt : constant Entity_Id :=
10402 Make_Defining_Identifier
10403 (Loc, New_External_Name (Chars (Typ), 'S'));
10405 Constr : Node_Id;
10406 Indic : Node_Id;
10407 C : Node_Id;
10408 Id : Node_Id;
10410 procedure Set_Discriminant_Name (Id : Node_Id);
10411 -- If the derived type has discriminants, they may rename discriminants
10412 -- of the parent. When building the full view of the parent, we need to
10413 -- recover the names of the original discriminants if the constraint is
10414 -- given by named associations.
10416 ---------------------------
10417 -- Set_Discriminant_Name --
10418 ---------------------------
10420 procedure Set_Discriminant_Name (Id : Node_Id) is
10421 Disc : Entity_Id;
10423 begin
10424 Set_Original_Discriminant (Id, Empty);
10426 if Has_Discriminants (Typ) then
10427 Disc := First_Discriminant (Typ);
10428 while Present (Disc) loop
10429 if Chars (Disc) = Chars (Id)
10430 and then Present (Corresponding_Discriminant (Disc))
10431 then
10432 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10433 end if;
10434 Next_Discriminant (Disc);
10435 end loop;
10436 end if;
10437 end Set_Discriminant_Name;
10439 -- Start of processing for Build_Underlying_Full_View
10441 begin
10442 if Nkind (N) = N_Full_Type_Declaration then
10443 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10445 elsif Nkind (N) = N_Subtype_Declaration then
10446 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10448 elsif Nkind (N) = N_Component_Declaration then
10449 Constr :=
10450 New_Copy_Tree
10451 (Constraint (Subtype_Indication (Component_Definition (N))));
10453 else
10454 raise Program_Error;
10455 end if;
10457 C := First (Constraints (Constr));
10458 while Present (C) loop
10459 if Nkind (C) = N_Discriminant_Association then
10460 Id := First (Selector_Names (C));
10461 while Present (Id) loop
10462 Set_Discriminant_Name (Id);
10463 Next (Id);
10464 end loop;
10465 end if;
10467 Next (C);
10468 end loop;
10470 Indic :=
10471 Make_Subtype_Declaration (Loc,
10472 Defining_Identifier => Subt,
10473 Subtype_Indication =>
10474 Make_Subtype_Indication (Loc,
10475 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10476 Constraint => New_Copy_Tree (Constr)));
10478 -- If this is a component subtype for an outer itype, it is not
10479 -- a list member, so simply set the parent link for analysis: if
10480 -- the enclosing type does not need to be in a declarative list,
10481 -- neither do the components.
10483 if Is_List_Member (N)
10484 and then Nkind (N) /= N_Component_Declaration
10485 then
10486 Insert_Before (N, Indic);
10487 else
10488 Set_Parent (Indic, Parent (N));
10489 end if;
10491 Analyze (Indic);
10492 Set_Underlying_Full_View (Typ, Full_View (Subt));
10493 Set_Is_Underlying_Full_View (Full_View (Subt));
10494 end Build_Underlying_Full_View;
10496 -------------------------------
10497 -- Check_Abstract_Overriding --
10498 -------------------------------
10500 procedure Check_Abstract_Overriding (T : Entity_Id) is
10501 Alias_Subp : Entity_Id;
10502 Elmt : Elmt_Id;
10503 Op_List : Elist_Id;
10504 Subp : Entity_Id;
10505 Type_Def : Node_Id;
10507 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10508 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10509 -- which has pragma Implemented already set. Check whether Subp's entity
10510 -- kind conforms to the implementation kind of the overridden routine.
10512 procedure Check_Pragma_Implemented
10513 (Subp : Entity_Id;
10514 Iface_Subp : Entity_Id);
10515 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10516 -- Iface_Subp and both entities have pragma Implemented already set on
10517 -- them. Check whether the two implementation kinds are conforming.
10519 procedure Inherit_Pragma_Implemented
10520 (Subp : Entity_Id;
10521 Iface_Subp : Entity_Id);
10522 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10523 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10524 -- Propagate the implementation kind of Iface_Subp to Subp.
10526 ------------------------------
10527 -- Check_Pragma_Implemented --
10528 ------------------------------
10530 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10531 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10532 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10533 Subp_Alias : constant Entity_Id := Alias (Subp);
10534 Contr_Typ : Entity_Id;
10535 Impl_Subp : Entity_Id;
10537 begin
10538 -- Subp must have an alias since it is a hidden entity used to link
10539 -- an interface subprogram to its overriding counterpart.
10541 pragma Assert (Present (Subp_Alias));
10543 -- Handle aliases to synchronized wrappers
10545 Impl_Subp := Subp_Alias;
10547 if Is_Primitive_Wrapper (Impl_Subp) then
10548 Impl_Subp := Wrapped_Entity (Impl_Subp);
10549 end if;
10551 -- Extract the type of the controlling formal
10553 Contr_Typ := Etype (First_Formal (Subp_Alias));
10555 if Is_Concurrent_Record_Type (Contr_Typ) then
10556 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10557 end if;
10559 -- An interface subprogram whose implementation kind is By_Entry must
10560 -- be implemented by an entry.
10562 if Impl_Kind = Name_By_Entry
10563 and then Ekind (Impl_Subp) /= E_Entry
10564 then
10565 Error_Msg_Node_2 := Iface_Alias;
10566 Error_Msg_NE
10567 ("type & must implement abstract subprogram & with an entry",
10568 Subp_Alias, Contr_Typ);
10570 elsif Impl_Kind = Name_By_Protected_Procedure then
10572 -- An interface subprogram whose implementation kind is By_
10573 -- Protected_Procedure cannot be implemented by a primitive
10574 -- procedure of a task type.
10576 if Ekind (Contr_Typ) /= E_Protected_Type then
10577 Error_Msg_Node_2 := Contr_Typ;
10578 Error_Msg_NE
10579 ("interface subprogram & cannot be implemented by a " &
10580 "primitive procedure of task type &", Subp_Alias,
10581 Iface_Alias);
10583 -- An interface subprogram whose implementation kind is By_
10584 -- Protected_Procedure must be implemented by a procedure.
10586 elsif Ekind (Impl_Subp) /= E_Procedure then
10587 Error_Msg_Node_2 := Iface_Alias;
10588 Error_Msg_NE
10589 ("type & must implement abstract subprogram & with a " &
10590 "procedure", Subp_Alias, Contr_Typ);
10592 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10593 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10594 then
10595 Error_Msg_Name_1 := Impl_Kind;
10596 Error_Msg_N
10597 ("overriding operation& must have synchronization%",
10598 Subp_Alias);
10599 end if;
10601 -- If primitive has Optional synchronization, overriding operation
10602 -- must match if it has an explicit synchronization..
10604 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10605 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10606 then
10607 Error_Msg_Name_1 := Impl_Kind;
10608 Error_Msg_N
10609 ("overriding operation& must have syncrhonization%",
10610 Subp_Alias);
10611 end if;
10612 end Check_Pragma_Implemented;
10614 ------------------------------
10615 -- Check_Pragma_Implemented --
10616 ------------------------------
10618 procedure Check_Pragma_Implemented
10619 (Subp : Entity_Id;
10620 Iface_Subp : Entity_Id)
10622 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10623 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10625 begin
10626 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10627 -- and overriding subprogram are different. In general this is an
10628 -- error except when the implementation kind of the overridden
10629 -- subprograms is By_Any or Optional.
10631 if Iface_Kind /= Subp_Kind
10632 and then Iface_Kind /= Name_By_Any
10633 and then Iface_Kind /= Name_Optional
10634 then
10635 if Iface_Kind = Name_By_Entry then
10636 Error_Msg_N
10637 ("incompatible implementation kind, overridden subprogram " &
10638 "is marked By_Entry", Subp);
10639 else
10640 Error_Msg_N
10641 ("incompatible implementation kind, overridden subprogram " &
10642 "is marked By_Protected_Procedure", Subp);
10643 end if;
10644 end if;
10645 end Check_Pragma_Implemented;
10647 --------------------------------
10648 -- Inherit_Pragma_Implemented --
10649 --------------------------------
10651 procedure Inherit_Pragma_Implemented
10652 (Subp : Entity_Id;
10653 Iface_Subp : Entity_Id)
10655 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10656 Loc : constant Source_Ptr := Sloc (Subp);
10657 Impl_Prag : Node_Id;
10659 begin
10660 -- Since the implementation kind is stored as a representation item
10661 -- rather than a flag, create a pragma node.
10663 Impl_Prag :=
10664 Make_Pragma (Loc,
10665 Chars => Name_Implemented,
10666 Pragma_Argument_Associations => New_List (
10667 Make_Pragma_Argument_Association (Loc,
10668 Expression => New_Occurrence_Of (Subp, Loc)),
10670 Make_Pragma_Argument_Association (Loc,
10671 Expression => Make_Identifier (Loc, Iface_Kind))));
10673 -- The pragma doesn't need to be analyzed because it is internally
10674 -- built. It is safe to directly register it as a rep item since we
10675 -- are only interested in the characters of the implementation kind.
10677 Record_Rep_Item (Subp, Impl_Prag);
10678 end Inherit_Pragma_Implemented;
10680 -- Start of processing for Check_Abstract_Overriding
10682 begin
10683 Op_List := Primitive_Operations (T);
10685 -- Loop to check primitive operations
10687 Elmt := First_Elmt (Op_List);
10688 while Present (Elmt) loop
10689 Subp := Node (Elmt);
10690 Alias_Subp := Alias (Subp);
10692 -- Inherited subprograms are identified by the fact that they do not
10693 -- come from source, and the associated source location is the
10694 -- location of the first subtype of the derived type.
10696 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10697 -- subprograms that "require overriding".
10699 -- Special exception, do not complain about failure to override the
10700 -- stream routines _Input and _Output, as well as the primitive
10701 -- operations used in dispatching selects since we always provide
10702 -- automatic overridings for these subprograms.
10704 -- The partial view of T may have been a private extension, for
10705 -- which inherited functions dispatching on result are abstract.
10706 -- If the full view is a null extension, there is no need for
10707 -- overriding in Ada 2005, but wrappers need to be built for them
10708 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10710 if Is_Null_Extension (T)
10711 and then Has_Controlling_Result (Subp)
10712 and then Ada_Version >= Ada_2005
10713 and then Present (Alias_Subp)
10714 and then not Comes_From_Source (Subp)
10715 and then not Is_Abstract_Subprogram (Alias_Subp)
10716 and then not Is_Access_Type (Etype (Subp))
10717 then
10718 null;
10720 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10721 -- processing because this check is done with the aliased
10722 -- entity
10724 elsif Present (Interface_Alias (Subp)) then
10725 null;
10727 elsif (Is_Abstract_Subprogram (Subp)
10728 or else Requires_Overriding (Subp)
10729 or else
10730 (Has_Controlling_Result (Subp)
10731 and then Present (Alias_Subp)
10732 and then not Comes_From_Source (Subp)
10733 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10734 and then not Is_TSS (Subp, TSS_Stream_Input)
10735 and then not Is_TSS (Subp, TSS_Stream_Output)
10736 and then not Is_Abstract_Type (T)
10737 and then not Is_Predefined_Interface_Primitive (Subp)
10739 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10740 -- with abstract interface types because the check will be done
10741 -- with the aliased entity (otherwise we generate a duplicated
10742 -- error message).
10744 and then not Present (Interface_Alias (Subp))
10745 then
10746 if Present (Alias_Subp) then
10748 -- Only perform the check for a derived subprogram when the
10749 -- type has an explicit record extension. This avoids incorrect
10750 -- flagging of abstract subprograms for the case of a type
10751 -- without an extension that is derived from a formal type
10752 -- with a tagged actual (can occur within a private part).
10754 -- Ada 2005 (AI-391): In the case of an inherited function with
10755 -- a controlling result of the type, the rule does not apply if
10756 -- the type is a null extension (unless the parent function
10757 -- itself is abstract, in which case the function must still be
10758 -- be overridden). The expander will generate an overriding
10759 -- wrapper function calling the parent subprogram (see
10760 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10762 Type_Def := Type_Definition (Parent (T));
10764 if Nkind (Type_Def) = N_Derived_Type_Definition
10765 and then Present (Record_Extension_Part (Type_Def))
10766 and then
10767 (Ada_Version < Ada_2005
10768 or else not Is_Null_Extension (T)
10769 or else Ekind (Subp) = E_Procedure
10770 or else not Has_Controlling_Result (Subp)
10771 or else Is_Abstract_Subprogram (Alias_Subp)
10772 or else Requires_Overriding (Subp)
10773 or else Is_Access_Type (Etype (Subp)))
10774 then
10775 -- Avoid reporting error in case of abstract predefined
10776 -- primitive inherited from interface type because the
10777 -- body of internally generated predefined primitives
10778 -- of tagged types are generated later by Freeze_Type
10780 if Is_Interface (Root_Type (T))
10781 and then Is_Abstract_Subprogram (Subp)
10782 and then Is_Predefined_Dispatching_Operation (Subp)
10783 and then not Comes_From_Source (Ultimate_Alias (Subp))
10784 then
10785 null;
10787 -- A null extension is not obliged to override an inherited
10788 -- procedure subject to pragma Extensions_Visible with value
10789 -- False and at least one controlling OUT parameter
10790 -- (SPARK RM 6.1.7(6)).
10792 elsif Is_Null_Extension (T)
10793 and then Is_EVF_Procedure (Subp)
10794 then
10795 null;
10797 else
10798 Error_Msg_NE
10799 ("type must be declared abstract or & overridden",
10800 T, Subp);
10802 -- Traverse the whole chain of aliased subprograms to
10803 -- complete the error notification. This is especially
10804 -- useful for traceability of the chain of entities when
10805 -- the subprogram corresponds with an interface
10806 -- subprogram (which may be defined in another package).
10808 if Present (Alias_Subp) then
10809 declare
10810 E : Entity_Id;
10812 begin
10813 E := Subp;
10814 while Present (Alias (E)) loop
10816 -- Avoid reporting redundant errors on entities
10817 -- inherited from interfaces
10819 if Sloc (E) /= Sloc (T) then
10820 Error_Msg_Sloc := Sloc (E);
10821 Error_Msg_NE
10822 ("\& has been inherited #", T, Subp);
10823 end if;
10825 E := Alias (E);
10826 end loop;
10828 Error_Msg_Sloc := Sloc (E);
10830 -- AI05-0068: report if there is an overriding
10831 -- non-abstract subprogram that is invisible.
10833 if Is_Hidden (E)
10834 and then not Is_Abstract_Subprogram (E)
10835 then
10836 Error_Msg_NE
10837 ("\& subprogram# is not visible",
10838 T, Subp);
10840 -- Clarify the case where a non-null extension must
10841 -- override inherited procedure subject to pragma
10842 -- Extensions_Visible with value False and at least
10843 -- one controlling OUT param.
10845 elsif Is_EVF_Procedure (E) then
10846 Error_Msg_NE
10847 ("\& # is subject to Extensions_Visible False",
10848 T, Subp);
10850 else
10851 Error_Msg_NE
10852 ("\& has been inherited from subprogram #",
10853 T, Subp);
10854 end if;
10855 end;
10856 end if;
10857 end if;
10859 -- Ada 2005 (AI-345): Protected or task type implementing
10860 -- abstract interfaces.
10862 elsif Is_Concurrent_Record_Type (T)
10863 and then Present (Interfaces (T))
10864 then
10865 -- There is no need to check here RM 9.4(11.9/3) since we
10866 -- are processing the corresponding record type and the
10867 -- mode of the overriding subprograms was verified by
10868 -- Check_Conformance when the corresponding concurrent
10869 -- type declaration was analyzed.
10871 Error_Msg_NE
10872 ("interface subprogram & must be overridden", T, Subp);
10874 -- Examine primitive operations of synchronized type to find
10875 -- homonyms that have the wrong profile.
10877 declare
10878 Prim : Entity_Id;
10880 begin
10881 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10882 while Present (Prim) loop
10883 if Chars (Prim) = Chars (Subp) then
10884 Error_Msg_NE
10885 ("profile is not type conformant with prefixed "
10886 & "view profile of inherited operation&",
10887 Prim, Subp);
10888 end if;
10890 Next_Entity (Prim);
10891 end loop;
10892 end;
10893 end if;
10895 else
10896 Error_Msg_Node_2 := T;
10897 Error_Msg_N
10898 ("abstract subprogram& not allowed for type&", Subp);
10900 -- Also post unconditional warning on the type (unconditional
10901 -- so that if there are more than one of these cases, we get
10902 -- them all, and not just the first one).
10904 Error_Msg_Node_2 := Subp;
10905 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10906 end if;
10908 -- A subprogram subject to pragma Extensions_Visible with value
10909 -- "True" cannot override a subprogram subject to the same pragma
10910 -- with value "False" (SPARK RM 6.1.7(5)).
10912 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10913 and then Present (Overridden_Operation (Subp))
10914 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10915 Extensions_Visible_False
10916 then
10917 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10918 Error_Msg_N
10919 ("subprogram & with Extensions_Visible True cannot override "
10920 & "subprogram # with Extensions_Visible False", Subp);
10921 end if;
10923 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10925 -- Subp is an expander-generated procedure which maps an interface
10926 -- alias to a protected wrapper. The interface alias is flagged by
10927 -- pragma Implemented. Ensure that Subp is a procedure when the
10928 -- implementation kind is By_Protected_Procedure or an entry when
10929 -- By_Entry.
10931 if Ada_Version >= Ada_2012
10932 and then Is_Hidden (Subp)
10933 and then Present (Interface_Alias (Subp))
10934 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10935 then
10936 Check_Pragma_Implemented (Subp);
10937 end if;
10939 -- Subp is an interface primitive which overrides another interface
10940 -- primitive marked with pragma Implemented.
10942 if Ada_Version >= Ada_2012
10943 and then Present (Overridden_Operation (Subp))
10944 and then Has_Rep_Pragma
10945 (Overridden_Operation (Subp), Name_Implemented)
10946 then
10947 -- If the overriding routine is also marked by Implemented, check
10948 -- that the two implementation kinds are conforming.
10950 if Has_Rep_Pragma (Subp, Name_Implemented) then
10951 Check_Pragma_Implemented
10952 (Subp => Subp,
10953 Iface_Subp => Overridden_Operation (Subp));
10955 -- Otherwise the overriding routine inherits the implementation
10956 -- kind from the overridden subprogram.
10958 else
10959 Inherit_Pragma_Implemented
10960 (Subp => Subp,
10961 Iface_Subp => Overridden_Operation (Subp));
10962 end if;
10963 end if;
10965 -- If the operation is a wrapper for a synchronized primitive, it
10966 -- may be called indirectly through a dispatching select. We assume
10967 -- that it will be referenced elsewhere indirectly, and suppress
10968 -- warnings about an unused entity.
10970 if Is_Primitive_Wrapper (Subp)
10971 and then Present (Wrapped_Entity (Subp))
10972 then
10973 Set_Referenced (Wrapped_Entity (Subp));
10974 end if;
10976 Next_Elmt (Elmt);
10977 end loop;
10978 end Check_Abstract_Overriding;
10980 ------------------------------------------------
10981 -- Check_Access_Discriminant_Requires_Limited --
10982 ------------------------------------------------
10984 procedure Check_Access_Discriminant_Requires_Limited
10985 (D : Node_Id;
10986 Loc : Node_Id)
10988 begin
10989 -- A discriminant_specification for an access discriminant shall appear
10990 -- only in the declaration for a task or protected type, or for a type
10991 -- with the reserved word 'limited' in its definition or in one of its
10992 -- ancestors (RM 3.7(10)).
10994 -- AI-0063: The proper condition is that type must be immutably limited,
10995 -- or else be a partial view.
10997 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10998 if Is_Limited_View (Current_Scope)
10999 or else
11000 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11001 and then Limited_Present (Parent (Current_Scope)))
11002 then
11003 null;
11005 else
11006 Error_Msg_N
11007 ("access discriminants allowed only for limited types", Loc);
11008 end if;
11009 end if;
11010 end Check_Access_Discriminant_Requires_Limited;
11012 -----------------------------------
11013 -- Check_Aliased_Component_Types --
11014 -----------------------------------
11016 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11017 C : Entity_Id;
11019 begin
11020 -- ??? Also need to check components of record extensions, but not
11021 -- components of protected types (which are always limited).
11023 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11024 -- types to be unconstrained. This is safe because it is illegal to
11025 -- create access subtypes to such types with explicit discriminant
11026 -- constraints.
11028 if not Is_Limited_Type (T) then
11029 if Ekind (T) = E_Record_Type then
11030 C := First_Component (T);
11031 while Present (C) loop
11032 if Is_Aliased (C)
11033 and then Has_Discriminants (Etype (C))
11034 and then not Is_Constrained (Etype (C))
11035 and then not In_Instance_Body
11036 and then Ada_Version < Ada_2005
11037 then
11038 Error_Msg_N
11039 ("aliased component must be constrained (RM 3.6(11))",
11041 end if;
11043 Next_Component (C);
11044 end loop;
11046 elsif Ekind (T) = E_Array_Type then
11047 if Has_Aliased_Components (T)
11048 and then Has_Discriminants (Component_Type (T))
11049 and then not Is_Constrained (Component_Type (T))
11050 and then not In_Instance_Body
11051 and then Ada_Version < Ada_2005
11052 then
11053 Error_Msg_N
11054 ("aliased component type must be constrained (RM 3.6(11))",
11056 end if;
11057 end if;
11058 end if;
11059 end Check_Aliased_Component_Types;
11061 ---------------------------------------
11062 -- Check_Anonymous_Access_Components --
11063 ---------------------------------------
11065 procedure Check_Anonymous_Access_Components
11066 (Typ_Decl : Node_Id;
11067 Typ : Entity_Id;
11068 Prev : Entity_Id;
11069 Comp_List : Node_Id)
11071 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11072 Anon_Access : Entity_Id;
11073 Acc_Def : Node_Id;
11074 Comp : Node_Id;
11075 Comp_Def : Node_Id;
11076 Decl : Node_Id;
11077 Type_Def : Node_Id;
11079 procedure Build_Incomplete_Type_Declaration;
11080 -- If the record type contains components that include an access to the
11081 -- current record, then create an incomplete type declaration for the
11082 -- record, to be used as the designated type of the anonymous access.
11083 -- This is done only once, and only if there is no previous partial
11084 -- view of the type.
11086 function Designates_T (Subt : Node_Id) return Boolean;
11087 -- Check whether a node designates the enclosing record type, or 'Class
11088 -- of that type
11090 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11091 -- Check whether an access definition includes a reference to
11092 -- the enclosing record type. The reference can be a subtype mark
11093 -- in the access definition itself, a 'Class attribute reference, or
11094 -- recursively a reference appearing in a parameter specification
11095 -- or result definition of an access_to_subprogram definition.
11097 --------------------------------------
11098 -- Build_Incomplete_Type_Declaration --
11099 --------------------------------------
11101 procedure Build_Incomplete_Type_Declaration is
11102 Decl : Node_Id;
11103 Inc_T : Entity_Id;
11104 H : Entity_Id;
11106 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11107 -- it's "is new ... with record" or else "is tagged record ...".
11109 Is_Tagged : constant Boolean :=
11110 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11111 and then
11112 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11113 or else
11114 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11115 and then Tagged_Present (Type_Definition (Typ_Decl)));
11117 begin
11118 -- If there is a previous partial view, no need to create a new one
11119 -- If the partial view, given by Prev, is incomplete, If Prev is
11120 -- a private declaration, full declaration is flagged accordingly.
11122 if Prev /= Typ then
11123 if Is_Tagged then
11124 Make_Class_Wide_Type (Prev);
11125 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11126 Set_Etype (Class_Wide_Type (Typ), Typ);
11127 end if;
11129 return;
11131 elsif Has_Private_Declaration (Typ) then
11133 -- If we refer to T'Class inside T, and T is the completion of a
11134 -- private type, then make sure the class-wide type exists.
11136 if Is_Tagged then
11137 Make_Class_Wide_Type (Typ);
11138 end if;
11140 return;
11142 -- If there was a previous anonymous access type, the incomplete
11143 -- type declaration will have been created already.
11145 elsif Present (Current_Entity (Typ))
11146 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11147 and then Full_View (Current_Entity (Typ)) = Typ
11148 then
11149 if Is_Tagged
11150 and then Comes_From_Source (Current_Entity (Typ))
11151 and then not Is_Tagged_Type (Current_Entity (Typ))
11152 then
11153 Make_Class_Wide_Type (Typ);
11154 Error_Msg_N
11155 ("incomplete view of tagged type should be declared tagged??",
11156 Parent (Current_Entity (Typ)));
11157 end if;
11158 return;
11160 else
11161 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11162 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11164 -- Type has already been inserted into the current scope. Remove
11165 -- it, and add incomplete declaration for type, so that subsequent
11166 -- anonymous access types can use it. The entity is unchained from
11167 -- the homonym list and from immediate visibility. After analysis,
11168 -- the entity in the incomplete declaration becomes immediately
11169 -- visible in the record declaration that follows.
11171 H := Current_Entity (Typ);
11173 if H = Typ then
11174 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11175 else
11176 while Present (H)
11177 and then Homonym (H) /= Typ
11178 loop
11179 H := Homonym (Typ);
11180 end loop;
11182 Set_Homonym (H, Homonym (Typ));
11183 end if;
11185 Insert_Before (Typ_Decl, Decl);
11186 Analyze (Decl);
11187 Set_Full_View (Inc_T, Typ);
11189 if Is_Tagged then
11191 -- Create a common class-wide type for both views, and set the
11192 -- Etype of the class-wide type to the full view.
11194 Make_Class_Wide_Type (Inc_T);
11195 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11196 Set_Etype (Class_Wide_Type (Typ), Typ);
11197 end if;
11198 end if;
11199 end Build_Incomplete_Type_Declaration;
11201 ------------------
11202 -- Designates_T --
11203 ------------------
11205 function Designates_T (Subt : Node_Id) return Boolean is
11206 Type_Id : constant Name_Id := Chars (Typ);
11208 function Names_T (Nam : Node_Id) return Boolean;
11209 -- The record type has not been introduced in the current scope
11210 -- yet, so we must examine the name of the type itself, either
11211 -- an identifier T, or an expanded name of the form P.T, where
11212 -- P denotes the current scope.
11214 -------------
11215 -- Names_T --
11216 -------------
11218 function Names_T (Nam : Node_Id) return Boolean is
11219 begin
11220 if Nkind (Nam) = N_Identifier then
11221 return Chars (Nam) = Type_Id;
11223 elsif Nkind (Nam) = N_Selected_Component then
11224 if Chars (Selector_Name (Nam)) = Type_Id then
11225 if Nkind (Prefix (Nam)) = N_Identifier then
11226 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11228 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11229 return Chars (Selector_Name (Prefix (Nam))) =
11230 Chars (Current_Scope);
11231 else
11232 return False;
11233 end if;
11235 else
11236 return False;
11237 end if;
11239 else
11240 return False;
11241 end if;
11242 end Names_T;
11244 -- Start of processing for Designates_T
11246 begin
11247 if Nkind (Subt) = N_Identifier then
11248 return Chars (Subt) = Type_Id;
11250 -- Reference can be through an expanded name which has not been
11251 -- analyzed yet, and which designates enclosing scopes.
11253 elsif Nkind (Subt) = N_Selected_Component then
11254 if Names_T (Subt) then
11255 return True;
11257 -- Otherwise it must denote an entity that is already visible.
11258 -- The access definition may name a subtype of the enclosing
11259 -- type, if there is a previous incomplete declaration for it.
11261 else
11262 Find_Selected_Component (Subt);
11263 return
11264 Is_Entity_Name (Subt)
11265 and then Scope (Entity (Subt)) = Current_Scope
11266 and then
11267 (Chars (Base_Type (Entity (Subt))) = Type_Id
11268 or else
11269 (Is_Class_Wide_Type (Entity (Subt))
11270 and then
11271 Chars (Etype (Base_Type (Entity (Subt)))) =
11272 Type_Id));
11273 end if;
11275 -- A reference to the current type may appear as the prefix of
11276 -- a 'Class attribute.
11278 elsif Nkind (Subt) = N_Attribute_Reference
11279 and then Attribute_Name (Subt) = Name_Class
11280 then
11281 return Names_T (Prefix (Subt));
11283 else
11284 return False;
11285 end if;
11286 end Designates_T;
11288 ----------------
11289 -- Mentions_T --
11290 ----------------
11292 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11293 Param_Spec : Node_Id;
11295 Acc_Subprg : constant Node_Id :=
11296 Access_To_Subprogram_Definition (Acc_Def);
11298 begin
11299 if No (Acc_Subprg) then
11300 return Designates_T (Subtype_Mark (Acc_Def));
11301 end if;
11303 -- Component is an access_to_subprogram: examine its formals,
11304 -- and result definition in the case of an access_to_function.
11306 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11307 while Present (Param_Spec) loop
11308 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11309 and then Mentions_T (Parameter_Type (Param_Spec))
11310 then
11311 return True;
11313 elsif Designates_T (Parameter_Type (Param_Spec)) then
11314 return True;
11315 end if;
11317 Next (Param_Spec);
11318 end loop;
11320 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11321 if Nkind (Result_Definition (Acc_Subprg)) =
11322 N_Access_Definition
11323 then
11324 return Mentions_T (Result_Definition (Acc_Subprg));
11325 else
11326 return Designates_T (Result_Definition (Acc_Subprg));
11327 end if;
11328 end if;
11330 return False;
11331 end Mentions_T;
11333 -- Start of processing for Check_Anonymous_Access_Components
11335 begin
11336 if No (Comp_List) then
11337 return;
11338 end if;
11340 Comp := First (Component_Items (Comp_List));
11341 while Present (Comp) loop
11342 if Nkind (Comp) = N_Component_Declaration
11343 and then Present
11344 (Access_Definition (Component_Definition (Comp)))
11345 and then
11346 Mentions_T (Access_Definition (Component_Definition (Comp)))
11347 then
11348 Comp_Def := Component_Definition (Comp);
11349 Acc_Def :=
11350 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11352 Build_Incomplete_Type_Declaration;
11353 Anon_Access := Make_Temporary (Loc, 'S');
11355 -- Create a declaration for the anonymous access type: either
11356 -- an access_to_object or an access_to_subprogram.
11358 if Present (Acc_Def) then
11359 if Nkind (Acc_Def) = N_Access_Function_Definition then
11360 Type_Def :=
11361 Make_Access_Function_Definition (Loc,
11362 Parameter_Specifications =>
11363 Parameter_Specifications (Acc_Def),
11364 Result_Definition => Result_Definition (Acc_Def));
11365 else
11366 Type_Def :=
11367 Make_Access_Procedure_Definition (Loc,
11368 Parameter_Specifications =>
11369 Parameter_Specifications (Acc_Def));
11370 end if;
11372 else
11373 Type_Def :=
11374 Make_Access_To_Object_Definition (Loc,
11375 Subtype_Indication =>
11376 Relocate_Node
11377 (Subtype_Mark (Access_Definition (Comp_Def))));
11379 Set_Constant_Present
11380 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11381 Set_All_Present
11382 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11383 end if;
11385 Set_Null_Exclusion_Present
11386 (Type_Def,
11387 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11389 Decl :=
11390 Make_Full_Type_Declaration (Loc,
11391 Defining_Identifier => Anon_Access,
11392 Type_Definition => Type_Def);
11394 Insert_Before (Typ_Decl, Decl);
11395 Analyze (Decl);
11397 -- If an access to subprogram, create the extra formals
11399 if Present (Acc_Def) then
11400 Create_Extra_Formals (Designated_Type (Anon_Access));
11402 -- If an access to object, preserve entity of designated type,
11403 -- for ASIS use, before rewriting the component definition.
11405 else
11406 declare
11407 Desig : Entity_Id;
11409 begin
11410 Desig := Entity (Subtype_Indication (Type_Def));
11412 -- If the access definition is to the current record,
11413 -- the visible entity at this point is an incomplete
11414 -- type. Retrieve the full view to simplify ASIS queries
11416 if Ekind (Desig) = E_Incomplete_Type then
11417 Desig := Full_View (Desig);
11418 end if;
11420 Set_Entity
11421 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11422 end;
11423 end if;
11425 Rewrite (Comp_Def,
11426 Make_Component_Definition (Loc,
11427 Subtype_Indication =>
11428 New_Occurrence_Of (Anon_Access, Loc)));
11430 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11431 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11432 else
11433 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11434 end if;
11436 Set_Is_Local_Anonymous_Access (Anon_Access);
11437 end if;
11439 Next (Comp);
11440 end loop;
11442 if Present (Variant_Part (Comp_List)) then
11443 declare
11444 V : Node_Id;
11445 begin
11446 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11447 while Present (V) loop
11448 Check_Anonymous_Access_Components
11449 (Typ_Decl, Typ, Prev, Component_List (V));
11450 Next_Non_Pragma (V);
11451 end loop;
11452 end;
11453 end if;
11454 end Check_Anonymous_Access_Components;
11456 ----------------------
11457 -- Check_Completion --
11458 ----------------------
11460 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11461 E : Entity_Id;
11463 procedure Post_Error;
11464 -- Post error message for lack of completion for entity E
11466 ----------------
11467 -- Post_Error --
11468 ----------------
11470 procedure Post_Error is
11471 procedure Missing_Body;
11472 -- Output missing body message
11474 ------------------
11475 -- Missing_Body --
11476 ------------------
11478 procedure Missing_Body is
11479 begin
11480 -- Spec is in same unit, so we can post on spec
11482 if In_Same_Source_Unit (Body_Id, E) then
11483 Error_Msg_N ("missing body for &", E);
11485 -- Spec is in a separate unit, so we have to post on the body
11487 else
11488 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11489 end if;
11490 end Missing_Body;
11492 -- Start of processing for Post_Error
11494 begin
11495 if not Comes_From_Source (E) then
11496 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11498 -- It may be an anonymous protected type created for a
11499 -- single variable. Post error on variable, if present.
11501 declare
11502 Var : Entity_Id;
11504 begin
11505 Var := First_Entity (Current_Scope);
11506 while Present (Var) loop
11507 exit when Etype (Var) = E
11508 and then Comes_From_Source (Var);
11510 Next_Entity (Var);
11511 end loop;
11513 if Present (Var) then
11514 E := Var;
11515 end if;
11516 end;
11517 end if;
11518 end if;
11520 -- If a generated entity has no completion, then either previous
11521 -- semantic errors have disabled the expansion phase, or else we had
11522 -- missing subunits, or else we are compiling without expansion,
11523 -- or else something is very wrong.
11525 if not Comes_From_Source (E) then
11526 pragma Assert
11527 (Serious_Errors_Detected > 0
11528 or else Configurable_Run_Time_Violations > 0
11529 or else Subunits_Missing
11530 or else not Expander_Active);
11531 return;
11533 -- Here for source entity
11535 else
11536 -- Here if no body to post the error message, so we post the error
11537 -- on the declaration that has no completion. This is not really
11538 -- the right place to post it, think about this later ???
11540 if No (Body_Id) then
11541 if Is_Type (E) then
11542 Error_Msg_NE
11543 ("missing full declaration for }", Parent (E), E);
11544 else
11545 Error_Msg_NE ("missing body for &", Parent (E), E);
11546 end if;
11548 -- Package body has no completion for a declaration that appears
11549 -- in the corresponding spec. Post error on the body, with a
11550 -- reference to the non-completed declaration.
11552 else
11553 Error_Msg_Sloc := Sloc (E);
11555 if Is_Type (E) then
11556 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11558 elsif Is_Overloadable (E)
11559 and then Current_Entity_In_Scope (E) /= E
11560 then
11561 -- It may be that the completion is mistyped and appears as
11562 -- a distinct overloading of the entity.
11564 declare
11565 Candidate : constant Entity_Id :=
11566 Current_Entity_In_Scope (E);
11567 Decl : constant Node_Id :=
11568 Unit_Declaration_Node (Candidate);
11570 begin
11571 if Is_Overloadable (Candidate)
11572 and then Ekind (Candidate) = Ekind (E)
11573 and then Nkind (Decl) = N_Subprogram_Body
11574 and then Acts_As_Spec (Decl)
11575 then
11576 Check_Type_Conformant (Candidate, E);
11578 else
11579 Missing_Body;
11580 end if;
11581 end;
11583 else
11584 Missing_Body;
11585 end if;
11586 end if;
11587 end if;
11588 end Post_Error;
11590 -- Local variables
11592 Pack_Id : constant Entity_Id := Current_Scope;
11594 -- Start of processing for Check_Completion
11596 begin
11597 E := First_Entity (Pack_Id);
11598 while Present (E) loop
11599 if Is_Intrinsic_Subprogram (E) then
11600 null;
11602 -- The following situation requires special handling: a child unit
11603 -- that appears in the context clause of the body of its parent:
11605 -- procedure Parent.Child (...);
11607 -- with Parent.Child;
11608 -- package body Parent is
11610 -- Here Parent.Child appears as a local entity, but should not be
11611 -- flagged as requiring completion, because it is a compilation
11612 -- unit.
11614 -- Ignore missing completion for a subprogram that does not come from
11615 -- source (including the _Call primitive operation of RAS types,
11616 -- which has to have the flag Comes_From_Source for other purposes):
11617 -- we assume that the expander will provide the missing completion.
11618 -- In case of previous errors, other expansion actions that provide
11619 -- bodies for null procedures with not be invoked, so inhibit message
11620 -- in those cases.
11622 -- Note that E_Operator is not in the list that follows, because
11623 -- this kind is reserved for predefined operators, that are
11624 -- intrinsic and do not need completion.
11626 elsif Ekind_In (E, E_Function,
11627 E_Procedure,
11628 E_Generic_Function,
11629 E_Generic_Procedure)
11630 then
11631 if Has_Completion (E) then
11632 null;
11634 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11635 null;
11637 elsif Is_Subprogram (E)
11638 and then (not Comes_From_Source (E)
11639 or else Chars (E) = Name_uCall)
11640 then
11641 null;
11643 elsif
11644 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11645 then
11646 null;
11648 elsif Nkind (Parent (E)) = N_Procedure_Specification
11649 and then Null_Present (Parent (E))
11650 and then Serious_Errors_Detected > 0
11651 then
11652 null;
11654 else
11655 Post_Error;
11656 end if;
11658 elsif Is_Entry (E) then
11659 if not Has_Completion (E) and then
11660 (Ekind (Scope (E)) = E_Protected_Object
11661 or else Ekind (Scope (E)) = E_Protected_Type)
11662 then
11663 Post_Error;
11664 end if;
11666 elsif Is_Package_Or_Generic_Package (E) then
11667 if Unit_Requires_Body (E) then
11668 if not Has_Completion (E)
11669 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11670 N_Compilation_Unit
11671 then
11672 Post_Error;
11673 end if;
11675 elsif not Is_Child_Unit (E) then
11676 May_Need_Implicit_Body (E);
11677 end if;
11679 -- A formal incomplete type (Ada 2012) does not require a completion;
11680 -- other incomplete type declarations do.
11682 elsif Ekind (E) = E_Incomplete_Type
11683 and then No (Underlying_Type (E))
11684 and then not Is_Generic_Type (E)
11685 then
11686 Post_Error;
11688 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11689 and then not Has_Completion (E)
11690 then
11691 Post_Error;
11693 -- A single task declared in the current scope is a constant, verify
11694 -- that the body of its anonymous type is in the same scope. If the
11695 -- task is defined elsewhere, this may be a renaming declaration for
11696 -- which no completion is needed.
11698 elsif Ekind (E) = E_Constant
11699 and then Ekind (Etype (E)) = E_Task_Type
11700 and then not Has_Completion (Etype (E))
11701 and then Scope (Etype (E)) = Current_Scope
11702 then
11703 Post_Error;
11705 elsif Ekind (E) = E_Protected_Object
11706 and then not Has_Completion (Etype (E))
11707 then
11708 Post_Error;
11710 elsif Ekind (E) = E_Record_Type then
11711 if Is_Tagged_Type (E) then
11712 Check_Abstract_Overriding (E);
11713 Check_Conventions (E);
11714 end if;
11716 Check_Aliased_Component_Types (E);
11718 elsif Ekind (E) = E_Array_Type then
11719 Check_Aliased_Component_Types (E);
11721 end if;
11723 Next_Entity (E);
11724 end loop;
11725 end Check_Completion;
11727 ------------------------------------
11728 -- Check_CPP_Type_Has_No_Defaults --
11729 ------------------------------------
11731 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11732 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11733 Clist : Node_Id;
11734 Comp : Node_Id;
11736 begin
11737 -- Obtain the component list
11739 if Nkind (Tdef) = N_Record_Definition then
11740 Clist := Component_List (Tdef);
11741 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11742 Clist := Component_List (Record_Extension_Part (Tdef));
11743 end if;
11745 -- Check all components to ensure no default expressions
11747 if Present (Clist) then
11748 Comp := First (Component_Items (Clist));
11749 while Present (Comp) loop
11750 if Present (Expression (Comp)) then
11751 Error_Msg_N
11752 ("component of imported 'C'P'P type cannot have "
11753 & "default expression", Expression (Comp));
11754 end if;
11756 Next (Comp);
11757 end loop;
11758 end if;
11759 end Check_CPP_Type_Has_No_Defaults;
11761 ----------------------------
11762 -- Check_Delta_Expression --
11763 ----------------------------
11765 procedure Check_Delta_Expression (E : Node_Id) is
11766 begin
11767 if not (Is_Real_Type (Etype (E))) then
11768 Wrong_Type (E, Any_Real);
11770 elsif not Is_OK_Static_Expression (E) then
11771 Flag_Non_Static_Expr
11772 ("non-static expression used for delta value!", E);
11774 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11775 Error_Msg_N ("delta expression must be positive", E);
11777 else
11778 return;
11779 end if;
11781 -- If any of above errors occurred, then replace the incorrect
11782 -- expression by the real 0.1, which should prevent further errors.
11784 Rewrite (E,
11785 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11786 Analyze_And_Resolve (E, Standard_Float);
11787 end Check_Delta_Expression;
11789 -----------------------------
11790 -- Check_Digits_Expression --
11791 -----------------------------
11793 procedure Check_Digits_Expression (E : Node_Id) is
11794 begin
11795 if not (Is_Integer_Type (Etype (E))) then
11796 Wrong_Type (E, Any_Integer);
11798 elsif not Is_OK_Static_Expression (E) then
11799 Flag_Non_Static_Expr
11800 ("non-static expression used for digits value!", E);
11802 elsif Expr_Value (E) <= 0 then
11803 Error_Msg_N ("digits value must be greater than zero", E);
11805 else
11806 return;
11807 end if;
11809 -- If any of above errors occurred, then replace the incorrect
11810 -- expression by the integer 1, which should prevent further errors.
11812 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11813 Analyze_And_Resolve (E, Standard_Integer);
11815 end Check_Digits_Expression;
11817 --------------------------
11818 -- Check_Initialization --
11819 --------------------------
11821 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11822 begin
11823 -- Special processing for limited types
11825 if Is_Limited_Type (T)
11826 and then not In_Instance
11827 and then not In_Inlined_Body
11828 then
11829 if not OK_For_Limited_Init (T, Exp) then
11831 -- In GNAT mode, this is just a warning, to allow it to be evilly
11832 -- turned off. Otherwise it is a real error.
11834 if GNAT_Mode then
11835 Error_Msg_N
11836 ("??cannot initialize entities of limited type!", Exp);
11838 elsif Ada_Version < Ada_2005 then
11840 -- The side effect removal machinery may generate illegal Ada
11841 -- code to avoid the usage of access types and 'reference in
11842 -- SPARK mode. Since this is legal code with respect to theorem
11843 -- proving, do not emit the error.
11845 if GNATprove_Mode
11846 and then Nkind (Exp) = N_Function_Call
11847 and then Nkind (Parent (Exp)) = N_Object_Declaration
11848 and then not Comes_From_Source
11849 (Defining_Identifier (Parent (Exp)))
11850 then
11851 null;
11853 else
11854 Error_Msg_N
11855 ("cannot initialize entities of limited type", Exp);
11856 Explain_Limited_Type (T, Exp);
11857 end if;
11859 else
11860 -- Specialize error message according to kind of illegal
11861 -- initial expression.
11863 if Nkind (Exp) = N_Type_Conversion
11864 and then Nkind (Expression (Exp)) = N_Function_Call
11865 then
11866 -- No error for internally-generated object declarations,
11867 -- which can come from build-in-place assignment statements.
11869 if Nkind (Parent (Exp)) = N_Object_Declaration
11870 and then not Comes_From_Source
11871 (Defining_Identifier (Parent (Exp)))
11872 then
11873 null;
11875 else
11876 Error_Msg_N
11877 ("illegal context for call to function with limited "
11878 & "result", Exp);
11879 end if;
11881 else
11882 Error_Msg_N
11883 ("initialization of limited object requires aggregate or "
11884 & "function call", Exp);
11885 end if;
11886 end if;
11887 end if;
11888 end if;
11890 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11891 -- set unless we can be sure that no range check is required.
11893 if (GNATprove_Mode or not Expander_Active)
11894 and then Is_Scalar_Type (T)
11895 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11896 then
11897 Set_Do_Range_Check (Exp);
11898 end if;
11899 end Check_Initialization;
11901 ----------------------
11902 -- Check_Interfaces --
11903 ----------------------
11905 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11906 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11908 Iface : Node_Id;
11909 Iface_Def : Node_Id;
11910 Iface_Typ : Entity_Id;
11911 Parent_Node : Node_Id;
11913 Is_Task : Boolean := False;
11914 -- Set True if parent type or any progenitor is a task interface
11916 Is_Protected : Boolean := False;
11917 -- Set True if parent type or any progenitor is a protected interface
11919 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11920 -- Check that a progenitor is compatible with declaration. If an error
11921 -- message is output, it is posted on Error_Node.
11923 ------------------
11924 -- Check_Ifaces --
11925 ------------------
11927 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11928 Iface_Id : constant Entity_Id :=
11929 Defining_Identifier (Parent (Iface_Def));
11930 Type_Def : Node_Id;
11932 begin
11933 if Nkind (N) = N_Private_Extension_Declaration then
11934 Type_Def := N;
11935 else
11936 Type_Def := Type_Definition (N);
11937 end if;
11939 if Is_Task_Interface (Iface_Id) then
11940 Is_Task := True;
11942 elsif Is_Protected_Interface (Iface_Id) then
11943 Is_Protected := True;
11944 end if;
11946 if Is_Synchronized_Interface (Iface_Id) then
11948 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11949 -- extension derived from a synchronized interface must explicitly
11950 -- be declared synchronized, because the full view will be a
11951 -- synchronized type.
11953 if Nkind (N) = N_Private_Extension_Declaration then
11954 if not Synchronized_Present (N) then
11955 Error_Msg_NE
11956 ("private extension of& must be explicitly synchronized",
11957 N, Iface_Id);
11958 end if;
11960 -- However, by 3.9.4(16/2), a full type that is a record extension
11961 -- is never allowed to derive from a synchronized interface (note
11962 -- that interfaces must be excluded from this check, because those
11963 -- are represented by derived type definitions in some cases).
11965 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11966 and then not Interface_Present (Type_Definition (N))
11967 then
11968 Error_Msg_N ("record extension cannot derive from synchronized "
11969 & "interface", Error_Node);
11970 end if;
11971 end if;
11973 -- Check that the characteristics of the progenitor are compatible
11974 -- with the explicit qualifier in the declaration.
11975 -- The check only applies to qualifiers that come from source.
11976 -- Limited_Present also appears in the declaration of corresponding
11977 -- records, and the check does not apply to them.
11979 if Limited_Present (Type_Def)
11980 and then not
11981 Is_Concurrent_Record_Type (Defining_Identifier (N))
11982 then
11983 if Is_Limited_Interface (Parent_Type)
11984 and then not Is_Limited_Interface (Iface_Id)
11985 then
11986 Error_Msg_NE
11987 ("progenitor & must be limited interface",
11988 Error_Node, Iface_Id);
11990 elsif
11991 (Task_Present (Iface_Def)
11992 or else Protected_Present (Iface_Def)
11993 or else Synchronized_Present (Iface_Def))
11994 and then Nkind (N) /= N_Private_Extension_Declaration
11995 and then not Error_Posted (N)
11996 then
11997 Error_Msg_NE
11998 ("progenitor & must be limited interface",
11999 Error_Node, Iface_Id);
12000 end if;
12002 -- Protected interfaces can only inherit from limited, synchronized
12003 -- or protected interfaces.
12005 elsif Nkind (N) = N_Full_Type_Declaration
12006 and then Protected_Present (Type_Def)
12007 then
12008 if Limited_Present (Iface_Def)
12009 or else Synchronized_Present (Iface_Def)
12010 or else Protected_Present (Iface_Def)
12011 then
12012 null;
12014 elsif Task_Present (Iface_Def) then
12015 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12016 & "from task interface", Error_Node);
12018 else
12019 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12020 & "from non-limited interface", Error_Node);
12021 end if;
12023 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12024 -- limited and synchronized.
12026 elsif Synchronized_Present (Type_Def) then
12027 if Limited_Present (Iface_Def)
12028 or else Synchronized_Present (Iface_Def)
12029 then
12030 null;
12032 elsif Protected_Present (Iface_Def)
12033 and then Nkind (N) /= N_Private_Extension_Declaration
12034 then
12035 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12036 & "from protected interface", Error_Node);
12038 elsif Task_Present (Iface_Def)
12039 and then Nkind (N) /= N_Private_Extension_Declaration
12040 then
12041 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12042 & "from task interface", Error_Node);
12044 elsif not Is_Limited_Interface (Iface_Id) then
12045 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12046 & "from non-limited interface", Error_Node);
12047 end if;
12049 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12050 -- synchronized or task interfaces.
12052 elsif Nkind (N) = N_Full_Type_Declaration
12053 and then Task_Present (Type_Def)
12054 then
12055 if Limited_Present (Iface_Def)
12056 or else Synchronized_Present (Iface_Def)
12057 or else Task_Present (Iface_Def)
12058 then
12059 null;
12061 elsif Protected_Present (Iface_Def) then
12062 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12063 & "protected interface", Error_Node);
12065 else
12066 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12067 & "non-limited interface", Error_Node);
12068 end if;
12069 end if;
12070 end Check_Ifaces;
12072 -- Start of processing for Check_Interfaces
12074 begin
12075 if Is_Interface (Parent_Type) then
12076 if Is_Task_Interface (Parent_Type) then
12077 Is_Task := True;
12079 elsif Is_Protected_Interface (Parent_Type) then
12080 Is_Protected := True;
12081 end if;
12082 end if;
12084 if Nkind (N) = N_Private_Extension_Declaration then
12086 -- Check that progenitors are compatible with declaration
12088 Iface := First (Interface_List (Def));
12089 while Present (Iface) loop
12090 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12092 Parent_Node := Parent (Base_Type (Iface_Typ));
12093 Iface_Def := Type_Definition (Parent_Node);
12095 if not Is_Interface (Iface_Typ) then
12096 Diagnose_Interface (Iface, Iface_Typ);
12097 else
12098 Check_Ifaces (Iface_Def, Iface);
12099 end if;
12101 Next (Iface);
12102 end loop;
12104 if Is_Task and Is_Protected then
12105 Error_Msg_N
12106 ("type cannot derive from task and protected interface", N);
12107 end if;
12109 return;
12110 end if;
12112 -- Full type declaration of derived type.
12113 -- Check compatibility with parent if it is interface type
12115 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12116 and then Is_Interface (Parent_Type)
12117 then
12118 Parent_Node := Parent (Parent_Type);
12120 -- More detailed checks for interface varieties
12122 Check_Ifaces
12123 (Iface_Def => Type_Definition (Parent_Node),
12124 Error_Node => Subtype_Indication (Type_Definition (N)));
12125 end if;
12127 Iface := First (Interface_List (Def));
12128 while Present (Iface) loop
12129 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12131 Parent_Node := Parent (Base_Type (Iface_Typ));
12132 Iface_Def := Type_Definition (Parent_Node);
12134 if not Is_Interface (Iface_Typ) then
12135 Diagnose_Interface (Iface, Iface_Typ);
12137 else
12138 -- "The declaration of a specific descendant of an interface
12139 -- type freezes the interface type" RM 13.14
12141 Freeze_Before (N, Iface_Typ);
12142 Check_Ifaces (Iface_Def, Error_Node => Iface);
12143 end if;
12145 Next (Iface);
12146 end loop;
12148 if Is_Task and Is_Protected then
12149 Error_Msg_N
12150 ("type cannot derive from task and protected interface", N);
12151 end if;
12152 end Check_Interfaces;
12154 ------------------------------------
12155 -- Check_Or_Process_Discriminants --
12156 ------------------------------------
12158 -- If an incomplete or private type declaration was already given for the
12159 -- type, the discriminants may have already been processed if they were
12160 -- present on the incomplete declaration. In this case a full conformance
12161 -- check has been performed in Find_Type_Name, and we then recheck here
12162 -- some properties that can't be checked on the partial view alone.
12163 -- Otherwise we call Process_Discriminants.
12165 procedure Check_Or_Process_Discriminants
12166 (N : Node_Id;
12167 T : Entity_Id;
12168 Prev : Entity_Id := Empty)
12170 begin
12171 if Has_Discriminants (T) then
12173 -- Discriminants are already set on T if they were already present
12174 -- on the partial view. Make them visible to component declarations.
12176 declare
12177 D : Entity_Id;
12178 -- Discriminant on T (full view) referencing expr on partial view
12180 Prev_D : Entity_Id;
12181 -- Entity of corresponding discriminant on partial view
12183 New_D : Node_Id;
12184 -- Discriminant specification for full view, expression is
12185 -- the syntactic copy on full view (which has been checked for
12186 -- conformance with partial view), only used here to post error
12187 -- message.
12189 begin
12190 D := First_Discriminant (T);
12191 New_D := First (Discriminant_Specifications (N));
12192 while Present (D) loop
12193 Prev_D := Current_Entity (D);
12194 Set_Current_Entity (D);
12195 Set_Is_Immediately_Visible (D);
12196 Set_Homonym (D, Prev_D);
12198 -- Handle the case where there is an untagged partial view and
12199 -- the full view is tagged: must disallow discriminants with
12200 -- defaults, unless compiling for Ada 2012, which allows a
12201 -- limited tagged type to have defaulted discriminants (see
12202 -- AI05-0214). However, suppress error here if it was already
12203 -- reported on the default expression of the partial view.
12205 if Is_Tagged_Type (T)
12206 and then Present (Expression (Parent (D)))
12207 and then (not Is_Limited_Type (Current_Scope)
12208 or else Ada_Version < Ada_2012)
12209 and then not Error_Posted (Expression (Parent (D)))
12210 then
12211 if Ada_Version >= Ada_2012 then
12212 Error_Msg_N
12213 ("discriminants of nonlimited tagged type cannot have "
12214 & "defaults",
12215 Expression (New_D));
12216 else
12217 Error_Msg_N
12218 ("discriminants of tagged type cannot have defaults",
12219 Expression (New_D));
12220 end if;
12221 end if;
12223 -- Ada 2005 (AI-230): Access discriminant allowed in
12224 -- non-limited record types.
12226 if Ada_Version < Ada_2005 then
12228 -- This restriction gets applied to the full type here. It
12229 -- has already been applied earlier to the partial view.
12231 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12232 end if;
12234 Next_Discriminant (D);
12235 Next (New_D);
12236 end loop;
12237 end;
12239 elsif Present (Discriminant_Specifications (N)) then
12240 Process_Discriminants (N, Prev);
12241 end if;
12242 end Check_Or_Process_Discriminants;
12244 ----------------------
12245 -- Check_Real_Bound --
12246 ----------------------
12248 procedure Check_Real_Bound (Bound : Node_Id) is
12249 begin
12250 if not Is_Real_Type (Etype (Bound)) then
12251 Error_Msg_N
12252 ("bound in real type definition must be of real type", Bound);
12254 elsif not Is_OK_Static_Expression (Bound) then
12255 Flag_Non_Static_Expr
12256 ("non-static expression used for real type bound!", Bound);
12258 else
12259 return;
12260 end if;
12262 Rewrite
12263 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12264 Analyze (Bound);
12265 Resolve (Bound, Standard_Float);
12266 end Check_Real_Bound;
12268 ------------------------------
12269 -- Complete_Private_Subtype --
12270 ------------------------------
12272 procedure Complete_Private_Subtype
12273 (Priv : Entity_Id;
12274 Full : Entity_Id;
12275 Full_Base : Entity_Id;
12276 Related_Nod : Node_Id)
12278 Save_Next_Entity : Entity_Id;
12279 Save_Homonym : Entity_Id;
12281 begin
12282 -- Set semantic attributes for (implicit) private subtype completion.
12283 -- If the full type has no discriminants, then it is a copy of the
12284 -- full view of the base. Otherwise, it is a subtype of the base with
12285 -- a possible discriminant constraint. Save and restore the original
12286 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12287 -- not corrupt the entity chain.
12289 -- Note that the type of the full view is the same entity as the type
12290 -- of the partial view. In this fashion, the subtype has access to the
12291 -- correct view of the parent.
12293 Save_Next_Entity := Next_Entity (Full);
12294 Save_Homonym := Homonym (Priv);
12296 case Ekind (Full_Base) is
12297 when Class_Wide_Kind
12298 | Private_Kind
12299 | Protected_Kind
12300 | Task_Kind
12301 | E_Record_Subtype
12302 | E_Record_Type
12304 Copy_Node (Priv, Full);
12306 Set_Has_Discriminants
12307 (Full, Has_Discriminants (Full_Base));
12308 Set_Has_Unknown_Discriminants
12309 (Full, Has_Unknown_Discriminants (Full_Base));
12310 Set_First_Entity (Full, First_Entity (Full_Base));
12311 Set_Last_Entity (Full, Last_Entity (Full_Base));
12313 -- If the underlying base type is constrained, we know that the
12314 -- full view of the subtype is constrained as well (the converse
12315 -- is not necessarily true).
12317 if Is_Constrained (Full_Base) then
12318 Set_Is_Constrained (Full);
12319 end if;
12321 when others =>
12322 Copy_Node (Full_Base, Full);
12324 Set_Chars (Full, Chars (Priv));
12325 Conditional_Delay (Full, Priv);
12326 Set_Sloc (Full, Sloc (Priv));
12327 end case;
12329 Link_Entities (Full, Save_Next_Entity);
12330 Set_Homonym (Full, Save_Homonym);
12331 Set_Associated_Node_For_Itype (Full, Related_Nod);
12333 -- Set common attributes for all subtypes: kind, convention, etc.
12335 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12336 Set_Convention (Full, Convention (Full_Base));
12338 -- The Etype of the full view is inconsistent. Gigi needs to see the
12339 -- structural full view, which is what the current scheme gives: the
12340 -- Etype of the full view is the etype of the full base. However, if the
12341 -- full base is a derived type, the full view then looks like a subtype
12342 -- of the parent, not a subtype of the full base. If instead we write:
12344 -- Set_Etype (Full, Full_Base);
12346 -- then we get inconsistencies in the front-end (confusion between
12347 -- views). Several outstanding bugs are related to this ???
12349 Set_Is_First_Subtype (Full, False);
12350 Set_Scope (Full, Scope (Priv));
12351 Set_Size_Info (Full, Full_Base);
12352 Set_RM_Size (Full, RM_Size (Full_Base));
12353 Set_Is_Itype (Full);
12355 -- For the unusual case of a type with unknown discriminants whose
12356 -- completion is an array, use the proper full base.
12358 if Is_Array_Type (Full_Base)
12359 and then Has_Unknown_Discriminants (Priv)
12360 then
12361 Set_Etype (Full, Full_Base);
12362 end if;
12364 -- A subtype of a private-type-without-discriminants, whose full-view
12365 -- has discriminants with default expressions, is not constrained.
12367 if not Has_Discriminants (Priv) then
12368 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12370 if Has_Discriminants (Full_Base) then
12371 Set_Discriminant_Constraint
12372 (Full, Discriminant_Constraint (Full_Base));
12374 -- The partial view may have been indefinite, the full view
12375 -- might not be.
12377 Set_Has_Unknown_Discriminants
12378 (Full, Has_Unknown_Discriminants (Full_Base));
12379 end if;
12380 end if;
12382 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12383 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12385 -- Freeze the private subtype entity if its parent is delayed, and not
12386 -- already frozen. We skip this processing if the type is an anonymous
12387 -- subtype of a record component, or is the corresponding record of a
12388 -- protected type, since these are processed when the enclosing type
12389 -- is frozen. If the parent type is declared in a nested package then
12390 -- the freezing of the private and full views also happens later.
12392 if not Is_Type (Scope (Full)) then
12393 if Is_Itype (Priv)
12394 and then In_Same_Source_Unit (Full, Full_Base)
12395 and then Scope (Full_Base) /= Scope (Full)
12396 then
12397 Set_Has_Delayed_Freeze (Full);
12398 Set_Has_Delayed_Freeze (Priv);
12400 else
12401 Set_Has_Delayed_Freeze (Full,
12402 Has_Delayed_Freeze (Full_Base)
12403 and then not Is_Frozen (Full_Base));
12404 end if;
12405 end if;
12407 Set_Freeze_Node (Full, Empty);
12408 Set_Is_Frozen (Full, False);
12409 Set_Full_View (Priv, Full);
12411 if Has_Discriminants (Full) then
12412 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12413 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12415 if Has_Unknown_Discriminants (Full) then
12416 Set_Discriminant_Constraint (Full, No_Elist);
12417 end if;
12418 end if;
12420 if Ekind (Full_Base) = E_Record_Type
12421 and then Has_Discriminants (Full_Base)
12422 and then Has_Discriminants (Priv) -- might not, if errors
12423 and then not Has_Unknown_Discriminants (Priv)
12424 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12425 then
12426 Create_Constrained_Components
12427 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12429 -- If the full base is itself derived from private, build a congruent
12430 -- subtype of its underlying type, for use by the back end. For a
12431 -- constrained record component, the declaration cannot be placed on
12432 -- the component list, but it must nevertheless be built an analyzed, to
12433 -- supply enough information for Gigi to compute the size of component.
12435 elsif Ekind (Full_Base) in Private_Kind
12436 and then Is_Derived_Type (Full_Base)
12437 and then Has_Discriminants (Full_Base)
12438 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12439 then
12440 if not Is_Itype (Priv)
12441 and then
12442 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12443 then
12444 Build_Underlying_Full_View
12445 (Parent (Priv), Full, Etype (Full_Base));
12447 elsif Nkind (Related_Nod) = N_Component_Declaration then
12448 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12449 end if;
12451 elsif Is_Record_Type (Full_Base) then
12453 -- Show Full is simply a renaming of Full_Base
12455 Set_Cloned_Subtype (Full, Full_Base);
12456 end if;
12458 -- It is unsafe to share the bounds of a scalar type, because the Itype
12459 -- is elaborated on demand, and if a bound is non-static then different
12460 -- orders of elaboration in different units will lead to different
12461 -- external symbols.
12463 if Is_Scalar_Type (Full_Base) then
12464 Set_Scalar_Range (Full,
12465 Make_Range (Sloc (Related_Nod),
12466 Low_Bound =>
12467 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12468 High_Bound =>
12469 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12471 -- This completion inherits the bounds of the full parent, but if
12472 -- the parent is an unconstrained floating point type, so is the
12473 -- completion.
12475 if Is_Floating_Point_Type (Full_Base) then
12476 Set_Includes_Infinities
12477 (Scalar_Range (Full), Has_Infinities (Full_Base));
12478 end if;
12479 end if;
12481 -- ??? It seems that a lot of fields are missing that should be copied
12482 -- from Full_Base to Full. Here are some that are introduced in a
12483 -- non-disruptive way but a cleanup is necessary.
12485 if Is_Tagged_Type (Full_Base) then
12486 Set_Is_Tagged_Type (Full);
12487 Set_Direct_Primitive_Operations
12488 (Full, Direct_Primitive_Operations (Full_Base));
12489 Set_No_Tagged_Streams_Pragma
12490 (Full, No_Tagged_Streams_Pragma (Full_Base));
12492 -- Inherit class_wide type of full_base in case the partial view was
12493 -- not tagged. Otherwise it has already been created when the private
12494 -- subtype was analyzed.
12496 if No (Class_Wide_Type (Full)) then
12497 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12498 end if;
12500 -- If this is a subtype of a protected or task type, constrain its
12501 -- corresponding record, unless this is a subtype without constraints,
12502 -- i.e. a simple renaming as with an actual subtype in an instance.
12504 elsif Is_Concurrent_Type (Full_Base) then
12505 if Has_Discriminants (Full)
12506 and then Present (Corresponding_Record_Type (Full_Base))
12507 and then
12508 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12509 then
12510 Set_Corresponding_Record_Type (Full,
12511 Constrain_Corresponding_Record
12512 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12514 else
12515 Set_Corresponding_Record_Type (Full,
12516 Corresponding_Record_Type (Full_Base));
12517 end if;
12518 end if;
12520 -- Link rep item chain, and also setting of Has_Predicates from private
12521 -- subtype to full subtype, since we will need these on the full subtype
12522 -- to create the predicate function. Note that the full subtype may
12523 -- already have rep items, inherited from the full view of the base
12524 -- type, so we must be sure not to overwrite these entries.
12526 declare
12527 Append : Boolean;
12528 Item : Node_Id;
12529 Next_Item : Node_Id;
12530 Priv_Item : Node_Id;
12532 begin
12533 Item := First_Rep_Item (Full);
12534 Priv_Item := First_Rep_Item (Priv);
12536 -- If no existing rep items on full type, we can just link directly
12537 -- to the list of items on the private type, if any exist.. Same if
12538 -- the rep items are only those inherited from the base
12540 if (No (Item)
12541 or else Nkind (Item) /= N_Aspect_Specification
12542 or else Entity (Item) = Full_Base)
12543 and then Present (First_Rep_Item (Priv))
12544 then
12545 Set_First_Rep_Item (Full, Priv_Item);
12547 -- Otherwise, search to the end of items currently linked to the full
12548 -- subtype and append the private items to the end. However, if Priv
12549 -- and Full already have the same list of rep items, then the append
12550 -- is not done, as that would create a circularity.
12552 -- The partial view may have a predicate and the rep item lists of
12553 -- both views agree when inherited from the same ancestor. In that
12554 -- case, simply propagate the list from one view to the other.
12555 -- A more complex analysis needed here ???
12557 elsif Present (Priv_Item)
12558 and then Item = Next_Rep_Item (Priv_Item)
12559 then
12560 Set_First_Rep_Item (Full, Priv_Item);
12562 elsif Item /= Priv_Item then
12563 Append := True;
12564 loop
12565 Next_Item := Next_Rep_Item (Item);
12566 exit when No (Next_Item);
12567 Item := Next_Item;
12569 -- If the private view has aspect specifications, the full view
12570 -- inherits them. Since these aspects may already have been
12571 -- attached to the full view during derivation, do not append
12572 -- them if already present.
12574 if Item = First_Rep_Item (Priv) then
12575 Append := False;
12576 exit;
12577 end if;
12578 end loop;
12580 -- And link the private type items at the end of the chain
12582 if Append then
12583 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12584 end if;
12585 end if;
12586 end;
12588 -- Make sure Has_Predicates is set on full type if it is set on the
12589 -- private type. Note that it may already be set on the full type and
12590 -- if so, we don't want to unset it. Similarly, propagate information
12591 -- about delayed aspects, because the corresponding pragmas must be
12592 -- analyzed when one of the views is frozen. This last step is needed
12593 -- in particular when the full type is a scalar type for which an
12594 -- anonymous base type is constructed.
12596 -- The predicate functions are generated either at the freeze point
12597 -- of the type or at the end of the visible part, and we must avoid
12598 -- generating them twice.
12600 if Has_Predicates (Priv) then
12601 Set_Has_Predicates (Full);
12603 if Present (Predicate_Function (Priv))
12604 and then No (Predicate_Function (Full))
12605 then
12606 Set_Predicate_Function (Full, Predicate_Function (Priv));
12607 end if;
12608 end if;
12610 if Has_Delayed_Aspects (Priv) then
12611 Set_Has_Delayed_Aspects (Full);
12612 end if;
12613 end Complete_Private_Subtype;
12615 ----------------------------
12616 -- Constant_Redeclaration --
12617 ----------------------------
12619 procedure Constant_Redeclaration
12620 (Id : Entity_Id;
12621 N : Node_Id;
12622 T : out Entity_Id)
12624 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12625 Obj_Def : constant Node_Id := Object_Definition (N);
12626 New_T : Entity_Id;
12628 procedure Check_Possible_Deferred_Completion
12629 (Prev_Id : Entity_Id;
12630 Prev_Obj_Def : Node_Id;
12631 Curr_Obj_Def : Node_Id);
12632 -- Determine whether the two object definitions describe the partial
12633 -- and the full view of a constrained deferred constant. Generate
12634 -- a subtype for the full view and verify that it statically matches
12635 -- the subtype of the partial view.
12637 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12638 -- If deferred constant is an access type initialized with an allocator,
12639 -- check whether there is an illegal recursion in the definition,
12640 -- through a default value of some record subcomponent. This is normally
12641 -- detected when generating init procs, but requires this additional
12642 -- mechanism when expansion is disabled.
12644 ----------------------------------------
12645 -- Check_Possible_Deferred_Completion --
12646 ----------------------------------------
12648 procedure Check_Possible_Deferred_Completion
12649 (Prev_Id : Entity_Id;
12650 Prev_Obj_Def : Node_Id;
12651 Curr_Obj_Def : Node_Id)
12653 begin
12654 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12655 and then Present (Constraint (Prev_Obj_Def))
12656 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12657 and then Present (Constraint (Curr_Obj_Def))
12658 then
12659 declare
12660 Loc : constant Source_Ptr := Sloc (N);
12661 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12662 Decl : constant Node_Id :=
12663 Make_Subtype_Declaration (Loc,
12664 Defining_Identifier => Def_Id,
12665 Subtype_Indication =>
12666 Relocate_Node (Curr_Obj_Def));
12668 begin
12669 Insert_Before_And_Analyze (N, Decl);
12670 Set_Etype (Id, Def_Id);
12672 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12673 Error_Msg_Sloc := Sloc (Prev_Id);
12674 Error_Msg_N ("subtype does not statically match deferred "
12675 & "declaration #", N);
12676 end if;
12677 end;
12678 end if;
12679 end Check_Possible_Deferred_Completion;
12681 ---------------------------------
12682 -- Check_Recursive_Declaration --
12683 ---------------------------------
12685 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12686 Comp : Entity_Id;
12688 begin
12689 if Is_Record_Type (Typ) then
12690 Comp := First_Component (Typ);
12691 while Present (Comp) loop
12692 if Comes_From_Source (Comp) then
12693 if Present (Expression (Parent (Comp)))
12694 and then Is_Entity_Name (Expression (Parent (Comp)))
12695 and then Entity (Expression (Parent (Comp))) = Prev
12696 then
12697 Error_Msg_Sloc := Sloc (Parent (Comp));
12698 Error_Msg_NE
12699 ("illegal circularity with declaration for & #",
12700 N, Comp);
12701 return;
12703 elsif Is_Record_Type (Etype (Comp)) then
12704 Check_Recursive_Declaration (Etype (Comp));
12705 end if;
12706 end if;
12708 Next_Component (Comp);
12709 end loop;
12710 end if;
12711 end Check_Recursive_Declaration;
12713 -- Start of processing for Constant_Redeclaration
12715 begin
12716 if Nkind (Parent (Prev)) = N_Object_Declaration then
12717 if Nkind (Object_Definition
12718 (Parent (Prev))) = N_Subtype_Indication
12719 then
12720 -- Find type of new declaration. The constraints of the two
12721 -- views must match statically, but there is no point in
12722 -- creating an itype for the full view.
12724 if Nkind (Obj_Def) = N_Subtype_Indication then
12725 Find_Type (Subtype_Mark (Obj_Def));
12726 New_T := Entity (Subtype_Mark (Obj_Def));
12728 else
12729 Find_Type (Obj_Def);
12730 New_T := Entity (Obj_Def);
12731 end if;
12733 T := Etype (Prev);
12735 else
12736 -- The full view may impose a constraint, even if the partial
12737 -- view does not, so construct the subtype.
12739 New_T := Find_Type_Of_Object (Obj_Def, N);
12740 T := New_T;
12741 end if;
12743 else
12744 -- Current declaration is illegal, diagnosed below in Enter_Name
12746 T := Empty;
12747 New_T := Any_Type;
12748 end if;
12750 -- If previous full declaration or a renaming declaration exists, or if
12751 -- a homograph is present, let Enter_Name handle it, either with an
12752 -- error or with the removal of an overridden implicit subprogram.
12753 -- The previous one is a full declaration if it has an expression
12754 -- (which in the case of an aggregate is indicated by the Init flag).
12756 if Ekind (Prev) /= E_Constant
12757 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12758 or else Present (Expression (Parent (Prev)))
12759 or else Has_Init_Expression (Parent (Prev))
12760 or else Present (Full_View (Prev))
12761 then
12762 Enter_Name (Id);
12764 -- Verify that types of both declarations match, or else that both types
12765 -- are anonymous access types whose designated subtypes statically match
12766 -- (as allowed in Ada 2005 by AI-385).
12768 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12769 and then
12770 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12771 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12772 or else Is_Access_Constant (Etype (New_T)) /=
12773 Is_Access_Constant (Etype (Prev))
12774 or else Can_Never_Be_Null (Etype (New_T)) /=
12775 Can_Never_Be_Null (Etype (Prev))
12776 or else Null_Exclusion_Present (Parent (Prev)) /=
12777 Null_Exclusion_Present (Parent (Id))
12778 or else not Subtypes_Statically_Match
12779 (Designated_Type (Etype (Prev)),
12780 Designated_Type (Etype (New_T))))
12781 then
12782 Error_Msg_Sloc := Sloc (Prev);
12783 Error_Msg_N ("type does not match declaration#", N);
12784 Set_Full_View (Prev, Id);
12785 Set_Etype (Id, Any_Type);
12787 -- A deferred constant whose type is an anonymous array is always
12788 -- illegal (unless imported). A detailed error message might be
12789 -- helpful for Ada beginners.
12791 if Nkind (Object_Definition (Parent (Prev)))
12792 = N_Constrained_Array_Definition
12793 and then Nkind (Object_Definition (N))
12794 = N_Constrained_Array_Definition
12795 then
12796 Error_Msg_N ("\each anonymous array is a distinct type", N);
12797 Error_Msg_N ("a deferred constant must have a named type",
12798 Object_Definition (Parent (Prev)));
12799 end if;
12801 elsif
12802 Null_Exclusion_Present (Parent (Prev))
12803 and then not Null_Exclusion_Present (N)
12804 then
12805 Error_Msg_Sloc := Sloc (Prev);
12806 Error_Msg_N ("null-exclusion does not match declaration#", N);
12807 Set_Full_View (Prev, Id);
12808 Set_Etype (Id, Any_Type);
12810 -- If so, process the full constant declaration
12812 else
12813 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12814 -- the deferred declaration is constrained, then the subtype defined
12815 -- by the subtype_indication in the full declaration shall match it
12816 -- statically.
12818 Check_Possible_Deferred_Completion
12819 (Prev_Id => Prev,
12820 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12821 Curr_Obj_Def => Obj_Def);
12823 Set_Full_View (Prev, Id);
12824 Set_Is_Public (Id, Is_Public (Prev));
12825 Set_Is_Internal (Id);
12826 Append_Entity (Id, Current_Scope);
12828 -- Check ALIASED present if present before (RM 7.4(7))
12830 if Is_Aliased (Prev)
12831 and then not Aliased_Present (N)
12832 then
12833 Error_Msg_Sloc := Sloc (Prev);
12834 Error_Msg_N ("ALIASED required (see declaration #)", N);
12835 end if;
12837 -- Check that placement is in private part and that the incomplete
12838 -- declaration appeared in the visible part.
12840 if Ekind (Current_Scope) = E_Package
12841 and then not In_Private_Part (Current_Scope)
12842 then
12843 Error_Msg_Sloc := Sloc (Prev);
12844 Error_Msg_N
12845 ("full constant for declaration # must be in private part", N);
12847 elsif Ekind (Current_Scope) = E_Package
12848 and then
12849 List_Containing (Parent (Prev)) /=
12850 Visible_Declarations (Package_Specification (Current_Scope))
12851 then
12852 Error_Msg_N
12853 ("deferred constant must be declared in visible part",
12854 Parent (Prev));
12855 end if;
12857 if Is_Access_Type (T)
12858 and then Nkind (Expression (N)) = N_Allocator
12859 then
12860 Check_Recursive_Declaration (Designated_Type (T));
12861 end if;
12863 -- A deferred constant is a visible entity. If type has invariants,
12864 -- verify that the initial value satisfies them. This is not done in
12865 -- GNATprove mode, as GNATprove handles invariant checks itself.
12867 if Has_Invariants (T)
12868 and then Present (Invariant_Procedure (T))
12869 and then not GNATprove_Mode
12870 then
12871 Insert_After (N,
12872 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12873 end if;
12874 end if;
12875 end Constant_Redeclaration;
12877 ----------------------
12878 -- Constrain_Access --
12879 ----------------------
12881 procedure Constrain_Access
12882 (Def_Id : in out Entity_Id;
12883 S : Node_Id;
12884 Related_Nod : Node_Id)
12886 T : constant Entity_Id := Entity (Subtype_Mark (S));
12887 Desig_Type : constant Entity_Id := Designated_Type (T);
12888 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12889 Constraint_OK : Boolean := True;
12891 begin
12892 if Is_Array_Type (Desig_Type) then
12893 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12895 elsif (Is_Record_Type (Desig_Type)
12896 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12897 and then not Is_Constrained (Desig_Type)
12898 then
12899 -- ??? The following code is a temporary bypass to ignore a
12900 -- discriminant constraint on access type if it is constraining
12901 -- the current record. Avoid creating the implicit subtype of the
12902 -- record we are currently compiling since right now, we cannot
12903 -- handle these. For now, just return the access type itself.
12905 if Desig_Type = Current_Scope
12906 and then No (Def_Id)
12907 then
12908 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12909 Def_Id := Entity (Subtype_Mark (S));
12911 -- This call added to ensure that the constraint is analyzed
12912 -- (needed for a B test). Note that we still return early from
12913 -- this procedure to avoid recursive processing. ???
12915 Constrain_Discriminated_Type
12916 (Desig_Subtype, S, Related_Nod, For_Access => True);
12917 return;
12918 end if;
12920 -- Enforce rule that the constraint is illegal if there is an
12921 -- unconstrained view of the designated type. This means that the
12922 -- partial view (either a private type declaration or a derivation
12923 -- from a private type) has no discriminants. (Defect Report
12924 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12926 -- Rule updated for Ada 2005: The private type is said to have
12927 -- a constrained partial view, given that objects of the type
12928 -- can be declared. Furthermore, the rule applies to all access
12929 -- types, unlike the rule concerning default discriminants (see
12930 -- RM 3.7.1(7/3))
12932 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12933 and then Has_Private_Declaration (Desig_Type)
12934 and then In_Open_Scopes (Scope (Desig_Type))
12935 and then Has_Discriminants (Desig_Type)
12936 then
12937 declare
12938 Pack : constant Node_Id :=
12939 Unit_Declaration_Node (Scope (Desig_Type));
12940 Decls : List_Id;
12941 Decl : Node_Id;
12943 begin
12944 if Nkind (Pack) = N_Package_Declaration then
12945 Decls := Visible_Declarations (Specification (Pack));
12946 Decl := First (Decls);
12947 while Present (Decl) loop
12948 if (Nkind (Decl) = N_Private_Type_Declaration
12949 and then Chars (Defining_Identifier (Decl)) =
12950 Chars (Desig_Type))
12952 or else
12953 (Nkind (Decl) = N_Full_Type_Declaration
12954 and then
12955 Chars (Defining_Identifier (Decl)) =
12956 Chars (Desig_Type)
12957 and then Is_Derived_Type (Desig_Type)
12958 and then
12959 Has_Private_Declaration (Etype (Desig_Type)))
12960 then
12961 if No (Discriminant_Specifications (Decl)) then
12962 Error_Msg_N
12963 ("cannot constrain access type if designated "
12964 & "type has constrained partial view", S);
12965 end if;
12967 exit;
12968 end if;
12970 Next (Decl);
12971 end loop;
12972 end if;
12973 end;
12974 end if;
12976 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12977 For_Access => True);
12979 elsif Is_Concurrent_Type (Desig_Type)
12980 and then not Is_Constrained (Desig_Type)
12981 then
12982 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12984 else
12985 Error_Msg_N ("invalid constraint on access type", S);
12987 -- We simply ignore an invalid constraint
12989 Desig_Subtype := Desig_Type;
12990 Constraint_OK := False;
12991 end if;
12993 if No (Def_Id) then
12994 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12995 else
12996 Set_Ekind (Def_Id, E_Access_Subtype);
12997 end if;
12999 if Constraint_OK then
13000 Set_Etype (Def_Id, Base_Type (T));
13002 if Is_Private_Type (Desig_Type) then
13003 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13004 end if;
13005 else
13006 Set_Etype (Def_Id, Any_Type);
13007 end if;
13009 Set_Size_Info (Def_Id, T);
13010 Set_Is_Constrained (Def_Id, Constraint_OK);
13011 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13012 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13013 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13015 Conditional_Delay (Def_Id, T);
13017 -- AI-363 : Subtypes of general access types whose designated types have
13018 -- default discriminants are disallowed. In instances, the rule has to
13019 -- be checked against the actual, of which T is the subtype. In a
13020 -- generic body, the rule is checked assuming that the actual type has
13021 -- defaulted discriminants.
13023 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13024 if Ekind (Base_Type (T)) = E_General_Access_Type
13025 and then Has_Defaulted_Discriminants (Desig_Type)
13026 then
13027 if Ada_Version < Ada_2005 then
13028 Error_Msg_N
13029 ("access subtype of general access type would not " &
13030 "be allowed in Ada 2005?y?", S);
13031 else
13032 Error_Msg_N
13033 ("access subtype of general access type not allowed", S);
13034 end if;
13036 Error_Msg_N ("\discriminants have defaults", S);
13038 elsif Is_Access_Type (T)
13039 and then Is_Generic_Type (Desig_Type)
13040 and then Has_Discriminants (Desig_Type)
13041 and then In_Package_Body (Current_Scope)
13042 then
13043 if Ada_Version < Ada_2005 then
13044 Error_Msg_N
13045 ("access subtype would not be allowed in generic body "
13046 & "in Ada 2005?y?", S);
13047 else
13048 Error_Msg_N
13049 ("access subtype not allowed in generic body", S);
13050 end if;
13052 Error_Msg_N
13053 ("\designated type is a discriminated formal", S);
13054 end if;
13055 end if;
13056 end Constrain_Access;
13058 ---------------------
13059 -- Constrain_Array --
13060 ---------------------
13062 procedure Constrain_Array
13063 (Def_Id : in out Entity_Id;
13064 SI : Node_Id;
13065 Related_Nod : Node_Id;
13066 Related_Id : Entity_Id;
13067 Suffix : Character)
13069 C : constant Node_Id := Constraint (SI);
13070 Number_Of_Constraints : Nat := 0;
13071 Index : Node_Id;
13072 S, T : Entity_Id;
13073 Constraint_OK : Boolean := True;
13075 begin
13076 T := Entity (Subtype_Mark (SI));
13078 if Is_Access_Type (T) then
13079 T := Designated_Type (T);
13080 end if;
13082 -- If an index constraint follows a subtype mark in a subtype indication
13083 -- then the type or subtype denoted by the subtype mark must not already
13084 -- impose an index constraint. The subtype mark must denote either an
13085 -- unconstrained array type or an access type whose designated type
13086 -- is such an array type... (RM 3.6.1)
13088 if Is_Constrained (T) then
13089 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13090 Constraint_OK := False;
13092 else
13093 S := First (Constraints (C));
13094 while Present (S) loop
13095 Number_Of_Constraints := Number_Of_Constraints + 1;
13096 Next (S);
13097 end loop;
13099 -- In either case, the index constraint must provide a discrete
13100 -- range for each index of the array type and the type of each
13101 -- discrete range must be the same as that of the corresponding
13102 -- index. (RM 3.6.1)
13104 if Number_Of_Constraints /= Number_Dimensions (T) then
13105 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13106 Constraint_OK := False;
13108 else
13109 S := First (Constraints (C));
13110 Index := First_Index (T);
13111 Analyze (Index);
13113 -- Apply constraints to each index type
13115 for J in 1 .. Number_Of_Constraints loop
13116 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13117 Next (Index);
13118 Next (S);
13119 end loop;
13121 end if;
13122 end if;
13124 if No (Def_Id) then
13125 Def_Id :=
13126 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13127 Set_Parent (Def_Id, Related_Nod);
13129 else
13130 Set_Ekind (Def_Id, E_Array_Subtype);
13131 end if;
13133 Set_Size_Info (Def_Id, (T));
13134 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13135 Set_Etype (Def_Id, Base_Type (T));
13137 if Constraint_OK then
13138 Set_First_Index (Def_Id, First (Constraints (C)));
13139 else
13140 Set_First_Index (Def_Id, First_Index (T));
13141 end if;
13143 Set_Is_Constrained (Def_Id, True);
13144 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13145 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13147 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13148 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13150 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13151 -- We need to initialize the attribute because if Def_Id is previously
13152 -- analyzed through a limited_with clause, it will have the attributes
13153 -- of an incomplete type, one of which is an Elist that overlaps the
13154 -- Packed_Array_Impl_Type field.
13156 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13158 -- Build a freeze node if parent still needs one. Also make sure that
13159 -- the Depends_On_Private status is set because the subtype will need
13160 -- reprocessing at the time the base type does, and also we must set a
13161 -- conditional delay.
13163 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13164 Conditional_Delay (Def_Id, T);
13165 end Constrain_Array;
13167 ------------------------------
13168 -- Constrain_Component_Type --
13169 ------------------------------
13171 function Constrain_Component_Type
13172 (Comp : Entity_Id;
13173 Constrained_Typ : Entity_Id;
13174 Related_Node : Node_Id;
13175 Typ : Entity_Id;
13176 Constraints : Elist_Id) return Entity_Id
13178 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13179 Compon_Type : constant Entity_Id := Etype (Comp);
13181 function Build_Constrained_Array_Type
13182 (Old_Type : Entity_Id) return Entity_Id;
13183 -- If Old_Type is an array type, one of whose indexes is constrained
13184 -- by a discriminant, build an Itype whose constraint replaces the
13185 -- discriminant with its value in the constraint.
13187 function Build_Constrained_Discriminated_Type
13188 (Old_Type : Entity_Id) return Entity_Id;
13189 -- Ditto for record components
13191 function Build_Constrained_Access_Type
13192 (Old_Type : Entity_Id) return Entity_Id;
13193 -- Ditto for access types. Makes use of previous two functions, to
13194 -- constrain designated type.
13196 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13197 -- T is an array or discriminated type, C is a list of constraints
13198 -- that apply to T. This routine builds the constrained subtype.
13200 function Is_Discriminant (Expr : Node_Id) return Boolean;
13201 -- Returns True if Expr is a discriminant
13203 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13204 -- Find the value of discriminant Discrim in Constraint
13206 -----------------------------------
13207 -- Build_Constrained_Access_Type --
13208 -----------------------------------
13210 function Build_Constrained_Access_Type
13211 (Old_Type : Entity_Id) return Entity_Id
13213 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13214 Itype : Entity_Id;
13215 Desig_Subtype : Entity_Id;
13216 Scop : Entity_Id;
13218 begin
13219 -- if the original access type was not embedded in the enclosing
13220 -- type definition, there is no need to produce a new access
13221 -- subtype. In fact every access type with an explicit constraint
13222 -- generates an itype whose scope is the enclosing record.
13224 if not Is_Type (Scope (Old_Type)) then
13225 return Old_Type;
13227 elsif Is_Array_Type (Desig_Type) then
13228 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13230 elsif Has_Discriminants (Desig_Type) then
13232 -- This may be an access type to an enclosing record type for
13233 -- which we are constructing the constrained components. Return
13234 -- the enclosing record subtype. This is not always correct,
13235 -- but avoids infinite recursion. ???
13237 Desig_Subtype := Any_Type;
13239 for J in reverse 0 .. Scope_Stack.Last loop
13240 Scop := Scope_Stack.Table (J).Entity;
13242 if Is_Type (Scop)
13243 and then Base_Type (Scop) = Base_Type (Desig_Type)
13244 then
13245 Desig_Subtype := Scop;
13246 end if;
13248 exit when not Is_Type (Scop);
13249 end loop;
13251 if Desig_Subtype = Any_Type then
13252 Desig_Subtype :=
13253 Build_Constrained_Discriminated_Type (Desig_Type);
13254 end if;
13256 else
13257 return Old_Type;
13258 end if;
13260 if Desig_Subtype /= Desig_Type then
13262 -- The Related_Node better be here or else we won't be able
13263 -- to attach new itypes to a node in the tree.
13265 pragma Assert (Present (Related_Node));
13267 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13269 Set_Etype (Itype, Base_Type (Old_Type));
13270 Set_Size_Info (Itype, (Old_Type));
13271 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13272 Set_Depends_On_Private (Itype, Has_Private_Component
13273 (Old_Type));
13274 Set_Is_Access_Constant (Itype, Is_Access_Constant
13275 (Old_Type));
13277 -- The new itype needs freezing when it depends on a not frozen
13278 -- type and the enclosing subtype needs freezing.
13280 if Has_Delayed_Freeze (Constrained_Typ)
13281 and then not Is_Frozen (Constrained_Typ)
13282 then
13283 Conditional_Delay (Itype, Base_Type (Old_Type));
13284 end if;
13286 return Itype;
13288 else
13289 return Old_Type;
13290 end if;
13291 end Build_Constrained_Access_Type;
13293 ----------------------------------
13294 -- Build_Constrained_Array_Type --
13295 ----------------------------------
13297 function Build_Constrained_Array_Type
13298 (Old_Type : Entity_Id) return Entity_Id
13300 Lo_Expr : Node_Id;
13301 Hi_Expr : Node_Id;
13302 Old_Index : Node_Id;
13303 Range_Node : Node_Id;
13304 Constr_List : List_Id;
13306 Need_To_Create_Itype : Boolean := False;
13308 begin
13309 Old_Index := First_Index (Old_Type);
13310 while Present (Old_Index) loop
13311 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13313 if Is_Discriminant (Lo_Expr)
13314 or else
13315 Is_Discriminant (Hi_Expr)
13316 then
13317 Need_To_Create_Itype := True;
13318 end if;
13320 Next_Index (Old_Index);
13321 end loop;
13323 if Need_To_Create_Itype then
13324 Constr_List := New_List;
13326 Old_Index := First_Index (Old_Type);
13327 while Present (Old_Index) loop
13328 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13330 if Is_Discriminant (Lo_Expr) then
13331 Lo_Expr := Get_Discr_Value (Lo_Expr);
13332 end if;
13334 if Is_Discriminant (Hi_Expr) then
13335 Hi_Expr := Get_Discr_Value (Hi_Expr);
13336 end if;
13338 Range_Node :=
13339 Make_Range
13340 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13342 Append (Range_Node, To => Constr_List);
13344 Next_Index (Old_Index);
13345 end loop;
13347 return Build_Subtype (Old_Type, Constr_List);
13349 else
13350 return Old_Type;
13351 end if;
13352 end Build_Constrained_Array_Type;
13354 ------------------------------------------
13355 -- Build_Constrained_Discriminated_Type --
13356 ------------------------------------------
13358 function Build_Constrained_Discriminated_Type
13359 (Old_Type : Entity_Id) return Entity_Id
13361 Expr : Node_Id;
13362 Constr_List : List_Id;
13363 Old_Constraint : Elmt_Id;
13365 Need_To_Create_Itype : Boolean := False;
13367 begin
13368 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13369 while Present (Old_Constraint) loop
13370 Expr := Node (Old_Constraint);
13372 if Is_Discriminant (Expr) then
13373 Need_To_Create_Itype := True;
13374 end if;
13376 Next_Elmt (Old_Constraint);
13377 end loop;
13379 if Need_To_Create_Itype then
13380 Constr_List := New_List;
13382 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13383 while Present (Old_Constraint) loop
13384 Expr := Node (Old_Constraint);
13386 if Is_Discriminant (Expr) then
13387 Expr := Get_Discr_Value (Expr);
13388 end if;
13390 Append (New_Copy_Tree (Expr), To => Constr_List);
13392 Next_Elmt (Old_Constraint);
13393 end loop;
13395 return Build_Subtype (Old_Type, Constr_List);
13397 else
13398 return Old_Type;
13399 end if;
13400 end Build_Constrained_Discriminated_Type;
13402 -------------------
13403 -- Build_Subtype --
13404 -------------------
13406 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13407 Indic : Node_Id;
13408 Subtyp_Decl : Node_Id;
13409 Def_Id : Entity_Id;
13410 Btyp : Entity_Id := Base_Type (T);
13412 begin
13413 -- The Related_Node better be here or else we won't be able to
13414 -- attach new itypes to a node in the tree.
13416 pragma Assert (Present (Related_Node));
13418 -- If the view of the component's type is incomplete or private
13419 -- with unknown discriminants, then the constraint must be applied
13420 -- to the full type.
13422 if Has_Unknown_Discriminants (Btyp)
13423 and then Present (Underlying_Type (Btyp))
13424 then
13425 Btyp := Underlying_Type (Btyp);
13426 end if;
13428 Indic :=
13429 Make_Subtype_Indication (Loc,
13430 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13431 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13433 Def_Id := Create_Itype (Ekind (T), Related_Node);
13435 Subtyp_Decl :=
13436 Make_Subtype_Declaration (Loc,
13437 Defining_Identifier => Def_Id,
13438 Subtype_Indication => Indic);
13440 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13442 -- Itypes must be analyzed with checks off (see package Itypes)
13444 Analyze (Subtyp_Decl, Suppress => All_Checks);
13446 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13447 Inherit_Predicate_Flags (Def_Id, T);
13449 -- Indicate where the predicate function may be found
13451 if Is_Itype (T) then
13452 if Present (Predicate_Function (Def_Id)) then
13453 null;
13455 elsif Present (Predicate_Function (T)) then
13456 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13458 else
13459 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13460 end if;
13462 elsif No (Predicate_Function (Def_Id)) then
13463 Set_Predicated_Parent (Def_Id, T);
13464 end if;
13465 end if;
13467 return Def_Id;
13468 end Build_Subtype;
13470 ---------------------
13471 -- Get_Discr_Value --
13472 ---------------------
13474 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13475 D : Entity_Id;
13476 E : Elmt_Id;
13478 begin
13479 -- The discriminant may be declared for the type, in which case we
13480 -- find it by iterating over the list of discriminants. If the
13481 -- discriminant is inherited from a parent type, it appears as the
13482 -- corresponding discriminant of the current type. This will be the
13483 -- case when constraining an inherited component whose constraint is
13484 -- given by a discriminant of the parent.
13486 D := First_Discriminant (Typ);
13487 E := First_Elmt (Constraints);
13489 while Present (D) loop
13490 if D = Entity (Discrim)
13491 or else D = CR_Discriminant (Entity (Discrim))
13492 or else Corresponding_Discriminant (D) = Entity (Discrim)
13493 then
13494 return Node (E);
13495 end if;
13497 Next_Discriminant (D);
13498 Next_Elmt (E);
13499 end loop;
13501 -- The Corresponding_Discriminant mechanism is incomplete, because
13502 -- the correspondence between new and old discriminants is not one
13503 -- to one: one new discriminant can constrain several old ones. In
13504 -- that case, scan sequentially the stored_constraint, the list of
13505 -- discriminants of the parents, and the constraints.
13507 -- Previous code checked for the present of the Stored_Constraint
13508 -- list for the derived type, but did not use it at all. Should it
13509 -- be present when the component is a discriminated task type?
13511 if Is_Derived_Type (Typ)
13512 and then Scope (Entity (Discrim)) = Etype (Typ)
13513 then
13514 D := First_Discriminant (Etype (Typ));
13515 E := First_Elmt (Constraints);
13516 while Present (D) loop
13517 if D = Entity (Discrim) then
13518 return Node (E);
13519 end if;
13521 Next_Discriminant (D);
13522 Next_Elmt (E);
13523 end loop;
13524 end if;
13526 -- Something is wrong if we did not find the value
13528 raise Program_Error;
13529 end Get_Discr_Value;
13531 ---------------------
13532 -- Is_Discriminant --
13533 ---------------------
13535 function Is_Discriminant (Expr : Node_Id) return Boolean is
13536 Discrim_Scope : Entity_Id;
13538 begin
13539 if Denotes_Discriminant (Expr) then
13540 Discrim_Scope := Scope (Entity (Expr));
13542 -- Either we have a reference to one of Typ's discriminants,
13544 pragma Assert (Discrim_Scope = Typ
13546 -- or to the discriminants of the parent type, in the case
13547 -- of a derivation of a tagged type with variants.
13549 or else Discrim_Scope = Etype (Typ)
13550 or else Full_View (Discrim_Scope) = Etype (Typ)
13552 -- or same as above for the case where the discriminants
13553 -- were declared in Typ's private view.
13555 or else (Is_Private_Type (Discrim_Scope)
13556 and then Chars (Discrim_Scope) = Chars (Typ))
13558 -- or else we are deriving from the full view and the
13559 -- discriminant is declared in the private entity.
13561 or else (Is_Private_Type (Typ)
13562 and then Chars (Discrim_Scope) = Chars (Typ))
13564 -- Or we are constrained the corresponding record of a
13565 -- synchronized type that completes a private declaration.
13567 or else (Is_Concurrent_Record_Type (Typ)
13568 and then
13569 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13571 -- or we have a class-wide type, in which case make sure the
13572 -- discriminant found belongs to the root type.
13574 or else (Is_Class_Wide_Type (Typ)
13575 and then Etype (Typ) = Discrim_Scope));
13577 return True;
13578 end if;
13580 -- In all other cases we have something wrong
13582 return False;
13583 end Is_Discriminant;
13585 -- Start of processing for Constrain_Component_Type
13587 begin
13588 if Nkind (Parent (Comp)) = N_Component_Declaration
13589 and then Comes_From_Source (Parent (Comp))
13590 and then Comes_From_Source
13591 (Subtype_Indication (Component_Definition (Parent (Comp))))
13592 and then
13593 Is_Entity_Name
13594 (Subtype_Indication (Component_Definition (Parent (Comp))))
13595 then
13596 return Compon_Type;
13598 elsif Is_Array_Type (Compon_Type) then
13599 return Build_Constrained_Array_Type (Compon_Type);
13601 elsif Has_Discriminants (Compon_Type) then
13602 return Build_Constrained_Discriminated_Type (Compon_Type);
13604 elsif Is_Access_Type (Compon_Type) then
13605 return Build_Constrained_Access_Type (Compon_Type);
13607 else
13608 return Compon_Type;
13609 end if;
13610 end Constrain_Component_Type;
13612 --------------------------
13613 -- Constrain_Concurrent --
13614 --------------------------
13616 -- For concurrent types, the associated record value type carries the same
13617 -- discriminants, so when we constrain a concurrent type, we must constrain
13618 -- the corresponding record type as well.
13620 procedure Constrain_Concurrent
13621 (Def_Id : in out Entity_Id;
13622 SI : Node_Id;
13623 Related_Nod : Node_Id;
13624 Related_Id : Entity_Id;
13625 Suffix : Character)
13627 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13628 -- case of a private subtype (needed when only doing semantic analysis).
13630 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13631 T_Val : Entity_Id;
13633 begin
13634 if Is_Access_Type (T_Ent) then
13635 T_Ent := Designated_Type (T_Ent);
13636 end if;
13638 T_Val := Corresponding_Record_Type (T_Ent);
13640 if Present (T_Val) then
13642 if No (Def_Id) then
13643 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13645 -- Elaborate itype now, as it may be used in a subsequent
13646 -- synchronized operation in another scope.
13648 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13649 Build_Itype_Reference (Def_Id, Related_Nod);
13650 end if;
13651 end if;
13653 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13654 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13656 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13657 Set_Corresponding_Record_Type (Def_Id,
13658 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13660 else
13661 -- If there is no associated record, expansion is disabled and this
13662 -- is a generic context. Create a subtype in any case, so that
13663 -- semantic analysis can proceed.
13665 if No (Def_Id) then
13666 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13667 end if;
13669 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13670 end if;
13671 end Constrain_Concurrent;
13673 ------------------------------------
13674 -- Constrain_Corresponding_Record --
13675 ------------------------------------
13677 function Constrain_Corresponding_Record
13678 (Prot_Subt : Entity_Id;
13679 Corr_Rec : Entity_Id;
13680 Related_Nod : Node_Id) return Entity_Id
13682 T_Sub : constant Entity_Id :=
13683 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13685 begin
13686 Set_Etype (T_Sub, Corr_Rec);
13687 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13688 Set_Is_Constrained (T_Sub, True);
13689 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13690 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13692 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13693 Set_Discriminant_Constraint
13694 (T_Sub, Discriminant_Constraint (Prot_Subt));
13695 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13696 Create_Constrained_Components
13697 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13698 end if;
13700 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13702 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13703 Conditional_Delay (T_Sub, Corr_Rec);
13705 else
13706 -- This is a component subtype: it will be frozen in the context of
13707 -- the enclosing record's init_proc, so that discriminant references
13708 -- are resolved to discriminals. (Note: we used to skip freezing
13709 -- altogether in that case, which caused errors downstream for
13710 -- components of a bit packed array type).
13712 Set_Has_Delayed_Freeze (T_Sub);
13713 end if;
13715 return T_Sub;
13716 end Constrain_Corresponding_Record;
13718 -----------------------
13719 -- Constrain_Decimal --
13720 -----------------------
13722 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13723 T : constant Entity_Id := Entity (Subtype_Mark (S));
13724 C : constant Node_Id := Constraint (S);
13725 Loc : constant Source_Ptr := Sloc (C);
13726 Range_Expr : Node_Id;
13727 Digits_Expr : Node_Id;
13728 Digits_Val : Uint;
13729 Bound_Val : Ureal;
13731 begin
13732 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13734 if Nkind (C) = N_Range_Constraint then
13735 Range_Expr := Range_Expression (C);
13736 Digits_Val := Digits_Value (T);
13738 else
13739 pragma Assert (Nkind (C) = N_Digits_Constraint);
13741 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13743 Digits_Expr := Digits_Expression (C);
13744 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13746 Check_Digits_Expression (Digits_Expr);
13747 Digits_Val := Expr_Value (Digits_Expr);
13749 if Digits_Val > Digits_Value (T) then
13750 Error_Msg_N
13751 ("digits expression is incompatible with subtype", C);
13752 Digits_Val := Digits_Value (T);
13753 end if;
13755 if Present (Range_Constraint (C)) then
13756 Range_Expr := Range_Expression (Range_Constraint (C));
13757 else
13758 Range_Expr := Empty;
13759 end if;
13760 end if;
13762 Set_Etype (Def_Id, Base_Type (T));
13763 Set_Size_Info (Def_Id, (T));
13764 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13765 Set_Delta_Value (Def_Id, Delta_Value (T));
13766 Set_Scale_Value (Def_Id, Scale_Value (T));
13767 Set_Small_Value (Def_Id, Small_Value (T));
13768 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13769 Set_Digits_Value (Def_Id, Digits_Val);
13771 -- Manufacture range from given digits value if no range present
13773 if No (Range_Expr) then
13774 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13775 Range_Expr :=
13776 Make_Range (Loc,
13777 Low_Bound =>
13778 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13779 High_Bound =>
13780 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13781 end if;
13783 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13784 Set_Discrete_RM_Size (Def_Id);
13786 -- Unconditionally delay the freeze, since we cannot set size
13787 -- information in all cases correctly until the freeze point.
13789 Set_Has_Delayed_Freeze (Def_Id);
13790 end Constrain_Decimal;
13792 ----------------------------------
13793 -- Constrain_Discriminated_Type --
13794 ----------------------------------
13796 procedure Constrain_Discriminated_Type
13797 (Def_Id : Entity_Id;
13798 S : Node_Id;
13799 Related_Nod : Node_Id;
13800 For_Access : Boolean := False)
13802 E : Entity_Id := Entity (Subtype_Mark (S));
13803 T : Entity_Id;
13805 procedure Fixup_Bad_Constraint;
13806 -- Called after finding a bad constraint, and after having posted an
13807 -- appropriate error message. The goal is to leave type Def_Id in as
13808 -- reasonable state as possible.
13810 --------------------------
13811 -- Fixup_Bad_Constraint --
13812 --------------------------
13814 procedure Fixup_Bad_Constraint is
13815 begin
13816 -- Set a reasonable Ekind for the entity, including incomplete types.
13818 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13820 -- Set Etype to the known type, to reduce chances of cascaded errors
13822 Set_Etype (Def_Id, E);
13823 Set_Error_Posted (Def_Id);
13824 end Fixup_Bad_Constraint;
13826 -- Local variables
13828 C : Node_Id;
13829 Constr : Elist_Id := New_Elmt_List;
13831 -- Start of processing for Constrain_Discriminated_Type
13833 begin
13834 C := Constraint (S);
13836 -- A discriminant constraint is only allowed in a subtype indication,
13837 -- after a subtype mark. This subtype mark must denote either a type
13838 -- with discriminants, or an access type whose designated type is a
13839 -- type with discriminants. A discriminant constraint specifies the
13840 -- values of these discriminants (RM 3.7.2(5)).
13842 T := Base_Type (Entity (Subtype_Mark (S)));
13844 if Is_Access_Type (T) then
13845 T := Designated_Type (T);
13846 end if;
13848 -- In an instance it may be necessary to retrieve the full view of a
13849 -- type with unknown discriminants, or a full view with defaulted
13850 -- discriminants. In other contexts the constraint is illegal.
13852 if In_Instance
13853 and then Is_Private_Type (T)
13854 and then Present (Full_View (T))
13855 and then
13856 (Has_Unknown_Discriminants (T)
13857 or else
13858 (not Has_Discriminants (T)
13859 and then Has_Discriminants (Full_View (T))
13860 and then Present (Discriminant_Default_Value
13861 (First_Discriminant (Full_View (T))))))
13862 then
13863 T := Full_View (T);
13864 E := Full_View (E);
13865 end if;
13867 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13868 -- generating an error for access-to-incomplete subtypes.
13870 if Ada_Version >= Ada_2005
13871 and then Ekind (T) = E_Incomplete_Type
13872 and then Nkind (Parent (S)) = N_Subtype_Declaration
13873 and then not Is_Itype (Def_Id)
13874 then
13875 -- A little sanity check: emit an error message if the type has
13876 -- discriminants to begin with. Type T may be a regular incomplete
13877 -- type or imported via a limited with clause.
13879 if Has_Discriminants (T)
13880 or else (From_Limited_With (T)
13881 and then Present (Non_Limited_View (T))
13882 and then Nkind (Parent (Non_Limited_View (T))) =
13883 N_Full_Type_Declaration
13884 and then Present (Discriminant_Specifications
13885 (Parent (Non_Limited_View (T)))))
13886 then
13887 Error_Msg_N
13888 ("(Ada 2005) incomplete subtype may not be constrained", C);
13889 else
13890 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13891 end if;
13893 Fixup_Bad_Constraint;
13894 return;
13896 -- Check that the type has visible discriminants. The type may be
13897 -- a private type with unknown discriminants whose full view has
13898 -- discriminants which are invisible.
13900 elsif not Has_Discriminants (T)
13901 or else
13902 (Has_Unknown_Discriminants (T)
13903 and then Is_Private_Type (T))
13904 then
13905 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13906 Fixup_Bad_Constraint;
13907 return;
13909 elsif Is_Constrained (E)
13910 or else (Ekind (E) = E_Class_Wide_Subtype
13911 and then Present (Discriminant_Constraint (E)))
13912 then
13913 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13914 Fixup_Bad_Constraint;
13915 return;
13916 end if;
13918 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13919 -- applies to the base type.
13921 T := Base_Type (T);
13923 Constr := Build_Discriminant_Constraints (T, S);
13925 -- If the list returned was empty we had an error in building the
13926 -- discriminant constraint. We have also already signalled an error
13927 -- in the incomplete type case
13929 if Is_Empty_Elmt_List (Constr) then
13930 Fixup_Bad_Constraint;
13931 return;
13932 end if;
13934 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13935 end Constrain_Discriminated_Type;
13937 ---------------------------
13938 -- Constrain_Enumeration --
13939 ---------------------------
13941 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13942 T : constant Entity_Id := Entity (Subtype_Mark (S));
13943 C : constant Node_Id := Constraint (S);
13945 begin
13946 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13948 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13950 Set_Etype (Def_Id, Base_Type (T));
13951 Set_Size_Info (Def_Id, (T));
13952 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13953 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13955 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13957 Set_Discrete_RM_Size (Def_Id);
13958 end Constrain_Enumeration;
13960 ----------------------
13961 -- Constrain_Float --
13962 ----------------------
13964 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13965 T : constant Entity_Id := Entity (Subtype_Mark (S));
13966 C : Node_Id;
13967 D : Node_Id;
13968 Rais : Node_Id;
13970 begin
13971 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13973 Set_Etype (Def_Id, Base_Type (T));
13974 Set_Size_Info (Def_Id, (T));
13975 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13977 -- Process the constraint
13979 C := Constraint (S);
13981 -- Digits constraint present
13983 if Nkind (C) = N_Digits_Constraint then
13985 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13986 Check_Restriction (No_Obsolescent_Features, C);
13988 if Warn_On_Obsolescent_Feature then
13989 Error_Msg_N
13990 ("subtype digits constraint is an " &
13991 "obsolescent feature (RM J.3(8))?j?", C);
13992 end if;
13994 D := Digits_Expression (C);
13995 Analyze_And_Resolve (D, Any_Integer);
13996 Check_Digits_Expression (D);
13997 Set_Digits_Value (Def_Id, Expr_Value (D));
13999 -- Check that digits value is in range. Obviously we can do this
14000 -- at compile time, but it is strictly a runtime check, and of
14001 -- course there is an ACVC test that checks this.
14003 if Digits_Value (Def_Id) > Digits_Value (T) then
14004 Error_Msg_Uint_1 := Digits_Value (T);
14005 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14006 Rais :=
14007 Make_Raise_Constraint_Error (Sloc (D),
14008 Reason => CE_Range_Check_Failed);
14009 Insert_Action (Declaration_Node (Def_Id), Rais);
14010 end if;
14012 C := Range_Constraint (C);
14014 -- No digits constraint present
14016 else
14017 Set_Digits_Value (Def_Id, Digits_Value (T));
14018 end if;
14020 -- Range constraint present
14022 if Nkind (C) = N_Range_Constraint then
14023 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14025 -- No range constraint present
14027 else
14028 pragma Assert (No (C));
14029 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14030 end if;
14032 Set_Is_Constrained (Def_Id);
14033 end Constrain_Float;
14035 ---------------------
14036 -- Constrain_Index --
14037 ---------------------
14039 procedure Constrain_Index
14040 (Index : Node_Id;
14041 S : Node_Id;
14042 Related_Nod : Node_Id;
14043 Related_Id : Entity_Id;
14044 Suffix : Character;
14045 Suffix_Index : Nat)
14047 Def_Id : Entity_Id;
14048 R : Node_Id := Empty;
14049 T : constant Entity_Id := Etype (Index);
14051 begin
14052 Def_Id :=
14053 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14054 Set_Etype (Def_Id, Base_Type (T));
14056 if Nkind (S) = N_Range
14057 or else
14058 (Nkind (S) = N_Attribute_Reference
14059 and then Attribute_Name (S) = Name_Range)
14060 then
14061 -- A Range attribute will be transformed into N_Range by Resolve
14063 Analyze (S);
14064 Set_Etype (S, T);
14065 R := S;
14067 Process_Range_Expr_In_Decl (R, T);
14069 if not Error_Posted (S)
14070 and then
14071 (Nkind (S) /= N_Range
14072 or else not Covers (T, (Etype (Low_Bound (S))))
14073 or else not Covers (T, (Etype (High_Bound (S)))))
14074 then
14075 if Base_Type (T) /= Any_Type
14076 and then Etype (Low_Bound (S)) /= Any_Type
14077 and then Etype (High_Bound (S)) /= Any_Type
14078 then
14079 Error_Msg_N ("range expected", S);
14080 end if;
14081 end if;
14083 elsif Nkind (S) = N_Subtype_Indication then
14085 -- The parser has verified that this is a discrete indication
14087 Resolve_Discrete_Subtype_Indication (S, T);
14088 Bad_Predicated_Subtype_Use
14089 ("subtype& has predicate, not allowed in index constraint",
14090 S, Entity (Subtype_Mark (S)));
14092 R := Range_Expression (Constraint (S));
14094 -- Capture values of bounds and generate temporaries for them if
14095 -- needed, since checks may cause duplication of the expressions
14096 -- which must not be reevaluated.
14098 -- The forced evaluation removes side effects from expressions, which
14099 -- should occur also in GNATprove mode. Otherwise, we end up with
14100 -- unexpected insertions of actions at places where this is not
14101 -- supposed to occur, e.g. on default parameters of a call.
14103 if Expander_Active or GNATprove_Mode then
14104 Force_Evaluation
14105 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14106 Force_Evaluation
14107 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14108 end if;
14110 elsif Nkind (S) = N_Discriminant_Association then
14112 -- Syntactically valid in subtype indication
14114 Error_Msg_N ("invalid index constraint", S);
14115 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14116 return;
14118 -- Subtype_Mark case, no anonymous subtypes to construct
14120 else
14121 Analyze (S);
14123 if Is_Entity_Name (S) then
14124 if not Is_Type (Entity (S)) then
14125 Error_Msg_N ("expect subtype mark for index constraint", S);
14127 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14128 Wrong_Type (S, Base_Type (T));
14130 -- Check error of subtype with predicate in index constraint
14132 else
14133 Bad_Predicated_Subtype_Use
14134 ("subtype& has predicate, not allowed in index constraint",
14135 S, Entity (S));
14136 end if;
14138 return;
14140 else
14141 Error_Msg_N ("invalid index constraint", S);
14142 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14143 return;
14144 end if;
14145 end if;
14147 -- Complete construction of the Itype
14149 if Is_Modular_Integer_Type (T) then
14150 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14152 elsif Is_Integer_Type (T) then
14153 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14155 else
14156 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14157 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14158 Set_First_Literal (Def_Id, First_Literal (T));
14159 end if;
14161 Set_Size_Info (Def_Id, (T));
14162 Set_RM_Size (Def_Id, RM_Size (T));
14163 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14165 Set_Scalar_Range (Def_Id, R);
14167 Set_Etype (S, Def_Id);
14168 Set_Discrete_RM_Size (Def_Id);
14169 end Constrain_Index;
14171 -----------------------
14172 -- Constrain_Integer --
14173 -----------------------
14175 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14176 T : constant Entity_Id := Entity (Subtype_Mark (S));
14177 C : constant Node_Id := Constraint (S);
14179 begin
14180 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14182 if Is_Modular_Integer_Type (T) then
14183 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14184 else
14185 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14186 end if;
14188 Set_Etype (Def_Id, Base_Type (T));
14189 Set_Size_Info (Def_Id, (T));
14190 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14191 Set_Discrete_RM_Size (Def_Id);
14192 end Constrain_Integer;
14194 ------------------------------
14195 -- Constrain_Ordinary_Fixed --
14196 ------------------------------
14198 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14199 T : constant Entity_Id := Entity (Subtype_Mark (S));
14200 C : Node_Id;
14201 D : Node_Id;
14202 Rais : Node_Id;
14204 begin
14205 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14206 Set_Etype (Def_Id, Base_Type (T));
14207 Set_Size_Info (Def_Id, (T));
14208 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14209 Set_Small_Value (Def_Id, Small_Value (T));
14211 -- Process the constraint
14213 C := Constraint (S);
14215 -- Delta constraint present
14217 if Nkind (C) = N_Delta_Constraint then
14219 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14220 Check_Restriction (No_Obsolescent_Features, C);
14222 if Warn_On_Obsolescent_Feature then
14223 Error_Msg_S
14224 ("subtype delta constraint is an " &
14225 "obsolescent feature (RM J.3(7))?j?");
14226 end if;
14228 D := Delta_Expression (C);
14229 Analyze_And_Resolve (D, Any_Real);
14230 Check_Delta_Expression (D);
14231 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14233 -- Check that delta value is in range. Obviously we can do this
14234 -- at compile time, but it is strictly a runtime check, and of
14235 -- course there is an ACVC test that checks this.
14237 if Delta_Value (Def_Id) < Delta_Value (T) then
14238 Error_Msg_N ("??delta value is too small", D);
14239 Rais :=
14240 Make_Raise_Constraint_Error (Sloc (D),
14241 Reason => CE_Range_Check_Failed);
14242 Insert_Action (Declaration_Node (Def_Id), Rais);
14243 end if;
14245 C := Range_Constraint (C);
14247 -- No delta constraint present
14249 else
14250 Set_Delta_Value (Def_Id, Delta_Value (T));
14251 end if;
14253 -- Range constraint present
14255 if Nkind (C) = N_Range_Constraint then
14256 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14258 -- No range constraint present
14260 else
14261 pragma Assert (No (C));
14262 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14263 end if;
14265 Set_Discrete_RM_Size (Def_Id);
14267 -- Unconditionally delay the freeze, since we cannot set size
14268 -- information in all cases correctly until the freeze point.
14270 Set_Has_Delayed_Freeze (Def_Id);
14271 end Constrain_Ordinary_Fixed;
14273 -----------------------
14274 -- Contain_Interface --
14275 -----------------------
14277 function Contain_Interface
14278 (Iface : Entity_Id;
14279 Ifaces : Elist_Id) return Boolean
14281 Iface_Elmt : Elmt_Id;
14283 begin
14284 if Present (Ifaces) then
14285 Iface_Elmt := First_Elmt (Ifaces);
14286 while Present (Iface_Elmt) loop
14287 if Node (Iface_Elmt) = Iface then
14288 return True;
14289 end if;
14291 Next_Elmt (Iface_Elmt);
14292 end loop;
14293 end if;
14295 return False;
14296 end Contain_Interface;
14298 ---------------------------
14299 -- Convert_Scalar_Bounds --
14300 ---------------------------
14302 procedure Convert_Scalar_Bounds
14303 (N : Node_Id;
14304 Parent_Type : Entity_Id;
14305 Derived_Type : Entity_Id;
14306 Loc : Source_Ptr)
14308 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14310 Lo : Node_Id;
14311 Hi : Node_Id;
14312 Rng : Node_Id;
14314 begin
14315 -- Defend against previous errors
14317 if No (Scalar_Range (Derived_Type)) then
14318 Check_Error_Detected;
14319 return;
14320 end if;
14322 Lo := Build_Scalar_Bound
14323 (Type_Low_Bound (Derived_Type),
14324 Parent_Type, Implicit_Base);
14326 Hi := Build_Scalar_Bound
14327 (Type_High_Bound (Derived_Type),
14328 Parent_Type, Implicit_Base);
14330 Rng :=
14331 Make_Range (Loc,
14332 Low_Bound => Lo,
14333 High_Bound => Hi);
14335 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14337 Set_Parent (Rng, N);
14338 Set_Scalar_Range (Derived_Type, Rng);
14340 -- Analyze the bounds
14342 Analyze_And_Resolve (Lo, Implicit_Base);
14343 Analyze_And_Resolve (Hi, Implicit_Base);
14345 -- Analyze the range itself, except that we do not analyze it if
14346 -- the bounds are real literals, and we have a fixed-point type.
14347 -- The reason for this is that we delay setting the bounds in this
14348 -- case till we know the final Small and Size values (see circuit
14349 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14351 if Is_Fixed_Point_Type (Parent_Type)
14352 and then Nkind (Lo) = N_Real_Literal
14353 and then Nkind (Hi) = N_Real_Literal
14354 then
14355 return;
14357 -- Here we do the analysis of the range
14359 -- Note: we do this manually, since if we do a normal Analyze and
14360 -- Resolve call, there are problems with the conversions used for
14361 -- the derived type range.
14363 else
14364 Set_Etype (Rng, Implicit_Base);
14365 Set_Analyzed (Rng, True);
14366 end if;
14367 end Convert_Scalar_Bounds;
14369 -------------------
14370 -- Copy_And_Swap --
14371 -------------------
14373 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14374 begin
14375 -- Initialize new full declaration entity by copying the pertinent
14376 -- fields of the corresponding private declaration entity.
14378 -- We temporarily set Ekind to a value appropriate for a type to
14379 -- avoid assert failures in Einfo from checking for setting type
14380 -- attributes on something that is not a type. Ekind (Priv) is an
14381 -- appropriate choice, since it allowed the attributes to be set
14382 -- in the first place. This Ekind value will be modified later.
14384 Set_Ekind (Full, Ekind (Priv));
14386 -- Also set Etype temporarily to Any_Type, again, in the absence
14387 -- of errors, it will be properly reset, and if there are errors,
14388 -- then we want a value of Any_Type to remain.
14390 Set_Etype (Full, Any_Type);
14392 -- Now start copying attributes
14394 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14396 if Has_Discriminants (Full) then
14397 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14398 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14399 end if;
14401 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14402 Set_Homonym (Full, Homonym (Priv));
14403 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14404 Set_Is_Public (Full, Is_Public (Priv));
14405 Set_Is_Pure (Full, Is_Pure (Priv));
14406 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14407 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14408 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14409 Set_Has_Pragma_Unreferenced_Objects
14410 (Full, Has_Pragma_Unreferenced_Objects
14411 (Priv));
14413 Conditional_Delay (Full, Priv);
14415 if Is_Tagged_Type (Full) then
14416 Set_Direct_Primitive_Operations
14417 (Full, Direct_Primitive_Operations (Priv));
14418 Set_No_Tagged_Streams_Pragma
14419 (Full, No_Tagged_Streams_Pragma (Priv));
14421 if Is_Base_Type (Priv) then
14422 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14423 end if;
14424 end if;
14426 Set_Is_Volatile (Full, Is_Volatile (Priv));
14427 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14428 Set_Scope (Full, Scope (Priv));
14429 Set_Prev_Entity (Full, Prev_Entity (Priv));
14430 Set_Next_Entity (Full, Next_Entity (Priv));
14431 Set_First_Entity (Full, First_Entity (Priv));
14432 Set_Last_Entity (Full, Last_Entity (Priv));
14434 -- If access types have been recorded for later handling, keep them in
14435 -- the full view so that they get handled when the full view freeze
14436 -- node is expanded.
14438 if Present (Freeze_Node (Priv))
14439 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14440 then
14441 Ensure_Freeze_Node (Full);
14442 Set_Access_Types_To_Process
14443 (Freeze_Node (Full),
14444 Access_Types_To_Process (Freeze_Node (Priv)));
14445 end if;
14447 -- Swap the two entities. Now Private is the full type entity and Full
14448 -- is the private one. They will be swapped back at the end of the
14449 -- private part. This swapping ensures that the entity that is visible
14450 -- in the private part is the full declaration.
14452 Exchange_Entities (Priv, Full);
14453 Append_Entity (Full, Scope (Full));
14454 end Copy_And_Swap;
14456 -------------------------------------
14457 -- Copy_Array_Base_Type_Attributes --
14458 -------------------------------------
14460 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14461 begin
14462 Set_Component_Alignment (T1, Component_Alignment (T2));
14463 Set_Component_Type (T1, Component_Type (T2));
14464 Set_Component_Size (T1, Component_Size (T2));
14465 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14466 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14467 Propagate_Concurrent_Flags (T1, T2);
14468 Set_Is_Packed (T1, Is_Packed (T2));
14469 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14470 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14471 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14472 end Copy_Array_Base_Type_Attributes;
14474 -----------------------------------
14475 -- Copy_Array_Subtype_Attributes --
14476 -----------------------------------
14478 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14479 begin
14480 Set_Size_Info (T1, T2);
14482 Set_First_Index (T1, First_Index (T2));
14483 Set_Is_Aliased (T1, Is_Aliased (T2));
14484 Set_Is_Volatile (T1, Is_Volatile (T2));
14485 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14486 Set_Is_Constrained (T1, Is_Constrained (T2));
14487 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14488 Inherit_Rep_Item_Chain (T1, T2);
14489 Set_Convention (T1, Convention (T2));
14490 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14491 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14492 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14493 end Copy_Array_Subtype_Attributes;
14495 -----------------------------------
14496 -- Create_Constrained_Components --
14497 -----------------------------------
14499 procedure Create_Constrained_Components
14500 (Subt : Entity_Id;
14501 Decl_Node : Node_Id;
14502 Typ : Entity_Id;
14503 Constraints : Elist_Id)
14505 Loc : constant Source_Ptr := Sloc (Subt);
14506 Comp_List : constant Elist_Id := New_Elmt_List;
14507 Parent_Type : constant Entity_Id := Etype (Typ);
14508 Assoc_List : constant List_Id := New_List;
14509 Discr_Val : Elmt_Id;
14510 Errors : Boolean;
14511 New_C : Entity_Id;
14512 Old_C : Entity_Id;
14513 Is_Static : Boolean := True;
14515 procedure Collect_Fixed_Components (Typ : Entity_Id);
14516 -- Collect parent type components that do not appear in a variant part
14518 procedure Create_All_Components;
14519 -- Iterate over Comp_List to create the components of the subtype
14521 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14522 -- Creates a new component from Old_Compon, copying all the fields from
14523 -- it, including its Etype, inserts the new component in the Subt entity
14524 -- chain and returns the new component.
14526 function Is_Variant_Record (T : Entity_Id) return Boolean;
14527 -- If true, and discriminants are static, collect only components from
14528 -- variants selected by discriminant values.
14530 ------------------------------
14531 -- Collect_Fixed_Components --
14532 ------------------------------
14534 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14535 begin
14536 -- Build association list for discriminants, and find components of the
14537 -- variant part selected by the values of the discriminants.
14539 Old_C := First_Discriminant (Typ);
14540 Discr_Val := First_Elmt (Constraints);
14541 while Present (Old_C) loop
14542 Append_To (Assoc_List,
14543 Make_Component_Association (Loc,
14544 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14545 Expression => New_Copy (Node (Discr_Val))));
14547 Next_Elmt (Discr_Val);
14548 Next_Discriminant (Old_C);
14549 end loop;
14551 -- The tag and the possible parent component are unconditionally in
14552 -- the subtype.
14554 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14555 Old_C := First_Component (Typ);
14556 while Present (Old_C) loop
14557 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14558 Append_Elmt (Old_C, Comp_List);
14559 end if;
14561 Next_Component (Old_C);
14562 end loop;
14563 end if;
14564 end Collect_Fixed_Components;
14566 ---------------------------
14567 -- Create_All_Components --
14568 ---------------------------
14570 procedure Create_All_Components is
14571 Comp : Elmt_Id;
14573 begin
14574 Comp := First_Elmt (Comp_List);
14575 while Present (Comp) loop
14576 Old_C := Node (Comp);
14577 New_C := Create_Component (Old_C);
14579 Set_Etype
14580 (New_C,
14581 Constrain_Component_Type
14582 (Old_C, Subt, Decl_Node, Typ, Constraints));
14583 Set_Is_Public (New_C, Is_Public (Subt));
14585 Next_Elmt (Comp);
14586 end loop;
14587 end Create_All_Components;
14589 ----------------------
14590 -- Create_Component --
14591 ----------------------
14593 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14594 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14596 begin
14597 if Ekind (Old_Compon) = E_Discriminant
14598 and then Is_Completely_Hidden (Old_Compon)
14599 then
14600 -- This is a shadow discriminant created for a discriminant of
14601 -- the parent type, which needs to be present in the subtype.
14602 -- Give the shadow discriminant an internal name that cannot
14603 -- conflict with that of visible components.
14605 Set_Chars (New_Compon, New_Internal_Name ('C'));
14606 end if;
14608 -- Set the parent so we have a proper link for freezing etc. This is
14609 -- not a real parent pointer, since of course our parent does not own
14610 -- up to us and reference us, we are an illegitimate child of the
14611 -- original parent.
14613 Set_Parent (New_Compon, Parent (Old_Compon));
14615 -- We do not want this node marked as Comes_From_Source, since
14616 -- otherwise it would get first class status and a separate cross-
14617 -- reference line would be generated. Illegitimate children do not
14618 -- rate such recognition.
14620 Set_Comes_From_Source (New_Compon, False);
14622 -- But it is a real entity, and a birth certificate must be properly
14623 -- registered by entering it into the entity list.
14625 Enter_Name (New_Compon);
14627 return New_Compon;
14628 end Create_Component;
14630 -----------------------
14631 -- Is_Variant_Record --
14632 -----------------------
14634 function Is_Variant_Record (T : Entity_Id) return Boolean is
14635 begin
14636 return Nkind (Parent (T)) = N_Full_Type_Declaration
14637 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14638 and then Present (Component_List (Type_Definition (Parent (T))))
14639 and then
14640 Present
14641 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14642 end Is_Variant_Record;
14644 -- Start of processing for Create_Constrained_Components
14646 begin
14647 pragma Assert (Subt /= Base_Type (Subt));
14648 pragma Assert (Typ = Base_Type (Typ));
14650 Set_First_Entity (Subt, Empty);
14651 Set_Last_Entity (Subt, Empty);
14653 -- Check whether constraint is fully static, in which case we can
14654 -- optimize the list of components.
14656 Discr_Val := First_Elmt (Constraints);
14657 while Present (Discr_Val) loop
14658 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14659 Is_Static := False;
14660 exit;
14661 end if;
14663 Next_Elmt (Discr_Val);
14664 end loop;
14666 Set_Has_Static_Discriminants (Subt, Is_Static);
14668 Push_Scope (Subt);
14670 -- Inherit the discriminants of the parent type
14672 Add_Discriminants : declare
14673 Num_Disc : Nat;
14674 Num_Gird : Nat;
14676 begin
14677 Num_Disc := 0;
14678 Old_C := First_Discriminant (Typ);
14680 while Present (Old_C) loop
14681 Num_Disc := Num_Disc + 1;
14682 New_C := Create_Component (Old_C);
14683 Set_Is_Public (New_C, Is_Public (Subt));
14684 Next_Discriminant (Old_C);
14685 end loop;
14687 -- For an untagged derived subtype, the number of discriminants may
14688 -- be smaller than the number of inherited discriminants, because
14689 -- several of them may be renamed by a single new discriminant or
14690 -- constrained. In this case, add the hidden discriminants back into
14691 -- the subtype, because they need to be present if the optimizer of
14692 -- the GCC 4.x back-end decides to break apart assignments between
14693 -- objects using the parent view into member-wise assignments.
14695 Num_Gird := 0;
14697 if Is_Derived_Type (Typ)
14698 and then not Is_Tagged_Type (Typ)
14699 then
14700 Old_C := First_Stored_Discriminant (Typ);
14702 while Present (Old_C) loop
14703 Num_Gird := Num_Gird + 1;
14704 Next_Stored_Discriminant (Old_C);
14705 end loop;
14706 end if;
14708 if Num_Gird > Num_Disc then
14710 -- Find out multiple uses of new discriminants, and add hidden
14711 -- components for the extra renamed discriminants. We recognize
14712 -- multiple uses through the Corresponding_Discriminant of a
14713 -- new discriminant: if it constrains several old discriminants,
14714 -- this field points to the last one in the parent type. The
14715 -- stored discriminants of the derived type have the same name
14716 -- as those of the parent.
14718 declare
14719 Constr : Elmt_Id;
14720 New_Discr : Entity_Id;
14721 Old_Discr : Entity_Id;
14723 begin
14724 Constr := First_Elmt (Stored_Constraint (Typ));
14725 Old_Discr := First_Stored_Discriminant (Typ);
14726 while Present (Constr) loop
14727 if Is_Entity_Name (Node (Constr))
14728 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14729 then
14730 New_Discr := Entity (Node (Constr));
14732 if Chars (Corresponding_Discriminant (New_Discr)) /=
14733 Chars (Old_Discr)
14734 then
14735 -- The new discriminant has been used to rename a
14736 -- subsequent old discriminant. Introduce a shadow
14737 -- component for the current old discriminant.
14739 New_C := Create_Component (Old_Discr);
14740 Set_Original_Record_Component (New_C, Old_Discr);
14741 end if;
14743 else
14744 -- The constraint has eliminated the old discriminant.
14745 -- Introduce a shadow component.
14747 New_C := Create_Component (Old_Discr);
14748 Set_Original_Record_Component (New_C, Old_Discr);
14749 end if;
14751 Next_Elmt (Constr);
14752 Next_Stored_Discriminant (Old_Discr);
14753 end loop;
14754 end;
14755 end if;
14756 end Add_Discriminants;
14758 if Is_Static
14759 and then Is_Variant_Record (Typ)
14760 then
14761 Collect_Fixed_Components (Typ);
14763 Gather_Components (
14764 Typ,
14765 Component_List (Type_Definition (Parent (Typ))),
14766 Governed_By => Assoc_List,
14767 Into => Comp_List,
14768 Report_Errors => Errors);
14769 pragma Assert (not Errors
14770 or else Serious_Errors_Detected > 0);
14772 Create_All_Components;
14774 -- If the subtype declaration is created for a tagged type derivation
14775 -- with constraints, we retrieve the record definition of the parent
14776 -- type to select the components of the proper variant.
14778 elsif Is_Static
14779 and then Is_Tagged_Type (Typ)
14780 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14781 and then
14782 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14783 and then Is_Variant_Record (Parent_Type)
14784 then
14785 Collect_Fixed_Components (Typ);
14787 Gather_Components
14788 (Typ,
14789 Component_List (Type_Definition (Parent (Parent_Type))),
14790 Governed_By => Assoc_List,
14791 Into => Comp_List,
14792 Report_Errors => Errors);
14794 -- Note: previously there was a check at this point that no errors
14795 -- were detected. As a consequence of AI05-220 there may be an error
14796 -- if an inherited discriminant that controls a variant has a non-
14797 -- static constraint.
14799 -- If the tagged derivation has a type extension, collect all the
14800 -- new components therein.
14802 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14803 then
14804 Old_C := First_Component (Typ);
14805 while Present (Old_C) loop
14806 if Original_Record_Component (Old_C) = Old_C
14807 and then Chars (Old_C) /= Name_uTag
14808 and then Chars (Old_C) /= Name_uParent
14809 then
14810 Append_Elmt (Old_C, Comp_List);
14811 end if;
14813 Next_Component (Old_C);
14814 end loop;
14815 end if;
14817 Create_All_Components;
14819 else
14820 -- If discriminants are not static, or if this is a multi-level type
14821 -- extension, we have to include all components of the parent type.
14823 Old_C := First_Component (Typ);
14824 while Present (Old_C) loop
14825 New_C := Create_Component (Old_C);
14827 Set_Etype
14828 (New_C,
14829 Constrain_Component_Type
14830 (Old_C, Subt, Decl_Node, Typ, Constraints));
14831 Set_Is_Public (New_C, Is_Public (Subt));
14833 Next_Component (Old_C);
14834 end loop;
14835 end if;
14837 End_Scope;
14838 end Create_Constrained_Components;
14840 ------------------------------------------
14841 -- Decimal_Fixed_Point_Type_Declaration --
14842 ------------------------------------------
14844 procedure Decimal_Fixed_Point_Type_Declaration
14845 (T : Entity_Id;
14846 Def : Node_Id)
14848 Loc : constant Source_Ptr := Sloc (Def);
14849 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14850 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14851 Implicit_Base : Entity_Id;
14852 Digs_Val : Uint;
14853 Delta_Val : Ureal;
14854 Scale_Val : Uint;
14855 Bound_Val : Ureal;
14857 begin
14858 Check_SPARK_05_Restriction
14859 ("decimal fixed point type is not allowed", Def);
14860 Check_Restriction (No_Fixed_Point, Def);
14862 -- Create implicit base type
14864 Implicit_Base :=
14865 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14866 Set_Etype (Implicit_Base, Implicit_Base);
14868 -- Analyze and process delta expression
14870 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14872 Check_Delta_Expression (Delta_Expr);
14873 Delta_Val := Expr_Value_R (Delta_Expr);
14875 -- Check delta is power of 10, and determine scale value from it
14877 declare
14878 Val : Ureal;
14880 begin
14881 Scale_Val := Uint_0;
14882 Val := Delta_Val;
14884 if Val < Ureal_1 then
14885 while Val < Ureal_1 loop
14886 Val := Val * Ureal_10;
14887 Scale_Val := Scale_Val + 1;
14888 end loop;
14890 if Scale_Val > 18 then
14891 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14892 Scale_Val := UI_From_Int (+18);
14893 end if;
14895 else
14896 while Val > Ureal_1 loop
14897 Val := Val / Ureal_10;
14898 Scale_Val := Scale_Val - 1;
14899 end loop;
14901 if Scale_Val < -18 then
14902 Error_Msg_N ("scale is less than minimum value of -18", Def);
14903 Scale_Val := UI_From_Int (-18);
14904 end if;
14905 end if;
14907 if Val /= Ureal_1 then
14908 Error_Msg_N ("delta expression must be a power of 10", Def);
14909 Delta_Val := Ureal_10 ** (-Scale_Val);
14910 end if;
14911 end;
14913 -- Set delta, scale and small (small = delta for decimal type)
14915 Set_Delta_Value (Implicit_Base, Delta_Val);
14916 Set_Scale_Value (Implicit_Base, Scale_Val);
14917 Set_Small_Value (Implicit_Base, Delta_Val);
14919 -- Analyze and process digits expression
14921 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14922 Check_Digits_Expression (Digs_Expr);
14923 Digs_Val := Expr_Value (Digs_Expr);
14925 if Digs_Val > 18 then
14926 Digs_Val := UI_From_Int (+18);
14927 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14928 end if;
14930 Set_Digits_Value (Implicit_Base, Digs_Val);
14931 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14933 -- Set range of base type from digits value for now. This will be
14934 -- expanded to represent the true underlying base range by Freeze.
14936 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14938 -- Note: We leave size as zero for now, size will be set at freeze
14939 -- time. We have to do this for ordinary fixed-point, because the size
14940 -- depends on the specified small, and we might as well do the same for
14941 -- decimal fixed-point.
14943 pragma Assert (Esize (Implicit_Base) = Uint_0);
14945 -- If there are bounds given in the declaration use them as the
14946 -- bounds of the first named subtype.
14948 if Present (Real_Range_Specification (Def)) then
14949 declare
14950 RRS : constant Node_Id := Real_Range_Specification (Def);
14951 Low : constant Node_Id := Low_Bound (RRS);
14952 High : constant Node_Id := High_Bound (RRS);
14953 Low_Val : Ureal;
14954 High_Val : Ureal;
14956 begin
14957 Analyze_And_Resolve (Low, Any_Real);
14958 Analyze_And_Resolve (High, Any_Real);
14959 Check_Real_Bound (Low);
14960 Check_Real_Bound (High);
14961 Low_Val := Expr_Value_R (Low);
14962 High_Val := Expr_Value_R (High);
14964 if Low_Val < (-Bound_Val) then
14965 Error_Msg_N
14966 ("range low bound too small for digits value", Low);
14967 Low_Val := -Bound_Val;
14968 end if;
14970 if High_Val > Bound_Val then
14971 Error_Msg_N
14972 ("range high bound too large for digits value", High);
14973 High_Val := Bound_Val;
14974 end if;
14976 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14977 end;
14979 -- If no explicit range, use range that corresponds to given
14980 -- digits value. This will end up as the final range for the
14981 -- first subtype.
14983 else
14984 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14985 end if;
14987 -- Complete entity for first subtype. The inheritance of the rep item
14988 -- chain ensures that SPARK-related pragmas are not clobbered when the
14989 -- decimal fixed point type acts as a full view of a private type.
14991 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14992 Set_Etype (T, Implicit_Base);
14993 Set_Size_Info (T, Implicit_Base);
14994 Inherit_Rep_Item_Chain (T, Implicit_Base);
14995 Set_Digits_Value (T, Digs_Val);
14996 Set_Delta_Value (T, Delta_Val);
14997 Set_Small_Value (T, Delta_Val);
14998 Set_Scale_Value (T, Scale_Val);
14999 Set_Is_Constrained (T);
15000 end Decimal_Fixed_Point_Type_Declaration;
15002 -----------------------------------
15003 -- Derive_Progenitor_Subprograms --
15004 -----------------------------------
15006 procedure Derive_Progenitor_Subprograms
15007 (Parent_Type : Entity_Id;
15008 Tagged_Type : Entity_Id)
15010 E : Entity_Id;
15011 Elmt : Elmt_Id;
15012 Iface : Entity_Id;
15013 Iface_Alias : Entity_Id;
15014 Iface_Elmt : Elmt_Id;
15015 Iface_Subp : Entity_Id;
15016 New_Subp : Entity_Id := Empty;
15017 Prim_Elmt : Elmt_Id;
15018 Subp : Entity_Id;
15019 Typ : Entity_Id;
15021 begin
15022 pragma Assert (Ada_Version >= Ada_2005
15023 and then Is_Record_Type (Tagged_Type)
15024 and then Is_Tagged_Type (Tagged_Type)
15025 and then Has_Interfaces (Tagged_Type));
15027 -- Step 1: Transfer to the full-view primitives associated with the
15028 -- partial-view that cover interface primitives. Conceptually this
15029 -- work should be done later by Process_Full_View; done here to
15030 -- simplify its implementation at later stages. It can be safely
15031 -- done here because interfaces must be visible in the partial and
15032 -- private view (RM 7.3(7.3/2)).
15034 -- Small optimization: This work is only required if the parent may
15035 -- have entities whose Alias attribute reference an interface primitive.
15036 -- Such a situation may occur if the parent is an abstract type and the
15037 -- primitive has not been yet overridden or if the parent is a generic
15038 -- formal type covering interfaces.
15040 -- If the tagged type is not abstract, it cannot have abstract
15041 -- primitives (the only entities in the list of primitives of
15042 -- non-abstract tagged types that can reference abstract primitives
15043 -- through its Alias attribute are the internal entities that have
15044 -- attribute Interface_Alias, and these entities are generated later
15045 -- by Add_Internal_Interface_Entities).
15047 if In_Private_Part (Current_Scope)
15048 and then (Is_Abstract_Type (Parent_Type)
15049 or else
15050 Is_Generic_Type (Parent_Type))
15051 then
15052 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15053 while Present (Elmt) loop
15054 Subp := Node (Elmt);
15056 -- At this stage it is not possible to have entities in the list
15057 -- of primitives that have attribute Interface_Alias.
15059 pragma Assert (No (Interface_Alias (Subp)));
15061 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15063 if Is_Interface (Typ) then
15064 E := Find_Primitive_Covering_Interface
15065 (Tagged_Type => Tagged_Type,
15066 Iface_Prim => Subp);
15068 if Present (E)
15069 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15070 then
15071 Replace_Elmt (Elmt, E);
15072 Remove_Homonym (Subp);
15073 end if;
15074 end if;
15076 Next_Elmt (Elmt);
15077 end loop;
15078 end if;
15080 -- Step 2: Add primitives of progenitors that are not implemented by
15081 -- parents of Tagged_Type.
15083 if Present (Interfaces (Base_Type (Tagged_Type))) then
15084 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15085 while Present (Iface_Elmt) loop
15086 Iface := Node (Iface_Elmt);
15088 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15089 while Present (Prim_Elmt) loop
15090 Iface_Subp := Node (Prim_Elmt);
15091 Iface_Alias := Ultimate_Alias (Iface_Subp);
15093 -- Exclude derivation of predefined primitives except those
15094 -- that come from source, or are inherited from one that comes
15095 -- from source. Required to catch declarations of equality
15096 -- operators of interfaces. For example:
15098 -- type Iface is interface;
15099 -- function "=" (Left, Right : Iface) return Boolean;
15101 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15102 or else Comes_From_Source (Iface_Alias)
15103 then
15104 E :=
15105 Find_Primitive_Covering_Interface
15106 (Tagged_Type => Tagged_Type,
15107 Iface_Prim => Iface_Subp);
15109 -- If not found we derive a new primitive leaving its alias
15110 -- attribute referencing the interface primitive.
15112 if No (E) then
15113 Derive_Subprogram
15114 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15116 -- Ada 2012 (AI05-0197): If the covering primitive's name
15117 -- differs from the name of the interface primitive then it
15118 -- is a private primitive inherited from a parent type. In
15119 -- such case, given that Tagged_Type covers the interface,
15120 -- the inherited private primitive becomes visible. For such
15121 -- purpose we add a new entity that renames the inherited
15122 -- private primitive.
15124 elsif Chars (E) /= Chars (Iface_Subp) then
15125 pragma Assert (Has_Suffix (E, 'P'));
15126 Derive_Subprogram
15127 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15128 Set_Alias (New_Subp, E);
15129 Set_Is_Abstract_Subprogram (New_Subp,
15130 Is_Abstract_Subprogram (E));
15132 -- Propagate to the full view interface entities associated
15133 -- with the partial view.
15135 elsif In_Private_Part (Current_Scope)
15136 and then Present (Alias (E))
15137 and then Alias (E) = Iface_Subp
15138 and then
15139 List_Containing (Parent (E)) /=
15140 Private_Declarations
15141 (Specification
15142 (Unit_Declaration_Node (Current_Scope)))
15143 then
15144 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15145 end if;
15146 end if;
15148 Next_Elmt (Prim_Elmt);
15149 end loop;
15151 Next_Elmt (Iface_Elmt);
15152 end loop;
15153 end if;
15154 end Derive_Progenitor_Subprograms;
15156 -----------------------
15157 -- Derive_Subprogram --
15158 -----------------------
15160 procedure Derive_Subprogram
15161 (New_Subp : out Entity_Id;
15162 Parent_Subp : Entity_Id;
15163 Derived_Type : Entity_Id;
15164 Parent_Type : Entity_Id;
15165 Actual_Subp : Entity_Id := Empty)
15167 Formal : Entity_Id;
15168 -- Formal parameter of parent primitive operation
15170 Formal_Of_Actual : Entity_Id;
15171 -- Formal parameter of actual operation, when the derivation is to
15172 -- create a renaming for a primitive operation of an actual in an
15173 -- instantiation.
15175 New_Formal : Entity_Id;
15176 -- Formal of inherited operation
15178 Visible_Subp : Entity_Id := Parent_Subp;
15180 function Is_Private_Overriding return Boolean;
15181 -- If Subp is a private overriding of a visible operation, the inherited
15182 -- operation derives from the overridden op (even though its body is the
15183 -- overriding one) and the inherited operation is visible now. See
15184 -- sem_disp to see the full details of the handling of the overridden
15185 -- subprogram, which is removed from the list of primitive operations of
15186 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15187 -- and used to diagnose abstract operations that need overriding in the
15188 -- derived type.
15190 procedure Replace_Type (Id, New_Id : Entity_Id);
15191 -- When the type is an anonymous access type, create a new access type
15192 -- designating the derived type.
15194 procedure Set_Derived_Name;
15195 -- This procedure sets the appropriate Chars name for New_Subp. This
15196 -- is normally just a copy of the parent name. An exception arises for
15197 -- type support subprograms, where the name is changed to reflect the
15198 -- name of the derived type, e.g. if type foo is derived from type bar,
15199 -- then a procedure barDA is derived with a name fooDA.
15201 ---------------------------
15202 -- Is_Private_Overriding --
15203 ---------------------------
15205 function Is_Private_Overriding return Boolean is
15206 Prev : Entity_Id;
15208 begin
15209 -- If the parent is not a dispatching operation there is no
15210 -- need to investigate overridings
15212 if not Is_Dispatching_Operation (Parent_Subp) then
15213 return False;
15214 end if;
15216 -- The visible operation that is overridden is a homonym of the
15217 -- parent subprogram. We scan the homonym chain to find the one
15218 -- whose alias is the subprogram we are deriving.
15220 Prev := Current_Entity (Parent_Subp);
15221 while Present (Prev) loop
15222 if Ekind (Prev) = Ekind (Parent_Subp)
15223 and then Alias (Prev) = Parent_Subp
15224 and then Scope (Parent_Subp) = Scope (Prev)
15225 and then not Is_Hidden (Prev)
15226 then
15227 Visible_Subp := Prev;
15228 return True;
15229 end if;
15231 Prev := Homonym (Prev);
15232 end loop;
15234 return False;
15235 end Is_Private_Overriding;
15237 ------------------
15238 -- Replace_Type --
15239 ------------------
15241 procedure Replace_Type (Id, New_Id : Entity_Id) is
15242 Id_Type : constant Entity_Id := Etype (Id);
15243 Acc_Type : Entity_Id;
15244 Par : constant Node_Id := Parent (Derived_Type);
15246 begin
15247 -- When the type is an anonymous access type, create a new access
15248 -- type designating the derived type. This itype must be elaborated
15249 -- at the point of the derivation, not on subsequent calls that may
15250 -- be out of the proper scope for Gigi, so we insert a reference to
15251 -- it after the derivation.
15253 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15254 declare
15255 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15257 begin
15258 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15259 and then Present (Full_View (Desig_Typ))
15260 and then not Is_Private_Type (Parent_Type)
15261 then
15262 Desig_Typ := Full_View (Desig_Typ);
15263 end if;
15265 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15267 -- Ada 2005 (AI-251): Handle also derivations of abstract
15268 -- interface primitives.
15270 or else (Is_Interface (Desig_Typ)
15271 and then not Is_Class_Wide_Type (Desig_Typ))
15272 then
15273 Acc_Type := New_Copy (Id_Type);
15274 Set_Etype (Acc_Type, Acc_Type);
15275 Set_Scope (Acc_Type, New_Subp);
15277 -- Set size of anonymous access type. If we have an access
15278 -- to an unconstrained array, this is a fat pointer, so it
15279 -- is sizes at twice addtress size.
15281 if Is_Array_Type (Desig_Typ)
15282 and then not Is_Constrained (Desig_Typ)
15283 then
15284 Init_Size (Acc_Type, 2 * System_Address_Size);
15286 -- Other cases use a thin pointer
15288 else
15289 Init_Size (Acc_Type, System_Address_Size);
15290 end if;
15292 -- Set remaining characterstics of anonymous access type
15294 Init_Alignment (Acc_Type);
15295 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15297 Set_Etype (New_Id, Acc_Type);
15298 Set_Scope (New_Id, New_Subp);
15300 -- Create a reference to it
15302 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15304 else
15305 Set_Etype (New_Id, Id_Type);
15306 end if;
15307 end;
15309 -- In Ada2012, a formal may have an incomplete type but the type
15310 -- derivation that inherits the primitive follows the full view.
15312 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15313 or else
15314 (Ekind (Id_Type) = E_Record_Type_With_Private
15315 and then Present (Full_View (Id_Type))
15316 and then
15317 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15318 or else
15319 (Ada_Version >= Ada_2012
15320 and then Ekind (Id_Type) = E_Incomplete_Type
15321 and then Full_View (Id_Type) = Parent_Type)
15322 then
15323 -- Constraint checks on formals are generated during expansion,
15324 -- based on the signature of the original subprogram. The bounds
15325 -- of the derived type are not relevant, and thus we can use
15326 -- the base type for the formals. However, the return type may be
15327 -- used in a context that requires that the proper static bounds
15328 -- be used (a case statement, for example) and for those cases
15329 -- we must use the derived type (first subtype), not its base.
15331 -- If the derived_type_definition has no constraints, we know that
15332 -- the derived type has the same constraints as the first subtype
15333 -- of the parent, and we can also use it rather than its base,
15334 -- which can lead to more efficient code.
15336 if Etype (Id) = Parent_Type then
15337 if Is_Scalar_Type (Parent_Type)
15338 and then
15339 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15340 then
15341 Set_Etype (New_Id, Derived_Type);
15343 elsif Nkind (Par) = N_Full_Type_Declaration
15344 and then
15345 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15346 and then
15347 Is_Entity_Name
15348 (Subtype_Indication (Type_Definition (Par)))
15349 then
15350 Set_Etype (New_Id, Derived_Type);
15352 else
15353 Set_Etype (New_Id, Base_Type (Derived_Type));
15354 end if;
15356 else
15357 Set_Etype (New_Id, Base_Type (Derived_Type));
15358 end if;
15360 else
15361 Set_Etype (New_Id, Etype (Id));
15362 end if;
15363 end Replace_Type;
15365 ----------------------
15366 -- Set_Derived_Name --
15367 ----------------------
15369 procedure Set_Derived_Name is
15370 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15371 begin
15372 if Nm = TSS_Null then
15373 Set_Chars (New_Subp, Chars (Parent_Subp));
15374 else
15375 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15376 end if;
15377 end Set_Derived_Name;
15379 -- Start of processing for Derive_Subprogram
15381 begin
15382 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15383 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15385 -- Check whether the inherited subprogram is a private operation that
15386 -- should be inherited but not yet made visible. Such subprograms can
15387 -- become visible at a later point (e.g., the private part of a public
15388 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15389 -- following predicate is true, then this is not such a private
15390 -- operation and the subprogram simply inherits the name of the parent
15391 -- subprogram. Note the special check for the names of controlled
15392 -- operations, which are currently exempted from being inherited with
15393 -- a hidden name because they must be findable for generation of
15394 -- implicit run-time calls.
15396 if not Is_Hidden (Parent_Subp)
15397 or else Is_Internal (Parent_Subp)
15398 or else Is_Private_Overriding
15399 or else Is_Internal_Name (Chars (Parent_Subp))
15400 or else (Is_Controlled (Parent_Type)
15401 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15402 Name_Finalize,
15403 Name_Initialize))
15404 then
15405 Set_Derived_Name;
15407 -- An inherited dispatching equality will be overridden by an internally
15408 -- generated one, or by an explicit one, so preserve its name and thus
15409 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15410 -- private operation it may become invisible if the full view has
15411 -- progenitors, and the dispatch table will be malformed.
15412 -- We check that the type is limited to handle the anomalous declaration
15413 -- of Limited_Controlled, which is derived from a non-limited type, and
15414 -- which is handled specially elsewhere as well.
15416 elsif Chars (Parent_Subp) = Name_Op_Eq
15417 and then Is_Dispatching_Operation (Parent_Subp)
15418 and then Etype (Parent_Subp) = Standard_Boolean
15419 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15420 and then
15421 Etype (First_Formal (Parent_Subp)) =
15422 Etype (Next_Formal (First_Formal (Parent_Subp)))
15423 then
15424 Set_Derived_Name;
15426 -- If parent is hidden, this can be a regular derivation if the
15427 -- parent is immediately visible in a non-instantiating context,
15428 -- or if we are in the private part of an instance. This test
15429 -- should still be refined ???
15431 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15432 -- operation as a non-visible operation in cases where the parent
15433 -- subprogram might not be visible now, but was visible within the
15434 -- original generic, so it would be wrong to make the inherited
15435 -- subprogram non-visible now. (Not clear if this test is fully
15436 -- correct; are there any cases where we should declare the inherited
15437 -- operation as not visible to avoid it being overridden, e.g., when
15438 -- the parent type is a generic actual with private primitives ???)
15440 -- (they should be treated the same as other private inherited
15441 -- subprograms, but it's not clear how to do this cleanly). ???
15443 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15444 and then Is_Immediately_Visible (Parent_Subp)
15445 and then not In_Instance)
15446 or else In_Instance_Not_Visible
15447 then
15448 Set_Derived_Name;
15450 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15451 -- overrides an interface primitive because interface primitives
15452 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15454 elsif Ada_Version >= Ada_2005
15455 and then Is_Dispatching_Operation (Parent_Subp)
15456 and then Present (Covered_Interface_Op (Parent_Subp))
15457 then
15458 Set_Derived_Name;
15460 -- Otherwise, the type is inheriting a private operation, so enter it
15461 -- with a special name so it can't be overridden.
15463 else
15464 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15465 end if;
15467 Set_Parent (New_Subp, Parent (Derived_Type));
15469 if Present (Actual_Subp) then
15470 Replace_Type (Actual_Subp, New_Subp);
15471 else
15472 Replace_Type (Parent_Subp, New_Subp);
15473 end if;
15475 Conditional_Delay (New_Subp, Parent_Subp);
15477 -- If we are creating a renaming for a primitive operation of an
15478 -- actual of a generic derived type, we must examine the signature
15479 -- of the actual primitive, not that of the generic formal, which for
15480 -- example may be an interface. However the name and initial value
15481 -- of the inherited operation are those of the formal primitive.
15483 Formal := First_Formal (Parent_Subp);
15485 if Present (Actual_Subp) then
15486 Formal_Of_Actual := First_Formal (Actual_Subp);
15487 else
15488 Formal_Of_Actual := Empty;
15489 end if;
15491 while Present (Formal) loop
15492 New_Formal := New_Copy (Formal);
15494 -- Normally we do not go copying parents, but in the case of
15495 -- formals, we need to link up to the declaration (which is the
15496 -- parameter specification), and it is fine to link up to the
15497 -- original formal's parameter specification in this case.
15499 Set_Parent (New_Formal, Parent (Formal));
15500 Append_Entity (New_Formal, New_Subp);
15502 if Present (Formal_Of_Actual) then
15503 Replace_Type (Formal_Of_Actual, New_Formal);
15504 Next_Formal (Formal_Of_Actual);
15505 else
15506 Replace_Type (Formal, New_Formal);
15507 end if;
15509 Next_Formal (Formal);
15510 end loop;
15512 -- If this derivation corresponds to a tagged generic actual, then
15513 -- primitive operations rename those of the actual. Otherwise the
15514 -- primitive operations rename those of the parent type, If the parent
15515 -- renames an intrinsic operator, so does the new subprogram. We except
15516 -- concatenation, which is always properly typed, and does not get
15517 -- expanded as other intrinsic operations.
15519 if No (Actual_Subp) then
15520 if Is_Intrinsic_Subprogram (Parent_Subp) then
15521 Set_Is_Intrinsic_Subprogram (New_Subp);
15523 if Present (Alias (Parent_Subp))
15524 and then Chars (Parent_Subp) /= Name_Op_Concat
15525 then
15526 Set_Alias (New_Subp, Alias (Parent_Subp));
15527 else
15528 Set_Alias (New_Subp, Parent_Subp);
15529 end if;
15531 else
15532 Set_Alias (New_Subp, Parent_Subp);
15533 end if;
15535 else
15536 Set_Alias (New_Subp, Actual_Subp);
15537 end if;
15539 -- Derived subprograms of a tagged type must inherit the convention
15540 -- of the parent subprogram (a requirement of AI-117). Derived
15541 -- subprograms of untagged types simply get convention Ada by default.
15543 -- If the derived type is a tagged generic formal type with unknown
15544 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15546 -- However, if the type is derived from a generic formal, the further
15547 -- inherited subprogram has the convention of the non-generic ancestor.
15548 -- Otherwise there would be no way to override the operation.
15549 -- (This is subject to forthcoming ARG discussions).
15551 if Is_Tagged_Type (Derived_Type) then
15552 if Is_Generic_Type (Derived_Type)
15553 and then Has_Unknown_Discriminants (Derived_Type)
15554 then
15555 Set_Convention (New_Subp, Convention_Intrinsic);
15557 else
15558 if Is_Generic_Type (Parent_Type)
15559 and then Has_Unknown_Discriminants (Parent_Type)
15560 then
15561 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15562 else
15563 Set_Convention (New_Subp, Convention (Parent_Subp));
15564 end if;
15565 end if;
15566 end if;
15568 -- Predefined controlled operations retain their name even if the parent
15569 -- is hidden (see above), but they are not primitive operations if the
15570 -- ancestor is not visible, for example if the parent is a private
15571 -- extension completed with a controlled extension. Note that a full
15572 -- type that is controlled can break privacy: the flag Is_Controlled is
15573 -- set on both views of the type.
15575 if Is_Controlled (Parent_Type)
15576 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15577 Name_Adjust,
15578 Name_Finalize)
15579 and then Is_Hidden (Parent_Subp)
15580 and then not Is_Visibly_Controlled (Parent_Type)
15581 then
15582 Set_Is_Hidden (New_Subp);
15583 end if;
15585 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15586 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15588 if Ekind (Parent_Subp) = E_Procedure then
15589 Set_Is_Valued_Procedure
15590 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15591 else
15592 Set_Has_Controlling_Result
15593 (New_Subp, Has_Controlling_Result (Parent_Subp));
15594 end if;
15596 -- No_Return must be inherited properly. If this is overridden in the
15597 -- case of a dispatching operation, then a check is made in Sem_Disp
15598 -- that the overriding operation is also No_Return (no such check is
15599 -- required for the case of non-dispatching operation.
15601 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15603 -- A derived function with a controlling result is abstract. If the
15604 -- Derived_Type is a nonabstract formal generic derived type, then
15605 -- inherited operations are not abstract: the required check is done at
15606 -- instantiation time. If the derivation is for a generic actual, the
15607 -- function is not abstract unless the actual is.
15609 if Is_Generic_Type (Derived_Type)
15610 and then not Is_Abstract_Type (Derived_Type)
15611 then
15612 null;
15614 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15615 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15617 -- A subprogram subject to pragma Extensions_Visible with value False
15618 -- requires overriding if the subprogram has at least one controlling
15619 -- OUT parameter (SPARK RM 6.1.7(6)).
15621 elsif Ada_Version >= Ada_2005
15622 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15623 or else (Is_Tagged_Type (Derived_Type)
15624 and then Etype (New_Subp) = Derived_Type
15625 and then not Is_Null_Extension (Derived_Type))
15626 or else (Is_Tagged_Type (Derived_Type)
15627 and then Ekind (Etype (New_Subp)) =
15628 E_Anonymous_Access_Type
15629 and then Designated_Type (Etype (New_Subp)) =
15630 Derived_Type
15631 and then not Is_Null_Extension (Derived_Type))
15632 or else (Comes_From_Source (Alias (New_Subp))
15633 and then Is_EVF_Procedure (Alias (New_Subp))))
15634 and then No (Actual_Subp)
15635 then
15636 if not Is_Tagged_Type (Derived_Type)
15637 or else Is_Abstract_Type (Derived_Type)
15638 or else Is_Abstract_Subprogram (Alias (New_Subp))
15639 then
15640 Set_Is_Abstract_Subprogram (New_Subp);
15641 else
15642 Set_Requires_Overriding (New_Subp);
15643 end if;
15645 elsif Ada_Version < Ada_2005
15646 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15647 or else (Is_Tagged_Type (Derived_Type)
15648 and then Etype (New_Subp) = Derived_Type
15649 and then No (Actual_Subp)))
15650 then
15651 Set_Is_Abstract_Subprogram (New_Subp);
15653 -- AI05-0097 : an inherited operation that dispatches on result is
15654 -- abstract if the derived type is abstract, even if the parent type
15655 -- is concrete and the derived type is a null extension.
15657 elsif Has_Controlling_Result (Alias (New_Subp))
15658 and then Is_Abstract_Type (Etype (New_Subp))
15659 then
15660 Set_Is_Abstract_Subprogram (New_Subp);
15662 -- Finally, if the parent type is abstract we must verify that all
15663 -- inherited operations are either non-abstract or overridden, or that
15664 -- the derived type itself is abstract (this check is performed at the
15665 -- end of a package declaration, in Check_Abstract_Overriding). A
15666 -- private overriding in the parent type will not be visible in the
15667 -- derivation if we are not in an inner package or in a child unit of
15668 -- the parent type, in which case the abstractness of the inherited
15669 -- operation is carried to the new subprogram.
15671 elsif Is_Abstract_Type (Parent_Type)
15672 and then not In_Open_Scopes (Scope (Parent_Type))
15673 and then Is_Private_Overriding
15674 and then Is_Abstract_Subprogram (Visible_Subp)
15675 then
15676 if No (Actual_Subp) then
15677 Set_Alias (New_Subp, Visible_Subp);
15678 Set_Is_Abstract_Subprogram (New_Subp, True);
15680 else
15681 -- If this is a derivation for an instance of a formal derived
15682 -- type, abstractness comes from the primitive operation of the
15683 -- actual, not from the operation inherited from the ancestor.
15685 Set_Is_Abstract_Subprogram
15686 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15687 end if;
15688 end if;
15690 New_Overloaded_Entity (New_Subp, Derived_Type);
15692 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15693 -- preconditions and the derived type is abstract, the derived operation
15694 -- is abstract as well if parent subprogram is not abstract or null.
15696 if Is_Abstract_Type (Derived_Type)
15697 and then Has_Non_Trivial_Precondition (Parent_Subp)
15698 and then Present (Interfaces (Derived_Type))
15699 then
15701 -- Add useful attributes of subprogram before the freeze point,
15702 -- in case freezing is delayed or there are previous errors.
15704 Set_Is_Dispatching_Operation (New_Subp);
15706 declare
15707 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15709 begin
15710 if Present (Iface_Prim)
15711 and then Has_Non_Trivial_Precondition (Iface_Prim)
15712 then
15713 Set_Is_Abstract_Subprogram (New_Subp);
15714 end if;
15715 end;
15716 end if;
15718 -- Check for case of a derived subprogram for the instantiation of a
15719 -- formal derived tagged type, if so mark the subprogram as dispatching
15720 -- and inherit the dispatching attributes of the actual subprogram. The
15721 -- derived subprogram is effectively renaming of the actual subprogram,
15722 -- so it needs to have the same attributes as the actual.
15724 if Present (Actual_Subp)
15725 and then Is_Dispatching_Operation (Actual_Subp)
15726 then
15727 Set_Is_Dispatching_Operation (New_Subp);
15729 if Present (DTC_Entity (Actual_Subp)) then
15730 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15731 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15732 end if;
15733 end if;
15735 -- Indicate that a derived subprogram does not require a body and that
15736 -- it does not require processing of default expressions.
15738 Set_Has_Completion (New_Subp);
15739 Set_Default_Expressions_Processed (New_Subp);
15741 if Ekind (New_Subp) = E_Function then
15742 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15743 end if;
15744 end Derive_Subprogram;
15746 ------------------------
15747 -- Derive_Subprograms --
15748 ------------------------
15750 procedure Derive_Subprograms
15751 (Parent_Type : Entity_Id;
15752 Derived_Type : Entity_Id;
15753 Generic_Actual : Entity_Id := Empty)
15755 Op_List : constant Elist_Id :=
15756 Collect_Primitive_Operations (Parent_Type);
15758 function Check_Derived_Type return Boolean;
15759 -- Check that all the entities derived from Parent_Type are found in
15760 -- the list of primitives of Derived_Type exactly in the same order.
15762 procedure Derive_Interface_Subprogram
15763 (New_Subp : out Entity_Id;
15764 Subp : Entity_Id;
15765 Actual_Subp : Entity_Id);
15766 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15767 -- (which is an interface primitive). If Generic_Actual is present then
15768 -- Actual_Subp is the actual subprogram corresponding with the generic
15769 -- subprogram Subp.
15771 ------------------------
15772 -- Check_Derived_Type --
15773 ------------------------
15775 function Check_Derived_Type return Boolean is
15776 E : Entity_Id;
15777 Elmt : Elmt_Id;
15778 List : Elist_Id;
15779 New_Subp : Entity_Id;
15780 Op_Elmt : Elmt_Id;
15781 Subp : Entity_Id;
15783 begin
15784 -- Traverse list of entities in the current scope searching for
15785 -- an incomplete type whose full-view is derived type.
15787 E := First_Entity (Scope (Derived_Type));
15788 while Present (E) and then E /= Derived_Type loop
15789 if Ekind (E) = E_Incomplete_Type
15790 and then Present (Full_View (E))
15791 and then Full_View (E) = Derived_Type
15792 then
15793 -- Disable this test if Derived_Type completes an incomplete
15794 -- type because in such case more primitives can be added
15795 -- later to the list of primitives of Derived_Type by routine
15796 -- Process_Incomplete_Dependents
15798 return True;
15799 end if;
15801 E := Next_Entity (E);
15802 end loop;
15804 List := Collect_Primitive_Operations (Derived_Type);
15805 Elmt := First_Elmt (List);
15807 Op_Elmt := First_Elmt (Op_List);
15808 while Present (Op_Elmt) loop
15809 Subp := Node (Op_Elmt);
15810 New_Subp := Node (Elmt);
15812 -- At this early stage Derived_Type has no entities with attribute
15813 -- Interface_Alias. In addition, such primitives are always
15814 -- located at the end of the list of primitives of Parent_Type.
15815 -- Therefore, if found we can safely stop processing pending
15816 -- entities.
15818 exit when Present (Interface_Alias (Subp));
15820 -- Handle hidden entities
15822 if not Is_Predefined_Dispatching_Operation (Subp)
15823 and then Is_Hidden (Subp)
15824 then
15825 if Present (New_Subp)
15826 and then Primitive_Names_Match (Subp, New_Subp)
15827 then
15828 Next_Elmt (Elmt);
15829 end if;
15831 else
15832 if not Present (New_Subp)
15833 or else Ekind (Subp) /= Ekind (New_Subp)
15834 or else not Primitive_Names_Match (Subp, New_Subp)
15835 then
15836 return False;
15837 end if;
15839 Next_Elmt (Elmt);
15840 end if;
15842 Next_Elmt (Op_Elmt);
15843 end loop;
15845 return True;
15846 end Check_Derived_Type;
15848 ---------------------------------
15849 -- Derive_Interface_Subprogram --
15850 ---------------------------------
15852 procedure Derive_Interface_Subprogram
15853 (New_Subp : out Entity_Id;
15854 Subp : Entity_Id;
15855 Actual_Subp : Entity_Id)
15857 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15858 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15860 begin
15861 pragma Assert (Is_Interface (Iface_Type));
15863 Derive_Subprogram
15864 (New_Subp => New_Subp,
15865 Parent_Subp => Iface_Subp,
15866 Derived_Type => Derived_Type,
15867 Parent_Type => Iface_Type,
15868 Actual_Subp => Actual_Subp);
15870 -- Given that this new interface entity corresponds with a primitive
15871 -- of the parent that was not overridden we must leave it associated
15872 -- with its parent primitive to ensure that it will share the same
15873 -- dispatch table slot when overridden. We must set the Alias to Subp
15874 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15875 -- (in case we inherited Subp from Iface_Type via a nonabstract
15876 -- generic formal type).
15878 if No (Actual_Subp) then
15879 Set_Alias (New_Subp, Subp);
15881 declare
15882 T : Entity_Id := Find_Dispatching_Type (Subp);
15883 begin
15884 while Etype (T) /= T loop
15885 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15886 Set_Is_Abstract_Subprogram (New_Subp, False);
15887 exit;
15888 end if;
15890 T := Etype (T);
15891 end loop;
15892 end;
15894 -- For instantiations this is not needed since the previous call to
15895 -- Derive_Subprogram leaves the entity well decorated.
15897 else
15898 pragma Assert (Alias (New_Subp) = Actual_Subp);
15899 null;
15900 end if;
15901 end Derive_Interface_Subprogram;
15903 -- Local variables
15905 Alias_Subp : Entity_Id;
15906 Act_List : Elist_Id;
15907 Act_Elmt : Elmt_Id;
15908 Act_Subp : Entity_Id := Empty;
15909 Elmt : Elmt_Id;
15910 Need_Search : Boolean := False;
15911 New_Subp : Entity_Id := Empty;
15912 Parent_Base : Entity_Id;
15913 Subp : Entity_Id;
15915 -- Start of processing for Derive_Subprograms
15917 begin
15918 if Ekind (Parent_Type) = E_Record_Type_With_Private
15919 and then Has_Discriminants (Parent_Type)
15920 and then Present (Full_View (Parent_Type))
15921 then
15922 Parent_Base := Full_View (Parent_Type);
15923 else
15924 Parent_Base := Parent_Type;
15925 end if;
15927 if Present (Generic_Actual) then
15928 Act_List := Collect_Primitive_Operations (Generic_Actual);
15929 Act_Elmt := First_Elmt (Act_List);
15930 else
15931 Act_List := No_Elist;
15932 Act_Elmt := No_Elmt;
15933 end if;
15935 -- Derive primitives inherited from the parent. Note that if the generic
15936 -- actual is present, this is not really a type derivation, it is a
15937 -- completion within an instance.
15939 -- Case 1: Derived_Type does not implement interfaces
15941 if not Is_Tagged_Type (Derived_Type)
15942 or else (not Has_Interfaces (Derived_Type)
15943 and then not (Present (Generic_Actual)
15944 and then Has_Interfaces (Generic_Actual)))
15945 then
15946 Elmt := First_Elmt (Op_List);
15947 while Present (Elmt) loop
15948 Subp := Node (Elmt);
15950 -- Literals are derived earlier in the process of building the
15951 -- derived type, and are skipped here.
15953 if Ekind (Subp) = E_Enumeration_Literal then
15954 null;
15956 -- The actual is a direct descendant and the common primitive
15957 -- operations appear in the same order.
15959 -- If the generic parent type is present, the derived type is an
15960 -- instance of a formal derived type, and within the instance its
15961 -- operations are those of the actual. We derive from the formal
15962 -- type but make the inherited operations aliases of the
15963 -- corresponding operations of the actual.
15965 else
15966 pragma Assert (No (Node (Act_Elmt))
15967 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15968 and then
15969 Type_Conformant
15970 (Subp, Node (Act_Elmt),
15971 Skip_Controlling_Formals => True)));
15973 Derive_Subprogram
15974 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15976 if Present (Act_Elmt) then
15977 Next_Elmt (Act_Elmt);
15978 end if;
15979 end if;
15981 Next_Elmt (Elmt);
15982 end loop;
15984 -- Case 2: Derived_Type implements interfaces
15986 else
15987 -- If the parent type has no predefined primitives we remove
15988 -- predefined primitives from the list of primitives of generic
15989 -- actual to simplify the complexity of this algorithm.
15991 if Present (Generic_Actual) then
15992 declare
15993 Has_Predefined_Primitives : Boolean := False;
15995 begin
15996 -- Check if the parent type has predefined primitives
15998 Elmt := First_Elmt (Op_List);
15999 while Present (Elmt) loop
16000 Subp := Node (Elmt);
16002 if Is_Predefined_Dispatching_Operation (Subp)
16003 and then not Comes_From_Source (Ultimate_Alias (Subp))
16004 then
16005 Has_Predefined_Primitives := True;
16006 exit;
16007 end if;
16009 Next_Elmt (Elmt);
16010 end loop;
16012 -- Remove predefined primitives of Generic_Actual. We must use
16013 -- an auxiliary list because in case of tagged types the value
16014 -- returned by Collect_Primitive_Operations is the value stored
16015 -- in its Primitive_Operations attribute (and we don't want to
16016 -- modify its current contents).
16018 if not Has_Predefined_Primitives then
16019 declare
16020 Aux_List : constant Elist_Id := New_Elmt_List;
16022 begin
16023 Elmt := First_Elmt (Act_List);
16024 while Present (Elmt) loop
16025 Subp := Node (Elmt);
16027 if not Is_Predefined_Dispatching_Operation (Subp)
16028 or else Comes_From_Source (Subp)
16029 then
16030 Append_Elmt (Subp, Aux_List);
16031 end if;
16033 Next_Elmt (Elmt);
16034 end loop;
16036 Act_List := Aux_List;
16037 end;
16038 end if;
16040 Act_Elmt := First_Elmt (Act_List);
16041 Act_Subp := Node (Act_Elmt);
16042 end;
16043 end if;
16045 -- Stage 1: If the generic actual is not present we derive the
16046 -- primitives inherited from the parent type. If the generic parent
16047 -- type is present, the derived type is an instance of a formal
16048 -- derived type, and within the instance its operations are those of
16049 -- the actual. We derive from the formal type but make the inherited
16050 -- operations aliases of the corresponding operations of the actual.
16052 Elmt := First_Elmt (Op_List);
16053 while Present (Elmt) loop
16054 Subp := Node (Elmt);
16055 Alias_Subp := Ultimate_Alias (Subp);
16057 -- Do not derive internal entities of the parent that link
16058 -- interface primitives with their covering primitive. These
16059 -- entities will be added to this type when frozen.
16061 if Present (Interface_Alias (Subp)) then
16062 goto Continue;
16063 end if;
16065 -- If the generic actual is present find the corresponding
16066 -- operation in the generic actual. If the parent type is a
16067 -- direct ancestor of the derived type then, even if it is an
16068 -- interface, the operations are inherited from the primary
16069 -- dispatch table and are in the proper order. If we detect here
16070 -- that primitives are not in the same order we traverse the list
16071 -- of primitive operations of the actual to find the one that
16072 -- implements the interface primitive.
16074 if Need_Search
16075 or else
16076 (Present (Generic_Actual)
16077 and then Present (Act_Subp)
16078 and then not
16079 (Primitive_Names_Match (Subp, Act_Subp)
16080 and then
16081 Type_Conformant (Subp, Act_Subp,
16082 Skip_Controlling_Formals => True)))
16083 then
16084 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16085 Use_Full_View => True));
16087 -- Remember that we need searching for all pending primitives
16089 Need_Search := True;
16091 -- Handle entities associated with interface primitives
16093 if Present (Alias_Subp)
16094 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16095 and then not Is_Predefined_Dispatching_Operation (Subp)
16096 then
16097 -- Search for the primitive in the homonym chain
16099 Act_Subp :=
16100 Find_Primitive_Covering_Interface
16101 (Tagged_Type => Generic_Actual,
16102 Iface_Prim => Alias_Subp);
16104 -- Previous search may not locate primitives covering
16105 -- interfaces defined in generics units or instantiations.
16106 -- (it fails if the covering primitive has formals whose
16107 -- type is also defined in generics or instantiations).
16108 -- In such case we search in the list of primitives of the
16109 -- generic actual for the internal entity that links the
16110 -- interface primitive and the covering primitive.
16112 if No (Act_Subp)
16113 and then Is_Generic_Type (Parent_Type)
16114 then
16115 -- This code has been designed to handle only generic
16116 -- formals that implement interfaces that are defined
16117 -- in a generic unit or instantiation. If this code is
16118 -- needed for other cases we must review it because
16119 -- (given that it relies on Original_Location to locate
16120 -- the primitive of Generic_Actual that covers the
16121 -- interface) it could leave linked through attribute
16122 -- Alias entities of unrelated instantiations).
16124 pragma Assert
16125 (Is_Generic_Unit
16126 (Scope (Find_Dispatching_Type (Alias_Subp)))
16127 or else
16128 Instantiation_Depth
16129 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16131 declare
16132 Iface_Prim_Loc : constant Source_Ptr :=
16133 Original_Location (Sloc (Alias_Subp));
16135 Elmt : Elmt_Id;
16136 Prim : Entity_Id;
16138 begin
16139 Elmt :=
16140 First_Elmt (Primitive_Operations (Generic_Actual));
16142 Search : while Present (Elmt) loop
16143 Prim := Node (Elmt);
16145 if Present (Interface_Alias (Prim))
16146 and then Original_Location
16147 (Sloc (Interface_Alias (Prim))) =
16148 Iface_Prim_Loc
16149 then
16150 Act_Subp := Alias (Prim);
16151 exit Search;
16152 end if;
16154 Next_Elmt (Elmt);
16155 end loop Search;
16156 end;
16157 end if;
16159 pragma Assert (Present (Act_Subp)
16160 or else Is_Abstract_Type (Generic_Actual)
16161 or else Serious_Errors_Detected > 0);
16163 -- Handle predefined primitives plus the rest of user-defined
16164 -- primitives
16166 else
16167 Act_Elmt := First_Elmt (Act_List);
16168 while Present (Act_Elmt) loop
16169 Act_Subp := Node (Act_Elmt);
16171 exit when Primitive_Names_Match (Subp, Act_Subp)
16172 and then Type_Conformant
16173 (Subp, Act_Subp,
16174 Skip_Controlling_Formals => True)
16175 and then No (Interface_Alias (Act_Subp));
16177 Next_Elmt (Act_Elmt);
16178 end loop;
16180 if No (Act_Elmt) then
16181 Act_Subp := Empty;
16182 end if;
16183 end if;
16184 end if;
16186 -- Case 1: If the parent is a limited interface then it has the
16187 -- predefined primitives of synchronized interfaces. However, the
16188 -- actual type may be a non-limited type and hence it does not
16189 -- have such primitives.
16191 if Present (Generic_Actual)
16192 and then not Present (Act_Subp)
16193 and then Is_Limited_Interface (Parent_Base)
16194 and then Is_Predefined_Interface_Primitive (Subp)
16195 then
16196 null;
16198 -- Case 2: Inherit entities associated with interfaces that were
16199 -- not covered by the parent type. We exclude here null interface
16200 -- primitives because they do not need special management.
16202 -- We also exclude interface operations that are renamings. If the
16203 -- subprogram is an explicit renaming of an interface primitive,
16204 -- it is a regular primitive operation, and the presence of its
16205 -- alias is not relevant: it has to be derived like any other
16206 -- primitive.
16208 elsif Present (Alias (Subp))
16209 and then Nkind (Unit_Declaration_Node (Subp)) /=
16210 N_Subprogram_Renaming_Declaration
16211 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16212 and then not
16213 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16214 and then Null_Present (Parent (Alias_Subp)))
16215 then
16216 -- If this is an abstract private type then we transfer the
16217 -- derivation of the interface primitive from the partial view
16218 -- to the full view. This is safe because all the interfaces
16219 -- must be visible in the partial view. Done to avoid adding
16220 -- a new interface derivation to the private part of the
16221 -- enclosing package; otherwise this new derivation would be
16222 -- decorated as hidden when the analysis of the enclosing
16223 -- package completes.
16225 if Is_Abstract_Type (Derived_Type)
16226 and then In_Private_Part (Current_Scope)
16227 and then Has_Private_Declaration (Derived_Type)
16228 then
16229 declare
16230 Partial_View : Entity_Id;
16231 Elmt : Elmt_Id;
16232 Ent : Entity_Id;
16234 begin
16235 Partial_View := First_Entity (Current_Scope);
16236 loop
16237 exit when No (Partial_View)
16238 or else (Has_Private_Declaration (Partial_View)
16239 and then
16240 Full_View (Partial_View) = Derived_Type);
16242 Next_Entity (Partial_View);
16243 end loop;
16245 -- If the partial view was not found then the source code
16246 -- has errors and the derivation is not needed.
16248 if Present (Partial_View) then
16249 Elmt :=
16250 First_Elmt (Primitive_Operations (Partial_View));
16251 while Present (Elmt) loop
16252 Ent := Node (Elmt);
16254 if Present (Alias (Ent))
16255 and then Ultimate_Alias (Ent) = Alias (Subp)
16256 then
16257 Append_Elmt
16258 (Ent, Primitive_Operations (Derived_Type));
16259 exit;
16260 end if;
16262 Next_Elmt (Elmt);
16263 end loop;
16265 -- If the interface primitive was not found in the
16266 -- partial view then this interface primitive was
16267 -- overridden. We add a derivation to activate in
16268 -- Derive_Progenitor_Subprograms the machinery to
16269 -- search for it.
16271 if No (Elmt) then
16272 Derive_Interface_Subprogram
16273 (New_Subp => New_Subp,
16274 Subp => Subp,
16275 Actual_Subp => Act_Subp);
16276 end if;
16277 end if;
16278 end;
16279 else
16280 Derive_Interface_Subprogram
16281 (New_Subp => New_Subp,
16282 Subp => Subp,
16283 Actual_Subp => Act_Subp);
16284 end if;
16286 -- Case 3: Common derivation
16288 else
16289 Derive_Subprogram
16290 (New_Subp => New_Subp,
16291 Parent_Subp => Subp,
16292 Derived_Type => Derived_Type,
16293 Parent_Type => Parent_Base,
16294 Actual_Subp => Act_Subp);
16295 end if;
16297 -- No need to update Act_Elm if we must search for the
16298 -- corresponding operation in the generic actual
16300 if not Need_Search
16301 and then Present (Act_Elmt)
16302 then
16303 Next_Elmt (Act_Elmt);
16304 Act_Subp := Node (Act_Elmt);
16305 end if;
16307 <<Continue>>
16308 Next_Elmt (Elmt);
16309 end loop;
16311 -- Inherit additional operations from progenitors. If the derived
16312 -- type is a generic actual, there are not new primitive operations
16313 -- for the type because it has those of the actual, and therefore
16314 -- nothing needs to be done. The renamings generated above are not
16315 -- primitive operations, and their purpose is simply to make the
16316 -- proper operations visible within an instantiation.
16318 if No (Generic_Actual) then
16319 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16320 end if;
16321 end if;
16323 -- Final check: Direct descendants must have their primitives in the
16324 -- same order. We exclude from this test untagged types and instances
16325 -- of formal derived types. We skip this test if we have already
16326 -- reported serious errors in the sources.
16328 pragma Assert (not Is_Tagged_Type (Derived_Type)
16329 or else Present (Generic_Actual)
16330 or else Serious_Errors_Detected > 0
16331 or else Check_Derived_Type);
16332 end Derive_Subprograms;
16334 --------------------------------
16335 -- Derived_Standard_Character --
16336 --------------------------------
16338 procedure Derived_Standard_Character
16339 (N : Node_Id;
16340 Parent_Type : Entity_Id;
16341 Derived_Type : Entity_Id)
16343 Loc : constant Source_Ptr := Sloc (N);
16344 Def : constant Node_Id := Type_Definition (N);
16345 Indic : constant Node_Id := Subtype_Indication (Def);
16346 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16347 Implicit_Base : constant Entity_Id :=
16348 Create_Itype
16349 (E_Enumeration_Type, N, Derived_Type, 'B');
16351 Lo : Node_Id;
16352 Hi : Node_Id;
16354 begin
16355 Discard_Node (Process_Subtype (Indic, N));
16357 Set_Etype (Implicit_Base, Parent_Base);
16358 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16359 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16361 Set_Is_Character_Type (Implicit_Base, True);
16362 Set_Has_Delayed_Freeze (Implicit_Base);
16364 -- The bounds of the implicit base are the bounds of the parent base.
16365 -- Note that their type is the parent base.
16367 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16368 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16370 Set_Scalar_Range (Implicit_Base,
16371 Make_Range (Loc,
16372 Low_Bound => Lo,
16373 High_Bound => Hi));
16375 Conditional_Delay (Derived_Type, Parent_Type);
16377 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16378 Set_Etype (Derived_Type, Implicit_Base);
16379 Set_Size_Info (Derived_Type, Parent_Type);
16381 if Unknown_RM_Size (Derived_Type) then
16382 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16383 end if;
16385 Set_Is_Character_Type (Derived_Type, True);
16387 if Nkind (Indic) /= N_Subtype_Indication then
16389 -- If no explicit constraint, the bounds are those
16390 -- of the parent type.
16392 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16393 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16394 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16395 end if;
16397 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16399 -- Because the implicit base is used in the conversion of the bounds, we
16400 -- have to freeze it now. This is similar to what is done for numeric
16401 -- types, and it equally suspicious, but otherwise a non-static bound
16402 -- will have a reference to an unfrozen type, which is rejected by Gigi
16403 -- (???). This requires specific care for definition of stream
16404 -- attributes. For details, see comments at the end of
16405 -- Build_Derived_Numeric_Type.
16407 Freeze_Before (N, Implicit_Base);
16408 end Derived_Standard_Character;
16410 ------------------------------
16411 -- Derived_Type_Declaration --
16412 ------------------------------
16414 procedure Derived_Type_Declaration
16415 (T : Entity_Id;
16416 N : Node_Id;
16417 Is_Completion : Boolean)
16419 Parent_Type : Entity_Id;
16421 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16422 -- Check whether the parent type is a generic formal, or derives
16423 -- directly or indirectly from one.
16425 ------------------------
16426 -- Comes_From_Generic --
16427 ------------------------
16429 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16430 begin
16431 if Is_Generic_Type (Typ) then
16432 return True;
16434 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16435 return True;
16437 elsif Is_Private_Type (Typ)
16438 and then Present (Full_View (Typ))
16439 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16440 then
16441 return True;
16443 elsif Is_Generic_Actual_Type (Typ) then
16444 return True;
16446 else
16447 return False;
16448 end if;
16449 end Comes_From_Generic;
16451 -- Local variables
16453 Def : constant Node_Id := Type_Definition (N);
16454 Iface_Def : Node_Id;
16455 Indic : constant Node_Id := Subtype_Indication (Def);
16456 Extension : constant Node_Id := Record_Extension_Part (Def);
16457 Parent_Node : Node_Id;
16458 Taggd : Boolean;
16460 -- Start of processing for Derived_Type_Declaration
16462 begin
16463 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16465 if SPARK_Mode = On
16466 and then Is_Tagged_Type (Parent_Type)
16467 then
16468 declare
16469 Partial_View : constant Entity_Id :=
16470 Incomplete_Or_Partial_View (Parent_Type);
16472 begin
16473 -- If the partial view was not found then the parent type is not
16474 -- a private type. Otherwise check if the partial view is a tagged
16475 -- private type.
16477 if Present (Partial_View)
16478 and then Is_Private_Type (Partial_View)
16479 and then not Is_Tagged_Type (Partial_View)
16480 then
16481 Error_Msg_NE
16482 ("cannot derive from & declared as untagged private "
16483 & "(SPARK RM 3.4(1))", N, Partial_View);
16484 end if;
16485 end;
16486 end if;
16488 -- Ada 2005 (AI-251): In case of interface derivation check that the
16489 -- parent is also an interface.
16491 if Interface_Present (Def) then
16492 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16494 if not Is_Interface (Parent_Type) then
16495 Diagnose_Interface (Indic, Parent_Type);
16497 else
16498 Parent_Node := Parent (Base_Type (Parent_Type));
16499 Iface_Def := Type_Definition (Parent_Node);
16501 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16502 -- other limited interfaces.
16504 if Limited_Present (Def) then
16505 if Limited_Present (Iface_Def) then
16506 null;
16508 elsif Protected_Present (Iface_Def) then
16509 Error_Msg_NE
16510 ("descendant of & must be declared as a protected "
16511 & "interface", N, Parent_Type);
16513 elsif Synchronized_Present (Iface_Def) then
16514 Error_Msg_NE
16515 ("descendant of & must be declared as a synchronized "
16516 & "interface", N, Parent_Type);
16518 elsif Task_Present (Iface_Def) then
16519 Error_Msg_NE
16520 ("descendant of & must be declared as a task interface",
16521 N, Parent_Type);
16523 else
16524 Error_Msg_N
16525 ("(Ada 2005) limited interface cannot inherit from "
16526 & "non-limited interface", Indic);
16527 end if;
16529 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16530 -- from non-limited or limited interfaces.
16532 elsif not Protected_Present (Def)
16533 and then not Synchronized_Present (Def)
16534 and then not Task_Present (Def)
16535 then
16536 if Limited_Present (Iface_Def) then
16537 null;
16539 elsif Protected_Present (Iface_Def) then
16540 Error_Msg_NE
16541 ("descendant of & must be declared as a protected "
16542 & "interface", N, Parent_Type);
16544 elsif Synchronized_Present (Iface_Def) then
16545 Error_Msg_NE
16546 ("descendant of & must be declared as a synchronized "
16547 & "interface", N, Parent_Type);
16549 elsif Task_Present (Iface_Def) then
16550 Error_Msg_NE
16551 ("descendant of & must be declared as a task interface",
16552 N, Parent_Type);
16553 else
16554 null;
16555 end if;
16556 end if;
16557 end if;
16558 end if;
16560 if Is_Tagged_Type (Parent_Type)
16561 and then Is_Concurrent_Type (Parent_Type)
16562 and then not Is_Interface (Parent_Type)
16563 then
16564 Error_Msg_N
16565 ("parent type of a record extension cannot be a synchronized "
16566 & "tagged type (RM 3.9.1 (3/1))", N);
16567 Set_Etype (T, Any_Type);
16568 return;
16569 end if;
16571 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16572 -- interfaces
16574 if Is_Tagged_Type (Parent_Type)
16575 and then Is_Non_Empty_List (Interface_List (Def))
16576 then
16577 declare
16578 Intf : Node_Id;
16579 T : Entity_Id;
16581 begin
16582 Intf := First (Interface_List (Def));
16583 while Present (Intf) loop
16584 T := Find_Type_Of_Subtype_Indic (Intf);
16586 if not Is_Interface (T) then
16587 Diagnose_Interface (Intf, T);
16589 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16590 -- a limited type from having a nonlimited progenitor.
16592 elsif (Limited_Present (Def)
16593 or else (not Is_Interface (Parent_Type)
16594 and then Is_Limited_Type (Parent_Type)))
16595 and then not Is_Limited_Interface (T)
16596 then
16597 Error_Msg_NE
16598 ("progenitor interface& of limited type must be limited",
16599 N, T);
16600 end if;
16602 Next (Intf);
16603 end loop;
16604 end;
16605 end if;
16607 if Parent_Type = Any_Type
16608 or else Etype (Parent_Type) = Any_Type
16609 or else (Is_Class_Wide_Type (Parent_Type)
16610 and then Etype (Parent_Type) = T)
16611 then
16612 -- If Parent_Type is undefined or illegal, make new type into a
16613 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16614 -- errors. If this is a self-definition, emit error now.
16616 if T = Parent_Type or else T = Etype (Parent_Type) then
16617 Error_Msg_N ("type cannot be used in its own definition", Indic);
16618 end if;
16620 Set_Ekind (T, Ekind (Parent_Type));
16621 Set_Etype (T, Any_Type);
16622 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16624 if Is_Tagged_Type (T)
16625 and then Is_Record_Type (T)
16626 then
16627 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16628 end if;
16630 return;
16631 end if;
16633 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16634 -- an interface is special because the list of interfaces in the full
16635 -- view can be given in any order. For example:
16637 -- type A is interface;
16638 -- type B is interface and A;
16639 -- type D is new B with private;
16640 -- private
16641 -- type D is new A and B with null record; -- 1 --
16643 -- In this case we perform the following transformation of -1-:
16645 -- type D is new B and A with null record;
16647 -- If the parent of the full-view covers the parent of the partial-view
16648 -- we have two possible cases:
16650 -- 1) They have the same parent
16651 -- 2) The parent of the full-view implements some further interfaces
16653 -- In both cases we do not need to perform the transformation. In the
16654 -- first case the source program is correct and the transformation is
16655 -- not needed; in the second case the source program does not fulfill
16656 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16657 -- later.
16659 -- This transformation not only simplifies the rest of the analysis of
16660 -- this type declaration but also simplifies the correct generation of
16661 -- the object layout to the expander.
16663 if In_Private_Part (Current_Scope)
16664 and then Is_Interface (Parent_Type)
16665 then
16666 declare
16667 Iface : Node_Id;
16668 Partial_View : Entity_Id;
16669 Partial_View_Parent : Entity_Id;
16670 New_Iface : Node_Id;
16672 begin
16673 -- Look for the associated private type declaration
16675 Partial_View := Incomplete_Or_Partial_View (T);
16677 -- If the partial view was not found then the source code has
16678 -- errors and the transformation is not needed.
16680 if Present (Partial_View) then
16681 Partial_View_Parent := Etype (Partial_View);
16683 -- If the parent of the full-view covers the parent of the
16684 -- partial-view we have nothing else to do.
16686 if Interface_Present_In_Ancestor
16687 (Parent_Type, Partial_View_Parent)
16688 then
16689 null;
16691 -- Traverse the list of interfaces of the full-view to look
16692 -- for the parent of the partial-view and perform the tree
16693 -- transformation.
16695 else
16696 Iface := First (Interface_List (Def));
16697 while Present (Iface) loop
16698 if Etype (Iface) = Etype (Partial_View) then
16699 Rewrite (Subtype_Indication (Def),
16700 New_Copy (Subtype_Indication
16701 (Parent (Partial_View))));
16703 New_Iface :=
16704 Make_Identifier (Sloc (N), Chars (Parent_Type));
16705 Append (New_Iface, Interface_List (Def));
16707 -- Analyze the transformed code
16709 Derived_Type_Declaration (T, N, Is_Completion);
16710 return;
16711 end if;
16713 Next (Iface);
16714 end loop;
16715 end if;
16716 end if;
16717 end;
16718 end if;
16720 -- Only composite types other than array types are allowed to have
16721 -- discriminants.
16723 if Present (Discriminant_Specifications (N)) then
16724 if (Is_Elementary_Type (Parent_Type)
16725 or else
16726 Is_Array_Type (Parent_Type))
16727 and then not Error_Posted (N)
16728 then
16729 Error_Msg_N
16730 ("elementary or array type cannot have discriminants",
16731 Defining_Identifier (First (Discriminant_Specifications (N))));
16733 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16734 -- only if we are not already processing a malformed syntax tree.
16736 if Is_Type (T) then
16737 Set_Has_Discriminants (T, False);
16738 end if;
16740 -- The type is allowed to have discriminants
16742 else
16743 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16744 end if;
16745 end if;
16747 -- In Ada 83, a derived type defined in a package specification cannot
16748 -- be used for further derivation until the end of its visible part.
16749 -- Note that derivation in the private part of the package is allowed.
16751 if Ada_Version = Ada_83
16752 and then Is_Derived_Type (Parent_Type)
16753 and then In_Visible_Part (Scope (Parent_Type))
16754 then
16755 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16756 Error_Msg_N
16757 ("(Ada 83): premature use of type for derivation", Indic);
16758 end if;
16759 end if;
16761 -- Check for early use of incomplete or private type
16763 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16764 Error_Msg_N ("premature derivation of incomplete type", Indic);
16765 return;
16767 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16768 and then not Comes_From_Generic (Parent_Type))
16769 or else Has_Private_Component (Parent_Type)
16770 then
16771 -- The ancestor type of a formal type can be incomplete, in which
16772 -- case only the operations of the partial view are available in the
16773 -- generic. Subsequent checks may be required when the full view is
16774 -- analyzed to verify that a derivation from a tagged type has an
16775 -- extension.
16777 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16778 null;
16780 elsif No (Underlying_Type (Parent_Type))
16781 or else Has_Private_Component (Parent_Type)
16782 then
16783 Error_Msg_N
16784 ("premature derivation of derived or private type", Indic);
16786 -- Flag the type itself as being in error, this prevents some
16787 -- nasty problems with subsequent uses of the malformed type.
16789 Set_Error_Posted (T);
16791 -- Check that within the immediate scope of an untagged partial
16792 -- view it's illegal to derive from the partial view if the
16793 -- full view is tagged. (7.3(7))
16795 -- We verify that the Parent_Type is a partial view by checking
16796 -- that it is not a Full_Type_Declaration (i.e. a private type or
16797 -- private extension declaration), to distinguish a partial view
16798 -- from a derivation from a private type which also appears as
16799 -- E_Private_Type. If the parent base type is not declared in an
16800 -- enclosing scope there is no need to check.
16802 elsif Present (Full_View (Parent_Type))
16803 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16804 and then not Is_Tagged_Type (Parent_Type)
16805 and then Is_Tagged_Type (Full_View (Parent_Type))
16806 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16807 then
16808 Error_Msg_N
16809 ("premature derivation from type with tagged full view",
16810 Indic);
16811 end if;
16812 end if;
16814 -- Check that form of derivation is appropriate
16816 Taggd := Is_Tagged_Type (Parent_Type);
16818 -- Set the parent type to the class-wide type's specific type in this
16819 -- case to prevent cascading errors
16821 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16822 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16823 Set_Etype (T, Etype (Parent_Type));
16824 return;
16825 end if;
16827 if Present (Extension) and then not Taggd then
16828 Error_Msg_N
16829 ("type derived from untagged type cannot have extension", Indic);
16831 elsif No (Extension) and then Taggd then
16833 -- If this declaration is within a private part (or body) of a
16834 -- generic instantiation then the derivation is allowed (the parent
16835 -- type can only appear tagged in this case if it's a generic actual
16836 -- type, since it would otherwise have been rejected in the analysis
16837 -- of the generic template).
16839 if not Is_Generic_Actual_Type (Parent_Type)
16840 or else In_Visible_Part (Scope (Parent_Type))
16841 then
16842 if Is_Class_Wide_Type (Parent_Type) then
16843 Error_Msg_N
16844 ("parent type must not be a class-wide type", Indic);
16846 -- Use specific type to prevent cascaded errors.
16848 Parent_Type := Etype (Parent_Type);
16850 else
16851 Error_Msg_N
16852 ("type derived from tagged type must have extension", Indic);
16853 end if;
16854 end if;
16855 end if;
16857 -- AI-443: Synchronized formal derived types require a private
16858 -- extension. There is no point in checking the ancestor type or
16859 -- the progenitors since the construct is wrong to begin with.
16861 if Ada_Version >= Ada_2005
16862 and then Is_Generic_Type (T)
16863 and then Present (Original_Node (N))
16864 then
16865 declare
16866 Decl : constant Node_Id := Original_Node (N);
16868 begin
16869 if Nkind (Decl) = N_Formal_Type_Declaration
16870 and then Nkind (Formal_Type_Definition (Decl)) =
16871 N_Formal_Derived_Type_Definition
16872 and then Synchronized_Present (Formal_Type_Definition (Decl))
16873 and then No (Extension)
16875 -- Avoid emitting a duplicate error message
16877 and then not Error_Posted (Indic)
16878 then
16879 Error_Msg_N
16880 ("synchronized derived type must have extension", N);
16881 end if;
16882 end;
16883 end if;
16885 if Null_Exclusion_Present (Def)
16886 and then not Is_Access_Type (Parent_Type)
16887 then
16888 Error_Msg_N ("null exclusion can only apply to an access type", N);
16889 end if;
16891 -- Avoid deriving parent primitives of underlying record views
16893 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16894 Derive_Subps => not Is_Underlying_Record_View (T));
16896 -- AI-419: The parent type of an explicitly limited derived type must
16897 -- be a limited type or a limited interface.
16899 if Limited_Present (Def) then
16900 Set_Is_Limited_Record (T);
16902 if Is_Interface (T) then
16903 Set_Is_Limited_Interface (T);
16904 end if;
16906 if not Is_Limited_Type (Parent_Type)
16907 and then
16908 (not Is_Interface (Parent_Type)
16909 or else not Is_Limited_Interface (Parent_Type))
16910 then
16911 -- AI05-0096: a derivation in the private part of an instance is
16912 -- legal if the generic formal is untagged limited, and the actual
16913 -- is non-limited.
16915 if Is_Generic_Actual_Type (Parent_Type)
16916 and then In_Private_Part (Current_Scope)
16917 and then
16918 not Is_Tagged_Type
16919 (Generic_Parent_Type (Parent (Parent_Type)))
16920 then
16921 null;
16923 else
16924 Error_Msg_NE
16925 ("parent type& of limited type must be limited",
16926 N, Parent_Type);
16927 end if;
16928 end if;
16929 end if;
16931 -- In SPARK, there are no derived type definitions other than type
16932 -- extensions of tagged record types.
16934 if No (Extension) then
16935 Check_SPARK_05_Restriction
16936 ("derived type is not allowed", Original_Node (N));
16937 end if;
16938 end Derived_Type_Declaration;
16940 ------------------------
16941 -- Diagnose_Interface --
16942 ------------------------
16944 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16945 begin
16946 if not Is_Interface (E) and then E /= Any_Type then
16947 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16948 end if;
16949 end Diagnose_Interface;
16951 ----------------------------------
16952 -- Enumeration_Type_Declaration --
16953 ----------------------------------
16955 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16956 Ev : Uint;
16957 L : Node_Id;
16958 R_Node : Node_Id;
16959 B_Node : Node_Id;
16961 begin
16962 -- Create identifier node representing lower bound
16964 B_Node := New_Node (N_Identifier, Sloc (Def));
16965 L := First (Literals (Def));
16966 Set_Chars (B_Node, Chars (L));
16967 Set_Entity (B_Node, L);
16968 Set_Etype (B_Node, T);
16969 Set_Is_Static_Expression (B_Node, True);
16971 R_Node := New_Node (N_Range, Sloc (Def));
16972 Set_Low_Bound (R_Node, B_Node);
16974 Set_Ekind (T, E_Enumeration_Type);
16975 Set_First_Literal (T, L);
16976 Set_Etype (T, T);
16977 Set_Is_Constrained (T);
16979 Ev := Uint_0;
16981 -- Loop through literals of enumeration type setting pos and rep values
16982 -- except that if the Ekind is already set, then it means the literal
16983 -- was already constructed (case of a derived type declaration and we
16984 -- should not disturb the Pos and Rep values.
16986 while Present (L) loop
16987 if Ekind (L) /= E_Enumeration_Literal then
16988 Set_Ekind (L, E_Enumeration_Literal);
16989 Set_Enumeration_Pos (L, Ev);
16990 Set_Enumeration_Rep (L, Ev);
16991 Set_Is_Known_Valid (L, True);
16992 end if;
16994 Set_Etype (L, T);
16995 New_Overloaded_Entity (L);
16996 Generate_Definition (L);
16997 Set_Convention (L, Convention_Intrinsic);
16999 -- Case of character literal
17001 if Nkind (L) = N_Defining_Character_Literal then
17002 Set_Is_Character_Type (T, True);
17004 -- Check violation of No_Wide_Characters
17006 if Restriction_Check_Required (No_Wide_Characters) then
17007 Get_Name_String (Chars (L));
17009 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17010 Check_Restriction (No_Wide_Characters, L);
17011 end if;
17012 end if;
17013 end if;
17015 Ev := Ev + 1;
17016 Next (L);
17017 end loop;
17019 -- Now create a node representing upper bound
17021 B_Node := New_Node (N_Identifier, Sloc (Def));
17022 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17023 Set_Entity (B_Node, Last (Literals (Def)));
17024 Set_Etype (B_Node, T);
17025 Set_Is_Static_Expression (B_Node, True);
17027 Set_High_Bound (R_Node, B_Node);
17029 -- Initialize various fields of the type. Some of this information
17030 -- may be overwritten later through rep.clauses.
17032 Set_Scalar_Range (T, R_Node);
17033 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17034 Set_Enum_Esize (T);
17035 Set_Enum_Pos_To_Rep (T, Empty);
17037 -- Set Discard_Names if configuration pragma set, or if there is
17038 -- a parameterless pragma in the current declarative region
17040 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17041 Set_Discard_Names (T);
17042 end if;
17044 -- Process end label if there is one
17046 if Present (Def) then
17047 Process_End_Label (Def, 'e', T);
17048 end if;
17049 end Enumeration_Type_Declaration;
17051 ---------------------------------
17052 -- Expand_To_Stored_Constraint --
17053 ---------------------------------
17055 function Expand_To_Stored_Constraint
17056 (Typ : Entity_Id;
17057 Constraint : Elist_Id) return Elist_Id
17059 Explicitly_Discriminated_Type : Entity_Id;
17060 Expansion : Elist_Id;
17061 Discriminant : Entity_Id;
17063 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17064 -- Find the nearest type that actually specifies discriminants
17066 ---------------------------------
17067 -- Type_With_Explicit_Discrims --
17068 ---------------------------------
17070 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17071 Typ : constant E := Base_Type (Id);
17073 begin
17074 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17075 if Present (Full_View (Typ)) then
17076 return Type_With_Explicit_Discrims (Full_View (Typ));
17077 end if;
17079 else
17080 if Has_Discriminants (Typ) then
17081 return Typ;
17082 end if;
17083 end if;
17085 if Etype (Typ) = Typ then
17086 return Empty;
17087 elsif Has_Discriminants (Typ) then
17088 return Typ;
17089 else
17090 return Type_With_Explicit_Discrims (Etype (Typ));
17091 end if;
17093 end Type_With_Explicit_Discrims;
17095 -- Start of processing for Expand_To_Stored_Constraint
17097 begin
17098 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17099 return No_Elist;
17100 end if;
17102 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17104 if No (Explicitly_Discriminated_Type) then
17105 return No_Elist;
17106 end if;
17108 Expansion := New_Elmt_List;
17110 Discriminant :=
17111 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17112 while Present (Discriminant) loop
17113 Append_Elmt
17114 (Get_Discriminant_Value
17115 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17116 To => Expansion);
17117 Next_Stored_Discriminant (Discriminant);
17118 end loop;
17120 return Expansion;
17121 end Expand_To_Stored_Constraint;
17123 ---------------------------
17124 -- Find_Hidden_Interface --
17125 ---------------------------
17127 function Find_Hidden_Interface
17128 (Src : Elist_Id;
17129 Dest : Elist_Id) return Entity_Id
17131 Iface : Entity_Id;
17132 Iface_Elmt : Elmt_Id;
17134 begin
17135 if Present (Src) and then Present (Dest) then
17136 Iface_Elmt := First_Elmt (Src);
17137 while Present (Iface_Elmt) loop
17138 Iface := Node (Iface_Elmt);
17140 if Is_Interface (Iface)
17141 and then not Contain_Interface (Iface, Dest)
17142 then
17143 return Iface;
17144 end if;
17146 Next_Elmt (Iface_Elmt);
17147 end loop;
17148 end if;
17150 return Empty;
17151 end Find_Hidden_Interface;
17153 --------------------
17154 -- Find_Type_Name --
17155 --------------------
17157 function Find_Type_Name (N : Node_Id) return Entity_Id is
17158 Id : constant Entity_Id := Defining_Identifier (N);
17159 New_Id : Entity_Id;
17160 Prev : Entity_Id;
17161 Prev_Par : Node_Id;
17163 procedure Check_Duplicate_Aspects;
17164 -- Check that aspects specified in a completion have not been specified
17165 -- already in the partial view.
17167 procedure Tag_Mismatch;
17168 -- Diagnose a tagged partial view whose full view is untagged. We post
17169 -- the message on the full view, with a reference to the previous
17170 -- partial view. The partial view can be private or incomplete, and
17171 -- these are handled in a different manner, so we determine the position
17172 -- of the error message from the respective slocs of both.
17174 -----------------------------
17175 -- Check_Duplicate_Aspects --
17176 -----------------------------
17178 procedure Check_Duplicate_Aspects is
17179 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17180 -- Return the corresponding aspect of the partial view which matches
17181 -- the aspect id of Asp. Return Empty is no such aspect exists.
17183 -----------------------------
17184 -- Get_Partial_View_Aspect --
17185 -----------------------------
17187 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17188 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17189 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17190 Prev_Asp : Node_Id;
17192 begin
17193 if Present (Prev_Asps) then
17194 Prev_Asp := First (Prev_Asps);
17195 while Present (Prev_Asp) loop
17196 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17197 return Prev_Asp;
17198 end if;
17200 Next (Prev_Asp);
17201 end loop;
17202 end if;
17204 return Empty;
17205 end Get_Partial_View_Aspect;
17207 -- Local variables
17209 Full_Asps : constant List_Id := Aspect_Specifications (N);
17210 Full_Asp : Node_Id;
17211 Part_Asp : Node_Id;
17213 -- Start of processing for Check_Duplicate_Aspects
17215 begin
17216 if Present (Full_Asps) then
17217 Full_Asp := First (Full_Asps);
17218 while Present (Full_Asp) loop
17219 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17221 -- An aspect and its class-wide counterpart are two distinct
17222 -- aspects and may apply to both views of an entity.
17224 if Present (Part_Asp)
17225 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17226 then
17227 Error_Msg_N
17228 ("aspect already specified in private declaration",
17229 Full_Asp);
17231 Remove (Full_Asp);
17232 return;
17233 end if;
17235 if Has_Discriminants (Prev)
17236 and then not Has_Unknown_Discriminants (Prev)
17237 and then Get_Aspect_Id (Full_Asp) =
17238 Aspect_Implicit_Dereference
17239 then
17240 Error_Msg_N
17241 ("cannot specify aspect if partial view has known "
17242 & "discriminants", Full_Asp);
17243 end if;
17245 Next (Full_Asp);
17246 end loop;
17247 end if;
17248 end Check_Duplicate_Aspects;
17250 ------------------
17251 -- Tag_Mismatch --
17252 ------------------
17254 procedure Tag_Mismatch is
17255 begin
17256 if Sloc (Prev) < Sloc (Id) then
17257 if Ada_Version >= Ada_2012
17258 and then Nkind (N) = N_Private_Type_Declaration
17259 then
17260 Error_Msg_NE
17261 ("declaration of private } must be a tagged type ", Id, Prev);
17262 else
17263 Error_Msg_NE
17264 ("full declaration of } must be a tagged type ", Id, Prev);
17265 end if;
17267 else
17268 if Ada_Version >= Ada_2012
17269 and then Nkind (N) = N_Private_Type_Declaration
17270 then
17271 Error_Msg_NE
17272 ("declaration of private } must be a tagged type ", Prev, Id);
17273 else
17274 Error_Msg_NE
17275 ("full declaration of } must be a tagged type ", Prev, Id);
17276 end if;
17277 end if;
17278 end Tag_Mismatch;
17280 -- Start of processing for Find_Type_Name
17282 begin
17283 -- Find incomplete declaration, if one was given
17285 Prev := Current_Entity_In_Scope (Id);
17287 -- New type declaration
17289 if No (Prev) then
17290 Enter_Name (Id);
17291 return Id;
17293 -- Previous declaration exists
17295 else
17296 Prev_Par := Parent (Prev);
17298 -- Error if not incomplete/private case except if previous
17299 -- declaration is implicit, etc. Enter_Name will emit error if
17300 -- appropriate.
17302 if not Is_Incomplete_Or_Private_Type (Prev) then
17303 Enter_Name (Id);
17304 New_Id := Id;
17306 -- Check invalid completion of private or incomplete type
17308 elsif not Nkind_In (N, N_Full_Type_Declaration,
17309 N_Task_Type_Declaration,
17310 N_Protected_Type_Declaration)
17311 and then
17312 (Ada_Version < Ada_2012
17313 or else not Is_Incomplete_Type (Prev)
17314 or else not Nkind_In (N, N_Private_Type_Declaration,
17315 N_Private_Extension_Declaration))
17316 then
17317 -- Completion must be a full type declarations (RM 7.3(4))
17319 Error_Msg_Sloc := Sloc (Prev);
17320 Error_Msg_NE ("invalid completion of }", Id, Prev);
17322 -- Set scope of Id to avoid cascaded errors. Entity is never
17323 -- examined again, except when saving globals in generics.
17325 Set_Scope (Id, Current_Scope);
17326 New_Id := Id;
17328 -- If this is a repeated incomplete declaration, no further
17329 -- checks are possible.
17331 if Nkind (N) = N_Incomplete_Type_Declaration then
17332 return Prev;
17333 end if;
17335 -- Case of full declaration of incomplete type
17337 elsif Ekind (Prev) = E_Incomplete_Type
17338 and then (Ada_Version < Ada_2012
17339 or else No (Full_View (Prev))
17340 or else not Is_Private_Type (Full_View (Prev)))
17341 then
17342 -- Indicate that the incomplete declaration has a matching full
17343 -- declaration. The defining occurrence of the incomplete
17344 -- declaration remains the visible one, and the procedure
17345 -- Get_Full_View dereferences it whenever the type is used.
17347 if Present (Full_View (Prev)) then
17348 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17349 end if;
17351 Set_Full_View (Prev, Id);
17352 Append_Entity (Id, Current_Scope);
17353 Set_Is_Public (Id, Is_Public (Prev));
17354 Set_Is_Internal (Id);
17355 New_Id := Prev;
17357 -- If the incomplete view is tagged, a class_wide type has been
17358 -- created already. Use it for the private type as well, in order
17359 -- to prevent multiple incompatible class-wide types that may be
17360 -- created for self-referential anonymous access components.
17362 if Is_Tagged_Type (Prev)
17363 and then Present (Class_Wide_Type (Prev))
17364 then
17365 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17366 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17368 -- Type of the class-wide type is the current Id. Previously
17369 -- this was not done for private declarations because of order-
17370 -- of-elaboration issues in the back end, but gigi now handles
17371 -- this properly.
17373 Set_Etype (Class_Wide_Type (Id), Id);
17374 end if;
17376 -- Case of full declaration of private type
17378 else
17379 -- If the private type was a completion of an incomplete type then
17380 -- update Prev to reference the private type
17382 if Ada_Version >= Ada_2012
17383 and then Ekind (Prev) = E_Incomplete_Type
17384 and then Present (Full_View (Prev))
17385 and then Is_Private_Type (Full_View (Prev))
17386 then
17387 Prev := Full_View (Prev);
17388 Prev_Par := Parent (Prev);
17389 end if;
17391 if Nkind (N) = N_Full_Type_Declaration
17392 and then Nkind_In
17393 (Type_Definition (N), N_Record_Definition,
17394 N_Derived_Type_Definition)
17395 and then Interface_Present (Type_Definition (N))
17396 then
17397 Error_Msg_N
17398 ("completion of private type cannot be an interface", N);
17399 end if;
17401 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17402 if Etype (Prev) /= Prev then
17404 -- Prev is a private subtype or a derived type, and needs
17405 -- no completion.
17407 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17408 New_Id := Id;
17410 elsif Ekind (Prev) = E_Private_Type
17411 and then Nkind_In (N, N_Task_Type_Declaration,
17412 N_Protected_Type_Declaration)
17413 then
17414 Error_Msg_N
17415 ("completion of nonlimited type cannot be limited", N);
17417 elsif Ekind (Prev) = E_Record_Type_With_Private
17418 and then Nkind_In (N, N_Task_Type_Declaration,
17419 N_Protected_Type_Declaration)
17420 then
17421 if not Is_Limited_Record (Prev) then
17422 Error_Msg_N
17423 ("completion of nonlimited type cannot be limited", N);
17425 elsif No (Interface_List (N)) then
17426 Error_Msg_N
17427 ("completion of tagged private type must be tagged",
17429 end if;
17430 end if;
17432 -- Ada 2005 (AI-251): Private extension declaration of a task
17433 -- type or a protected type. This case arises when covering
17434 -- interface types.
17436 elsif Nkind_In (N, N_Task_Type_Declaration,
17437 N_Protected_Type_Declaration)
17438 then
17439 null;
17441 elsif Nkind (N) /= N_Full_Type_Declaration
17442 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17443 then
17444 Error_Msg_N
17445 ("full view of private extension must be an extension", N);
17447 elsif not (Abstract_Present (Parent (Prev)))
17448 and then Abstract_Present (Type_Definition (N))
17449 then
17450 Error_Msg_N
17451 ("full view of non-abstract extension cannot be abstract", N);
17452 end if;
17454 if not In_Private_Part (Current_Scope) then
17455 Error_Msg_N
17456 ("declaration of full view must appear in private part", N);
17457 end if;
17459 if Ada_Version >= Ada_2012 then
17460 Check_Duplicate_Aspects;
17461 end if;
17463 Copy_And_Swap (Prev, Id);
17464 Set_Has_Private_Declaration (Prev);
17465 Set_Has_Private_Declaration (Id);
17467 -- AI12-0133: Indicate whether we have a partial view with
17468 -- unknown discriminants, in which case initialization of objects
17469 -- of the type do not receive an invariant check.
17471 Set_Partial_View_Has_Unknown_Discr
17472 (Prev, Has_Unknown_Discriminants (Id));
17474 -- Preserve aspect and iterator flags that may have been set on
17475 -- the partial view.
17477 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17478 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17480 -- If no error, propagate freeze_node from private to full view.
17481 -- It may have been generated for an early operational item.
17483 if Present (Freeze_Node (Id))
17484 and then Serious_Errors_Detected = 0
17485 and then No (Full_View (Id))
17486 then
17487 Set_Freeze_Node (Prev, Freeze_Node (Id));
17488 Set_Freeze_Node (Id, Empty);
17489 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17490 end if;
17492 Set_Full_View (Id, Prev);
17493 New_Id := Prev;
17494 end if;
17496 -- Verify that full declaration conforms to partial one
17498 if Is_Incomplete_Or_Private_Type (Prev)
17499 and then Present (Discriminant_Specifications (Prev_Par))
17500 then
17501 if Present (Discriminant_Specifications (N)) then
17502 if Ekind (Prev) = E_Incomplete_Type then
17503 Check_Discriminant_Conformance (N, Prev, Prev);
17504 else
17505 Check_Discriminant_Conformance (N, Prev, Id);
17506 end if;
17508 else
17509 Error_Msg_N
17510 ("missing discriminants in full type declaration", N);
17512 -- To avoid cascaded errors on subsequent use, share the
17513 -- discriminants of the partial view.
17515 Set_Discriminant_Specifications (N,
17516 Discriminant_Specifications (Prev_Par));
17517 end if;
17518 end if;
17520 -- A prior untagged partial view can have an associated class-wide
17521 -- type due to use of the class attribute, and in this case the full
17522 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17523 -- of incomplete tagged declarations, but we check for it.
17525 if Is_Type (Prev)
17526 and then (Is_Tagged_Type (Prev)
17527 or else Present (Class_Wide_Type (Prev)))
17528 then
17529 -- Ada 2012 (AI05-0162): A private type may be the completion of
17530 -- an incomplete type.
17532 if Ada_Version >= Ada_2012
17533 and then Is_Incomplete_Type (Prev)
17534 and then Nkind_In (N, N_Private_Type_Declaration,
17535 N_Private_Extension_Declaration)
17536 then
17537 -- No need to check private extensions since they are tagged
17539 if Nkind (N) = N_Private_Type_Declaration
17540 and then not Tagged_Present (N)
17541 then
17542 Tag_Mismatch;
17543 end if;
17545 -- The full declaration is either a tagged type (including
17546 -- a synchronized type that implements interfaces) or a
17547 -- type extension, otherwise this is an error.
17549 elsif Nkind_In (N, N_Task_Type_Declaration,
17550 N_Protected_Type_Declaration)
17551 then
17552 if No (Interface_List (N)) and then not Error_Posted (N) then
17553 Tag_Mismatch;
17554 end if;
17556 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17558 -- Indicate that the previous declaration (tagged incomplete
17559 -- or private declaration) requires the same on the full one.
17561 if not Tagged_Present (Type_Definition (N)) then
17562 Tag_Mismatch;
17563 Set_Is_Tagged_Type (Id);
17564 end if;
17566 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17567 if No (Record_Extension_Part (Type_Definition (N))) then
17568 Error_Msg_NE
17569 ("full declaration of } must be a record extension",
17570 Prev, Id);
17572 -- Set some attributes to produce a usable full view
17574 Set_Is_Tagged_Type (Id);
17575 end if;
17577 else
17578 Tag_Mismatch;
17579 end if;
17580 end if;
17582 if Present (Prev)
17583 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17584 and then Present (Premature_Use (Parent (Prev)))
17585 then
17586 Error_Msg_Sloc := Sloc (N);
17587 Error_Msg_N
17588 ("\full declaration #", Premature_Use (Parent (Prev)));
17589 end if;
17591 return New_Id;
17592 end if;
17593 end Find_Type_Name;
17595 -------------------------
17596 -- Find_Type_Of_Object --
17597 -------------------------
17599 function Find_Type_Of_Object
17600 (Obj_Def : Node_Id;
17601 Related_Nod : Node_Id) return Entity_Id
17603 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17604 P : Node_Id := Parent (Obj_Def);
17605 T : Entity_Id;
17606 Nam : Name_Id;
17608 begin
17609 -- If the parent is a component_definition node we climb to the
17610 -- component_declaration node
17612 if Nkind (P) = N_Component_Definition then
17613 P := Parent (P);
17614 end if;
17616 -- Case of an anonymous array subtype
17618 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17619 N_Unconstrained_Array_Definition)
17620 then
17621 T := Empty;
17622 Array_Type_Declaration (T, Obj_Def);
17624 -- Create an explicit subtype whenever possible
17626 elsif Nkind (P) /= N_Component_Declaration
17627 and then Def_Kind = N_Subtype_Indication
17628 then
17629 -- Base name of subtype on object name, which will be unique in
17630 -- the current scope.
17632 -- If this is a duplicate declaration, return base type, to avoid
17633 -- generating duplicate anonymous types.
17635 if Error_Posted (P) then
17636 Analyze (Subtype_Mark (Obj_Def));
17637 return Entity (Subtype_Mark (Obj_Def));
17638 end if;
17640 Nam :=
17641 New_External_Name
17642 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17644 T := Make_Defining_Identifier (Sloc (P), Nam);
17646 Insert_Action (Obj_Def,
17647 Make_Subtype_Declaration (Sloc (P),
17648 Defining_Identifier => T,
17649 Subtype_Indication => Relocate_Node (Obj_Def)));
17651 -- This subtype may need freezing, and this will not be done
17652 -- automatically if the object declaration is not in declarative
17653 -- part. Since this is an object declaration, the type cannot always
17654 -- be frozen here. Deferred constants do not freeze their type
17655 -- (which often enough will be private).
17657 if Nkind (P) = N_Object_Declaration
17658 and then Constant_Present (P)
17659 and then No (Expression (P))
17660 then
17661 null;
17663 -- Here we freeze the base type of object type to catch premature use
17664 -- of discriminated private type without a full view.
17666 else
17667 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17668 end if;
17670 -- Ada 2005 AI-406: the object definition in an object declaration
17671 -- can be an access definition.
17673 elsif Def_Kind = N_Access_Definition then
17674 T := Access_Definition (Related_Nod, Obj_Def);
17676 Set_Is_Local_Anonymous_Access
17678 V => (Ada_Version < Ada_2012)
17679 or else (Nkind (P) /= N_Object_Declaration)
17680 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17682 -- Otherwise, the object definition is just a subtype_mark
17684 else
17685 T := Process_Subtype (Obj_Def, Related_Nod);
17687 -- If expansion is disabled an object definition that is an aggregate
17688 -- will not get expanded and may lead to scoping problems in the back
17689 -- end, if the object is referenced in an inner scope. In that case
17690 -- create an itype reference for the object definition now. This
17691 -- may be redundant in some cases, but harmless.
17693 if Is_Itype (T)
17694 and then Nkind (Related_Nod) = N_Object_Declaration
17695 and then ASIS_Mode
17696 then
17697 Build_Itype_Reference (T, Related_Nod);
17698 end if;
17699 end if;
17701 return T;
17702 end Find_Type_Of_Object;
17704 --------------------------------
17705 -- Find_Type_Of_Subtype_Indic --
17706 --------------------------------
17708 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17709 Typ : Entity_Id;
17711 begin
17712 -- Case of subtype mark with a constraint
17714 if Nkind (S) = N_Subtype_Indication then
17715 Find_Type (Subtype_Mark (S));
17716 Typ := Entity (Subtype_Mark (S));
17718 if not
17719 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17720 then
17721 Error_Msg_N
17722 ("incorrect constraint for this kind of type", Constraint (S));
17723 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17724 end if;
17726 -- Otherwise we have a subtype mark without a constraint
17728 elsif Error_Posted (S) then
17729 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17730 return Any_Type;
17732 else
17733 Find_Type (S);
17734 Typ := Entity (S);
17735 end if;
17737 -- Check No_Wide_Characters restriction
17739 Check_Wide_Character_Restriction (Typ, S);
17741 return Typ;
17742 end Find_Type_Of_Subtype_Indic;
17744 -------------------------------------
17745 -- Floating_Point_Type_Declaration --
17746 -------------------------------------
17748 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17749 Digs : constant Node_Id := Digits_Expression (Def);
17750 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17751 Digs_Val : Uint;
17752 Base_Typ : Entity_Id;
17753 Implicit_Base : Entity_Id;
17754 Bound : Node_Id;
17756 function Can_Derive_From (E : Entity_Id) return Boolean;
17757 -- Find if given digits value, and possibly a specified range, allows
17758 -- derivation from specified type
17760 function Find_Base_Type return Entity_Id;
17761 -- Find a predefined base type that Def can derive from, or generate
17762 -- an error and substitute Long_Long_Float if none exists.
17764 ---------------------
17765 -- Can_Derive_From --
17766 ---------------------
17768 function Can_Derive_From (E : Entity_Id) return Boolean is
17769 Spec : constant Entity_Id := Real_Range_Specification (Def);
17771 begin
17772 -- Check specified "digits" constraint
17774 if Digs_Val > Digits_Value (E) then
17775 return False;
17776 end if;
17778 -- Check for matching range, if specified
17780 if Present (Spec) then
17781 if Expr_Value_R (Type_Low_Bound (E)) >
17782 Expr_Value_R (Low_Bound (Spec))
17783 then
17784 return False;
17785 end if;
17787 if Expr_Value_R (Type_High_Bound (E)) <
17788 Expr_Value_R (High_Bound (Spec))
17789 then
17790 return False;
17791 end if;
17792 end if;
17794 return True;
17795 end Can_Derive_From;
17797 --------------------
17798 -- Find_Base_Type --
17799 --------------------
17801 function Find_Base_Type return Entity_Id is
17802 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17804 begin
17805 -- Iterate over the predefined types in order, returning the first
17806 -- one that Def can derive from.
17808 while Present (Choice) loop
17809 if Can_Derive_From (Node (Choice)) then
17810 return Node (Choice);
17811 end if;
17813 Next_Elmt (Choice);
17814 end loop;
17816 -- If we can't derive from any existing type, use Long_Long_Float
17817 -- and give appropriate message explaining the problem.
17819 if Digs_Val > Max_Digs_Val then
17820 -- It might be the case that there is a type with the requested
17821 -- range, just not the combination of digits and range.
17823 Error_Msg_N
17824 ("no predefined type has requested range and precision",
17825 Real_Range_Specification (Def));
17827 else
17828 Error_Msg_N
17829 ("range too large for any predefined type",
17830 Real_Range_Specification (Def));
17831 end if;
17833 return Standard_Long_Long_Float;
17834 end Find_Base_Type;
17836 -- Start of processing for Floating_Point_Type_Declaration
17838 begin
17839 Check_Restriction (No_Floating_Point, Def);
17841 -- Create an implicit base type
17843 Implicit_Base :=
17844 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17846 -- Analyze and verify digits value
17848 Analyze_And_Resolve (Digs, Any_Integer);
17849 Check_Digits_Expression (Digs);
17850 Digs_Val := Expr_Value (Digs);
17852 -- Process possible range spec and find correct type to derive from
17854 Process_Real_Range_Specification (Def);
17856 -- Check that requested number of digits is not too high.
17858 if Digs_Val > Max_Digs_Val then
17860 -- The check for Max_Base_Digits may be somewhat expensive, as it
17861 -- requires reading System, so only do it when necessary.
17863 declare
17864 Max_Base_Digits : constant Uint :=
17865 Expr_Value
17866 (Expression
17867 (Parent (RTE (RE_Max_Base_Digits))));
17869 begin
17870 if Digs_Val > Max_Base_Digits then
17871 Error_Msg_Uint_1 := Max_Base_Digits;
17872 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17874 elsif No (Real_Range_Specification (Def)) then
17875 Error_Msg_Uint_1 := Max_Digs_Val;
17876 Error_Msg_N ("types with more than ^ digits need range spec "
17877 & "(RM 3.5.7(6))", Digs);
17878 end if;
17879 end;
17880 end if;
17882 -- Find a suitable type to derive from or complain and use a substitute
17884 Base_Typ := Find_Base_Type;
17886 -- If there are bounds given in the declaration use them as the bounds
17887 -- of the type, otherwise use the bounds of the predefined base type
17888 -- that was chosen based on the Digits value.
17890 if Present (Real_Range_Specification (Def)) then
17891 Set_Scalar_Range (T, Real_Range_Specification (Def));
17892 Set_Is_Constrained (T);
17894 -- The bounds of this range must be converted to machine numbers
17895 -- in accordance with RM 4.9(38).
17897 Bound := Type_Low_Bound (T);
17899 if Nkind (Bound) = N_Real_Literal then
17900 Set_Realval
17901 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17902 Set_Is_Machine_Number (Bound);
17903 end if;
17905 Bound := Type_High_Bound (T);
17907 if Nkind (Bound) = N_Real_Literal then
17908 Set_Realval
17909 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17910 Set_Is_Machine_Number (Bound);
17911 end if;
17913 else
17914 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17915 end if;
17917 -- Complete definition of implicit base and declared first subtype. The
17918 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17919 -- are not clobbered when the floating point type acts as a full view of
17920 -- a private type.
17922 Set_Etype (Implicit_Base, Base_Typ);
17923 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17924 Set_Size_Info (Implicit_Base, Base_Typ);
17925 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17926 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17927 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17928 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17930 Set_Ekind (T, E_Floating_Point_Subtype);
17931 Set_Etype (T, Implicit_Base);
17932 Set_Size_Info (T, Implicit_Base);
17933 Set_RM_Size (T, RM_Size (Implicit_Base));
17934 Inherit_Rep_Item_Chain (T, Implicit_Base);
17935 Set_Digits_Value (T, Digs_Val);
17936 end Floating_Point_Type_Declaration;
17938 ----------------------------
17939 -- Get_Discriminant_Value --
17940 ----------------------------
17942 -- This is the situation:
17944 -- There is a non-derived type
17946 -- type T0 (Dx, Dy, Dz...)
17948 -- There are zero or more levels of derivation, with each derivation
17949 -- either purely inheriting the discriminants, or defining its own.
17951 -- type Ti is new Ti-1
17952 -- or
17953 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17954 -- or
17955 -- subtype Ti is ...
17957 -- The subtype issue is avoided by the use of Original_Record_Component,
17958 -- and the fact that derived subtypes also derive the constraints.
17960 -- This chain leads back from
17962 -- Typ_For_Constraint
17964 -- Typ_For_Constraint has discriminants, and the value for each
17965 -- discriminant is given by its corresponding Elmt of Constraints.
17967 -- Discriminant is some discriminant in this hierarchy
17969 -- We need to return its value
17971 -- We do this by recursively searching each level, and looking for
17972 -- Discriminant. Once we get to the bottom, we start backing up
17973 -- returning the value for it which may in turn be a discriminant
17974 -- further up, so on the backup we continue the substitution.
17976 function Get_Discriminant_Value
17977 (Discriminant : Entity_Id;
17978 Typ_For_Constraint : Entity_Id;
17979 Constraint : Elist_Id) return Node_Id
17981 function Root_Corresponding_Discriminant
17982 (Discr : Entity_Id) return Entity_Id;
17983 -- Given a discriminant, traverse the chain of inherited discriminants
17984 -- and return the topmost discriminant.
17986 function Search_Derivation_Levels
17987 (Ti : Entity_Id;
17988 Discrim_Values : Elist_Id;
17989 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17990 -- This is the routine that performs the recursive search of levels
17991 -- as described above.
17993 -------------------------------------
17994 -- Root_Corresponding_Discriminant --
17995 -------------------------------------
17997 function Root_Corresponding_Discriminant
17998 (Discr : Entity_Id) return Entity_Id
18000 D : Entity_Id;
18002 begin
18003 D := Discr;
18004 while Present (Corresponding_Discriminant (D)) loop
18005 D := Corresponding_Discriminant (D);
18006 end loop;
18008 return D;
18009 end Root_Corresponding_Discriminant;
18011 ------------------------------
18012 -- Search_Derivation_Levels --
18013 ------------------------------
18015 function Search_Derivation_Levels
18016 (Ti : Entity_Id;
18017 Discrim_Values : Elist_Id;
18018 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18020 Assoc : Elmt_Id;
18021 Disc : Entity_Id;
18022 Result : Node_Or_Entity_Id;
18023 Result_Entity : Node_Id;
18025 begin
18026 -- If inappropriate type, return Error, this happens only in
18027 -- cascaded error situations, and we want to avoid a blow up.
18029 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18030 return Error;
18031 end if;
18033 -- Look deeper if possible. Use Stored_Constraints only for
18034 -- untagged types. For tagged types use the given constraint.
18035 -- This asymmetry needs explanation???
18037 if not Stored_Discrim_Values
18038 and then Present (Stored_Constraint (Ti))
18039 and then not Is_Tagged_Type (Ti)
18040 then
18041 Result :=
18042 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18044 else
18045 declare
18046 Td : Entity_Id := Etype (Ti);
18048 begin
18049 -- If the parent type is private, the full view may include
18050 -- renamed discriminants, and it is those stored values that
18051 -- may be needed (the partial view never has more information
18052 -- than the full view).
18054 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18055 Td := Full_View (Td);
18056 end if;
18058 if Td = Ti then
18059 Result := Discriminant;
18061 else
18062 if Present (Stored_Constraint (Ti)) then
18063 Result :=
18064 Search_Derivation_Levels
18065 (Td, Stored_Constraint (Ti), True);
18066 else
18067 Result :=
18068 Search_Derivation_Levels
18069 (Td, Discrim_Values, Stored_Discrim_Values);
18070 end if;
18071 end if;
18072 end;
18073 end if;
18075 -- Extra underlying places to search, if not found above. For
18076 -- concurrent types, the relevant discriminant appears in the
18077 -- corresponding record. For a type derived from a private type
18078 -- without discriminant, the full view inherits the discriminants
18079 -- of the full view of the parent.
18081 if Result = Discriminant then
18082 if Is_Concurrent_Type (Ti)
18083 and then Present (Corresponding_Record_Type (Ti))
18084 then
18085 Result :=
18086 Search_Derivation_Levels (
18087 Corresponding_Record_Type (Ti),
18088 Discrim_Values,
18089 Stored_Discrim_Values);
18091 elsif Is_Private_Type (Ti)
18092 and then not Has_Discriminants (Ti)
18093 and then Present (Full_View (Ti))
18094 and then Etype (Full_View (Ti)) /= Ti
18095 then
18096 Result :=
18097 Search_Derivation_Levels (
18098 Full_View (Ti),
18099 Discrim_Values,
18100 Stored_Discrim_Values);
18101 end if;
18102 end if;
18104 -- If Result is not a (reference to a) discriminant, return it,
18105 -- otherwise set Result_Entity to the discriminant.
18107 if Nkind (Result) = N_Defining_Identifier then
18108 pragma Assert (Result = Discriminant);
18109 Result_Entity := Result;
18111 else
18112 if not Denotes_Discriminant (Result) then
18113 return Result;
18114 end if;
18116 Result_Entity := Entity (Result);
18117 end if;
18119 -- See if this level of derivation actually has discriminants because
18120 -- tagged derivations can add them, hence the lower levels need not
18121 -- have any.
18123 if not Has_Discriminants (Ti) then
18124 return Result;
18125 end if;
18127 -- Scan Ti's discriminants for Result_Entity, and return its
18128 -- corresponding value, if any.
18130 Result_Entity := Original_Record_Component (Result_Entity);
18132 Assoc := First_Elmt (Discrim_Values);
18134 if Stored_Discrim_Values then
18135 Disc := First_Stored_Discriminant (Ti);
18136 else
18137 Disc := First_Discriminant (Ti);
18138 end if;
18140 while Present (Disc) loop
18142 -- If no further associations return the discriminant, value will
18143 -- be found on the second pass.
18145 if No (Assoc) then
18146 return Result;
18147 end if;
18149 if Original_Record_Component (Disc) = Result_Entity then
18150 return Node (Assoc);
18151 end if;
18153 Next_Elmt (Assoc);
18155 if Stored_Discrim_Values then
18156 Next_Stored_Discriminant (Disc);
18157 else
18158 Next_Discriminant (Disc);
18159 end if;
18160 end loop;
18162 -- Could not find it
18164 return Result;
18165 end Search_Derivation_Levels;
18167 -- Local Variables
18169 Result : Node_Or_Entity_Id;
18171 -- Start of processing for Get_Discriminant_Value
18173 begin
18174 -- ??? This routine is a gigantic mess and will be deleted. For the
18175 -- time being just test for the trivial case before calling recurse.
18177 -- We are now celebrating the 20th anniversary of this comment!
18179 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18180 declare
18181 D : Entity_Id;
18182 E : Elmt_Id;
18184 begin
18185 D := First_Discriminant (Typ_For_Constraint);
18186 E := First_Elmt (Constraint);
18187 while Present (D) loop
18188 if Chars (D) = Chars (Discriminant) then
18189 return Node (E);
18190 end if;
18192 Next_Discriminant (D);
18193 Next_Elmt (E);
18194 end loop;
18195 end;
18196 end if;
18198 Result := Search_Derivation_Levels
18199 (Typ_For_Constraint, Constraint, False);
18201 -- ??? hack to disappear when this routine is gone
18203 if Nkind (Result) = N_Defining_Identifier then
18204 declare
18205 D : Entity_Id;
18206 E : Elmt_Id;
18208 begin
18209 D := First_Discriminant (Typ_For_Constraint);
18210 E := First_Elmt (Constraint);
18211 while Present (D) loop
18212 if Root_Corresponding_Discriminant (D) = Discriminant then
18213 return Node (E);
18214 end if;
18216 Next_Discriminant (D);
18217 Next_Elmt (E);
18218 end loop;
18219 end;
18220 end if;
18222 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18223 return Result;
18224 end Get_Discriminant_Value;
18226 --------------------------
18227 -- Has_Range_Constraint --
18228 --------------------------
18230 function Has_Range_Constraint (N : Node_Id) return Boolean is
18231 C : constant Node_Id := Constraint (N);
18233 begin
18234 if Nkind (C) = N_Range_Constraint then
18235 return True;
18237 elsif Nkind (C) = N_Digits_Constraint then
18238 return
18239 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18240 or else Present (Range_Constraint (C));
18242 elsif Nkind (C) = N_Delta_Constraint then
18243 return Present (Range_Constraint (C));
18245 else
18246 return False;
18247 end if;
18248 end Has_Range_Constraint;
18250 ------------------------
18251 -- Inherit_Components --
18252 ------------------------
18254 function Inherit_Components
18255 (N : Node_Id;
18256 Parent_Base : Entity_Id;
18257 Derived_Base : Entity_Id;
18258 Is_Tagged : Boolean;
18259 Inherit_Discr : Boolean;
18260 Discs : Elist_Id) return Elist_Id
18262 Assoc_List : constant Elist_Id := New_Elmt_List;
18264 procedure Inherit_Component
18265 (Old_C : Entity_Id;
18266 Plain_Discrim : Boolean := False;
18267 Stored_Discrim : Boolean := False);
18268 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18269 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18270 -- True, Old_C is a stored discriminant. If they are both false then
18271 -- Old_C is a regular component.
18273 -----------------------
18274 -- Inherit_Component --
18275 -----------------------
18277 procedure Inherit_Component
18278 (Old_C : Entity_Id;
18279 Plain_Discrim : Boolean := False;
18280 Stored_Discrim : Boolean := False)
18282 procedure Set_Anonymous_Type (Id : Entity_Id);
18283 -- Id denotes the entity of an access discriminant or anonymous
18284 -- access component. Set the type of Id to either the same type of
18285 -- Old_C or create a new one depending on whether the parent and
18286 -- the child types are in the same scope.
18288 ------------------------
18289 -- Set_Anonymous_Type --
18290 ------------------------
18292 procedure Set_Anonymous_Type (Id : Entity_Id) is
18293 Old_Typ : constant Entity_Id := Etype (Old_C);
18295 begin
18296 if Scope (Parent_Base) = Scope (Derived_Base) then
18297 Set_Etype (Id, Old_Typ);
18299 -- The parent and the derived type are in two different scopes.
18300 -- Reuse the type of the original discriminant / component by
18301 -- copying it in order to preserve all attributes.
18303 else
18304 declare
18305 Typ : constant Entity_Id := New_Copy (Old_Typ);
18307 begin
18308 Set_Etype (Id, Typ);
18310 -- Since we do not generate component declarations for
18311 -- inherited components, associate the itype with the
18312 -- derived type.
18314 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18315 Set_Scope (Typ, Derived_Base);
18316 end;
18317 end if;
18318 end Set_Anonymous_Type;
18320 -- Local variables and constants
18322 New_C : constant Entity_Id := New_Copy (Old_C);
18324 Corr_Discrim : Entity_Id;
18325 Discrim : Entity_Id;
18327 -- Start of processing for Inherit_Component
18329 begin
18330 pragma Assert (not Is_Tagged or not Stored_Discrim);
18332 Set_Parent (New_C, Parent (Old_C));
18334 -- Regular discriminants and components must be inserted in the scope
18335 -- of the Derived_Base. Do it here.
18337 if not Stored_Discrim then
18338 Enter_Name (New_C);
18339 end if;
18341 -- For tagged types the Original_Record_Component must point to
18342 -- whatever this field was pointing to in the parent type. This has
18343 -- already been achieved by the call to New_Copy above.
18345 if not Is_Tagged then
18346 Set_Original_Record_Component (New_C, New_C);
18347 Set_Corresponding_Record_Component (New_C, Old_C);
18348 end if;
18350 -- Set the proper type of an access discriminant
18352 if Ekind (New_C) = E_Discriminant
18353 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18354 then
18355 Set_Anonymous_Type (New_C);
18356 end if;
18358 -- If we have inherited a component then see if its Etype contains
18359 -- references to Parent_Base discriminants. In this case, replace
18360 -- these references with the constraints given in Discs. We do not
18361 -- do this for the partial view of private types because this is
18362 -- not needed (only the components of the full view will be used
18363 -- for code generation) and cause problem. We also avoid this
18364 -- transformation in some error situations.
18366 if Ekind (New_C) = E_Component then
18368 -- Set the proper type of an anonymous access component
18370 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18371 Set_Anonymous_Type (New_C);
18373 elsif (Is_Private_Type (Derived_Base)
18374 and then not Is_Generic_Type (Derived_Base))
18375 or else (Is_Empty_Elmt_List (Discs)
18376 and then not Expander_Active)
18377 then
18378 Set_Etype (New_C, Etype (Old_C));
18380 else
18381 -- The current component introduces a circularity of the
18382 -- following kind:
18384 -- limited with Pack_2;
18385 -- package Pack_1 is
18386 -- type T_1 is tagged record
18387 -- Comp : access Pack_2.T_2;
18388 -- ...
18389 -- end record;
18390 -- end Pack_1;
18392 -- with Pack_1;
18393 -- package Pack_2 is
18394 -- type T_2 is new Pack_1.T_1 with ...;
18395 -- end Pack_2;
18397 Set_Etype
18398 (New_C,
18399 Constrain_Component_Type
18400 (Old_C, Derived_Base, N, Parent_Base, Discs));
18401 end if;
18402 end if;
18404 -- In derived tagged types it is illegal to reference a non
18405 -- discriminant component in the parent type. To catch this, mark
18406 -- these components with an Ekind of E_Void. This will be reset in
18407 -- Record_Type_Definition after processing the record extension of
18408 -- the derived type.
18410 -- If the declaration is a private extension, there is no further
18411 -- record extension to process, and the components retain their
18412 -- current kind, because they are visible at this point.
18414 if Is_Tagged and then Ekind (New_C) = E_Component
18415 and then Nkind (N) /= N_Private_Extension_Declaration
18416 then
18417 Set_Ekind (New_C, E_Void);
18418 end if;
18420 if Plain_Discrim then
18421 Set_Corresponding_Discriminant (New_C, Old_C);
18422 Build_Discriminal (New_C);
18424 -- If we are explicitly inheriting a stored discriminant it will be
18425 -- completely hidden.
18427 elsif Stored_Discrim then
18428 Set_Corresponding_Discriminant (New_C, Empty);
18429 Set_Discriminal (New_C, Empty);
18430 Set_Is_Completely_Hidden (New_C);
18432 -- Set the Original_Record_Component of each discriminant in the
18433 -- derived base to point to the corresponding stored that we just
18434 -- created.
18436 Discrim := First_Discriminant (Derived_Base);
18437 while Present (Discrim) loop
18438 Corr_Discrim := Corresponding_Discriminant (Discrim);
18440 -- Corr_Discrim could be missing in an error situation
18442 if Present (Corr_Discrim)
18443 and then Original_Record_Component (Corr_Discrim) = Old_C
18444 then
18445 Set_Original_Record_Component (Discrim, New_C);
18446 Set_Corresponding_Record_Component (Discrim, Empty);
18447 end if;
18449 Next_Discriminant (Discrim);
18450 end loop;
18452 Append_Entity (New_C, Derived_Base);
18453 end if;
18455 if not Is_Tagged then
18456 Append_Elmt (Old_C, Assoc_List);
18457 Append_Elmt (New_C, Assoc_List);
18458 end if;
18459 end Inherit_Component;
18461 -- Variables local to Inherit_Component
18463 Loc : constant Source_Ptr := Sloc (N);
18465 Parent_Discrim : Entity_Id;
18466 Stored_Discrim : Entity_Id;
18467 D : Entity_Id;
18468 Component : Entity_Id;
18470 -- Start of processing for Inherit_Components
18472 begin
18473 if not Is_Tagged then
18474 Append_Elmt (Parent_Base, Assoc_List);
18475 Append_Elmt (Derived_Base, Assoc_List);
18476 end if;
18478 -- Inherit parent discriminants if needed
18480 if Inherit_Discr then
18481 Parent_Discrim := First_Discriminant (Parent_Base);
18482 while Present (Parent_Discrim) loop
18483 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18484 Next_Discriminant (Parent_Discrim);
18485 end loop;
18486 end if;
18488 -- Create explicit stored discrims for untagged types when necessary
18490 if not Has_Unknown_Discriminants (Derived_Base)
18491 and then Has_Discriminants (Parent_Base)
18492 and then not Is_Tagged
18493 and then
18494 (not Inherit_Discr
18495 or else First_Discriminant (Parent_Base) /=
18496 First_Stored_Discriminant (Parent_Base))
18497 then
18498 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18499 while Present (Stored_Discrim) loop
18500 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18501 Next_Stored_Discriminant (Stored_Discrim);
18502 end loop;
18503 end if;
18505 -- See if we can apply the second transformation for derived types, as
18506 -- explained in point 6. in the comments above Build_Derived_Record_Type
18507 -- This is achieved by appending Derived_Base discriminants into Discs,
18508 -- which has the side effect of returning a non empty Discs list to the
18509 -- caller of Inherit_Components, which is what we want. This must be
18510 -- done for private derived types if there are explicit stored
18511 -- discriminants, to ensure that we can retrieve the values of the
18512 -- constraints provided in the ancestors.
18514 if Inherit_Discr
18515 and then Is_Empty_Elmt_List (Discs)
18516 and then Present (First_Discriminant (Derived_Base))
18517 and then
18518 (not Is_Private_Type (Derived_Base)
18519 or else Is_Completely_Hidden
18520 (First_Stored_Discriminant (Derived_Base))
18521 or else Is_Generic_Type (Derived_Base))
18522 then
18523 D := First_Discriminant (Derived_Base);
18524 while Present (D) loop
18525 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18526 Next_Discriminant (D);
18527 end loop;
18528 end if;
18530 -- Finally, inherit non-discriminant components unless they are not
18531 -- visible because defined or inherited from the full view of the
18532 -- parent. Don't inherit the _parent field of the parent type.
18534 Component := First_Entity (Parent_Base);
18535 while Present (Component) loop
18537 -- Ada 2005 (AI-251): Do not inherit components associated with
18538 -- secondary tags of the parent.
18540 if Ekind (Component) = E_Component
18541 and then Present (Related_Type (Component))
18542 then
18543 null;
18545 elsif Ekind (Component) /= E_Component
18546 or else Chars (Component) = Name_uParent
18547 then
18548 null;
18550 -- If the derived type is within the parent type's declarative
18551 -- region, then the components can still be inherited even though
18552 -- they aren't visible at this point. This can occur for cases
18553 -- such as within public child units where the components must
18554 -- become visible upon entering the child unit's private part.
18556 elsif not Is_Visible_Component (Component)
18557 and then not In_Open_Scopes (Scope (Parent_Base))
18558 then
18559 null;
18561 elsif Ekind_In (Derived_Base, E_Private_Type,
18562 E_Limited_Private_Type)
18563 then
18564 null;
18566 else
18567 Inherit_Component (Component);
18568 end if;
18570 Next_Entity (Component);
18571 end loop;
18573 -- For tagged derived types, inherited discriminants cannot be used in
18574 -- component declarations of the record extension part. To achieve this
18575 -- we mark the inherited discriminants as not visible.
18577 if Is_Tagged and then Inherit_Discr then
18578 D := First_Discriminant (Derived_Base);
18579 while Present (D) loop
18580 Set_Is_Immediately_Visible (D, False);
18581 Next_Discriminant (D);
18582 end loop;
18583 end if;
18585 return Assoc_List;
18586 end Inherit_Components;
18588 -----------------------------
18589 -- Inherit_Predicate_Flags --
18590 -----------------------------
18592 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18593 begin
18594 if Present (Predicate_Function (Subt)) then
18595 return;
18596 end if;
18598 Set_Has_Predicates (Subt, Has_Predicates (Par));
18599 Set_Has_Static_Predicate_Aspect
18600 (Subt, Has_Static_Predicate_Aspect (Par));
18601 Set_Has_Dynamic_Predicate_Aspect
18602 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18604 -- A named subtype does not inherit the predicate function of its
18605 -- parent but an itype declared for a loop index needs the discrete
18606 -- predicate information of its parent to execute the loop properly.
18608 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18609 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18611 if Has_Static_Predicate (Par) then
18612 Set_Static_Discrete_Predicate
18613 (Subt, Static_Discrete_Predicate (Par));
18614 end if;
18615 end if;
18616 end Inherit_Predicate_Flags;
18618 ----------------------
18619 -- Is_EVF_Procedure --
18620 ----------------------
18622 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18623 Formal : Entity_Id;
18625 begin
18626 -- Examine the formals of an Extensions_Visible False procedure looking
18627 -- for a controlling OUT parameter.
18629 if Ekind (Subp) = E_Procedure
18630 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18631 then
18632 Formal := First_Formal (Subp);
18633 while Present (Formal) loop
18634 if Ekind (Formal) = E_Out_Parameter
18635 and then Is_Controlling_Formal (Formal)
18636 then
18637 return True;
18638 end if;
18640 Next_Formal (Formal);
18641 end loop;
18642 end if;
18644 return False;
18645 end Is_EVF_Procedure;
18647 -----------------------
18648 -- Is_Null_Extension --
18649 -----------------------
18651 function Is_Null_Extension (T : Entity_Id) return Boolean is
18652 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18653 Comp_List : Node_Id;
18654 Comp : Node_Id;
18656 begin
18657 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18658 or else not Is_Tagged_Type (T)
18659 or else Nkind (Type_Definition (Type_Decl)) /=
18660 N_Derived_Type_Definition
18661 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18662 then
18663 return False;
18664 end if;
18666 Comp_List :=
18667 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18669 if Present (Discriminant_Specifications (Type_Decl)) then
18670 return False;
18672 elsif Present (Comp_List)
18673 and then Is_Non_Empty_List (Component_Items (Comp_List))
18674 then
18675 Comp := First (Component_Items (Comp_List));
18677 -- Only user-defined components are relevant. The component list
18678 -- may also contain a parent component and internal components
18679 -- corresponding to secondary tags, but these do not determine
18680 -- whether this is a null extension.
18682 while Present (Comp) loop
18683 if Comes_From_Source (Comp) then
18684 return False;
18685 end if;
18687 Next (Comp);
18688 end loop;
18690 return True;
18692 else
18693 return True;
18694 end if;
18695 end Is_Null_Extension;
18697 ------------------------------
18698 -- Is_Valid_Constraint_Kind --
18699 ------------------------------
18701 function Is_Valid_Constraint_Kind
18702 (T_Kind : Type_Kind;
18703 Constraint_Kind : Node_Kind) return Boolean
18705 begin
18706 case T_Kind is
18707 when Enumeration_Kind
18708 | Integer_Kind
18710 return Constraint_Kind = N_Range_Constraint;
18712 when Decimal_Fixed_Point_Kind =>
18713 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18714 N_Range_Constraint);
18716 when Ordinary_Fixed_Point_Kind =>
18717 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18718 N_Range_Constraint);
18720 when Float_Kind =>
18721 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18722 N_Range_Constraint);
18724 when Access_Kind
18725 | Array_Kind
18726 | Class_Wide_Kind
18727 | Concurrent_Kind
18728 | Private_Kind
18729 | E_Incomplete_Type
18730 | E_Record_Subtype
18731 | E_Record_Type
18733 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18735 when others =>
18736 return True; -- Error will be detected later
18737 end case;
18738 end Is_Valid_Constraint_Kind;
18740 --------------------------
18741 -- Is_Visible_Component --
18742 --------------------------
18744 function Is_Visible_Component
18745 (C : Entity_Id;
18746 N : Node_Id := Empty) return Boolean
18748 Original_Comp : Entity_Id := Empty;
18749 Original_Type : Entity_Id;
18750 Type_Scope : Entity_Id;
18752 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18753 -- Check whether parent type of inherited component is declared locally,
18754 -- possibly within a nested package or instance. The current scope is
18755 -- the derived record itself.
18757 -------------------
18758 -- Is_Local_Type --
18759 -------------------
18761 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18762 Scop : Entity_Id;
18764 begin
18765 Scop := Scope (Typ);
18766 while Present (Scop)
18767 and then Scop /= Standard_Standard
18768 loop
18769 if Scop = Scope (Current_Scope) then
18770 return True;
18771 end if;
18773 Scop := Scope (Scop);
18774 end loop;
18776 return False;
18777 end Is_Local_Type;
18779 -- Start of processing for Is_Visible_Component
18781 begin
18782 if Ekind_In (C, E_Component, E_Discriminant) then
18783 Original_Comp := Original_Record_Component (C);
18784 end if;
18786 if No (Original_Comp) then
18788 -- Premature usage, or previous error
18790 return False;
18792 else
18793 Original_Type := Scope (Original_Comp);
18794 Type_Scope := Scope (Base_Type (Scope (C)));
18795 end if;
18797 -- This test only concerns tagged types
18799 if not Is_Tagged_Type (Original_Type) then
18801 -- Check if this is a renamed discriminant (hidden either by the
18802 -- derived type or by some ancestor), unless we are analyzing code
18803 -- generated by the expander since it may reference such components
18804 -- (for example see the expansion of Deep_Adjust).
18806 if Ekind (C) = E_Discriminant and then Present (N) then
18807 return
18808 not Comes_From_Source (N)
18809 or else not Is_Completely_Hidden (C);
18810 else
18811 return True;
18812 end if;
18814 -- If it is _Parent or _Tag, there is no visibility issue
18816 elsif not Comes_From_Source (Original_Comp) then
18817 return True;
18819 -- Discriminants are visible unless the (private) type has unknown
18820 -- discriminants. If the discriminant reference is inserted for a
18821 -- discriminant check on a full view it is also visible.
18823 elsif Ekind (Original_Comp) = E_Discriminant
18824 and then
18825 (not Has_Unknown_Discriminants (Original_Type)
18826 or else (Present (N)
18827 and then Nkind (N) = N_Selected_Component
18828 and then Nkind (Prefix (N)) = N_Type_Conversion
18829 and then not Comes_From_Source (Prefix (N))))
18830 then
18831 return True;
18833 -- In the body of an instantiation, check the visibility of a component
18834 -- in case it has a homograph that is a primitive operation of a private
18835 -- type which was not visible in the generic unit.
18837 -- Should Is_Prefixed_Call be propagated from template to instance???
18839 elsif In_Instance_Body then
18840 if not Is_Tagged_Type (Original_Type)
18841 or else not Is_Private_Type (Original_Type)
18842 then
18843 return True;
18845 else
18846 declare
18847 Subp_Elmt : Elmt_Id;
18849 begin
18850 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18851 while Present (Subp_Elmt) loop
18853 -- The component is hidden by a primitive operation
18855 if Chars (Node (Subp_Elmt)) = Chars (C) then
18856 return False;
18857 end if;
18859 Next_Elmt (Subp_Elmt);
18860 end loop;
18862 return True;
18863 end;
18864 end if;
18866 -- If the component has been declared in an ancestor which is currently
18867 -- a private type, then it is not visible. The same applies if the
18868 -- component's containing type is not in an open scope and the original
18869 -- component's enclosing type is a visible full view of a private type
18870 -- (which can occur in cases where an attempt is being made to reference
18871 -- a component in a sibling package that is inherited from a visible
18872 -- component of a type in an ancestor package; the component in the
18873 -- sibling package should not be visible even though the component it
18874 -- inherited from is visible). This does not apply however in the case
18875 -- where the scope of the type is a private child unit, or when the
18876 -- parent comes from a local package in which the ancestor is currently
18877 -- visible. The latter suppression of visibility is needed for cases
18878 -- that are tested in B730006.
18880 elsif Is_Private_Type (Original_Type)
18881 or else
18882 (not Is_Private_Descendant (Type_Scope)
18883 and then not In_Open_Scopes (Type_Scope)
18884 and then Has_Private_Declaration (Original_Type))
18885 then
18886 -- If the type derives from an entity in a formal package, there
18887 -- are no additional visible components.
18889 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18890 N_Formal_Package_Declaration
18891 then
18892 return False;
18894 -- if we are not in the private part of the current package, there
18895 -- are no additional visible components.
18897 elsif Ekind (Scope (Current_Scope)) = E_Package
18898 and then not In_Private_Part (Scope (Current_Scope))
18899 then
18900 return False;
18901 else
18902 return
18903 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18904 and then In_Open_Scopes (Scope (Original_Type))
18905 and then Is_Local_Type (Type_Scope);
18906 end if;
18908 -- There is another weird way in which a component may be invisible when
18909 -- the private and the full view are not derived from the same ancestor.
18910 -- Here is an example :
18912 -- type A1 is tagged record F1 : integer; end record;
18913 -- type A2 is new A1 with record F2 : integer; end record;
18914 -- type T is new A1 with private;
18915 -- private
18916 -- type T is new A2 with null record;
18918 -- In this case, the full view of T inherits F1 and F2 but the private
18919 -- view inherits only F1
18921 else
18922 declare
18923 Ancestor : Entity_Id := Scope (C);
18925 begin
18926 loop
18927 if Ancestor = Original_Type then
18928 return True;
18930 -- The ancestor may have a partial view of the original type,
18931 -- but if the full view is in scope, as in a child body, the
18932 -- component is visible.
18934 elsif In_Private_Part (Scope (Original_Type))
18935 and then Full_View (Ancestor) = Original_Type
18936 then
18937 return True;
18939 elsif Ancestor = Etype (Ancestor) then
18941 -- No further ancestors to examine
18943 return False;
18944 end if;
18946 Ancestor := Etype (Ancestor);
18947 end loop;
18948 end;
18949 end if;
18950 end Is_Visible_Component;
18952 --------------------------
18953 -- Make_Class_Wide_Type --
18954 --------------------------
18956 procedure Make_Class_Wide_Type (T : Entity_Id) is
18957 CW_Type : Entity_Id;
18958 CW_Name : Name_Id;
18959 Next_E : Entity_Id;
18960 Prev_E : Entity_Id;
18962 begin
18963 if Present (Class_Wide_Type (T)) then
18965 -- The class-wide type is a partially decorated entity created for a
18966 -- unanalyzed tagged type referenced through a limited with clause.
18967 -- When the tagged type is analyzed, its class-wide type needs to be
18968 -- redecorated. Note that we reuse the entity created by Decorate_
18969 -- Tagged_Type in order to preserve all links.
18971 if Materialize_Entity (Class_Wide_Type (T)) then
18972 CW_Type := Class_Wide_Type (T);
18973 Set_Materialize_Entity (CW_Type, False);
18975 -- The class wide type can have been defined by the partial view, in
18976 -- which case everything is already done.
18978 else
18979 return;
18980 end if;
18982 -- Default case, we need to create a new class-wide type
18984 else
18985 CW_Type :=
18986 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18987 end if;
18989 -- Inherit root type characteristics
18991 CW_Name := Chars (CW_Type);
18992 Next_E := Next_Entity (CW_Type);
18993 Prev_E := Prev_Entity (CW_Type);
18994 Copy_Node (T, CW_Type);
18995 Set_Comes_From_Source (CW_Type, False);
18996 Set_Chars (CW_Type, CW_Name);
18997 Set_Parent (CW_Type, Parent (T));
18998 Set_Prev_Entity (CW_Type, Prev_E);
18999 Set_Next_Entity (CW_Type, Next_E);
19001 -- Ensure we have a new freeze node for the class-wide type. The partial
19002 -- view may have freeze action of its own, requiring a proper freeze
19003 -- node, and the same freeze node cannot be shared between the two
19004 -- types.
19006 Set_Has_Delayed_Freeze (CW_Type);
19007 Set_Freeze_Node (CW_Type, Empty);
19009 -- Customize the class-wide type: It has no prim. op., it cannot be
19010 -- abstract, its Etype points back to the specific root type, and it
19011 -- cannot have any invariants.
19013 Set_Ekind (CW_Type, E_Class_Wide_Type);
19014 Set_Is_Tagged_Type (CW_Type, True);
19015 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19016 Set_Is_Abstract_Type (CW_Type, False);
19017 Set_Is_Constrained (CW_Type, False);
19018 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19019 Set_Default_SSO (CW_Type);
19020 Set_Has_Inheritable_Invariants (CW_Type, False);
19021 Set_Has_Inherited_Invariants (CW_Type, False);
19022 Set_Has_Own_Invariants (CW_Type, False);
19024 if Ekind (T) = E_Class_Wide_Subtype then
19025 Set_Etype (CW_Type, Etype (Base_Type (T)));
19026 else
19027 Set_Etype (CW_Type, T);
19028 end if;
19030 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19032 -- If this is the class_wide type of a constrained subtype, it does
19033 -- not have discriminants.
19035 Set_Has_Discriminants (CW_Type,
19036 Has_Discriminants (T) and then not Is_Constrained (T));
19038 Set_Has_Unknown_Discriminants (CW_Type, True);
19039 Set_Class_Wide_Type (T, CW_Type);
19040 Set_Equivalent_Type (CW_Type, Empty);
19042 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19044 Set_Class_Wide_Type (CW_Type, CW_Type);
19045 end Make_Class_Wide_Type;
19047 ----------------
19048 -- Make_Index --
19049 ----------------
19051 procedure Make_Index
19052 (N : Node_Id;
19053 Related_Nod : Node_Id;
19054 Related_Id : Entity_Id := Empty;
19055 Suffix_Index : Nat := 1;
19056 In_Iter_Schm : Boolean := False)
19058 R : Node_Id;
19059 T : Entity_Id;
19060 Def_Id : Entity_Id := Empty;
19061 Found : Boolean := False;
19063 begin
19064 -- For a discrete range used in a constrained array definition and
19065 -- defined by a range, an implicit conversion to the predefined type
19066 -- INTEGER is assumed if each bound is either a numeric literal, a named
19067 -- number, or an attribute, and the type of both bounds (prior to the
19068 -- implicit conversion) is the type universal_integer. Otherwise, both
19069 -- bounds must be of the same discrete type, other than universal
19070 -- integer; this type must be determinable independently of the
19071 -- context, but using the fact that the type must be discrete and that
19072 -- both bounds must have the same type.
19074 -- Character literals also have a universal type in the absence of
19075 -- of additional context, and are resolved to Standard_Character.
19077 if Nkind (N) = N_Range then
19079 -- The index is given by a range constraint. The bounds are known
19080 -- to be of a consistent type.
19082 if not Is_Overloaded (N) then
19083 T := Etype (N);
19085 -- For universal bounds, choose the specific predefined type
19087 if T = Universal_Integer then
19088 T := Standard_Integer;
19090 elsif T = Any_Character then
19091 Ambiguous_Character (Low_Bound (N));
19093 T := Standard_Character;
19094 end if;
19096 -- The node may be overloaded because some user-defined operators
19097 -- are available, but if a universal interpretation exists it is
19098 -- also the selected one.
19100 elsif Universal_Interpretation (N) = Universal_Integer then
19101 T := Standard_Integer;
19103 else
19104 T := Any_Type;
19106 declare
19107 Ind : Interp_Index;
19108 It : Interp;
19110 begin
19111 Get_First_Interp (N, Ind, It);
19112 while Present (It.Typ) loop
19113 if Is_Discrete_Type (It.Typ) then
19115 if Found
19116 and then not Covers (It.Typ, T)
19117 and then not Covers (T, It.Typ)
19118 then
19119 Error_Msg_N ("ambiguous bounds in discrete range", N);
19120 exit;
19121 else
19122 T := It.Typ;
19123 Found := True;
19124 end if;
19125 end if;
19127 Get_Next_Interp (Ind, It);
19128 end loop;
19130 if T = Any_Type then
19131 Error_Msg_N ("discrete type required for range", N);
19132 Set_Etype (N, Any_Type);
19133 return;
19135 elsif T = Universal_Integer then
19136 T := Standard_Integer;
19137 end if;
19138 end;
19139 end if;
19141 if not Is_Discrete_Type (T) then
19142 Error_Msg_N ("discrete type required for range", N);
19143 Set_Etype (N, Any_Type);
19144 return;
19145 end if;
19147 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19148 and then Attribute_Name (Low_Bound (N)) = Name_First
19149 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19150 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19151 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19152 then
19153 -- The type of the index will be the type of the prefix, as long
19154 -- as the upper bound is 'Last of the same type.
19156 Def_Id := Entity (Prefix (Low_Bound (N)));
19158 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19159 or else Attribute_Name (High_Bound (N)) /= Name_Last
19160 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19161 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19162 then
19163 Def_Id := Empty;
19164 end if;
19165 end if;
19167 R := N;
19168 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19170 elsif Nkind (N) = N_Subtype_Indication then
19172 -- The index is given by a subtype with a range constraint
19174 T := Base_Type (Entity (Subtype_Mark (N)));
19176 if not Is_Discrete_Type (T) then
19177 Error_Msg_N ("discrete type required for range", N);
19178 Set_Etype (N, Any_Type);
19179 return;
19180 end if;
19182 R := Range_Expression (Constraint (N));
19184 Resolve (R, T);
19185 Process_Range_Expr_In_Decl
19186 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19188 elsif Nkind (N) = N_Attribute_Reference then
19190 -- Catch beginner's error (use of attribute other than 'Range)
19192 if Attribute_Name (N) /= Name_Range then
19193 Error_Msg_N ("expect attribute ''Range", N);
19194 Set_Etype (N, Any_Type);
19195 return;
19196 end if;
19198 -- If the node denotes the range of a type mark, that is also the
19199 -- resulting type, and we do not need to create an Itype for it.
19201 if Is_Entity_Name (Prefix (N))
19202 and then Comes_From_Source (N)
19203 and then Is_Type (Entity (Prefix (N)))
19204 and then Is_Discrete_Type (Entity (Prefix (N)))
19205 then
19206 Def_Id := Entity (Prefix (N));
19207 end if;
19209 Analyze_And_Resolve (N);
19210 T := Etype (N);
19211 R := N;
19213 -- If none of the above, must be a subtype. We convert this to a
19214 -- range attribute reference because in the case of declared first
19215 -- named subtypes, the types in the range reference can be different
19216 -- from the type of the entity. A range attribute normalizes the
19217 -- reference and obtains the correct types for the bounds.
19219 -- This transformation is in the nature of an expansion, is only
19220 -- done if expansion is active. In particular, it is not done on
19221 -- formal generic types, because we need to retain the name of the
19222 -- original index for instantiation purposes.
19224 else
19225 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19226 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19227 Set_Etype (N, Any_Integer);
19228 return;
19230 else
19231 -- The type mark may be that of an incomplete type. It is only
19232 -- now that we can get the full view, previous analysis does
19233 -- not look specifically for a type mark.
19235 Set_Entity (N, Get_Full_View (Entity (N)));
19236 Set_Etype (N, Entity (N));
19237 Def_Id := Entity (N);
19239 if not Is_Discrete_Type (Def_Id) then
19240 Error_Msg_N ("discrete type required for index", N);
19241 Set_Etype (N, Any_Type);
19242 return;
19243 end if;
19244 end if;
19246 if Expander_Active then
19247 Rewrite (N,
19248 Make_Attribute_Reference (Sloc (N),
19249 Attribute_Name => Name_Range,
19250 Prefix => Relocate_Node (N)));
19252 -- The original was a subtype mark that does not freeze. This
19253 -- means that the rewritten version must not freeze either.
19255 Set_Must_Not_Freeze (N);
19256 Set_Must_Not_Freeze (Prefix (N));
19257 Analyze_And_Resolve (N);
19258 T := Etype (N);
19259 R := N;
19261 -- If expander is inactive, type is legal, nothing else to construct
19263 else
19264 return;
19265 end if;
19266 end if;
19268 if not Is_Discrete_Type (T) then
19269 Error_Msg_N ("discrete type required for range", N);
19270 Set_Etype (N, Any_Type);
19271 return;
19273 elsif T = Any_Type then
19274 Set_Etype (N, Any_Type);
19275 return;
19276 end if;
19278 -- We will now create the appropriate Itype to describe the range, but
19279 -- first a check. If we originally had a subtype, then we just label
19280 -- the range with this subtype. Not only is there no need to construct
19281 -- a new subtype, but it is wrong to do so for two reasons:
19283 -- 1. A legality concern, if we have a subtype, it must not freeze,
19284 -- and the Itype would cause freezing incorrectly
19286 -- 2. An efficiency concern, if we created an Itype, it would not be
19287 -- recognized as the same type for the purposes of eliminating
19288 -- checks in some circumstances.
19290 -- We signal this case by setting the subtype entity in Def_Id
19292 if No (Def_Id) then
19293 Def_Id :=
19294 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19295 Set_Etype (Def_Id, Base_Type (T));
19297 if Is_Signed_Integer_Type (T) then
19298 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19300 elsif Is_Modular_Integer_Type (T) then
19301 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19303 else
19304 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19305 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19306 Set_First_Literal (Def_Id, First_Literal (T));
19307 end if;
19309 Set_Size_Info (Def_Id, (T));
19310 Set_RM_Size (Def_Id, RM_Size (T));
19311 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19313 Set_Scalar_Range (Def_Id, R);
19314 Conditional_Delay (Def_Id, T);
19316 if Nkind (N) = N_Subtype_Indication then
19317 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19318 end if;
19320 -- In the subtype indication case, if the immediate parent of the
19321 -- new subtype is non-static, then the subtype we create is non-
19322 -- static, even if its bounds are static.
19324 if Nkind (N) = N_Subtype_Indication
19325 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19326 then
19327 Set_Is_Non_Static_Subtype (Def_Id);
19328 end if;
19329 end if;
19331 -- Final step is to label the index with this constructed type
19333 Set_Etype (N, Def_Id);
19334 end Make_Index;
19336 ------------------------------
19337 -- Modular_Type_Declaration --
19338 ------------------------------
19340 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19341 Mod_Expr : constant Node_Id := Expression (Def);
19342 M_Val : Uint;
19344 procedure Set_Modular_Size (Bits : Int);
19345 -- Sets RM_Size to Bits, and Esize to normal word size above this
19347 ----------------------
19348 -- Set_Modular_Size --
19349 ----------------------
19351 procedure Set_Modular_Size (Bits : Int) is
19352 begin
19353 Set_RM_Size (T, UI_From_Int (Bits));
19355 if Bits <= 8 then
19356 Init_Esize (T, 8);
19358 elsif Bits <= 16 then
19359 Init_Esize (T, 16);
19361 elsif Bits <= 32 then
19362 Init_Esize (T, 32);
19364 else
19365 Init_Esize (T, System_Max_Binary_Modulus_Power);
19366 end if;
19368 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19369 Set_Is_Known_Valid (T);
19370 end if;
19371 end Set_Modular_Size;
19373 -- Start of processing for Modular_Type_Declaration
19375 begin
19376 -- If the mod expression is (exactly) 2 * literal, where literal is
19377 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19379 if Warn_On_Suspicious_Modulus_Value
19380 and then Nkind (Mod_Expr) = N_Op_Multiply
19381 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19382 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19383 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19384 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19385 then
19386 Error_Msg_N
19387 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19388 end if;
19390 -- Proceed with analysis of mod expression
19392 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19393 Set_Etype (T, T);
19394 Set_Ekind (T, E_Modular_Integer_Type);
19395 Init_Alignment (T);
19396 Set_Is_Constrained (T);
19398 if not Is_OK_Static_Expression (Mod_Expr) then
19399 Flag_Non_Static_Expr
19400 ("non-static expression used for modular type bound!", Mod_Expr);
19401 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19402 else
19403 M_Val := Expr_Value (Mod_Expr);
19404 end if;
19406 if M_Val < 1 then
19407 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19408 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19409 end if;
19411 if M_Val > 2 ** Standard_Long_Integer_Size then
19412 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19413 end if;
19415 Set_Modulus (T, M_Val);
19417 -- Create bounds for the modular type based on the modulus given in
19418 -- the type declaration and then analyze and resolve those bounds.
19420 Set_Scalar_Range (T,
19421 Make_Range (Sloc (Mod_Expr),
19422 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19423 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19425 -- Properly analyze the literals for the range. We do this manually
19426 -- because we can't go calling Resolve, since we are resolving these
19427 -- bounds with the type, and this type is certainly not complete yet.
19429 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19430 Set_Etype (High_Bound (Scalar_Range (T)), T);
19431 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19432 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19434 -- Loop through powers of two to find number of bits required
19436 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19438 -- Binary case
19440 if M_Val = 2 ** Bits then
19441 Set_Modular_Size (Bits);
19442 return;
19444 -- Nonbinary case
19446 elsif M_Val < 2 ** Bits then
19447 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19448 Set_Non_Binary_Modulus (T);
19450 if Bits > System_Max_Nonbinary_Modulus_Power then
19451 Error_Msg_Uint_1 :=
19452 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19453 Error_Msg_F
19454 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19455 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19456 return;
19458 else
19459 -- In the nonbinary case, set size as per RM 13.3(55)
19461 Set_Modular_Size (Bits);
19462 return;
19463 end if;
19464 end if;
19466 end loop;
19468 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19469 -- so we just signal an error and set the maximum size.
19471 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19472 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19474 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19475 Init_Alignment (T);
19477 end Modular_Type_Declaration;
19479 --------------------------
19480 -- New_Concatenation_Op --
19481 --------------------------
19483 procedure New_Concatenation_Op (Typ : Entity_Id) is
19484 Loc : constant Source_Ptr := Sloc (Typ);
19485 Op : Entity_Id;
19487 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19488 -- Create abbreviated declaration for the formal of a predefined
19489 -- Operator 'Op' of type 'Typ'
19491 --------------------
19492 -- Make_Op_Formal --
19493 --------------------
19495 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19496 Formal : Entity_Id;
19497 begin
19498 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19499 Set_Etype (Formal, Typ);
19500 Set_Mechanism (Formal, Default_Mechanism);
19501 return Formal;
19502 end Make_Op_Formal;
19504 -- Start of processing for New_Concatenation_Op
19506 begin
19507 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19509 Set_Ekind (Op, E_Operator);
19510 Set_Scope (Op, Current_Scope);
19511 Set_Etype (Op, Typ);
19512 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19513 Set_Is_Immediately_Visible (Op);
19514 Set_Is_Intrinsic_Subprogram (Op);
19515 Set_Has_Completion (Op);
19516 Append_Entity (Op, Current_Scope);
19518 Set_Name_Entity_Id (Name_Op_Concat, Op);
19520 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19521 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19522 end New_Concatenation_Op;
19524 -------------------------
19525 -- OK_For_Limited_Init --
19526 -------------------------
19528 -- ???Check all calls of this, and compare the conditions under which it's
19529 -- called.
19531 function OK_For_Limited_Init
19532 (Typ : Entity_Id;
19533 Exp : Node_Id) return Boolean
19535 begin
19536 return Is_CPP_Constructor_Call (Exp)
19537 or else (Ada_Version >= Ada_2005
19538 and then not Debug_Flag_Dot_L
19539 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19540 end OK_For_Limited_Init;
19542 -------------------------------
19543 -- OK_For_Limited_Init_In_05 --
19544 -------------------------------
19546 function OK_For_Limited_Init_In_05
19547 (Typ : Entity_Id;
19548 Exp : Node_Id) return Boolean
19550 begin
19551 -- An object of a limited interface type can be initialized with any
19552 -- expression of a nonlimited descendant type. However this does not
19553 -- apply if this is a view conversion of some other expression. This
19554 -- is checked below.
19556 if Is_Class_Wide_Type (Typ)
19557 and then Is_Limited_Interface (Typ)
19558 and then not Is_Limited_Type (Etype (Exp))
19559 and then Nkind (Exp) /= N_Type_Conversion
19560 then
19561 return True;
19562 end if;
19564 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19565 -- case of limited aggregates (including extension aggregates), and
19566 -- function calls. The function call may have been given in prefixed
19567 -- notation, in which case the original node is an indexed component.
19568 -- If the function is parameterless, the original node was an explicit
19569 -- dereference. The function may also be parameterless, in which case
19570 -- the source node is just an identifier.
19572 -- A branch of a conditional expression may have been removed if the
19573 -- condition is statically known. This happens during expansion, and
19574 -- thus will not happen if previous errors were encountered. The check
19575 -- will have been performed on the chosen branch, which replaces the
19576 -- original conditional expression.
19578 if No (Exp) then
19579 return True;
19580 end if;
19582 case Nkind (Original_Node (Exp)) is
19583 when N_Aggregate
19584 | N_Extension_Aggregate
19585 | N_Function_Call
19586 | N_Op
19588 return True;
19590 when N_Identifier =>
19591 return Present (Entity (Original_Node (Exp)))
19592 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19594 when N_Qualified_Expression =>
19595 return
19596 OK_For_Limited_Init_In_05
19597 (Typ, Expression (Original_Node (Exp)));
19599 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19600 -- with a function call, the expander has rewritten the call into an
19601 -- N_Type_Conversion node to force displacement of the pointer to
19602 -- reference the component containing the secondary dispatch table.
19603 -- Otherwise a type conversion is not a legal context.
19604 -- A return statement for a build-in-place function returning a
19605 -- synchronized type also introduces an unchecked conversion.
19607 when N_Type_Conversion
19608 | N_Unchecked_Type_Conversion
19610 return not Comes_From_Source (Exp)
19611 and then
19612 OK_For_Limited_Init_In_05
19613 (Typ, Expression (Original_Node (Exp)));
19615 when N_Explicit_Dereference
19616 | N_Indexed_Component
19617 | N_Selected_Component
19619 return Nkind (Exp) = N_Function_Call;
19621 -- A use of 'Input is a function call, hence allowed. Normally the
19622 -- attribute will be changed to a call, but the attribute by itself
19623 -- can occur with -gnatc.
19625 when N_Attribute_Reference =>
19626 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19628 -- "return raise ..." is OK
19630 when N_Raise_Expression =>
19631 return True;
19633 -- For a case expression, all dependent expressions must be legal
19635 when N_Case_Expression =>
19636 declare
19637 Alt : Node_Id;
19639 begin
19640 Alt := First (Alternatives (Original_Node (Exp)));
19641 while Present (Alt) loop
19642 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19643 return False;
19644 end if;
19646 Next (Alt);
19647 end loop;
19649 return True;
19650 end;
19652 -- For an if expression, all dependent expressions must be legal
19654 when N_If_Expression =>
19655 declare
19656 Then_Expr : constant Node_Id :=
19657 Next (First (Expressions (Original_Node (Exp))));
19658 Else_Expr : constant Node_Id := Next (Then_Expr);
19659 begin
19660 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19661 and then
19662 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19663 end;
19665 when others =>
19666 return False;
19667 end case;
19668 end OK_For_Limited_Init_In_05;
19670 -------------------------------------------
19671 -- Ordinary_Fixed_Point_Type_Declaration --
19672 -------------------------------------------
19674 procedure Ordinary_Fixed_Point_Type_Declaration
19675 (T : Entity_Id;
19676 Def : Node_Id)
19678 Loc : constant Source_Ptr := Sloc (Def);
19679 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19680 RRS : constant Node_Id := Real_Range_Specification (Def);
19681 Implicit_Base : Entity_Id;
19682 Delta_Val : Ureal;
19683 Small_Val : Ureal;
19684 Low_Val : Ureal;
19685 High_Val : Ureal;
19687 begin
19688 Check_Restriction (No_Fixed_Point, Def);
19690 -- Create implicit base type
19692 Implicit_Base :=
19693 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19694 Set_Etype (Implicit_Base, Implicit_Base);
19696 -- Analyze and process delta expression
19698 Analyze_And_Resolve (Delta_Expr, Any_Real);
19700 Check_Delta_Expression (Delta_Expr);
19701 Delta_Val := Expr_Value_R (Delta_Expr);
19703 Set_Delta_Value (Implicit_Base, Delta_Val);
19705 -- Compute default small from given delta, which is the largest power
19706 -- of two that does not exceed the given delta value.
19708 declare
19709 Tmp : Ureal;
19710 Scale : Int;
19712 begin
19713 Tmp := Ureal_1;
19714 Scale := 0;
19716 if Delta_Val < Ureal_1 then
19717 while Delta_Val < Tmp loop
19718 Tmp := Tmp / Ureal_2;
19719 Scale := Scale + 1;
19720 end loop;
19722 else
19723 loop
19724 Tmp := Tmp * Ureal_2;
19725 exit when Tmp > Delta_Val;
19726 Scale := Scale - 1;
19727 end loop;
19728 end if;
19730 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19731 end;
19733 Set_Small_Value (Implicit_Base, Small_Val);
19735 -- If no range was given, set a dummy range
19737 if RRS <= Empty_Or_Error then
19738 Low_Val := -Small_Val;
19739 High_Val := Small_Val;
19741 -- Otherwise analyze and process given range
19743 else
19744 declare
19745 Low : constant Node_Id := Low_Bound (RRS);
19746 High : constant Node_Id := High_Bound (RRS);
19748 begin
19749 Analyze_And_Resolve (Low, Any_Real);
19750 Analyze_And_Resolve (High, Any_Real);
19751 Check_Real_Bound (Low);
19752 Check_Real_Bound (High);
19754 -- Obtain and set the range
19756 Low_Val := Expr_Value_R (Low);
19757 High_Val := Expr_Value_R (High);
19759 if Low_Val > High_Val then
19760 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19761 end if;
19762 end;
19763 end if;
19765 -- The range for both the implicit base and the declared first subtype
19766 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19767 -- set a temporary range in place. Note that the bounds of the base
19768 -- type will be widened to be symmetrical and to fill the available
19769 -- bits when the type is frozen.
19771 -- We could do this with all discrete types, and probably should, but
19772 -- we absolutely have to do it for fixed-point, since the end-points
19773 -- of the range and the size are determined by the small value, which
19774 -- could be reset before the freeze point.
19776 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19777 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19779 -- Complete definition of first subtype. The inheritance of the rep item
19780 -- chain ensures that SPARK-related pragmas are not clobbered when the
19781 -- ordinary fixed point type acts as a full view of a private type.
19783 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19784 Set_Etype (T, Implicit_Base);
19785 Init_Size_Align (T);
19786 Inherit_Rep_Item_Chain (T, Implicit_Base);
19787 Set_Small_Value (T, Small_Val);
19788 Set_Delta_Value (T, Delta_Val);
19789 Set_Is_Constrained (T);
19790 end Ordinary_Fixed_Point_Type_Declaration;
19792 ----------------------------------
19793 -- Preanalyze_Assert_Expression --
19794 ----------------------------------
19796 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19797 begin
19798 In_Assertion_Expr := In_Assertion_Expr + 1;
19799 Preanalyze_Spec_Expression (N, T);
19800 In_Assertion_Expr := In_Assertion_Expr - 1;
19801 end Preanalyze_Assert_Expression;
19803 -----------------------------------
19804 -- Preanalyze_Default_Expression --
19805 -----------------------------------
19807 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19808 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19809 begin
19810 In_Default_Expr := True;
19811 Preanalyze_Spec_Expression (N, T);
19812 In_Default_Expr := Save_In_Default_Expr;
19813 end Preanalyze_Default_Expression;
19815 --------------------------------
19816 -- Preanalyze_Spec_Expression --
19817 --------------------------------
19819 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19820 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19821 begin
19822 In_Spec_Expression := True;
19823 Preanalyze_And_Resolve (N, T);
19824 In_Spec_Expression := Save_In_Spec_Expression;
19825 end Preanalyze_Spec_Expression;
19827 ----------------------------------------
19828 -- Prepare_Private_Subtype_Completion --
19829 ----------------------------------------
19831 procedure Prepare_Private_Subtype_Completion
19832 (Id : Entity_Id;
19833 Related_Nod : Node_Id)
19835 Id_B : constant Entity_Id := Base_Type (Id);
19836 Full_B : Entity_Id := Full_View (Id_B);
19837 Full : Entity_Id;
19839 begin
19840 if Present (Full_B) then
19842 -- Get to the underlying full view if necessary
19844 if Is_Private_Type (Full_B)
19845 and then Present (Underlying_Full_View (Full_B))
19846 then
19847 Full_B := Underlying_Full_View (Full_B);
19848 end if;
19850 -- The Base_Type is already completed, we can complete the subtype
19851 -- now. We have to create a new entity with the same name, Thus we
19852 -- can't use Create_Itype.
19854 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19855 Set_Is_Itype (Full);
19856 Set_Associated_Node_For_Itype (Full, Related_Nod);
19857 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19858 end if;
19860 -- The parent subtype may be private, but the base might not, in some
19861 -- nested instances. In that case, the subtype does not need to be
19862 -- exchanged. It would still be nice to make private subtypes and their
19863 -- bases consistent at all times ???
19865 if Is_Private_Type (Id_B) then
19866 Append_Elmt (Id, Private_Dependents (Id_B));
19867 end if;
19868 end Prepare_Private_Subtype_Completion;
19870 ---------------------------
19871 -- Process_Discriminants --
19872 ---------------------------
19874 procedure Process_Discriminants
19875 (N : Node_Id;
19876 Prev : Entity_Id := Empty)
19878 Elist : constant Elist_Id := New_Elmt_List;
19879 Id : Node_Id;
19880 Discr : Node_Id;
19881 Discr_Number : Uint;
19882 Discr_Type : Entity_Id;
19883 Default_Present : Boolean := False;
19884 Default_Not_Present : Boolean := False;
19886 begin
19887 -- A composite type other than an array type can have discriminants.
19888 -- On entry, the current scope is the composite type.
19890 -- The discriminants are initially entered into the scope of the type
19891 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19892 -- use, as explained at the end of this procedure.
19894 Discr := First (Discriminant_Specifications (N));
19895 while Present (Discr) loop
19896 Enter_Name (Defining_Identifier (Discr));
19898 -- For navigation purposes we add a reference to the discriminant
19899 -- in the entity for the type. If the current declaration is a
19900 -- completion, place references on the partial view. Otherwise the
19901 -- type is the current scope.
19903 if Present (Prev) then
19905 -- The references go on the partial view, if present. If the
19906 -- partial view has discriminants, the references have been
19907 -- generated already.
19909 if not Has_Discriminants (Prev) then
19910 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19911 end if;
19912 else
19913 Generate_Reference
19914 (Current_Scope, Defining_Identifier (Discr), 'd');
19915 end if;
19917 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19918 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19920 -- Ada 2005 (AI-254)
19922 if Present (Access_To_Subprogram_Definition
19923 (Discriminant_Type (Discr)))
19924 and then Protected_Present (Access_To_Subprogram_Definition
19925 (Discriminant_Type (Discr)))
19926 then
19927 Discr_Type :=
19928 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19929 end if;
19931 else
19932 Find_Type (Discriminant_Type (Discr));
19933 Discr_Type := Etype (Discriminant_Type (Discr));
19935 if Error_Posted (Discriminant_Type (Discr)) then
19936 Discr_Type := Any_Type;
19937 end if;
19938 end if;
19940 -- Handling of discriminants that are access types
19942 if Is_Access_Type (Discr_Type) then
19944 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19945 -- limited record types
19947 if Ada_Version < Ada_2005 then
19948 Check_Access_Discriminant_Requires_Limited
19949 (Discr, Discriminant_Type (Discr));
19950 end if;
19952 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19953 Error_Msg_N
19954 ("(Ada 83) access discriminant not allowed", Discr);
19955 end if;
19957 -- If not access type, must be a discrete type
19959 elsif not Is_Discrete_Type (Discr_Type) then
19960 Error_Msg_N
19961 ("discriminants must have a discrete or access type",
19962 Discriminant_Type (Discr));
19963 end if;
19965 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19967 -- If a discriminant specification includes the assignment compound
19968 -- delimiter followed by an expression, the expression is the default
19969 -- expression of the discriminant; the default expression must be of
19970 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19971 -- a default expression, we do the special preanalysis, since this
19972 -- expression does not freeze (see section "Handling of Default and
19973 -- Per-Object Expressions" in spec of package Sem).
19975 if Present (Expression (Discr)) then
19976 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19978 -- Legaity checks
19980 if Nkind (N) = N_Formal_Type_Declaration then
19981 Error_Msg_N
19982 ("discriminant defaults not allowed for formal type",
19983 Expression (Discr));
19985 -- Flag an error for a tagged type with defaulted discriminants,
19986 -- excluding limited tagged types when compiling for Ada 2012
19987 -- (see AI05-0214).
19989 elsif Is_Tagged_Type (Current_Scope)
19990 and then (not Is_Limited_Type (Current_Scope)
19991 or else Ada_Version < Ada_2012)
19992 and then Comes_From_Source (N)
19993 then
19994 -- Note: see similar test in Check_Or_Process_Discriminants, to
19995 -- handle the (illegal) case of the completion of an untagged
19996 -- view with discriminants with defaults by a tagged full view.
19997 -- We skip the check if Discr does not come from source, to
19998 -- account for the case of an untagged derived type providing
19999 -- defaults for a renamed discriminant from a private untagged
20000 -- ancestor with a tagged full view (ACATS B460006).
20002 if Ada_Version >= Ada_2012 then
20003 Error_Msg_N
20004 ("discriminants of nonlimited tagged type cannot have"
20005 & " defaults",
20006 Expression (Discr));
20007 else
20008 Error_Msg_N
20009 ("discriminants of tagged type cannot have defaults",
20010 Expression (Discr));
20011 end if;
20013 else
20014 Default_Present := True;
20015 Append_Elmt (Expression (Discr), Elist);
20017 -- Tag the defining identifiers for the discriminants with
20018 -- their corresponding default expressions from the tree.
20020 Set_Discriminant_Default_Value
20021 (Defining_Identifier (Discr), Expression (Discr));
20022 end if;
20024 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20025 -- gets set unless we can be sure that no range check is required.
20027 if (GNATprove_Mode or not Expander_Active)
20028 and then not
20029 Is_In_Range
20030 (Expression (Discr), Discr_Type, Assume_Valid => True)
20031 then
20032 Set_Do_Range_Check (Expression (Discr));
20033 end if;
20035 -- No default discriminant value given
20037 else
20038 Default_Not_Present := True;
20039 end if;
20041 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20042 -- Discr_Type but with the null-exclusion attribute
20044 if Ada_Version >= Ada_2005 then
20046 -- Ada 2005 (AI-231): Static checks
20048 if Can_Never_Be_Null (Discr_Type) then
20049 Null_Exclusion_Static_Checks (Discr);
20051 elsif Is_Access_Type (Discr_Type)
20052 and then Null_Exclusion_Present (Discr)
20054 -- No need to check itypes because in their case this check
20055 -- was done at their point of creation
20057 and then not Is_Itype (Discr_Type)
20058 then
20059 if Can_Never_Be_Null (Discr_Type) then
20060 Error_Msg_NE
20061 ("`NOT NULL` not allowed (& already excludes null)",
20062 Discr,
20063 Discr_Type);
20064 end if;
20066 Set_Etype (Defining_Identifier (Discr),
20067 Create_Null_Excluding_Itype
20068 (T => Discr_Type,
20069 Related_Nod => Discr));
20071 -- Check for improper null exclusion if the type is otherwise
20072 -- legal for a discriminant.
20074 elsif Null_Exclusion_Present (Discr)
20075 and then Is_Discrete_Type (Discr_Type)
20076 then
20077 Error_Msg_N
20078 ("null exclusion can only apply to an access type", Discr);
20079 end if;
20081 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20082 -- can't have defaults. Synchronized types, or types that are
20083 -- explicitly limited are fine, but special tests apply to derived
20084 -- types in generics: in a generic body we have to assume the
20085 -- worst, and therefore defaults are not allowed if the parent is
20086 -- a generic formal private type (see ACATS B370001).
20088 if Is_Access_Type (Discr_Type) and then Default_Present then
20089 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20090 or else Is_Limited_Record (Current_Scope)
20091 or else Is_Concurrent_Type (Current_Scope)
20092 or else Is_Concurrent_Record_Type (Current_Scope)
20093 or else Ekind (Current_Scope) = E_Limited_Private_Type
20094 then
20095 if not Is_Derived_Type (Current_Scope)
20096 or else not Is_Generic_Type (Etype (Current_Scope))
20097 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20098 or else Limited_Present
20099 (Type_Definition (Parent (Current_Scope)))
20100 then
20101 null;
20103 else
20104 Error_Msg_N
20105 ("access discriminants of nonlimited types cannot "
20106 & "have defaults", Expression (Discr));
20107 end if;
20109 elsif Present (Expression (Discr)) then
20110 Error_Msg_N
20111 ("(Ada 2005) access discriminants of nonlimited types "
20112 & "cannot have defaults", Expression (Discr));
20113 end if;
20114 end if;
20115 end if;
20117 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
20118 -- This check is relevant only when SPARK_Mode is on as it is not a
20119 -- standard Ada legality rule.
20121 if SPARK_Mode = On
20122 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20123 then
20124 Error_Msg_N ("discriminant cannot be volatile", Discr);
20125 end if;
20127 Next (Discr);
20128 end loop;
20130 -- An element list consisting of the default expressions of the
20131 -- discriminants is constructed in the above loop and used to set
20132 -- the Discriminant_Constraint attribute for the type. If an object
20133 -- is declared of this (record or task) type without any explicit
20134 -- discriminant constraint given, this element list will form the
20135 -- actual parameters for the corresponding initialization procedure
20136 -- for the type.
20138 Set_Discriminant_Constraint (Current_Scope, Elist);
20139 Set_Stored_Constraint (Current_Scope, No_Elist);
20141 -- Default expressions must be provided either for all or for none
20142 -- of the discriminants of a discriminant part. (RM 3.7.1)
20144 if Default_Present and then Default_Not_Present then
20145 Error_Msg_N
20146 ("incomplete specification of defaults for discriminants", N);
20147 end if;
20149 -- The use of the name of a discriminant is not allowed in default
20150 -- expressions of a discriminant part if the specification of the
20151 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20153 -- To detect this, the discriminant names are entered initially with an
20154 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20155 -- attempt to use a void entity (for example in an expression that is
20156 -- type-checked) produces the error message: premature usage. Now after
20157 -- completing the semantic analysis of the discriminant part, we can set
20158 -- the Ekind of all the discriminants appropriately.
20160 Discr := First (Discriminant_Specifications (N));
20161 Discr_Number := Uint_1;
20162 while Present (Discr) loop
20163 Id := Defining_Identifier (Discr);
20164 Set_Ekind (Id, E_Discriminant);
20165 Init_Component_Location (Id);
20166 Init_Esize (Id);
20167 Set_Discriminant_Number (Id, Discr_Number);
20169 -- Make sure this is always set, even in illegal programs
20171 Set_Corresponding_Discriminant (Id, Empty);
20173 -- Initialize the Original_Record_Component to the entity itself.
20174 -- Inherit_Components will propagate the right value to
20175 -- discriminants in derived record types.
20177 Set_Original_Record_Component (Id, Id);
20179 -- Create the discriminal for the discriminant
20181 Build_Discriminal (Id);
20183 Next (Discr);
20184 Discr_Number := Discr_Number + 1;
20185 end loop;
20187 Set_Has_Discriminants (Current_Scope);
20188 end Process_Discriminants;
20190 -----------------------
20191 -- Process_Full_View --
20192 -----------------------
20194 -- WARNING: This routine manages Ghost regions. Return statements must be
20195 -- replaced by gotos which jump to the end of the routine and restore the
20196 -- Ghost mode.
20198 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20199 procedure Collect_Implemented_Interfaces
20200 (Typ : Entity_Id;
20201 Ifaces : Elist_Id);
20202 -- Ada 2005: Gather all the interfaces that Typ directly or
20203 -- inherently implements. Duplicate entries are not added to
20204 -- the list Ifaces.
20206 ------------------------------------
20207 -- Collect_Implemented_Interfaces --
20208 ------------------------------------
20210 procedure Collect_Implemented_Interfaces
20211 (Typ : Entity_Id;
20212 Ifaces : Elist_Id)
20214 Iface : Entity_Id;
20215 Iface_Elmt : Elmt_Id;
20217 begin
20218 -- Abstract interfaces are only associated with tagged record types
20220 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20221 return;
20222 end if;
20224 -- Recursively climb to the ancestors
20226 if Etype (Typ) /= Typ
20228 -- Protect the frontend against wrong cyclic declarations like:
20230 -- type B is new A with private;
20231 -- type C is new A with private;
20232 -- private
20233 -- type B is new C with null record;
20234 -- type C is new B with null record;
20236 and then Etype (Typ) /= Priv_T
20237 and then Etype (Typ) /= Full_T
20238 then
20239 -- Keep separate the management of private type declarations
20241 if Ekind (Typ) = E_Record_Type_With_Private then
20243 -- Handle the following illegal usage:
20244 -- type Private_Type is tagged private;
20245 -- private
20246 -- type Private_Type is new Type_Implementing_Iface;
20248 if Present (Full_View (Typ))
20249 and then Etype (Typ) /= Full_View (Typ)
20250 then
20251 if Is_Interface (Etype (Typ)) then
20252 Append_Unique_Elmt (Etype (Typ), Ifaces);
20253 end if;
20255 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20256 end if;
20258 -- Non-private types
20260 else
20261 if Is_Interface (Etype (Typ)) then
20262 Append_Unique_Elmt (Etype (Typ), Ifaces);
20263 end if;
20265 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20266 end if;
20267 end if;
20269 -- Handle entities in the list of abstract interfaces
20271 if Present (Interfaces (Typ)) then
20272 Iface_Elmt := First_Elmt (Interfaces (Typ));
20273 while Present (Iface_Elmt) loop
20274 Iface := Node (Iface_Elmt);
20276 pragma Assert (Is_Interface (Iface));
20278 if not Contain_Interface (Iface, Ifaces) then
20279 Append_Elmt (Iface, Ifaces);
20280 Collect_Implemented_Interfaces (Iface, Ifaces);
20281 end if;
20283 Next_Elmt (Iface_Elmt);
20284 end loop;
20285 end if;
20286 end Collect_Implemented_Interfaces;
20288 -- Local variables
20290 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20291 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20292 -- Save the Ghost-related attributes to restore on exit
20294 Full_Indic : Node_Id;
20295 Full_Parent : Entity_Id;
20296 Priv_Parent : Entity_Id;
20298 -- Start of processing for Process_Full_View
20300 begin
20301 Mark_And_Set_Ghost_Completion (N, Priv_T);
20303 -- First some sanity checks that must be done after semantic
20304 -- decoration of the full view and thus cannot be placed with other
20305 -- similar checks in Find_Type_Name
20307 if not Is_Limited_Type (Priv_T)
20308 and then (Is_Limited_Type (Full_T)
20309 or else Is_Limited_Composite (Full_T))
20310 then
20311 if In_Instance then
20312 null;
20313 else
20314 Error_Msg_N
20315 ("completion of nonlimited type cannot be limited", Full_T);
20316 Explain_Limited_Type (Full_T, Full_T);
20317 end if;
20319 elsif Is_Abstract_Type (Full_T)
20320 and then not Is_Abstract_Type (Priv_T)
20321 then
20322 Error_Msg_N
20323 ("completion of nonabstract type cannot be abstract", Full_T);
20325 elsif Is_Tagged_Type (Priv_T)
20326 and then Is_Limited_Type (Priv_T)
20327 and then not Is_Limited_Type (Full_T)
20328 then
20329 -- If pragma CPP_Class was applied to the private declaration
20330 -- propagate the limitedness to the full-view
20332 if Is_CPP_Class (Priv_T) then
20333 Set_Is_Limited_Record (Full_T);
20335 -- GNAT allow its own definition of Limited_Controlled to disobey
20336 -- this rule in order in ease the implementation. This test is safe
20337 -- because Root_Controlled is defined in a child of System that
20338 -- normal programs are not supposed to use.
20340 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20341 Set_Is_Limited_Composite (Full_T);
20342 else
20343 Error_Msg_N
20344 ("completion of limited tagged type must be limited", Full_T);
20345 end if;
20347 elsif Is_Generic_Type (Priv_T) then
20348 Error_Msg_N ("generic type cannot have a completion", Full_T);
20349 end if;
20351 -- Check that ancestor interfaces of private and full views are
20352 -- consistent. We omit this check for synchronized types because
20353 -- they are performed on the corresponding record type when frozen.
20355 if Ada_Version >= Ada_2005
20356 and then Is_Tagged_Type (Priv_T)
20357 and then Is_Tagged_Type (Full_T)
20358 and then not Is_Concurrent_Type (Full_T)
20359 then
20360 declare
20361 Iface : Entity_Id;
20362 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20363 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20365 begin
20366 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20367 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20369 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20370 -- an interface type if and only if the full type is descendant
20371 -- of the interface type (AARM 7.3 (7.3/2)).
20373 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20375 if Present (Iface) then
20376 Error_Msg_NE
20377 ("interface in partial view& not implemented by full type "
20378 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20379 end if;
20381 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20383 if Present (Iface) then
20384 Error_Msg_NE
20385 ("interface & not implemented by partial view "
20386 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20387 end if;
20388 end;
20389 end if;
20391 if Is_Tagged_Type (Priv_T)
20392 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20393 and then Is_Derived_Type (Full_T)
20394 then
20395 Priv_Parent := Etype (Priv_T);
20397 -- The full view of a private extension may have been transformed
20398 -- into an unconstrained derived type declaration and a subtype
20399 -- declaration (see build_derived_record_type for details).
20401 if Nkind (N) = N_Subtype_Declaration then
20402 Full_Indic := Subtype_Indication (N);
20403 Full_Parent := Etype (Base_Type (Full_T));
20404 else
20405 Full_Indic := Subtype_Indication (Type_Definition (N));
20406 Full_Parent := Etype (Full_T);
20407 end if;
20409 -- Check that the parent type of the full type is a descendant of
20410 -- the ancestor subtype given in the private extension. If either
20411 -- entity has an Etype equal to Any_Type then we had some previous
20412 -- error situation [7.3(8)].
20414 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20415 goto Leave;
20417 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20418 -- any order. Therefore we don't have to check that its parent must
20419 -- be a descendant of the parent of the private type declaration.
20421 elsif Is_Interface (Priv_Parent)
20422 and then Is_Interface (Full_Parent)
20423 then
20424 null;
20426 -- Ada 2005 (AI-251): If the parent of the private type declaration
20427 -- is an interface there is no need to check that it is an ancestor
20428 -- of the associated full type declaration. The required tests for
20429 -- this case are performed by Build_Derived_Record_Type.
20431 elsif not Is_Interface (Base_Type (Priv_Parent))
20432 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20433 then
20434 Error_Msg_N
20435 ("parent of full type must descend from parent of private "
20436 & "extension", Full_Indic);
20438 -- First check a formal restriction, and then proceed with checking
20439 -- Ada rules. Since the formal restriction is not a serious error, we
20440 -- don't prevent further error detection for this check, hence the
20441 -- ELSE.
20443 else
20444 -- In formal mode, when completing a private extension the type
20445 -- named in the private part must be exactly the same as that
20446 -- named in the visible part.
20448 if Priv_Parent /= Full_Parent then
20449 Error_Msg_Name_1 := Chars (Priv_Parent);
20450 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20451 end if;
20453 -- Check the rules of 7.3(10): if the private extension inherits
20454 -- known discriminants, then the full type must also inherit those
20455 -- discriminants from the same (ancestor) type, and the parent
20456 -- subtype of the full type must be constrained if and only if
20457 -- the ancestor subtype of the private extension is constrained.
20459 if No (Discriminant_Specifications (Parent (Priv_T)))
20460 and then not Has_Unknown_Discriminants (Priv_T)
20461 and then Has_Discriminants (Base_Type (Priv_Parent))
20462 then
20463 declare
20464 Priv_Indic : constant Node_Id :=
20465 Subtype_Indication (Parent (Priv_T));
20467 Priv_Constr : constant Boolean :=
20468 Is_Constrained (Priv_Parent)
20469 or else
20470 Nkind (Priv_Indic) = N_Subtype_Indication
20471 or else
20472 Is_Constrained (Entity (Priv_Indic));
20474 Full_Constr : constant Boolean :=
20475 Is_Constrained (Full_Parent)
20476 or else
20477 Nkind (Full_Indic) = N_Subtype_Indication
20478 or else
20479 Is_Constrained (Entity (Full_Indic));
20481 Priv_Discr : Entity_Id;
20482 Full_Discr : Entity_Id;
20484 begin
20485 Priv_Discr := First_Discriminant (Priv_Parent);
20486 Full_Discr := First_Discriminant (Full_Parent);
20487 while Present (Priv_Discr) and then Present (Full_Discr) loop
20488 if Original_Record_Component (Priv_Discr) =
20489 Original_Record_Component (Full_Discr)
20490 or else
20491 Corresponding_Discriminant (Priv_Discr) =
20492 Corresponding_Discriminant (Full_Discr)
20493 then
20494 null;
20495 else
20496 exit;
20497 end if;
20499 Next_Discriminant (Priv_Discr);
20500 Next_Discriminant (Full_Discr);
20501 end loop;
20503 if Present (Priv_Discr) or else Present (Full_Discr) then
20504 Error_Msg_N
20505 ("full view must inherit discriminants of the parent "
20506 & "type used in the private extension", Full_Indic);
20508 elsif Priv_Constr and then not Full_Constr then
20509 Error_Msg_N
20510 ("parent subtype of full type must be constrained",
20511 Full_Indic);
20513 elsif Full_Constr and then not Priv_Constr then
20514 Error_Msg_N
20515 ("parent subtype of full type must be unconstrained",
20516 Full_Indic);
20517 end if;
20518 end;
20520 -- Check the rules of 7.3(12): if a partial view has neither
20521 -- known or unknown discriminants, then the full type
20522 -- declaration shall define a definite subtype.
20524 elsif not Has_Unknown_Discriminants (Priv_T)
20525 and then not Has_Discriminants (Priv_T)
20526 and then not Is_Constrained (Full_T)
20527 then
20528 Error_Msg_N
20529 ("full view must define a constrained type if partial view "
20530 & "has no discriminants", Full_T);
20531 end if;
20533 -- ??????? Do we implement the following properly ?????
20534 -- If the ancestor subtype of a private extension has constrained
20535 -- discriminants, then the parent subtype of the full view shall
20536 -- impose a statically matching constraint on those discriminants
20537 -- [7.3(13)].
20538 end if;
20540 else
20541 -- For untagged types, verify that a type without discriminants is
20542 -- not completed with an unconstrained type. A separate error message
20543 -- is produced if the full type has defaulted discriminants.
20545 if Is_Definite_Subtype (Priv_T)
20546 and then not Is_Definite_Subtype (Full_T)
20547 then
20548 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20549 Error_Msg_NE
20550 ("full view of& not compatible with declaration#",
20551 Full_T, Priv_T);
20553 if not Is_Tagged_Type (Full_T) then
20554 Error_Msg_N
20555 ("\one is constrained, the other unconstrained", Full_T);
20556 end if;
20557 end if;
20558 end if;
20560 -- AI-419: verify that the use of "limited" is consistent
20562 declare
20563 Orig_Decl : constant Node_Id := Original_Node (N);
20565 begin
20566 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20567 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20568 and then Nkind
20569 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20570 then
20571 if not Limited_Present (Parent (Priv_T))
20572 and then not Synchronized_Present (Parent (Priv_T))
20573 and then Limited_Present (Type_Definition (Orig_Decl))
20574 then
20575 Error_Msg_N
20576 ("full view of non-limited extension cannot be limited", N);
20578 -- Conversely, if the partial view carries the limited keyword,
20579 -- the full view must as well, even if it may be redundant.
20581 elsif Limited_Present (Parent (Priv_T))
20582 and then not Limited_Present (Type_Definition (Orig_Decl))
20583 then
20584 Error_Msg_N
20585 ("full view of limited extension must be explicitly limited",
20587 end if;
20588 end if;
20589 end;
20591 -- Ada 2005 (AI-443): A synchronized private extension must be
20592 -- completed by a task or protected type.
20594 if Ada_Version >= Ada_2005
20595 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20596 and then Synchronized_Present (Parent (Priv_T))
20597 and then not Is_Concurrent_Type (Full_T)
20598 then
20599 Error_Msg_N ("full view of synchronized extension must " &
20600 "be synchronized type", N);
20601 end if;
20603 -- Ada 2005 AI-363: if the full view has discriminants with
20604 -- defaults, it is illegal to declare constrained access subtypes
20605 -- whose designated type is the current type. This allows objects
20606 -- of the type that are declared in the heap to be unconstrained.
20608 if not Has_Unknown_Discriminants (Priv_T)
20609 and then not Has_Discriminants (Priv_T)
20610 and then Has_Discriminants (Full_T)
20611 and then
20612 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20613 then
20614 Set_Has_Constrained_Partial_View (Full_T);
20615 Set_Has_Constrained_Partial_View (Priv_T);
20616 end if;
20618 -- Create a full declaration for all its subtypes recorded in
20619 -- Private_Dependents and swap them similarly to the base type. These
20620 -- are subtypes that have been define before the full declaration of
20621 -- the private type. We also swap the entry in Private_Dependents list
20622 -- so we can properly restore the private view on exit from the scope.
20624 declare
20625 Priv_Elmt : Elmt_Id;
20626 Priv_Scop : Entity_Id;
20627 Priv : Entity_Id;
20628 Full : Entity_Id;
20630 begin
20631 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20632 while Present (Priv_Elmt) loop
20633 Priv := Node (Priv_Elmt);
20634 Priv_Scop := Scope (Priv);
20636 if Ekind_In (Priv, E_Private_Subtype,
20637 E_Limited_Private_Subtype,
20638 E_Record_Subtype_With_Private)
20639 then
20640 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20641 Set_Is_Itype (Full);
20642 Set_Parent (Full, Parent (Priv));
20643 Set_Associated_Node_For_Itype (Full, N);
20645 -- Now we need to complete the private subtype, but since the
20646 -- base type has already been swapped, we must also swap the
20647 -- subtypes (and thus, reverse the arguments in the call to
20648 -- Complete_Private_Subtype). Also note that we may need to
20649 -- re-establish the scope of the private subtype.
20651 Copy_And_Swap (Priv, Full);
20653 if not In_Open_Scopes (Priv_Scop) then
20654 Push_Scope (Priv_Scop);
20656 else
20657 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20659 Priv_Scop := Empty;
20660 end if;
20662 Complete_Private_Subtype (Full, Priv, Full_T, N);
20664 if Present (Priv_Scop) then
20665 Pop_Scope;
20666 end if;
20668 Replace_Elmt (Priv_Elmt, Full);
20669 end if;
20671 Next_Elmt (Priv_Elmt);
20672 end loop;
20673 end;
20675 -- If the private view was tagged, copy the new primitive operations
20676 -- from the private view to the full view.
20678 if Is_Tagged_Type (Full_T) then
20679 declare
20680 Disp_Typ : Entity_Id;
20681 Full_List : Elist_Id;
20682 Prim : Entity_Id;
20683 Prim_Elmt : Elmt_Id;
20684 Priv_List : Elist_Id;
20686 function Contains
20687 (E : Entity_Id;
20688 L : Elist_Id) return Boolean;
20689 -- Determine whether list L contains element E
20691 --------------
20692 -- Contains --
20693 --------------
20695 function Contains
20696 (E : Entity_Id;
20697 L : Elist_Id) return Boolean
20699 List_Elmt : Elmt_Id;
20701 begin
20702 List_Elmt := First_Elmt (L);
20703 while Present (List_Elmt) loop
20704 if Node (List_Elmt) = E then
20705 return True;
20706 end if;
20708 Next_Elmt (List_Elmt);
20709 end loop;
20711 return False;
20712 end Contains;
20714 -- Start of processing
20716 begin
20717 if Is_Tagged_Type (Priv_T) then
20718 Priv_List := Primitive_Operations (Priv_T);
20719 Prim_Elmt := First_Elmt (Priv_List);
20721 -- In the case of a concurrent type completing a private tagged
20722 -- type, primitives may have been declared in between the two
20723 -- views. These subprograms need to be wrapped the same way
20724 -- entries and protected procedures are handled because they
20725 -- cannot be directly shared by the two views.
20727 if Is_Concurrent_Type (Full_T) then
20728 declare
20729 Conc_Typ : constant Entity_Id :=
20730 Corresponding_Record_Type (Full_T);
20731 Curr_Nod : Node_Id := Parent (Conc_Typ);
20732 Wrap_Spec : Node_Id;
20734 begin
20735 while Present (Prim_Elmt) loop
20736 Prim := Node (Prim_Elmt);
20738 if Comes_From_Source (Prim)
20739 and then not Is_Abstract_Subprogram (Prim)
20740 then
20741 Wrap_Spec :=
20742 Make_Subprogram_Declaration (Sloc (Prim),
20743 Specification =>
20744 Build_Wrapper_Spec
20745 (Subp_Id => Prim,
20746 Obj_Typ => Conc_Typ,
20747 Formals =>
20748 Parameter_Specifications
20749 (Parent (Prim))));
20751 Insert_After (Curr_Nod, Wrap_Spec);
20752 Curr_Nod := Wrap_Spec;
20754 Analyze (Wrap_Spec);
20756 -- Remove the wrapper from visibility to avoid
20757 -- spurious conflict with the wrapped entity.
20759 Set_Is_Immediately_Visible
20760 (Defining_Entity (Specification (Wrap_Spec)),
20761 False);
20762 end if;
20764 Next_Elmt (Prim_Elmt);
20765 end loop;
20767 goto Leave;
20768 end;
20770 -- For non-concurrent types, transfer explicit primitives, but
20771 -- omit those inherited from the parent of the private view
20772 -- since they will be re-inherited later on.
20774 else
20775 Full_List := Primitive_Operations (Full_T);
20776 while Present (Prim_Elmt) loop
20777 Prim := Node (Prim_Elmt);
20779 if Comes_From_Source (Prim)
20780 and then not Contains (Prim, Full_List)
20781 then
20782 Append_Elmt (Prim, Full_List);
20783 end if;
20785 Next_Elmt (Prim_Elmt);
20786 end loop;
20787 end if;
20789 -- Untagged private view
20791 else
20792 Full_List := Primitive_Operations (Full_T);
20794 -- In this case the partial view is untagged, so here we locate
20795 -- all of the earlier primitives that need to be treated as
20796 -- dispatching (those that appear between the two views). Note
20797 -- that these additional operations must all be new operations
20798 -- (any earlier operations that override inherited operations
20799 -- of the full view will already have been inserted in the
20800 -- primitives list, marked by Check_Operation_From_Private_View
20801 -- as dispatching. Note that implicit "/=" operators are
20802 -- excluded from being added to the primitives list since they
20803 -- shouldn't be treated as dispatching (tagged "/=" is handled
20804 -- specially).
20806 Prim := Next_Entity (Full_T);
20807 while Present (Prim) and then Prim /= Priv_T loop
20808 if Ekind_In (Prim, E_Procedure, E_Function) then
20809 Disp_Typ := Find_Dispatching_Type (Prim);
20811 if Disp_Typ = Full_T
20812 and then (Chars (Prim) /= Name_Op_Ne
20813 or else Comes_From_Source (Prim))
20814 then
20815 Check_Controlling_Formals (Full_T, Prim);
20817 if Is_Suitable_Primitive (Prim)
20818 and then not Is_Dispatching_Operation (Prim)
20819 then
20820 Append_Elmt (Prim, Full_List);
20821 Set_Is_Dispatching_Operation (Prim);
20822 Set_DT_Position_Value (Prim, No_Uint);
20823 end if;
20825 elsif Is_Dispatching_Operation (Prim)
20826 and then Disp_Typ /= Full_T
20827 then
20828 -- Verify that it is not otherwise controlled by a
20829 -- formal or a return value of type T.
20831 Check_Controlling_Formals (Disp_Typ, Prim);
20832 end if;
20833 end if;
20835 Next_Entity (Prim);
20836 end loop;
20837 end if;
20839 -- For the tagged case, the two views can share the same primitive
20840 -- operations list and the same class-wide type. Update attributes
20841 -- of the class-wide type which depend on the full declaration.
20843 if Is_Tagged_Type (Priv_T) then
20844 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20845 Set_Class_Wide_Type
20846 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20848 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20849 end if;
20850 end;
20851 end if;
20853 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20855 if Known_To_Have_Preelab_Init (Priv_T) then
20857 -- Case where there is a pragma Preelaborable_Initialization. We
20858 -- always allow this in predefined units, which is cheating a bit,
20859 -- but it means we don't have to struggle to meet the requirements in
20860 -- the RM for having Preelaborable Initialization. Otherwise we
20861 -- require that the type meets the RM rules. But we can't check that
20862 -- yet, because of the rule about overriding Initialize, so we simply
20863 -- set a flag that will be checked at freeze time.
20865 if not In_Predefined_Unit (Full_T) then
20866 Set_Must_Have_Preelab_Init (Full_T);
20867 end if;
20868 end if;
20870 -- If pragma CPP_Class was applied to the private type declaration,
20871 -- propagate it now to the full type declaration.
20873 if Is_CPP_Class (Priv_T) then
20874 Set_Is_CPP_Class (Full_T);
20875 Set_Convention (Full_T, Convention_CPP);
20877 -- Check that components of imported CPP types do not have default
20878 -- expressions.
20880 Check_CPP_Type_Has_No_Defaults (Full_T);
20881 end if;
20883 -- If the private view has user specified stream attributes, then so has
20884 -- the full view.
20886 -- Why the test, how could these flags be already set in Full_T ???
20888 if Has_Specified_Stream_Read (Priv_T) then
20889 Set_Has_Specified_Stream_Read (Full_T);
20890 end if;
20892 if Has_Specified_Stream_Write (Priv_T) then
20893 Set_Has_Specified_Stream_Write (Full_T);
20894 end if;
20896 if Has_Specified_Stream_Input (Priv_T) then
20897 Set_Has_Specified_Stream_Input (Full_T);
20898 end if;
20900 if Has_Specified_Stream_Output (Priv_T) then
20901 Set_Has_Specified_Stream_Output (Full_T);
20902 end if;
20904 -- Propagate Default_Initial_Condition-related attributes from the
20905 -- partial view to the full view and its base type.
20907 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20908 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20910 -- Propagate invariant-related attributes from the partial view to the
20911 -- full view and its base type.
20913 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20914 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20916 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20917 -- in the full view without advertising the inheritance in the partial
20918 -- view. This can only occur when the partial view has no parent type
20919 -- and the full view has an interface as a parent. Any other scenarios
20920 -- are illegal because implemented interfaces must match between the
20921 -- two views.
20923 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20924 declare
20925 Full_Par : constant Entity_Id := Etype (Full_T);
20926 Priv_Par : constant Entity_Id := Etype (Priv_T);
20928 begin
20929 if not Is_Interface (Priv_Par)
20930 and then Is_Interface (Full_Par)
20931 and then Has_Inheritable_Invariants (Full_Par)
20932 then
20933 Error_Msg_N
20934 ("hidden inheritance of class-wide type invariants not "
20935 & "allowed", N);
20936 end if;
20937 end;
20938 end if;
20940 -- Propagate predicates to full type, and predicate function if already
20941 -- defined. It is not clear that this can actually happen? the partial
20942 -- view cannot be frozen yet, and the predicate function has not been
20943 -- built. Still it is a cheap check and seems safer to make it.
20945 if Has_Predicates (Priv_T) then
20946 Set_Has_Predicates (Full_T);
20948 if Present (Predicate_Function (Priv_T)) then
20949 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20950 end if;
20951 end if;
20953 <<Leave>>
20954 Restore_Ghost_Region (Saved_GM, Saved_IGR);
20955 end Process_Full_View;
20957 -----------------------------------
20958 -- Process_Incomplete_Dependents --
20959 -----------------------------------
20961 procedure Process_Incomplete_Dependents
20962 (N : Node_Id;
20963 Full_T : Entity_Id;
20964 Inc_T : Entity_Id)
20966 Inc_Elmt : Elmt_Id;
20967 Priv_Dep : Entity_Id;
20968 New_Subt : Entity_Id;
20970 Disc_Constraint : Elist_Id;
20972 begin
20973 if No (Private_Dependents (Inc_T)) then
20974 return;
20975 end if;
20977 -- Itypes that may be generated by the completion of an incomplete
20978 -- subtype are not used by the back-end and not attached to the tree.
20979 -- They are created only for constraint-checking purposes.
20981 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20982 while Present (Inc_Elmt) loop
20983 Priv_Dep := Node (Inc_Elmt);
20985 if Ekind (Priv_Dep) = E_Subprogram_Type then
20987 -- An Access_To_Subprogram type may have a return type or a
20988 -- parameter type that is incomplete. Replace with the full view.
20990 if Etype (Priv_Dep) = Inc_T then
20991 Set_Etype (Priv_Dep, Full_T);
20992 end if;
20994 declare
20995 Formal : Entity_Id;
20997 begin
20998 Formal := First_Formal (Priv_Dep);
20999 while Present (Formal) loop
21000 if Etype (Formal) = Inc_T then
21001 Set_Etype (Formal, Full_T);
21002 end if;
21004 Next_Formal (Formal);
21005 end loop;
21006 end;
21008 elsif Is_Overloadable (Priv_Dep) then
21010 -- If a subprogram in the incomplete dependents list is primitive
21011 -- for a tagged full type then mark it as a dispatching operation,
21012 -- check whether it overrides an inherited subprogram, and check
21013 -- restrictions on its controlling formals. Note that a protected
21014 -- operation is never dispatching: only its wrapper operation
21015 -- (which has convention Ada) is.
21017 if Is_Tagged_Type (Full_T)
21018 and then Is_Primitive (Priv_Dep)
21019 and then Convention (Priv_Dep) /= Convention_Protected
21020 then
21021 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21022 Set_Is_Dispatching_Operation (Priv_Dep);
21023 Check_Controlling_Formals (Full_T, Priv_Dep);
21024 end if;
21026 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21028 -- Can happen during processing of a body before the completion
21029 -- of a TA type. Ignore, because spec is also on dependent list.
21031 return;
21033 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21034 -- corresponding subtype of the full view.
21036 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21037 and then Comes_From_Source (Priv_Dep)
21038 then
21039 Set_Subtype_Indication
21040 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21041 Set_Etype (Priv_Dep, Full_T);
21042 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21043 Set_Analyzed (Parent (Priv_Dep), False);
21045 -- Reanalyze the declaration, suppressing the call to Enter_Name
21046 -- to avoid duplicate names.
21048 Analyze_Subtype_Declaration
21049 (N => Parent (Priv_Dep),
21050 Skip => True);
21052 -- Dependent is a subtype
21054 else
21055 -- We build a new subtype indication using the full view of the
21056 -- incomplete parent. The discriminant constraints have been
21057 -- elaborated already at the point of the subtype declaration.
21059 New_Subt := Create_Itype (E_Void, N);
21061 if Has_Discriminants (Full_T) then
21062 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21063 else
21064 Disc_Constraint := No_Elist;
21065 end if;
21067 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21068 Set_Full_View (Priv_Dep, New_Subt);
21069 end if;
21071 Next_Elmt (Inc_Elmt);
21072 end loop;
21073 end Process_Incomplete_Dependents;
21075 --------------------------------
21076 -- Process_Range_Expr_In_Decl --
21077 --------------------------------
21079 procedure Process_Range_Expr_In_Decl
21080 (R : Node_Id;
21081 T : Entity_Id;
21082 Subtyp : Entity_Id := Empty;
21083 Check_List : List_Id := Empty_List;
21084 R_Check_Off : Boolean := False;
21085 In_Iter_Schm : Boolean := False)
21087 Lo, Hi : Node_Id;
21088 R_Checks : Check_Result;
21089 Insert_Node : Node_Id;
21090 Def_Id : Entity_Id;
21092 begin
21093 Analyze_And_Resolve (R, Base_Type (T));
21095 if Nkind (R) = N_Range then
21097 -- In SPARK, all ranges should be static, with the exception of the
21098 -- discrete type definition of a loop parameter specification.
21100 if not In_Iter_Schm
21101 and then not Is_OK_Static_Range (R)
21102 then
21103 Check_SPARK_05_Restriction ("range should be static", R);
21104 end if;
21106 Lo := Low_Bound (R);
21107 Hi := High_Bound (R);
21109 -- Validity checks on the range of a quantified expression are
21110 -- delayed until the construct is transformed into a loop.
21112 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21113 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21114 then
21115 null;
21117 -- We need to ensure validity of the bounds here, because if we
21118 -- go ahead and do the expansion, then the expanded code will get
21119 -- analyzed with range checks suppressed and we miss the check.
21121 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21122 -- the temporaries generated by routine Remove_Side_Effects by means
21123 -- of validity checks must use the same names. When a range appears
21124 -- in the parent of a generic, the range is processed with checks
21125 -- disabled as part of the generic context and with checks enabled
21126 -- for code generation purposes. This leads to link issues as the
21127 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21128 -- template sees the temporaries generated by Remove_Side_Effects.
21130 else
21131 Validity_Check_Range (R, Subtyp);
21132 end if;
21134 -- If there were errors in the declaration, try and patch up some
21135 -- common mistakes in the bounds. The cases handled are literals
21136 -- which are Integer where the expected type is Real and vice versa.
21137 -- These corrections allow the compilation process to proceed further
21138 -- along since some basic assumptions of the format of the bounds
21139 -- are guaranteed.
21141 if Etype (R) = Any_Type then
21142 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21143 Rewrite (Lo,
21144 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21146 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21147 Rewrite (Hi,
21148 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21150 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21151 Rewrite (Lo,
21152 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21154 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21155 Rewrite (Hi,
21156 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21157 end if;
21159 Set_Etype (Lo, T);
21160 Set_Etype (Hi, T);
21161 end if;
21163 -- If the bounds of the range have been mistakenly given as string
21164 -- literals (perhaps in place of character literals), then an error
21165 -- has already been reported, but we rewrite the string literal as a
21166 -- bound of the range's type to avoid blowups in later processing
21167 -- that looks at static values.
21169 if Nkind (Lo) = N_String_Literal then
21170 Rewrite (Lo,
21171 Make_Attribute_Reference (Sloc (Lo),
21172 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21173 Attribute_Name => Name_First));
21174 Analyze_And_Resolve (Lo);
21175 end if;
21177 if Nkind (Hi) = N_String_Literal then
21178 Rewrite (Hi,
21179 Make_Attribute_Reference (Sloc (Hi),
21180 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21181 Attribute_Name => Name_First));
21182 Analyze_And_Resolve (Hi);
21183 end if;
21185 -- If bounds aren't scalar at this point then exit, avoiding
21186 -- problems with further processing of the range in this procedure.
21188 if not Is_Scalar_Type (Etype (Lo)) then
21189 return;
21190 end if;
21192 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21193 -- then range of the base type. Here we check whether the bounds
21194 -- are in the range of the subtype itself. Note that if the bounds
21195 -- represent the null range the Constraint_Error exception should
21196 -- not be raised.
21198 -- ??? The following code should be cleaned up as follows
21200 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21201 -- is done in the call to Range_Check (R, T); below
21203 -- 2. The use of R_Check_Off should be investigated and possibly
21204 -- removed, this would clean up things a bit.
21206 if Is_Null_Range (Lo, Hi) then
21207 null;
21209 else
21210 -- Capture values of bounds and generate temporaries for them
21211 -- if needed, before applying checks, since checks may cause
21212 -- duplication of the expression without forcing evaluation.
21214 -- The forced evaluation removes side effects from expressions,
21215 -- which should occur also in GNATprove mode. Otherwise, we end up
21216 -- with unexpected insertions of actions at places where this is
21217 -- not supposed to occur, e.g. on default parameters of a call.
21219 if Expander_Active or GNATprove_Mode then
21221 -- Call Force_Evaluation to create declarations as needed to
21222 -- deal with side effects, and also create typ_FIRST/LAST
21223 -- entities for bounds if we have a subtype name.
21225 -- Note: we do this transformation even if expansion is not
21226 -- active if we are in GNATprove_Mode since the transformation
21227 -- is in general required to ensure that the resulting tree has
21228 -- proper Ada semantics.
21230 Force_Evaluation
21231 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21232 Force_Evaluation
21233 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21234 end if;
21236 -- We use a flag here instead of suppressing checks on the type
21237 -- because the type we check against isn't necessarily the place
21238 -- where we put the check.
21240 if not R_Check_Off then
21241 R_Checks := Get_Range_Checks (R, T);
21243 -- Look up tree to find an appropriate insertion point. We
21244 -- can't just use insert_actions because later processing
21245 -- depends on the insertion node. Prior to Ada 2012 the
21246 -- insertion point could only be a declaration or a loop, but
21247 -- quantified expressions can appear within any context in an
21248 -- expression, and the insertion point can be any statement,
21249 -- pragma, or declaration.
21251 Insert_Node := Parent (R);
21252 while Present (Insert_Node) loop
21253 exit when
21254 Nkind (Insert_Node) in N_Declaration
21255 and then
21256 not Nkind_In
21257 (Insert_Node, N_Component_Declaration,
21258 N_Loop_Parameter_Specification,
21259 N_Function_Specification,
21260 N_Procedure_Specification);
21262 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21263 or else Nkind (Insert_Node) in
21264 N_Statement_Other_Than_Procedure_Call
21265 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21266 N_Pragma);
21268 Insert_Node := Parent (Insert_Node);
21269 end loop;
21271 -- Why would Type_Decl not be present??? Without this test,
21272 -- short regression tests fail.
21274 if Present (Insert_Node) then
21276 -- Case of loop statement. Verify that the range is part
21277 -- of the subtype indication of the iteration scheme.
21279 if Nkind (Insert_Node) = N_Loop_Statement then
21280 declare
21281 Indic : Node_Id;
21283 begin
21284 Indic := Parent (R);
21285 while Present (Indic)
21286 and then Nkind (Indic) /= N_Subtype_Indication
21287 loop
21288 Indic := Parent (Indic);
21289 end loop;
21291 if Present (Indic) then
21292 Def_Id := Etype (Subtype_Mark (Indic));
21294 Insert_Range_Checks
21295 (R_Checks,
21296 Insert_Node,
21297 Def_Id,
21298 Sloc (Insert_Node),
21300 Do_Before => True);
21301 end if;
21302 end;
21304 -- Insertion before a declaration. If the declaration
21305 -- includes discriminants, the list of applicable checks
21306 -- is given by the caller.
21308 elsif Nkind (Insert_Node) in N_Declaration then
21309 Def_Id := Defining_Identifier (Insert_Node);
21311 if (Ekind (Def_Id) = E_Record_Type
21312 and then Depends_On_Discriminant (R))
21313 or else
21314 (Ekind (Def_Id) = E_Protected_Type
21315 and then Has_Discriminants (Def_Id))
21316 then
21317 Append_Range_Checks
21318 (R_Checks,
21319 Check_List, Def_Id, Sloc (Insert_Node), R);
21321 else
21322 Insert_Range_Checks
21323 (R_Checks,
21324 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21326 end if;
21328 -- Insertion before a statement. Range appears in the
21329 -- context of a quantified expression. Insertion will
21330 -- take place when expression is expanded.
21332 else
21333 null;
21334 end if;
21335 end if;
21336 end if;
21337 end if;
21339 -- Case of other than an explicit N_Range node
21341 -- The forced evaluation removes side effects from expressions, which
21342 -- should occur also in GNATprove mode. Otherwise, we end up with
21343 -- unexpected insertions of actions at places where this is not
21344 -- supposed to occur, e.g. on default parameters of a call.
21346 elsif Expander_Active or GNATprove_Mode then
21347 Get_Index_Bounds (R, Lo, Hi);
21348 Force_Evaluation (Lo);
21349 Force_Evaluation (Hi);
21350 end if;
21351 end Process_Range_Expr_In_Decl;
21353 --------------------------------------
21354 -- Process_Real_Range_Specification --
21355 --------------------------------------
21357 procedure Process_Real_Range_Specification (Def : Node_Id) is
21358 Spec : constant Node_Id := Real_Range_Specification (Def);
21359 Lo : Node_Id;
21360 Hi : Node_Id;
21361 Err : Boolean := False;
21363 procedure Analyze_Bound (N : Node_Id);
21364 -- Analyze and check one bound
21366 -------------------
21367 -- Analyze_Bound --
21368 -------------------
21370 procedure Analyze_Bound (N : Node_Id) is
21371 begin
21372 Analyze_And_Resolve (N, Any_Real);
21374 if not Is_OK_Static_Expression (N) then
21375 Flag_Non_Static_Expr
21376 ("bound in real type definition is not static!", N);
21377 Err := True;
21378 end if;
21379 end Analyze_Bound;
21381 -- Start of processing for Process_Real_Range_Specification
21383 begin
21384 if Present (Spec) then
21385 Lo := Low_Bound (Spec);
21386 Hi := High_Bound (Spec);
21387 Analyze_Bound (Lo);
21388 Analyze_Bound (Hi);
21390 -- If error, clear away junk range specification
21392 if Err then
21393 Set_Real_Range_Specification (Def, Empty);
21394 end if;
21395 end if;
21396 end Process_Real_Range_Specification;
21398 ---------------------
21399 -- Process_Subtype --
21400 ---------------------
21402 function Process_Subtype
21403 (S : Node_Id;
21404 Related_Nod : Node_Id;
21405 Related_Id : Entity_Id := Empty;
21406 Suffix : Character := ' ') return Entity_Id
21408 P : Node_Id;
21409 Def_Id : Entity_Id;
21410 Error_Node : Node_Id;
21411 Full_View_Id : Entity_Id;
21412 Subtype_Mark_Id : Entity_Id;
21414 May_Have_Null_Exclusion : Boolean;
21416 procedure Check_Incomplete (T : Node_Id);
21417 -- Called to verify that an incomplete type is not used prematurely
21419 ----------------------
21420 -- Check_Incomplete --
21421 ----------------------
21423 procedure Check_Incomplete (T : Node_Id) is
21424 begin
21425 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21427 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21428 and then
21429 not (Ada_Version >= Ada_2005
21430 and then
21431 (Nkind (Parent (T)) = N_Subtype_Declaration
21432 or else (Nkind (Parent (T)) = N_Subtype_Indication
21433 and then Nkind (Parent (Parent (T))) =
21434 N_Subtype_Declaration)))
21435 then
21436 Error_Msg_N ("invalid use of type before its full declaration", T);
21437 end if;
21438 end Check_Incomplete;
21440 -- Start of processing for Process_Subtype
21442 begin
21443 -- Case of no constraints present
21445 if Nkind (S) /= N_Subtype_Indication then
21446 Find_Type (S);
21448 -- No way to proceed if the subtype indication is malformed. This
21449 -- will happen for example when the subtype indication in an object
21450 -- declaration is missing altogether and the expression is analyzed
21451 -- as if it were that indication.
21453 if not Is_Entity_Name (S) then
21454 return Any_Type;
21455 end if;
21457 Check_Incomplete (S);
21458 P := Parent (S);
21460 -- Ada 2005 (AI-231): Static check
21462 if Ada_Version >= Ada_2005
21463 and then Present (P)
21464 and then Null_Exclusion_Present (P)
21465 and then Nkind (P) /= N_Access_To_Object_Definition
21466 and then not Is_Access_Type (Entity (S))
21467 then
21468 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21469 end if;
21471 -- The following is ugly, can't we have a range or even a flag???
21473 May_Have_Null_Exclusion :=
21474 Nkind_In (P, N_Access_Definition,
21475 N_Access_Function_Definition,
21476 N_Access_Procedure_Definition,
21477 N_Access_To_Object_Definition,
21478 N_Allocator,
21479 N_Component_Definition)
21480 or else
21481 Nkind_In (P, N_Derived_Type_Definition,
21482 N_Discriminant_Specification,
21483 N_Formal_Object_Declaration,
21484 N_Object_Declaration,
21485 N_Object_Renaming_Declaration,
21486 N_Parameter_Specification,
21487 N_Subtype_Declaration);
21489 -- Create an Itype that is a duplicate of Entity (S) but with the
21490 -- null-exclusion attribute.
21492 if May_Have_Null_Exclusion
21493 and then Is_Access_Type (Entity (S))
21494 and then Null_Exclusion_Present (P)
21496 -- No need to check the case of an access to object definition.
21497 -- It is correct to define double not-null pointers.
21499 -- Example:
21500 -- type Not_Null_Int_Ptr is not null access Integer;
21501 -- type Acc is not null access Not_Null_Int_Ptr;
21503 and then Nkind (P) /= N_Access_To_Object_Definition
21504 then
21505 if Can_Never_Be_Null (Entity (S)) then
21506 case Nkind (Related_Nod) is
21507 when N_Full_Type_Declaration =>
21508 if Nkind (Type_Definition (Related_Nod))
21509 in N_Array_Type_Definition
21510 then
21511 Error_Node :=
21512 Subtype_Indication
21513 (Component_Definition
21514 (Type_Definition (Related_Nod)));
21515 else
21516 Error_Node :=
21517 Subtype_Indication (Type_Definition (Related_Nod));
21518 end if;
21520 when N_Subtype_Declaration =>
21521 Error_Node := Subtype_Indication (Related_Nod);
21523 when N_Object_Declaration =>
21524 Error_Node := Object_Definition (Related_Nod);
21526 when N_Component_Declaration =>
21527 Error_Node :=
21528 Subtype_Indication (Component_Definition (Related_Nod));
21530 when N_Allocator =>
21531 Error_Node := Expression (Related_Nod);
21533 when others =>
21534 pragma Assert (False);
21535 Error_Node := Related_Nod;
21536 end case;
21538 Error_Msg_NE
21539 ("`NOT NULL` not allowed (& already excludes null)",
21540 Error_Node,
21541 Entity (S));
21542 end if;
21544 Set_Etype (S,
21545 Create_Null_Excluding_Itype
21546 (T => Entity (S),
21547 Related_Nod => P));
21548 Set_Entity (S, Etype (S));
21549 end if;
21551 return Entity (S);
21553 -- Case of constraint present, so that we have an N_Subtype_Indication
21554 -- node (this node is created only if constraints are present).
21556 else
21557 Find_Type (Subtype_Mark (S));
21559 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21560 and then not
21561 (Nkind (Parent (S)) = N_Subtype_Declaration
21562 and then Is_Itype (Defining_Identifier (Parent (S))))
21563 then
21564 Check_Incomplete (Subtype_Mark (S));
21565 end if;
21567 P := Parent (S);
21568 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21570 -- Explicit subtype declaration case
21572 if Nkind (P) = N_Subtype_Declaration then
21573 Def_Id := Defining_Identifier (P);
21575 -- Explicit derived type definition case
21577 elsif Nkind (P) = N_Derived_Type_Definition then
21578 Def_Id := Defining_Identifier (Parent (P));
21580 -- Implicit case, the Def_Id must be created as an implicit type.
21581 -- The one exception arises in the case of concurrent types, array
21582 -- and access types, where other subsidiary implicit types may be
21583 -- created and must appear before the main implicit type. In these
21584 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21585 -- has not yet been called to create Def_Id.
21587 else
21588 if Is_Array_Type (Subtype_Mark_Id)
21589 or else Is_Concurrent_Type (Subtype_Mark_Id)
21590 or else Is_Access_Type (Subtype_Mark_Id)
21591 then
21592 Def_Id := Empty;
21594 -- For the other cases, we create a new unattached Itype,
21595 -- and set the indication to ensure it gets attached later.
21597 else
21598 Def_Id :=
21599 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21600 end if;
21601 end if;
21603 -- If the kind of constraint is invalid for this kind of type,
21604 -- then give an error, and then pretend no constraint was given.
21606 if not Is_Valid_Constraint_Kind
21607 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21608 then
21609 Error_Msg_N
21610 ("incorrect constraint for this kind of type", Constraint (S));
21612 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21614 -- Set Ekind of orphan itype, to prevent cascaded errors
21616 if Present (Def_Id) then
21617 Set_Ekind (Def_Id, Ekind (Any_Type));
21618 end if;
21620 -- Make recursive call, having got rid of the bogus constraint
21622 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21623 end if;
21625 -- Remaining processing depends on type. Select on Base_Type kind to
21626 -- ensure getting to the concrete type kind in the case of a private
21627 -- subtype (needed when only doing semantic analysis).
21629 case Ekind (Base_Type (Subtype_Mark_Id)) is
21630 when Access_Kind =>
21632 -- If this is a constraint on a class-wide type, discard it.
21633 -- There is currently no way to express a partial discriminant
21634 -- constraint on a type with unknown discriminants. This is
21635 -- a pathology that the ACATS wisely decides not to test.
21637 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21638 if Comes_From_Source (S) then
21639 Error_Msg_N
21640 ("constraint on class-wide type ignored??",
21641 Constraint (S));
21642 end if;
21644 if Nkind (P) = N_Subtype_Declaration then
21645 Set_Subtype_Indication (P,
21646 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21647 end if;
21649 return Subtype_Mark_Id;
21650 end if;
21652 Constrain_Access (Def_Id, S, Related_Nod);
21654 if Expander_Active
21655 and then Is_Itype (Designated_Type (Def_Id))
21656 and then Nkind (Related_Nod) = N_Subtype_Declaration
21657 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21658 then
21659 Build_Itype_Reference
21660 (Designated_Type (Def_Id), Related_Nod);
21661 end if;
21663 when Array_Kind =>
21664 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21666 when Decimal_Fixed_Point_Kind =>
21667 Constrain_Decimal (Def_Id, S);
21669 when Enumeration_Kind =>
21670 Constrain_Enumeration (Def_Id, S);
21672 when Ordinary_Fixed_Point_Kind =>
21673 Constrain_Ordinary_Fixed (Def_Id, S);
21675 when Float_Kind =>
21676 Constrain_Float (Def_Id, S);
21678 when Integer_Kind =>
21679 Constrain_Integer (Def_Id, S);
21681 when Class_Wide_Kind
21682 | E_Incomplete_Type
21683 | E_Record_Subtype
21684 | E_Record_Type
21686 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21688 if Ekind (Def_Id) = E_Incomplete_Type then
21689 Set_Private_Dependents (Def_Id, New_Elmt_List);
21690 end if;
21692 when Private_Kind =>
21694 -- A private type with unknown discriminants may be completed
21695 -- by an unconstrained array type.
21697 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21698 and then Present (Full_View (Subtype_Mark_Id))
21699 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21700 then
21701 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21703 -- ... but more commonly is completed by a discriminated record
21704 -- type.
21706 else
21707 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21708 end if;
21710 -- The base type may be private but Def_Id may be a full view
21711 -- in an instance.
21713 if Is_Private_Type (Def_Id) then
21714 Set_Private_Dependents (Def_Id, New_Elmt_List);
21715 end if;
21717 -- In case of an invalid constraint prevent further processing
21718 -- since the type constructed is missing expected fields.
21720 if Etype (Def_Id) = Any_Type then
21721 return Def_Id;
21722 end if;
21724 -- If the full view is that of a task with discriminants,
21725 -- we must constrain both the concurrent type and its
21726 -- corresponding record type. Otherwise we will just propagate
21727 -- the constraint to the full view, if available.
21729 if Present (Full_View (Subtype_Mark_Id))
21730 and then Has_Discriminants (Subtype_Mark_Id)
21731 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21732 then
21733 Full_View_Id :=
21734 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21736 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21737 Constrain_Concurrent (Full_View_Id, S,
21738 Related_Nod, Related_Id, Suffix);
21739 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21740 Set_Full_View (Def_Id, Full_View_Id);
21742 -- Introduce an explicit reference to the private subtype,
21743 -- to prevent scope anomalies in gigi if first use appears
21744 -- in a nested context, e.g. a later function body.
21745 -- Should this be generated in other contexts than a full
21746 -- type declaration?
21748 if Is_Itype (Def_Id)
21749 and then
21750 Nkind (Parent (P)) = N_Full_Type_Declaration
21751 then
21752 Build_Itype_Reference (Def_Id, Parent (P));
21753 end if;
21755 else
21756 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21757 end if;
21759 when Concurrent_Kind =>
21760 Constrain_Concurrent (Def_Id, S,
21761 Related_Nod, Related_Id, Suffix);
21763 when others =>
21764 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21765 end case;
21767 -- Size, Alignment, Representation aspects and Convention are always
21768 -- inherited from the base type.
21770 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21771 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21772 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21774 -- The anonymous subtype created for the subtype indication
21775 -- inherits the predicates of the parent.
21777 if Has_Predicates (Subtype_Mark_Id) then
21778 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21780 -- Indicate where the predicate function may be found
21782 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
21783 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21784 end if;
21785 end if;
21787 return Def_Id;
21788 end if;
21789 end Process_Subtype;
21791 -----------------------------
21792 -- Record_Type_Declaration --
21793 -----------------------------
21795 procedure Record_Type_Declaration
21796 (T : Entity_Id;
21797 N : Node_Id;
21798 Prev : Entity_Id)
21800 Def : constant Node_Id := Type_Definition (N);
21801 Is_Tagged : Boolean;
21802 Tag_Comp : Entity_Id;
21804 begin
21805 -- These flags must be initialized before calling Process_Discriminants
21806 -- because this routine makes use of them.
21808 Set_Ekind (T, E_Record_Type);
21809 Set_Etype (T, T);
21810 Init_Size_Align (T);
21811 Set_Interfaces (T, No_Elist);
21812 Set_Stored_Constraint (T, No_Elist);
21813 Set_Default_SSO (T);
21814 Set_No_Reordering (T, No_Component_Reordering);
21816 -- Normal case
21818 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21819 if Limited_Present (Def) then
21820 Check_SPARK_05_Restriction ("limited is not allowed", N);
21821 end if;
21823 if Abstract_Present (Def) then
21824 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21825 end if;
21827 -- The flag Is_Tagged_Type might have already been set by
21828 -- Find_Type_Name if it detected an error for declaration T. This
21829 -- arises in the case of private tagged types where the full view
21830 -- omits the word tagged.
21832 Is_Tagged :=
21833 Tagged_Present (Def)
21834 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21836 Set_Is_Limited_Record (T, Limited_Present (Def));
21838 if Is_Tagged then
21839 Set_Is_Tagged_Type (T, True);
21840 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21841 end if;
21843 -- Type is abstract if full declaration carries keyword, or if
21844 -- previous partial view did.
21846 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21847 or else Abstract_Present (Def));
21849 else
21850 Check_SPARK_05_Restriction ("interface is not allowed", N);
21852 Is_Tagged := True;
21853 Analyze_Interface_Declaration (T, Def);
21855 if Present (Discriminant_Specifications (N)) then
21856 Error_Msg_N
21857 ("interface types cannot have discriminants",
21858 Defining_Identifier
21859 (First (Discriminant_Specifications (N))));
21860 end if;
21861 end if;
21863 -- First pass: if there are self-referential access components,
21864 -- create the required anonymous access type declarations, and if
21865 -- need be an incomplete type declaration for T itself.
21867 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21869 if Ada_Version >= Ada_2005
21870 and then Present (Interface_List (Def))
21871 then
21872 Check_Interfaces (N, Def);
21874 declare
21875 Ifaces_List : Elist_Id;
21877 begin
21878 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21879 -- already in the parents.
21881 Collect_Interfaces
21882 (T => T,
21883 Ifaces_List => Ifaces_List,
21884 Exclude_Parents => True);
21886 Set_Interfaces (T, Ifaces_List);
21887 end;
21888 end if;
21890 -- Records constitute a scope for the component declarations within.
21891 -- The scope is created prior to the processing of these declarations.
21892 -- Discriminants are processed first, so that they are visible when
21893 -- processing the other components. The Ekind of the record type itself
21894 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21896 -- Enter record scope
21898 Push_Scope (T);
21900 -- If an incomplete or private type declaration was already given for
21901 -- the type, then this scope already exists, and the discriminants have
21902 -- been declared within. We must verify that the full declaration
21903 -- matches the incomplete one.
21905 Check_Or_Process_Discriminants (N, T, Prev);
21907 Set_Is_Constrained (T, not Has_Discriminants (T));
21908 Set_Has_Delayed_Freeze (T, True);
21910 -- For tagged types add a manually analyzed component corresponding
21911 -- to the component _tag, the corresponding piece of tree will be
21912 -- expanded as part of the freezing actions if it is not a CPP_Class.
21914 if Is_Tagged then
21916 -- Do not add the tag unless we are in expansion mode
21918 if Expander_Active then
21919 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21920 Enter_Name (Tag_Comp);
21922 Set_Ekind (Tag_Comp, E_Component);
21923 Set_Is_Tag (Tag_Comp);
21924 Set_Is_Aliased (Tag_Comp);
21925 Set_Etype (Tag_Comp, RTE (RE_Tag));
21926 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21927 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21928 Init_Component_Location (Tag_Comp);
21930 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21931 -- implemented interfaces.
21933 if Has_Interfaces (T) then
21934 Add_Interface_Tag_Components (N, T);
21935 end if;
21936 end if;
21938 Make_Class_Wide_Type (T);
21939 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21940 end if;
21942 -- We must suppress range checks when processing record components in
21943 -- the presence of discriminants, since we don't want spurious checks to
21944 -- be generated during their analysis, but Suppress_Range_Checks flags
21945 -- must be reset the after processing the record definition.
21947 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21948 -- couldn't we just use the normal range check suppression method here.
21949 -- That would seem cleaner ???
21951 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21952 Set_Kill_Range_Checks (T, True);
21953 Record_Type_Definition (Def, Prev);
21954 Set_Kill_Range_Checks (T, False);
21955 else
21956 Record_Type_Definition (Def, Prev);
21957 end if;
21959 -- Exit from record scope
21961 End_Scope;
21963 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21964 -- the implemented interfaces and associate them an aliased entity.
21966 if Is_Tagged
21967 and then not Is_Empty_List (Interface_List (Def))
21968 then
21969 Derive_Progenitor_Subprograms (T, T);
21970 end if;
21972 Check_Function_Writable_Actuals (N);
21973 end Record_Type_Declaration;
21975 ----------------------------
21976 -- Record_Type_Definition --
21977 ----------------------------
21979 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21980 Component : Entity_Id;
21981 Ctrl_Components : Boolean := False;
21982 Final_Storage_Only : Boolean;
21983 T : Entity_Id;
21985 begin
21986 if Ekind (Prev_T) = E_Incomplete_Type then
21987 T := Full_View (Prev_T);
21988 else
21989 T := Prev_T;
21990 end if;
21992 -- In SPARK, tagged types and type extensions may only be declared in
21993 -- the specification of library unit packages.
21995 if Present (Def) and then Is_Tagged_Type (T) then
21996 declare
21997 Typ : Node_Id;
21998 Ctxt : Node_Id;
22000 begin
22001 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
22002 Typ := Parent (Def);
22003 else
22004 pragma Assert
22005 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
22006 Typ := Parent (Parent (Def));
22007 end if;
22009 Ctxt := Parent (Typ);
22011 if Nkind (Ctxt) = N_Package_Body
22012 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
22013 then
22014 Check_SPARK_05_Restriction
22015 ("type should be defined in package specification", Typ);
22017 elsif Nkind (Ctxt) /= N_Package_Specification
22018 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22019 then
22020 Check_SPARK_05_Restriction
22021 ("type should be defined in library unit package", Typ);
22022 end if;
22023 end;
22024 end if;
22026 Final_Storage_Only := not Is_Controlled (T);
22028 -- Ada 2005: Check whether an explicit Limited is present in a derived
22029 -- type declaration.
22031 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22032 and then Limited_Present (Parent (Def))
22033 then
22034 Set_Is_Limited_Record (T);
22035 end if;
22037 -- If the component list of a record type is defined by the reserved
22038 -- word null and there is no discriminant part, then the record type has
22039 -- no components and all records of the type are null records (RM 3.7)
22040 -- This procedure is also called to process the extension part of a
22041 -- record extension, in which case the current scope may have inherited
22042 -- components.
22044 if No (Def)
22045 or else No (Component_List (Def))
22046 or else Null_Present (Component_List (Def))
22047 then
22048 if not Is_Tagged_Type (T) then
22049 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22050 end if;
22052 else
22053 Analyze_Declarations (Component_Items (Component_List (Def)));
22055 if Present (Variant_Part (Component_List (Def))) then
22056 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22057 Analyze (Variant_Part (Component_List (Def)));
22058 end if;
22059 end if;
22061 -- After completing the semantic analysis of the record definition,
22062 -- record components, both new and inherited, are accessible. Set their
22063 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22064 -- whose Ekind may be void.
22066 Component := First_Entity (Current_Scope);
22067 while Present (Component) loop
22068 if Ekind (Component) = E_Void
22069 and then not Is_Itype (Component)
22070 then
22071 Set_Ekind (Component, E_Component);
22072 Init_Component_Location (Component);
22073 end if;
22075 Propagate_Concurrent_Flags (T, Etype (Component));
22077 if Ekind (Component) /= E_Component then
22078 null;
22080 -- Do not set Has_Controlled_Component on a class-wide equivalent
22081 -- type. See Make_CW_Equivalent_Type.
22083 elsif not Is_Class_Wide_Equivalent_Type (T)
22084 and then (Has_Controlled_Component (Etype (Component))
22085 or else (Chars (Component) /= Name_uParent
22086 and then Is_Controlled (Etype (Component))))
22087 then
22088 Set_Has_Controlled_Component (T, True);
22089 Final_Storage_Only :=
22090 Final_Storage_Only
22091 and then Finalize_Storage_Only (Etype (Component));
22092 Ctrl_Components := True;
22093 end if;
22095 Next_Entity (Component);
22096 end loop;
22098 -- A Type is Finalize_Storage_Only only if all its controlled components
22099 -- are also.
22101 if Ctrl_Components then
22102 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22103 end if;
22105 -- Place reference to end record on the proper entity, which may
22106 -- be a partial view.
22108 if Present (Def) then
22109 Process_End_Label (Def, 'e', Prev_T);
22110 end if;
22111 end Record_Type_Definition;
22113 ------------------------
22114 -- Replace_Components --
22115 ------------------------
22117 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22118 function Process (N : Node_Id) return Traverse_Result;
22120 -------------
22121 -- Process --
22122 -------------
22124 function Process (N : Node_Id) return Traverse_Result is
22125 Comp : Entity_Id;
22127 begin
22128 if Nkind (N) = N_Discriminant_Specification then
22129 Comp := First_Discriminant (Typ);
22130 while Present (Comp) loop
22131 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22132 Set_Defining_Identifier (N, Comp);
22133 exit;
22134 end if;
22136 Next_Discriminant (Comp);
22137 end loop;
22139 elsif Nkind (N) = N_Variant_Part then
22140 Comp := First_Discriminant (Typ);
22141 while Present (Comp) loop
22142 if Chars (Comp) = Chars (Name (N)) then
22143 Set_Entity (Name (N), Comp);
22144 exit;
22145 end if;
22147 Next_Discriminant (Comp);
22148 end loop;
22150 elsif Nkind (N) = N_Component_Declaration then
22151 Comp := First_Component (Typ);
22152 while Present (Comp) loop
22153 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22154 Set_Defining_Identifier (N, Comp);
22155 exit;
22156 end if;
22158 Next_Component (Comp);
22159 end loop;
22160 end if;
22162 return OK;
22163 end Process;
22165 procedure Replace is new Traverse_Proc (Process);
22167 -- Start of processing for Replace_Components
22169 begin
22170 Replace (Decl);
22171 end Replace_Components;
22173 -------------------------------
22174 -- Set_Completion_Referenced --
22175 -------------------------------
22177 procedure Set_Completion_Referenced (E : Entity_Id) is
22178 begin
22179 -- If in main unit, mark entity that is a completion as referenced,
22180 -- warnings go on the partial view when needed.
22182 if In_Extended_Main_Source_Unit (E) then
22183 Set_Referenced (E);
22184 end if;
22185 end Set_Completion_Referenced;
22187 ---------------------
22188 -- Set_Default_SSO --
22189 ---------------------
22191 procedure Set_Default_SSO (T : Entity_Id) is
22192 begin
22193 case Opt.Default_SSO is
22194 when ' ' =>
22195 null;
22196 when 'L' =>
22197 Set_SSO_Set_Low_By_Default (T, True);
22198 when 'H' =>
22199 Set_SSO_Set_High_By_Default (T, True);
22200 when others =>
22201 raise Program_Error;
22202 end case;
22203 end Set_Default_SSO;
22205 ---------------------
22206 -- Set_Fixed_Range --
22207 ---------------------
22209 -- The range for fixed-point types is complicated by the fact that we
22210 -- do not know the exact end points at the time of the declaration. This
22211 -- is true for three reasons:
22213 -- A size clause may affect the fudging of the end-points.
22214 -- A small clause may affect the values of the end-points.
22215 -- We try to include the end-points if it does not affect the size.
22217 -- This means that the actual end-points must be established at the
22218 -- point when the type is frozen. Meanwhile, we first narrow the range
22219 -- as permitted (so that it will fit if necessary in a small specified
22220 -- size), and then build a range subtree with these narrowed bounds.
22221 -- Set_Fixed_Range constructs the range from real literal values, and
22222 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22224 -- The parent of this range is set to point to the entity so that it is
22225 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22226 -- other scalar types, which are just pointers to the range in the
22227 -- original tree, this would otherwise be an orphan).
22229 -- The tree is left unanalyzed. When the type is frozen, the processing
22230 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22231 -- analyzed, and uses this as an indication that it should complete
22232 -- work on the range (it will know the final small and size values).
22234 procedure Set_Fixed_Range
22235 (E : Entity_Id;
22236 Loc : Source_Ptr;
22237 Lo : Ureal;
22238 Hi : Ureal)
22240 S : constant Node_Id :=
22241 Make_Range (Loc,
22242 Low_Bound => Make_Real_Literal (Loc, Lo),
22243 High_Bound => Make_Real_Literal (Loc, Hi));
22244 begin
22245 Set_Scalar_Range (E, S);
22246 Set_Parent (S, E);
22248 -- Before the freeze point, the bounds of a fixed point are universal
22249 -- and carry the corresponding type.
22251 Set_Etype (Low_Bound (S), Universal_Real);
22252 Set_Etype (High_Bound (S), Universal_Real);
22253 end Set_Fixed_Range;
22255 ----------------------------------
22256 -- Set_Scalar_Range_For_Subtype --
22257 ----------------------------------
22259 procedure Set_Scalar_Range_For_Subtype
22260 (Def_Id : Entity_Id;
22261 R : Node_Id;
22262 Subt : Entity_Id)
22264 Kind : constant Entity_Kind := Ekind (Def_Id);
22266 begin
22267 -- Defend against previous error
22269 if Nkind (R) = N_Error then
22270 return;
22271 end if;
22273 Set_Scalar_Range (Def_Id, R);
22275 -- We need to link the range into the tree before resolving it so
22276 -- that types that are referenced, including importantly the subtype
22277 -- itself, are properly frozen (Freeze_Expression requires that the
22278 -- expression be properly linked into the tree). Of course if it is
22279 -- already linked in, then we do not disturb the current link.
22281 if No (Parent (R)) then
22282 Set_Parent (R, Def_Id);
22283 end if;
22285 -- Reset the kind of the subtype during analysis of the range, to
22286 -- catch possible premature use in the bounds themselves.
22288 Set_Ekind (Def_Id, E_Void);
22289 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22290 Set_Ekind (Def_Id, Kind);
22291 end Set_Scalar_Range_For_Subtype;
22293 --------------------------------------------------------
22294 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22295 --------------------------------------------------------
22297 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22298 (E : Entity_Id)
22300 begin
22301 -- Make sure set if encountered during Expand_To_Stored_Constraint
22303 Set_Stored_Constraint (E, No_Elist);
22305 -- Give it the right value
22307 if Is_Constrained (E) and then Has_Discriminants (E) then
22308 Set_Stored_Constraint (E,
22309 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22310 end if;
22311 end Set_Stored_Constraint_From_Discriminant_Constraint;
22313 -------------------------------------
22314 -- Signed_Integer_Type_Declaration --
22315 -------------------------------------
22317 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22318 Implicit_Base : Entity_Id;
22319 Base_Typ : Entity_Id;
22320 Lo_Val : Uint;
22321 Hi_Val : Uint;
22322 Errs : Boolean := False;
22323 Lo : Node_Id;
22324 Hi : Node_Id;
22326 function Can_Derive_From (E : Entity_Id) return Boolean;
22327 -- Determine whether given bounds allow derivation from specified type
22329 procedure Check_Bound (Expr : Node_Id);
22330 -- Check bound to make sure it is integral and static. If not, post
22331 -- appropriate error message and set Errs flag
22333 ---------------------
22334 -- Can_Derive_From --
22335 ---------------------
22337 -- Note we check both bounds against both end values, to deal with
22338 -- strange types like ones with a range of 0 .. -12341234.
22340 function Can_Derive_From (E : Entity_Id) return Boolean is
22341 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22342 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22343 begin
22344 return Lo <= Lo_Val and then Lo_Val <= Hi
22345 and then
22346 Lo <= Hi_Val and then Hi_Val <= Hi;
22347 end Can_Derive_From;
22349 -----------------
22350 -- Check_Bound --
22351 -----------------
22353 procedure Check_Bound (Expr : Node_Id) is
22354 begin
22355 -- If a range constraint is used as an integer type definition, each
22356 -- bound of the range must be defined by a static expression of some
22357 -- integer type, but the two bounds need not have the same integer
22358 -- type (Negative bounds are allowed.) (RM 3.5.4)
22360 if not Is_Integer_Type (Etype (Expr)) then
22361 Error_Msg_N
22362 ("integer type definition bounds must be of integer type", Expr);
22363 Errs := True;
22365 elsif not Is_OK_Static_Expression (Expr) then
22366 Flag_Non_Static_Expr
22367 ("non-static expression used for integer type bound!", Expr);
22368 Errs := True;
22370 -- The bounds are folded into literals, and we set their type to be
22371 -- universal, to avoid typing difficulties: we cannot set the type
22372 -- of the literal to the new type, because this would be a forward
22373 -- reference for the back end, and if the original type is user-
22374 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22376 else
22377 if Is_Entity_Name (Expr) then
22378 Fold_Uint (Expr, Expr_Value (Expr), True);
22379 end if;
22381 Set_Etype (Expr, Universal_Integer);
22382 end if;
22383 end Check_Bound;
22385 -- Start of processing for Signed_Integer_Type_Declaration
22387 begin
22388 -- Create an anonymous base type
22390 Implicit_Base :=
22391 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22393 -- Analyze and check the bounds, they can be of any integer type
22395 Lo := Low_Bound (Def);
22396 Hi := High_Bound (Def);
22398 -- Arbitrarily use Integer as the type if either bound had an error
22400 if Hi = Error or else Lo = Error then
22401 Base_Typ := Any_Integer;
22402 Set_Error_Posted (T, True);
22404 -- Here both bounds are OK expressions
22406 else
22407 Analyze_And_Resolve (Lo, Any_Integer);
22408 Analyze_And_Resolve (Hi, Any_Integer);
22410 Check_Bound (Lo);
22411 Check_Bound (Hi);
22413 if Errs then
22414 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22415 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22416 end if;
22418 -- Find type to derive from
22420 Lo_Val := Expr_Value (Lo);
22421 Hi_Val := Expr_Value (Hi);
22423 if Can_Derive_From (Standard_Short_Short_Integer) then
22424 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22426 elsif Can_Derive_From (Standard_Short_Integer) then
22427 Base_Typ := Base_Type (Standard_Short_Integer);
22429 elsif Can_Derive_From (Standard_Integer) then
22430 Base_Typ := Base_Type (Standard_Integer);
22432 elsif Can_Derive_From (Standard_Long_Integer) then
22433 Base_Typ := Base_Type (Standard_Long_Integer);
22435 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22436 Check_Restriction (No_Long_Long_Integers, Def);
22437 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22439 else
22440 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22441 Error_Msg_N ("integer type definition bounds out of range", Def);
22442 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22443 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22444 end if;
22445 end if;
22447 -- Complete both implicit base and declared first subtype entities. The
22448 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22449 -- are not clobbered when the signed integer type acts as a full view of
22450 -- a private type.
22452 Set_Etype (Implicit_Base, Base_Typ);
22453 Set_Size_Info (Implicit_Base, Base_Typ);
22454 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22455 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22456 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22458 Set_Ekind (T, E_Signed_Integer_Subtype);
22459 Set_Etype (T, Implicit_Base);
22460 Set_Size_Info (T, Implicit_Base);
22461 Inherit_Rep_Item_Chain (T, Implicit_Base);
22462 Set_Scalar_Range (T, Def);
22463 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22464 Set_Is_Constrained (T);
22465 end Signed_Integer_Type_Declaration;
22467 end Sem_Ch3;