[NDS32] new attribute no_prologue and new option -mret-in-naked-func.
[official-gcc.git] / gcc / ada / sem_ch13.adb
blobbdd9f4ed6a941abf099dcf718e44698d61987f51
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Ghost; use Ghost;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Par_SCO; use Par_SCO;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Case; use Sem_Case;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Sem_Warn; use Sem_Warn;
64 with Sinfo; use Sinfo;
65 with Sinput; use Sinput;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with Targparm; use Targparm;
69 with Ttypes; use Ttypes;
70 with Tbuild; use Tbuild;
71 with Urealp; use Urealp;
72 with Warnsw; use Warnsw;
74 with GNAT.Heap_Sort_G;
76 package body Sem_Ch13 is
78 SSU : constant Pos := System_Storage_Unit;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
111 (Asp : Node_Id;
112 Id : Entity_Id) return Node_Id;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ : Entity_Id) return Node_Id;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- pre-analyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks (N : Node_Id);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value (Expr : Node_Id) return Uint;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item (N : Node_Id) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
156 -- attributes.
158 function Is_Predicate_Static
159 (Expr : Node_Id;
160 Nam : Name_Id) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
176 -- "ABC" < "DEF"
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
187 (N : Node_Id;
188 Ent : Entity_Id;
189 Subp : Entity_Id;
190 Nam : TSS_Name_Type);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
204 -- primitive specs.
206 procedure Register_Address_Clause_Check
207 (N : Node_Id;
208 X : Entity_Id;
209 A : Uint;
210 Y : Entity_Id;
211 Off : Boolean);
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
216 (N : Node_Id;
217 Cursor : Entity_Id;
218 Typ : Entity_Id;
219 Nam : Name_Id);
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
223 procedure Set_Biased
224 (E : Entity_Id;
225 N : Node_Id;
226 Msg : String;
227 Biased : Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
231 -- causing biasing.
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry is record
250 Eloc : Source_Ptr;
251 -- Source location used in warnings and error messages
253 Prag : Node_Id;
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
256 Scope : Node_Id;
257 -- The scope which encloses the pragma
258 end record;
260 package Compile_Time_Warnings_Errors is new Table.Table (
261 Table_Component_Type => CTWE_Entry,
262 Table_Index_Type => Int,
263 Table_Low_Bound => 1,
264 Table_Initial => 50,
265 Table_Increment => 200,
266 Table_Name => "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
277 -- the back end.
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry is record
284 Eloc : Source_Ptr; -- node used for posting warnings
285 Source : Entity_Id; -- source type for unchecked conversion
286 Target : Entity_Id; -- target type for unchecked conversion
287 Act_Unit : Entity_Id; -- actual function instantiated
288 end record;
290 package Unchecked_Conversions is new Table.Table (
291 Table_Component_Type => UC_Entry,
292 Table_Index_Type => Int,
293 Table_Low_Bound => 1,
294 Table_Initial => 50,
295 Table_Increment => 200,
296 Table_Name => "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record is record
316 N : Node_Id;
317 -- The address clause
319 X : Entity_Id;
320 -- The entity of the object subject to the address clause
322 A : Uint;
323 -- The value of the address in the first case
325 Y : Entity_Id;
326 -- The entity of the object being overlaid in the second case
328 Off : Boolean;
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed : Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
335 end record;
337 package Address_Clause_Checks is new Table.Table (
338 Table_Component_Type => Address_Clause_Check_Record,
339 Table_Index_Type => Int,
340 Table_Low_Bound => 1,
341 Table_Initial => 20,
342 Table_Increment => 200,
343 Table_Name => "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR : Address_Clause_Check_Record) return Boolean;
347 -- Return whether the alignment check generated for the address clause
348 -- is suppressed.
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR : Address_Clause_Check_Record) return Boolean
357 begin
358 if Checks_May_Be_Suppressed (ACCR.X) then
359 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
360 else
361 return ACCR.Alignment_Checks_Suppressed;
362 end if;
363 end Alignment_Checks_Suppressed;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
370 Max_Machine_Scalar_Size : constant Uint :=
371 UI_From_Int
372 (Standard_Long_Long_Integer_Size);
373 -- We use this as the maximum machine scalar size
375 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
377 CC : Node_Id;
378 Comp : Node_Id;
379 Num_CC : Natural;
381 begin
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
390 return;
391 end if;
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
403 -- later processing.
405 Num_CC := 0;
406 Comp := First_Component_Or_Discriminant (R);
407 while Present (Comp) loop
408 CC := Component_Clause (Comp);
410 if Present (CC) then
411 declare
412 Fbit : constant Uint := Static_Integer (First_Bit (CC));
413 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
415 begin
416 -- Case of component with last bit >= max machine scalar
418 if Lbit >= Max_Machine_Scalar_Size then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order then
428 Error_Msg_N
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC);
432 if Bytes_Big_Endian then
433 Error_Msg_N
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC);
436 else
437 Error_Msg_N
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC);
440 end if;
441 end if;
443 -- Give error message for RM 13.5.1(10) violation
445 else
446 Error_Msg_FE
447 ("machine scalar rules not followed for&",
448 First_Bit (CC), Comp);
450 Error_Msg_Uint_1 := Lbit + 1;
451 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
452 Error_Msg_F
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit (CC));
456 if (Lbit + 1) mod SSU /= 0 then
457 Error_Msg_Uint_1 := SSU;
458 Error_Msg_F
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit (CC));
462 else
463 Error_Msg_Uint_1 := Fbit;
464 Error_Msg_F
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit (CC));
467 end if;
468 end if;
470 -- OK case of machine scalar related component clause. For now,
471 -- just count them.
473 else
474 Num_CC := Num_CC + 1;
475 end if;
476 end;
477 end if;
479 Next_Component_Or_Discriminant (Comp);
480 end loop;
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
486 Sort_CC : declare
487 Comps : array (0 .. Num_CC) of Entity_Id;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt (Op1, Op2 : Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move (From : Natural; To : Natural);
495 -- Move routine for Sort
497 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
499 MaxL : Uint;
500 -- Maximum last bit value of any component in this set
502 MSS : Uint;
503 -- Corresponding machine scalar size
505 Start : Natural;
506 Stop : Natural;
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
511 -----------
512 -- CP_Lt --
513 -----------
515 function CP_Lt (Op1, Op2 : Natural) return Boolean is
516 begin
517 return
518 Position (Component_Clause (Comps (Op1))) <
519 Position (Component_Clause (Comps (Op2)));
520 end CP_Lt;
522 -------------
523 -- CP_Move --
524 -------------
526 procedure CP_Move (From : Natural; To : Natural) is
527 begin
528 Comps (To) := Comps (From);
529 end CP_Move;
531 -- Start of processing for Sort_CC
533 begin
534 -- Collect the machine scalar relevant component clauses
536 Num_CC := 0;
537 Comp := First_Component_Or_Discriminant (R);
538 while Present (Comp) loop
539 declare
540 CC : constant Node_Id := Component_Clause (Comp);
542 begin
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
548 -- error.
550 if Present (CC)
551 and then not Error_Posted (Last_Bit (CC))
552 and then Static_Integer (Last_Bit (CC)) <
553 Max_Machine_Scalar_Size
554 then
555 Num_CC := Num_CC + 1;
556 Comps (Num_CC) := Comp;
557 end if;
558 end;
560 Next_Component_Or_Discriminant (Comp);
561 end loop;
563 -- Sort by ascending position number
565 Sorting.Sort (Num_CC);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
572 Stop := 0;
573 while Stop < Num_CC loop
574 Start := Stop + 1;
575 Stop := Start;
576 MaxL :=
577 Static_Integer
578 (Last_Bit (Component_Clause (Comps (Start))));
579 while Stop < Num_CC loop
580 if Static_Integer
581 (Position (Component_Clause (Comps (Stop + 1)))) =
582 Static_Integer
583 (Position (Component_Clause (Comps (Stop))))
584 then
585 Stop := Stop + 1;
586 MaxL :=
587 UI_Max
588 (MaxL,
589 Static_Integer
590 (Last_Bit
591 (Component_Clause (Comps (Stop)))));
592 else
593 exit;
594 end if;
595 end loop;
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
604 -- smaller one.
606 MSS := Max_Machine_Scalar_Size;
607 while MSS mod 2 = 0
608 and then (MSS / 2) >= SSU
609 and then (MSS / 2) > MaxL
610 loop
611 MSS := MSS / 2;
612 end loop;
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
619 -- old new old new
621 -- 0 .. 0 7 .. 7 0 7
622 -- 0 .. 1 6 .. 7 0 6
623 -- 0 .. 2 5 .. 7 0 5
624 -- 0 .. 7 0 .. 7 0 4
626 -- 1 .. 1 6 .. 6 1 6
627 -- 1 .. 4 3 .. 6 1 3
628 -- 4 .. 7 0 .. 3 4 0
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C in Start .. Stop loop
634 declare
635 Comp : constant Entity_Id := Comps (C);
636 CC : constant Node_Id := Component_Clause (Comp);
638 LB : constant Uint := Static_Integer (Last_Bit (CC));
639 NFB : constant Uint := MSS - Uint_1 - LB;
640 NLB : constant Uint := NFB + Esize (Comp) - 1;
641 Pos : constant Uint := Static_Integer (Position (CC));
643 begin
644 if Warn_On_Reverse_Bit_Order then
645 Error_Msg_Uint_1 := MSS;
646 Error_Msg_N
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit (CC));
649 Error_Msg_Uint_1 := NFB;
650 Error_Msg_Uint_2 := NLB;
652 if Bytes_Big_Endian then
653 Error_Msg_NE
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit (CC), Comp);
656 else
657 Error_Msg_NE
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit (CC), Comp);
660 end if;
661 end if;
663 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
664 Set_Normalized_Position (Comp, Pos + NFB / SSU);
665 Set_Normalized_First_Bit (Comp, NFB mod SSU);
666 end;
667 end loop;
668 end loop;
669 end Sort_CC;
670 end Adjust_Record_For_Reverse_Bit_Order;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
677 CC : Node_Id;
678 Comp : Node_Id;
680 begin
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp := First_Component_Or_Discriminant (R);
686 while Present (Comp) loop
687 CC := Component_Clause (Comp);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present (CC) and then Ekind (R) = E_Record_Type then
697 declare
698 CFB : constant Uint := Component_Bit_Offset (Comp);
699 CSZ : constant Uint := Esize (Comp);
700 CLC : constant Node_Id := Component_Clause (Comp);
701 Pos : constant Node_Id := Position (CLC);
702 FB : constant Node_Id := First_Bit (CLC);
704 Storage_Unit_Offset : constant Uint :=
705 CFB / System_Storage_Unit;
707 Start_Bit : constant Uint :=
708 CFB mod System_Storage_Unit;
710 begin
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit + CSZ > System_Storage_Unit then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit mod System_Storage_Unit = 0
718 and then CSZ mod System_Storage_Unit = 0
719 then
720 Error_Msg_N
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC);
724 if Bytes_Big_Endian then
725 Error_Msg_N
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC);
728 else
729 Error_Msg_N
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC);
732 end if;
734 -- Do not allow non-contiguous field
736 else
737 Error_Msg_N
738 ("attempt to specify non-contiguous field not "
739 & "permitted", CLC);
740 Error_Msg_N
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC);
743 end if;
745 -- Case where field fits in one storage unit
747 else
748 -- Give warning if suspicious component clause
750 if Intval (FB) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
752 then
753 Error_Msg_N
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos);
756 Error_Msg_Uint_1 :=
757 Intval (Pos) + Intval (FB) /
758 System_Storage_Unit;
759 Error_Msg_N
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos);
762 end if;
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
769 -- old new old new
771 -- 0 .. 0 7 .. 7 0 7
772 -- 0 .. 1 6 .. 7 0 6
773 -- 0 .. 2 5 .. 7 0 5
774 -- 0 .. 7 0 .. 7 0 4
776 -- 1 .. 1 6 .. 6 1 6
777 -- 1 .. 4 3 .. 6 1 3
778 -- 4 .. 7 0 .. 3 4 0
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset (Comp,
784 (Storage_Unit_Offset * System_Storage_Unit) +
785 (System_Storage_Unit - 1) -
786 (Start_Bit + CSZ - 1));
788 Set_Normalized_Position (Comp,
789 Component_Bit_Offset (Comp) / System_Storage_Unit);
791 Set_Normalized_First_Bit (Comp,
792 Component_Bit_Offset (Comp) mod System_Storage_Unit);
793 end if;
794 end;
795 end if;
797 Next_Component_Or_Discriminant (Comp);
798 end loop;
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
806 begin
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment (Typ)
813 and then not Has_Alignment_Clause (Typ)
814 and then Size mod (Alignment (Typ) * SSU) /= 0
815 then
816 Init_Alignment (Typ);
817 end if;
818 end Alignment_Check_For_Size_Change;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
825 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
836 -- ..
837 -- type B is new A;
838 -- ..
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
862 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
863 Ent : constant Entity_Id := Entity (ASN);
864 Expr : constant Node_Id := Expression (ASN);
865 Id : constant Node_Id := Identifier (ASN);
867 begin
868 Error_Msg_Name_1 := Chars (Id);
870 if not Is_Type (Ent) then
871 Error_Msg_N ("aspect% can only apply to a type", Id);
872 return;
874 elsif not Is_First_Subtype (Ent) then
875 Error_Msg_N ("aspect% cannot apply to subtype", Id);
876 return;
878 elsif A_Id = Aspect_Default_Value
879 and then not Is_Scalar_Type (Ent)
880 then
881 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
882 return;
884 elsif A_Id = Aspect_Default_Component_Value then
885 if not Is_Array_Type (Ent) then
886 Error_Msg_N ("aspect% can only be applied to array type", Id);
887 return;
889 elsif not Is_Scalar_Type (Component_Type (Ent)) then
890 Error_Msg_N ("aspect% requires scalar components", Id);
891 return;
892 end if;
893 end if;
895 Set_Has_Default_Aspect (Base_Type (Ent));
897 if Is_Scalar_Type (Ent) then
898 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
899 else
900 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
901 end if;
902 end Analyze_Aspect_Default_Value;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
909 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
910 P : constant Entity_Id := Entity (ASN);
911 -- Entithy for parent type
913 N : Node_Id;
914 -- Item from Rep_Item chain
916 A : Aspect_Id;
918 begin
919 -- Loop through delayed aspects for the parent type
921 N := ASN;
922 while Present (N) loop
923 if Nkind (N) = N_Aspect_Specification then
924 exit when Entity (N) /= P;
926 if Is_Delayed_Aspect (N) then
927 A := Get_Aspect_Id (Chars (Identifier (N)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
936 case A is
938 -- Alignment
940 when Aspect_Alignment =>
941 if not Has_Alignment_Clause (E) then
942 Set_Alignment (E, Alignment (P));
943 end if;
945 -- Atomic
947 when Aspect_Atomic =>
948 if Is_Atomic (P) then
949 Set_Is_Atomic (E);
950 end if;
952 -- Atomic_Components
954 when Aspect_Atomic_Components =>
955 if Has_Atomic_Components (P) then
956 Set_Has_Atomic_Components (Base_Type (E));
957 end if;
959 -- Bit_Order
961 when Aspect_Bit_Order =>
962 if Is_Record_Type (E)
963 and then No (Get_Attribute_Definition_Clause
964 (E, Attribute_Bit_Order))
965 and then Reverse_Bit_Order (P)
966 then
967 Set_Reverse_Bit_Order (Base_Type (E));
968 end if;
970 -- Component_Size
972 when Aspect_Component_Size =>
973 if Is_Array_Type (E)
974 and then not Has_Component_Size_Clause (E)
975 then
976 Set_Component_Size
977 (Base_Type (E), Component_Size (P));
978 end if;
980 -- Machine_Radix
982 when Aspect_Machine_Radix =>
983 if Is_Decimal_Fixed_Point_Type (E)
984 and then not Has_Machine_Radix_Clause (E)
985 then
986 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
987 end if;
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
992 | Aspect_Size
994 if not Has_Size_Clause (E)
995 and then
996 No (Get_Attribute_Definition_Clause
997 (E, Attribute_Object_Size))
998 then
999 Set_Esize (E, Esize (P));
1000 end if;
1002 -- Pack
1004 when Aspect_Pack =>
1005 if not Is_Packed (E) then
1006 Set_Is_Packed (Base_Type (E));
1008 if Is_Bit_Packed_Array (P) then
1009 Set_Is_Bit_Packed_Array (Base_Type (E));
1010 Set_Packed_Array_Impl_Type
1011 (E, Packed_Array_Impl_Type (P));
1012 end if;
1013 end if;
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order =>
1018 if (Is_Record_Type (E) or else Is_Array_Type (E))
1019 and then No (Get_Attribute_Definition_Clause
1020 (E, Attribute_Scalar_Storage_Order))
1021 and then Reverse_Storage_Order (P)
1022 then
1023 Set_Reverse_Storage_Order (Base_Type (E));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1029 Set_SSO_Set_High_By_Default (Base_Type (E), False);
1030 end if;
1032 -- Small
1034 when Aspect_Small =>
1035 if Is_Fixed_Point_Type (E)
1036 and then not Has_Small_Clause (E)
1037 then
1038 Set_Small_Value (E, Small_Value (P));
1039 end if;
1041 -- Storage_Size
1043 when Aspect_Storage_Size =>
1044 if (Is_Access_Type (E) or else Is_Task_Type (E))
1045 and then not Has_Storage_Size_Clause (E)
1046 then
1047 Set_Storage_Size_Variable
1048 (Base_Type (E), Storage_Size_Variable (P));
1049 end if;
1051 -- Value_Size
1053 when Aspect_Value_Size =>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1059 null;
1061 -- Volatile
1063 when Aspect_Volatile =>
1064 if Is_Volatile (P) then
1065 Set_Is_Volatile (E);
1066 end if;
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access =>
1071 if Is_Volatile_Full_Access (P) then
1072 Set_Is_Volatile_Full_Access (E);
1073 end if;
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components =>
1078 if Has_Volatile_Components (P) then
1079 Set_Has_Volatile_Components (Base_Type (E));
1080 end if;
1082 -- That should be all the Rep Aspects
1084 when others =>
1085 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1086 null;
1087 end case;
1088 end if;
1089 end if;
1091 N := Next_Rep_Item (N);
1092 end loop;
1093 end Inherit_Delayed_Rep_Aspects;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1100 Ident : constant Node_Id := Identifier (ASN);
1101 A_Name : constant Name_Id := Chars (Ident);
1102 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1103 Ent : constant Entity_Id := Entity (ASN);
1104 Expr : constant Node_Id := Expression (ASN);
1105 Loc : constant Source_Ptr := Sloc (ASN);
1107 procedure Check_False_Aspect_For_Derived_Type;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1110 -- the parent.
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type is
1117 Par : Node_Id;
1119 begin
1120 -- We are only checking derived types
1122 if not Is_Derived_Type (E) then
1123 return;
1124 end if;
1126 Par := Nearest_Ancestor (E);
1128 case A_Id is
1129 when Aspect_Atomic
1130 | Aspect_Shared
1132 if not Is_Atomic (Par) then
1133 return;
1134 end if;
1136 when Aspect_Atomic_Components =>
1137 if not Has_Atomic_Components (Par) then
1138 return;
1139 end if;
1141 when Aspect_Discard_Names =>
1142 if not Discard_Names (Par) then
1143 return;
1144 end if;
1146 when Aspect_Pack =>
1147 if not Is_Packed (Par) then
1148 return;
1149 end if;
1151 when Aspect_Unchecked_Union =>
1152 if not Is_Unchecked_Union (Par) then
1153 return;
1154 end if;
1156 when Aspect_Volatile =>
1157 if not Is_Volatile (Par) then
1158 return;
1159 end if;
1161 when Aspect_Volatile_Components =>
1162 if not Has_Volatile_Components (Par) then
1163 return;
1164 end if;
1166 when Aspect_Volatile_Full_Access =>
1167 if not Is_Volatile_Full_Access (Par) then
1168 return;
1169 end if;
1171 when others =>
1172 return;
1173 end case;
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1 := A_Name;
1178 Error_Msg_NE
1179 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1180 end Check_False_Aspect_For_Derived_Type;
1182 -- Local variables
1184 Prag : Node_Id;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1188 begin
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False (Static_Boolean (Expr)) then
1194 Check_False_Aspect_For_Derived_Type;
1196 else
1197 Prag :=
1198 Make_Pragma (Loc,
1199 Pragma_Identifier =>
1200 Make_Identifier (Sloc (Ident), Chars (Ident)),
1201 Pragma_Argument_Associations => New_List (
1202 Make_Pragma_Argument_Association (Sloc (Ident),
1203 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1205 Set_From_Aspect_Specification (Prag, True);
1206 Set_Corresponding_Aspect (Prag, ASN);
1207 Set_Aspect_Rep_Item (ASN, Prag);
1208 Set_Is_Delayed_Aspect (Prag);
1209 Set_Parent (Prag, ASN);
1210 end if;
1211 end Make_Pragma_From_Boolean_Aspect;
1213 -- Local variables
1215 A_Id : Aspect_Id;
1216 ASN : Node_Id;
1217 Ritem : Node_Id;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1221 begin
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1229 if Is_Type (E) and then From_Nested_Package (E) then
1230 declare
1231 Pack : constant Entity_Id := Scope (E);
1233 begin
1234 Push_Scope (Pack);
1235 Install_Visible_Declarations (Pack);
1236 Install_Private_Declarations (Pack);
1237 Analyze_Aspects_At_Freeze_Point (E);
1239 if Is_Private_Type (E)
1240 and then Present (Full_View (E))
1241 then
1242 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1243 end if;
1245 End_Package_Scope (Pack);
1246 return;
1247 end;
1249 -- Aspects from other entities in different contexts are analyzed
1250 -- elsewhere.
1252 else
1253 return;
1254 end if;
1255 end if;
1257 -- Look for aspect specification entries for this entity
1259 ASN := First_Rep_Item (E);
1260 while Present (ASN) loop
1261 if Nkind (ASN) = N_Aspect_Specification then
1262 exit when Entity (ASN) /= E;
1264 if Is_Delayed_Aspect (ASN) then
1265 A_Id := Get_Aspect_Id (ASN);
1267 case A_Id is
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1286 null;
1288 -- Otherwise create a corresponding pragma
1290 else
1291 Make_Pragma_From_Boolean_Aspect (ASN);
1292 end if;
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type (E)
1306 and then not Comes_From_Source (E)
1307 and then E /= First_Subtype (E)
1308 then
1309 null;
1310 else
1311 Analyze_Aspect_Default_Value (ASN);
1312 end if;
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze (Expression (ASN));
1324 if Etype (Expression (ASN)) = Any_Type then
1325 Error_Msg_NE
1326 ("\aspect must be fully defined before & is frozen",
1327 ASN, E);
1328 end if;
1330 when Aspect_Iterable =>
1331 Validate_Iterable_Aspect (E, ASN);
1333 when others =>
1334 null;
1335 end case;
1337 Ritem := Aspect_Rep_Item (ASN);
1339 if Present (Ritem) then
1340 Analyze (Ritem);
1341 end if;
1342 end if;
1343 end if;
1345 Next_Rep_Item (ASN);
1346 end loop;
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects (E) then
1354 Inherit_Delayed_Rep_Aspects (ASN);
1355 end if;
1356 end Analyze_Aspects_At_Freeze_Point;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1363 pragma Assert (Present (E));
1365 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1366 -- Establish linkages between an aspect and its corresponding pragma
1368 procedure Insert_Pragma
1369 (Prag : Node_Id;
1370 Is_Instance : Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1372 -- Abstract_State
1373 -- Attach_Handler
1374 -- Contract_Cases
1375 -- Depends
1376 -- Ghost
1377 -- Global
1378 -- Initial_Condition
1379 -- Initializes
1380 -- Post
1381 -- Pre
1382 -- Refined_Depends
1383 -- Refined_Global
1384 -- Refined_State
1385 -- SPARK_Mode
1386 -- Warnings
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1391 --------------
1392 -- Decorate --
1393 --------------
1395 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1396 begin
1397 Set_Aspect_Rep_Item (Asp, Prag);
1398 Set_Corresponding_Aspect (Prag, Asp);
1399 Set_From_Aspect_Specification (Prag);
1400 Set_Parent (Prag, Asp);
1401 end Decorate;
1403 -------------------
1404 -- Insert_Pragma --
1405 -------------------
1407 procedure Insert_Pragma
1408 (Prag : Node_Id;
1409 Is_Instance : Boolean := False)
1411 Aux : Node_Id;
1412 Decl : Node_Id;
1413 Decls : List_Id;
1414 Def : Node_Id;
1415 Inserted : Boolean := False;
1417 begin
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1421 -- pragma.
1423 -- package body Pack with Aspect is
1425 -- package body Pack is
1426 -- pragma Prag;
1428 if Nkind_In (N, N_Entry_Body,
1429 N_Package_Body,
1430 N_Protected_Body,
1431 N_Subprogram_Body,
1432 N_Task_Body)
1433 then
1434 Decls := Declarations (N);
1436 if No (Decls) then
1437 Decls := New_List;
1438 Set_Declarations (N, Decls);
1439 end if;
1441 Prepend_To (Decls, Prag);
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1447 -- package Pack with Aspect is
1449 -- package Pack is
1450 -- pragma Prag;
1452 elsif Nkind_In (N, N_Generic_Package_Declaration,
1453 N_Package_Declaration)
1454 then
1455 Decls := Visible_Declarations (Specification (N));
1457 if No (Decls) then
1458 Decls := New_List;
1459 Set_Visible_Declarations (Specification (N), Decls);
1460 end if;
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1471 -- all formals.
1473 if Is_Instance then
1474 Decl := First (Decls);
1475 while Present (Decl) loop
1476 if Comes_From_Source (Decl) then
1477 Insert_Before (Decl, Prag);
1478 Inserted := True;
1479 exit;
1480 else
1481 Next (Decl);
1482 end if;
1483 end loop;
1485 -- The pragma is placed after the instance "header"
1487 if not Inserted then
1488 Append_To (Decls, Prag);
1489 end if;
1491 -- Otherwise this is not a generic instance
1493 else
1494 Prepend_To (Decls, Prag);
1495 end if;
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1501 -- protected [type] Prot with Aspect is
1503 -- protected [type] Prot is
1504 -- pragma Prag;
1506 elsif Nkind (N) = N_Protected_Type_Declaration then
1507 Def := Protected_Definition (N);
1509 if No (Def) then
1510 Def :=
1511 Make_Protected_Definition (Sloc (N),
1512 Visible_Declarations => New_List,
1513 End_Label => Empty);
1515 Set_Protected_Definition (N, Def);
1516 end if;
1518 Decls := Visible_Declarations (Def);
1520 if No (Decls) then
1521 Decls := New_List;
1522 Set_Visible_Declarations (Def, Decls);
1523 end if;
1525 Prepend_To (Decls, Prag);
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1531 -- task [type] Prot with Aspect is
1533 -- task [type] Prot is
1534 -- pragma Prag;
1536 elsif Nkind (N) = N_Task_Type_Declaration then
1537 Def := Task_Definition (N);
1539 if No (Def) then
1540 Def :=
1541 Make_Task_Definition (Sloc (N),
1542 Visible_Declarations => New_List,
1543 End_Label => Empty);
1545 Set_Task_Definition (N, Def);
1546 end if;
1548 Decls := Visible_Declarations (Def);
1550 if No (Decls) then
1551 Decls := New_List;
1552 Set_Visible_Declarations (Def, Decls);
1553 end if;
1555 Prepend_To (Decls, Prag);
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1560 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1561 Aux := Aux_Decls_Node (Parent (N));
1563 if No (Pragmas_After (Aux)) then
1564 Set_Pragmas_After (Aux, New_List);
1565 end if;
1567 Prepend (Prag, Pragmas_After (Aux));
1569 -- Default, the pragma is inserted after the context
1571 else
1572 Insert_After (N, Prag);
1573 end if;
1574 end Insert_Pragma;
1576 -- Local variables
1578 Aspect : Node_Id;
1579 Aitem : Node_Id;
1580 Ent : Node_Id;
1582 L : constant List_Id := Aspect_Specifications (N);
1583 pragma Assert (Present (L));
1585 Ins_Node : Node_Id := N;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1589 -- Start of processing for Analyze_Aspect_Specifications
1591 begin
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1611 -- Loop through aspects
1613 Aspect := First (L);
1614 Aspect_Loop : while Present (Aspect) loop
1615 Analyze_One_Aspect : declare
1616 Expr : constant Node_Id := Expression (Aspect);
1617 Id : constant Node_Id := Identifier (Aspect);
1618 Loc : constant Source_Ptr := Sloc (Aspect);
1619 Nam : constant Name_Id := Chars (Id);
1620 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1621 Anod : Node_Id;
1623 Delay_Required : Boolean;
1624 -- Set False if delay is not required
1626 Eloc : Source_Ptr := No_Location;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1630 procedure Analyze_Aspect_Convention;
1631 -- Perform analysis of aspect Convention
1633 procedure Analyze_Aspect_Disable_Controlled;
1634 -- Perform analysis of aspect Disable_Controlled
1636 procedure Analyze_Aspect_Export_Import;
1637 -- Perform analysis of aspects Export or Import
1639 procedure Analyze_Aspect_External_Link_Name;
1640 -- Perform analysis of aspects External_Name or Link_Name
1642 procedure Analyze_Aspect_Implicit_Dereference;
1643 -- Perform analysis of the Implicit_Dereference aspects
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations : List_Id;
1647 Pragma_Name : Name_Id);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1661 procedure Analyze_Aspect_Convention is
1662 Conv : Node_Id;
1663 Dummy_1 : Node_Id;
1664 Dummy_2 : Node_Id;
1665 Dummy_3 : Node_Id;
1666 Expo : Node_Id;
1667 Imp : Node_Id;
1669 begin
1670 -- Obtain all interfacing aspects that apply to the related
1671 -- entity.
1673 Get_Interfacing_Aspects
1674 (Iface_Asp => Aspect,
1675 Conv_Asp => Dummy_1,
1676 EN_Asp => Dummy_2,
1677 Expo_Asp => Expo,
1678 Imp_Asp => Imp,
1679 LN_Asp => Dummy_3,
1680 Do_Checks => True);
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1686 if Present (Expo) or else Present (Imp) then
1687 return;
1689 -- Otherwise Convention appears by itself
1691 else
1692 -- The aspect specifies a particular convention
1694 if Present (Expr) then
1695 Conv := New_Copy_Tree (Expr);
1697 -- Otherwise assume convention Ada
1699 else
1700 Conv := Make_Identifier (Loc, Name_Ada);
1701 end if;
1703 -- Generate:
1704 -- pragma Convention (<Conv>, <E>);
1706 Make_Aitem_Pragma
1707 (Pragma_Name => Name_Convention,
1708 Pragma_Argument_Associations => New_List (
1709 Make_Pragma_Argument_Association (Loc,
1710 Expression => Conv),
1711 Make_Pragma_Argument_Association (Loc,
1712 Expression => New_Occurrence_Of (E, Loc))));
1714 Decorate (Aspect, Aitem);
1715 Insert_Pragma (Aitem);
1716 end if;
1717 end Analyze_Aspect_Convention;
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1723 procedure Analyze_Aspect_Disable_Controlled is
1724 begin
1725 -- The aspect applies only to controlled records
1727 if not (Ekind (E) = E_Record_Type
1728 and then Is_Controlled_Active (E))
1729 then
1730 Error_Msg_N
1731 ("aspect % requires controlled record type", Aspect);
1732 return;
1733 end if;
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1738 if Inside_A_Generic then
1739 if Present (Expr) then
1740 Preanalyze_And_Resolve (Expr, Any_Boolean);
1741 end if;
1743 -- Otherwise the aspect resides in a nongeneric context
1745 else
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1749 if Present (Expr) then
1750 Analyze_And_Resolve (Expr, Any_Boolean);
1752 if Is_OK_Static_Expression (Expr) then
1753 if Is_True (Static_Boolean (Expr)) then
1754 Set_Disable_Controlled (E);
1755 end if;
1757 -- Otherwise the expression is not static
1759 else
1760 Error_Msg_N
1761 ("expression of aspect % must be static", Aspect);
1762 end if;
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1767 else
1768 Set_Disable_Controlled (E);
1769 end if;
1770 end if;
1771 end Analyze_Aspect_Disable_Controlled;
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1777 procedure Analyze_Aspect_Export_Import is
1778 Dummy_1 : Node_Id;
1779 Dummy_2 : Node_Id;
1780 Dummy_3 : Node_Id;
1781 Expo : Node_Id;
1782 Imp : Node_Id;
1784 begin
1785 -- Obtain all interfacing aspects that apply to the related
1786 -- entity.
1788 Get_Interfacing_Aspects
1789 (Iface_Asp => Aspect,
1790 Conv_Asp => Dummy_1,
1791 EN_Asp => Dummy_2,
1792 Expo_Asp => Expo,
1793 Imp_Asp => Imp,
1794 LN_Asp => Dummy_3,
1795 Do_Checks => True);
1797 -- The related entity cannot be subject to both aspects Export
1798 -- and Import.
1800 if Present (Expo) and then Present (Imp) then
1801 Error_Msg_N
1802 ("incompatible interfacing aspects given for &", E);
1803 Error_Msg_Sloc := Sloc (Expo);
1804 Error_Msg_N ("\aspect `Export` #", E);
1805 Error_Msg_Sloc := Sloc (Imp);
1806 Error_Msg_N ("\aspect `Import` #", E);
1807 end if;
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1812 if Ekind (E) = E_Variable then
1813 Set_Never_Set_In_Source (E, False);
1814 end if;
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1823 if not Present (Expr)
1824 or else Is_True (Static_Boolean (Expr))
1825 then
1826 if A_Id = Aspect_Import then
1827 Set_Has_Completion (E);
1828 Set_Is_Imported (E);
1830 -- An imported object cannot be explicitly initialized
1832 if Nkind (N) = N_Object_Declaration
1833 and then Present (Expression (N))
1834 then
1835 Error_Msg_N
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression (N));
1838 end if;
1840 else
1841 pragma Assert (A_Id = Aspect_Export);
1842 Set_Is_Exported (E);
1843 end if;
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1848 Aitem := Build_Export_Import_Pragma (Aspect, E);
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1853 else
1854 Aitem := Empty;
1855 end if;
1856 end Analyze_Aspect_Export_Import;
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1862 procedure Analyze_Aspect_External_Link_Name is
1863 Dummy_1 : Node_Id;
1864 Dummy_2 : Node_Id;
1865 Dummy_3 : Node_Id;
1866 Expo : Node_Id;
1867 Imp : Node_Id;
1869 begin
1870 -- Obtain all interfacing aspects that apply to the related
1871 -- entity.
1873 Get_Interfacing_Aspects
1874 (Iface_Asp => Aspect,
1875 Conv_Asp => Dummy_1,
1876 EN_Asp => Dummy_2,
1877 Expo_Asp => Expo,
1878 Imp_Asp => Imp,
1879 LN_Asp => Dummy_3,
1880 Do_Checks => True);
1882 -- Ensure that aspect External_Name applies to aspect Export or
1883 -- Import.
1885 if A_Id = Aspect_External_Name then
1886 if No (Expo) and then No (Imp) then
1887 Error_Msg_N
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect);
1890 end if;
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1895 else
1896 pragma Assert (A_Id = Aspect_Link_Name);
1897 if No (Expo) and then No (Imp) then
1898 Error_Msg_N
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect);
1901 end if;
1902 end if;
1903 end Analyze_Aspect_External_Link_Name;
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1909 procedure Analyze_Aspect_Implicit_Dereference is
1910 begin
1911 if not Is_Type (E) or else not Has_Discriminants (E) then
1912 Error_Msg_N
1913 ("aspect must apply to a type with discriminants", Expr);
1915 elsif not Is_Entity_Name (Expr) then
1916 Error_Msg_N
1917 ("aspect must name a discriminant of current type", Expr);
1919 else
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1923 -- Missing synchronized types???
1925 declare
1926 Disc : Entity_Id := First_Discriminant (E);
1927 begin
1928 while Present (Disc) loop
1929 if Chars (Expr) = Chars (Disc)
1930 and then Ekind_In
1931 (Etype (Disc),
1932 E_Anonymous_Access_Subprogram_Type,
1933 E_Anonymous_Access_Type)
1934 then
1935 Set_Has_Implicit_Dereference (E);
1936 Set_Has_Implicit_Dereference (Disc);
1937 exit;
1938 end if;
1940 Next_Discriminant (Disc);
1941 end loop;
1943 -- Error if no proper access discriminant
1945 if Present (Disc) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1948 -- proper.
1950 if Is_Derived_Type (E)
1951 and then Has_Discriminants (Etype (E))
1952 then
1953 declare
1954 Parent_Disc : constant Entity_Id :=
1955 Get_Reference_Discriminant (Etype (E));
1956 begin
1957 if Present (Parent_Disc)
1958 and then Corresponding_Discriminant (Disc) /=
1959 Parent_Disc
1960 then
1961 Error_Msg_N
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr);
1964 end if;
1965 end;
1966 end if;
1968 else
1969 Error_Msg_NE
1970 ("not an access discriminant of&", Expr, E);
1971 end if;
1972 end;
1973 end if;
1975 end Analyze_Aspect_Implicit_Dereference;
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations : List_Id;
1983 Pragma_Name : Name_Id)
1985 Args : List_Id := Pragma_Argument_Associations;
1987 begin
1988 -- We should never get here if aspect was disabled
1990 pragma Assert (not Is_Disabled (Aspect));
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1995 if No (Args) or else No (Expression (First (Args))) then
1996 Args := No_List;
1997 end if;
1999 -- Build the pragma
2001 Aitem :=
2002 Make_Pragma (Loc,
2003 Pragma_Argument_Associations => Args,
2004 Pragma_Identifier =>
2005 Make_Identifier (Sloc (Id), Pragma_Name),
2006 Class_Present => Class_Present (Aspect),
2007 Split_PPC => Split_PPC (Aspect));
2009 -- Set additional semantic fields
2011 if Is_Ignored (Aspect) then
2012 Set_Is_Ignored (Aitem);
2013 elsif Is_Checked (Aspect) then
2014 Set_Is_Checked (Aitem);
2015 end if;
2017 Set_Corresponding_Aspect (Aitem, Aspect);
2018 Set_From_Aspect_Specification (Aitem);
2019 end Make_Aitem_Pragma;
2021 -- Start of processing for Analyze_One_Aspect
2023 begin
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2026 if Analyzed (Aspect) then
2027 goto Continue;
2028 end if;
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2034 Check_Applicable_Policy (Aspect);
2036 if Is_Disabled (Aspect) then
2037 goto Continue;
2038 end if;
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2048 if Present (Expr) then
2049 Eloc := Sloc (First_Node (Expr));
2050 end if;
2052 -- Check restriction No_Implementation_Aspect_Specifications
2054 if Implementation_Defined_Aspect (A_Id) then
2055 Check_Restriction
2056 (No_Implementation_Aspect_Specifications, Aspect);
2057 end if;
2059 -- Check restriction No_Specification_Of_Aspect
2061 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2065 Set_Analyzed (Aspect);
2066 Set_Entity (Aspect, E);
2068 -- Build the reference to E that will be used in the built pragmas
2070 Ent := New_Occurrence_Of (E, Sloc (Id));
2072 if A_Id = Aspect_Attach_Handler
2073 or else A_Id = Aspect_Interrupt_Handler
2074 then
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2080 Generate_Reference (E, Id);
2081 end if;
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2087 if No_Duplicates_Allowed (A_Id) then
2088 Anod := First (L);
2089 while Anod /= Aspect loop
2090 if Comes_From_Source (Aspect)
2091 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2092 then
2093 Error_Msg_Name_1 := Nam;
2094 Error_Msg_Sloc := Sloc (Anod);
2096 -- Case of same aspect specified twice
2098 if Class_Present (Anod) = Class_Present (Aspect) then
2099 if not Class_Present (Anod) then
2100 Error_Msg_NE
2101 ("aspect% for & previously given#",
2102 Id, E);
2103 else
2104 Error_Msg_NE
2105 ("aspect `%''Class` for & previously given#",
2106 Id, E);
2107 end if;
2108 end if;
2109 end if;
2111 Next (Anod);
2112 end loop;
2113 end if;
2115 -- Check some general restrictions on language defined aspects
2117 if not Implementation_Defined_Aspect (A_Id) then
2118 Error_Msg_Name_1 := Nam;
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2122 -- as a body.
2124 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2125 Error_Msg_N
2126 ("aspect % not allowed for renaming declaration",
2127 Aspect);
2128 end if;
2130 -- Not allowed for formal type declarations
2132 if Nkind (N) = N_Formal_Type_Declaration then
2133 Error_Msg_N
2134 ("aspect % not allowed for formal type declaration",
2135 Aspect);
2136 end if;
2137 end if;
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2142 Set_Entity (Id, New_Copy_Tree (Expr));
2144 -- Set Delay_Required as appropriate to aspect
2146 case Aspect_Delay (A_Id) is
2147 when Always_Delay =>
2148 Delay_Required := True;
2150 when Never_Delay =>
2151 Delay_Required := False;
2153 when Rep_Aspect =>
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2159 -- For Boolean aspects, don't delay if no expression
2161 if A_Id in Boolean_Aspects and then No (Expr) then
2162 Delay_Required := False;
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2168 elsif A_Id not in Boolean_Aspects
2169 and then A_Id /= Aspect_Alignment
2170 and then Present (Expr)
2171 and then Nkind (Expr) = N_Integer_Literal
2172 then
2173 Delay_Required := False;
2175 -- All other cases are delayed
2177 else
2178 Delay_Required := True;
2179 Set_Has_Delayed_Rep_Aspects (E);
2180 end if;
2181 end case;
2183 -- Processing based on specific aspect
2185 case A_Id is
2186 when Aspect_Unimplemented =>
2187 null; -- ??? temp for now
2189 -- No_Aspect should be impossible
2191 when No_Aspect =>
2192 raise Program_Error;
2194 -- Case 1: Aspects corresponding to attribute definition
2195 -- clauses.
2197 when Aspect_Address
2198 | Aspect_Alignment
2199 | Aspect_Bit_Order
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2205 | Aspect_Input
2206 | Aspect_Iterable
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2210 | Aspect_Output
2211 | Aspect_Read
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Simple_Storage_Pool
2214 | Aspect_Size
2215 | Aspect_Small
2216 | Aspect_Storage_Pool
2217 | Aspect_Stream_Size
2218 | Aspect_Value_Size
2219 | Aspect_Variable_Indexing
2220 | Aspect_Write
2222 -- Indexing aspects apply only to tagged type
2224 if (A_Id = Aspect_Constant_Indexing
2225 or else
2226 A_Id = Aspect_Variable_Indexing)
2227 and then not (Is_Type (E)
2228 and then Is_Tagged_Type (E))
2229 then
2230 Error_Msg_N
2231 ("indexing aspect can only apply to a tagged type",
2232 Aspect);
2233 goto Continue;
2234 end if;
2236 -- For the case of aspect Address, we don't consider that we
2237 -- know the entity is never set in the source, since it is
2238 -- is likely aliasing is occurring.
2240 -- Note: one might think that the analysis of the resulting
2241 -- attribute definition clause would take care of that, but
2242 -- that's not the case since it won't be from source.
2244 if A_Id = Aspect_Address then
2245 Set_Never_Set_In_Source (E, False);
2246 end if;
2248 -- Correctness of the profile of a stream operation is
2249 -- verified at the freeze point, but we must detect the
2250 -- illegal specification of this aspect for a subtype now,
2251 -- to prevent malformed rep_item chains.
2253 if A_Id = Aspect_Input or else
2254 A_Id = Aspect_Output or else
2255 A_Id = Aspect_Read or else
2256 A_Id = Aspect_Write
2257 then
2258 if not Is_First_Subtype (E) then
2259 Error_Msg_N
2260 ("local name must be a first subtype", Aspect);
2261 goto Continue;
2263 -- If stream aspect applies to the class-wide type,
2264 -- the generated attribute definition applies to the
2265 -- class-wide type as well.
2267 elsif Class_Present (Aspect) then
2268 Ent :=
2269 Make_Attribute_Reference (Loc,
2270 Prefix => Ent,
2271 Attribute_Name => Name_Class);
2272 end if;
2273 end if;
2275 -- Construct the attribute_definition_clause. The expression
2276 -- in the aspect specification is simply shared with the
2277 -- constructed attribute, because it will be fully analyzed
2278 -- when the attribute is processed. However, in ASIS mode
2279 -- the aspect expression itself is preanalyzed and resolved
2280 -- to catch visibility errors that are otherwise caught
2281 -- later, and we create a separate copy of the expression
2282 -- to prevent analysis of a malformed tree (e.g. a function
2283 -- call with parameter associations).
2285 if ASIS_Mode then
2286 Aitem :=
2287 Make_Attribute_Definition_Clause (Loc,
2288 Name => Ent,
2289 Chars => Chars (Id),
2290 Expression => New_Copy_Tree (Expr));
2291 else
2292 Aitem :=
2293 Make_Attribute_Definition_Clause (Loc,
2294 Name => Ent,
2295 Chars => Chars (Id),
2296 Expression => Relocate_Node (Expr));
2297 end if;
2299 -- If the address is specified, then we treat the entity as
2300 -- referenced, to avoid spurious warnings. This is analogous
2301 -- to what is done with an attribute definition clause, but
2302 -- here we don't want to generate a reference because this
2303 -- is the point of definition of the entity.
2305 if A_Id = Aspect_Address then
2306 Set_Referenced (E);
2307 end if;
2309 -- Case 2: Aspects corresponding to pragmas
2311 -- Case 2a: Aspects corresponding to pragmas with two
2312 -- arguments, where the first argument is a local name
2313 -- referring to the entity, and the second argument is the
2314 -- aspect definition expression.
2316 -- Linker_Section/Suppress/Unsuppress
2318 when Aspect_Linker_Section
2319 | Aspect_Suppress
2320 | Aspect_Unsuppress
2322 Make_Aitem_Pragma
2323 (Pragma_Argument_Associations => New_List (
2324 Make_Pragma_Argument_Association (Loc,
2325 Expression => New_Occurrence_Of (E, Loc)),
2326 Make_Pragma_Argument_Association (Sloc (Expr),
2327 Expression => Relocate_Node (Expr))),
2328 Pragma_Name => Chars (Id));
2330 -- Linker_Section does not need delaying, as its argument
2331 -- must be a static string. Furthermore, if applied to
2332 -- an object with an explicit initialization, the object
2333 -- must be frozen in order to elaborate the initialization
2334 -- code. (This is already done for types with implicit
2335 -- initialization, such as protected types.)
2337 if A_Id = Aspect_Linker_Section
2338 and then Nkind (N) = N_Object_Declaration
2339 and then Has_Init_Expression (N)
2340 then
2341 Delay_Required := False;
2342 end if;
2344 -- Synchronization
2346 -- Corresponds to pragma Implemented, construct the pragma
2348 when Aspect_Synchronization =>
2349 Make_Aitem_Pragma
2350 (Pragma_Argument_Associations => New_List (
2351 Make_Pragma_Argument_Association (Loc,
2352 Expression => New_Occurrence_Of (E, Loc)),
2353 Make_Pragma_Argument_Association (Sloc (Expr),
2354 Expression => Relocate_Node (Expr))),
2355 Pragma_Name => Name_Implemented);
2357 -- Attach_Handler
2359 when Aspect_Attach_Handler =>
2360 Make_Aitem_Pragma
2361 (Pragma_Argument_Associations => New_List (
2362 Make_Pragma_Argument_Association (Sloc (Ent),
2363 Expression => Ent),
2364 Make_Pragma_Argument_Association (Sloc (Expr),
2365 Expression => Relocate_Node (Expr))),
2366 Pragma_Name => Name_Attach_Handler);
2368 -- We need to insert this pragma into the tree to get proper
2369 -- processing and to look valid from a placement viewpoint.
2371 Insert_Pragma (Aitem);
2372 goto Continue;
2374 -- Dynamic_Predicate, Predicate, Static_Predicate
2376 when Aspect_Dynamic_Predicate
2377 | Aspect_Predicate
2378 | Aspect_Static_Predicate
2380 -- These aspects apply only to subtypes
2382 if not Is_Type (E) then
2383 Error_Msg_N
2384 ("predicate can only be specified for a subtype",
2385 Aspect);
2386 goto Continue;
2388 elsif Is_Incomplete_Type (E) then
2389 Error_Msg_N
2390 ("predicate cannot apply to incomplete view", Aspect);
2392 elsif Is_Generic_Type (E) then
2393 Error_Msg_N
2394 ("predicate cannot apply to formal type", Aspect);
2395 goto Continue;
2396 end if;
2398 -- Construct the pragma (always a pragma Predicate, with
2399 -- flags recording whether it is static/dynamic). We also
2400 -- set flags recording this in the type itself.
2402 Make_Aitem_Pragma
2403 (Pragma_Argument_Associations => New_List (
2404 Make_Pragma_Argument_Association (Sloc (Ent),
2405 Expression => Ent),
2406 Make_Pragma_Argument_Association (Sloc (Expr),
2407 Expression => Relocate_Node (Expr))),
2408 Pragma_Name => Name_Predicate);
2410 -- Mark type has predicates, and remember what kind of
2411 -- aspect lead to this predicate (we need this to access
2412 -- the right set of check policies later on).
2414 Set_Has_Predicates (E);
2416 if A_Id = Aspect_Dynamic_Predicate then
2417 Set_Has_Dynamic_Predicate_Aspect (E);
2419 -- If the entity has a dynamic predicate, any inherited
2420 -- static predicate becomes dynamic as well, and the
2421 -- predicate function includes the conjunction of both.
2423 Set_Has_Static_Predicate_Aspect (E, False);
2425 elsif A_Id = Aspect_Static_Predicate then
2426 Set_Has_Static_Predicate_Aspect (E);
2427 end if;
2429 -- If the type is private, indicate that its completion
2430 -- has a freeze node, because that is the one that will
2431 -- be visible at freeze time.
2433 if Is_Private_Type (E) and then Present (Full_View (E)) then
2434 Set_Has_Predicates (Full_View (E));
2436 if A_Id = Aspect_Dynamic_Predicate then
2437 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2438 elsif A_Id = Aspect_Static_Predicate then
2439 Set_Has_Static_Predicate_Aspect (Full_View (E));
2440 end if;
2442 Set_Has_Delayed_Aspects (Full_View (E));
2443 Ensure_Freeze_Node (Full_View (E));
2444 end if;
2446 -- Predicate_Failure
2448 when Aspect_Predicate_Failure =>
2450 -- This aspect applies only to subtypes
2452 if not Is_Type (E) then
2453 Error_Msg_N
2454 ("predicate can only be specified for a subtype",
2455 Aspect);
2456 goto Continue;
2458 elsif Is_Incomplete_Type (E) then
2459 Error_Msg_N
2460 ("predicate cannot apply to incomplete view", Aspect);
2461 goto Continue;
2462 end if;
2464 -- Construct the pragma
2466 Make_Aitem_Pragma
2467 (Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Sloc (Ent),
2469 Expression => Ent),
2470 Make_Pragma_Argument_Association (Sloc (Expr),
2471 Expression => Relocate_Node (Expr))),
2472 Pragma_Name => Name_Predicate_Failure);
2474 Set_Has_Predicates (E);
2476 -- If the type is private, indicate that its completion
2477 -- has a freeze node, because that is the one that will
2478 -- be visible at freeze time.
2480 if Is_Private_Type (E) and then Present (Full_View (E)) then
2481 Set_Has_Predicates (Full_View (E));
2482 Set_Has_Delayed_Aspects (Full_View (E));
2483 Ensure_Freeze_Node (Full_View (E));
2484 end if;
2486 -- Case 2b: Aspects corresponding to pragmas with two
2487 -- arguments, where the second argument is a local name
2488 -- referring to the entity, and the first argument is the
2489 -- aspect definition expression.
2491 -- Convention
2493 when Aspect_Convention =>
2494 Analyze_Aspect_Convention;
2495 goto Continue;
2497 -- External_Name, Link_Name
2499 when Aspect_External_Name
2500 | Aspect_Link_Name
2502 Analyze_Aspect_External_Link_Name;
2503 goto Continue;
2505 -- CPU, Interrupt_Priority, Priority
2507 -- These three aspects can be specified for a subprogram spec
2508 -- or body, in which case we analyze the expression and export
2509 -- the value of the aspect.
2511 -- Previously, we generated an equivalent pragma for bodies
2512 -- (note that the specs cannot contain these pragmas). The
2513 -- pragma was inserted ahead of local declarations, rather than
2514 -- after the body. This leads to a certain duplication between
2515 -- the processing performed for the aspect and the pragma, but
2516 -- given the straightforward handling required it is simpler
2517 -- to duplicate than to translate the aspect in the spec into
2518 -- a pragma in the declarative part of the body.
2520 when Aspect_CPU
2521 | Aspect_Interrupt_Priority
2522 | Aspect_Priority
2524 if Nkind_In (N, N_Subprogram_Body,
2525 N_Subprogram_Declaration)
2526 then
2527 -- Analyze the aspect expression
2529 Analyze_And_Resolve (Expr, Standard_Integer);
2531 -- Interrupt_Priority aspect not allowed for main
2532 -- subprograms. RM D.1 does not forbid this explicitly,
2533 -- but RM J.15.11(6/3) does not permit pragma
2534 -- Interrupt_Priority for subprograms.
2536 if A_Id = Aspect_Interrupt_Priority then
2537 Error_Msg_N
2538 ("Interrupt_Priority aspect cannot apply to "
2539 & "subprogram", Expr);
2541 -- The expression must be static
2543 elsif not Is_OK_Static_Expression (Expr) then
2544 Flag_Non_Static_Expr
2545 ("aspect requires static expression!", Expr);
2547 -- Check whether this is the main subprogram. Issue a
2548 -- warning only if it is obviously not a main program
2549 -- (when it has parameters or when the subprogram is
2550 -- within a package).
2552 elsif Present (Parameter_Specifications
2553 (Specification (N)))
2554 or else not Is_Compilation_Unit (Defining_Entity (N))
2555 then
2556 -- See RM D.1(14/3) and D.16(12/3)
2558 Error_Msg_N
2559 ("aspect applied to subprogram other than the "
2560 & "main subprogram has no effect??", Expr);
2562 -- Otherwise check in range and export the value
2564 -- For the CPU aspect
2566 elsif A_Id = Aspect_CPU then
2567 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2569 -- Value is correct so we export the value to make
2570 -- it available at execution time.
2572 Set_Main_CPU
2573 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2575 else
2576 Error_Msg_N
2577 ("main subprogram CPU is out of range", Expr);
2578 end if;
2580 -- For the Priority aspect
2582 elsif A_Id = Aspect_Priority then
2583 if Is_In_Range (Expr, RTE (RE_Priority)) then
2585 -- Value is correct so we export the value to make
2586 -- it available at execution time.
2588 Set_Main_Priority
2589 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2591 -- Ignore pragma if Relaxed_RM_Semantics to support
2592 -- other targets/non GNAT compilers.
2594 elsif not Relaxed_RM_Semantics then
2595 Error_Msg_N
2596 ("main subprogram priority is out of range",
2597 Expr);
2598 end if;
2599 end if;
2601 -- Load an arbitrary entity from System.Tasking.Stages
2602 -- or System.Tasking.Restricted.Stages (depending on
2603 -- the supported profile) to make sure that one of these
2604 -- packages is implicitly with'ed, since we need to have
2605 -- the tasking run time active for the pragma Priority to
2606 -- have any effect. Previously we with'ed the package
2607 -- System.Tasking, but this package does not trigger the
2608 -- required initialization of the run-time library.
2610 declare
2611 Discard : Entity_Id;
2612 begin
2613 if Restricted_Profile then
2614 Discard := RTE (RE_Activate_Restricted_Tasks);
2615 else
2616 Discard := RTE (RE_Activate_Tasks);
2617 end if;
2618 end;
2620 -- Handling for these aspects in subprograms is complete
2622 goto Continue;
2624 -- For task and protected types pass the aspect as an
2625 -- attribute.
2627 else
2628 Aitem :=
2629 Make_Attribute_Definition_Clause (Loc,
2630 Name => Ent,
2631 Chars => Chars (Id),
2632 Expression => Relocate_Node (Expr));
2633 end if;
2635 -- Warnings
2637 when Aspect_Warnings =>
2638 Make_Aitem_Pragma
2639 (Pragma_Argument_Associations => New_List (
2640 Make_Pragma_Argument_Association (Sloc (Expr),
2641 Expression => Relocate_Node (Expr)),
2642 Make_Pragma_Argument_Association (Loc,
2643 Expression => New_Occurrence_Of (E, Loc))),
2644 Pragma_Name => Chars (Id));
2646 Decorate (Aspect, Aitem);
2647 Insert_Pragma (Aitem);
2648 goto Continue;
2650 -- Case 2c: Aspects corresponding to pragmas with three
2651 -- arguments.
2653 -- Invariant aspects have a first argument that references the
2654 -- entity, a second argument that is the expression and a third
2655 -- argument that is an appropriate message.
2657 -- Invariant, Type_Invariant
2659 when Aspect_Invariant
2660 | Aspect_Type_Invariant
2662 -- Analysis of the pragma will verify placement legality:
2663 -- an invariant must apply to a private type, or appear in
2664 -- the private part of a spec and apply to a completion.
2666 Make_Aitem_Pragma
2667 (Pragma_Argument_Associations => New_List (
2668 Make_Pragma_Argument_Association (Sloc (Ent),
2669 Expression => Ent),
2670 Make_Pragma_Argument_Association (Sloc (Expr),
2671 Expression => Relocate_Node (Expr))),
2672 Pragma_Name => Name_Invariant);
2674 -- Add message unless exception messages are suppressed
2676 if not Opt.Exception_Locations_Suppressed then
2677 Append_To (Pragma_Argument_Associations (Aitem),
2678 Make_Pragma_Argument_Association (Eloc,
2679 Chars => Name_Message,
2680 Expression =>
2681 Make_String_Literal (Eloc,
2682 Strval => "failed invariant from "
2683 & Build_Location_String (Eloc))));
2684 end if;
2686 -- For Invariant case, insert immediately after the entity
2687 -- declaration. We do not have to worry about delay issues
2688 -- since the pragma processing takes care of this.
2690 Delay_Required := False;
2692 -- Case 2d : Aspects that correspond to a pragma with one
2693 -- argument.
2695 -- Abstract_State
2697 -- Aspect Abstract_State introduces implicit declarations for
2698 -- all state abstraction entities it defines. To emulate this
2699 -- behavior, insert the pragma at the beginning of the visible
2700 -- declarations of the related package so that it is analyzed
2701 -- immediately.
2703 when Aspect_Abstract_State => Abstract_State : declare
2704 Context : Node_Id := N;
2706 begin
2707 -- When aspect Abstract_State appears on a generic package,
2708 -- it is propageted to the package instance. The context in
2709 -- this case is the instance spec.
2711 if Nkind (Context) = N_Package_Instantiation then
2712 Context := Instance_Spec (Context);
2713 end if;
2715 if Nkind_In (Context, N_Generic_Package_Declaration,
2716 N_Package_Declaration)
2717 then
2718 Make_Aitem_Pragma
2719 (Pragma_Argument_Associations => New_List (
2720 Make_Pragma_Argument_Association (Loc,
2721 Expression => Relocate_Node (Expr))),
2722 Pragma_Name => Name_Abstract_State);
2724 Decorate (Aspect, Aitem);
2725 Insert_Pragma
2726 (Prag => Aitem,
2727 Is_Instance =>
2728 Is_Generic_Instance (Defining_Entity (Context)));
2730 else
2731 Error_Msg_NE
2732 ("aspect & must apply to a package declaration",
2733 Aspect, Id);
2734 end if;
2736 goto Continue;
2737 end Abstract_State;
2739 -- Aspect Async_Readers is never delayed because it is
2740 -- equivalent to a source pragma which appears after the
2741 -- related object declaration.
2743 when Aspect_Async_Readers =>
2744 Make_Aitem_Pragma
2745 (Pragma_Argument_Associations => New_List (
2746 Make_Pragma_Argument_Association (Loc,
2747 Expression => Relocate_Node (Expr))),
2748 Pragma_Name => Name_Async_Readers);
2750 Decorate (Aspect, Aitem);
2751 Insert_Pragma (Aitem);
2752 goto Continue;
2754 -- Aspect Async_Writers is never delayed because it is
2755 -- equivalent to a source pragma which appears after the
2756 -- related object declaration.
2758 when Aspect_Async_Writers =>
2759 Make_Aitem_Pragma
2760 (Pragma_Argument_Associations => New_List (
2761 Make_Pragma_Argument_Association (Loc,
2762 Expression => Relocate_Node (Expr))),
2763 Pragma_Name => Name_Async_Writers);
2765 Decorate (Aspect, Aitem);
2766 Insert_Pragma (Aitem);
2767 goto Continue;
2769 -- Aspect Constant_After_Elaboration is never delayed because
2770 -- it is equivalent to a source pragma which appears after the
2771 -- related object declaration.
2773 when Aspect_Constant_After_Elaboration =>
2774 Make_Aitem_Pragma
2775 (Pragma_Argument_Associations => New_List (
2776 Make_Pragma_Argument_Association (Loc,
2777 Expression => Relocate_Node (Expr))),
2778 Pragma_Name =>
2779 Name_Constant_After_Elaboration);
2781 Decorate (Aspect, Aitem);
2782 Insert_Pragma (Aitem);
2783 goto Continue;
2785 -- Aspect Default_Internal_Condition is never delayed because
2786 -- it is equivalent to a source pragma which appears after the
2787 -- related private type. To deal with forward references, the
2788 -- generated pragma is stored in the rep chain of the related
2789 -- private type as types do not carry contracts. The pragma is
2790 -- wrapped inside of a procedure at the freeze point of the
2791 -- private type's full view.
2793 when Aspect_Default_Initial_Condition =>
2794 Make_Aitem_Pragma
2795 (Pragma_Argument_Associations => New_List (
2796 Make_Pragma_Argument_Association (Loc,
2797 Expression => Relocate_Node (Expr))),
2798 Pragma_Name =>
2799 Name_Default_Initial_Condition);
2801 Decorate (Aspect, Aitem);
2802 Insert_Pragma (Aitem);
2803 goto Continue;
2805 -- Default_Storage_Pool
2807 when Aspect_Default_Storage_Pool =>
2808 Make_Aitem_Pragma
2809 (Pragma_Argument_Associations => New_List (
2810 Make_Pragma_Argument_Association (Loc,
2811 Expression => Relocate_Node (Expr))),
2812 Pragma_Name =>
2813 Name_Default_Storage_Pool);
2815 Decorate (Aspect, Aitem);
2816 Insert_Pragma (Aitem);
2817 goto Continue;
2819 -- Depends
2821 -- Aspect Depends is never delayed because it is equivalent to
2822 -- a source pragma which appears after the related subprogram.
2823 -- To deal with forward references, the generated pragma is
2824 -- stored in the contract of the related subprogram and later
2825 -- analyzed at the end of the declarative region. See routine
2826 -- Analyze_Depends_In_Decl_Part for details.
2828 when Aspect_Depends =>
2829 Make_Aitem_Pragma
2830 (Pragma_Argument_Associations => New_List (
2831 Make_Pragma_Argument_Association (Loc,
2832 Expression => Relocate_Node (Expr))),
2833 Pragma_Name => Name_Depends);
2835 Decorate (Aspect, Aitem);
2836 Insert_Pragma (Aitem);
2837 goto Continue;
2839 -- Aspect Effecitve_Reads is never delayed because it is
2840 -- equivalent to a source pragma which appears after the
2841 -- related object declaration.
2843 when Aspect_Effective_Reads =>
2844 Make_Aitem_Pragma
2845 (Pragma_Argument_Associations => New_List (
2846 Make_Pragma_Argument_Association (Loc,
2847 Expression => Relocate_Node (Expr))),
2848 Pragma_Name => Name_Effective_Reads);
2850 Decorate (Aspect, Aitem);
2851 Insert_Pragma (Aitem);
2852 goto Continue;
2854 -- Aspect Effective_Writes is never delayed because it is
2855 -- equivalent to a source pragma which appears after the
2856 -- related object declaration.
2858 when Aspect_Effective_Writes =>
2859 Make_Aitem_Pragma
2860 (Pragma_Argument_Associations => New_List (
2861 Make_Pragma_Argument_Association (Loc,
2862 Expression => Relocate_Node (Expr))),
2863 Pragma_Name => Name_Effective_Writes);
2865 Decorate (Aspect, Aitem);
2866 Insert_Pragma (Aitem);
2867 goto Continue;
2869 -- Aspect Extensions_Visible is never delayed because it is
2870 -- equivalent to a source pragma which appears after the
2871 -- related subprogram.
2873 when Aspect_Extensions_Visible =>
2874 Make_Aitem_Pragma
2875 (Pragma_Argument_Associations => New_List (
2876 Make_Pragma_Argument_Association (Loc,
2877 Expression => Relocate_Node (Expr))),
2878 Pragma_Name => Name_Extensions_Visible);
2880 Decorate (Aspect, Aitem);
2881 Insert_Pragma (Aitem);
2882 goto Continue;
2884 -- Aspect Ghost is never delayed because it is equivalent to a
2885 -- source pragma which appears at the top of [generic] package
2886 -- declarations or after an object, a [generic] subprogram, or
2887 -- a type declaration.
2889 when Aspect_Ghost =>
2890 Make_Aitem_Pragma
2891 (Pragma_Argument_Associations => New_List (
2892 Make_Pragma_Argument_Association (Loc,
2893 Expression => Relocate_Node (Expr))),
2894 Pragma_Name => Name_Ghost);
2896 Decorate (Aspect, Aitem);
2897 Insert_Pragma (Aitem);
2898 goto Continue;
2900 -- Global
2902 -- Aspect Global is never delayed because it is equivalent to
2903 -- a source pragma which appears after the related subprogram.
2904 -- To deal with forward references, the generated pragma is
2905 -- stored in the contract of the related subprogram and later
2906 -- analyzed at the end of the declarative region. See routine
2907 -- Analyze_Global_In_Decl_Part for details.
2909 when Aspect_Global =>
2910 Make_Aitem_Pragma
2911 (Pragma_Argument_Associations => New_List (
2912 Make_Pragma_Argument_Association (Loc,
2913 Expression => Relocate_Node (Expr))),
2914 Pragma_Name => Name_Global);
2916 Decorate (Aspect, Aitem);
2917 Insert_Pragma (Aitem);
2918 goto Continue;
2920 -- Initial_Condition
2922 -- Aspect Initial_Condition is never delayed because it is
2923 -- equivalent to a source pragma which appears after the
2924 -- related package. To deal with forward references, the
2925 -- generated pragma is stored in the contract of the related
2926 -- package and later analyzed at the end of the declarative
2927 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2928 -- for details.
2930 when Aspect_Initial_Condition => Initial_Condition : declare
2931 Context : Node_Id := N;
2933 begin
2934 -- When aspect Initial_Condition appears on a generic
2935 -- package, it is propageted to the package instance. The
2936 -- context in this case is the instance spec.
2938 if Nkind (Context) = N_Package_Instantiation then
2939 Context := Instance_Spec (Context);
2940 end if;
2942 if Nkind_In (Context, N_Generic_Package_Declaration,
2943 N_Package_Declaration)
2944 then
2945 Make_Aitem_Pragma
2946 (Pragma_Argument_Associations => New_List (
2947 Make_Pragma_Argument_Association (Loc,
2948 Expression => Relocate_Node (Expr))),
2949 Pragma_Name =>
2950 Name_Initial_Condition);
2952 Decorate (Aspect, Aitem);
2953 Insert_Pragma
2954 (Prag => Aitem,
2955 Is_Instance =>
2956 Is_Generic_Instance (Defining_Entity (Context)));
2958 -- Otherwise the context is illegal
2960 else
2961 Error_Msg_NE
2962 ("aspect & must apply to a package declaration",
2963 Aspect, Id);
2964 end if;
2966 goto Continue;
2967 end Initial_Condition;
2969 -- Initializes
2971 -- Aspect Initializes is never delayed because it is equivalent
2972 -- to a source pragma appearing after the related package. To
2973 -- deal with forward references, the generated pragma is stored
2974 -- in the contract of the related package and later analyzed at
2975 -- the end of the declarative region. For details, see routine
2976 -- Analyze_Initializes_In_Decl_Part.
2978 when Aspect_Initializes => Initializes : declare
2979 Context : Node_Id := N;
2981 begin
2982 -- When aspect Initializes appears on a generic package,
2983 -- it is propageted to the package instance. The context
2984 -- in this case is the instance spec.
2986 if Nkind (Context) = N_Package_Instantiation then
2987 Context := Instance_Spec (Context);
2988 end if;
2990 if Nkind_In (Context, N_Generic_Package_Declaration,
2991 N_Package_Declaration)
2992 then
2993 Make_Aitem_Pragma
2994 (Pragma_Argument_Associations => New_List (
2995 Make_Pragma_Argument_Association (Loc,
2996 Expression => Relocate_Node (Expr))),
2997 Pragma_Name => Name_Initializes);
2999 Decorate (Aspect, Aitem);
3000 Insert_Pragma
3001 (Prag => Aitem,
3002 Is_Instance =>
3003 Is_Generic_Instance (Defining_Entity (Context)));
3005 -- Otherwise the context is illegal
3007 else
3008 Error_Msg_NE
3009 ("aspect & must apply to a package declaration",
3010 Aspect, Id);
3011 end if;
3013 goto Continue;
3014 end Initializes;
3016 -- Max_Queue_Length
3018 when Aspect_Max_Queue_Length =>
3019 Make_Aitem_Pragma
3020 (Pragma_Argument_Associations => New_List (
3021 Make_Pragma_Argument_Association (Loc,
3022 Expression => Relocate_Node (Expr))),
3023 Pragma_Name => Name_Max_Queue_Length);
3025 Decorate (Aspect, Aitem);
3026 Insert_Pragma (Aitem);
3027 goto Continue;
3029 -- Obsolescent
3031 when Aspect_Obsolescent => declare
3032 Args : List_Id;
3034 begin
3035 if No (Expr) then
3036 Args := No_List;
3037 else
3038 Args := New_List (
3039 Make_Pragma_Argument_Association (Sloc (Expr),
3040 Expression => Relocate_Node (Expr)));
3041 end if;
3043 Make_Aitem_Pragma
3044 (Pragma_Argument_Associations => Args,
3045 Pragma_Name => Chars (Id));
3046 end;
3048 -- Part_Of
3050 when Aspect_Part_Of =>
3051 if Nkind_In (N, N_Object_Declaration,
3052 N_Package_Instantiation)
3053 or else Is_Single_Concurrent_Type_Declaration (N)
3054 then
3055 Make_Aitem_Pragma
3056 (Pragma_Argument_Associations => New_List (
3057 Make_Pragma_Argument_Association (Loc,
3058 Expression => Relocate_Node (Expr))),
3059 Pragma_Name => Name_Part_Of);
3061 Decorate (Aspect, Aitem);
3062 Insert_Pragma (Aitem);
3064 else
3065 Error_Msg_NE
3066 ("aspect & must apply to package instantiation, "
3067 & "object, single protected type or single task type",
3068 Aspect, Id);
3069 end if;
3071 goto Continue;
3073 -- SPARK_Mode
3075 when Aspect_SPARK_Mode =>
3076 Make_Aitem_Pragma
3077 (Pragma_Argument_Associations => New_List (
3078 Make_Pragma_Argument_Association (Loc,
3079 Expression => Relocate_Node (Expr))),
3080 Pragma_Name => Name_SPARK_Mode);
3082 Decorate (Aspect, Aitem);
3083 Insert_Pragma (Aitem);
3084 goto Continue;
3086 -- Refined_Depends
3088 -- Aspect Refined_Depends is never delayed because it is
3089 -- equivalent to a source pragma which appears in the
3090 -- declarations of the related subprogram body. To deal with
3091 -- forward references, the generated pragma is stored in the
3092 -- contract of the related subprogram body and later analyzed
3093 -- at the end of the declarative region. For details, see
3094 -- routine Analyze_Refined_Depends_In_Decl_Part.
3096 when Aspect_Refined_Depends =>
3097 Make_Aitem_Pragma
3098 (Pragma_Argument_Associations => New_List (
3099 Make_Pragma_Argument_Association (Loc,
3100 Expression => Relocate_Node (Expr))),
3101 Pragma_Name => Name_Refined_Depends);
3103 Decorate (Aspect, Aitem);
3104 Insert_Pragma (Aitem);
3105 goto Continue;
3107 -- Refined_Global
3109 -- Aspect Refined_Global is never delayed because it is
3110 -- equivalent to a source pragma which appears in the
3111 -- declarations of the related subprogram body. To deal with
3112 -- forward references, the generated pragma is stored in the
3113 -- contract of the related subprogram body and later analyzed
3114 -- at the end of the declarative region. For details, see
3115 -- routine Analyze_Refined_Global_In_Decl_Part.
3117 when Aspect_Refined_Global =>
3118 Make_Aitem_Pragma
3119 (Pragma_Argument_Associations => New_List (
3120 Make_Pragma_Argument_Association (Loc,
3121 Expression => Relocate_Node (Expr))),
3122 Pragma_Name => Name_Refined_Global);
3124 Decorate (Aspect, Aitem);
3125 Insert_Pragma (Aitem);
3126 goto Continue;
3128 -- Refined_Post
3130 when Aspect_Refined_Post =>
3131 Make_Aitem_Pragma
3132 (Pragma_Argument_Associations => New_List (
3133 Make_Pragma_Argument_Association (Loc,
3134 Expression => Relocate_Node (Expr))),
3135 Pragma_Name => Name_Refined_Post);
3137 Decorate (Aspect, Aitem);
3138 Insert_Pragma (Aitem);
3139 goto Continue;
3141 -- Refined_State
3143 when Aspect_Refined_State =>
3145 -- The corresponding pragma for Refined_State is inserted in
3146 -- the declarations of the related package body. This action
3147 -- synchronizes both the source and from-aspect versions of
3148 -- the pragma.
3150 if Nkind (N) = N_Package_Body then
3151 Make_Aitem_Pragma
3152 (Pragma_Argument_Associations => New_List (
3153 Make_Pragma_Argument_Association (Loc,
3154 Expression => Relocate_Node (Expr))),
3155 Pragma_Name => Name_Refined_State);
3157 Decorate (Aspect, Aitem);
3158 Insert_Pragma (Aitem);
3160 -- Otherwise the context is illegal
3162 else
3163 Error_Msg_NE
3164 ("aspect & must apply to a package body", Aspect, Id);
3165 end if;
3167 goto Continue;
3169 -- Relative_Deadline
3171 when Aspect_Relative_Deadline =>
3172 Make_Aitem_Pragma
3173 (Pragma_Argument_Associations => New_List (
3174 Make_Pragma_Argument_Association (Loc,
3175 Expression => Relocate_Node (Expr))),
3176 Pragma_Name => Name_Relative_Deadline);
3178 -- If the aspect applies to a task, the corresponding pragma
3179 -- must appear within its declarations, not after.
3181 if Nkind (N) = N_Task_Type_Declaration then
3182 declare
3183 Def : Node_Id;
3184 V : List_Id;
3186 begin
3187 if No (Task_Definition (N)) then
3188 Set_Task_Definition (N,
3189 Make_Task_Definition (Loc,
3190 Visible_Declarations => New_List,
3191 End_Label => Empty));
3192 end if;
3194 Def := Task_Definition (N);
3195 V := Visible_Declarations (Def);
3196 if not Is_Empty_List (V) then
3197 Insert_Before (First (V), Aitem);
3199 else
3200 Set_Visible_Declarations (Def, New_List (Aitem));
3201 end if;
3203 goto Continue;
3204 end;
3205 end if;
3207 -- Secondary_Stack_Size
3209 -- Aspect Secondary_Stack_Size needs to be converted into a
3210 -- pragma for two reasons: the attribute is not analyzed until
3211 -- after the expansion of the task type declaration and the
3212 -- attribute does not have visibility on the discriminant.
3214 when Aspect_Secondary_Stack_Size =>
3215 Make_Aitem_Pragma
3216 (Pragma_Argument_Associations => New_List (
3217 Make_Pragma_Argument_Association (Loc,
3218 Expression => Relocate_Node (Expr))),
3219 Pragma_Name =>
3220 Name_Secondary_Stack_Size);
3222 Decorate (Aspect, Aitem);
3223 Insert_Pragma (Aitem);
3224 goto Continue;
3226 -- Volatile_Function
3228 -- Aspect Volatile_Function is never delayed because it is
3229 -- equivalent to a source pragma which appears after the
3230 -- related subprogram.
3232 when Aspect_Volatile_Function =>
3233 Make_Aitem_Pragma
3234 (Pragma_Argument_Associations => New_List (
3235 Make_Pragma_Argument_Association (Loc,
3236 Expression => Relocate_Node (Expr))),
3237 Pragma_Name => Name_Volatile_Function);
3239 Decorate (Aspect, Aitem);
3240 Insert_Pragma (Aitem);
3241 goto Continue;
3243 -- Case 2e: Annotate aspect
3245 when Aspect_Annotate =>
3246 declare
3247 Args : List_Id;
3248 Pargs : List_Id;
3249 Arg : Node_Id;
3251 begin
3252 -- The argument can be a single identifier
3254 if Nkind (Expr) = N_Identifier then
3256 -- One level of parens is allowed
3258 if Paren_Count (Expr) > 1 then
3259 Error_Msg_F ("extra parentheses ignored", Expr);
3260 end if;
3262 Set_Paren_Count (Expr, 0);
3264 -- Add the single item to the list
3266 Args := New_List (Expr);
3268 -- Otherwise we must have an aggregate
3270 elsif Nkind (Expr) = N_Aggregate then
3272 -- Must be positional
3274 if Present (Component_Associations (Expr)) then
3275 Error_Msg_F
3276 ("purely positional aggregate required", Expr);
3277 goto Continue;
3278 end if;
3280 -- Must not be parenthesized
3282 if Paren_Count (Expr) /= 0 then
3283 Error_Msg_F ("extra parentheses ignored", Expr);
3284 end if;
3286 -- List of arguments is list of aggregate expressions
3288 Args := Expressions (Expr);
3290 -- Anything else is illegal
3292 else
3293 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3294 goto Continue;
3295 end if;
3297 -- Prepare pragma arguments
3299 Pargs := New_List;
3300 Arg := First (Args);
3301 while Present (Arg) loop
3302 Append_To (Pargs,
3303 Make_Pragma_Argument_Association (Sloc (Arg),
3304 Expression => Relocate_Node (Arg)));
3305 Next (Arg);
3306 end loop;
3308 Append_To (Pargs,
3309 Make_Pragma_Argument_Association (Sloc (Ent),
3310 Chars => Name_Entity,
3311 Expression => Ent));
3313 Make_Aitem_Pragma
3314 (Pragma_Argument_Associations => Pargs,
3315 Pragma_Name => Name_Annotate);
3316 end;
3318 -- Case 3 : Aspects that don't correspond to pragma/attribute
3319 -- definition clause.
3321 -- Case 3a: The aspects listed below don't correspond to
3322 -- pragmas/attributes but do require delayed analysis.
3324 -- Default_Value can only apply to a scalar type
3326 when Aspect_Default_Value =>
3327 if not Is_Scalar_Type (E) then
3328 Error_Msg_N
3329 ("aspect Default_Value must apply to a scalar type", N);
3330 end if;
3332 Aitem := Empty;
3334 -- Default_Component_Value can only apply to an array type
3335 -- with scalar components.
3337 when Aspect_Default_Component_Value =>
3338 if not (Is_Array_Type (E)
3339 and then Is_Scalar_Type (Component_Type (E)))
3340 then
3341 Error_Msg_N
3342 ("aspect Default_Component_Value can only apply to an "
3343 & "array of scalar components", N);
3344 end if;
3346 Aitem := Empty;
3348 -- Case 3b: The aspects listed below don't correspond to
3349 -- pragmas/attributes and don't need delayed analysis.
3351 -- Implicit_Dereference
3353 -- For Implicit_Dereference, External_Name and Link_Name, only
3354 -- the legality checks are done during the analysis, thus no
3355 -- delay is required.
3357 when Aspect_Implicit_Dereference =>
3358 Analyze_Aspect_Implicit_Dereference;
3359 goto Continue;
3361 -- Dimension
3363 when Aspect_Dimension =>
3364 Analyze_Aspect_Dimension (N, Id, Expr);
3365 goto Continue;
3367 -- Dimension_System
3369 when Aspect_Dimension_System =>
3370 Analyze_Aspect_Dimension_System (N, Id, Expr);
3371 goto Continue;
3373 -- Case 4: Aspects requiring special handling
3375 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3376 -- pragmas take care of the delay.
3378 -- Pre/Post
3380 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3381 -- with a first argument that is the expression, and a second
3382 -- argument that is an informative message if the test fails.
3383 -- This is inserted right after the declaration, to get the
3384 -- required pragma placement. The processing for the pragmas
3385 -- takes care of the required delay.
3387 when Pre_Post_Aspects => Pre_Post : declare
3388 Pname : Name_Id;
3390 begin
3391 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3392 Pname := Name_Precondition;
3393 else
3394 Pname := Name_Postcondition;
3395 end if;
3397 -- Check that the class-wide predicate cannot be applied to
3398 -- an operation of a synchronized type. AI12-0182 forbids
3399 -- these altogether, while earlier language semantics made
3400 -- them legal on tagged synchronized types.
3402 -- Other legality checks are performed when analyzing the
3403 -- contract of the operation.
3405 if Class_Present (Aspect)
3406 and then Is_Concurrent_Type (Current_Scope)
3407 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3408 then
3409 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3410 Error_Msg_N
3411 ("aspect % can only be specified for a primitive "
3412 & "operation of a tagged type", Aspect);
3414 goto Continue;
3415 end if;
3417 -- If the expressions is of the form A and then B, then
3418 -- we generate separate Pre/Post aspects for the separate
3419 -- clauses. Since we allow multiple pragmas, there is no
3420 -- problem in allowing multiple Pre/Post aspects internally.
3421 -- These should be treated in reverse order (B first and
3422 -- A second) since they are later inserted just after N in
3423 -- the order they are treated. This way, the pragma for A
3424 -- ends up preceding the pragma for B, which may have an
3425 -- importance for the error raised (either constraint error
3426 -- or precondition error).
3428 -- We do not do this for Pre'Class, since we have to put
3429 -- these conditions together in a complex OR expression.
3431 -- We do not do this in ASIS mode, as ASIS relies on the
3432 -- original node representing the complete expression, when
3433 -- retrieving it through the source aspect table.
3435 if not ASIS_Mode
3436 and then (Pname = Name_Postcondition
3437 or else not Class_Present (Aspect))
3438 then
3439 while Nkind (Expr) = N_And_Then loop
3440 Insert_After (Aspect,
3441 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3442 Identifier => Identifier (Aspect),
3443 Expression => Relocate_Node (Left_Opnd (Expr)),
3444 Class_Present => Class_Present (Aspect),
3445 Split_PPC => True));
3446 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3447 Eloc := Sloc (Expr);
3448 end loop;
3449 end if;
3451 -- Build the precondition/postcondition pragma
3453 -- Add note about why we do NOT need Copy_Tree here???
3455 Make_Aitem_Pragma
3456 (Pragma_Argument_Associations => New_List (
3457 Make_Pragma_Argument_Association (Eloc,
3458 Chars => Name_Check,
3459 Expression => Relocate_Node (Expr))),
3460 Pragma_Name => Pname);
3462 -- Add message unless exception messages are suppressed
3464 if not Opt.Exception_Locations_Suppressed then
3465 Append_To (Pragma_Argument_Associations (Aitem),
3466 Make_Pragma_Argument_Association (Eloc,
3467 Chars => Name_Message,
3468 Expression =>
3469 Make_String_Literal (Eloc,
3470 Strval => "failed "
3471 & Get_Name_String (Pname)
3472 & " from "
3473 & Build_Location_String (Eloc))));
3474 end if;
3476 Set_Is_Delayed_Aspect (Aspect);
3478 -- For Pre/Post cases, insert immediately after the entity
3479 -- declaration, since that is the required pragma placement.
3480 -- Note that for these aspects, we do not have to worry
3481 -- about delay issues, since the pragmas themselves deal
3482 -- with delay of visibility for the expression analysis.
3484 Insert_Pragma (Aitem);
3486 goto Continue;
3487 end Pre_Post;
3489 -- Test_Case
3491 when Aspect_Test_Case => Test_Case : declare
3492 Args : List_Id;
3493 Comp_Expr : Node_Id;
3494 Comp_Assn : Node_Id;
3495 New_Expr : Node_Id;
3497 begin
3498 Args := New_List;
3500 if Nkind (Parent (N)) = N_Compilation_Unit then
3501 Error_Msg_Name_1 := Nam;
3502 Error_Msg_N ("incorrect placement of aspect `%`", E);
3503 goto Continue;
3504 end if;
3506 if Nkind (Expr) /= N_Aggregate then
3507 Error_Msg_Name_1 := Nam;
3508 Error_Msg_NE
3509 ("wrong syntax for aspect `%` for &", Id, E);
3510 goto Continue;
3511 end if;
3513 -- Make pragma expressions refer to the original aspect
3514 -- expressions through the Original_Node link. This is used
3515 -- in semantic analysis for ASIS mode, so that the original
3516 -- expression also gets analyzed.
3518 Comp_Expr := First (Expressions (Expr));
3519 while Present (Comp_Expr) loop
3520 New_Expr := Relocate_Node (Comp_Expr);
3521 Append_To (Args,
3522 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3523 Expression => New_Expr));
3524 Next (Comp_Expr);
3525 end loop;
3527 Comp_Assn := First (Component_Associations (Expr));
3528 while Present (Comp_Assn) loop
3529 if List_Length (Choices (Comp_Assn)) /= 1
3530 or else
3531 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3532 then
3533 Error_Msg_Name_1 := Nam;
3534 Error_Msg_NE
3535 ("wrong syntax for aspect `%` for &", Id, E);
3536 goto Continue;
3537 end if;
3539 Append_To (Args,
3540 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3541 Chars => Chars (First (Choices (Comp_Assn))),
3542 Expression =>
3543 Relocate_Node (Expression (Comp_Assn))));
3544 Next (Comp_Assn);
3545 end loop;
3547 -- Build the test-case pragma
3549 Make_Aitem_Pragma
3550 (Pragma_Argument_Associations => Args,
3551 Pragma_Name => Nam);
3552 end Test_Case;
3554 -- Contract_Cases
3556 when Aspect_Contract_Cases =>
3557 Make_Aitem_Pragma
3558 (Pragma_Argument_Associations => New_List (
3559 Make_Pragma_Argument_Association (Loc,
3560 Expression => Relocate_Node (Expr))),
3561 Pragma_Name => Nam);
3563 Decorate (Aspect, Aitem);
3564 Insert_Pragma (Aitem);
3565 goto Continue;
3567 -- Case 5: Special handling for aspects with an optional
3568 -- boolean argument.
3570 -- In the delayed case, the corresponding pragma cannot be
3571 -- generated yet because the evaluation of the boolean needs
3572 -- to be delayed till the freeze point.
3574 when Boolean_Aspects
3575 | Library_Unit_Aspects
3577 Set_Is_Boolean_Aspect (Aspect);
3579 -- Lock_Free aspect only apply to protected objects
3581 if A_Id = Aspect_Lock_Free then
3582 if Ekind (E) /= E_Protected_Type then
3583 Error_Msg_Name_1 := Nam;
3584 Error_Msg_N
3585 ("aspect % only applies to a protected object",
3586 Aspect);
3588 else
3589 -- Set the Uses_Lock_Free flag to True if there is no
3590 -- expression or if the expression is True. The
3591 -- evaluation of this aspect should be delayed to the
3592 -- freeze point (why???)
3594 if No (Expr)
3595 or else Is_True (Static_Boolean (Expr))
3596 then
3597 Set_Uses_Lock_Free (E);
3598 end if;
3600 Record_Rep_Item (E, Aspect);
3601 end if;
3603 goto Continue;
3605 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3606 Analyze_Aspect_Export_Import;
3608 -- Disable_Controlled
3610 elsif A_Id = Aspect_Disable_Controlled then
3611 Analyze_Aspect_Disable_Controlled;
3612 goto Continue;
3613 end if;
3615 -- Library unit aspects require special handling in the case
3616 -- of a package declaration, the pragma needs to be inserted
3617 -- in the list of declarations for the associated package.
3618 -- There is no issue of visibility delay for these aspects.
3620 if A_Id in Library_Unit_Aspects
3621 and then
3622 Nkind_In (N, N_Package_Declaration,
3623 N_Generic_Package_Declaration)
3624 and then Nkind (Parent (N)) /= N_Compilation_Unit
3626 -- Aspect is legal on a local instantiation of a library-
3627 -- level generic unit.
3629 and then not Is_Generic_Instance (Defining_Entity (N))
3630 then
3631 Error_Msg_N
3632 ("incorrect context for library unit aspect&", Id);
3633 goto Continue;
3634 end if;
3636 -- Cases where we do not delay, includes all cases where the
3637 -- expression is missing other than the above cases.
3639 if not Delay_Required or else No (Expr) then
3641 -- Exclude aspects Export and Import because their pragma
3642 -- syntax does not map directly to a Boolean aspect.
3644 if A_Id /= Aspect_Export
3645 and then A_Id /= Aspect_Import
3646 then
3647 Make_Aitem_Pragma
3648 (Pragma_Argument_Associations => New_List (
3649 Make_Pragma_Argument_Association (Sloc (Ent),
3650 Expression => Ent)),
3651 Pragma_Name => Chars (Id));
3652 end if;
3654 Delay_Required := False;
3656 -- In general cases, the corresponding pragma/attribute
3657 -- definition clause will be inserted later at the freezing
3658 -- point, and we do not need to build it now.
3660 else
3661 Aitem := Empty;
3662 end if;
3664 -- Storage_Size
3666 -- This is special because for access types we need to generate
3667 -- an attribute definition clause. This also works for single
3668 -- task declarations, but it does not work for task type
3669 -- declarations, because we have the case where the expression
3670 -- references a discriminant of the task type. That can't use
3671 -- an attribute definition clause because we would not have
3672 -- visibility on the discriminant. For that case we must
3673 -- generate a pragma in the task definition.
3675 when Aspect_Storage_Size =>
3677 -- Task type case
3679 if Ekind (E) = E_Task_Type then
3680 declare
3681 Decl : constant Node_Id := Declaration_Node (E);
3683 begin
3684 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3686 -- If no task definition, create one
3688 if No (Task_Definition (Decl)) then
3689 Set_Task_Definition (Decl,
3690 Make_Task_Definition (Loc,
3691 Visible_Declarations => Empty_List,
3692 End_Label => Empty));
3693 end if;
3695 -- Create a pragma and put it at the start of the task
3696 -- definition for the task type declaration.
3698 Make_Aitem_Pragma
3699 (Pragma_Argument_Associations => New_List (
3700 Make_Pragma_Argument_Association (Loc,
3701 Expression => Relocate_Node (Expr))),
3702 Pragma_Name => Name_Storage_Size);
3704 Prepend
3705 (Aitem,
3706 Visible_Declarations (Task_Definition (Decl)));
3707 goto Continue;
3708 end;
3710 -- All other cases, generate attribute definition
3712 else
3713 Aitem :=
3714 Make_Attribute_Definition_Clause (Loc,
3715 Name => Ent,
3716 Chars => Chars (Id),
3717 Expression => Relocate_Node (Expr));
3718 end if;
3719 end case;
3721 -- Attach the corresponding pragma/attribute definition clause to
3722 -- the aspect specification node.
3724 if Present (Aitem) then
3725 Set_From_Aspect_Specification (Aitem);
3726 end if;
3728 -- In the context of a compilation unit, we directly put the
3729 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3730 -- node (no delay is required here) except for aspects on a
3731 -- subprogram body (see below) and a generic package, for which we
3732 -- need to introduce the pragma before building the generic copy
3733 -- (see sem_ch12), and for package instantiations, where the
3734 -- library unit pragmas are better handled early.
3736 if Nkind (Parent (N)) = N_Compilation_Unit
3737 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3738 then
3739 declare
3740 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3742 begin
3743 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3745 -- For a Boolean aspect, create the corresponding pragma if
3746 -- no expression or if the value is True.
3748 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3749 if Is_True (Static_Boolean (Expr)) then
3750 Make_Aitem_Pragma
3751 (Pragma_Argument_Associations => New_List (
3752 Make_Pragma_Argument_Association (Sloc (Ent),
3753 Expression => Ent)),
3754 Pragma_Name => Chars (Id));
3756 Set_From_Aspect_Specification (Aitem, True);
3757 Set_Corresponding_Aspect (Aitem, Aspect);
3759 else
3760 goto Continue;
3761 end if;
3762 end if;
3764 -- If the aspect is on a subprogram body (relevant aspect
3765 -- is Inline), add the pragma in front of the declarations.
3767 if Nkind (N) = N_Subprogram_Body then
3768 if No (Declarations (N)) then
3769 Set_Declarations (N, New_List);
3770 end if;
3772 Prepend (Aitem, Declarations (N));
3774 elsif Nkind (N) = N_Generic_Package_Declaration then
3775 if No (Visible_Declarations (Specification (N))) then
3776 Set_Visible_Declarations (Specification (N), New_List);
3777 end if;
3779 Prepend (Aitem,
3780 Visible_Declarations (Specification (N)));
3782 elsif Nkind (N) = N_Package_Instantiation then
3783 declare
3784 Spec : constant Node_Id :=
3785 Specification (Instance_Spec (N));
3786 begin
3787 if No (Visible_Declarations (Spec)) then
3788 Set_Visible_Declarations (Spec, New_List);
3789 end if;
3791 Prepend (Aitem, Visible_Declarations (Spec));
3792 end;
3794 else
3795 if No (Pragmas_After (Aux)) then
3796 Set_Pragmas_After (Aux, New_List);
3797 end if;
3799 Append (Aitem, Pragmas_After (Aux));
3800 end if;
3802 goto Continue;
3803 end;
3804 end if;
3806 -- The evaluation of the aspect is delayed to the freezing point.
3807 -- The pragma or attribute clause if there is one is then attached
3808 -- to the aspect specification which is put in the rep item list.
3810 if Delay_Required then
3811 if Present (Aitem) then
3812 Set_Is_Delayed_Aspect (Aitem);
3813 Set_Aspect_Rep_Item (Aspect, Aitem);
3814 Set_Parent (Aitem, Aspect);
3815 end if;
3817 Set_Is_Delayed_Aspect (Aspect);
3819 -- In the case of Default_Value, link the aspect to base type
3820 -- as well, even though it appears on a first subtype. This is
3821 -- mandated by the semantics of the aspect. Do not establish
3822 -- the link when processing the base type itself as this leads
3823 -- to a rep item circularity. Verify that we are dealing with
3824 -- a scalar type to prevent cascaded errors.
3826 if A_Id = Aspect_Default_Value
3827 and then Is_Scalar_Type (E)
3828 and then Base_Type (E) /= E
3829 then
3830 Set_Has_Delayed_Aspects (Base_Type (E));
3831 Record_Rep_Item (Base_Type (E), Aspect);
3832 end if;
3834 Set_Has_Delayed_Aspects (E);
3835 Record_Rep_Item (E, Aspect);
3837 -- When delay is not required and the context is a package or a
3838 -- subprogram body, insert the pragma in the body declarations.
3840 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3841 if No (Declarations (N)) then
3842 Set_Declarations (N, New_List);
3843 end if;
3845 -- The pragma is added before source declarations
3847 Prepend_To (Declarations (N), Aitem);
3849 -- When delay is not required and the context is not a compilation
3850 -- unit, we simply insert the pragma/attribute definition clause
3851 -- in sequence.
3853 elsif Present (Aitem) then
3854 Insert_After (Ins_Node, Aitem);
3855 Ins_Node := Aitem;
3856 end if;
3857 end Analyze_One_Aspect;
3859 <<Continue>>
3860 Next (Aspect);
3861 end loop Aspect_Loop;
3863 if Has_Delayed_Aspects (E) then
3864 Ensure_Freeze_Node (E);
3865 end if;
3866 end Analyze_Aspect_Specifications;
3868 ------------------------------------------------
3869 -- Analyze_Aspects_On_Subprogram_Body_Or_Stub --
3870 ------------------------------------------------
3872 procedure Analyze_Aspects_On_Subprogram_Body_Or_Stub (N : Node_Id) is
3873 Body_Id : constant Entity_Id := Defining_Entity (N);
3875 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3876 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3877 -- error message depending on the aspects involved. Spec_Id denotes the
3878 -- entity of the corresponding spec.
3880 --------------------------------
3881 -- Diagnose_Misplaced_Aspects --
3882 --------------------------------
3884 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3885 procedure Misplaced_Aspect_Error
3886 (Asp : Node_Id;
3887 Ref_Nam : Name_Id);
3888 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3889 -- the name of the refined version of the aspect.
3891 ----------------------------
3892 -- Misplaced_Aspect_Error --
3893 ----------------------------
3895 procedure Misplaced_Aspect_Error
3896 (Asp : Node_Id;
3897 Ref_Nam : Name_Id)
3899 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3900 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3902 begin
3903 -- The corresponding spec already contains the aspect in question
3904 -- and the one appearing on the body must be the refined form:
3906 -- procedure P with Global ...;
3907 -- procedure P with Global ... is ... end P;
3908 -- ^
3909 -- Refined_Global
3911 if Has_Aspect (Spec_Id, Asp_Id) then
3912 Error_Msg_Name_1 := Asp_Nam;
3914 -- Subunits cannot carry aspects that apply to a subprogram
3915 -- declaration.
3917 if Nkind (Parent (N)) = N_Subunit then
3918 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3920 -- Otherwise suggest the refined form
3922 else
3923 Error_Msg_Name_2 := Ref_Nam;
3924 Error_Msg_N ("aspect % should be %", Asp);
3925 end if;
3927 -- Otherwise the aspect must appear on the spec, not on the body
3929 -- procedure P;
3930 -- procedure P with Global ... is ... end P;
3932 else
3933 Error_Msg_N
3934 ("aspect specification must appear on initial declaration",
3935 Asp);
3936 end if;
3937 end Misplaced_Aspect_Error;
3939 -- Local variables
3941 Asp : Node_Id;
3942 Asp_Nam : Name_Id;
3944 -- Start of processing for Diagnose_Misplaced_Aspects
3946 begin
3947 -- Iterate over the aspect specifications and emit specific errors
3948 -- where applicable.
3950 Asp := First (Aspect_Specifications (N));
3951 while Present (Asp) loop
3952 Asp_Nam := Chars (Identifier (Asp));
3954 -- Do not emit errors on aspects that can appear on a subprogram
3955 -- body. This scenario occurs when the aspect specification list
3956 -- contains both misplaced and properly placed aspects.
3958 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3959 null;
3961 -- Special diagnostics for SPARK aspects
3963 elsif Asp_Nam = Name_Depends then
3964 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3966 elsif Asp_Nam = Name_Global then
3967 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3969 elsif Asp_Nam = Name_Post then
3970 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3972 -- Otherwise a language-defined aspect is misplaced
3974 else
3975 Error_Msg_N
3976 ("aspect specification must appear on initial declaration",
3977 Asp);
3978 end if;
3980 Next (Asp);
3981 end loop;
3982 end Diagnose_Misplaced_Aspects;
3984 -- Local variables
3986 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
3988 -- Start of processing for Analyze_Aspects_On_Subprogram_Body_Or_Stub
3990 begin
3991 -- Language-defined aspects cannot be associated with a subprogram body
3992 -- [stub] if the subprogram has a spec. Certain implementation defined
3993 -- aspects are allowed to break this rule (for all applicable cases, see
3994 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3996 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
3997 Diagnose_Misplaced_Aspects (Spec_Id);
3998 else
3999 Analyze_Aspect_Specifications (N, Body_Id);
4000 end if;
4001 end Analyze_Aspects_On_Subprogram_Body_Or_Stub;
4003 -----------------------
4004 -- Analyze_At_Clause --
4005 -----------------------
4007 -- An at clause is replaced by the corresponding Address attribute
4008 -- definition clause that is the preferred approach in Ada 95.
4010 procedure Analyze_At_Clause (N : Node_Id) is
4011 CS : constant Boolean := Comes_From_Source (N);
4013 begin
4014 -- This is an obsolescent feature
4016 Check_Restriction (No_Obsolescent_Features, N);
4018 if Warn_On_Obsolescent_Feature then
4019 Error_Msg_N
4020 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
4021 Error_Msg_N
4022 ("\?j?use address attribute definition clause instead", N);
4023 end if;
4025 -- Rewrite as address clause
4027 Rewrite (N,
4028 Make_Attribute_Definition_Clause (Sloc (N),
4029 Name => Identifier (N),
4030 Chars => Name_Address,
4031 Expression => Expression (N)));
4033 -- We preserve Comes_From_Source, since logically the clause still comes
4034 -- from the source program even though it is changed in form.
4036 Set_Comes_From_Source (N, CS);
4038 -- Analyze rewritten clause
4040 Analyze_Attribute_Definition_Clause (N);
4041 end Analyze_At_Clause;
4043 -----------------------------------------
4044 -- Analyze_Attribute_Definition_Clause --
4045 -----------------------------------------
4047 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
4048 Loc : constant Source_Ptr := Sloc (N);
4049 Nam : constant Node_Id := Name (N);
4050 Attr : constant Name_Id := Chars (N);
4051 Expr : constant Node_Id := Expression (N);
4052 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
4054 Ent : Entity_Id;
4055 -- The entity of Nam after it is analyzed. In the case of an incomplete
4056 -- type, this is the underlying type.
4058 U_Ent : Entity_Id;
4059 -- The underlying entity to which the attribute applies. Generally this
4060 -- is the Underlying_Type of Ent, except in the case where the clause
4061 -- applies to the full view of an incomplete or private type, in which
4062 -- case U_Ent is just a copy of Ent.
4064 FOnly : Boolean := False;
4065 -- Reset to True for subtype specific attribute (Alignment, Size)
4066 -- and for stream attributes, i.e. those cases where in the call to
4067 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4068 -- are checked. Note that the case of stream attributes is not clear
4069 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4070 -- Storage_Size for derived task types, but that is also clearly
4071 -- unintentional.
4073 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
4074 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4075 -- definition clauses.
4077 function Duplicate_Clause return Boolean;
4078 -- This routine checks if the aspect for U_Ent being given by attribute
4079 -- definition clause N is for an aspect that has already been specified,
4080 -- and if so gives an error message. If there is a duplicate, True is
4081 -- returned, otherwise if there is no error, False is returned.
4083 procedure Check_Indexing_Functions;
4084 -- Check that the function in Constant_Indexing or Variable_Indexing
4085 -- attribute has the proper type structure. If the name is overloaded,
4086 -- check that some interpretation is legal.
4088 procedure Check_Iterator_Functions;
4089 -- Check that there is a single function in Default_Iterator attribute
4090 -- that has the proper type structure.
4092 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
4093 -- Common legality check for the previous two
4095 -----------------------------------
4096 -- Analyze_Stream_TSS_Definition --
4097 -----------------------------------
4099 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
4100 Subp : Entity_Id := Empty;
4101 I : Interp_Index;
4102 It : Interp;
4103 Pnam : Entity_Id;
4105 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
4106 -- True for Read attribute, False for other attributes
4108 function Has_Good_Profile
4109 (Subp : Entity_Id;
4110 Report : Boolean := False) return Boolean;
4111 -- Return true if the entity is a subprogram with an appropriate
4112 -- profile for the attribute being defined. If result is False and
4113 -- Report is True, function emits appropriate error.
4115 ----------------------
4116 -- Has_Good_Profile --
4117 ----------------------
4119 function Has_Good_Profile
4120 (Subp : Entity_Id;
4121 Report : Boolean := False) return Boolean
4123 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
4124 (False => E_Procedure, True => E_Function);
4125 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
4126 F : Entity_Id;
4127 Typ : Entity_Id;
4129 begin
4130 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4131 return False;
4132 end if;
4134 F := First_Formal (Subp);
4136 if No (F)
4137 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4138 or else Designated_Type (Etype (F)) /=
4139 Class_Wide_Type (RTE (RE_Root_Stream_Type))
4140 then
4141 return False;
4142 end if;
4144 if not Is_Function then
4145 Next_Formal (F);
4147 declare
4148 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4149 (False => E_In_Parameter,
4150 True => E_Out_Parameter);
4151 begin
4152 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4153 return False;
4154 end if;
4155 end;
4157 Typ := Etype (F);
4159 -- If the attribute specification comes from an aspect
4160 -- specification for a class-wide stream, the parameter must be
4161 -- a class-wide type of the entity to which the aspect applies.
4163 if From_Aspect_Specification (N)
4164 and then Class_Present (Parent (N))
4165 and then Is_Class_Wide_Type (Typ)
4166 then
4167 Typ := Etype (Typ);
4168 end if;
4170 else
4171 Typ := Etype (Subp);
4172 end if;
4174 -- Verify that the prefix of the attribute and the local name for
4175 -- the type of the formal match, or one is the class-wide of the
4176 -- other, in the case of a class-wide stream operation.
4178 if Base_Type (Typ) = Base_Type (Ent)
4179 or else (Is_Class_Wide_Type (Typ)
4180 and then Typ = Class_Wide_Type (Base_Type (Ent)))
4181 or else (Is_Class_Wide_Type (Ent)
4182 and then Ent = Class_Wide_Type (Base_Type (Typ)))
4183 then
4184 null;
4185 else
4186 return False;
4187 end if;
4189 if Present (Next_Formal (F)) then
4190 return False;
4192 elsif not Is_Scalar_Type (Typ)
4193 and then not Is_First_Subtype (Typ)
4194 and then not Is_Class_Wide_Type (Typ)
4195 then
4196 if Report and not Is_First_Subtype (Typ) then
4197 Error_Msg_N
4198 ("subtype of formal in stream operation must be a first "
4199 & "subtype", Parameter_Type (Parent (F)));
4200 end if;
4202 return False;
4204 else
4205 return True;
4206 end if;
4207 end Has_Good_Profile;
4209 -- Start of processing for Analyze_Stream_TSS_Definition
4211 begin
4212 FOnly := True;
4214 if not Is_Type (U_Ent) then
4215 Error_Msg_N ("local name must be a subtype", Nam);
4216 return;
4218 elsif not Is_First_Subtype (U_Ent) then
4219 Error_Msg_N ("local name must be a first subtype", Nam);
4220 return;
4221 end if;
4223 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4225 -- If Pnam is present, it can be either inherited from an ancestor
4226 -- type (in which case it is legal to redefine it for this type), or
4227 -- be a previous definition of the attribute for the same type (in
4228 -- which case it is illegal).
4230 -- In the first case, it will have been analyzed already, and we
4231 -- can check that its profile does not match the expected profile
4232 -- for a stream attribute of U_Ent. In the second case, either Pnam
4233 -- has been analyzed (and has the expected profile), or it has not
4234 -- been analyzed yet (case of a type that has not been frozen yet
4235 -- and for which the stream attribute has been set using Set_TSS).
4237 if Present (Pnam)
4238 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4239 then
4240 Error_Msg_Sloc := Sloc (Pnam);
4241 Error_Msg_Name_1 := Attr;
4242 Error_Msg_N ("% attribute already defined #", Nam);
4243 return;
4244 end if;
4246 Analyze (Expr);
4248 if Is_Entity_Name (Expr) then
4249 if not Is_Overloaded (Expr) then
4250 if Has_Good_Profile (Entity (Expr), Report => True) then
4251 Subp := Entity (Expr);
4252 end if;
4254 else
4255 Get_First_Interp (Expr, I, It);
4256 while Present (It.Nam) loop
4257 if Has_Good_Profile (It.Nam) then
4258 Subp := It.Nam;
4259 exit;
4260 end if;
4262 Get_Next_Interp (I, It);
4263 end loop;
4264 end if;
4265 end if;
4267 if Present (Subp) then
4268 if Is_Abstract_Subprogram (Subp) then
4269 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4270 return;
4272 -- A stream subprogram for an interface type must be a null
4273 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4274 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4276 elsif Is_Interface (U_Ent)
4277 and then not Is_Class_Wide_Type (U_Ent)
4278 and then not Inside_A_Generic
4279 and then
4280 (Ekind (Subp) = E_Function
4281 or else
4282 not Null_Present
4283 (Specification
4284 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4285 then
4286 Error_Msg_N
4287 ("stream subprogram for interface type must be null "
4288 & "procedure", Expr);
4289 end if;
4291 Set_Entity (Expr, Subp);
4292 Set_Etype (Expr, Etype (Subp));
4294 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4296 else
4297 Error_Msg_Name_1 := Attr;
4298 Error_Msg_N ("incorrect expression for% attribute", Expr);
4299 end if;
4300 end Analyze_Stream_TSS_Definition;
4302 ------------------------------
4303 -- Check_Indexing_Functions --
4304 ------------------------------
4306 procedure Check_Indexing_Functions is
4307 Indexing_Found : Boolean := False;
4309 procedure Check_Inherited_Indexing;
4310 -- For a derived type, check that no indexing aspect is specified
4311 -- for the type if it is also inherited
4313 procedure Check_One_Function (Subp : Entity_Id);
4314 -- Check one possible interpretation. Sets Indexing_Found True if a
4315 -- legal indexing function is found.
4317 procedure Illegal_Indexing (Msg : String);
4318 -- Diagnose illegal indexing function if not overloaded. In the
4319 -- overloaded case indicate that no legal interpretation exists.
4321 ------------------------------
4322 -- Check_Inherited_Indexing --
4323 ------------------------------
4325 procedure Check_Inherited_Indexing is
4326 Inherited : Node_Id;
4328 begin
4329 if Attr = Name_Constant_Indexing then
4330 Inherited :=
4331 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4332 else pragma Assert (Attr = Name_Variable_Indexing);
4333 Inherited :=
4334 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4335 end if;
4337 if Present (Inherited) then
4338 if Debug_Flag_Dot_XX then
4339 null;
4341 -- OK if current attribute_definition_clause is expansion of
4342 -- inherited aspect.
4344 elsif Aspect_Rep_Item (Inherited) = N then
4345 null;
4347 -- Indicate the operation that must be overridden, rather than
4348 -- redefining the indexing aspect.
4350 else
4351 Illegal_Indexing
4352 ("indexing function already inherited from parent type");
4353 Error_Msg_NE
4354 ("!override & instead",
4355 N, Entity (Expression (Inherited)));
4356 end if;
4357 end if;
4358 end Check_Inherited_Indexing;
4360 ------------------------
4361 -- Check_One_Function --
4362 ------------------------
4364 procedure Check_One_Function (Subp : Entity_Id) is
4365 Default_Element : Node_Id;
4366 Ret_Type : constant Entity_Id := Etype (Subp);
4368 begin
4369 if not Is_Overloadable (Subp) then
4370 Illegal_Indexing ("illegal indexing function for type&");
4371 return;
4373 elsif Scope (Subp) /= Scope (Ent) then
4374 if Nkind (Expr) = N_Expanded_Name then
4376 -- Indexing function can't be declared elsewhere
4378 Illegal_Indexing
4379 ("indexing function must be declared in scope of type&");
4380 end if;
4382 return;
4384 elsif No (First_Formal (Subp)) then
4385 Illegal_Indexing
4386 ("Indexing requires a function that applies to type&");
4387 return;
4389 elsif No (Next_Formal (First_Formal (Subp))) then
4390 Illegal_Indexing
4391 ("indexing function must have at least two parameters");
4392 return;
4394 elsif Is_Derived_Type (Ent) then
4395 Check_Inherited_Indexing;
4396 end if;
4398 if not Check_Primitive_Function (Subp) then
4399 Illegal_Indexing
4400 ("Indexing aspect requires a function that applies to type&");
4401 return;
4402 end if;
4404 -- If partial declaration exists, verify that it is not tagged.
4406 if Ekind (Current_Scope) = E_Package
4407 and then Has_Private_Declaration (Ent)
4408 and then From_Aspect_Specification (N)
4409 and then
4410 List_Containing (Parent (Ent)) =
4411 Private_Declarations
4412 (Specification (Unit_Declaration_Node (Current_Scope)))
4413 and then Nkind (N) = N_Attribute_Definition_Clause
4414 then
4415 declare
4416 Decl : Node_Id;
4418 begin
4419 Decl :=
4420 First (Visible_Declarations
4421 (Specification
4422 (Unit_Declaration_Node (Current_Scope))));
4424 while Present (Decl) loop
4425 if Nkind (Decl) = N_Private_Type_Declaration
4426 and then Ent = Full_View (Defining_Identifier (Decl))
4427 and then Tagged_Present (Decl)
4428 and then No (Aspect_Specifications (Decl))
4429 then
4430 Illegal_Indexing
4431 ("Indexing aspect cannot be specified on full view "
4432 & "if partial view is tagged");
4433 return;
4434 end if;
4436 Next (Decl);
4437 end loop;
4438 end;
4439 end if;
4441 -- An indexing function must return either the default element of
4442 -- the container, or a reference type. For variable indexing it
4443 -- must be the latter.
4445 Default_Element :=
4446 Find_Value_Of_Aspect
4447 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4449 if Present (Default_Element) then
4450 Analyze (Default_Element);
4451 end if;
4453 -- For variable_indexing the return type must be a reference type
4455 if Attr = Name_Variable_Indexing then
4456 if not Has_Implicit_Dereference (Ret_Type) then
4457 Illegal_Indexing
4458 ("variable indexing must return a reference type");
4459 return;
4461 elsif Is_Access_Constant
4462 (Etype (First_Discriminant (Ret_Type)))
4463 then
4464 Illegal_Indexing
4465 ("variable indexing must return an access to variable");
4466 return;
4467 end if;
4469 else
4470 if Has_Implicit_Dereference (Ret_Type)
4471 and then not
4472 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4473 then
4474 Illegal_Indexing
4475 ("constant indexing must return an access to constant");
4476 return;
4478 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4479 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4480 then
4481 Illegal_Indexing
4482 ("constant indexing must apply to an access to constant");
4483 return;
4484 end if;
4485 end if;
4487 -- All checks succeeded.
4489 Indexing_Found := True;
4490 end Check_One_Function;
4492 -----------------------
4493 -- Illegal_Indexing --
4494 -----------------------
4496 procedure Illegal_Indexing (Msg : String) is
4497 begin
4498 Error_Msg_NE (Msg, N, Ent);
4499 end Illegal_Indexing;
4501 -- Start of processing for Check_Indexing_Functions
4503 begin
4504 if In_Instance then
4505 Check_Inherited_Indexing;
4506 end if;
4508 Analyze (Expr);
4510 if not Is_Overloaded (Expr) then
4511 Check_One_Function (Entity (Expr));
4513 else
4514 declare
4515 I : Interp_Index;
4516 It : Interp;
4518 begin
4519 Indexing_Found := False;
4520 Get_First_Interp (Expr, I, It);
4521 while Present (It.Nam) loop
4523 -- Note that analysis will have added the interpretation
4524 -- that corresponds to the dereference. We only check the
4525 -- subprogram itself. Ignore homonyms that may come from
4526 -- derived types in the context.
4528 if Is_Overloadable (It.Nam)
4529 and then Comes_From_Source (It.Nam)
4530 then
4531 Check_One_Function (It.Nam);
4532 end if;
4534 Get_Next_Interp (I, It);
4535 end loop;
4536 end;
4537 end if;
4539 if not Indexing_Found and then not Error_Posted (N) then
4540 Error_Msg_NE
4541 ("aspect Indexing requires a local function that applies to "
4542 & "type&", Expr, Ent);
4543 end if;
4544 end Check_Indexing_Functions;
4546 ------------------------------
4547 -- Check_Iterator_Functions --
4548 ------------------------------
4550 procedure Check_Iterator_Functions is
4551 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4552 -- Check one possible interpretation for validity
4554 ----------------------------
4555 -- Valid_Default_Iterator --
4556 ----------------------------
4558 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4559 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4560 Formal : Entity_Id;
4562 begin
4563 if not Check_Primitive_Function (Subp) then
4564 return False;
4566 -- The return type must be derived from a type in an instance
4567 -- of Iterator.Interfaces, and thus its root type must have a
4568 -- predefined name.
4570 elsif Chars (Root_T) /= Name_Forward_Iterator
4571 and then Chars (Root_T) /= Name_Reversible_Iterator
4572 then
4573 return False;
4575 else
4576 Formal := First_Formal (Subp);
4577 end if;
4579 -- False if any subsequent formal has no default expression
4581 Formal := Next_Formal (Formal);
4582 while Present (Formal) loop
4583 if No (Expression (Parent (Formal))) then
4584 return False;
4585 end if;
4587 Next_Formal (Formal);
4588 end loop;
4590 -- True if all subsequent formals have default expressions
4592 return True;
4593 end Valid_Default_Iterator;
4595 -- Start of processing for Check_Iterator_Functions
4597 begin
4598 Analyze (Expr);
4600 if not Is_Entity_Name (Expr) then
4601 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4602 end if;
4604 if not Is_Overloaded (Expr) then
4605 if not Check_Primitive_Function (Entity (Expr)) then
4606 Error_Msg_NE
4607 ("aspect Indexing requires a function that applies to type&",
4608 Entity (Expr), Ent);
4609 end if;
4611 -- Flag the default_iterator as well as the denoted function.
4613 if not Valid_Default_Iterator (Entity (Expr)) then
4614 Error_Msg_N ("improper function for default iterator!", Expr);
4615 end if;
4617 else
4618 declare
4619 Default : Entity_Id := Empty;
4620 I : Interp_Index;
4621 It : Interp;
4623 begin
4624 Get_First_Interp (Expr, I, It);
4625 while Present (It.Nam) loop
4626 if not Check_Primitive_Function (It.Nam)
4627 or else not Valid_Default_Iterator (It.Nam)
4628 then
4629 Remove_Interp (I);
4631 elsif Present (Default) then
4633 -- An explicit one should override an implicit one
4635 if Comes_From_Source (Default) =
4636 Comes_From_Source (It.Nam)
4637 then
4638 Error_Msg_N ("default iterator must be unique", Expr);
4639 Error_Msg_Sloc := Sloc (Default);
4640 Error_Msg_N ("\\possible interpretation#", Expr);
4641 Error_Msg_Sloc := Sloc (It.Nam);
4642 Error_Msg_N ("\\possible interpretation#", Expr);
4644 elsif Comes_From_Source (It.Nam) then
4645 Default := It.Nam;
4646 end if;
4647 else
4648 Default := It.Nam;
4649 end if;
4651 Get_Next_Interp (I, It);
4652 end loop;
4654 if Present (Default) then
4655 Set_Entity (Expr, Default);
4656 Set_Is_Overloaded (Expr, False);
4657 else
4658 Error_Msg_N
4659 ("no interpretation is a valid default iterator!", Expr);
4660 end if;
4661 end;
4662 end if;
4663 end Check_Iterator_Functions;
4665 -------------------------------
4666 -- Check_Primitive_Function --
4667 -------------------------------
4669 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4670 Ctrl : Entity_Id;
4672 begin
4673 if Ekind (Subp) /= E_Function then
4674 return False;
4675 end if;
4677 if No (First_Formal (Subp)) then
4678 return False;
4679 else
4680 Ctrl := Etype (First_Formal (Subp));
4681 end if;
4683 -- To be a primitive operation subprogram has to be in same scope.
4685 if Scope (Ctrl) /= Scope (Subp) then
4686 return False;
4687 end if;
4689 -- Type of formal may be the class-wide type, an access to such,
4690 -- or an incomplete view.
4692 if Ctrl = Ent
4693 or else Ctrl = Class_Wide_Type (Ent)
4694 or else
4695 (Ekind (Ctrl) = E_Anonymous_Access_Type
4696 and then (Designated_Type (Ctrl) = Ent
4697 or else
4698 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4699 or else
4700 (Ekind (Ctrl) = E_Incomplete_Type
4701 and then Full_View (Ctrl) = Ent)
4702 then
4703 null;
4704 else
4705 return False;
4706 end if;
4708 return True;
4709 end Check_Primitive_Function;
4711 ----------------------
4712 -- Duplicate_Clause --
4713 ----------------------
4715 function Duplicate_Clause return Boolean is
4716 A : Node_Id;
4718 begin
4719 -- Nothing to do if this attribute definition clause comes from
4720 -- an aspect specification, since we could not be duplicating an
4721 -- explicit clause, and we dealt with the case of duplicated aspects
4722 -- in Analyze_Aspect_Specifications.
4724 if From_Aspect_Specification (N) then
4725 return False;
4726 end if;
4728 -- Otherwise current clause may duplicate previous clause, or a
4729 -- previously given pragma or aspect specification for the same
4730 -- aspect.
4732 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4734 if Present (A) then
4735 Error_Msg_Name_1 := Chars (N);
4736 Error_Msg_Sloc := Sloc (A);
4738 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4739 return True;
4740 end if;
4742 return False;
4743 end Duplicate_Clause;
4745 -- Start of processing for Analyze_Attribute_Definition_Clause
4747 begin
4748 -- The following code is a defense against recursion. Not clear that
4749 -- this can happen legitimately, but perhaps some error situations can
4750 -- cause it, and we did see this recursion during testing.
4752 if Analyzed (N) then
4753 return;
4754 else
4755 Set_Analyzed (N, True);
4756 end if;
4758 Check_Restriction_No_Use_Of_Attribute (N);
4760 -- Ignore some selected attributes in CodePeer mode since they are not
4761 -- relevant in this context.
4763 if CodePeer_Mode then
4764 case Id is
4766 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4767 -- internal representation of types by implicitly packing them.
4769 when Attribute_Component_Size =>
4770 Rewrite (N, Make_Null_Statement (Sloc (N)));
4771 return;
4773 when others =>
4774 null;
4775 end case;
4776 end if;
4778 -- Process Ignore_Rep_Clauses option
4780 if Ignore_Rep_Clauses then
4781 case Id is
4783 -- The following should be ignored. They do not affect legality
4784 -- and may be target dependent. The basic idea of -gnatI is to
4785 -- ignore any rep clauses that may be target dependent but do not
4786 -- affect legality (except possibly to be rejected because they
4787 -- are incompatible with the compilation target).
4789 when Attribute_Alignment
4790 | Attribute_Bit_Order
4791 | Attribute_Component_Size
4792 | Attribute_Default_Scalar_Storage_Order
4793 | Attribute_Machine_Radix
4794 | Attribute_Object_Size
4795 | Attribute_Scalar_Storage_Order
4796 | Attribute_Size
4797 | Attribute_Small
4798 | Attribute_Stream_Size
4799 | Attribute_Value_Size
4801 Kill_Rep_Clause (N);
4802 return;
4804 -- The following should not be ignored, because in the first place
4805 -- they are reasonably portable, and should not cause problems
4806 -- in compiling code from another target, and also they do affect
4807 -- legality, e.g. failing to provide a stream attribute for a type
4808 -- may make a program illegal.
4810 when Attribute_External_Tag
4811 | Attribute_Input
4812 | Attribute_Output
4813 | Attribute_Read
4814 | Attribute_Simple_Storage_Pool
4815 | Attribute_Storage_Pool
4816 | Attribute_Storage_Size
4817 | Attribute_Write
4819 null;
4821 -- We do not do anything here with address clauses, they will be
4822 -- removed by Freeze later on, but for now, it works better to
4823 -- keep them in the tree.
4825 when Attribute_Address =>
4826 null;
4828 -- Other cases are errors ("attribute& cannot be set with
4829 -- definition clause"), which will be caught below.
4831 when others =>
4832 null;
4833 end case;
4834 end if;
4836 Analyze (Nam);
4837 Ent := Entity (Nam);
4839 if Rep_Item_Too_Early (Ent, N) then
4840 return;
4841 end if;
4843 -- Rep clause applies to full view of incomplete type or private type if
4844 -- we have one (if not, this is a premature use of the type). However,
4845 -- certain semantic checks need to be done on the specified entity (i.e.
4846 -- the private view), so we save it in Ent.
4848 if Is_Private_Type (Ent)
4849 and then Is_Derived_Type (Ent)
4850 and then not Is_Tagged_Type (Ent)
4851 and then No (Full_View (Ent))
4852 then
4853 -- If this is a private type whose completion is a derivation from
4854 -- another private type, there is no full view, and the attribute
4855 -- belongs to the type itself, not its underlying parent.
4857 U_Ent := Ent;
4859 elsif Ekind (Ent) = E_Incomplete_Type then
4861 -- The attribute applies to the full view, set the entity of the
4862 -- attribute definition accordingly.
4864 Ent := Underlying_Type (Ent);
4865 U_Ent := Ent;
4866 Set_Entity (Nam, Ent);
4868 else
4869 U_Ent := Underlying_Type (Ent);
4870 end if;
4872 -- Avoid cascaded error
4874 if Etype (Nam) = Any_Type then
4875 return;
4877 -- Must be declared in current scope or in case of an aspect
4878 -- specification, must be visible in current scope.
4880 elsif Scope (Ent) /= Current_Scope
4881 and then
4882 not (From_Aspect_Specification (N)
4883 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4884 then
4885 Error_Msg_N ("entity must be declared in this scope", Nam);
4886 return;
4888 -- Must not be a source renaming (we do have some cases where the
4889 -- expander generates a renaming, and those cases are OK, in such
4890 -- cases any attribute applies to the renamed object as well).
4892 elsif Is_Object (Ent)
4893 and then Present (Renamed_Object (Ent))
4894 then
4895 -- Case of renamed object from source, this is an error
4897 if Comes_From_Source (Renamed_Object (Ent)) then
4898 Get_Name_String (Chars (N));
4899 Error_Msg_Strlen := Name_Len;
4900 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4901 Error_Msg_N
4902 ("~ clause not allowed for a renaming declaration "
4903 & "(RM 13.1(6))", Nam);
4904 return;
4906 -- For the case of a compiler generated renaming, the attribute
4907 -- definition clause applies to the renamed object created by the
4908 -- expander. The easiest general way to handle this is to create a
4909 -- copy of the attribute definition clause for this object.
4911 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4912 Insert_Action (N,
4913 Make_Attribute_Definition_Clause (Loc,
4914 Name =>
4915 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4916 Chars => Chars (N),
4917 Expression => Duplicate_Subexpr (Expression (N))));
4919 -- If the renamed object is not an entity, it must be a dereference
4920 -- of an unconstrained function call, and we must introduce a new
4921 -- declaration to capture the expression. This is needed in the case
4922 -- of 'Alignment, where the original declaration must be rewritten.
4924 else
4925 pragma Assert
4926 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4927 null;
4928 end if;
4930 -- If no underlying entity, use entity itself, applies to some
4931 -- previously detected error cases ???
4933 elsif No (U_Ent) then
4934 U_Ent := Ent;
4936 -- Cannot specify for a subtype (exception Object/Value_Size)
4938 elsif Is_Type (U_Ent)
4939 and then not Is_First_Subtype (U_Ent)
4940 and then Id /= Attribute_Object_Size
4941 and then Id /= Attribute_Value_Size
4942 and then not From_At_Mod (N)
4943 then
4944 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4945 return;
4946 end if;
4948 Set_Entity (N, U_Ent);
4950 -- Switch on particular attribute
4952 case Id is
4954 -------------
4955 -- Address --
4956 -------------
4958 -- Address attribute definition clause
4960 when Attribute_Address => Address : begin
4962 -- A little error check, catch for X'Address use X'Address;
4964 if Nkind (Nam) = N_Identifier
4965 and then Nkind (Expr) = N_Attribute_Reference
4966 and then Attribute_Name (Expr) = Name_Address
4967 and then Nkind (Prefix (Expr)) = N_Identifier
4968 and then Chars (Nam) = Chars (Prefix (Expr))
4969 then
4970 Error_Msg_NE
4971 ("address for & is self-referencing", Prefix (Expr), Ent);
4972 return;
4973 end if;
4975 -- Not that special case, carry on with analysis of expression
4977 Analyze_And_Resolve (Expr, RTE (RE_Address));
4979 -- Even when ignoring rep clauses we need to indicate that the
4980 -- entity has an address clause and thus it is legal to declare
4981 -- it imported. Freeze will get rid of the address clause later.
4982 -- Also call Set_Address_Taken to indicate that an address clause
4983 -- was present, even if we are about to remove it.
4985 if Ignore_Rep_Clauses then
4986 Set_Address_Taken (U_Ent);
4988 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4989 Record_Rep_Item (U_Ent, N);
4990 end if;
4992 return;
4993 end if;
4995 if Duplicate_Clause then
4996 null;
4998 -- Case of address clause for subprogram
5000 elsif Is_Subprogram (U_Ent) then
5001 if Has_Homonym (U_Ent) then
5002 Error_Msg_N
5003 ("address clause cannot be given for overloaded "
5004 & "subprogram", Nam);
5005 return;
5006 end if;
5008 -- For subprograms, all address clauses are permitted, and we
5009 -- mark the subprogram as having a deferred freeze so that Gigi
5010 -- will not elaborate it too soon.
5012 -- Above needs more comments, what is too soon about???
5014 Set_Has_Delayed_Freeze (U_Ent);
5016 -- Case of address clause for entry
5018 elsif Ekind (U_Ent) = E_Entry then
5019 if Nkind (Parent (N)) = N_Task_Body then
5020 Error_Msg_N
5021 ("entry address must be specified in task spec", Nam);
5022 return;
5023 end if;
5025 -- For entries, we require a constant address
5027 Check_Constant_Address_Clause (Expr, U_Ent);
5029 -- Special checks for task types
5031 if Is_Task_Type (Scope (U_Ent))
5032 and then Comes_From_Source (Scope (U_Ent))
5033 then
5034 Error_Msg_N
5035 ("??entry address declared for entry in task type", N);
5036 Error_Msg_N
5037 ("\??only one task can be declared of this type", N);
5038 end if;
5040 -- Entry address clauses are obsolescent
5042 Check_Restriction (No_Obsolescent_Features, N);
5044 if Warn_On_Obsolescent_Feature then
5045 Error_Msg_N
5046 ("?j?attaching interrupt to task entry is an obsolescent "
5047 & "feature (RM J.7.1)", N);
5048 Error_Msg_N
5049 ("\?j?use interrupt procedure instead", N);
5050 end if;
5052 -- Case of an address clause for a class-wide object, which is
5053 -- considered erroneous.
5055 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
5056 Error_Msg_NE
5057 ("??class-wide object & must not be overlaid", Nam, U_Ent);
5058 Error_Msg_N
5059 ("\??Program_Error will be raised at run time", Nam);
5060 Insert_Action (Declaration_Node (U_Ent),
5061 Make_Raise_Program_Error (Loc,
5062 Reason => PE_Overlaid_Controlled_Object));
5063 return;
5065 -- Case of address clause for an object
5067 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
5068 declare
5069 Expr : constant Node_Id := Expression (N);
5070 O_Ent : Entity_Id;
5071 Off : Boolean;
5073 begin
5074 -- Exported variables cannot have an address clause, because
5075 -- this cancels the effect of the pragma Export.
5077 if Is_Exported (U_Ent) then
5078 Error_Msg_N
5079 ("cannot export object with address clause", Nam);
5080 return;
5081 end if;
5083 Find_Overlaid_Entity (N, O_Ent, Off);
5085 if Present (O_Ent) then
5087 -- If the object overlays a constant object, mark it so
5089 if Is_Constant_Object (O_Ent) then
5090 Set_Overlays_Constant (U_Ent);
5091 end if;
5093 -- If the address clause is of the form:
5095 -- for X'Address use Y'Address;
5097 -- or
5099 -- C : constant Address := Y'Address;
5100 -- ...
5101 -- for X'Address use C;
5103 -- then we make an entry in the table to check the size
5104 -- and alignment of the overlaying variable. But we defer
5105 -- this check till after code generation to take full
5106 -- advantage of the annotation done by the back end.
5108 -- If the entity has a generic type, the check will be
5109 -- performed in the instance if the actual type justifies
5110 -- it, and we do not insert the clause in the table to
5111 -- prevent spurious warnings.
5113 -- Note: we used to test Comes_From_Source and only give
5114 -- this warning for source entities, but we have removed
5115 -- this test. It really seems bogus to generate overlays
5116 -- that would trigger this warning in generated code.
5117 -- Furthermore, by removing the test, we handle the
5118 -- aspect case properly.
5120 if Is_Object (O_Ent)
5121 and then not Is_Generic_Type (Etype (U_Ent))
5122 and then Address_Clause_Overlay_Warnings
5123 then
5124 Register_Address_Clause_Check
5125 (N, U_Ent, No_Uint, O_Ent, Off);
5126 end if;
5128 -- If the overlay changes the storage order, mark the
5129 -- entity as being volatile to block any optimization
5130 -- for it since the construct is not really supported
5131 -- by the back end.
5133 if (Is_Record_Type (Etype (U_Ent))
5134 or else Is_Array_Type (Etype (U_Ent)))
5135 and then (Is_Record_Type (Etype (O_Ent))
5136 or else Is_Array_Type (Etype (O_Ent)))
5137 and then Reverse_Storage_Order (Etype (U_Ent)) /=
5138 Reverse_Storage_Order (Etype (O_Ent))
5139 then
5140 Set_Treat_As_Volatile (U_Ent);
5141 end if;
5143 else
5144 -- If this is not an overlay, mark a variable as being
5145 -- volatile to prevent unwanted optimizations. It's a
5146 -- conservative interpretation of RM 13.3(19) for the
5147 -- cases where the compiler cannot detect potential
5148 -- aliasing issues easily and it also covers the case
5149 -- of an absolute address where the volatile aspect is
5150 -- kind of implicit.
5152 if Ekind (U_Ent) = E_Variable then
5153 Set_Treat_As_Volatile (U_Ent);
5154 end if;
5156 -- Make an entry in the table for an absolute address as
5157 -- above to check that the value is compatible with the
5158 -- alignment of the object.
5160 declare
5161 Addr : constant Node_Id := Address_Value (Expr);
5162 begin
5163 if Compile_Time_Known_Value (Addr)
5164 and then Address_Clause_Overlay_Warnings
5165 then
5166 Register_Address_Clause_Check
5167 (N, U_Ent, Expr_Value (Addr), Empty, False);
5168 end if;
5169 end;
5170 end if;
5172 -- Issue an unconditional warning for a constant overlaying
5173 -- a variable. For the reverse case, we will issue it only
5174 -- if the variable is modified.
5176 if Ekind (U_Ent) = E_Constant
5177 and then Present (O_Ent)
5178 and then not Overlays_Constant (U_Ent)
5179 and then Address_Clause_Overlay_Warnings
5180 then
5181 Error_Msg_N ("??constant overlays a variable", Expr);
5183 -- Imported variables can have an address clause, but then
5184 -- the import is pretty meaningless except to suppress
5185 -- initializations, so we do not need such variables to
5186 -- be statically allocated (and in fact it causes trouble
5187 -- if the address clause is a local value).
5189 elsif Is_Imported (U_Ent) then
5190 Set_Is_Statically_Allocated (U_Ent, False);
5191 end if;
5193 -- We mark a possible modification of a variable with an
5194 -- address clause, since it is likely aliasing is occurring.
5196 Note_Possible_Modification (Nam, Sure => False);
5198 -- Legality checks on the address clause for initialized
5199 -- objects is deferred until the freeze point, because
5200 -- a subsequent pragma might indicate that the object
5201 -- is imported and thus not initialized. Also, the address
5202 -- clause might involve entities that have yet to be
5203 -- elaborated.
5205 Set_Has_Delayed_Freeze (U_Ent);
5207 -- If an initialization call has been generated for this
5208 -- object, it needs to be deferred to after the freeze node
5209 -- we have just now added, otherwise GIGI will see a
5210 -- reference to the variable (as actual to the IP call)
5211 -- before its definition.
5213 declare
5214 Init_Call : constant Node_Id :=
5215 Remove_Init_Call (U_Ent, N);
5217 begin
5218 if Present (Init_Call) then
5219 Append_Freeze_Action (U_Ent, Init_Call);
5221 -- Reset Initialization_Statements pointer so that
5222 -- if there is a pragma Import further down, it can
5223 -- clear any default initialization.
5225 Set_Initialization_Statements (U_Ent, Init_Call);
5226 end if;
5227 end;
5229 -- Entity has delayed freeze, so we will generate an
5230 -- alignment check at the freeze point unless suppressed.
5232 if not Range_Checks_Suppressed (U_Ent)
5233 and then not Alignment_Checks_Suppressed (U_Ent)
5234 then
5235 Set_Check_Address_Alignment (N);
5236 end if;
5238 -- Kill the size check code, since we are not allocating
5239 -- the variable, it is somewhere else.
5241 Kill_Size_Check_Code (U_Ent);
5242 end;
5244 -- Not a valid entity for an address clause
5246 else
5247 Error_Msg_N ("address cannot be given for &", Nam);
5248 end if;
5249 end Address;
5251 ---------------
5252 -- Alignment --
5253 ---------------
5255 -- Alignment attribute definition clause
5257 when Attribute_Alignment => Alignment : declare
5258 Align : constant Uint := Get_Alignment_Value (Expr);
5259 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5261 begin
5262 FOnly := True;
5264 if not Is_Type (U_Ent)
5265 and then Ekind (U_Ent) /= E_Variable
5266 and then Ekind (U_Ent) /= E_Constant
5267 then
5268 Error_Msg_N ("alignment cannot be given for &", Nam);
5270 elsif Duplicate_Clause then
5271 null;
5273 elsif Align /= No_Uint then
5274 Set_Has_Alignment_Clause (U_Ent);
5276 -- Tagged type case, check for attempt to set alignment to a
5277 -- value greater than Max_Align, and reset if so. This error
5278 -- is suppressed in ASIS mode to allow for different ASIS
5279 -- back ends or ASIS-based tools to query the illegal clause.
5281 if Is_Tagged_Type (U_Ent)
5282 and then Align > Max_Align
5283 and then not ASIS_Mode
5284 then
5285 Error_Msg_N
5286 ("alignment for & set to Maximum_Aligment??", Nam);
5287 Set_Alignment (U_Ent, Max_Align);
5289 -- All other cases
5291 else
5292 Set_Alignment (U_Ent, Align);
5293 end if;
5295 -- For an array type, U_Ent is the first subtype. In that case,
5296 -- also set the alignment of the anonymous base type so that
5297 -- other subtypes (such as the itypes for aggregates of the
5298 -- type) also receive the expected alignment.
5300 if Is_Array_Type (U_Ent) then
5301 Set_Alignment (Base_Type (U_Ent), Align);
5302 end if;
5303 end if;
5304 end Alignment;
5306 ---------------
5307 -- Bit_Order --
5308 ---------------
5310 -- Bit_Order attribute definition clause
5312 when Attribute_Bit_Order =>
5313 if not Is_Record_Type (U_Ent) then
5314 Error_Msg_N
5315 ("Bit_Order can only be defined for record type", Nam);
5317 elsif Duplicate_Clause then
5318 null;
5320 else
5321 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5323 if Etype (Expr) = Any_Type then
5324 return;
5326 elsif not Is_OK_Static_Expression (Expr) then
5327 Flag_Non_Static_Expr
5328 ("Bit_Order requires static expression!", Expr);
5330 else
5331 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5332 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5333 end if;
5334 end if;
5335 end if;
5337 --------------------
5338 -- Component_Size --
5339 --------------------
5341 -- Component_Size attribute definition clause
5343 when Attribute_Component_Size => Component_Size_Case : declare
5344 Csize : constant Uint := Static_Integer (Expr);
5345 Ctyp : Entity_Id;
5346 Btype : Entity_Id;
5347 Biased : Boolean;
5348 New_Ctyp : Entity_Id;
5349 Decl : Node_Id;
5351 begin
5352 if not Is_Array_Type (U_Ent) then
5353 Error_Msg_N ("component size requires array type", Nam);
5354 return;
5355 end if;
5357 Btype := Base_Type (U_Ent);
5358 Ctyp := Component_Type (Btype);
5360 if Duplicate_Clause then
5361 null;
5363 elsif Rep_Item_Too_Early (Btype, N) then
5364 null;
5366 elsif Csize /= No_Uint then
5367 Check_Size (Expr, Ctyp, Csize, Biased);
5369 -- For the biased case, build a declaration for a subtype that
5370 -- will be used to represent the biased subtype that reflects
5371 -- the biased representation of components. We need the subtype
5372 -- to get proper conversions on referencing elements of the
5373 -- array.
5375 if Biased then
5376 New_Ctyp :=
5377 Make_Defining_Identifier (Loc,
5378 Chars =>
5379 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5381 Decl :=
5382 Make_Subtype_Declaration (Loc,
5383 Defining_Identifier => New_Ctyp,
5384 Subtype_Indication =>
5385 New_Occurrence_Of (Component_Type (Btype), Loc));
5387 Set_Parent (Decl, N);
5388 Analyze (Decl, Suppress => All_Checks);
5390 Set_Has_Delayed_Freeze (New_Ctyp, False);
5391 Set_Esize (New_Ctyp, Csize);
5392 Set_RM_Size (New_Ctyp, Csize);
5393 Init_Alignment (New_Ctyp);
5394 Set_Is_Itype (New_Ctyp, True);
5395 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5397 Set_Component_Type (Btype, New_Ctyp);
5398 Set_Biased (New_Ctyp, N, "component size clause");
5399 end if;
5401 Set_Component_Size (Btype, Csize);
5403 -- Deal with warning on overridden size
5405 if Warn_On_Overridden_Size
5406 and then Has_Size_Clause (Ctyp)
5407 and then RM_Size (Ctyp) /= Csize
5408 then
5409 Error_Msg_NE
5410 ("component size overrides size clause for&?S?", N, Ctyp);
5411 end if;
5413 Set_Has_Component_Size_Clause (Btype, True);
5414 Set_Has_Non_Standard_Rep (Btype, True);
5415 end if;
5416 end Component_Size_Case;
5418 -----------------------
5419 -- Constant_Indexing --
5420 -----------------------
5422 when Attribute_Constant_Indexing =>
5423 Check_Indexing_Functions;
5425 ---------
5426 -- CPU --
5427 ---------
5429 when Attribute_CPU =>
5431 -- CPU attribute definition clause not allowed except from aspect
5432 -- specification.
5434 if From_Aspect_Specification (N) then
5435 if not Is_Task_Type (U_Ent) then
5436 Error_Msg_N ("CPU can only be defined for task", Nam);
5438 elsif Duplicate_Clause then
5439 null;
5441 else
5442 -- The expression must be analyzed in the special manner
5443 -- described in "Handling of Default and Per-Object
5444 -- Expressions" in sem.ads.
5446 -- The visibility to the discriminants must be restored
5448 Push_Scope_And_Install_Discriminants (U_Ent);
5449 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5450 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5452 if not Is_OK_Static_Expression (Expr) then
5453 Check_Restriction (Static_Priorities, Expr);
5454 end if;
5455 end if;
5457 else
5458 Error_Msg_N
5459 ("attribute& cannot be set with definition clause", N);
5460 end if;
5462 ----------------------
5463 -- Default_Iterator --
5464 ----------------------
5466 when Attribute_Default_Iterator => Default_Iterator : declare
5467 Func : Entity_Id;
5468 Typ : Entity_Id;
5470 begin
5471 -- If target type is untagged, further checks are irrelevant
5473 if not Is_Tagged_Type (U_Ent) then
5474 Error_Msg_N
5475 ("aspect Default_Iterator applies to tagged type", Nam);
5476 return;
5477 end if;
5479 Check_Iterator_Functions;
5481 Analyze (Expr);
5483 if not Is_Entity_Name (Expr)
5484 or else Ekind (Entity (Expr)) /= E_Function
5485 then
5486 Error_Msg_N ("aspect Iterator must be a function", Expr);
5487 return;
5488 else
5489 Func := Entity (Expr);
5490 end if;
5492 -- The type of the first parameter must be T, T'class, or a
5493 -- corresponding access type (5.5.1 (8/3). If function is
5494 -- parameterless label type accordingly.
5496 if No (First_Formal (Func)) then
5497 Typ := Any_Type;
5498 else
5499 Typ := Etype (First_Formal (Func));
5500 end if;
5502 if Typ = U_Ent
5503 or else Typ = Class_Wide_Type (U_Ent)
5504 or else (Is_Access_Type (Typ)
5505 and then Designated_Type (Typ) = U_Ent)
5506 or else (Is_Access_Type (Typ)
5507 and then Designated_Type (Typ) =
5508 Class_Wide_Type (U_Ent))
5509 then
5510 null;
5512 else
5513 Error_Msg_NE
5514 ("Default Iterator must be a primitive of&", Func, U_Ent);
5515 end if;
5516 end Default_Iterator;
5518 ------------------------
5519 -- Dispatching_Domain --
5520 ------------------------
5522 when Attribute_Dispatching_Domain =>
5524 -- Dispatching_Domain attribute definition clause not allowed
5525 -- except from aspect specification.
5527 if From_Aspect_Specification (N) then
5528 if not Is_Task_Type (U_Ent) then
5529 Error_Msg_N
5530 ("Dispatching_Domain can only be defined for task", Nam);
5532 elsif Duplicate_Clause then
5533 null;
5535 else
5536 -- The expression must be analyzed in the special manner
5537 -- described in "Handling of Default and Per-Object
5538 -- Expressions" in sem.ads.
5540 -- The visibility to the discriminants must be restored
5542 Push_Scope_And_Install_Discriminants (U_Ent);
5544 Preanalyze_Spec_Expression
5545 (Expr, RTE (RE_Dispatching_Domain));
5547 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5548 end if;
5550 else
5551 Error_Msg_N
5552 ("attribute& cannot be set with definition clause", N);
5553 end if;
5555 ------------------
5556 -- External_Tag --
5557 ------------------
5559 when Attribute_External_Tag =>
5560 if not Is_Tagged_Type (U_Ent) then
5561 Error_Msg_N ("should be a tagged type", Nam);
5562 end if;
5564 if Duplicate_Clause then
5565 null;
5567 else
5568 Analyze_And_Resolve (Expr, Standard_String);
5570 if not Is_OK_Static_Expression (Expr) then
5571 Flag_Non_Static_Expr
5572 ("static string required for tag name!", Nam);
5573 end if;
5575 if not Is_Library_Level_Entity (U_Ent) then
5576 Error_Msg_NE
5577 ("??non-unique external tag supplied for &", N, U_Ent);
5578 Error_Msg_N
5579 ("\??same external tag applies to all subprogram calls",
5581 Error_Msg_N
5582 ("\??corresponding internal tag cannot be obtained", N);
5583 end if;
5584 end if;
5586 --------------------------
5587 -- Implicit_Dereference --
5588 --------------------------
5590 when Attribute_Implicit_Dereference =>
5592 -- Legality checks already performed at the point of the type
5593 -- declaration, aspect is not delayed.
5595 null;
5597 -----------
5598 -- Input --
5599 -----------
5601 when Attribute_Input =>
5602 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5603 Set_Has_Specified_Stream_Input (Ent);
5605 ------------------------
5606 -- Interrupt_Priority --
5607 ------------------------
5609 when Attribute_Interrupt_Priority =>
5611 -- Interrupt_Priority attribute definition clause not allowed
5612 -- except from aspect specification.
5614 if From_Aspect_Specification (N) then
5615 if not Is_Concurrent_Type (U_Ent) then
5616 Error_Msg_N
5617 ("Interrupt_Priority can only be defined for task and "
5618 & "protected object", Nam);
5620 elsif Duplicate_Clause then
5621 null;
5623 else
5624 -- The expression must be analyzed in the special manner
5625 -- described in "Handling of Default and Per-Object
5626 -- Expressions" in sem.ads.
5628 -- The visibility to the discriminants must be restored
5630 Push_Scope_And_Install_Discriminants (U_Ent);
5632 Preanalyze_Spec_Expression
5633 (Expr, RTE (RE_Interrupt_Priority));
5635 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5637 -- Check the No_Task_At_Interrupt_Priority restriction
5639 if Is_Task_Type (U_Ent) then
5640 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5641 end if;
5642 end if;
5644 else
5645 Error_Msg_N
5646 ("attribute& cannot be set with definition clause", N);
5647 end if;
5649 --------------
5650 -- Iterable --
5651 --------------
5653 when Attribute_Iterable =>
5654 Analyze (Expr);
5656 if Nkind (Expr) /= N_Aggregate then
5657 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5658 end if;
5660 declare
5661 Assoc : Node_Id;
5663 begin
5664 Assoc := First (Component_Associations (Expr));
5665 while Present (Assoc) loop
5666 if not Is_Entity_Name (Expression (Assoc)) then
5667 Error_Msg_N ("value must be a function", Assoc);
5668 end if;
5670 Next (Assoc);
5671 end loop;
5672 end;
5674 ----------------------
5675 -- Iterator_Element --
5676 ----------------------
5678 when Attribute_Iterator_Element =>
5679 Analyze (Expr);
5681 if not Is_Entity_Name (Expr)
5682 or else not Is_Type (Entity (Expr))
5683 then
5684 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5685 end if;
5687 -------------------
5688 -- Machine_Radix --
5689 -------------------
5691 -- Machine radix attribute definition clause
5693 when Attribute_Machine_Radix => Machine_Radix : declare
5694 Radix : constant Uint := Static_Integer (Expr);
5696 begin
5697 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5698 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5700 elsif Duplicate_Clause then
5701 null;
5703 elsif Radix /= No_Uint then
5704 Set_Has_Machine_Radix_Clause (U_Ent);
5705 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5707 if Radix = 2 then
5708 null;
5710 elsif Radix = 10 then
5711 Set_Machine_Radix_10 (U_Ent);
5713 -- The following error is suppressed in ASIS mode to allow for
5714 -- different ASIS back ends or ASIS-based tools to query the
5715 -- illegal clause.
5717 elsif not ASIS_Mode then
5718 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5719 end if;
5720 end if;
5721 end Machine_Radix;
5723 -----------------
5724 -- Object_Size --
5725 -----------------
5727 -- Object_Size attribute definition clause
5729 when Attribute_Object_Size => Object_Size : declare
5730 Size : constant Uint := Static_Integer (Expr);
5732 Biased : Boolean;
5733 pragma Warnings (Off, Biased);
5735 begin
5736 if not Is_Type (U_Ent) then
5737 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5739 elsif Duplicate_Clause then
5740 null;
5742 else
5743 Check_Size (Expr, U_Ent, Size, Biased);
5745 -- The following errors are suppressed in ASIS mode to allow
5746 -- for different ASIS back ends or ASIS-based tools to query
5747 -- the illegal clause.
5749 if ASIS_Mode then
5750 null;
5752 elsif Is_Scalar_Type (U_Ent) then
5753 if Size /= 8 and then Size /= 16 and then Size /= 32
5754 and then UI_Mod (Size, 64) /= 0
5755 then
5756 Error_Msg_N
5757 ("Object_Size must be 8, 16, 32, or multiple of 64",
5758 Expr);
5759 end if;
5761 elsif Size mod 8 /= 0 then
5762 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5763 end if;
5765 Set_Esize (U_Ent, Size);
5766 Set_Has_Object_Size_Clause (U_Ent);
5767 Alignment_Check_For_Size_Change (U_Ent, Size);
5768 end if;
5769 end Object_Size;
5771 ------------
5772 -- Output --
5773 ------------
5775 when Attribute_Output =>
5776 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5777 Set_Has_Specified_Stream_Output (Ent);
5779 --------------
5780 -- Priority --
5781 --------------
5783 when Attribute_Priority =>
5785 -- Priority attribute definition clause not allowed except from
5786 -- aspect specification.
5788 if From_Aspect_Specification (N) then
5789 if not (Is_Concurrent_Type (U_Ent)
5790 or else Ekind (U_Ent) = E_Procedure)
5791 then
5792 Error_Msg_N
5793 ("Priority can only be defined for task and protected "
5794 & "object", Nam);
5796 elsif Duplicate_Clause then
5797 null;
5799 else
5800 -- The expression must be analyzed in the special manner
5801 -- described in "Handling of Default and Per-Object
5802 -- Expressions" in sem.ads.
5804 -- The visibility to the discriminants must be restored
5806 Push_Scope_And_Install_Discriminants (U_Ent);
5807 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5808 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5810 if not Is_OK_Static_Expression (Expr) then
5811 Check_Restriction (Static_Priorities, Expr);
5812 end if;
5813 end if;
5815 else
5816 Error_Msg_N
5817 ("attribute& cannot be set with definition clause", N);
5818 end if;
5820 ----------
5821 -- Read --
5822 ----------
5824 when Attribute_Read =>
5825 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5826 Set_Has_Specified_Stream_Read (Ent);
5828 --------------------------
5829 -- Scalar_Storage_Order --
5830 --------------------------
5832 -- Scalar_Storage_Order attribute definition clause
5834 when Attribute_Scalar_Storage_Order =>
5835 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5836 Error_Msg_N
5837 ("Scalar_Storage_Order can only be defined for record or "
5838 & "array type", Nam);
5840 elsif Duplicate_Clause then
5841 null;
5843 else
5844 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5846 if Etype (Expr) = Any_Type then
5847 return;
5849 elsif not Is_OK_Static_Expression (Expr) then
5850 Flag_Non_Static_Expr
5851 ("Scalar_Storage_Order requires static expression!", Expr);
5853 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5855 -- Here for the case of a non-default (i.e. non-confirming)
5856 -- Scalar_Storage_Order attribute definition.
5858 if Support_Nondefault_SSO_On_Target then
5859 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5860 else
5861 Error_Msg_N
5862 ("non-default Scalar_Storage_Order not supported on "
5863 & "target", Expr);
5864 end if;
5865 end if;
5867 -- Clear SSO default indications since explicit setting of the
5868 -- order overrides the defaults.
5870 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5871 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5872 end if;
5874 ----------
5875 -- Size --
5876 ----------
5878 -- Size attribute definition clause
5880 when Attribute_Size => Size : declare
5881 Size : constant Uint := Static_Integer (Expr);
5882 Etyp : Entity_Id;
5883 Biased : Boolean;
5885 begin
5886 FOnly := True;
5888 if Duplicate_Clause then
5889 null;
5891 elsif not Is_Type (U_Ent)
5892 and then Ekind (U_Ent) /= E_Variable
5893 and then Ekind (U_Ent) /= E_Constant
5894 then
5895 Error_Msg_N ("size cannot be given for &", Nam);
5897 elsif Is_Array_Type (U_Ent)
5898 and then not Is_Constrained (U_Ent)
5899 then
5900 Error_Msg_N
5901 ("size cannot be given for unconstrained array", Nam);
5903 elsif Size /= No_Uint then
5904 if Is_Type (U_Ent) then
5905 Etyp := U_Ent;
5906 else
5907 Etyp := Etype (U_Ent);
5908 end if;
5910 -- Check size, note that Gigi is in charge of checking that the
5911 -- size of an array or record type is OK. Also we do not check
5912 -- the size in the ordinary fixed-point case, since it is too
5913 -- early to do so (there may be subsequent small clause that
5914 -- affects the size). We can check the size if a small clause
5915 -- has already been given.
5917 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5918 or else Has_Small_Clause (U_Ent)
5919 then
5920 Check_Size (Expr, Etyp, Size, Biased);
5921 Set_Biased (U_Ent, N, "size clause", Biased);
5922 end if;
5924 -- For types set RM_Size and Esize if possible
5926 if Is_Type (U_Ent) then
5927 Set_RM_Size (U_Ent, Size);
5929 -- For elementary types, increase Object_Size to power of 2,
5930 -- but not less than a storage unit in any case (normally
5931 -- this means it will be byte addressable).
5933 -- For all other types, nothing else to do, we leave Esize
5934 -- (object size) unset, the back end will set it from the
5935 -- size and alignment in an appropriate manner.
5937 -- In both cases, we check whether the alignment must be
5938 -- reset in the wake of the size change.
5940 if Is_Elementary_Type (U_Ent) then
5941 if Size <= System_Storage_Unit then
5942 Init_Esize (U_Ent, System_Storage_Unit);
5943 elsif Size <= 16 then
5944 Init_Esize (U_Ent, 16);
5945 elsif Size <= 32 then
5946 Init_Esize (U_Ent, 32);
5947 else
5948 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5949 end if;
5951 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5952 else
5953 Alignment_Check_For_Size_Change (U_Ent, Size);
5954 end if;
5956 -- For objects, set Esize only
5958 else
5959 -- The following error is suppressed in ASIS mode to allow
5960 -- for different ASIS back ends or ASIS-based tools to query
5961 -- the illegal clause.
5963 if Is_Elementary_Type (Etyp)
5964 and then Size /= System_Storage_Unit
5965 and then Size /= System_Storage_Unit * 2
5966 and then Size /= System_Storage_Unit * 4
5967 and then Size /= System_Storage_Unit * 8
5968 and then not ASIS_Mode
5969 then
5970 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5971 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5972 Error_Msg_N
5973 ("size for primitive object must be a power of 2 in "
5974 & "the range ^-^", N);
5975 end if;
5977 Set_Esize (U_Ent, Size);
5978 end if;
5980 Set_Has_Size_Clause (U_Ent);
5981 end if;
5982 end Size;
5984 -----------
5985 -- Small --
5986 -----------
5988 -- Small attribute definition clause
5990 when Attribute_Small => Small : declare
5991 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5992 Small : Ureal;
5994 begin
5995 Analyze_And_Resolve (Expr, Any_Real);
5997 if Etype (Expr) = Any_Type then
5998 return;
6000 elsif not Is_OK_Static_Expression (Expr) then
6001 Flag_Non_Static_Expr
6002 ("small requires static expression!", Expr);
6003 return;
6005 else
6006 Small := Expr_Value_R (Expr);
6008 if Small <= Ureal_0 then
6009 Error_Msg_N ("small value must be greater than zero", Expr);
6010 return;
6011 end if;
6013 end if;
6015 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
6016 Error_Msg_N
6017 ("small requires an ordinary fixed point type", Nam);
6019 elsif Has_Small_Clause (U_Ent) then
6020 Error_Msg_N ("small already given for &", Nam);
6022 elsif Small > Delta_Value (U_Ent) then
6023 Error_Msg_N
6024 ("small value must not be greater than delta value", Nam);
6026 else
6027 Set_Small_Value (U_Ent, Small);
6028 Set_Small_Value (Implicit_Base, Small);
6029 Set_Has_Small_Clause (U_Ent);
6030 Set_Has_Small_Clause (Implicit_Base);
6031 Set_Has_Non_Standard_Rep (Implicit_Base);
6032 end if;
6033 end Small;
6035 ------------------
6036 -- Storage_Pool --
6037 ------------------
6039 -- Storage_Pool attribute definition clause
6041 when Attribute_Simple_Storage_Pool
6042 | Attribute_Storage_Pool
6044 Storage_Pool : declare
6045 Pool : Entity_Id;
6046 T : Entity_Id;
6048 begin
6049 if Ekind (U_Ent) = E_Access_Subprogram_Type then
6050 Error_Msg_N
6051 ("storage pool cannot be given for access-to-subprogram type",
6052 Nam);
6053 return;
6055 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
6056 then
6057 Error_Msg_N
6058 ("storage pool can only be given for access types", Nam);
6059 return;
6061 elsif Is_Derived_Type (U_Ent) then
6062 Error_Msg_N
6063 ("storage pool cannot be given for a derived access type",
6064 Nam);
6066 elsif Duplicate_Clause then
6067 return;
6069 elsif Present (Associated_Storage_Pool (U_Ent)) then
6070 Error_Msg_N ("storage pool already given for &", Nam);
6071 return;
6072 end if;
6074 -- Check for Storage_Size previously given
6076 declare
6077 SS : constant Node_Id :=
6078 Get_Attribute_Definition_Clause
6079 (U_Ent, Attribute_Storage_Size);
6080 begin
6081 if Present (SS) then
6082 Check_Pool_Size_Clash (U_Ent, N, SS);
6083 end if;
6084 end;
6086 -- Storage_Pool case
6088 if Id = Attribute_Storage_Pool then
6089 Analyze_And_Resolve
6090 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
6092 -- In the Simple_Storage_Pool case, we allow a variable of any
6093 -- simple storage pool type, so we Resolve without imposing an
6094 -- expected type.
6096 else
6097 Analyze_And_Resolve (Expr);
6099 if not Present (Get_Rep_Pragma
6100 (Etype (Expr), Name_Simple_Storage_Pool_Type))
6101 then
6102 Error_Msg_N
6103 ("expression must be of a simple storage pool type", Expr);
6104 end if;
6105 end if;
6107 if not Denotes_Variable (Expr) then
6108 Error_Msg_N ("storage pool must be a variable", Expr);
6109 return;
6110 end if;
6112 if Nkind (Expr) = N_Type_Conversion then
6113 T := Etype (Expression (Expr));
6114 else
6115 T := Etype (Expr);
6116 end if;
6118 -- The Stack_Bounded_Pool is used internally for implementing
6119 -- access types with a Storage_Size. Since it only work properly
6120 -- when used on one specific type, we need to check that it is not
6121 -- hijacked improperly:
6123 -- type T is access Integer;
6124 -- for T'Storage_Size use n;
6125 -- type Q is access Float;
6126 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6128 if RTE_Available (RE_Stack_Bounded_Pool)
6129 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6130 then
6131 Error_Msg_N ("non-shareable internal Pool", Expr);
6132 return;
6133 end if;
6135 -- If the argument is a name that is not an entity name, then
6136 -- we construct a renaming operation to define an entity of
6137 -- type storage pool.
6139 if not Is_Entity_Name (Expr)
6140 and then Is_Object_Reference (Expr)
6141 then
6142 Pool := Make_Temporary (Loc, 'P', Expr);
6144 declare
6145 Rnode : constant Node_Id :=
6146 Make_Object_Renaming_Declaration (Loc,
6147 Defining_Identifier => Pool,
6148 Subtype_Mark =>
6149 New_Occurrence_Of (Etype (Expr), Loc),
6150 Name => Expr);
6152 begin
6153 -- If the attribute definition clause comes from an aspect
6154 -- clause, then insert the renaming before the associated
6155 -- entity's declaration, since the attribute clause has
6156 -- not yet been appended to the declaration list.
6158 if From_Aspect_Specification (N) then
6159 Insert_Before (Parent (Entity (N)), Rnode);
6160 else
6161 Insert_Before (N, Rnode);
6162 end if;
6164 Analyze (Rnode);
6165 Set_Associated_Storage_Pool (U_Ent, Pool);
6166 end;
6168 elsif Is_Entity_Name (Expr) then
6169 Pool := Entity (Expr);
6171 -- If pool is a renamed object, get original one. This can
6172 -- happen with an explicit renaming, and within instances.
6174 while Present (Renamed_Object (Pool))
6175 and then Is_Entity_Name (Renamed_Object (Pool))
6176 loop
6177 Pool := Entity (Renamed_Object (Pool));
6178 end loop;
6180 if Present (Renamed_Object (Pool))
6181 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6182 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6183 then
6184 Pool := Entity (Expression (Renamed_Object (Pool)));
6185 end if;
6187 Set_Associated_Storage_Pool (U_Ent, Pool);
6189 elsif Nkind (Expr) = N_Type_Conversion
6190 and then Is_Entity_Name (Expression (Expr))
6191 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6192 then
6193 Pool := Entity (Expression (Expr));
6194 Set_Associated_Storage_Pool (U_Ent, Pool);
6196 else
6197 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6198 return;
6199 end if;
6200 end Storage_Pool;
6202 ------------------
6203 -- Storage_Size --
6204 ------------------
6206 -- Storage_Size attribute definition clause
6208 when Attribute_Storage_Size => Storage_Size : declare
6209 Btype : constant Entity_Id := Base_Type (U_Ent);
6211 begin
6212 if Is_Task_Type (U_Ent) then
6214 -- Check obsolescent (but never obsolescent if from aspect)
6216 if not From_Aspect_Specification (N) then
6217 Check_Restriction (No_Obsolescent_Features, N);
6219 if Warn_On_Obsolescent_Feature then
6220 Error_Msg_N
6221 ("?j?storage size clause for task is an obsolescent "
6222 & "feature (RM J.9)", N);
6223 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6224 end if;
6225 end if;
6227 FOnly := True;
6228 end if;
6230 if not Is_Access_Type (U_Ent)
6231 and then Ekind (U_Ent) /= E_Task_Type
6232 then
6233 Error_Msg_N ("storage size cannot be given for &", Nam);
6235 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6236 Error_Msg_N
6237 ("storage size cannot be given for a derived access type",
6238 Nam);
6240 elsif Duplicate_Clause then
6241 null;
6243 else
6244 Analyze_And_Resolve (Expr, Any_Integer);
6246 if Is_Access_Type (U_Ent) then
6248 -- Check for Storage_Pool previously given
6250 declare
6251 SP : constant Node_Id :=
6252 Get_Attribute_Definition_Clause
6253 (U_Ent, Attribute_Storage_Pool);
6255 begin
6256 if Present (SP) then
6257 Check_Pool_Size_Clash (U_Ent, SP, N);
6258 end if;
6259 end;
6261 -- Special case of for x'Storage_Size use 0
6263 if Is_OK_Static_Expression (Expr)
6264 and then Expr_Value (Expr) = 0
6265 then
6266 Set_No_Pool_Assigned (Btype);
6267 end if;
6268 end if;
6270 Set_Has_Storage_Size_Clause (Btype);
6271 end if;
6272 end Storage_Size;
6274 -----------------
6275 -- Stream_Size --
6276 -----------------
6278 when Attribute_Stream_Size => Stream_Size : declare
6279 Size : constant Uint := Static_Integer (Expr);
6281 begin
6282 if Ada_Version <= Ada_95 then
6283 Check_Restriction (No_Implementation_Attributes, N);
6284 end if;
6286 if Duplicate_Clause then
6287 null;
6289 elsif Is_Elementary_Type (U_Ent) then
6291 -- The following errors are suppressed in ASIS mode to allow
6292 -- for different ASIS back ends or ASIS-based tools to query
6293 -- the illegal clause.
6295 if ASIS_Mode then
6296 null;
6298 elsif Size /= System_Storage_Unit
6299 and then Size /= System_Storage_Unit * 2
6300 and then Size /= System_Storage_Unit * 4
6301 and then Size /= System_Storage_Unit * 8
6302 then
6303 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6304 Error_Msg_N
6305 ("stream size for elementary type must be a power of 2 "
6306 & "and at least ^", N);
6308 elsif RM_Size (U_Ent) > Size then
6309 Error_Msg_Uint_1 := RM_Size (U_Ent);
6310 Error_Msg_N
6311 ("stream size for elementary type must be a power of 2 "
6312 & "and at least ^", N);
6313 end if;
6315 Set_Has_Stream_Size_Clause (U_Ent);
6317 else
6318 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6319 end if;
6320 end Stream_Size;
6322 ----------------
6323 -- Value_Size --
6324 ----------------
6326 -- Value_Size attribute definition clause
6328 when Attribute_Value_Size => Value_Size : declare
6329 Size : constant Uint := Static_Integer (Expr);
6330 Biased : Boolean;
6332 begin
6333 if not Is_Type (U_Ent) then
6334 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6336 elsif Duplicate_Clause then
6337 null;
6339 elsif Is_Array_Type (U_Ent)
6340 and then not Is_Constrained (U_Ent)
6341 then
6342 Error_Msg_N
6343 ("Value_Size cannot be given for unconstrained array", Nam);
6345 else
6346 if Is_Elementary_Type (U_Ent) then
6347 Check_Size (Expr, U_Ent, Size, Biased);
6348 Set_Biased (U_Ent, N, "value size clause", Biased);
6349 end if;
6351 Set_RM_Size (U_Ent, Size);
6352 end if;
6353 end Value_Size;
6355 -----------------------
6356 -- Variable_Indexing --
6357 -----------------------
6359 when Attribute_Variable_Indexing =>
6360 Check_Indexing_Functions;
6362 -----------
6363 -- Write --
6364 -----------
6366 when Attribute_Write =>
6367 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6368 Set_Has_Specified_Stream_Write (Ent);
6370 -- All other attributes cannot be set
6372 when others =>
6373 Error_Msg_N
6374 ("attribute& cannot be set with definition clause", N);
6375 end case;
6377 -- The test for the type being frozen must be performed after any
6378 -- expression the clause has been analyzed since the expression itself
6379 -- might cause freezing that makes the clause illegal.
6381 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6382 return;
6383 end if;
6384 end Analyze_Attribute_Definition_Clause;
6386 ----------------------------
6387 -- Analyze_Code_Statement --
6388 ----------------------------
6390 procedure Analyze_Code_Statement (N : Node_Id) is
6391 HSS : constant Node_Id := Parent (N);
6392 SBody : constant Node_Id := Parent (HSS);
6393 Subp : constant Entity_Id := Current_Scope;
6394 Stmt : Node_Id;
6395 Decl : Node_Id;
6396 StmtO : Node_Id;
6397 DeclO : Node_Id;
6399 begin
6400 -- Accept foreign code statements for CodePeer. The analysis is skipped
6401 -- to avoid rejecting unrecognized constructs.
6403 if CodePeer_Mode then
6404 Set_Analyzed (N);
6405 return;
6406 end if;
6408 -- Analyze and check we get right type, note that this implements the
6409 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6410 -- the only way that Asm_Insn could possibly be visible.
6412 Analyze_And_Resolve (Expression (N));
6414 if Etype (Expression (N)) = Any_Type then
6415 return;
6416 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6417 Error_Msg_N ("incorrect type for code statement", N);
6418 return;
6419 end if;
6421 Check_Code_Statement (N);
6423 -- Make sure we appear in the handled statement sequence of a subprogram
6424 -- (RM 13.8(3)).
6426 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6427 or else Nkind (SBody) /= N_Subprogram_Body
6428 then
6429 Error_Msg_N
6430 ("code statement can only appear in body of subprogram", N);
6431 return;
6432 end if;
6434 -- Do remaining checks (RM 13.8(3)) if not already done
6436 if not Is_Machine_Code_Subprogram (Subp) then
6437 Set_Is_Machine_Code_Subprogram (Subp);
6439 -- No exception handlers allowed
6441 if Present (Exception_Handlers (HSS)) then
6442 Error_Msg_N
6443 ("exception handlers not permitted in machine code subprogram",
6444 First (Exception_Handlers (HSS)));
6445 end if;
6447 -- No declarations other than use clauses and pragmas (we allow
6448 -- certain internally generated declarations as well).
6450 Decl := First (Declarations (SBody));
6451 while Present (Decl) loop
6452 DeclO := Original_Node (Decl);
6453 if Comes_From_Source (DeclO)
6454 and not Nkind_In (DeclO, N_Pragma,
6455 N_Use_Package_Clause,
6456 N_Use_Type_Clause,
6457 N_Implicit_Label_Declaration)
6458 then
6459 Error_Msg_N
6460 ("this declaration not allowed in machine code subprogram",
6461 DeclO);
6462 end if;
6464 Next (Decl);
6465 end loop;
6467 -- No statements other than code statements, pragmas, and labels.
6468 -- Again we allow certain internally generated statements.
6470 -- In Ada 2012, qualified expressions are names, and the code
6471 -- statement is initially parsed as a procedure call.
6473 Stmt := First (Statements (HSS));
6474 while Present (Stmt) loop
6475 StmtO := Original_Node (Stmt);
6477 -- A procedure call transformed into a code statement is OK
6479 if Ada_Version >= Ada_2012
6480 and then Nkind (StmtO) = N_Procedure_Call_Statement
6481 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6482 then
6483 null;
6485 elsif Comes_From_Source (StmtO)
6486 and then not Nkind_In (StmtO, N_Pragma,
6487 N_Label,
6488 N_Code_Statement)
6489 then
6490 Error_Msg_N
6491 ("this statement is not allowed in machine code subprogram",
6492 StmtO);
6493 end if;
6495 Next (Stmt);
6496 end loop;
6497 end if;
6498 end Analyze_Code_Statement;
6500 -----------------------------------------------
6501 -- Analyze_Enumeration_Representation_Clause --
6502 -----------------------------------------------
6504 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6505 Ident : constant Node_Id := Identifier (N);
6506 Aggr : constant Node_Id := Array_Aggregate (N);
6507 Enumtype : Entity_Id;
6508 Elit : Entity_Id;
6509 Expr : Node_Id;
6510 Assoc : Node_Id;
6511 Choice : Node_Id;
6512 Val : Uint;
6514 Err : Boolean := False;
6515 -- Set True to avoid cascade errors and crashes on incorrect source code
6517 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6518 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6519 -- Allowed range of universal integer (= allowed range of enum lit vals)
6521 Min : Uint;
6522 Max : Uint;
6523 -- Minimum and maximum values of entries
6525 Max_Node : Node_Id := Empty; -- init to avoid warning
6526 -- Pointer to node for literal providing max value
6528 begin
6529 if Ignore_Rep_Clauses then
6530 Kill_Rep_Clause (N);
6531 return;
6532 end if;
6534 -- Ignore enumeration rep clauses by default in CodePeer mode,
6535 -- unless -gnatd.I is specified, as a work around for potential false
6536 -- positive messages.
6538 if CodePeer_Mode and not Debug_Flag_Dot_II then
6539 return;
6540 end if;
6542 -- First some basic error checks
6544 Find_Type (Ident);
6545 Enumtype := Entity (Ident);
6547 if Enumtype = Any_Type
6548 or else Rep_Item_Too_Early (Enumtype, N)
6549 then
6550 return;
6551 else
6552 Enumtype := Underlying_Type (Enumtype);
6553 end if;
6555 if not Is_Enumeration_Type (Enumtype) then
6556 Error_Msg_NE
6557 ("enumeration type required, found}",
6558 Ident, First_Subtype (Enumtype));
6559 return;
6560 end if;
6562 -- Ignore rep clause on generic actual type. This will already have
6563 -- been flagged on the template as an error, and this is the safest
6564 -- way to ensure we don't get a junk cascaded message in the instance.
6566 if Is_Generic_Actual_Type (Enumtype) then
6567 return;
6569 -- Type must be in current scope
6571 elsif Scope (Enumtype) /= Current_Scope then
6572 Error_Msg_N ("type must be declared in this scope", Ident);
6573 return;
6575 -- Type must be a first subtype
6577 elsif not Is_First_Subtype (Enumtype) then
6578 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6579 return;
6581 -- Ignore duplicate rep clause
6583 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6584 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6585 return;
6587 -- Don't allow rep clause for standard [wide_[wide_]]character
6589 elsif Is_Standard_Character_Type (Enumtype) then
6590 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6591 return;
6593 -- Check that the expression is a proper aggregate (no parentheses)
6595 elsif Paren_Count (Aggr) /= 0 then
6596 Error_Msg
6597 ("extra parentheses surrounding aggregate not allowed",
6598 First_Sloc (Aggr));
6599 return;
6601 -- All tests passed, so set rep clause in place
6603 else
6604 Set_Has_Enumeration_Rep_Clause (Enumtype);
6605 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6606 end if;
6608 -- Now we process the aggregate. Note that we don't use the normal
6609 -- aggregate code for this purpose, because we don't want any of the
6610 -- normal expansion activities, and a number of special semantic
6611 -- rules apply (including the component type being any integer type)
6613 Elit := First_Literal (Enumtype);
6615 -- First the positional entries if any
6617 if Present (Expressions (Aggr)) then
6618 Expr := First (Expressions (Aggr));
6619 while Present (Expr) loop
6620 if No (Elit) then
6621 Error_Msg_N ("too many entries in aggregate", Expr);
6622 return;
6623 end if;
6625 Val := Static_Integer (Expr);
6627 -- Err signals that we found some incorrect entries processing
6628 -- the list. The final checks for completeness and ordering are
6629 -- skipped in this case.
6631 if Val = No_Uint then
6632 Err := True;
6634 elsif Val < Lo or else Hi < Val then
6635 Error_Msg_N ("value outside permitted range", Expr);
6636 Err := True;
6637 end if;
6639 Set_Enumeration_Rep (Elit, Val);
6640 Set_Enumeration_Rep_Expr (Elit, Expr);
6641 Next (Expr);
6642 Next (Elit);
6643 end loop;
6644 end if;
6646 -- Now process the named entries if present
6648 if Present (Component_Associations (Aggr)) then
6649 Assoc := First (Component_Associations (Aggr));
6650 while Present (Assoc) loop
6651 Choice := First (Choices (Assoc));
6653 if Present (Next (Choice)) then
6654 Error_Msg_N
6655 ("multiple choice not allowed here", Next (Choice));
6656 Err := True;
6657 end if;
6659 if Nkind (Choice) = N_Others_Choice then
6660 Error_Msg_N ("others choice not allowed here", Choice);
6661 Err := True;
6663 elsif Nkind (Choice) = N_Range then
6665 -- ??? should allow zero/one element range here
6667 Error_Msg_N ("range not allowed here", Choice);
6668 Err := True;
6670 else
6671 Analyze_And_Resolve (Choice, Enumtype);
6673 if Error_Posted (Choice) then
6674 Err := True;
6675 end if;
6677 if not Err then
6678 if Is_Entity_Name (Choice)
6679 and then Is_Type (Entity (Choice))
6680 then
6681 Error_Msg_N ("subtype name not allowed here", Choice);
6682 Err := True;
6684 -- ??? should allow static subtype with zero/one entry
6686 elsif Etype (Choice) = Base_Type (Enumtype) then
6687 if not Is_OK_Static_Expression (Choice) then
6688 Flag_Non_Static_Expr
6689 ("non-static expression used for choice!", Choice);
6690 Err := True;
6692 else
6693 Elit := Expr_Value_E (Choice);
6695 if Present (Enumeration_Rep_Expr (Elit)) then
6696 Error_Msg_Sloc :=
6697 Sloc (Enumeration_Rep_Expr (Elit));
6698 Error_Msg_NE
6699 ("representation for& previously given#",
6700 Choice, Elit);
6701 Err := True;
6702 end if;
6704 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6706 Expr := Expression (Assoc);
6707 Val := Static_Integer (Expr);
6709 if Val = No_Uint then
6710 Err := True;
6712 elsif Val < Lo or else Hi < Val then
6713 Error_Msg_N ("value outside permitted range", Expr);
6714 Err := True;
6715 end if;
6717 Set_Enumeration_Rep (Elit, Val);
6718 end if;
6719 end if;
6720 end if;
6721 end if;
6723 Next (Assoc);
6724 end loop;
6725 end if;
6727 -- Aggregate is fully processed. Now we check that a full set of
6728 -- representations was given, and that they are in range and in order.
6729 -- These checks are only done if no other errors occurred.
6731 if not Err then
6732 Min := No_Uint;
6733 Max := No_Uint;
6735 Elit := First_Literal (Enumtype);
6736 while Present (Elit) loop
6737 if No (Enumeration_Rep_Expr (Elit)) then
6738 Error_Msg_NE ("missing representation for&!", N, Elit);
6740 else
6741 Val := Enumeration_Rep (Elit);
6743 if Min = No_Uint then
6744 Min := Val;
6745 end if;
6747 if Val /= No_Uint then
6748 if Max /= No_Uint and then Val <= Max then
6749 Error_Msg_NE
6750 ("enumeration value for& not ordered!",
6751 Enumeration_Rep_Expr (Elit), Elit);
6752 end if;
6754 Max_Node := Enumeration_Rep_Expr (Elit);
6755 Max := Val;
6756 end if;
6758 -- If there is at least one literal whose representation is not
6759 -- equal to the Pos value, then note that this enumeration type
6760 -- has a non-standard representation.
6762 if Val /= Enumeration_Pos (Elit) then
6763 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6764 end if;
6765 end if;
6767 Next (Elit);
6768 end loop;
6770 -- Now set proper size information
6772 declare
6773 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6775 begin
6776 if Has_Size_Clause (Enumtype) then
6778 -- All OK, if size is OK now
6780 if RM_Size (Enumtype) >= Minsize then
6781 null;
6783 else
6784 -- Try if we can get by with biasing
6786 Minsize :=
6787 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6789 -- Error message if even biasing does not work
6791 if RM_Size (Enumtype) < Minsize then
6792 Error_Msg_Uint_1 := RM_Size (Enumtype);
6793 Error_Msg_Uint_2 := Max;
6794 Error_Msg_N
6795 ("previously given size (^) is too small "
6796 & "for this value (^)", Max_Node);
6798 -- If biasing worked, indicate that we now have biased rep
6800 else
6801 Set_Biased
6802 (Enumtype, Size_Clause (Enumtype), "size clause");
6803 end if;
6804 end if;
6806 else
6807 Set_RM_Size (Enumtype, Minsize);
6808 Set_Enum_Esize (Enumtype);
6809 end if;
6811 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6812 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6813 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6814 end;
6815 end if;
6817 -- We repeat the too late test in case it froze itself
6819 if Rep_Item_Too_Late (Enumtype, N) then
6820 null;
6821 end if;
6822 end Analyze_Enumeration_Representation_Clause;
6824 ----------------------------
6825 -- Analyze_Free_Statement --
6826 ----------------------------
6828 procedure Analyze_Free_Statement (N : Node_Id) is
6829 begin
6830 Analyze (Expression (N));
6831 end Analyze_Free_Statement;
6833 ---------------------------
6834 -- Analyze_Freeze_Entity --
6835 ---------------------------
6837 procedure Analyze_Freeze_Entity (N : Node_Id) is
6838 begin
6839 Freeze_Entity_Checks (N);
6840 end Analyze_Freeze_Entity;
6842 -----------------------------------
6843 -- Analyze_Freeze_Generic_Entity --
6844 -----------------------------------
6846 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6847 E : constant Entity_Id := Entity (N);
6849 begin
6850 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6851 Analyze_Aspects_At_Freeze_Point (E);
6852 end if;
6854 Freeze_Entity_Checks (N);
6855 end Analyze_Freeze_Generic_Entity;
6857 ------------------------------------------
6858 -- Analyze_Record_Representation_Clause --
6859 ------------------------------------------
6861 -- Note: we check as much as we can here, but we can't do any checks
6862 -- based on the position values (e.g. overlap checks) until freeze time
6863 -- because especially in Ada 2005 (machine scalar mode), the processing
6864 -- for non-standard bit order can substantially change the positions.
6865 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6866 -- for the remainder of this processing.
6868 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6869 Ident : constant Node_Id := Identifier (N);
6870 Biased : Boolean;
6871 CC : Node_Id;
6872 Comp : Entity_Id;
6873 Fbit : Uint;
6874 Hbit : Uint := Uint_0;
6875 Lbit : Uint;
6876 Ocomp : Entity_Id;
6877 Posit : Uint;
6878 Rectype : Entity_Id;
6879 Recdef : Node_Id;
6881 function Is_Inherited (Comp : Entity_Id) return Boolean;
6882 -- True if Comp is an inherited component in a record extension
6884 ------------------
6885 -- Is_Inherited --
6886 ------------------
6888 function Is_Inherited (Comp : Entity_Id) return Boolean is
6889 Comp_Base : Entity_Id;
6891 begin
6892 if Ekind (Rectype) = E_Record_Subtype then
6893 Comp_Base := Original_Record_Component (Comp);
6894 else
6895 Comp_Base := Comp;
6896 end if;
6898 return Comp_Base /= Original_Record_Component (Comp_Base);
6899 end Is_Inherited;
6901 -- Local variables
6903 Is_Record_Extension : Boolean;
6904 -- True if Rectype is a record extension
6906 CR_Pragma : Node_Id := Empty;
6907 -- Points to N_Pragma node if Complete_Representation pragma present
6909 -- Start of processing for Analyze_Record_Representation_Clause
6911 begin
6912 if Ignore_Rep_Clauses then
6913 Kill_Rep_Clause (N);
6914 return;
6915 end if;
6917 Find_Type (Ident);
6918 Rectype := Entity (Ident);
6920 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6921 return;
6922 else
6923 Rectype := Underlying_Type (Rectype);
6924 end if;
6926 -- First some basic error checks
6928 if not Is_Record_Type (Rectype) then
6929 Error_Msg_NE
6930 ("record type required, found}", Ident, First_Subtype (Rectype));
6931 return;
6933 elsif Scope (Rectype) /= Current_Scope then
6934 Error_Msg_N ("type must be declared in this scope", N);
6935 return;
6937 elsif not Is_First_Subtype (Rectype) then
6938 Error_Msg_N ("cannot give record rep clause for subtype", N);
6939 return;
6941 elsif Has_Record_Rep_Clause (Rectype) then
6942 Error_Msg_N ("duplicate record rep clause ignored", N);
6943 return;
6945 elsif Rep_Item_Too_Late (Rectype, N) then
6946 return;
6947 end if;
6949 -- We know we have a first subtype, now possibly go to the anonymous
6950 -- base type to determine whether Rectype is a record extension.
6952 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6953 Is_Record_Extension :=
6954 Nkind (Recdef) = N_Derived_Type_Definition
6955 and then Present (Record_Extension_Part (Recdef));
6957 if Present (Mod_Clause (N)) then
6958 declare
6959 Loc : constant Source_Ptr := Sloc (N);
6960 M : constant Node_Id := Mod_Clause (N);
6961 P : constant List_Id := Pragmas_Before (M);
6962 AtM_Nod : Node_Id;
6964 Mod_Val : Uint;
6965 pragma Warnings (Off, Mod_Val);
6967 begin
6968 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6970 if Warn_On_Obsolescent_Feature then
6971 Error_Msg_N
6972 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6973 Error_Msg_N
6974 ("\?j?use alignment attribute definition clause instead", N);
6975 end if;
6977 if Present (P) then
6978 Analyze_List (P);
6979 end if;
6981 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6982 -- the Mod clause into an alignment clause anyway, so that the
6983 -- back end can compute and back-annotate properly the size and
6984 -- alignment of types that may include this record.
6986 -- This seems dubious, this destroys the source tree in a manner
6987 -- not detectable by ASIS ???
6989 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6990 AtM_Nod :=
6991 Make_Attribute_Definition_Clause (Loc,
6992 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6993 Chars => Name_Alignment,
6994 Expression => Relocate_Node (Expression (M)));
6996 Set_From_At_Mod (AtM_Nod);
6997 Insert_After (N, AtM_Nod);
6998 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6999 Set_Mod_Clause (N, Empty);
7001 else
7002 -- Get the alignment value to perform error checking
7004 Mod_Val := Get_Alignment_Value (Expression (M));
7005 end if;
7006 end;
7007 end if;
7009 -- For untagged types, clear any existing component clauses for the
7010 -- type. If the type is derived, this is what allows us to override
7011 -- a rep clause for the parent. For type extensions, the representation
7012 -- of the inherited components is inherited, so we want to keep previous
7013 -- component clauses for completeness.
7015 if not Is_Tagged_Type (Rectype) then
7016 Comp := First_Component_Or_Discriminant (Rectype);
7017 while Present (Comp) loop
7018 Set_Component_Clause (Comp, Empty);
7019 Next_Component_Or_Discriminant (Comp);
7020 end loop;
7021 end if;
7023 -- All done if no component clauses
7025 CC := First (Component_Clauses (N));
7027 if No (CC) then
7028 return;
7029 end if;
7031 -- A representation like this applies to the base type
7033 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
7034 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
7035 Set_Has_Specified_Layout (Base_Type (Rectype));
7037 -- Process the component clauses
7039 while Present (CC) loop
7041 -- Pragma
7043 if Nkind (CC) = N_Pragma then
7044 Analyze (CC);
7046 -- The only pragma of interest is Complete_Representation
7048 if Pragma_Name (CC) = Name_Complete_Representation then
7049 CR_Pragma := CC;
7050 end if;
7052 -- Processing for real component clause
7054 else
7055 Posit := Static_Integer (Position (CC));
7056 Fbit := Static_Integer (First_Bit (CC));
7057 Lbit := Static_Integer (Last_Bit (CC));
7059 if Posit /= No_Uint
7060 and then Fbit /= No_Uint
7061 and then Lbit /= No_Uint
7062 then
7063 if Posit < 0 then
7064 Error_Msg_N ("position cannot be negative", Position (CC));
7066 elsif Fbit < 0 then
7067 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
7069 -- The Last_Bit specified in a component clause must not be
7070 -- less than the First_Bit minus one (RM-13.5.1(10)).
7072 elsif Lbit < Fbit - 1 then
7073 Error_Msg_N
7074 ("last bit cannot be less than first bit minus one",
7075 Last_Bit (CC));
7077 -- Values look OK, so find the corresponding record component
7078 -- Even though the syntax allows an attribute reference for
7079 -- implementation-defined components, GNAT does not allow the
7080 -- tag to get an explicit position.
7082 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
7083 if Attribute_Name (Component_Name (CC)) = Name_Tag then
7084 Error_Msg_N ("position of tag cannot be specified", CC);
7085 else
7086 Error_Msg_N ("illegal component name", CC);
7087 end if;
7089 else
7090 Comp := First_Entity (Rectype);
7091 while Present (Comp) loop
7092 exit when Chars (Comp) = Chars (Component_Name (CC));
7093 Next_Entity (Comp);
7094 end loop;
7096 if No (Comp) then
7098 -- Maybe component of base type that is absent from
7099 -- statically constrained first subtype.
7101 Comp := First_Entity (Base_Type (Rectype));
7102 while Present (Comp) loop
7103 exit when Chars (Comp) = Chars (Component_Name (CC));
7104 Next_Entity (Comp);
7105 end loop;
7106 end if;
7108 if No (Comp) then
7109 Error_Msg_N
7110 ("component clause is for non-existent field", CC);
7112 -- Ada 2012 (AI05-0026): Any name that denotes a
7113 -- discriminant of an object of an unchecked union type
7114 -- shall not occur within a record_representation_clause.
7116 -- The general restriction of using record rep clauses on
7117 -- Unchecked_Union types has now been lifted. Since it is
7118 -- possible to introduce a record rep clause which mentions
7119 -- the discriminant of an Unchecked_Union in non-Ada 2012
7120 -- code, this check is applied to all versions of the
7121 -- language.
7123 elsif Ekind (Comp) = E_Discriminant
7124 and then Is_Unchecked_Union (Rectype)
7125 then
7126 Error_Msg_N
7127 ("cannot reference discriminant of unchecked union",
7128 Component_Name (CC));
7130 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7131 Error_Msg_NE
7132 ("component clause not allowed for inherited "
7133 & "component&", CC, Comp);
7135 elsif Present (Component_Clause (Comp)) then
7137 -- Diagnose duplicate rep clause, or check consistency
7138 -- if this is an inherited component. In a double fault,
7139 -- there may be a duplicate inconsistent clause for an
7140 -- inherited component.
7142 if Scope (Original_Record_Component (Comp)) = Rectype
7143 or else Parent (Component_Clause (Comp)) = N
7144 then
7145 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7146 Error_Msg_N ("component clause previously given#", CC);
7148 else
7149 declare
7150 Rep1 : constant Node_Id := Component_Clause (Comp);
7151 begin
7152 if Intval (Position (Rep1)) /=
7153 Intval (Position (CC))
7154 or else Intval (First_Bit (Rep1)) /=
7155 Intval (First_Bit (CC))
7156 or else Intval (Last_Bit (Rep1)) /=
7157 Intval (Last_Bit (CC))
7158 then
7159 Error_Msg_N
7160 ("component clause inconsistent with "
7161 & "representation of ancestor", CC);
7163 elsif Warn_On_Redundant_Constructs then
7164 Error_Msg_N
7165 ("?r?redundant confirming component clause "
7166 & "for component!", CC);
7167 end if;
7168 end;
7169 end if;
7171 -- Normal case where this is the first component clause we
7172 -- have seen for this entity, so set it up properly.
7174 else
7175 -- Make reference for field in record rep clause and set
7176 -- appropriate entity field in the field identifier.
7178 Generate_Reference
7179 (Comp, Component_Name (CC), Set_Ref => False);
7180 Set_Entity (Component_Name (CC), Comp);
7182 -- Update Fbit and Lbit to the actual bit number
7184 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7185 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7187 if Has_Size_Clause (Rectype)
7188 and then RM_Size (Rectype) <= Lbit
7189 then
7190 Error_Msg_N
7191 ("bit number out of range of specified size",
7192 Last_Bit (CC));
7193 else
7194 Set_Component_Clause (Comp, CC);
7195 Set_Component_Bit_Offset (Comp, Fbit);
7196 Set_Esize (Comp, 1 + (Lbit - Fbit));
7197 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7198 Set_Normalized_Position (Comp, Fbit / SSU);
7200 if Warn_On_Overridden_Size
7201 and then Has_Size_Clause (Etype (Comp))
7202 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7203 then
7204 Error_Msg_NE
7205 ("?S?component size overrides size clause for&",
7206 Component_Name (CC), Etype (Comp));
7207 end if;
7209 -- This information is also set in the corresponding
7210 -- component of the base type, found by accessing the
7211 -- Original_Record_Component link if it is present.
7213 Ocomp := Original_Record_Component (Comp);
7215 if Hbit < Lbit then
7216 Hbit := Lbit;
7217 end if;
7219 Check_Size
7220 (Component_Name (CC),
7221 Etype (Comp),
7222 Esize (Comp),
7223 Biased);
7225 Set_Biased
7226 (Comp, First_Node (CC), "component clause", Biased);
7228 if Present (Ocomp) then
7229 Set_Component_Clause (Ocomp, CC);
7230 Set_Component_Bit_Offset (Ocomp, Fbit);
7231 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7232 Set_Normalized_Position (Ocomp, Fbit / SSU);
7233 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7235 Set_Normalized_Position_Max
7236 (Ocomp, Normalized_Position (Ocomp));
7238 -- Note: we don't use Set_Biased here, because we
7239 -- already gave a warning above if needed, and we
7240 -- would get a duplicate for the same name here.
7242 Set_Has_Biased_Representation
7243 (Ocomp, Has_Biased_Representation (Comp));
7244 end if;
7246 if Esize (Comp) < 0 then
7247 Error_Msg_N ("component size is negative", CC);
7248 end if;
7249 end if;
7250 end if;
7251 end if;
7252 end if;
7253 end if;
7255 Next (CC);
7256 end loop;
7258 -- Check missing components if Complete_Representation pragma appeared
7260 if Present (CR_Pragma) then
7261 Comp := First_Component_Or_Discriminant (Rectype);
7262 while Present (Comp) loop
7263 if No (Component_Clause (Comp)) then
7264 Error_Msg_NE
7265 ("missing component clause for &", CR_Pragma, Comp);
7266 end if;
7268 Next_Component_Or_Discriminant (Comp);
7269 end loop;
7271 -- Give missing components warning if required
7273 elsif Warn_On_Unrepped_Components then
7274 declare
7275 Num_Repped_Components : Nat := 0;
7276 Num_Unrepped_Components : Nat := 0;
7278 begin
7279 -- First count number of repped and unrepped components
7281 Comp := First_Component_Or_Discriminant (Rectype);
7282 while Present (Comp) loop
7283 if Present (Component_Clause (Comp)) then
7284 Num_Repped_Components := Num_Repped_Components + 1;
7285 else
7286 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7287 end if;
7289 Next_Component_Or_Discriminant (Comp);
7290 end loop;
7292 -- We are only interested in the case where there is at least one
7293 -- unrepped component, and at least half the components have rep
7294 -- clauses. We figure that if less than half have them, then the
7295 -- partial rep clause is really intentional. If the component
7296 -- type has no underlying type set at this point (as for a generic
7297 -- formal type), we don't know enough to give a warning on the
7298 -- component.
7300 if Num_Unrepped_Components > 0
7301 and then Num_Unrepped_Components < Num_Repped_Components
7302 then
7303 Comp := First_Component_Or_Discriminant (Rectype);
7304 while Present (Comp) loop
7305 if No (Component_Clause (Comp))
7306 and then Comes_From_Source (Comp)
7307 and then Present (Underlying_Type (Etype (Comp)))
7308 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7309 or else Size_Known_At_Compile_Time
7310 (Underlying_Type (Etype (Comp))))
7311 and then not Has_Warnings_Off (Rectype)
7313 -- Ignore discriminant in unchecked union, since it is
7314 -- not there, and cannot have a component clause.
7316 and then (not Is_Unchecked_Union (Rectype)
7317 or else Ekind (Comp) /= E_Discriminant)
7318 then
7319 Error_Msg_Sloc := Sloc (Comp);
7320 Error_Msg_NE
7321 ("?C?no component clause given for & declared #",
7322 N, Comp);
7323 end if;
7325 Next_Component_Or_Discriminant (Comp);
7326 end loop;
7327 end if;
7328 end;
7329 end if;
7330 end Analyze_Record_Representation_Clause;
7332 -------------------------------------
7333 -- Build_Discrete_Static_Predicate --
7334 -------------------------------------
7336 procedure Build_Discrete_Static_Predicate
7337 (Typ : Entity_Id;
7338 Expr : Node_Id;
7339 Nam : Name_Id)
7341 Loc : constant Source_Ptr := Sloc (Expr);
7343 Non_Static : exception;
7344 -- Raised if something non-static is found
7346 Btyp : constant Entity_Id := Base_Type (Typ);
7348 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7349 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7350 -- Low bound and high bound value of base type of Typ
7352 TLo : Uint;
7353 THi : Uint;
7354 -- Bounds for constructing the static predicate. We use the bound of the
7355 -- subtype if it is static, otherwise the corresponding base type bound.
7356 -- Note: a non-static subtype can have a static predicate.
7358 type REnt is record
7359 Lo, Hi : Uint;
7360 end record;
7361 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7362 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7363 -- value.
7365 type RList is array (Nat range <>) of REnt;
7366 -- A list of ranges. The ranges are sorted in increasing order, and are
7367 -- disjoint (there is a gap of at least one value between each range in
7368 -- the table). A value is in the set of ranges in Rlist if it lies
7369 -- within one of these ranges.
7371 False_Range : constant RList :=
7372 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7373 -- An empty set of ranges represents a range list that can never be
7374 -- satisfied, since there are no ranges in which the value could lie,
7375 -- so it does not lie in any of them. False_Range is a canonical value
7376 -- for this empty set, but general processing should test for an Rlist
7377 -- with length zero (see Is_False predicate), since other null ranges
7378 -- may appear which must be treated as False.
7380 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7381 -- Range representing True, value must be in the base range
7383 function "and" (Left : RList; Right : RList) return RList;
7384 -- And's together two range lists, returning a range list. This is a set
7385 -- intersection operation.
7387 function "or" (Left : RList; Right : RList) return RList;
7388 -- Or's together two range lists, returning a range list. This is a set
7389 -- union operation.
7391 function "not" (Right : RList) return RList;
7392 -- Returns complement of a given range list, i.e. a range list
7393 -- representing all the values in TLo .. THi that are not in the input
7394 -- operand Right.
7396 function Build_Val (V : Uint) return Node_Id;
7397 -- Return an analyzed N_Identifier node referencing this value, suitable
7398 -- for use as an entry in the Static_Discrte_Predicate list. This node
7399 -- is typed with the base type.
7401 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7402 -- Return an analyzed N_Range node referencing this range, suitable for
7403 -- use as an entry in the Static_Discrete_Predicate list. This node is
7404 -- typed with the base type.
7406 function Get_RList (Exp : Node_Id) return RList;
7407 -- This is a recursive routine that converts the given expression into a
7408 -- list of ranges, suitable for use in building the static predicate.
7410 function Is_False (R : RList) return Boolean;
7411 pragma Inline (Is_False);
7412 -- Returns True if the given range list is empty, and thus represents a
7413 -- False list of ranges that can never be satisfied.
7415 function Is_True (R : RList) return Boolean;
7416 -- Returns True if R trivially represents the True predicate by having a
7417 -- single range from BLo to BHi.
7419 function Is_Type_Ref (N : Node_Id) return Boolean;
7420 pragma Inline (Is_Type_Ref);
7421 -- Returns if True if N is a reference to the type for the predicate in
7422 -- the expression (i.e. if it is an identifier whose Chars field matches
7423 -- the Nam given in the call). N must not be parenthesized, if the type
7424 -- name appears in parens, this routine will return False.
7426 function Lo_Val (N : Node_Id) return Uint;
7427 -- Given an entry from a Static_Discrete_Predicate list that is either
7428 -- a static expression or static range, gets either the expression value
7429 -- or the low bound of the range.
7431 function Hi_Val (N : Node_Id) return Uint;
7432 -- Given an entry from a Static_Discrete_Predicate list that is either
7433 -- a static expression or static range, gets either the expression value
7434 -- or the high bound of the range.
7436 function Membership_Entry (N : Node_Id) return RList;
7437 -- Given a single membership entry (range, value, or subtype), returns
7438 -- the corresponding range list. Raises Static_Error if not static.
7440 function Membership_Entries (N : Node_Id) return RList;
7441 -- Given an element on an alternatives list of a membership operation,
7442 -- returns the range list corresponding to this entry and all following
7443 -- entries (i.e. returns the "or" of this list of values).
7445 function Stat_Pred (Typ : Entity_Id) return RList;
7446 -- Given a type, if it has a static predicate, then return the predicate
7447 -- as a range list, otherwise raise Non_Static.
7449 -----------
7450 -- "and" --
7451 -----------
7453 function "and" (Left : RList; Right : RList) return RList is
7454 FEnt : REnt;
7455 -- First range of result
7457 SLeft : Nat := Left'First;
7458 -- Start of rest of left entries
7460 SRight : Nat := Right'First;
7461 -- Start of rest of right entries
7463 begin
7464 -- If either range is True, return the other
7466 if Is_True (Left) then
7467 return Right;
7468 elsif Is_True (Right) then
7469 return Left;
7470 end if;
7472 -- If either range is False, return False
7474 if Is_False (Left) or else Is_False (Right) then
7475 return False_Range;
7476 end if;
7478 -- Loop to remove entries at start that are disjoint, and thus just
7479 -- get discarded from the result entirely.
7481 loop
7482 -- If no operands left in either operand, result is false
7484 if SLeft > Left'Last or else SRight > Right'Last then
7485 return False_Range;
7487 -- Discard first left operand entry if disjoint with right
7489 elsif Left (SLeft).Hi < Right (SRight).Lo then
7490 SLeft := SLeft + 1;
7492 -- Discard first right operand entry if disjoint with left
7494 elsif Right (SRight).Hi < Left (SLeft).Lo then
7495 SRight := SRight + 1;
7497 -- Otherwise we have an overlapping entry
7499 else
7500 exit;
7501 end if;
7502 end loop;
7504 -- Now we have two non-null operands, and first entries overlap. The
7505 -- first entry in the result will be the overlapping part of these
7506 -- two entries.
7508 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7509 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7511 -- Now we can remove the entry that ended at a lower value, since its
7512 -- contribution is entirely contained in Fent.
7514 if Left (SLeft).Hi <= Right (SRight).Hi then
7515 SLeft := SLeft + 1;
7516 else
7517 SRight := SRight + 1;
7518 end if;
7520 -- Compute result by concatenating this first entry with the "and" of
7521 -- the remaining parts of the left and right operands. Note that if
7522 -- either of these is empty, "and" will yield empty, so that we will
7523 -- end up with just Fent, which is what we want in that case.
7525 return
7526 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7527 end "and";
7529 -----------
7530 -- "not" --
7531 -----------
7533 function "not" (Right : RList) return RList is
7534 begin
7535 -- Return True if False range
7537 if Is_False (Right) then
7538 return True_Range;
7539 end if;
7541 -- Return False if True range
7543 if Is_True (Right) then
7544 return False_Range;
7545 end if;
7547 -- Here if not trivial case
7549 declare
7550 Result : RList (1 .. Right'Length + 1);
7551 -- May need one more entry for gap at beginning and end
7553 Count : Nat := 0;
7554 -- Number of entries stored in Result
7556 begin
7557 -- Gap at start
7559 if Right (Right'First).Lo > TLo then
7560 Count := Count + 1;
7561 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7562 end if;
7564 -- Gaps between ranges
7566 for J in Right'First .. Right'Last - 1 loop
7567 Count := Count + 1;
7568 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7569 end loop;
7571 -- Gap at end
7573 if Right (Right'Last).Hi < THi then
7574 Count := Count + 1;
7575 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7576 end if;
7578 return Result (1 .. Count);
7579 end;
7580 end "not";
7582 ----------
7583 -- "or" --
7584 ----------
7586 function "or" (Left : RList; Right : RList) return RList is
7587 FEnt : REnt;
7588 -- First range of result
7590 SLeft : Nat := Left'First;
7591 -- Start of rest of left entries
7593 SRight : Nat := Right'First;
7594 -- Start of rest of right entries
7596 begin
7597 -- If either range is True, return True
7599 if Is_True (Left) or else Is_True (Right) then
7600 return True_Range;
7601 end if;
7603 -- If either range is False (empty), return the other
7605 if Is_False (Left) then
7606 return Right;
7607 elsif Is_False (Right) then
7608 return Left;
7609 end if;
7611 -- Initialize result first entry from left or right operand depending
7612 -- on which starts with the lower range.
7614 if Left (SLeft).Lo < Right (SRight).Lo then
7615 FEnt := Left (SLeft);
7616 SLeft := SLeft + 1;
7617 else
7618 FEnt := Right (SRight);
7619 SRight := SRight + 1;
7620 end if;
7622 -- This loop eats ranges from left and right operands that are
7623 -- contiguous with the first range we are gathering.
7625 loop
7626 -- Eat first entry in left operand if contiguous or overlapped by
7627 -- gathered first operand of result.
7629 if SLeft <= Left'Last
7630 and then Left (SLeft).Lo <= FEnt.Hi + 1
7631 then
7632 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7633 SLeft := SLeft + 1;
7635 -- Eat first entry in right operand if contiguous or overlapped by
7636 -- gathered right operand of result.
7638 elsif SRight <= Right'Last
7639 and then Right (SRight).Lo <= FEnt.Hi + 1
7640 then
7641 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7642 SRight := SRight + 1;
7644 -- All done if no more entries to eat
7646 else
7647 exit;
7648 end if;
7649 end loop;
7651 -- Obtain result as the first entry we just computed, concatenated
7652 -- to the "or" of the remaining results (if one operand is empty,
7653 -- this will just concatenate with the other
7655 return
7656 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7657 end "or";
7659 -----------------
7660 -- Build_Range --
7661 -----------------
7663 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7664 Result : Node_Id;
7665 begin
7666 Result :=
7667 Make_Range (Loc,
7668 Low_Bound => Build_Val (Lo),
7669 High_Bound => Build_Val (Hi));
7670 Set_Etype (Result, Btyp);
7671 Set_Analyzed (Result);
7672 return Result;
7673 end Build_Range;
7675 ---------------
7676 -- Build_Val --
7677 ---------------
7679 function Build_Val (V : Uint) return Node_Id is
7680 Result : Node_Id;
7682 begin
7683 if Is_Enumeration_Type (Typ) then
7684 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7685 else
7686 Result := Make_Integer_Literal (Loc, V);
7687 end if;
7689 Set_Etype (Result, Btyp);
7690 Set_Is_Static_Expression (Result);
7691 Set_Analyzed (Result);
7692 return Result;
7693 end Build_Val;
7695 ---------------
7696 -- Get_RList --
7697 ---------------
7699 function Get_RList (Exp : Node_Id) return RList is
7700 Op : Node_Kind;
7701 Val : Uint;
7703 begin
7704 -- Static expression can only be true or false
7706 if Is_OK_Static_Expression (Exp) then
7707 if Expr_Value (Exp) = 0 then
7708 return False_Range;
7709 else
7710 return True_Range;
7711 end if;
7712 end if;
7714 -- Otherwise test node type
7716 Op := Nkind (Exp);
7718 case Op is
7720 -- And
7722 when N_And_Then
7723 | N_Op_And
7725 return Get_RList (Left_Opnd (Exp))
7727 Get_RList (Right_Opnd (Exp));
7729 -- Or
7731 when N_Op_Or
7732 | N_Or_Else
7734 return Get_RList (Left_Opnd (Exp))
7736 Get_RList (Right_Opnd (Exp));
7738 -- Not
7740 when N_Op_Not =>
7741 return not Get_RList (Right_Opnd (Exp));
7743 -- Comparisons of type with static value
7745 when N_Op_Compare =>
7747 -- Type is left operand
7749 if Is_Type_Ref (Left_Opnd (Exp))
7750 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7751 then
7752 Val := Expr_Value (Right_Opnd (Exp));
7754 -- Typ is right operand
7756 elsif Is_Type_Ref (Right_Opnd (Exp))
7757 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7758 then
7759 Val := Expr_Value (Left_Opnd (Exp));
7761 -- Invert sense of comparison
7763 case Op is
7764 when N_Op_Gt => Op := N_Op_Lt;
7765 when N_Op_Lt => Op := N_Op_Gt;
7766 when N_Op_Ge => Op := N_Op_Le;
7767 when N_Op_Le => Op := N_Op_Ge;
7768 when others => null;
7769 end case;
7771 -- Other cases are non-static
7773 else
7774 raise Non_Static;
7775 end if;
7777 -- Construct range according to comparison operation
7779 case Op is
7780 when N_Op_Eq =>
7781 return RList'(1 => REnt'(Val, Val));
7783 when N_Op_Ge =>
7784 return RList'(1 => REnt'(Val, BHi));
7786 when N_Op_Gt =>
7787 return RList'(1 => REnt'(Val + 1, BHi));
7789 when N_Op_Le =>
7790 return RList'(1 => REnt'(BLo, Val));
7792 when N_Op_Lt =>
7793 return RList'(1 => REnt'(BLo, Val - 1));
7795 when N_Op_Ne =>
7796 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7798 when others =>
7799 raise Program_Error;
7800 end case;
7802 -- Membership (IN)
7804 when N_In =>
7805 if not Is_Type_Ref (Left_Opnd (Exp)) then
7806 raise Non_Static;
7807 end if;
7809 if Present (Right_Opnd (Exp)) then
7810 return Membership_Entry (Right_Opnd (Exp));
7811 else
7812 return Membership_Entries (First (Alternatives (Exp)));
7813 end if;
7815 -- Negative membership (NOT IN)
7817 when N_Not_In =>
7818 if not Is_Type_Ref (Left_Opnd (Exp)) then
7819 raise Non_Static;
7820 end if;
7822 if Present (Right_Opnd (Exp)) then
7823 return not Membership_Entry (Right_Opnd (Exp));
7824 else
7825 return not Membership_Entries (First (Alternatives (Exp)));
7826 end if;
7828 -- Function call, may be call to static predicate
7830 when N_Function_Call =>
7831 if Is_Entity_Name (Name (Exp)) then
7832 declare
7833 Ent : constant Entity_Id := Entity (Name (Exp));
7834 begin
7835 if Is_Predicate_Function (Ent)
7836 or else
7837 Is_Predicate_Function_M (Ent)
7838 then
7839 return Stat_Pred (Etype (First_Formal (Ent)));
7840 end if;
7841 end;
7842 end if;
7844 -- Other function call cases are non-static
7846 raise Non_Static;
7848 -- Qualified expression, dig out the expression
7850 when N_Qualified_Expression =>
7851 return Get_RList (Expression (Exp));
7853 when N_Case_Expression =>
7854 declare
7855 Alt : Node_Id;
7856 Choices : List_Id;
7857 Dep : Node_Id;
7859 begin
7860 if not Is_Entity_Name (Expression (Expr))
7861 or else Etype (Expression (Expr)) /= Typ
7862 then
7863 Error_Msg_N
7864 ("expression must denaote subtype", Expression (Expr));
7865 return False_Range;
7866 end if;
7868 -- Collect discrete choices in all True alternatives
7870 Choices := New_List;
7871 Alt := First (Alternatives (Exp));
7872 while Present (Alt) loop
7873 Dep := Expression (Alt);
7875 if not Is_OK_Static_Expression (Dep) then
7876 raise Non_Static;
7878 elsif Is_True (Expr_Value (Dep)) then
7879 Append_List_To (Choices,
7880 New_Copy_List (Discrete_Choices (Alt)));
7881 end if;
7883 Next (Alt);
7884 end loop;
7886 return Membership_Entries (First (Choices));
7887 end;
7889 -- Expression with actions: if no actions, dig out expression
7891 when N_Expression_With_Actions =>
7892 if Is_Empty_List (Actions (Exp)) then
7893 return Get_RList (Expression (Exp));
7894 else
7895 raise Non_Static;
7896 end if;
7898 -- Xor operator
7900 when N_Op_Xor =>
7901 return (Get_RList (Left_Opnd (Exp))
7902 and not Get_RList (Right_Opnd (Exp)))
7903 or (Get_RList (Right_Opnd (Exp))
7904 and not Get_RList (Left_Opnd (Exp)));
7906 -- Any other node type is non-static
7908 when others =>
7909 raise Non_Static;
7910 end case;
7911 end Get_RList;
7913 ------------
7914 -- Hi_Val --
7915 ------------
7917 function Hi_Val (N : Node_Id) return Uint is
7918 begin
7919 if Is_OK_Static_Expression (N) then
7920 return Expr_Value (N);
7921 else
7922 pragma Assert (Nkind (N) = N_Range);
7923 return Expr_Value (High_Bound (N));
7924 end if;
7925 end Hi_Val;
7927 --------------
7928 -- Is_False --
7929 --------------
7931 function Is_False (R : RList) return Boolean is
7932 begin
7933 return R'Length = 0;
7934 end Is_False;
7936 -------------
7937 -- Is_True --
7938 -------------
7940 function Is_True (R : RList) return Boolean is
7941 begin
7942 return R'Length = 1
7943 and then R (R'First).Lo = BLo
7944 and then R (R'First).Hi = BHi;
7945 end Is_True;
7947 -----------------
7948 -- Is_Type_Ref --
7949 -----------------
7951 function Is_Type_Ref (N : Node_Id) return Boolean is
7952 begin
7953 return Nkind (N) = N_Identifier
7954 and then Chars (N) = Nam
7955 and then Paren_Count (N) = 0;
7956 end Is_Type_Ref;
7958 ------------
7959 -- Lo_Val --
7960 ------------
7962 function Lo_Val (N : Node_Id) return Uint is
7963 begin
7964 if Is_OK_Static_Expression (N) then
7965 return Expr_Value (N);
7966 else
7967 pragma Assert (Nkind (N) = N_Range);
7968 return Expr_Value (Low_Bound (N));
7969 end if;
7970 end Lo_Val;
7972 ------------------------
7973 -- Membership_Entries --
7974 ------------------------
7976 function Membership_Entries (N : Node_Id) return RList is
7977 begin
7978 if No (Next (N)) then
7979 return Membership_Entry (N);
7980 else
7981 return Membership_Entry (N) or Membership_Entries (Next (N));
7982 end if;
7983 end Membership_Entries;
7985 ----------------------
7986 -- Membership_Entry --
7987 ----------------------
7989 function Membership_Entry (N : Node_Id) return RList is
7990 Val : Uint;
7991 SLo : Uint;
7992 SHi : Uint;
7994 begin
7995 -- Range case
7997 if Nkind (N) = N_Range then
7998 if not Is_OK_Static_Expression (Low_Bound (N))
7999 or else
8000 not Is_OK_Static_Expression (High_Bound (N))
8001 then
8002 raise Non_Static;
8003 else
8004 SLo := Expr_Value (Low_Bound (N));
8005 SHi := Expr_Value (High_Bound (N));
8006 return RList'(1 => REnt'(SLo, SHi));
8007 end if;
8009 -- Static expression case
8011 elsif Is_OK_Static_Expression (N) then
8012 Val := Expr_Value (N);
8013 return RList'(1 => REnt'(Val, Val));
8015 -- Identifier (other than static expression) case
8017 else pragma Assert (Nkind (N) = N_Identifier);
8019 -- Type case
8021 if Is_Type (Entity (N)) then
8023 -- If type has predicates, process them
8025 if Has_Predicates (Entity (N)) then
8026 return Stat_Pred (Entity (N));
8028 -- For static subtype without predicates, get range
8030 elsif Is_OK_Static_Subtype (Entity (N)) then
8031 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8032 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8033 return RList'(1 => REnt'(SLo, SHi));
8035 -- Any other type makes us non-static
8037 else
8038 raise Non_Static;
8039 end if;
8041 -- Any other kind of identifier in predicate (e.g. a non-static
8042 -- expression value) means this is not a static predicate.
8044 else
8045 raise Non_Static;
8046 end if;
8047 end if;
8048 end Membership_Entry;
8050 ---------------
8051 -- Stat_Pred --
8052 ---------------
8054 function Stat_Pred (Typ : Entity_Id) return RList is
8055 begin
8056 -- Not static if type does not have static predicates
8058 if not Has_Static_Predicate (Typ) then
8059 raise Non_Static;
8060 end if;
8062 -- Otherwise we convert the predicate list to a range list
8064 declare
8065 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8066 Result : RList (1 .. List_Length (Spred));
8067 P : Node_Id;
8069 begin
8070 P := First (Static_Discrete_Predicate (Typ));
8071 for J in Result'Range loop
8072 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
8073 Next (P);
8074 end loop;
8076 return Result;
8077 end;
8078 end Stat_Pred;
8080 -- Start of processing for Build_Discrete_Static_Predicate
8082 begin
8083 -- Establish bounds for the predicate
8085 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8086 TLo := Expr_Value (Type_Low_Bound (Typ));
8087 else
8088 TLo := BLo;
8089 end if;
8091 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8092 THi := Expr_Value (Type_High_Bound (Typ));
8093 else
8094 THi := BHi;
8095 end if;
8097 -- Analyze the expression to see if it is a static predicate
8099 declare
8100 Ranges : constant RList := Get_RList (Expr);
8101 -- Range list from expression if it is static
8103 Plist : List_Id;
8105 begin
8106 -- Convert range list into a form for the static predicate. In the
8107 -- Ranges array, we just have raw ranges, these must be converted
8108 -- to properly typed and analyzed static expressions or range nodes.
8110 -- Note: here we limit ranges to the ranges of the subtype, so that
8111 -- a predicate is always false for values outside the subtype. That
8112 -- seems fine, such values are invalid anyway, and considering them
8113 -- to fail the predicate seems allowed and friendly, and furthermore
8114 -- simplifies processing for case statements and loops.
8116 Plist := New_List;
8118 for J in Ranges'Range loop
8119 declare
8120 Lo : Uint := Ranges (J).Lo;
8121 Hi : Uint := Ranges (J).Hi;
8123 begin
8124 -- Ignore completely out of range entry
8126 if Hi < TLo or else Lo > THi then
8127 null;
8129 -- Otherwise process entry
8131 else
8132 -- Adjust out of range value to subtype range
8134 if Lo < TLo then
8135 Lo := TLo;
8136 end if;
8138 if Hi > THi then
8139 Hi := THi;
8140 end if;
8142 -- Convert range into required form
8144 Append_To (Plist, Build_Range (Lo, Hi));
8145 end if;
8146 end;
8147 end loop;
8149 -- Processing was successful and all entries were static, so now we
8150 -- can store the result as the predicate list.
8152 Set_Static_Discrete_Predicate (Typ, Plist);
8154 -- The processing for static predicates put the expression into
8155 -- canonical form as a series of ranges. It also eliminated
8156 -- duplicates and collapsed and combined ranges. We might as well
8157 -- replace the alternatives list of the right operand of the
8158 -- membership test with the static predicate list, which will
8159 -- usually be more efficient.
8161 declare
8162 New_Alts : constant List_Id := New_List;
8163 Old_Node : Node_Id;
8164 New_Node : Node_Id;
8166 begin
8167 Old_Node := First (Plist);
8168 while Present (Old_Node) loop
8169 New_Node := New_Copy (Old_Node);
8171 if Nkind (New_Node) = N_Range then
8172 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8173 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8174 end if;
8176 Append_To (New_Alts, New_Node);
8177 Next (Old_Node);
8178 end loop;
8180 -- If empty list, replace by False
8182 if Is_Empty_List (New_Alts) then
8183 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
8185 -- Else replace by set membership test
8187 else
8188 Rewrite (Expr,
8189 Make_In (Loc,
8190 Left_Opnd => Make_Identifier (Loc, Nam),
8191 Right_Opnd => Empty,
8192 Alternatives => New_Alts));
8194 -- Resolve new expression in function context
8196 Install_Formals (Predicate_Function (Typ));
8197 Push_Scope (Predicate_Function (Typ));
8198 Analyze_And_Resolve (Expr, Standard_Boolean);
8199 Pop_Scope;
8200 end if;
8201 end;
8202 end;
8204 -- If non-static, return doing nothing
8206 exception
8207 when Non_Static =>
8208 return;
8209 end Build_Discrete_Static_Predicate;
8211 --------------------------------
8212 -- Build_Export_Import_Pragma --
8213 --------------------------------
8215 function Build_Export_Import_Pragma
8216 (Asp : Node_Id;
8217 Id : Entity_Id) return Node_Id
8219 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8220 Expr : constant Node_Id := Expression (Asp);
8221 Loc : constant Source_Ptr := Sloc (Asp);
8223 Args : List_Id;
8224 Conv : Node_Id;
8225 Conv_Arg : Node_Id;
8226 Dummy_1 : Node_Id;
8227 Dummy_2 : Node_Id;
8228 EN : Node_Id;
8229 LN : Node_Id;
8230 Prag : Node_Id;
8232 Create_Pragma : Boolean := False;
8233 -- This flag is set when the aspect form is such that it warrants the
8234 -- creation of a corresponding pragma.
8236 begin
8237 if Present (Expr) then
8238 if Error_Posted (Expr) then
8239 null;
8241 elsif Is_True (Expr_Value (Expr)) then
8242 Create_Pragma := True;
8243 end if;
8245 -- Otherwise the aspect defaults to True
8247 else
8248 Create_Pragma := True;
8249 end if;
8251 -- Nothing to do when the expression is False or is erroneous
8253 if not Create_Pragma then
8254 return Empty;
8255 end if;
8257 -- Obtain all interfacing aspects that apply to the related entity
8259 Get_Interfacing_Aspects
8260 (Iface_Asp => Asp,
8261 Conv_Asp => Conv,
8262 EN_Asp => EN,
8263 Expo_Asp => Dummy_1,
8264 Imp_Asp => Dummy_2,
8265 LN_Asp => LN);
8267 Args := New_List;
8269 -- Handle the convention argument
8271 if Present (Conv) then
8272 Conv_Arg := New_Copy_Tree (Expression (Conv));
8274 -- Assume convention "Ada' when aspect Convention is missing
8276 else
8277 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8278 end if;
8280 Append_To (Args,
8281 Make_Pragma_Argument_Association (Loc,
8282 Chars => Name_Convention,
8283 Expression => Conv_Arg));
8285 -- Handle the entity argument
8287 Append_To (Args,
8288 Make_Pragma_Argument_Association (Loc,
8289 Chars => Name_Entity,
8290 Expression => New_Occurrence_Of (Id, Loc)));
8292 -- Handle the External_Name argument
8294 if Present (EN) then
8295 Append_To (Args,
8296 Make_Pragma_Argument_Association (Loc,
8297 Chars => Name_External_Name,
8298 Expression => New_Copy_Tree (Expression (EN))));
8299 end if;
8301 -- Handle the Link_Name argument
8303 if Present (LN) then
8304 Append_To (Args,
8305 Make_Pragma_Argument_Association (Loc,
8306 Chars => Name_Link_Name,
8307 Expression => New_Copy_Tree (Expression (LN))));
8308 end if;
8310 -- Generate:
8311 -- pragma Export/Import
8312 -- (Convention => <Conv>/Ada,
8313 -- Entity => <Id>,
8314 -- [External_Name => <EN>,]
8315 -- [Link_Name => <LN>]);
8317 Prag :=
8318 Make_Pragma (Loc,
8319 Pragma_Identifier =>
8320 Make_Identifier (Loc, Chars (Identifier (Asp))),
8321 Pragma_Argument_Associations => Args);
8323 -- Decorate the relevant aspect and the pragma
8325 Set_Aspect_Rep_Item (Asp, Prag);
8327 Set_Corresponding_Aspect (Prag, Asp);
8328 Set_From_Aspect_Specification (Prag);
8329 Set_Parent (Prag, Asp);
8331 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8332 Set_Import_Pragma (Id, Prag);
8333 end if;
8335 return Prag;
8336 end Build_Export_Import_Pragma;
8338 -------------------------------
8339 -- Build_Predicate_Functions --
8340 -------------------------------
8342 -- The functions that are constructed here have the form:
8344 -- function typPredicate (Ixxx : typ) return Boolean is
8345 -- begin
8346 -- return
8347 -- typ1Predicate (typ1 (Ixxx))
8348 -- and then typ2Predicate (typ2 (Ixxx))
8349 -- and then ...
8350 -- and then exp1 and then exp2 and then ...;
8351 -- end typPredicate;
8353 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8354 -- this is the point at which these expressions get analyzed, providing the
8355 -- required delay, and typ1, typ2, are entities from which predicates are
8356 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8357 -- use this function even if checks are off, e.g. for membership tests.
8359 -- Note that the inherited predicates are evaluated first, as required by
8360 -- AI12-0071-1.
8362 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8363 -- the form of this return expression.
8365 -- If the expression has at least one Raise_Expression, then we also build
8366 -- the typPredicateM version of the function, in which any occurrence of a
8367 -- Raise_Expression is converted to "return False".
8369 -- WARNING: This routine manages Ghost regions. Return statements must be
8370 -- replaced by gotos which jump to the end of the routine and restore the
8371 -- Ghost mode.
8373 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8374 Loc : constant Source_Ptr := Sloc (Typ);
8376 Expr : Node_Id;
8377 -- This is the expression for the result of the function. It is
8378 -- is build by connecting the component predicates with AND THEN.
8380 Expr_M : Node_Id := Empty; -- init to avoid warning
8381 -- This is the corresponding return expression for the Predicate_M
8382 -- function. It differs in that raise expressions are marked for
8383 -- special expansion (see Process_REs).
8385 Object_Name : Name_Id;
8386 -- Name for argument of Predicate procedure. Note that we use the same
8387 -- name for both predicate functions. That way the reference within the
8388 -- predicate expression is the same in both functions.
8390 Object_Entity : Entity_Id;
8391 -- Entity for argument of Predicate procedure
8393 Object_Entity_M : Entity_Id;
8394 -- Entity for argument of separate Predicate procedure when exceptions
8395 -- are present in expression.
8397 FDecl : Node_Id;
8398 -- The function declaration
8400 SId : Entity_Id;
8401 -- Its entity
8403 Raise_Expression_Present : Boolean := False;
8404 -- Set True if Expr has at least one Raise_Expression
8406 procedure Add_Condition (Cond : Node_Id);
8407 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8408 -- Expr is empty).
8410 procedure Add_Predicates;
8411 -- Appends expressions for any Predicate pragmas in the rep item chain
8412 -- Typ to Expr. Note that we look only at items for this exact entity.
8413 -- Inheritance of predicates for the parent type is done by calling the
8414 -- Predicate_Function of the parent type, using Add_Call above.
8416 procedure Add_Call (T : Entity_Id);
8417 -- Includes a call to the predicate function for type T in Expr if T
8418 -- has predicates and Predicate_Function (T) is non-empty.
8420 function Process_RE (N : Node_Id) return Traverse_Result;
8421 -- Used in Process REs, tests if node N is a raise expression, and if
8422 -- so, marks it to be converted to return False.
8424 procedure Process_REs is new Traverse_Proc (Process_RE);
8425 -- Marks any raise expressions in Expr_M to return False
8427 function Test_RE (N : Node_Id) return Traverse_Result;
8428 -- Used in Test_REs, tests one node for being a raise expression, and if
8429 -- so sets Raise_Expression_Present True.
8431 procedure Test_REs is new Traverse_Proc (Test_RE);
8432 -- Tests to see if Expr contains any raise expressions
8434 --------------
8435 -- Add_Call --
8436 --------------
8438 procedure Add_Call (T : Entity_Id) is
8439 Exp : Node_Id;
8441 begin
8442 if Present (T) and then Present (Predicate_Function (T)) then
8443 Set_Has_Predicates (Typ);
8445 -- Build the call to the predicate function of T. The type may be
8446 -- derived, so use an unchecked conversion for the actual.
8448 Exp :=
8449 Make_Predicate_Call
8450 (Typ => T,
8451 Expr =>
8452 Unchecked_Convert_To (T,
8453 Make_Identifier (Loc, Object_Name)));
8455 -- "and"-in the call to evolving expression
8457 Add_Condition (Exp);
8459 -- Output info message on inheritance if required. Note we do not
8460 -- give this information for generic actual types, since it is
8461 -- unwelcome noise in that case in instantiations. We also
8462 -- generally suppress the message in instantiations, and also
8463 -- if it involves internal names.
8465 if Opt.List_Inherited_Aspects
8466 and then not Is_Generic_Actual_Type (Typ)
8467 and then Instantiation_Depth (Sloc (Typ)) = 0
8468 and then not Is_Internal_Name (Chars (T))
8469 and then not Is_Internal_Name (Chars (Typ))
8470 then
8471 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8472 Error_Msg_Node_2 := T;
8473 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8474 end if;
8475 end if;
8476 end Add_Call;
8478 -------------------
8479 -- Add_Condition --
8480 -------------------
8482 procedure Add_Condition (Cond : Node_Id) is
8483 begin
8484 -- This is the first predicate expression
8486 if No (Expr) then
8487 Expr := Cond;
8489 -- Otherwise concatenate to the existing predicate expressions by
8490 -- using "and then".
8492 else
8493 Expr :=
8494 Make_And_Then (Loc,
8495 Left_Opnd => Relocate_Node (Expr),
8496 Right_Opnd => Cond);
8497 end if;
8498 end Add_Condition;
8500 --------------------
8501 -- Add_Predicates --
8502 --------------------
8504 procedure Add_Predicates is
8505 procedure Add_Predicate (Prag : Node_Id);
8506 -- Concatenate the expression of predicate pragma Prag to Expr by
8507 -- using a short circuit "and then" operator.
8509 -------------------
8510 -- Add_Predicate --
8511 -------------------
8513 procedure Add_Predicate (Prag : Node_Id) is
8514 procedure Replace_Type_Reference (N : Node_Id);
8515 -- Replace a single occurrence N of the subtype name with a
8516 -- reference to the formal of the predicate function. N can be an
8517 -- identifier referencing the subtype, or a selected component,
8518 -- representing an appropriately qualified occurrence of the
8519 -- subtype name.
8521 procedure Replace_Type_References is
8522 new Replace_Type_References_Generic (Replace_Type_Reference);
8523 -- Traverse an expression changing every occurrence of an
8524 -- identifier whose name matches the name of the subtype with a
8525 -- reference to the formal parameter of the predicate function.
8527 ----------------------------
8528 -- Replace_Type_Reference --
8529 ----------------------------
8531 procedure Replace_Type_Reference (N : Node_Id) is
8532 begin
8533 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8534 -- Use the Sloc of the usage name, not the defining name
8536 Set_Etype (N, Typ);
8537 Set_Entity (N, Object_Entity);
8539 -- We want to treat the node as if it comes from source, so
8540 -- that ASIS will not ignore it.
8542 Set_Comes_From_Source (N, True);
8543 end Replace_Type_Reference;
8545 -- Local variables
8547 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8548 Arg1 : Node_Id;
8549 Arg2 : Node_Id;
8551 -- Start of processing for Add_Predicate
8553 begin
8554 -- Mark corresponding SCO as enabled
8556 Set_SCO_Pragma_Enabled (Sloc (Prag));
8558 -- Extract the arguments of the pragma. The expression itself
8559 -- is copied for use in the predicate function, to preserve the
8560 -- original version for ASIS use.
8562 Arg1 := First (Pragma_Argument_Associations (Prag));
8563 Arg2 := Next (Arg1);
8565 Arg1 := Get_Pragma_Arg (Arg1);
8566 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8568 -- When the predicate pragma applies to the current type or its
8569 -- full view, replace all occurrences of the subtype name with
8570 -- references to the formal parameter of the predicate function.
8572 if Entity (Arg1) = Typ
8573 or else Full_View (Entity (Arg1)) = Typ
8574 then
8575 Replace_Type_References (Arg2, Typ);
8577 -- If the predicate pragma comes from an aspect, replace the
8578 -- saved expression because we need the subtype references
8579 -- replaced for the calls to Preanalyze_Spec_Expression in
8580 -- Check_Aspect_At_xxx routines.
8582 if Present (Asp) then
8583 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8584 end if;
8586 -- "and"-in the Arg2 condition to evolving expression
8588 Add_Condition (Relocate_Node (Arg2));
8589 end if;
8590 end Add_Predicate;
8592 -- Local variables
8594 Ritem : Node_Id;
8596 -- Start of processing for Add_Predicates
8598 begin
8599 Ritem := First_Rep_Item (Typ);
8601 -- If the type is private, check whether full view has inherited
8602 -- predicates.
8604 if Is_Private_Type (Typ) and then No (Ritem) then
8605 Ritem := First_Rep_Item (Full_View (Typ));
8606 end if;
8608 while Present (Ritem) loop
8609 if Nkind (Ritem) = N_Pragma
8610 and then Pragma_Name (Ritem) = Name_Predicate
8611 then
8612 Add_Predicate (Ritem);
8614 -- If the type is declared in an inner package it may be frozen
8615 -- outside of the package, and the generated pragma has not been
8616 -- analyzed yet, so capture the expression for the predicate
8617 -- function at this point.
8619 elsif Nkind (Ritem) = N_Aspect_Specification
8620 and then Present (Aspect_Rep_Item (Ritem))
8621 and then Scope (Typ) /= Current_Scope
8622 then
8623 declare
8624 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8626 begin
8627 if Nkind (Prag) = N_Pragma
8628 and then Pragma_Name (Prag) = Name_Predicate
8629 then
8630 Add_Predicate (Prag);
8631 end if;
8632 end;
8633 end if;
8635 Next_Rep_Item (Ritem);
8636 end loop;
8637 end Add_Predicates;
8639 ----------------
8640 -- Process_RE --
8641 ----------------
8643 function Process_RE (N : Node_Id) return Traverse_Result is
8644 begin
8645 if Nkind (N) = N_Raise_Expression then
8646 Set_Convert_To_Return_False (N);
8647 return Skip;
8648 else
8649 return OK;
8650 end if;
8651 end Process_RE;
8653 -------------
8654 -- Test_RE --
8655 -------------
8657 function Test_RE (N : Node_Id) return Traverse_Result is
8658 begin
8659 if Nkind (N) = N_Raise_Expression then
8660 Raise_Expression_Present := True;
8661 return Abandon;
8662 else
8663 return OK;
8664 end if;
8665 end Test_RE;
8667 -- Local variables
8669 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8670 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
8671 -- Save the Ghost-related attributes to restore on exit
8673 -- Start of processing for Build_Predicate_Functions
8675 begin
8676 -- Return if already built or if type does not have predicates
8678 SId := Predicate_Function (Typ);
8679 if not Has_Predicates (Typ)
8680 or else (Present (SId) and then Has_Completion (SId))
8681 then
8682 return;
8683 end if;
8685 -- The related type may be subject to pragma Ghost. Set the mode now to
8686 -- ensure that the predicate functions are properly marked as Ghost.
8688 Set_Ghost_Mode (Typ);
8690 -- Prepare to construct predicate expression
8692 Expr := Empty;
8694 if Present (SId) then
8695 FDecl := Unit_Declaration_Node (SId);
8697 else
8698 FDecl := Build_Predicate_Function_Declaration (Typ);
8699 SId := Defining_Entity (FDecl);
8700 end if;
8702 -- Recover name of formal parameter of function that replaces references
8703 -- to the type in predicate expressions.
8705 Object_Entity :=
8706 Defining_Identifier
8707 (First (Parameter_Specifications (Specification (FDecl))));
8709 Object_Name := Chars (Object_Entity);
8710 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8712 -- Add predicates for ancestor if present. These must come before the
8713 -- ones for the current type, as required by AI12-0071-1.
8715 declare
8716 Atyp : Entity_Id;
8717 begin
8718 Atyp := Nearest_Ancestor (Typ);
8720 -- The type may be private but the full view may inherit predicates
8722 if No (Atyp) and then Is_Private_Type (Typ) then
8723 Atyp := Nearest_Ancestor (Full_View (Typ));
8724 end if;
8726 if Present (Atyp) then
8727 Add_Call (Atyp);
8728 end if;
8729 end;
8731 -- Add Predicates for the current type
8733 Add_Predicates;
8735 -- Case where predicates are present
8737 if Present (Expr) then
8739 -- Test for raise expression present
8741 Test_REs (Expr);
8743 -- If raise expression is present, capture a copy of Expr for use
8744 -- in building the predicateM function version later on. For this
8745 -- copy we replace references to Object_Entity by Object_Entity_M.
8747 if Raise_Expression_Present then
8748 declare
8749 Map : constant Elist_Id := New_Elmt_List;
8750 New_V : Entity_Id := Empty;
8752 -- The unanalyzed expression will be copied and appear in
8753 -- both functions. Normally expressions do not declare new
8754 -- entities, but quantified expressions do, so we need to
8755 -- create new entities for their bound variables, to prevent
8756 -- multiple definitions in gigi.
8758 function Reset_Loop_Variable (N : Node_Id)
8759 return Traverse_Result;
8761 procedure Collect_Loop_Variables is
8762 new Traverse_Proc (Reset_Loop_Variable);
8764 ------------------------
8765 -- Reset_Loop_Variable --
8766 ------------------------
8768 function Reset_Loop_Variable (N : Node_Id)
8769 return Traverse_Result
8771 begin
8772 if Nkind (N) = N_Iterator_Specification then
8773 New_V := Make_Defining_Identifier
8774 (Sloc (N), Chars (Defining_Identifier (N)));
8776 Set_Defining_Identifier (N, New_V);
8777 end if;
8779 return OK;
8780 end Reset_Loop_Variable;
8782 begin
8783 Append_Elmt (Object_Entity, Map);
8784 Append_Elmt (Object_Entity_M, Map);
8785 Expr_M := New_Copy_Tree (Expr, Map => Map);
8786 Collect_Loop_Variables (Expr_M);
8787 end;
8788 end if;
8790 -- Build the main predicate function
8792 declare
8793 SIdB : constant Entity_Id :=
8794 Make_Defining_Identifier (Loc,
8795 Chars => New_External_Name (Chars (Typ), "Predicate"));
8796 -- The entity for the function body
8798 Spec : Node_Id;
8799 FBody : Node_Id;
8801 begin
8802 Set_Ekind (SIdB, E_Function);
8803 Set_Is_Predicate_Function (SIdB);
8805 -- The predicate function is shared between views of a type
8807 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8808 Set_Predicate_Function (Full_View (Typ), SId);
8809 end if;
8811 -- Build function body
8813 Spec :=
8814 Make_Function_Specification (Loc,
8815 Defining_Unit_Name => SIdB,
8816 Parameter_Specifications => New_List (
8817 Make_Parameter_Specification (Loc,
8818 Defining_Identifier =>
8819 Make_Defining_Identifier (Loc, Object_Name),
8820 Parameter_Type =>
8821 New_Occurrence_Of (Typ, Loc))),
8822 Result_Definition =>
8823 New_Occurrence_Of (Standard_Boolean, Loc));
8825 FBody :=
8826 Make_Subprogram_Body (Loc,
8827 Specification => Spec,
8828 Declarations => Empty_List,
8829 Handled_Statement_Sequence =>
8830 Make_Handled_Sequence_Of_Statements (Loc,
8831 Statements => New_List (
8832 Make_Simple_Return_Statement (Loc,
8833 Expression => Expr))));
8835 -- The declaration has been analyzed when created, and placed
8836 -- after type declaration. Insert body itself after freeze node.
8838 Insert_After_And_Analyze (N, FBody);
8840 -- within a generic unit, prevent a double analysis of the body
8841 -- which will not be marked analyzed yet. This will happen when
8842 -- the freeze node is created during the pre-analysis of an
8843 -- expression function.
8845 if Inside_A_Generic then
8846 Set_Analyzed (FBody);
8847 end if;
8849 -- Static predicate functions are always side-effect free, and
8850 -- in most cases dynamic predicate functions are as well. Mark
8851 -- them as such whenever possible, so redundant predicate checks
8852 -- can be optimized. If there is a variable reference within the
8853 -- expression, the function is not pure.
8855 if Expander_Active then
8856 Set_Is_Pure (SId,
8857 Side_Effect_Free (Expr, Variable_Ref => True));
8858 Set_Is_Inlined (SId);
8859 end if;
8860 end;
8862 -- Test for raise expressions present and if so build M version
8864 if Raise_Expression_Present then
8865 declare
8866 SId : constant Entity_Id :=
8867 Make_Defining_Identifier (Loc,
8868 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8869 -- The entity for the function spec
8871 SIdB : constant Entity_Id :=
8872 Make_Defining_Identifier (Loc,
8873 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8874 -- The entity for the function body
8876 Spec : Node_Id;
8877 FBody : Node_Id;
8878 FDecl : Node_Id;
8879 BTemp : Entity_Id;
8881 begin
8882 -- Mark any raise expressions for special expansion
8884 Process_REs (Expr_M);
8886 -- Build function declaration
8888 Set_Ekind (SId, E_Function);
8889 Set_Is_Predicate_Function_M (SId);
8890 Set_Predicate_Function_M (Typ, SId);
8892 -- The predicate function is shared between views of a type
8894 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8895 Set_Predicate_Function_M (Full_View (Typ), SId);
8896 end if;
8898 Spec :=
8899 Make_Function_Specification (Loc,
8900 Defining_Unit_Name => SId,
8901 Parameter_Specifications => New_List (
8902 Make_Parameter_Specification (Loc,
8903 Defining_Identifier => Object_Entity_M,
8904 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8905 Result_Definition =>
8906 New_Occurrence_Of (Standard_Boolean, Loc));
8908 FDecl :=
8909 Make_Subprogram_Declaration (Loc,
8910 Specification => Spec);
8912 -- Build function body
8914 Spec :=
8915 Make_Function_Specification (Loc,
8916 Defining_Unit_Name => SIdB,
8917 Parameter_Specifications => New_List (
8918 Make_Parameter_Specification (Loc,
8919 Defining_Identifier =>
8920 Make_Defining_Identifier (Loc, Object_Name),
8921 Parameter_Type =>
8922 New_Occurrence_Of (Typ, Loc))),
8923 Result_Definition =>
8924 New_Occurrence_Of (Standard_Boolean, Loc));
8926 -- Build the body, we declare the boolean expression before
8927 -- doing the return, because we are not really confident of
8928 -- what happens if a return appears within a return.
8930 BTemp :=
8931 Make_Defining_Identifier (Loc,
8932 Chars => New_Internal_Name ('B'));
8934 FBody :=
8935 Make_Subprogram_Body (Loc,
8936 Specification => Spec,
8938 Declarations => New_List (
8939 Make_Object_Declaration (Loc,
8940 Defining_Identifier => BTemp,
8941 Constant_Present => True,
8942 Object_Definition =>
8943 New_Occurrence_Of (Standard_Boolean, Loc),
8944 Expression => Expr_M)),
8946 Handled_Statement_Sequence =>
8947 Make_Handled_Sequence_Of_Statements (Loc,
8948 Statements => New_List (
8949 Make_Simple_Return_Statement (Loc,
8950 Expression => New_Occurrence_Of (BTemp, Loc)))));
8952 -- Insert declaration before freeze node and body after
8954 Insert_Before_And_Analyze (N, FDecl);
8955 Insert_After_And_Analyze (N, FBody);
8956 end;
8957 end if;
8959 -- See if we have a static predicate. Note that the answer may be
8960 -- yes even if we have an explicit Dynamic_Predicate present.
8962 declare
8963 PS : Boolean;
8964 EN : Node_Id;
8966 begin
8967 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8968 PS := False;
8969 else
8970 PS := Is_Predicate_Static (Expr, Object_Name);
8971 end if;
8973 -- Case where we have a predicate-static aspect
8975 if PS then
8977 -- We don't set Has_Static_Predicate_Aspect, since we can have
8978 -- any of the three cases (Predicate, Dynamic_Predicate, or
8979 -- Static_Predicate) generating a predicate with an expression
8980 -- that is predicate-static. We just indicate that we have a
8981 -- predicate that can be treated as static.
8983 Set_Has_Static_Predicate (Typ);
8985 -- For discrete subtype, build the static predicate list
8987 if Is_Discrete_Type (Typ) then
8988 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8990 -- If we don't get a static predicate list, it means that we
8991 -- have a case where this is not possible, most typically in
8992 -- the case where we inherit a dynamic predicate. We do not
8993 -- consider this an error, we just leave the predicate as
8994 -- dynamic. But if we do succeed in building the list, then
8995 -- we mark the predicate as static.
8997 if No (Static_Discrete_Predicate (Typ)) then
8998 Set_Has_Static_Predicate (Typ, False);
8999 end if;
9001 -- For real or string subtype, save predicate expression
9003 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
9004 Set_Static_Real_Or_String_Predicate (Typ, Expr);
9005 end if;
9007 -- Case of dynamic predicate (expression is not predicate-static)
9009 else
9010 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9011 -- is only set if we have an explicit Dynamic_Predicate aspect
9012 -- given. Here we may simply have a Predicate aspect where the
9013 -- expression happens not to be predicate-static.
9015 -- Emit an error when the predicate is categorized as static
9016 -- but its expression is not predicate-static.
9018 -- First a little fiddling to get a nice location for the
9019 -- message. If the expression is of the form (A and then B),
9020 -- where A is an inherited predicate, then use the right
9021 -- operand for the Sloc. This avoids getting confused by a call
9022 -- to an inherited predicate with a less convenient source
9023 -- location.
9025 EN := Expr;
9026 while Nkind (EN) = N_And_Then
9027 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9028 and then Is_Predicate_Function
9029 (Entity (Name (Left_Opnd (EN))))
9030 loop
9031 EN := Right_Opnd (EN);
9032 end loop;
9034 -- Now post appropriate message
9036 if Has_Static_Predicate_Aspect (Typ) then
9037 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9038 Error_Msg_F
9039 ("expression is not predicate-static (RM 3.2.4(16-22))",
9040 EN);
9041 else
9042 Error_Msg_F
9043 ("static predicate requires scalar or string type", EN);
9044 end if;
9045 end if;
9046 end if;
9047 end;
9048 end if;
9050 Restore_Ghost_Region (Saved_GM, Saved_IGR);
9051 end Build_Predicate_Functions;
9053 ------------------------------------------
9054 -- Build_Predicate_Function_Declaration --
9055 ------------------------------------------
9057 -- WARNING: This routine manages Ghost regions. Return statements must be
9058 -- replaced by gotos which jump to the end of the routine and restore the
9059 -- Ghost mode.
9061 function Build_Predicate_Function_Declaration
9062 (Typ : Entity_Id) return Node_Id
9064 Loc : constant Source_Ptr := Sloc (Typ);
9066 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9067 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
9068 -- Save the Ghost-related attributes to restore on exit
9070 Func_Decl : Node_Id;
9071 Func_Id : Entity_Id;
9072 Spec : Node_Id;
9074 begin
9075 -- The related type may be subject to pragma Ghost. Set the mode now to
9076 -- ensure that the predicate functions are properly marked as Ghost.
9078 Set_Ghost_Mode (Typ);
9080 Func_Id :=
9081 Make_Defining_Identifier (Loc,
9082 Chars => New_External_Name (Chars (Typ), "Predicate"));
9084 -- The predicate function requires debug info when the predicates are
9085 -- subject to Source Coverage Obligations.
9087 if Opt.Generate_SCO then
9088 Set_Debug_Info_Needed (Func_Id);
9089 end if;
9091 Spec :=
9092 Make_Function_Specification (Loc,
9093 Defining_Unit_Name => Func_Id,
9094 Parameter_Specifications => New_List (
9095 Make_Parameter_Specification (Loc,
9096 Defining_Identifier => Make_Temporary (Loc, 'I'),
9097 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9098 Result_Definition =>
9099 New_Occurrence_Of (Standard_Boolean, Loc));
9101 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9103 Set_Ekind (Func_Id, E_Function);
9104 Set_Etype (Func_Id, Standard_Boolean);
9105 Set_Is_Internal (Func_Id);
9106 Set_Is_Predicate_Function (Func_Id);
9107 Set_Predicate_Function (Typ, Func_Id);
9109 Insert_After (Parent (Typ), Func_Decl);
9110 Analyze (Func_Decl);
9112 Restore_Ghost_Region (Saved_GM, Saved_IGR);
9114 return Func_Decl;
9115 end Build_Predicate_Function_Declaration;
9117 -----------------------------------------
9118 -- Check_Aspect_At_End_Of_Declarations --
9119 -----------------------------------------
9121 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9122 Ent : constant Entity_Id := Entity (ASN);
9123 Ident : constant Node_Id := Identifier (ASN);
9124 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9126 End_Decl_Expr : constant Node_Id := Entity (Ident);
9127 -- Expression to be analyzed at end of declarations
9129 Freeze_Expr : constant Node_Id := Expression (ASN);
9130 -- Expression from call to Check_Aspect_At_Freeze_Point.
9132 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
9133 -- Type required for preanalyze call. We use the original expression to
9134 -- get the proper type, to prevent cascaded errors when the expression
9135 -- is constant-folded.
9137 Err : Boolean;
9138 -- Set False if error
9140 -- On entry to this procedure, Entity (Ident) contains a copy of the
9141 -- original expression from the aspect, saved for this purpose, and
9142 -- but Expression (Ident) is a preanalyzed copy of the expression,
9143 -- preanalyzed just after the freeze point.
9145 procedure Check_Overloaded_Name;
9146 -- For aspects whose expression is simply a name, this routine checks if
9147 -- the name is overloaded or not. If so, it verifies there is an
9148 -- interpretation that matches the entity obtained at the freeze point,
9149 -- otherwise the compiler complains.
9151 ---------------------------
9152 -- Check_Overloaded_Name --
9153 ---------------------------
9155 procedure Check_Overloaded_Name is
9156 begin
9157 if not Is_Overloaded (End_Decl_Expr) then
9158 Err := not Is_Entity_Name (End_Decl_Expr)
9159 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9161 else
9162 Err := True;
9164 declare
9165 Index : Interp_Index;
9166 It : Interp;
9168 begin
9169 Get_First_Interp (End_Decl_Expr, Index, It);
9170 while Present (It.Typ) loop
9171 if It.Nam = Entity (Freeze_Expr) then
9172 Err := False;
9173 exit;
9174 end if;
9176 Get_Next_Interp (Index, It);
9177 end loop;
9178 end;
9179 end if;
9180 end Check_Overloaded_Name;
9182 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9184 begin
9185 -- In an instance we do not perform the consistency check between freeze
9186 -- point and end of declarations, because it was done already in the
9187 -- analysis of the generic. Furthermore, the delayed analysis of an
9188 -- aspect of the instance may produce spurious errors when the generic
9189 -- is a child unit that references entities in the parent (which might
9190 -- not be in scope at the freeze point of the instance).
9192 if In_Instance then
9193 return;
9195 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9196 -- task body is rewritten as a procedure) after this conformance check
9197 -- has been performed, so do not perform it again (it may not easily be
9198 -- done if full visibility of local entities is not available).
9200 elsif not Comes_From_Source (Current_Scope) then
9201 return;
9203 -- Case of aspects Dimension, Dimension_System and Synchronization
9205 elsif A_Id = Aspect_Synchronization then
9206 return;
9208 -- Case of stream attributes, just have to compare entities. However,
9209 -- the expression is just a name (possibly overloaded), and there may
9210 -- be stream operations declared for unrelated types, so we just need
9211 -- to verify that one of these interpretations is the one available at
9212 -- at the freeze point.
9214 elsif A_Id = Aspect_Input or else
9215 A_Id = Aspect_Output or else
9216 A_Id = Aspect_Read or else
9217 A_Id = Aspect_Write
9218 then
9219 Analyze (End_Decl_Expr);
9220 Check_Overloaded_Name;
9222 elsif A_Id = Aspect_Variable_Indexing or else
9223 A_Id = Aspect_Constant_Indexing or else
9224 A_Id = Aspect_Default_Iterator or else
9225 A_Id = Aspect_Iterator_Element
9226 then
9227 -- Make type unfrozen before analysis, to prevent spurious errors
9228 -- about late attributes.
9230 Set_Is_Frozen (Ent, False);
9231 Analyze (End_Decl_Expr);
9232 Set_Is_Frozen (Ent, True);
9234 -- If the end of declarations comes before any other freeze
9235 -- point, the Freeze_Expr is not analyzed: no check needed.
9237 if Analyzed (Freeze_Expr) and then not In_Instance then
9238 Check_Overloaded_Name;
9239 else
9240 Err := False;
9241 end if;
9243 -- All other cases
9245 else
9246 -- Indicate that the expression comes from an aspect specification,
9247 -- which is used in subsequent analysis even if expansion is off.
9249 Set_Parent (End_Decl_Expr, ASN);
9251 -- In a generic context the aspect expressions have not been
9252 -- preanalyzed, so do it now. There are no conformance checks
9253 -- to perform in this case.
9255 if No (T) then
9256 Check_Aspect_At_Freeze_Point (ASN);
9257 return;
9259 -- The default values attributes may be defined in the private part,
9260 -- and the analysis of the expression may take place when only the
9261 -- partial view is visible. The expression must be scalar, so use
9262 -- the full view to resolve.
9264 elsif (A_Id = Aspect_Default_Value
9265 or else
9266 A_Id = Aspect_Default_Component_Value)
9267 and then Is_Private_Type (T)
9268 then
9269 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9271 else
9272 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9273 end if;
9275 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9276 end if;
9278 -- Output error message if error. Force error on aspect specification
9279 -- even if there is an error on the expression itself.
9281 if Err then
9282 Error_Msg_NE
9283 ("!visibility of aspect for& changes after freeze point",
9284 ASN, Ent);
9285 Error_Msg_NE
9286 ("info: & is frozen here, aspects evaluated at this point??",
9287 Freeze_Node (Ent), Ent);
9288 end if;
9289 end Check_Aspect_At_End_Of_Declarations;
9291 ----------------------------------
9292 -- Check_Aspect_At_Freeze_Point --
9293 ----------------------------------
9295 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9296 Ident : constant Node_Id := Identifier (ASN);
9297 -- Identifier (use Entity field to save expression)
9299 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9301 T : Entity_Id := Empty;
9302 -- Type required for preanalyze call
9304 begin
9305 -- On entry to this procedure, Entity (Ident) contains a copy of the
9306 -- original expression from the aspect, saved for this purpose.
9308 -- On exit from this procedure Entity (Ident) is unchanged, still
9309 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9310 -- of the expression, preanalyzed just after the freeze point.
9312 -- Make a copy of the expression to be preanalyzed
9314 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9316 -- Find type for preanalyze call
9318 case A_Id is
9320 -- No_Aspect should be impossible
9322 when No_Aspect =>
9323 raise Program_Error;
9325 -- Aspects taking an optional boolean argument
9327 when Boolean_Aspects
9328 | Library_Unit_Aspects
9330 T := Standard_Boolean;
9332 -- Aspects corresponding to attribute definition clauses
9334 when Aspect_Address =>
9335 T := RTE (RE_Address);
9337 when Aspect_Attach_Handler =>
9338 T := RTE (RE_Interrupt_ID);
9340 when Aspect_Bit_Order
9341 | Aspect_Scalar_Storage_Order
9343 T := RTE (RE_Bit_Order);
9345 when Aspect_Convention =>
9346 return;
9348 when Aspect_CPU =>
9349 T := RTE (RE_CPU_Range);
9351 -- Default_Component_Value is resolved with the component type
9353 when Aspect_Default_Component_Value =>
9354 T := Component_Type (Entity (ASN));
9356 when Aspect_Default_Storage_Pool =>
9357 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9359 -- Default_Value is resolved with the type entity in question
9361 when Aspect_Default_Value =>
9362 T := Entity (ASN);
9364 when Aspect_Dispatching_Domain =>
9365 T := RTE (RE_Dispatching_Domain);
9367 when Aspect_External_Tag =>
9368 T := Standard_String;
9370 when Aspect_External_Name =>
9371 T := Standard_String;
9373 when Aspect_Link_Name =>
9374 T := Standard_String;
9376 when Aspect_Interrupt_Priority
9377 | Aspect_Priority
9379 T := Standard_Integer;
9381 when Aspect_Relative_Deadline =>
9382 T := RTE (RE_Time_Span);
9384 when Aspect_Secondary_Stack_Size =>
9385 T := Standard_Integer;
9387 when Aspect_Small =>
9389 -- Note that the expression can be of any real type (not just a
9390 -- real universal literal) as long as it is a static constant.
9392 T := Any_Real;
9394 -- For a simple storage pool, we have to retrieve the type of the
9395 -- pool object associated with the aspect's corresponding attribute
9396 -- definition clause.
9398 when Aspect_Simple_Storage_Pool =>
9399 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9401 when Aspect_Storage_Pool =>
9402 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9404 when Aspect_Alignment
9405 | Aspect_Component_Size
9406 | Aspect_Machine_Radix
9407 | Aspect_Object_Size
9408 | Aspect_Size
9409 | Aspect_Storage_Size
9410 | Aspect_Stream_Size
9411 | Aspect_Value_Size
9413 T := Any_Integer;
9415 when Aspect_Linker_Section =>
9416 T := Standard_String;
9418 when Aspect_Synchronization =>
9419 return;
9421 -- Special case, the expression of these aspects is just an entity
9422 -- that does not need any resolution, so just analyze.
9424 when Aspect_Input
9425 | Aspect_Output
9426 | Aspect_Read
9427 | Aspect_Suppress
9428 | Aspect_Unsuppress
9429 | Aspect_Warnings
9430 | Aspect_Write
9432 Analyze (Expression (ASN));
9433 return;
9435 -- Same for Iterator aspects, where the expression is a function
9436 -- name. Legality rules are checked separately.
9438 when Aspect_Constant_Indexing
9439 | Aspect_Default_Iterator
9440 | Aspect_Iterator_Element
9441 | Aspect_Variable_Indexing
9443 Analyze (Expression (ASN));
9444 return;
9446 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9448 when Aspect_Iterable =>
9449 T := Entity (ASN);
9451 declare
9452 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9453 Assoc : Node_Id;
9454 Expr : Node_Id;
9456 begin
9457 if Cursor = Any_Type then
9458 return;
9459 end if;
9461 Assoc := First (Component_Associations (Expression (ASN)));
9462 while Present (Assoc) loop
9463 Expr := Expression (Assoc);
9464 Analyze (Expr);
9466 if not Error_Posted (Expr) then
9467 Resolve_Iterable_Operation
9468 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9469 end if;
9471 Next (Assoc);
9472 end loop;
9473 end;
9475 return;
9477 -- Invariant/Predicate take boolean expressions
9479 when Aspect_Dynamic_Predicate
9480 | Aspect_Invariant
9481 | Aspect_Predicate
9482 | Aspect_Static_Predicate
9483 | Aspect_Type_Invariant
9485 T := Standard_Boolean;
9487 when Aspect_Predicate_Failure =>
9488 T := Standard_String;
9490 -- Here is the list of aspects that don't require delay analysis
9492 when Aspect_Abstract_State
9493 | Aspect_Annotate
9494 | Aspect_Async_Readers
9495 | Aspect_Async_Writers
9496 | Aspect_Constant_After_Elaboration
9497 | Aspect_Contract_Cases
9498 | Aspect_Default_Initial_Condition
9499 | Aspect_Depends
9500 | Aspect_Dimension
9501 | Aspect_Dimension_System
9502 | Aspect_Effective_Reads
9503 | Aspect_Effective_Writes
9504 | Aspect_Extensions_Visible
9505 | Aspect_Ghost
9506 | Aspect_Global
9507 | Aspect_Implicit_Dereference
9508 | Aspect_Initial_Condition
9509 | Aspect_Initializes
9510 | Aspect_Max_Queue_Length
9511 | Aspect_Obsolescent
9512 | Aspect_Part_Of
9513 | Aspect_Post
9514 | Aspect_Postcondition
9515 | Aspect_Pre
9516 | Aspect_Precondition
9517 | Aspect_Refined_Depends
9518 | Aspect_Refined_Global
9519 | Aspect_Refined_Post
9520 | Aspect_Refined_State
9521 | Aspect_SPARK_Mode
9522 | Aspect_Test_Case
9523 | Aspect_Unimplemented
9524 | Aspect_Volatile_Function
9526 raise Program_Error;
9528 end case;
9530 -- Do the preanalyze call
9532 Preanalyze_Spec_Expression (Expression (ASN), T);
9533 end Check_Aspect_At_Freeze_Point;
9535 -----------------------------------
9536 -- Check_Constant_Address_Clause --
9537 -----------------------------------
9539 procedure Check_Constant_Address_Clause
9540 (Expr : Node_Id;
9541 U_Ent : Entity_Id)
9543 procedure Check_At_Constant_Address (Nod : Node_Id);
9544 -- Checks that the given node N represents a name whose 'Address is
9545 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9546 -- address value is the same at the point of declaration of U_Ent and at
9547 -- the time of elaboration of the address clause.
9549 procedure Check_Expr_Constants (Nod : Node_Id);
9550 -- Checks that Nod meets the requirements for a constant address clause
9551 -- in the sense of the enclosing procedure.
9553 procedure Check_List_Constants (Lst : List_Id);
9554 -- Check that all elements of list Lst meet the requirements for a
9555 -- constant address clause in the sense of the enclosing procedure.
9557 -------------------------------
9558 -- Check_At_Constant_Address --
9559 -------------------------------
9561 procedure Check_At_Constant_Address (Nod : Node_Id) is
9562 begin
9563 if Is_Entity_Name (Nod) then
9564 if Present (Address_Clause (Entity ((Nod)))) then
9565 Error_Msg_NE
9566 ("invalid address clause for initialized object &!",
9567 Nod, U_Ent);
9568 Error_Msg_NE
9569 ("address for& cannot depend on another address clause! "
9570 & "(RM 13.1(22))!", Nod, U_Ent);
9572 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9573 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9574 then
9575 Error_Msg_NE
9576 ("invalid address clause for initialized object &!",
9577 Nod, U_Ent);
9578 Error_Msg_Node_2 := U_Ent;
9579 Error_Msg_NE
9580 ("\& must be defined before & (RM 13.1(22))!",
9581 Nod, Entity (Nod));
9582 end if;
9584 elsif Nkind (Nod) = N_Selected_Component then
9585 declare
9586 T : constant Entity_Id := Etype (Prefix (Nod));
9588 begin
9589 if (Is_Record_Type (T)
9590 and then Has_Discriminants (T))
9591 or else
9592 (Is_Access_Type (T)
9593 and then Is_Record_Type (Designated_Type (T))
9594 and then Has_Discriminants (Designated_Type (T)))
9595 then
9596 Error_Msg_NE
9597 ("invalid address clause for initialized object &!",
9598 Nod, U_Ent);
9599 Error_Msg_N
9600 ("\address cannot depend on component of discriminated "
9601 & "record (RM 13.1(22))!", Nod);
9602 else
9603 Check_At_Constant_Address (Prefix (Nod));
9604 end if;
9605 end;
9607 elsif Nkind (Nod) = N_Indexed_Component then
9608 Check_At_Constant_Address (Prefix (Nod));
9609 Check_List_Constants (Expressions (Nod));
9611 else
9612 Check_Expr_Constants (Nod);
9613 end if;
9614 end Check_At_Constant_Address;
9616 --------------------------
9617 -- Check_Expr_Constants --
9618 --------------------------
9620 procedure Check_Expr_Constants (Nod : Node_Id) is
9621 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9622 Ent : Entity_Id := Empty;
9624 begin
9625 if Nkind (Nod) in N_Has_Etype
9626 and then Etype (Nod) = Any_Type
9627 then
9628 return;
9629 end if;
9631 case Nkind (Nod) is
9632 when N_Empty
9633 | N_Error
9635 return;
9637 when N_Expanded_Name
9638 | N_Identifier
9640 Ent := Entity (Nod);
9642 -- We need to look at the original node if it is different
9643 -- from the node, since we may have rewritten things and
9644 -- substituted an identifier representing the rewrite.
9646 if Original_Node (Nod) /= Nod then
9647 Check_Expr_Constants (Original_Node (Nod));
9649 -- If the node is an object declaration without initial
9650 -- value, some code has been expanded, and the expression
9651 -- is not constant, even if the constituents might be
9652 -- acceptable, as in A'Address + offset.
9654 if Ekind (Ent) = E_Variable
9655 and then
9656 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9657 and then
9658 No (Expression (Declaration_Node (Ent)))
9659 then
9660 Error_Msg_NE
9661 ("invalid address clause for initialized object &!",
9662 Nod, U_Ent);
9664 -- If entity is constant, it may be the result of expanding
9665 -- a check. We must verify that its declaration appears
9666 -- before the object in question, else we also reject the
9667 -- address clause.
9669 elsif Ekind (Ent) = E_Constant
9670 and then In_Same_Source_Unit (Ent, U_Ent)
9671 and then Sloc (Ent) > Loc_U_Ent
9672 then
9673 Error_Msg_NE
9674 ("invalid address clause for initialized object &!",
9675 Nod, U_Ent);
9676 end if;
9678 return;
9679 end if;
9681 -- Otherwise look at the identifier and see if it is OK
9683 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9684 or else Is_Type (Ent)
9685 then
9686 return;
9688 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9690 -- This is the case where we must have Ent defined before
9691 -- U_Ent. Clearly if they are in different units this
9692 -- requirement is met since the unit containing Ent is
9693 -- already processed.
9695 if not In_Same_Source_Unit (Ent, U_Ent) then
9696 return;
9698 -- Otherwise location of Ent must be before the location
9699 -- of U_Ent, that's what prior defined means.
9701 elsif Sloc (Ent) < Loc_U_Ent then
9702 return;
9704 else
9705 Error_Msg_NE
9706 ("invalid address clause for initialized object &!",
9707 Nod, U_Ent);
9708 Error_Msg_Node_2 := U_Ent;
9709 Error_Msg_NE
9710 ("\& must be defined before & (RM 13.1(22))!",
9711 Nod, Ent);
9712 end if;
9714 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9715 Check_Expr_Constants (Original_Node (Nod));
9717 else
9718 Error_Msg_NE
9719 ("invalid address clause for initialized object &!",
9720 Nod, U_Ent);
9722 if Comes_From_Source (Ent) then
9723 Error_Msg_NE
9724 ("\reference to variable& not allowed"
9725 & " (RM 13.1(22))!", Nod, Ent);
9726 else
9727 Error_Msg_N
9728 ("non-static expression not allowed"
9729 & " (RM 13.1(22))!", Nod);
9730 end if;
9731 end if;
9733 when N_Integer_Literal =>
9735 -- If this is a rewritten unchecked conversion, in a system
9736 -- where Address is an integer type, always use the base type
9737 -- for a literal value. This is user-friendly and prevents
9738 -- order-of-elaboration issues with instances of unchecked
9739 -- conversion.
9741 if Nkind (Original_Node (Nod)) = N_Function_Call then
9742 Set_Etype (Nod, Base_Type (Etype (Nod)));
9743 end if;
9745 when N_Character_Literal
9746 | N_Real_Literal
9747 | N_String_Literal
9749 return;
9751 when N_Range =>
9752 Check_Expr_Constants (Low_Bound (Nod));
9753 Check_Expr_Constants (High_Bound (Nod));
9755 when N_Explicit_Dereference =>
9756 Check_Expr_Constants (Prefix (Nod));
9758 when N_Indexed_Component =>
9759 Check_Expr_Constants (Prefix (Nod));
9760 Check_List_Constants (Expressions (Nod));
9762 when N_Slice =>
9763 Check_Expr_Constants (Prefix (Nod));
9764 Check_Expr_Constants (Discrete_Range (Nod));
9766 when N_Selected_Component =>
9767 Check_Expr_Constants (Prefix (Nod));
9769 when N_Attribute_Reference =>
9770 if Nam_In (Attribute_Name (Nod), Name_Address,
9771 Name_Access,
9772 Name_Unchecked_Access,
9773 Name_Unrestricted_Access)
9774 then
9775 Check_At_Constant_Address (Prefix (Nod));
9777 -- Normally, System'To_Address will have been transformed into
9778 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9779 -- and we don't want to give an error, because the whole point
9780 -- of 'To_Address is that it is static.
9782 elsif Attribute_Name (Nod) = Name_To_Address then
9783 pragma Assert (Operating_Mode = Check_Semantics);
9784 null;
9786 else
9787 Check_Expr_Constants (Prefix (Nod));
9788 Check_List_Constants (Expressions (Nod));
9789 end if;
9791 when N_Aggregate =>
9792 Check_List_Constants (Component_Associations (Nod));
9793 Check_List_Constants (Expressions (Nod));
9795 when N_Component_Association =>
9796 Check_Expr_Constants (Expression (Nod));
9798 when N_Extension_Aggregate =>
9799 Check_Expr_Constants (Ancestor_Part (Nod));
9800 Check_List_Constants (Component_Associations (Nod));
9801 Check_List_Constants (Expressions (Nod));
9803 when N_Null =>
9804 return;
9806 when N_Binary_Op
9807 | N_Membership_Test
9808 | N_Short_Circuit
9810 Check_Expr_Constants (Left_Opnd (Nod));
9811 Check_Expr_Constants (Right_Opnd (Nod));
9813 when N_Unary_Op =>
9814 Check_Expr_Constants (Right_Opnd (Nod));
9816 when N_Allocator
9817 | N_Qualified_Expression
9818 | N_Type_Conversion
9819 | N_Unchecked_Type_Conversion
9821 Check_Expr_Constants (Expression (Nod));
9823 when N_Function_Call =>
9824 if not Is_Pure (Entity (Name (Nod))) then
9825 Error_Msg_NE
9826 ("invalid address clause for initialized object &!",
9827 Nod, U_Ent);
9829 Error_Msg_NE
9830 ("\function & is not pure (RM 13.1(22))!",
9831 Nod, Entity (Name (Nod)));
9833 else
9834 Check_List_Constants (Parameter_Associations (Nod));
9835 end if;
9837 when N_Parameter_Association =>
9838 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9840 when others =>
9841 Error_Msg_NE
9842 ("invalid address clause for initialized object &!",
9843 Nod, U_Ent);
9844 Error_Msg_NE
9845 ("\must be constant defined before& (RM 13.1(22))!",
9846 Nod, U_Ent);
9847 end case;
9848 end Check_Expr_Constants;
9850 --------------------------
9851 -- Check_List_Constants --
9852 --------------------------
9854 procedure Check_List_Constants (Lst : List_Id) is
9855 Nod1 : Node_Id;
9857 begin
9858 if Present (Lst) then
9859 Nod1 := First (Lst);
9860 while Present (Nod1) loop
9861 Check_Expr_Constants (Nod1);
9862 Next (Nod1);
9863 end loop;
9864 end if;
9865 end Check_List_Constants;
9867 -- Start of processing for Check_Constant_Address_Clause
9869 begin
9870 -- If rep_clauses are to be ignored, no need for legality checks. In
9871 -- particular, no need to pester user about rep clauses that violate the
9872 -- rule on constant addresses, given that these clauses will be removed
9873 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9874 -- we want to relax these checks.
9876 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9877 Check_Expr_Constants (Expr);
9878 end if;
9879 end Check_Constant_Address_Clause;
9881 ---------------------------
9882 -- Check_Pool_Size_Clash --
9883 ---------------------------
9885 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9886 Post : Node_Id;
9888 begin
9889 -- We need to find out which one came first. Note that in the case of
9890 -- aspects mixed with pragmas there are cases where the processing order
9891 -- is reversed, which is why we do the check here.
9893 if Sloc (SP) < Sloc (SS) then
9894 Error_Msg_Sloc := Sloc (SP);
9895 Post := SS;
9896 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9898 else
9899 Error_Msg_Sloc := Sloc (SS);
9900 Post := SP;
9901 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9902 end if;
9904 Error_Msg_N
9905 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9906 end Check_Pool_Size_Clash;
9908 ----------------------------------------
9909 -- Check_Record_Representation_Clause --
9910 ----------------------------------------
9912 procedure Check_Record_Representation_Clause (N : Node_Id) is
9913 Loc : constant Source_Ptr := Sloc (N);
9914 Ident : constant Node_Id := Identifier (N);
9915 Rectype : Entity_Id;
9916 Fent : Entity_Id;
9917 CC : Node_Id;
9918 Fbit : Uint;
9919 Lbit : Uint;
9920 Hbit : Uint := Uint_0;
9921 Comp : Entity_Id;
9922 Pcomp : Entity_Id;
9924 Max_Bit_So_Far : Uint;
9925 -- Records the maximum bit position so far. If all field positions
9926 -- are monotonically increasing, then we can skip the circuit for
9927 -- checking for overlap, since no overlap is possible.
9929 Tagged_Parent : Entity_Id := Empty;
9930 -- This is set in the case of an extension for which we have either a
9931 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9932 -- components are positioned by record representation clauses) on the
9933 -- parent type. In this case we check for overlap between components of
9934 -- this tagged type and the parent component. Tagged_Parent will point
9935 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9937 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
9938 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9939 -- last bit position for any field in the parent type. We only need to
9940 -- check overlap for fields starting below this point.
9942 Overlap_Check_Required : Boolean;
9943 -- Used to keep track of whether or not an overlap check is required
9945 Overlap_Detected : Boolean := False;
9946 -- Set True if an overlap is detected
9948 Ccount : Natural := 0;
9949 -- Number of component clauses in record rep clause
9951 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9952 -- Given two entities for record components or discriminants, checks
9953 -- if they have overlapping component clauses and issues errors if so.
9955 procedure Find_Component;
9956 -- Finds component entity corresponding to current component clause (in
9957 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9958 -- start/stop bits for the field. If there is no matching component or
9959 -- if the matching component does not have a component clause, then
9960 -- that's an error and Comp is set to Empty, but no error message is
9961 -- issued, since the message was already given. Comp is also set to
9962 -- Empty if the current "component clause" is in fact a pragma.
9964 -----------------------------
9965 -- Check_Component_Overlap --
9966 -----------------------------
9968 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9969 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9970 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9972 begin
9973 if Present (CC1) and then Present (CC2) then
9975 -- Exclude odd case where we have two tag components in the same
9976 -- record, both at location zero. This seems a bit strange, but
9977 -- it seems to happen in some circumstances, perhaps on an error.
9979 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9980 return;
9981 end if;
9983 -- Here we check if the two fields overlap
9985 declare
9986 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9987 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9988 E1 : constant Uint := S1 + Esize (C1_Ent);
9989 E2 : constant Uint := S2 + Esize (C2_Ent);
9991 begin
9992 if E2 <= S1 or else E1 <= S2 then
9993 null;
9994 else
9995 Error_Msg_Node_2 := Component_Name (CC2);
9996 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9997 Error_Msg_Node_1 := Component_Name (CC1);
9998 Error_Msg_N
9999 ("component& overlaps & #", Component_Name (CC1));
10000 Overlap_Detected := True;
10001 end if;
10002 end;
10003 end if;
10004 end Check_Component_Overlap;
10006 --------------------
10007 -- Find_Component --
10008 --------------------
10010 procedure Find_Component is
10012 procedure Search_Component (R : Entity_Id);
10013 -- Search components of R for a match. If found, Comp is set
10015 ----------------------
10016 -- Search_Component --
10017 ----------------------
10019 procedure Search_Component (R : Entity_Id) is
10020 begin
10021 Comp := First_Component_Or_Discriminant (R);
10022 while Present (Comp) loop
10024 -- Ignore error of attribute name for component name (we
10025 -- already gave an error message for this, so no need to
10026 -- complain here)
10028 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10029 null;
10030 else
10031 exit when Chars (Comp) = Chars (Component_Name (CC));
10032 end if;
10034 Next_Component_Or_Discriminant (Comp);
10035 end loop;
10036 end Search_Component;
10038 -- Start of processing for Find_Component
10040 begin
10041 -- Return with Comp set to Empty if we have a pragma
10043 if Nkind (CC) = N_Pragma then
10044 Comp := Empty;
10045 return;
10046 end if;
10048 -- Search current record for matching component
10050 Search_Component (Rectype);
10052 -- If not found, maybe component of base type discriminant that is
10053 -- absent from statically constrained first subtype.
10055 if No (Comp) then
10056 Search_Component (Base_Type (Rectype));
10057 end if;
10059 -- If no component, or the component does not reference the component
10060 -- clause in question, then there was some previous error for which
10061 -- we already gave a message, so just return with Comp Empty.
10063 if No (Comp) or else Component_Clause (Comp) /= CC then
10064 Check_Error_Detected;
10065 Comp := Empty;
10067 -- Normal case where we have a component clause
10069 else
10070 Fbit := Component_Bit_Offset (Comp);
10071 Lbit := Fbit + Esize (Comp) - 1;
10072 end if;
10073 end Find_Component;
10075 -- Start of processing for Check_Record_Representation_Clause
10077 begin
10078 Find_Type (Ident);
10079 Rectype := Entity (Ident);
10081 if Rectype = Any_Type then
10082 return;
10083 end if;
10085 Rectype := Underlying_Type (Rectype);
10087 -- See if we have a fully repped derived tagged type
10089 declare
10090 PS : constant Entity_Id := Parent_Subtype (Rectype);
10092 begin
10093 if Present (PS) and then Known_Static_RM_Size (PS) then
10094 Tagged_Parent := PS;
10095 Parent_Last_Bit := RM_Size (PS) - 1;
10097 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
10098 Tagged_Parent := PS;
10100 -- Find maximum bit of any component of the parent type
10102 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10103 Pcomp := First_Entity (Tagged_Parent);
10104 while Present (Pcomp) loop
10105 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10106 if Component_Bit_Offset (Pcomp) /= No_Uint
10107 and then Known_Static_Esize (Pcomp)
10108 then
10109 Parent_Last_Bit :=
10110 UI_Max
10111 (Parent_Last_Bit,
10112 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10113 end if;
10114 else
10116 -- Skip anonymous types generated for constrained array
10117 -- or record components.
10119 null;
10120 end if;
10122 Next_Entity (Pcomp);
10123 end loop;
10124 end if;
10125 end;
10127 -- All done if no component clauses
10129 CC := First (Component_Clauses (N));
10131 if No (CC) then
10132 return;
10133 end if;
10135 -- If a tag is present, then create a component clause that places it
10136 -- at the start of the record (otherwise gigi may place it after other
10137 -- fields that have rep clauses).
10139 Fent := First_Entity (Rectype);
10141 if Nkind (Fent) = N_Defining_Identifier
10142 and then Chars (Fent) = Name_uTag
10143 then
10144 Set_Component_Bit_Offset (Fent, Uint_0);
10145 Set_Normalized_Position (Fent, Uint_0);
10146 Set_Normalized_First_Bit (Fent, Uint_0);
10147 Set_Normalized_Position_Max (Fent, Uint_0);
10148 Init_Esize (Fent, System_Address_Size);
10150 Set_Component_Clause (Fent,
10151 Make_Component_Clause (Loc,
10152 Component_Name => Make_Identifier (Loc, Name_uTag),
10154 Position => Make_Integer_Literal (Loc, Uint_0),
10155 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10156 Last_Bit =>
10157 Make_Integer_Literal (Loc,
10158 UI_From_Int (System_Address_Size))));
10160 Ccount := Ccount + 1;
10161 end if;
10163 Max_Bit_So_Far := Uint_Minus_1;
10164 Overlap_Check_Required := False;
10166 -- Process the component clauses
10168 while Present (CC) loop
10169 Find_Component;
10171 if Present (Comp) then
10172 Ccount := Ccount + 1;
10174 -- We need a full overlap check if record positions non-monotonic
10176 if Fbit <= Max_Bit_So_Far then
10177 Overlap_Check_Required := True;
10178 end if;
10180 Max_Bit_So_Far := Lbit;
10182 -- Check bit position out of range of specified size
10184 if Has_Size_Clause (Rectype)
10185 and then RM_Size (Rectype) <= Lbit
10186 then
10187 Error_Msg_N
10188 ("bit number out of range of specified size",
10189 Last_Bit (CC));
10191 -- Check for overlap with tag or parent component
10193 else
10194 if Is_Tagged_Type (Rectype)
10195 and then Fbit < System_Address_Size
10196 then
10197 Error_Msg_NE
10198 ("component overlaps tag field of&",
10199 Component_Name (CC), Rectype);
10200 Overlap_Detected := True;
10202 elsif Present (Tagged_Parent)
10203 and then Fbit <= Parent_Last_Bit
10204 then
10205 Error_Msg_NE
10206 ("component overlaps parent field of&",
10207 Component_Name (CC), Rectype);
10208 Overlap_Detected := True;
10209 end if;
10211 if Hbit < Lbit then
10212 Hbit := Lbit;
10213 end if;
10214 end if;
10215 end if;
10217 Next (CC);
10218 end loop;
10220 -- Now that we have processed all the component clauses, check for
10221 -- overlap. We have to leave this till last, since the components can
10222 -- appear in any arbitrary order in the representation clause.
10224 -- We do not need this check if all specified ranges were monotonic,
10225 -- as recorded by Overlap_Check_Required being False at this stage.
10227 -- This first section checks if there are any overlapping entries at
10228 -- all. It does this by sorting all entries and then seeing if there are
10229 -- any overlaps. If there are none, then that is decisive, but if there
10230 -- are overlaps, they may still be OK (they may result from fields in
10231 -- different variants).
10233 if Overlap_Check_Required then
10234 Overlap_Check1 : declare
10236 OC_Fbit : array (0 .. Ccount) of Uint;
10237 -- First-bit values for component clauses, the value is the offset
10238 -- of the first bit of the field from start of record. The zero
10239 -- entry is for use in sorting.
10241 OC_Lbit : array (0 .. Ccount) of Uint;
10242 -- Last-bit values for component clauses, the value is the offset
10243 -- of the last bit of the field from start of record. The zero
10244 -- entry is for use in sorting.
10246 OC_Count : Natural := 0;
10247 -- Count of entries in OC_Fbit and OC_Lbit
10249 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10250 -- Compare routine for Sort
10252 procedure OC_Move (From : Natural; To : Natural);
10253 -- Move routine for Sort
10255 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10257 -----------
10258 -- OC_Lt --
10259 -----------
10261 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10262 begin
10263 return OC_Fbit (Op1) < OC_Fbit (Op2);
10264 end OC_Lt;
10266 -------------
10267 -- OC_Move --
10268 -------------
10270 procedure OC_Move (From : Natural; To : Natural) is
10271 begin
10272 OC_Fbit (To) := OC_Fbit (From);
10273 OC_Lbit (To) := OC_Lbit (From);
10274 end OC_Move;
10276 -- Start of processing for Overlap_Check
10278 begin
10279 CC := First (Component_Clauses (N));
10280 while Present (CC) loop
10282 -- Exclude component clause already marked in error
10284 if not Error_Posted (CC) then
10285 Find_Component;
10287 if Present (Comp) then
10288 OC_Count := OC_Count + 1;
10289 OC_Fbit (OC_Count) := Fbit;
10290 OC_Lbit (OC_Count) := Lbit;
10291 end if;
10292 end if;
10294 Next (CC);
10295 end loop;
10297 Sorting.Sort (OC_Count);
10299 Overlap_Check_Required := False;
10300 for J in 1 .. OC_Count - 1 loop
10301 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10302 Overlap_Check_Required := True;
10303 exit;
10304 end if;
10305 end loop;
10306 end Overlap_Check1;
10307 end if;
10309 -- If Overlap_Check_Required is still True, then we have to do the full
10310 -- scale overlap check, since we have at least two fields that do
10311 -- overlap, and we need to know if that is OK since they are in
10312 -- different variant, or whether we have a definite problem.
10314 if Overlap_Check_Required then
10315 Overlap_Check2 : declare
10316 C1_Ent, C2_Ent : Entity_Id;
10317 -- Entities of components being checked for overlap
10319 Clist : Node_Id;
10320 -- Component_List node whose Component_Items are being checked
10322 Citem : Node_Id;
10323 -- Component declaration for component being checked
10325 begin
10326 C1_Ent := First_Entity (Base_Type (Rectype));
10328 -- Loop through all components in record. For each component check
10329 -- for overlap with any of the preceding elements on the component
10330 -- list containing the component and also, if the component is in
10331 -- a variant, check against components outside the case structure.
10332 -- This latter test is repeated recursively up the variant tree.
10334 Main_Component_Loop : while Present (C1_Ent) loop
10335 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10336 goto Continue_Main_Component_Loop;
10337 end if;
10339 -- Skip overlap check if entity has no declaration node. This
10340 -- happens with discriminants in constrained derived types.
10341 -- Possibly we are missing some checks as a result, but that
10342 -- does not seem terribly serious.
10344 if No (Declaration_Node (C1_Ent)) then
10345 goto Continue_Main_Component_Loop;
10346 end if;
10348 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10350 -- Loop through component lists that need checking. Check the
10351 -- current component list and all lists in variants above us.
10353 Component_List_Loop : loop
10355 -- If derived type definition, go to full declaration
10356 -- If at outer level, check discriminants if there are any.
10358 if Nkind (Clist) = N_Derived_Type_Definition then
10359 Clist := Parent (Clist);
10360 end if;
10362 -- Outer level of record definition, check discriminants
10364 if Nkind_In (Clist, N_Full_Type_Declaration,
10365 N_Private_Type_Declaration)
10366 then
10367 if Has_Discriminants (Defining_Identifier (Clist)) then
10368 C2_Ent :=
10369 First_Discriminant (Defining_Identifier (Clist));
10370 while Present (C2_Ent) loop
10371 exit when C1_Ent = C2_Ent;
10372 Check_Component_Overlap (C1_Ent, C2_Ent);
10373 Next_Discriminant (C2_Ent);
10374 end loop;
10375 end if;
10377 -- Record extension case
10379 elsif Nkind (Clist) = N_Derived_Type_Definition then
10380 Clist := Empty;
10382 -- Otherwise check one component list
10384 else
10385 Citem := First (Component_Items (Clist));
10386 while Present (Citem) loop
10387 if Nkind (Citem) = N_Component_Declaration then
10388 C2_Ent := Defining_Identifier (Citem);
10389 exit when C1_Ent = C2_Ent;
10390 Check_Component_Overlap (C1_Ent, C2_Ent);
10391 end if;
10393 Next (Citem);
10394 end loop;
10395 end if;
10397 -- Check for variants above us (the parent of the Clist can
10398 -- be a variant, in which case its parent is a variant part,
10399 -- and the parent of the variant part is a component list
10400 -- whose components must all be checked against the current
10401 -- component for overlap).
10403 if Nkind (Parent (Clist)) = N_Variant then
10404 Clist := Parent (Parent (Parent (Clist)));
10406 -- Check for possible discriminant part in record, this
10407 -- is treated essentially as another level in the
10408 -- recursion. For this case the parent of the component
10409 -- list is the record definition, and its parent is the
10410 -- full type declaration containing the discriminant
10411 -- specifications.
10413 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10414 Clist := Parent (Parent ((Clist)));
10416 -- If neither of these two cases, we are at the top of
10417 -- the tree.
10419 else
10420 exit Component_List_Loop;
10421 end if;
10422 end loop Component_List_Loop;
10424 <<Continue_Main_Component_Loop>>
10425 Next_Entity (C1_Ent);
10427 end loop Main_Component_Loop;
10428 end Overlap_Check2;
10429 end if;
10431 -- The following circuit deals with warning on record holes (gaps). We
10432 -- skip this check if overlap was detected, since it makes sense for the
10433 -- programmer to fix this illegality before worrying about warnings.
10435 if not Overlap_Detected and Warn_On_Record_Holes then
10436 Record_Hole_Check : declare
10437 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10438 -- Full declaration of record type
10440 procedure Check_Component_List
10441 (CL : Node_Id;
10442 Sbit : Uint;
10443 DS : List_Id);
10444 -- Check component list CL for holes. The starting bit should be
10445 -- Sbit. which is zero for the main record component list and set
10446 -- appropriately for recursive calls for variants. DS is set to
10447 -- a list of discriminant specifications to be included in the
10448 -- consideration of components. It is No_List if none to consider.
10450 --------------------------
10451 -- Check_Component_List --
10452 --------------------------
10454 procedure Check_Component_List
10455 (CL : Node_Id;
10456 Sbit : Uint;
10457 DS : List_Id)
10459 Compl : Integer;
10461 begin
10462 Compl := Integer (List_Length (Component_Items (CL)));
10464 if DS /= No_List then
10465 Compl := Compl + Integer (List_Length (DS));
10466 end if;
10468 declare
10469 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10470 -- Gather components (zero entry is for sort routine)
10472 Ncomps : Natural := 0;
10473 -- Number of entries stored in Comps (starting at Comps (1))
10475 Citem : Node_Id;
10476 -- One component item or discriminant specification
10478 Nbit : Uint;
10479 -- Starting bit for next component
10481 CEnt : Entity_Id;
10482 -- Component entity
10484 Variant : Node_Id;
10485 -- One variant
10487 function Lt (Op1, Op2 : Natural) return Boolean;
10488 -- Compare routine for Sort
10490 procedure Move (From : Natural; To : Natural);
10491 -- Move routine for Sort
10493 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10495 --------
10496 -- Lt --
10497 --------
10499 function Lt (Op1, Op2 : Natural) return Boolean is
10500 begin
10501 return Component_Bit_Offset (Comps (Op1))
10503 Component_Bit_Offset (Comps (Op2));
10504 end Lt;
10506 ----------
10507 -- Move --
10508 ----------
10510 procedure Move (From : Natural; To : Natural) is
10511 begin
10512 Comps (To) := Comps (From);
10513 end Move;
10515 begin
10516 -- Gather discriminants into Comp
10518 if DS /= No_List then
10519 Citem := First (DS);
10520 while Present (Citem) loop
10521 if Nkind (Citem) = N_Discriminant_Specification then
10522 declare
10523 Ent : constant Entity_Id :=
10524 Defining_Identifier (Citem);
10525 begin
10526 if Ekind (Ent) = E_Discriminant then
10527 Ncomps := Ncomps + 1;
10528 Comps (Ncomps) := Ent;
10529 end if;
10530 end;
10531 end if;
10533 Next (Citem);
10534 end loop;
10535 end if;
10537 -- Gather component entities into Comp
10539 Citem := First (Component_Items (CL));
10540 while Present (Citem) loop
10541 if Nkind (Citem) = N_Component_Declaration then
10542 Ncomps := Ncomps + 1;
10543 Comps (Ncomps) := Defining_Identifier (Citem);
10544 end if;
10546 Next (Citem);
10547 end loop;
10549 -- Now sort the component entities based on the first bit.
10550 -- Note we already know there are no overlapping components.
10552 Sorting.Sort (Ncomps);
10554 -- Loop through entries checking for holes
10556 Nbit := Sbit;
10557 for J in 1 .. Ncomps loop
10558 CEnt := Comps (J);
10560 declare
10561 CBO : constant Uint := Component_Bit_Offset (CEnt);
10563 begin
10564 -- Skip components with unknown offsets
10566 if CBO /= No_Uint and then CBO >= 0 then
10567 Error_Msg_Uint_1 := CBO - Nbit;
10569 if Error_Msg_Uint_1 > 0 then
10570 Error_Msg_NE
10571 ("?H?^-bit gap before component&",
10572 Component_Name (Component_Clause (CEnt)),
10573 CEnt);
10574 end if;
10576 Nbit := CBO + Esize (CEnt);
10577 end if;
10578 end;
10579 end loop;
10581 -- Process variant parts recursively if present
10583 if Present (Variant_Part (CL)) then
10584 Variant := First (Variants (Variant_Part (CL)));
10585 while Present (Variant) loop
10586 Check_Component_List
10587 (Component_List (Variant), Nbit, No_List);
10588 Next (Variant);
10589 end loop;
10590 end if;
10591 end;
10592 end Check_Component_List;
10594 -- Start of processing for Record_Hole_Check
10596 begin
10597 declare
10598 Sbit : Uint;
10600 begin
10601 if Is_Tagged_Type (Rectype) then
10602 Sbit := UI_From_Int (System_Address_Size);
10603 else
10604 Sbit := Uint_0;
10605 end if;
10607 if Nkind (Decl) = N_Full_Type_Declaration
10608 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10609 then
10610 Check_Component_List
10611 (Component_List (Type_Definition (Decl)),
10612 Sbit,
10613 Discriminant_Specifications (Decl));
10614 end if;
10615 end;
10616 end Record_Hole_Check;
10617 end if;
10619 -- For records that have component clauses for all components, and whose
10620 -- size is less than or equal to 32, we need to know the size in the
10621 -- front end to activate possible packed array processing where the
10622 -- component type is a record.
10624 -- At this stage Hbit + 1 represents the first unused bit from all the
10625 -- component clauses processed, so if the component clauses are
10626 -- complete, then this is the length of the record.
10628 -- For records longer than System.Storage_Unit, and for those where not
10629 -- all components have component clauses, the back end determines the
10630 -- length (it may for example be appropriate to round up the size
10631 -- to some convenient boundary, based on alignment considerations, etc).
10633 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10635 -- Nothing to do if at least one component has no component clause
10637 Comp := First_Component_Or_Discriminant (Rectype);
10638 while Present (Comp) loop
10639 exit when No (Component_Clause (Comp));
10640 Next_Component_Or_Discriminant (Comp);
10641 end loop;
10643 -- If we fall out of loop, all components have component clauses
10644 -- and so we can set the size to the maximum value.
10646 if No (Comp) then
10647 Set_RM_Size (Rectype, Hbit + 1);
10648 end if;
10649 end if;
10650 end Check_Record_Representation_Clause;
10652 ----------------
10653 -- Check_Size --
10654 ----------------
10656 procedure Check_Size
10657 (N : Node_Id;
10658 T : Entity_Id;
10659 Siz : Uint;
10660 Biased : out Boolean)
10662 procedure Size_Too_Small_Error (Min_Siz : Uint);
10663 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10664 -- minimum size.
10666 --------------------------
10667 -- Size_Too_Small_Error --
10668 --------------------------
10670 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10671 begin
10672 -- This error is suppressed in ASIS mode to allow for different ASIS
10673 -- back ends or ASIS-based tools to query the illegal clause.
10675 if not ASIS_Mode then
10676 Error_Msg_Uint_1 := Min_Siz;
10677 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
10678 end if;
10679 end Size_Too_Small_Error;
10681 -- Local variables
10683 UT : constant Entity_Id := Underlying_Type (T);
10684 M : Uint;
10686 -- Start of processing for Check_Size
10688 begin
10689 Biased := False;
10691 -- Reject patently improper size values
10693 if Is_Elementary_Type (T)
10694 and then Siz > UI_From_Int (Int'Last)
10695 then
10696 Error_Msg_N ("Size value too large for elementary type", N);
10698 if Nkind (Original_Node (N)) = N_Op_Expon then
10699 Error_Msg_N
10700 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10701 end if;
10702 end if;
10704 -- Dismiss generic types
10706 if Is_Generic_Type (T)
10707 or else
10708 Is_Generic_Type (UT)
10709 or else
10710 Is_Generic_Type (Root_Type (UT))
10711 then
10712 return;
10714 -- Guard against previous errors
10716 elsif No (UT) or else UT = Any_Type then
10717 Check_Error_Detected;
10718 return;
10720 -- Check case of bit packed array
10722 elsif Is_Array_Type (UT)
10723 and then Known_Static_Component_Size (UT)
10724 and then Is_Bit_Packed_Array (UT)
10725 then
10726 declare
10727 Asiz : Uint;
10728 Indx : Node_Id;
10729 Ityp : Entity_Id;
10731 begin
10732 Asiz := Component_Size (UT);
10733 Indx := First_Index (UT);
10734 loop
10735 Ityp := Etype (Indx);
10737 -- If non-static bound, then we are not in the business of
10738 -- trying to check the length, and indeed an error will be
10739 -- issued elsewhere, since sizes of non-static array types
10740 -- cannot be set implicitly or explicitly.
10742 if not Is_OK_Static_Subtype (Ityp) then
10743 return;
10744 end if;
10746 -- Otherwise accumulate next dimension
10748 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10749 Expr_Value (Type_Low_Bound (Ityp)) +
10750 Uint_1);
10752 Next_Index (Indx);
10753 exit when No (Indx);
10754 end loop;
10756 if Asiz <= Siz then
10757 return;
10759 else
10760 Size_Too_Small_Error (Asiz);
10761 Set_Esize (T, Asiz);
10762 Set_RM_Size (T, Asiz);
10763 end if;
10764 end;
10766 -- All other composite types are ignored
10768 elsif Is_Composite_Type (UT) then
10769 return;
10771 -- For fixed-point types, don't check minimum if type is not frozen,
10772 -- since we don't know all the characteristics of the type that can
10773 -- affect the size (e.g. a specified small) till freeze time.
10775 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
10776 null;
10778 -- Cases for which a minimum check is required
10780 else
10781 -- Ignore if specified size is correct for the type
10783 if Known_Esize (UT) and then Siz = Esize (UT) then
10784 return;
10785 end if;
10787 -- Otherwise get minimum size
10789 M := UI_From_Int (Minimum_Size (UT));
10791 if Siz < M then
10793 -- Size is less than minimum size, but one possibility remains
10794 -- that we can manage with the new size if we bias the type.
10796 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10798 if Siz < M then
10799 Size_Too_Small_Error (M);
10800 Set_Esize (T, M);
10801 Set_RM_Size (T, M);
10802 else
10803 Biased := True;
10804 end if;
10805 end if;
10806 end if;
10807 end Check_Size;
10809 --------------------------
10810 -- Freeze_Entity_Checks --
10811 --------------------------
10813 procedure Freeze_Entity_Checks (N : Node_Id) is
10814 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10815 -- Inspect the primitive operations of type Typ and hide all pairs of
10816 -- implicitly declared non-overridden non-fully conformant homographs
10817 -- (Ada RM 8.3 12.3/2).
10819 -------------------------------------
10820 -- Hide_Non_Overridden_Subprograms --
10821 -------------------------------------
10823 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10824 procedure Hide_Matching_Homographs
10825 (Subp_Id : Entity_Id;
10826 Start_Elmt : Elmt_Id);
10827 -- Inspect a list of primitive operations starting with Start_Elmt
10828 -- and find matching implicitly declared non-overridden non-fully
10829 -- conformant homographs of Subp_Id. If found, all matches along
10830 -- with Subp_Id are hidden from all visibility.
10832 function Is_Non_Overridden_Or_Null_Procedure
10833 (Subp_Id : Entity_Id) return Boolean;
10834 -- Determine whether subprogram Subp_Id is implicitly declared non-
10835 -- overridden subprogram or an implicitly declared null procedure.
10837 ------------------------------
10838 -- Hide_Matching_Homographs --
10839 ------------------------------
10841 procedure Hide_Matching_Homographs
10842 (Subp_Id : Entity_Id;
10843 Start_Elmt : Elmt_Id)
10845 Prim : Entity_Id;
10846 Prim_Elmt : Elmt_Id;
10848 begin
10849 Prim_Elmt := Start_Elmt;
10850 while Present (Prim_Elmt) loop
10851 Prim := Node (Prim_Elmt);
10853 -- The current primitive is implicitly declared non-overridden
10854 -- non-fully conformant homograph of Subp_Id. Both subprograms
10855 -- must be hidden from visibility.
10857 if Chars (Prim) = Chars (Subp_Id)
10858 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10859 and then not Fully_Conformant (Prim, Subp_Id)
10860 then
10861 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10862 Set_Is_Immediately_Visible (Prim, False);
10863 Set_Is_Potentially_Use_Visible (Prim, False);
10865 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10866 Set_Is_Immediately_Visible (Subp_Id, False);
10867 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10868 end if;
10870 Next_Elmt (Prim_Elmt);
10871 end loop;
10872 end Hide_Matching_Homographs;
10874 -----------------------------------------
10875 -- Is_Non_Overridden_Or_Null_Procedure --
10876 -----------------------------------------
10878 function Is_Non_Overridden_Or_Null_Procedure
10879 (Subp_Id : Entity_Id) return Boolean
10881 Alias_Id : Entity_Id;
10883 begin
10884 -- The subprogram is inherited (implicitly declared), it does not
10885 -- override and does not cover a primitive of an interface.
10887 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10888 and then Present (Alias (Subp_Id))
10889 and then No (Interface_Alias (Subp_Id))
10890 and then No (Overridden_Operation (Subp_Id))
10891 then
10892 Alias_Id := Alias (Subp_Id);
10894 if Requires_Overriding (Alias_Id) then
10895 return True;
10897 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10898 and then Null_Present (Parent (Alias_Id))
10899 then
10900 return True;
10901 end if;
10902 end if;
10904 return False;
10905 end Is_Non_Overridden_Or_Null_Procedure;
10907 -- Local variables
10909 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10910 Prim : Entity_Id;
10911 Prim_Elmt : Elmt_Id;
10913 -- Start of processing for Hide_Non_Overridden_Subprograms
10915 begin
10916 -- Inspect the list of primitives looking for non-overridden
10917 -- subprograms.
10919 if Present (Prim_Ops) then
10920 Prim_Elmt := First_Elmt (Prim_Ops);
10921 while Present (Prim_Elmt) loop
10922 Prim := Node (Prim_Elmt);
10923 Next_Elmt (Prim_Elmt);
10925 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10926 Hide_Matching_Homographs
10927 (Subp_Id => Prim,
10928 Start_Elmt => Prim_Elmt);
10929 end if;
10930 end loop;
10931 end if;
10932 end Hide_Non_Overridden_Subprograms;
10934 -- Local variables
10936 E : constant Entity_Id := Entity (N);
10938 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10939 -- True in nongeneric case. Some of the processing here is skipped
10940 -- for the generic case since it is not needed. Basically in the
10941 -- generic case, we only need to do stuff that might generate error
10942 -- messages or warnings.
10944 -- Start of processing for Freeze_Entity_Checks
10946 begin
10947 -- Remember that we are processing a freezing entity. Required to
10948 -- ensure correct decoration of internal entities associated with
10949 -- interfaces (see New_Overloaded_Entity).
10951 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10953 -- For tagged types covering interfaces add internal entities that link
10954 -- the primitives of the interfaces with the primitives that cover them.
10955 -- Note: These entities were originally generated only when generating
10956 -- code because their main purpose was to provide support to initialize
10957 -- the secondary dispatch tables. They are now generated also when
10958 -- compiling with no code generation to provide ASIS the relationship
10959 -- between interface primitives and tagged type primitives. They are
10960 -- also used to locate primitives covering interfaces when processing
10961 -- generics (see Derive_Subprograms).
10963 -- This is not needed in the generic case
10965 if Ada_Version >= Ada_2005
10966 and then Nongeneric_Case
10967 and then Ekind (E) = E_Record_Type
10968 and then Is_Tagged_Type (E)
10969 and then not Is_Interface (E)
10970 and then Has_Interfaces (E)
10971 then
10972 -- This would be a good common place to call the routine that checks
10973 -- overriding of interface primitives (and thus factorize calls to
10974 -- Check_Abstract_Overriding located at different contexts in the
10975 -- compiler). However, this is not possible because it causes
10976 -- spurious errors in case of late overriding.
10978 Add_Internal_Interface_Entities (E);
10979 end if;
10981 -- After all forms of overriding have been resolved, a tagged type may
10982 -- be left with a set of implicitly declared and possibly erroneous
10983 -- abstract subprograms, null procedures and subprograms that require
10984 -- overriding. If this set contains fully conformant homographs, then
10985 -- one is chosen arbitrarily (already done during resolution), otherwise
10986 -- all remaining non-fully conformant homographs are hidden from
10987 -- visibility (Ada RM 8.3 12.3/2).
10989 if Is_Tagged_Type (E) then
10990 Hide_Non_Overridden_Subprograms (E);
10991 end if;
10993 -- Check CPP types
10995 if Ekind (E) = E_Record_Type
10996 and then Is_CPP_Class (E)
10997 and then Is_Tagged_Type (E)
10998 and then Tagged_Type_Expansion
10999 then
11000 if CPP_Num_Prims (E) = 0 then
11002 -- If the CPP type has user defined components then it must import
11003 -- primitives from C++. This is required because if the C++ class
11004 -- has no primitives then the C++ compiler does not added the _tag
11005 -- component to the type.
11007 if First_Entity (E) /= Last_Entity (E) then
11008 Error_Msg_N
11009 ("'C'P'P type must import at least one primitive from C++??",
11011 end if;
11012 end if;
11014 -- Check that all its primitives are abstract or imported from C++.
11015 -- Check also availability of the C++ constructor.
11017 declare
11018 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11019 Elmt : Elmt_Id;
11020 Error_Reported : Boolean := False;
11021 Prim : Node_Id;
11023 begin
11024 Elmt := First_Elmt (Primitive_Operations (E));
11025 while Present (Elmt) loop
11026 Prim := Node (Elmt);
11028 if Comes_From_Source (Prim) then
11029 if Is_Abstract_Subprogram (Prim) then
11030 null;
11032 elsif not Is_Imported (Prim)
11033 or else Convention (Prim) /= Convention_CPP
11034 then
11035 Error_Msg_N
11036 ("primitives of 'C'P'P types must be imported from C++ "
11037 & "or abstract??", Prim);
11039 elsif not Has_Constructors
11040 and then not Error_Reported
11041 then
11042 Error_Msg_Name_1 := Chars (E);
11043 Error_Msg_N
11044 ("??'C'P'P constructor required for type %", Prim);
11045 Error_Reported := True;
11046 end if;
11047 end if;
11049 Next_Elmt (Elmt);
11050 end loop;
11051 end;
11052 end if;
11054 -- Check Ada derivation of CPP type
11056 if Expander_Active -- why? losing errors in -gnatc mode???
11057 and then Present (Etype (E)) -- defend against errors
11058 and then Tagged_Type_Expansion
11059 and then Ekind (E) = E_Record_Type
11060 and then Etype (E) /= E
11061 and then Is_CPP_Class (Etype (E))
11062 and then CPP_Num_Prims (Etype (E)) > 0
11063 and then not Is_CPP_Class (E)
11064 and then not Has_CPP_Constructors (Etype (E))
11065 then
11066 -- If the parent has C++ primitives but it has no constructor then
11067 -- check that all the primitives are overridden in this derivation;
11068 -- otherwise the constructor of the parent is needed to build the
11069 -- dispatch table.
11071 declare
11072 Elmt : Elmt_Id;
11073 Prim : Node_Id;
11075 begin
11076 Elmt := First_Elmt (Primitive_Operations (E));
11077 while Present (Elmt) loop
11078 Prim := Node (Elmt);
11080 if not Is_Abstract_Subprogram (Prim)
11081 and then No (Interface_Alias (Prim))
11082 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
11083 then
11084 Error_Msg_Name_1 := Chars (Etype (E));
11085 Error_Msg_N
11086 ("'C'P'P constructor required for parent type %", E);
11087 exit;
11088 end if;
11090 Next_Elmt (Elmt);
11091 end loop;
11092 end;
11093 end if;
11095 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
11097 -- If we have a type with predicates, build predicate function. This is
11098 -- not needed in the generic case, nor within TSS subprograms and other
11099 -- predefined primitives.
11101 if Is_Type (E)
11102 and then Nongeneric_Case
11103 and then not Within_Internal_Subprogram
11104 and then Has_Predicates (E)
11105 then
11106 Build_Predicate_Functions (E, N);
11107 end if;
11109 -- If type has delayed aspects, this is where we do the preanalysis at
11110 -- the freeze point, as part of the consistent visibility check. Note
11111 -- that this must be done after calling Build_Predicate_Functions or
11112 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11113 -- the subtype name in the saved expression so that they will not cause
11114 -- trouble in the preanalysis.
11116 -- This is also not needed in the generic case
11118 if Nongeneric_Case
11119 and then Has_Delayed_Aspects (E)
11120 and then Scope (E) = Current_Scope
11121 then
11122 -- Retrieve the visibility to the discriminants in order to properly
11123 -- analyze the aspects.
11125 Push_Scope_And_Install_Discriminants (E);
11127 declare
11128 Ritem : Node_Id;
11130 begin
11131 -- Look for aspect specification entries for this entity
11133 Ritem := First_Rep_Item (E);
11134 while Present (Ritem) loop
11135 if Nkind (Ritem) = N_Aspect_Specification
11136 and then Entity (Ritem) = E
11137 and then Is_Delayed_Aspect (Ritem)
11138 then
11139 Check_Aspect_At_Freeze_Point (Ritem);
11140 end if;
11142 Next_Rep_Item (Ritem);
11143 end loop;
11144 end;
11146 Uninstall_Discriminants_And_Pop_Scope (E);
11147 end if;
11149 -- For a record type, deal with variant parts. This has to be delayed
11150 -- to this point, because of the issue of statically predicated
11151 -- subtypes, which we have to ensure are frozen before checking
11152 -- choices, since we need to have the static choice list set.
11154 if Is_Record_Type (E) then
11155 Check_Variant_Part : declare
11156 D : constant Node_Id := Declaration_Node (E);
11157 T : Node_Id;
11158 C : Node_Id;
11159 VP : Node_Id;
11161 Others_Present : Boolean;
11162 pragma Warnings (Off, Others_Present);
11163 -- Indicates others present, not used in this case
11165 procedure Non_Static_Choice_Error (Choice : Node_Id);
11166 -- Error routine invoked by the generic instantiation below when
11167 -- the variant part has a non static choice.
11169 procedure Process_Declarations (Variant : Node_Id);
11170 -- Processes declarations associated with a variant. We analyzed
11171 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11172 -- but we still need the recursive call to Check_Choices for any
11173 -- nested variant to get its choices properly processed. This is
11174 -- also where we expand out the choices if expansion is active.
11176 package Variant_Choices_Processing is new
11177 Generic_Check_Choices
11178 (Process_Empty_Choice => No_OP,
11179 Process_Non_Static_Choice => Non_Static_Choice_Error,
11180 Process_Associated_Node => Process_Declarations);
11181 use Variant_Choices_Processing;
11183 -----------------------------
11184 -- Non_Static_Choice_Error --
11185 -----------------------------
11187 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11188 begin
11189 Flag_Non_Static_Expr
11190 ("choice given in variant part is not static!", Choice);
11191 end Non_Static_Choice_Error;
11193 --------------------------
11194 -- Process_Declarations --
11195 --------------------------
11197 procedure Process_Declarations (Variant : Node_Id) is
11198 CL : constant Node_Id := Component_List (Variant);
11199 VP : Node_Id;
11201 begin
11202 -- Check for static predicate present in this variant
11204 if Has_SP_Choice (Variant) then
11206 -- Here we expand. You might expect to find this call in
11207 -- Expand_N_Variant_Part, but that is called when we first
11208 -- see the variant part, and we cannot do this expansion
11209 -- earlier than the freeze point, since for statically
11210 -- predicated subtypes, the predicate is not known till
11211 -- the freeze point.
11213 -- Furthermore, we do this expansion even if the expander
11214 -- is not active, because other semantic processing, e.g.
11215 -- for aggregates, requires the expanded list of choices.
11217 -- If the expander is not active, then we can't just clobber
11218 -- the list since it would invalidate the ASIS -gnatct tree.
11219 -- So we have to rewrite the variant part with a Rewrite
11220 -- call that replaces it with a copy and clobber the copy.
11222 if not Expander_Active then
11223 declare
11224 NewV : constant Node_Id := New_Copy (Variant);
11225 begin
11226 Set_Discrete_Choices
11227 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11228 Rewrite (Variant, NewV);
11229 end;
11230 end if;
11232 Expand_Static_Predicates_In_Choices (Variant);
11233 end if;
11235 -- We don't need to worry about the declarations in the variant
11236 -- (since they were analyzed by Analyze_Choices when we first
11237 -- encountered the variant), but we do need to take care of
11238 -- expansion of any nested variants.
11240 if not Null_Present (CL) then
11241 VP := Variant_Part (CL);
11243 if Present (VP) then
11244 Check_Choices
11245 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11246 end if;
11247 end if;
11248 end Process_Declarations;
11250 -- Start of processing for Check_Variant_Part
11252 begin
11253 -- Find component list
11255 C := Empty;
11257 if Nkind (D) = N_Full_Type_Declaration then
11258 T := Type_Definition (D);
11260 if Nkind (T) = N_Record_Definition then
11261 C := Component_List (T);
11263 elsif Nkind (T) = N_Derived_Type_Definition
11264 and then Present (Record_Extension_Part (T))
11265 then
11266 C := Component_List (Record_Extension_Part (T));
11267 end if;
11268 end if;
11270 -- Case of variant part present
11272 if Present (C) and then Present (Variant_Part (C)) then
11273 VP := Variant_Part (C);
11275 -- Check choices
11277 Check_Choices
11278 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11280 -- If the last variant does not contain the Others choice,
11281 -- replace it with an N_Others_Choice node since Gigi always
11282 -- wants an Others. Note that we do not bother to call Analyze
11283 -- on the modified variant part, since its only effect would be
11284 -- to compute the Others_Discrete_Choices node laboriously, and
11285 -- of course we already know the list of choices corresponding
11286 -- to the others choice (it's the list we're replacing).
11288 -- We only want to do this if the expander is active, since
11289 -- we do not want to clobber the ASIS tree.
11291 if Expander_Active then
11292 declare
11293 Last_Var : constant Node_Id :=
11294 Last_Non_Pragma (Variants (VP));
11296 Others_Node : Node_Id;
11298 begin
11299 if Nkind (First (Discrete_Choices (Last_Var))) /=
11300 N_Others_Choice
11301 then
11302 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11303 Set_Others_Discrete_Choices
11304 (Others_Node, Discrete_Choices (Last_Var));
11305 Set_Discrete_Choices
11306 (Last_Var, New_List (Others_Node));
11307 end if;
11308 end;
11309 end if;
11310 end if;
11311 end Check_Variant_Part;
11312 end if;
11313 end Freeze_Entity_Checks;
11315 -------------------------
11316 -- Get_Alignment_Value --
11317 -------------------------
11319 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11320 Align : constant Uint := Static_Integer (Expr);
11322 begin
11323 if Align = No_Uint then
11324 return No_Uint;
11326 elsif Align <= 0 then
11328 -- This error is suppressed in ASIS mode to allow for different ASIS
11329 -- back ends or ASIS-based tools to query the illegal clause.
11331 if not ASIS_Mode then
11332 Error_Msg_N ("alignment value must be positive", Expr);
11333 end if;
11335 return No_Uint;
11337 else
11338 for J in Int range 0 .. 64 loop
11339 declare
11340 M : constant Uint := Uint_2 ** J;
11342 begin
11343 exit when M = Align;
11345 if M > Align then
11347 -- This error is suppressed in ASIS mode to allow for
11348 -- different ASIS back ends or ASIS-based tools to query the
11349 -- illegal clause.
11351 if not ASIS_Mode then
11352 Error_Msg_N ("alignment value must be power of 2", Expr);
11353 end if;
11355 return No_Uint;
11356 end if;
11357 end;
11358 end loop;
11360 return Align;
11361 end if;
11362 end Get_Alignment_Value;
11364 -------------------------------------
11365 -- Inherit_Aspects_At_Freeze_Point --
11366 -------------------------------------
11368 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11369 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11370 (Rep_Item : Node_Id) return Boolean;
11371 -- This routine checks if Rep_Item is either a pragma or an aspect
11372 -- specification node whose correponding pragma (if any) is present in
11373 -- the Rep Item chain of the entity it has been specified to.
11375 --------------------------------------------------
11376 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11377 --------------------------------------------------
11379 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11380 (Rep_Item : Node_Id) return Boolean
11382 begin
11383 return
11384 Nkind (Rep_Item) = N_Pragma
11385 or else Present_In_Rep_Item
11386 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11387 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11389 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11391 begin
11392 -- A representation item is either subtype-specific (Size and Alignment
11393 -- clauses) or type-related (all others). Subtype-specific aspects may
11394 -- differ for different subtypes of the same type (RM 13.1.8).
11396 -- A derived type inherits each type-related representation aspect of
11397 -- its parent type that was directly specified before the declaration of
11398 -- the derived type (RM 13.1.15).
11400 -- A derived subtype inherits each subtype-specific representation
11401 -- aspect of its parent subtype that was directly specified before the
11402 -- declaration of the derived type (RM 13.1.15).
11404 -- The general processing involves inheriting a representation aspect
11405 -- from a parent type whenever the first rep item (aspect specification,
11406 -- attribute definition clause, pragma) corresponding to the given
11407 -- representation aspect in the rep item chain of Typ, if any, isn't
11408 -- directly specified to Typ but to one of its parents.
11410 -- ??? Note that, for now, just a limited number of representation
11411 -- aspects have been inherited here so far. Many of them are
11412 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11413 -- a non- exhaustive list of aspects that likely also need to
11414 -- be moved to this routine: Alignment, Component_Alignment,
11415 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11416 -- Preelaborable_Initialization, RM_Size and Small.
11418 -- In addition, Convention must be propagated from base type to subtype,
11419 -- because the subtype may have been declared on an incomplete view.
11421 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11422 return;
11423 end if;
11425 -- Ada_05/Ada_2005
11427 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11428 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11429 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11430 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11431 then
11432 Set_Is_Ada_2005_Only (Typ);
11433 end if;
11435 -- Ada_12/Ada_2012
11437 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11438 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11439 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11440 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11441 then
11442 Set_Is_Ada_2012_Only (Typ);
11443 end if;
11445 -- Atomic/Shared
11447 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11448 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11449 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11450 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11451 then
11452 Set_Is_Atomic (Typ);
11453 Set_Is_Volatile (Typ);
11454 Set_Treat_As_Volatile (Typ);
11455 end if;
11457 -- Convention
11459 if Is_Record_Type (Typ)
11460 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11461 then
11462 Set_Convention (Typ, Convention (Base_Type (Typ)));
11463 end if;
11465 -- Default_Component_Value
11467 -- Verify that there is no rep_item declared for the type, and there
11468 -- is one coming from an ancestor.
11470 if Is_Array_Type (Typ)
11471 and then Is_Base_Type (Typ)
11472 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11473 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11474 then
11475 Set_Default_Aspect_Component_Value (Typ,
11476 Default_Aspect_Component_Value
11477 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11478 end if;
11480 -- Default_Value
11482 if Is_Scalar_Type (Typ)
11483 and then Is_Base_Type (Typ)
11484 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11485 and then Has_Rep_Item (Typ, Name_Default_Value)
11486 then
11487 Set_Has_Default_Aspect (Typ);
11488 Set_Default_Aspect_Value (Typ,
11489 Default_Aspect_Value
11490 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11491 end if;
11493 -- Discard_Names
11495 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11496 and then Has_Rep_Item (Typ, Name_Discard_Names)
11497 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11498 (Get_Rep_Item (Typ, Name_Discard_Names))
11499 then
11500 Set_Discard_Names (Typ);
11501 end if;
11503 -- Volatile
11505 if not Has_Rep_Item (Typ, Name_Volatile, False)
11506 and then Has_Rep_Item (Typ, Name_Volatile)
11507 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11508 (Get_Rep_Item (Typ, Name_Volatile))
11509 then
11510 Set_Is_Volatile (Typ);
11511 Set_Treat_As_Volatile (Typ);
11512 end if;
11514 -- Volatile_Full_Access
11516 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11517 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11518 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11519 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11520 then
11521 Set_Is_Volatile_Full_Access (Typ);
11522 Set_Is_Volatile (Typ);
11523 Set_Treat_As_Volatile (Typ);
11524 end if;
11526 -- Inheritance for derived types only
11528 if Is_Derived_Type (Typ) then
11529 declare
11530 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11531 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11533 begin
11534 -- Atomic_Components
11536 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11537 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11538 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11539 (Get_Rep_Item (Typ, Name_Atomic_Components))
11540 then
11541 Set_Has_Atomic_Components (Imp_Bas_Typ);
11542 end if;
11544 -- Volatile_Components
11546 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11547 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11548 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11549 (Get_Rep_Item (Typ, Name_Volatile_Components))
11550 then
11551 Set_Has_Volatile_Components (Imp_Bas_Typ);
11552 end if;
11554 -- Finalize_Storage_Only
11556 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11557 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11558 then
11559 Set_Finalize_Storage_Only (Bas_Typ);
11560 end if;
11562 -- Universal_Aliasing
11564 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11565 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11566 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11567 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11568 then
11569 Set_Universal_Aliasing (Imp_Bas_Typ);
11570 end if;
11572 -- Bit_Order
11574 if Is_Record_Type (Typ) then
11575 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11576 and then Has_Rep_Item (Typ, Name_Bit_Order)
11577 then
11578 Set_Reverse_Bit_Order (Bas_Typ,
11579 Reverse_Bit_Order (Entity (Name
11580 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11581 end if;
11582 end if;
11584 -- Scalar_Storage_Order
11586 -- Note: the aspect is specified on a first subtype, but recorded
11587 -- in a flag of the base type!
11589 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11590 and then Typ = Bas_Typ
11591 then
11592 -- For a type extension, always inherit from parent; otherwise
11593 -- inherit if no default applies. Note: we do not check for
11594 -- an explicit rep item on the parent type when inheriting,
11595 -- because the parent SSO may itself have been set by default.
11597 if not Has_Rep_Item (First_Subtype (Typ),
11598 Name_Scalar_Storage_Order, False)
11599 and then (Is_Tagged_Type (Bas_Typ)
11600 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11601 or else
11602 SSO_Set_High_By_Default (Bas_Typ)))
11603 then
11604 Set_Reverse_Storage_Order (Bas_Typ,
11605 Reverse_Storage_Order
11606 (Implementation_Base_Type (Etype (Bas_Typ))));
11608 -- Clear default SSO indications, since the inherited aspect
11609 -- which was set explicitly overrides the default.
11611 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11612 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11613 end if;
11614 end if;
11615 end;
11616 end if;
11617 end Inherit_Aspects_At_Freeze_Point;
11619 ----------------
11620 -- Initialize --
11621 ----------------
11623 procedure Initialize is
11624 begin
11625 Address_Clause_Checks.Init;
11626 Compile_Time_Warnings_Errors.Init;
11627 Unchecked_Conversions.Init;
11629 -- ??? Might be needed in the future for some non GCC back-ends
11630 -- if AAMP_On_Target then
11631 -- Independence_Checks.Init;
11632 -- end if;
11633 end Initialize;
11635 ---------------------------
11636 -- Install_Discriminants --
11637 ---------------------------
11639 procedure Install_Discriminants (E : Entity_Id) is
11640 Disc : Entity_Id;
11641 Prev : Entity_Id;
11642 begin
11643 Disc := First_Discriminant (E);
11644 while Present (Disc) loop
11645 Prev := Current_Entity (Disc);
11646 Set_Current_Entity (Disc);
11647 Set_Is_Immediately_Visible (Disc);
11648 Set_Homonym (Disc, Prev);
11649 Next_Discriminant (Disc);
11650 end loop;
11651 end Install_Discriminants;
11653 -------------------------
11654 -- Is_Operational_Item --
11655 -------------------------
11657 function Is_Operational_Item (N : Node_Id) return Boolean is
11658 begin
11659 if Nkind (N) /= N_Attribute_Definition_Clause then
11660 return False;
11662 else
11663 declare
11664 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11665 begin
11667 -- List of operational items is given in AARM 13.1(8.mm/1).
11668 -- It is clearly incomplete, as it does not include iterator
11669 -- aspects, among others.
11671 return Id = Attribute_Constant_Indexing
11672 or else Id = Attribute_Default_Iterator
11673 or else Id = Attribute_Implicit_Dereference
11674 or else Id = Attribute_Input
11675 or else Id = Attribute_Iterator_Element
11676 or else Id = Attribute_Iterable
11677 or else Id = Attribute_Output
11678 or else Id = Attribute_Read
11679 or else Id = Attribute_Variable_Indexing
11680 or else Id = Attribute_Write
11681 or else Id = Attribute_External_Tag;
11682 end;
11683 end if;
11684 end Is_Operational_Item;
11686 -------------------------
11687 -- Is_Predicate_Static --
11688 -------------------------
11690 -- Note: the basic legality of the expression has already been checked, so
11691 -- we don't need to worry about cases or ranges on strings for example.
11693 function Is_Predicate_Static
11694 (Expr : Node_Id;
11695 Nam : Name_Id) return Boolean
11697 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11698 -- Given a list of case expression alternatives, returns True if all
11699 -- the alternatives are static (have all static choices, and a static
11700 -- expression).
11702 function All_Static_Choices (L : List_Id) return Boolean;
11703 -- Returns true if all elements of the list are OK static choices
11704 -- as defined below for Is_Static_Choice. Used for case expression
11705 -- alternatives and for the right operand of a membership test. An
11706 -- others_choice is static if the corresponding expression is static.
11707 -- The staticness of the bounds is checked separately.
11709 function Is_Static_Choice (N : Node_Id) return Boolean;
11710 -- Returns True if N represents a static choice (static subtype, or
11711 -- static subtype indication, or static expression, or static range).
11713 -- Note that this is a bit more inclusive than we actually need
11714 -- (in particular membership tests do not allow the use of subtype
11715 -- indications). But that doesn't matter, we have already checked
11716 -- that the construct is legal to get this far.
11718 function Is_Type_Ref (N : Node_Id) return Boolean;
11719 pragma Inline (Is_Type_Ref);
11720 -- Returns True if N is a reference to the type for the predicate in the
11721 -- expression (i.e. if it is an identifier whose Chars field matches the
11722 -- Nam given in the call). N must not be parenthesized, if the type name
11723 -- appears in parens, this routine will return False.
11725 -- The routine also returns True for function calls generated during the
11726 -- expansion of comparison operators on strings, which are intended to
11727 -- be legal in static predicates, and are converted into calls to array
11728 -- comparison routines in the body of the corresponding predicate
11729 -- function.
11731 ----------------------------------
11732 -- All_Static_Case_Alternatives --
11733 ----------------------------------
11735 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11736 N : Node_Id;
11738 begin
11739 N := First (L);
11740 while Present (N) loop
11741 if not (All_Static_Choices (Discrete_Choices (N))
11742 and then Is_OK_Static_Expression (Expression (N)))
11743 then
11744 return False;
11745 end if;
11747 Next (N);
11748 end loop;
11750 return True;
11751 end All_Static_Case_Alternatives;
11753 ------------------------
11754 -- All_Static_Choices --
11755 ------------------------
11757 function All_Static_Choices (L : List_Id) return Boolean is
11758 N : Node_Id;
11760 begin
11761 N := First (L);
11762 while Present (N) loop
11763 if not Is_Static_Choice (N) then
11764 return False;
11765 end if;
11767 Next (N);
11768 end loop;
11770 return True;
11771 end All_Static_Choices;
11773 ----------------------
11774 -- Is_Static_Choice --
11775 ----------------------
11777 function Is_Static_Choice (N : Node_Id) return Boolean is
11778 begin
11779 return Nkind (N) = N_Others_Choice
11780 or else Is_OK_Static_Expression (N)
11781 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11782 and then Is_OK_Static_Subtype (Entity (N)))
11783 or else (Nkind (N) = N_Subtype_Indication
11784 and then Is_OK_Static_Subtype (Entity (N)))
11785 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11786 end Is_Static_Choice;
11788 -----------------
11789 -- Is_Type_Ref --
11790 -----------------
11792 function Is_Type_Ref (N : Node_Id) return Boolean is
11793 begin
11794 return (Nkind (N) = N_Identifier
11795 and then Chars (N) = Nam
11796 and then Paren_Count (N) = 0)
11797 or else Nkind (N) = N_Function_Call;
11798 end Is_Type_Ref;
11800 -- Start of processing for Is_Predicate_Static
11802 begin
11803 -- Predicate_Static means one of the following holds. Numbers are the
11804 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11806 -- 16: A static expression
11808 if Is_OK_Static_Expression (Expr) then
11809 return True;
11811 -- 17: A membership test whose simple_expression is the current
11812 -- instance, and whose membership_choice_list meets the requirements
11813 -- for a static membership test.
11815 elsif Nkind (Expr) in N_Membership_Test
11816 and then ((Present (Right_Opnd (Expr))
11817 and then Is_Static_Choice (Right_Opnd (Expr)))
11818 or else
11819 (Present (Alternatives (Expr))
11820 and then All_Static_Choices (Alternatives (Expr))))
11821 then
11822 return True;
11824 -- 18. A case_expression whose selecting_expression is the current
11825 -- instance, and whose dependent expressions are static expressions.
11827 elsif Nkind (Expr) = N_Case_Expression
11828 and then Is_Type_Ref (Expression (Expr))
11829 and then All_Static_Case_Alternatives (Alternatives (Expr))
11830 then
11831 return True;
11833 -- 19. A call to a predefined equality or ordering operator, where one
11834 -- operand is the current instance, and the other is a static
11835 -- expression.
11837 -- Note: the RM is clearly wrong here in not excluding string types.
11838 -- Without this exclusion, we would allow expressions like X > "ABC"
11839 -- to be considered as predicate-static, which is clearly not intended,
11840 -- since the idea is for predicate-static to be a subset of normal
11841 -- static expressions (and "DEF" > "ABC" is not a static expression).
11843 -- However, we do allow internally generated (not from source) equality
11844 -- and inequality operations to be valid on strings (this helps deal
11845 -- with cases where we transform A in "ABC" to A = "ABC).
11847 -- In fact, it appears that the intent of the ARG is to extend static
11848 -- predicates to strings, and that the extension should probably apply
11849 -- to static expressions themselves. The code below accepts comparison
11850 -- operators that apply to static strings.
11852 elsif Nkind (Expr) in N_Op_Compare
11853 and then ((Is_Type_Ref (Left_Opnd (Expr))
11854 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11855 or else
11856 (Is_Type_Ref (Right_Opnd (Expr))
11857 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11858 then
11859 return True;
11861 -- 20. A call to a predefined boolean logical operator, where each
11862 -- operand is predicate-static.
11864 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11865 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11866 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11867 or else
11868 (Nkind (Expr) = N_Op_Not
11869 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11870 then
11871 return True;
11873 -- 21. A short-circuit control form where both operands are
11874 -- predicate-static.
11876 elsif Nkind (Expr) in N_Short_Circuit
11877 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11878 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11879 then
11880 return True;
11882 -- 22. A parenthesized predicate-static expression. This does not
11883 -- require any special test, since we just ignore paren levels in
11884 -- all the cases above.
11886 -- One more test that is an implementation artifact caused by the fact
11887 -- that we are analyzing not the original expression, but the generated
11888 -- expression in the body of the predicate function. This can include
11889 -- references to inherited predicates, so that the expression we are
11890 -- processing looks like:
11892 -- xxPredicate (typ (Inns)) and then expression
11894 -- Where the call is to a Predicate function for an inherited predicate.
11895 -- We simply ignore such a call, which could be to either a dynamic or
11896 -- a static predicate. Note that if the parent predicate is dynamic then
11897 -- eventually this type will be marked as dynamic, but you are allowed
11898 -- to specify a static predicate for a subtype which is inheriting a
11899 -- dynamic predicate, so the static predicate validation here ignores
11900 -- the inherited predicate even if it is dynamic.
11901 -- In all cases, a static predicate can only apply to a scalar type.
11903 elsif Nkind (Expr) = N_Function_Call
11904 and then Is_Predicate_Function (Entity (Name (Expr)))
11905 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
11906 then
11907 return True;
11909 elsif Is_Entity_Name (Expr)
11910 and then Entity (Expr) = Standard_True
11911 then
11912 Error_Msg_N ("predicate is redundant (always True)?", Expr);
11913 return True;
11915 -- That's an exhaustive list of tests, all other cases are not
11916 -- predicate-static, so we return False.
11918 else
11919 return False;
11920 end if;
11921 end Is_Predicate_Static;
11923 ---------------------
11924 -- Kill_Rep_Clause --
11925 ---------------------
11927 procedure Kill_Rep_Clause (N : Node_Id) is
11928 begin
11929 pragma Assert (Ignore_Rep_Clauses);
11931 -- Note: we use Replace rather than Rewrite, because we don't want
11932 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11933 -- rep clause that is being replaced.
11935 Replace (N, Make_Null_Statement (Sloc (N)));
11937 -- The null statement must be marked as not coming from source. This is
11938 -- so that ASIS ignores it, and also the back end does not expect bogus
11939 -- "from source" null statements in weird places (e.g. in declarative
11940 -- regions where such null statements are not allowed).
11942 Set_Comes_From_Source (N, False);
11943 end Kill_Rep_Clause;
11945 ------------------
11946 -- Minimum_Size --
11947 ------------------
11949 function Minimum_Size
11950 (T : Entity_Id;
11951 Biased : Boolean := False) return Nat
11953 Lo : Uint := No_Uint;
11954 Hi : Uint := No_Uint;
11955 LoR : Ureal := No_Ureal;
11956 HiR : Ureal := No_Ureal;
11957 LoSet : Boolean := False;
11958 HiSet : Boolean := False;
11959 B : Uint;
11960 S : Nat;
11961 Ancest : Entity_Id;
11962 R_Typ : constant Entity_Id := Root_Type (T);
11964 begin
11965 -- If bad type, return 0
11967 if T = Any_Type then
11968 return 0;
11970 -- For generic types, just return zero. There cannot be any legitimate
11971 -- need to know such a size, but this routine may be called with a
11972 -- generic type as part of normal processing.
11974 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11975 return 0;
11977 -- Access types (cannot have size smaller than System.Address)
11979 elsif Is_Access_Type (T) then
11980 return System_Address_Size;
11982 -- Floating-point types
11984 elsif Is_Floating_Point_Type (T) then
11985 return UI_To_Int (Esize (R_Typ));
11987 -- Discrete types
11989 elsif Is_Discrete_Type (T) then
11991 -- The following loop is looking for the nearest compile time known
11992 -- bounds following the ancestor subtype chain. The idea is to find
11993 -- the most restrictive known bounds information.
11995 Ancest := T;
11996 loop
11997 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11998 return 0;
11999 end if;
12001 if not LoSet then
12002 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
12003 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
12004 LoSet := True;
12005 exit when HiSet;
12006 end if;
12007 end if;
12009 if not HiSet then
12010 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
12011 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
12012 HiSet := True;
12013 exit when LoSet;
12014 end if;
12015 end if;
12017 Ancest := Ancestor_Subtype (Ancest);
12019 if No (Ancest) then
12020 Ancest := Base_Type (T);
12022 if Is_Generic_Type (Ancest) then
12023 return 0;
12024 end if;
12025 end if;
12026 end loop;
12028 -- Fixed-point types. We can't simply use Expr_Value to get the
12029 -- Corresponding_Integer_Value values of the bounds, since these do not
12030 -- get set till the type is frozen, and this routine can be called
12031 -- before the type is frozen. Similarly the test for bounds being static
12032 -- needs to include the case where we have unanalyzed real literals for
12033 -- the same reason.
12035 elsif Is_Fixed_Point_Type (T) then
12037 -- The following loop is looking for the nearest compile time known
12038 -- bounds following the ancestor subtype chain. The idea is to find
12039 -- the most restrictive known bounds information.
12041 Ancest := T;
12042 loop
12043 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12044 return 0;
12045 end if;
12047 -- Note: In the following two tests for LoSet and HiSet, it may
12048 -- seem redundant to test for N_Real_Literal here since normally
12049 -- one would assume that the test for the value being known at
12050 -- compile time includes this case. However, there is a glitch.
12051 -- If the real literal comes from folding a non-static expression,
12052 -- then we don't consider any non- static expression to be known
12053 -- at compile time if we are in configurable run time mode (needed
12054 -- in some cases to give a clearer definition of what is and what
12055 -- is not accepted). So the test is indeed needed. Without it, we
12056 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12058 if not LoSet then
12059 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12060 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12061 then
12062 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12063 LoSet := True;
12064 exit when HiSet;
12065 end if;
12066 end if;
12068 if not HiSet then
12069 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12070 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12071 then
12072 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12073 HiSet := True;
12074 exit when LoSet;
12075 end if;
12076 end if;
12078 Ancest := Ancestor_Subtype (Ancest);
12080 if No (Ancest) then
12081 Ancest := Base_Type (T);
12083 if Is_Generic_Type (Ancest) then
12084 return 0;
12085 end if;
12086 end if;
12087 end loop;
12089 Lo := UR_To_Uint (LoR / Small_Value (T));
12090 Hi := UR_To_Uint (HiR / Small_Value (T));
12092 -- No other types allowed
12094 else
12095 raise Program_Error;
12096 end if;
12098 -- Fall through with Hi and Lo set. Deal with biased case
12100 if (Biased
12101 and then not Is_Fixed_Point_Type (T)
12102 and then not (Is_Enumeration_Type (T)
12103 and then Has_Non_Standard_Rep (T)))
12104 or else Has_Biased_Representation (T)
12105 then
12106 Hi := Hi - Lo;
12107 Lo := Uint_0;
12108 end if;
12110 -- Null range case, size is always zero. We only do this in the discrete
12111 -- type case, since that's the odd case that came up. Probably we should
12112 -- also do this in the fixed-point case, but doing so causes peculiar
12113 -- gigi failures, and it is not worth worrying about this incredibly
12114 -- marginal case (explicit null-range fixed-point type declarations)???
12116 if Lo > Hi and then Is_Discrete_Type (T) then
12117 S := 0;
12119 -- Signed case. Note that we consider types like range 1 .. -1 to be
12120 -- signed for the purpose of computing the size, since the bounds have
12121 -- to be accommodated in the base type.
12123 elsif Lo < 0 or else Hi < 0 then
12124 S := 1;
12125 B := Uint_1;
12127 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12128 -- Note that we accommodate the case where the bounds cross. This
12129 -- can happen either because of the way the bounds are declared
12130 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12132 while Lo < -B
12133 or else Hi < -B
12134 or else Lo >= B
12135 or else Hi >= B
12136 loop
12137 B := Uint_2 ** S;
12138 S := S + 1;
12139 end loop;
12141 -- Unsigned case
12143 else
12144 -- If both bounds are positive, make sure that both are represen-
12145 -- table in the case where the bounds are crossed. This can happen
12146 -- either because of the way the bounds are declared, or because of
12147 -- the algorithm in Freeze_Fixed_Point_Type.
12149 if Lo > Hi then
12150 Hi := Lo;
12151 end if;
12153 -- S = size, (can accommodate 0 .. (2**size - 1))
12155 S := 0;
12156 while Hi >= Uint_2 ** S loop
12157 S := S + 1;
12158 end loop;
12159 end if;
12161 return S;
12162 end Minimum_Size;
12164 ---------------------------
12165 -- New_Stream_Subprogram --
12166 ---------------------------
12168 procedure New_Stream_Subprogram
12169 (N : Node_Id;
12170 Ent : Entity_Id;
12171 Subp : Entity_Id;
12172 Nam : TSS_Name_Type)
12174 Loc : constant Source_Ptr := Sloc (N);
12175 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12176 Subp_Id : Entity_Id;
12177 Subp_Decl : Node_Id;
12178 F : Entity_Id;
12179 Etyp : Entity_Id;
12181 Defer_Declaration : constant Boolean :=
12182 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12183 -- For a tagged type, there is a declaration for each stream attribute
12184 -- at the freeze point, and we must generate only a completion of this
12185 -- declaration. We do the same for private types, because the full view
12186 -- might be tagged. Otherwise we generate a declaration at the point of
12187 -- the attribute definition clause. If the attribute definition comes
12188 -- from an aspect specification the declaration is part of the freeze
12189 -- actions of the type.
12191 function Build_Spec return Node_Id;
12192 -- Used for declaration and renaming declaration, so that this is
12193 -- treated as a renaming_as_body.
12195 ----------------
12196 -- Build_Spec --
12197 ----------------
12199 function Build_Spec return Node_Id is
12200 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12201 Formals : List_Id;
12202 Spec : Node_Id;
12203 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12205 begin
12206 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12208 -- S : access Root_Stream_Type'Class
12210 Formals := New_List (
12211 Make_Parameter_Specification (Loc,
12212 Defining_Identifier =>
12213 Make_Defining_Identifier (Loc, Name_S),
12214 Parameter_Type =>
12215 Make_Access_Definition (Loc,
12216 Subtype_Mark =>
12217 New_Occurrence_Of (
12218 Designated_Type (Etype (F)), Loc))));
12220 if Nam = TSS_Stream_Input then
12221 Spec :=
12222 Make_Function_Specification (Loc,
12223 Defining_Unit_Name => Subp_Id,
12224 Parameter_Specifications => Formals,
12225 Result_Definition => T_Ref);
12226 else
12227 -- V : [out] T
12229 Append_To (Formals,
12230 Make_Parameter_Specification (Loc,
12231 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12232 Out_Present => Out_P,
12233 Parameter_Type => T_Ref));
12235 Spec :=
12236 Make_Procedure_Specification (Loc,
12237 Defining_Unit_Name => Subp_Id,
12238 Parameter_Specifications => Formals);
12239 end if;
12241 return Spec;
12242 end Build_Spec;
12244 -- Start of processing for New_Stream_Subprogram
12246 begin
12247 F := First_Formal (Subp);
12249 if Ekind (Subp) = E_Procedure then
12250 Etyp := Etype (Next_Formal (F));
12251 else
12252 Etyp := Etype (Subp);
12253 end if;
12255 -- Prepare subprogram declaration and insert it as an action on the
12256 -- clause node. The visibility for this entity is used to test for
12257 -- visibility of the attribute definition clause (in the sense of
12258 -- 8.3(23) as amended by AI-195).
12260 if not Defer_Declaration then
12261 Subp_Decl :=
12262 Make_Subprogram_Declaration (Loc,
12263 Specification => Build_Spec);
12265 -- For a tagged type, there is always a visible declaration for each
12266 -- stream TSS (it is a predefined primitive operation), and the
12267 -- completion of this declaration occurs at the freeze point, which is
12268 -- not always visible at places where the attribute definition clause is
12269 -- visible. So, we create a dummy entity here for the purpose of
12270 -- tracking the visibility of the attribute definition clause itself.
12272 else
12273 Subp_Id :=
12274 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12275 Subp_Decl :=
12276 Make_Object_Declaration (Loc,
12277 Defining_Identifier => Subp_Id,
12278 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12279 end if;
12281 if not Defer_Declaration
12282 and then From_Aspect_Specification (N)
12283 and then Has_Delayed_Freeze (Ent)
12284 then
12285 Append_Freeze_Action (Ent, Subp_Decl);
12287 else
12288 Insert_Action (N, Subp_Decl);
12289 Set_Entity (N, Subp_Id);
12290 end if;
12292 Subp_Decl :=
12293 Make_Subprogram_Renaming_Declaration (Loc,
12294 Specification => Build_Spec,
12295 Name => New_Occurrence_Of (Subp, Loc));
12297 if Defer_Declaration then
12298 Set_TSS (Base_Type (Ent), Subp_Id);
12300 else
12301 if From_Aspect_Specification (N) then
12302 Append_Freeze_Action (Ent, Subp_Decl);
12303 else
12304 Insert_Action (N, Subp_Decl);
12305 end if;
12307 Copy_TSS (Subp_Id, Base_Type (Ent));
12308 end if;
12309 end New_Stream_Subprogram;
12311 ------------------------------------------
12312 -- Push_Scope_And_Install_Discriminants --
12313 ------------------------------------------
12315 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12316 begin
12317 if Is_Type (E) and then Has_Discriminants (E) then
12318 Push_Scope (E);
12320 -- Make the discriminants visible for type declarations and protected
12321 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12323 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12324 Install_Discriminants (E);
12325 end if;
12326 end if;
12327 end Push_Scope_And_Install_Discriminants;
12329 -----------------------------------
12330 -- Register_Address_Clause_Check --
12331 -----------------------------------
12333 procedure Register_Address_Clause_Check
12334 (N : Node_Id;
12335 X : Entity_Id;
12336 A : Uint;
12337 Y : Entity_Id;
12338 Off : Boolean)
12340 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
12341 begin
12342 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
12343 end Register_Address_Clause_Check;
12345 ------------------------
12346 -- Rep_Item_Too_Early --
12347 ------------------------
12349 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12350 begin
12351 -- Cannot apply non-operational rep items to generic types
12353 if Is_Operational_Item (N) then
12354 return False;
12356 elsif Is_Type (T)
12357 and then Is_Generic_Type (Root_Type (T))
12358 and then (Nkind (N) /= N_Pragma
12359 or else Get_Pragma_Id (N) /= Pragma_Convention)
12360 then
12361 Error_Msg_N ("representation item not allowed for generic type", N);
12362 return True;
12363 end if;
12365 -- Otherwise check for incomplete type
12367 if Is_Incomplete_Or_Private_Type (T)
12368 and then No (Underlying_Type (T))
12369 and then
12370 (Nkind (N) /= N_Pragma
12371 or else Get_Pragma_Id (N) /= Pragma_Import)
12372 then
12373 Error_Msg_N
12374 ("representation item must be after full type declaration", N);
12375 return True;
12377 -- If the type has incomplete components, a representation clause is
12378 -- illegal but stream attributes and Convention pragmas are correct.
12380 elsif Has_Private_Component (T) then
12381 if Nkind (N) = N_Pragma then
12382 return False;
12384 else
12385 Error_Msg_N
12386 ("representation item must appear after type is fully defined",
12388 return True;
12389 end if;
12390 else
12391 return False;
12392 end if;
12393 end Rep_Item_Too_Early;
12395 -----------------------
12396 -- Rep_Item_Too_Late --
12397 -----------------------
12399 function Rep_Item_Too_Late
12400 (T : Entity_Id;
12401 N : Node_Id;
12402 FOnly : Boolean := False) return Boolean
12404 S : Entity_Id;
12405 Parent_Type : Entity_Id;
12407 procedure No_Type_Rep_Item;
12408 -- Output message indicating that no type-related aspects can be
12409 -- specified due to some property of the parent type.
12411 procedure Too_Late;
12412 -- Output message for an aspect being specified too late
12414 -- Note that neither of the above errors is considered a serious one,
12415 -- since the effect is simply that we ignore the representation clause
12416 -- in these cases.
12417 -- Is this really true? In any case if we make this change we must
12418 -- document the requirement in the spec of Rep_Item_Too_Late that
12419 -- if True is returned, then the rep item must be completely ignored???
12421 ----------------------
12422 -- No_Type_Rep_Item --
12423 ----------------------
12425 procedure No_Type_Rep_Item is
12426 begin
12427 Error_Msg_N ("|type-related representation item not permitted!", N);
12428 end No_Type_Rep_Item;
12430 --------------
12431 -- Too_Late --
12432 --------------
12434 procedure Too_Late is
12435 begin
12436 -- Other compilers seem more relaxed about rep items appearing too
12437 -- late. Since analysis tools typically don't care about rep items
12438 -- anyway, no reason to be too strict about this.
12440 if not Relaxed_RM_Semantics then
12441 Error_Msg_N ("|representation item appears too late!", N);
12442 end if;
12443 end Too_Late;
12445 -- Start of processing for Rep_Item_Too_Late
12447 begin
12448 -- First make sure entity is not frozen (RM 13.1(9))
12450 if Is_Frozen (T)
12452 -- Exclude imported types, which may be frozen if they appear in a
12453 -- representation clause for a local type.
12455 and then not From_Limited_With (T)
12457 -- Exclude generated entities (not coming from source). The common
12458 -- case is when we generate a renaming which prematurely freezes the
12459 -- renamed internal entity, but we still want to be able to set copies
12460 -- of attribute values such as Size/Alignment.
12462 and then Comes_From_Source (T)
12463 then
12464 -- A self-referential aspect is illegal if it forces freezing the
12465 -- entity before the corresponding pragma has been analyzed.
12467 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12468 and then From_Aspect_Specification (N)
12469 then
12470 Error_Msg_NE
12471 ("aspect specification causes premature freezing of&", N, T);
12472 Set_Has_Delayed_Freeze (T, False);
12473 return True;
12474 end if;
12476 Too_Late;
12477 S := First_Subtype (T);
12479 if Present (Freeze_Node (S)) then
12480 if not Relaxed_RM_Semantics then
12481 Error_Msg_NE
12482 ("??no more representation items for }", Freeze_Node (S), S);
12483 end if;
12484 end if;
12486 return True;
12488 -- Check for case of untagged derived type whose parent either has
12489 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12490 -- this case we do not output a Too_Late message, since there is no
12491 -- earlier point where the rep item could be placed to make it legal.
12493 elsif Is_Type (T)
12494 and then not FOnly
12495 and then Is_Derived_Type (T)
12496 and then not Is_Tagged_Type (T)
12497 then
12498 Parent_Type := Etype (Base_Type (T));
12500 if Has_Primitive_Operations (Parent_Type) then
12501 No_Type_Rep_Item;
12503 if not Relaxed_RM_Semantics then
12504 Error_Msg_NE
12505 ("\parent type & has primitive operations!", N, Parent_Type);
12506 end if;
12508 return True;
12510 elsif Is_By_Reference_Type (Parent_Type) then
12511 No_Type_Rep_Item;
12513 if not Relaxed_RM_Semantics then
12514 Error_Msg_NE
12515 ("\parent type & is a by reference type!", N, Parent_Type);
12516 end if;
12518 return True;
12519 end if;
12520 end if;
12522 -- No error, but one more warning to consider. The RM (surprisingly)
12523 -- allows this pattern:
12525 -- type S is ...
12526 -- primitive operations for S
12527 -- type R is new S;
12528 -- rep clause for S
12530 -- Meaning that calls on the primitive operations of S for values of
12531 -- type R may require possibly expensive implicit conversion operations.
12532 -- This is not an error, but is worth a warning.
12534 if not Relaxed_RM_Semantics and then Is_Type (T) then
12535 declare
12536 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12538 begin
12539 if Present (DTL)
12540 and then Has_Primitive_Operations (Base_Type (T))
12542 -- For now, do not generate this warning for the case of aspect
12543 -- specification using Ada 2012 syntax, since we get wrong
12544 -- messages we do not understand. The whole business of derived
12545 -- types and rep items seems a bit confused when aspects are
12546 -- used, since the aspects are not evaluated till freeze time.
12548 and then not From_Aspect_Specification (N)
12549 then
12550 Error_Msg_Sloc := Sloc (DTL);
12551 Error_Msg_N
12552 ("representation item for& appears after derived type "
12553 & "declaration#??", N);
12554 Error_Msg_NE
12555 ("\may result in implicit conversions for primitive "
12556 & "operations of&??", N, T);
12557 Error_Msg_NE
12558 ("\to change representations when called with arguments "
12559 & "of type&??", N, DTL);
12560 end if;
12561 end;
12562 end if;
12564 -- No error, link item into head of chain of rep items for the entity,
12565 -- but avoid chaining if we have an overloadable entity, and the pragma
12566 -- is one that can apply to multiple overloaded entities.
12568 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12569 declare
12570 Pname : constant Name_Id := Pragma_Name (N);
12571 begin
12572 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12573 Name_External, Name_Interface)
12574 then
12575 return False;
12576 end if;
12577 end;
12578 end if;
12580 Record_Rep_Item (T, N);
12581 return False;
12582 end Rep_Item_Too_Late;
12584 -------------------------------------
12585 -- Replace_Type_References_Generic --
12586 -------------------------------------
12588 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12589 TName : constant Name_Id := Chars (T);
12591 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
12592 -- Processes a single node in the traversal procedure below, checking
12593 -- if node N should be replaced, and if so, doing the replacement.
12595 function Visible_Component (Comp : Name_Id) return Entity_Id;
12596 -- Given an identifier in the expression, check whether there is a
12597 -- discriminant or component of the type that is directy visible, and
12598 -- rewrite it as the corresponding selected component of the formal of
12599 -- the subprogram. The entity is located by a sequential search, which
12600 -- seems acceptable given the typical size of component lists and check
12601 -- expressions. Possible optimization ???
12603 ----------------------
12604 -- Replace_Type_Ref --
12605 ----------------------
12607 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
12608 Loc : constant Source_Ptr := Sloc (N);
12610 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
12611 -- Add the proper prefix to a reference to a component of the type
12612 -- when it is not already a selected component.
12614 ----------------
12615 -- Add_Prefix --
12616 ----------------
12618 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12619 begin
12620 Rewrite (Ref,
12621 Make_Selected_Component (Loc,
12622 Prefix => New_Occurrence_Of (T, Loc),
12623 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12624 Replace_Type_Reference (Prefix (Ref));
12625 end Add_Prefix;
12627 -- Local variables
12629 Comp : Entity_Id;
12630 Pref : Node_Id;
12631 Scop : Entity_Id;
12633 -- Start of processing for Replace_Type_Ref
12635 begin
12636 if Nkind (N) = N_Identifier then
12638 -- If not the type name, check whether it is a reference to some
12639 -- other type, which must be frozen before the predicate function
12640 -- is analyzed, i.e. before the freeze node of the type to which
12641 -- the predicate applies.
12643 if Chars (N) /= TName then
12644 if Present (Current_Entity (N))
12645 and then Is_Type (Current_Entity (N))
12646 then
12647 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12648 end if;
12650 -- The components of the type are directly visible and can
12651 -- be referenced without a prefix.
12653 if Nkind (Parent (N)) = N_Selected_Component then
12654 null;
12656 -- In expression C (I), C may be a directly visible function
12657 -- or a visible component that has an array type. Disambiguate
12658 -- by examining the component type.
12660 elsif Nkind (Parent (N)) = N_Indexed_Component
12661 and then N = Prefix (Parent (N))
12662 then
12663 Comp := Visible_Component (Chars (N));
12665 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12666 Add_Prefix (N, Comp);
12667 end if;
12669 else
12670 Comp := Visible_Component (Chars (N));
12672 if Present (Comp) then
12673 Add_Prefix (N, Comp);
12674 end if;
12675 end if;
12677 return Skip;
12679 -- Otherwise do the replacement if this is not a qualified
12680 -- reference to a homograph of the type itself. Note that the
12681 -- current instance could not appear in such a context, e.g.
12682 -- the prefix of a type conversion.
12684 else
12685 if Nkind (Parent (N)) /= N_Selected_Component
12686 or else N /= Selector_Name (Parent (N))
12687 then
12688 Replace_Type_Reference (N);
12689 end if;
12691 return Skip;
12692 end if;
12694 -- Case of selected component, which may be a subcomponent of the
12695 -- current instance, or an expanded name which is still unanalyzed.
12697 elsif Nkind (N) = N_Selected_Component then
12699 -- If selector name is not our type, keep going (we might still
12700 -- have an occurrence of the type in the prefix). If it is a
12701 -- subcomponent of the current entity, add prefix.
12703 if Nkind (Selector_Name (N)) /= N_Identifier
12704 or else Chars (Selector_Name (N)) /= TName
12705 then
12706 if Nkind (Prefix (N)) = N_Identifier then
12707 Comp := Visible_Component (Chars (Prefix (N)));
12709 if Present (Comp) then
12710 Add_Prefix (Prefix (N), Comp);
12711 end if;
12712 end if;
12714 return OK;
12716 -- Selector name is our type, check qualification
12718 else
12719 -- Loop through scopes and prefixes, doing comparison
12721 Scop := Current_Scope;
12722 Pref := Prefix (N);
12723 loop
12724 -- Continue if no more scopes or scope with no name
12726 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
12727 return OK;
12728 end if;
12730 -- Do replace if prefix is an identifier matching the scope
12731 -- that we are currently looking at.
12733 if Nkind (Pref) = N_Identifier
12734 and then Chars (Pref) = Chars (Scop)
12735 then
12736 Replace_Type_Reference (N);
12737 return Skip;
12738 end if;
12740 -- Go check scope above us if prefix is itself of the form
12741 -- of a selected component, whose selector matches the scope
12742 -- we are currently looking at.
12744 if Nkind (Pref) = N_Selected_Component
12745 and then Nkind (Selector_Name (Pref)) = N_Identifier
12746 and then Chars (Selector_Name (Pref)) = Chars (Scop)
12747 then
12748 Scop := Scope (Scop);
12749 Pref := Prefix (Pref);
12751 -- For anything else, we don't have a match, so keep on
12752 -- going, there are still some weird cases where we may
12753 -- still have a replacement within the prefix.
12755 else
12756 return OK;
12757 end if;
12758 end loop;
12759 end if;
12761 -- Continue for any other node kind
12763 else
12764 return OK;
12765 end if;
12766 end Replace_Type_Ref;
12768 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12770 -----------------------
12771 -- Visible_Component --
12772 -----------------------
12774 function Visible_Component (Comp : Name_Id) return Entity_Id is
12775 E : Entity_Id;
12777 begin
12778 -- Types with nameable components are records and discriminated
12779 -- private types.
12781 if Ekind (T) = E_Record_Type
12782 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12783 then
12784 E := First_Entity (T);
12785 while Present (E) loop
12786 if Comes_From_Source (E) and then Chars (E) = Comp then
12787 return E;
12788 end if;
12790 Next_Entity (E);
12791 end loop;
12792 end if;
12794 -- Nothing by that name, or the type has no components
12796 return Empty;
12797 end Visible_Component;
12799 -- Start of processing for Replace_Type_References_Generic
12801 begin
12802 Replace_Type_Refs (N);
12803 end Replace_Type_References_Generic;
12805 --------------------------------
12806 -- Resolve_Aspect_Expressions --
12807 --------------------------------
12809 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12810 function Resolve_Name (N : Node_Id) return Traverse_Result;
12811 -- Verify that all identifiers in the expression, with the exception
12812 -- of references to the current entity, denote visible entities. This
12813 -- is done only to detect visibility errors, as the expression will be
12814 -- properly analyzed/expanded during analysis of the predicate function
12815 -- body. We omit quantified expressions from this test, given that they
12816 -- introduce a local identifier that would require proper expansion to
12817 -- handle properly.
12819 -- In ASIS_Mode we preserve the entity in the source because there is
12820 -- no subsequent expansion to decorate the tree.
12822 ------------------
12823 -- Resolve_Name --
12824 ------------------
12826 function Resolve_Name (N : Node_Id) return Traverse_Result is
12827 Dummy : Traverse_Result;
12829 begin
12830 if Nkind (N) = N_Selected_Component then
12831 if Nkind (Prefix (N)) = N_Identifier
12832 and then Chars (Prefix (N)) /= Chars (E)
12833 then
12834 Find_Selected_Component (N);
12835 end if;
12837 return Skip;
12839 -- Resolve identifiers that are not selectors in parameter
12840 -- associations (these are never resolved by visibility).
12842 elsif Nkind (N) = N_Identifier
12843 and then Chars (N) /= Chars (E)
12844 and then (Nkind (Parent (N)) /= N_Parameter_Association
12845 or else N /= Selector_Name (Parent (N)))
12846 then
12847 Find_Direct_Name (N);
12849 -- In ASIS mode we must analyze overloaded identifiers to ensure
12850 -- their correct decoration because expansion is disabled (and
12851 -- the expansion of freeze nodes takes care of resolving aspect
12852 -- expressions).
12854 if ASIS_Mode then
12855 if Is_Overloaded (N) then
12856 Analyze (Parent (N));
12857 end if;
12858 else
12859 Set_Entity (N, Empty);
12860 end if;
12862 -- The name is component association needs no resolution.
12864 elsif Nkind (N) = N_Component_Association then
12865 Dummy := Resolve_Name (Expression (N));
12866 return Skip;
12868 elsif Nkind (N) = N_Quantified_Expression then
12869 return Skip;
12870 end if;
12872 return OK;
12873 end Resolve_Name;
12875 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12877 -- Local variables
12879 ASN : Node_Id := First_Rep_Item (E);
12881 -- Start of processing for Resolve_Aspect_Expressions
12883 begin
12884 -- Need to make sure discriminants, if any, are directly visible
12886 Push_Scope_And_Install_Discriminants (E);
12888 while Present (ASN) loop
12889 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12890 declare
12891 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
12892 Expr : constant Node_Id := Expression (ASN);
12894 begin
12895 case A_Id is
12897 -- For now we only deal with aspects that do not generate
12898 -- subprograms, or that may mention current instances of
12899 -- types. These will require special handling (???TBD).
12901 when Aspect_Invariant
12902 | Aspect_Predicate
12903 | Aspect_Predicate_Failure
12905 null;
12907 when Aspect_Dynamic_Predicate
12908 | Aspect_Static_Predicate
12910 -- Build predicate function specification and preanalyze
12911 -- expression after type replacement. The function
12912 -- declaration must be analyzed in the scope of the
12913 -- type, but the expression must see components.
12915 if No (Predicate_Function (E)) then
12916 Uninstall_Discriminants_And_Pop_Scope (E);
12917 declare
12918 FDecl : constant Node_Id :=
12919 Build_Predicate_Function_Declaration (E);
12920 pragma Unreferenced (FDecl);
12922 begin
12923 Push_Scope_And_Install_Discriminants (E);
12924 Resolve_Aspect_Expression (Expr);
12925 end;
12926 end if;
12928 when Pre_Post_Aspects =>
12929 null;
12931 when Aspect_Iterable =>
12932 if Nkind (Expr) = N_Aggregate then
12933 declare
12934 Assoc : Node_Id;
12936 begin
12937 Assoc := First (Component_Associations (Expr));
12938 while Present (Assoc) loop
12939 Find_Direct_Name (Expression (Assoc));
12940 Next (Assoc);
12941 end loop;
12942 end;
12943 end if;
12945 -- The expression for Default_Value is a static expression
12946 -- of the type, but this expression does not freeze the
12947 -- type, so it can still appear in a representation clause
12948 -- before the actual freeze point.
12950 when Aspect_Default_Value =>
12951 Set_Must_Not_Freeze (Expr);
12952 Preanalyze_Spec_Expression (Expr, E);
12954 -- Ditto for Storage_Size. Any other aspects that carry
12955 -- expressions that should not freeze ??? This is only
12956 -- relevant to the misuse of deferred constants.
12958 when Aspect_Storage_Size =>
12959 Set_Must_Not_Freeze (Expr);
12960 Preanalyze_Spec_Expression (Expr, Any_Integer);
12962 when others =>
12963 if Present (Expr) then
12964 case Aspect_Argument (A_Id) is
12965 when Expression
12966 | Optional_Expression
12968 Analyze_And_Resolve (Expr);
12970 when Name
12971 | Optional_Name
12973 if Nkind (Expr) = N_Identifier then
12974 Find_Direct_Name (Expr);
12976 elsif Nkind (Expr) = N_Selected_Component then
12977 Find_Selected_Component (Expr);
12978 end if;
12979 end case;
12980 end if;
12981 end case;
12982 end;
12983 end if;
12985 ASN := Next_Rep_Item (ASN);
12986 end loop;
12988 Uninstall_Discriminants_And_Pop_Scope (E);
12989 end Resolve_Aspect_Expressions;
12991 -------------------------
12992 -- Same_Representation --
12993 -------------------------
12995 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12996 T1 : constant Entity_Id := Underlying_Type (Typ1);
12997 T2 : constant Entity_Id := Underlying_Type (Typ2);
12999 begin
13000 -- A quick check, if base types are the same, then we definitely have
13001 -- the same representation, because the subtype specific representation
13002 -- attributes (Size and Alignment) do not affect representation from
13003 -- the point of view of this test.
13005 if Base_Type (T1) = Base_Type (T2) then
13006 return True;
13008 elsif Is_Private_Type (Base_Type (T2))
13009 and then Base_Type (T1) = Full_View (Base_Type (T2))
13010 then
13011 return True;
13012 end if;
13014 -- Tagged types always have the same representation, because it is not
13015 -- possible to specify different representations for common fields.
13017 if Is_Tagged_Type (T1) then
13018 return True;
13019 end if;
13021 -- Representations are definitely different if conventions differ
13023 if Convention (T1) /= Convention (T2) then
13024 return False;
13025 end if;
13027 -- Representations are different if component alignments or scalar
13028 -- storage orders differ.
13030 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
13031 and then
13032 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13033 and then
13034 (Component_Alignment (T1) /= Component_Alignment (T2)
13035 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13036 then
13037 return False;
13038 end if;
13040 -- For arrays, the only real issue is component size. If we know the
13041 -- component size for both arrays, and it is the same, then that's
13042 -- good enough to know we don't have a change of representation.
13044 if Is_Array_Type (T1) then
13045 if Known_Component_Size (T1)
13046 and then Known_Component_Size (T2)
13047 and then Component_Size (T1) = Component_Size (T2)
13048 then
13049 return True;
13050 end if;
13051 end if;
13053 -- For records, representations are different if reorderings differ
13055 if Is_Record_Type (T1)
13056 and then Is_Record_Type (T2)
13057 and then No_Reordering (T1) /= No_Reordering (T2)
13058 then
13059 return False;
13060 end if;
13062 -- Types definitely have same representation if neither has non-standard
13063 -- representation since default representations are always consistent.
13064 -- If only one has non-standard representation, and the other does not,
13065 -- then we consider that they do not have the same representation. They
13066 -- might, but there is no way of telling early enough.
13068 if Has_Non_Standard_Rep (T1) then
13069 if not Has_Non_Standard_Rep (T2) then
13070 return False;
13071 end if;
13072 else
13073 return not Has_Non_Standard_Rep (T2);
13074 end if;
13076 -- Here the two types both have non-standard representation, and we need
13077 -- to determine if they have the same non-standard representation.
13079 -- For arrays, we simply need to test if the component sizes are the
13080 -- same. Pragma Pack is reflected in modified component sizes, so this
13081 -- check also deals with pragma Pack.
13083 if Is_Array_Type (T1) then
13084 return Component_Size (T1) = Component_Size (T2);
13086 -- Case of record types
13088 elsif Is_Record_Type (T1) then
13090 -- Packed status must conform
13092 if Is_Packed (T1) /= Is_Packed (T2) then
13093 return False;
13095 -- Otherwise we must check components. Typ2 maybe a constrained
13096 -- subtype with fewer components, so we compare the components
13097 -- of the base types.
13099 else
13100 Record_Case : declare
13101 CD1, CD2 : Entity_Id;
13103 function Same_Rep return Boolean;
13104 -- CD1 and CD2 are either components or discriminants. This
13105 -- function tests whether they have the same representation.
13107 --------------
13108 -- Same_Rep --
13109 --------------
13111 function Same_Rep return Boolean is
13112 begin
13113 if No (Component_Clause (CD1)) then
13114 return No (Component_Clause (CD2));
13115 else
13116 -- Note: at this point, component clauses have been
13117 -- normalized to the default bit order, so that the
13118 -- comparison of Component_Bit_Offsets is meaningful.
13120 return
13121 Present (Component_Clause (CD2))
13122 and then
13123 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13124 and then
13125 Esize (CD1) = Esize (CD2);
13126 end if;
13127 end Same_Rep;
13129 -- Start of processing for Record_Case
13131 begin
13132 if Has_Discriminants (T1) then
13134 -- The number of discriminants may be different if the
13135 -- derived type has fewer (constrained by values). The
13136 -- invisible discriminants retain the representation of
13137 -- the original, so the discrepancy does not per se
13138 -- indicate a different representation.
13140 CD1 := First_Discriminant (T1);
13141 CD2 := First_Discriminant (T2);
13142 while Present (CD1) and then Present (CD2) loop
13143 if not Same_Rep then
13144 return False;
13145 else
13146 Next_Discriminant (CD1);
13147 Next_Discriminant (CD2);
13148 end if;
13149 end loop;
13150 end if;
13152 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13153 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13154 while Present (CD1) loop
13155 if not Same_Rep then
13156 return False;
13157 else
13158 Next_Component (CD1);
13159 Next_Component (CD2);
13160 end if;
13161 end loop;
13163 return True;
13164 end Record_Case;
13165 end if;
13167 -- For enumeration types, we must check each literal to see if the
13168 -- representation is the same. Note that we do not permit enumeration
13169 -- representation clauses for Character and Wide_Character, so these
13170 -- cases were already dealt with.
13172 elsif Is_Enumeration_Type (T1) then
13173 Enumeration_Case : declare
13174 L1, L2 : Entity_Id;
13176 begin
13177 L1 := First_Literal (T1);
13178 L2 := First_Literal (T2);
13179 while Present (L1) loop
13180 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13181 return False;
13182 else
13183 Next_Literal (L1);
13184 Next_Literal (L2);
13185 end if;
13186 end loop;
13188 return True;
13189 end Enumeration_Case;
13191 -- Any other types have the same representation for these purposes
13193 else
13194 return True;
13195 end if;
13196 end Same_Representation;
13198 --------------------------------
13199 -- Resolve_Iterable_Operation --
13200 --------------------------------
13202 procedure Resolve_Iterable_Operation
13203 (N : Node_Id;
13204 Cursor : Entity_Id;
13205 Typ : Entity_Id;
13206 Nam : Name_Id)
13208 Ent : Entity_Id;
13209 F1 : Entity_Id;
13210 F2 : Entity_Id;
13212 begin
13213 if not Is_Overloaded (N) then
13214 if not Is_Entity_Name (N)
13215 or else Ekind (Entity (N)) /= E_Function
13216 or else Scope (Entity (N)) /= Scope (Typ)
13217 or else No (First_Formal (Entity (N)))
13218 or else Etype (First_Formal (Entity (N))) /= Typ
13219 then
13220 Error_Msg_N
13221 ("iterable primitive must be local function name whose first "
13222 & "formal is an iterable type", N);
13223 return;
13224 end if;
13226 Ent := Entity (N);
13227 F1 := First_Formal (Ent);
13229 if Nam = Name_First or else Nam = Name_Last then
13231 -- First or Last (Container) => Cursor
13233 if Etype (Ent) /= Cursor then
13234 Error_Msg_N ("primitive for First must yield a curosr", N);
13235 end if;
13237 elsif Nam = Name_Next then
13239 -- Next (Container, Cursor) => Cursor
13241 F2 := Next_Formal (F1);
13243 if Etype (F2) /= Cursor
13244 or else Etype (Ent) /= Cursor
13245 or else Present (Next_Formal (F2))
13246 then
13247 Error_Msg_N ("no match for Next iterable primitive", N);
13248 end if;
13250 elsif Nam = Name_Previous then
13252 -- Previous (Container, Cursor) => Cursor
13254 F2 := Next_Formal (F1);
13256 if Etype (F2) /= Cursor
13257 or else Etype (Ent) /= Cursor
13258 or else Present (Next_Formal (F2))
13259 then
13260 Error_Msg_N ("no match for Previous iterable primitive", N);
13261 end if;
13263 elsif Nam = Name_Has_Element then
13265 -- Has_Element (Container, Cursor) => Boolean
13267 F2 := Next_Formal (F1);
13269 if Etype (F2) /= Cursor
13270 or else Etype (Ent) /= Standard_Boolean
13271 or else Present (Next_Formal (F2))
13272 then
13273 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13274 end if;
13276 elsif Nam = Name_Element then
13277 F2 := Next_Formal (F1);
13279 if No (F2)
13280 or else Etype (F2) /= Cursor
13281 or else Present (Next_Formal (F2))
13282 then
13283 Error_Msg_N ("no match for Element iterable primitive", N);
13284 end if;
13286 else
13287 raise Program_Error;
13288 end if;
13290 else
13291 -- Overloaded case: find subprogram with proper signature. Caller
13292 -- will report error if no match is found.
13294 declare
13295 I : Interp_Index;
13296 It : Interp;
13298 begin
13299 Get_First_Interp (N, I, It);
13300 while Present (It.Typ) loop
13301 if Ekind (It.Nam) = E_Function
13302 and then Scope (It.Nam) = Scope (Typ)
13303 and then Etype (First_Formal (It.Nam)) = Typ
13304 then
13305 F1 := First_Formal (It.Nam);
13307 if Nam = Name_First then
13308 if Etype (It.Nam) = Cursor
13309 and then No (Next_Formal (F1))
13310 then
13311 Set_Entity (N, It.Nam);
13312 exit;
13313 end if;
13315 elsif Nam = Name_Next then
13316 F2 := Next_Formal (F1);
13318 if Present (F2)
13319 and then No (Next_Formal (F2))
13320 and then Etype (F2) = Cursor
13321 and then Etype (It.Nam) = Cursor
13322 then
13323 Set_Entity (N, It.Nam);
13324 exit;
13325 end if;
13327 elsif Nam = Name_Has_Element then
13328 F2 := Next_Formal (F1);
13330 if Present (F2)
13331 and then No (Next_Formal (F2))
13332 and then Etype (F2) = Cursor
13333 and then Etype (It.Nam) = Standard_Boolean
13334 then
13335 Set_Entity (N, It.Nam);
13336 F2 := Next_Formal (F1);
13337 exit;
13338 end if;
13340 elsif Nam = Name_Element then
13341 F2 := Next_Formal (F1);
13343 if Present (F2)
13344 and then No (Next_Formal (F2))
13345 and then Etype (F2) = Cursor
13346 then
13347 Set_Entity (N, It.Nam);
13348 exit;
13349 end if;
13350 end if;
13351 end if;
13353 Get_Next_Interp (I, It);
13354 end loop;
13355 end;
13356 end if;
13357 end Resolve_Iterable_Operation;
13359 ----------------
13360 -- Set_Biased --
13361 ----------------
13363 procedure Set_Biased
13364 (E : Entity_Id;
13365 N : Node_Id;
13366 Msg : String;
13367 Biased : Boolean := True)
13369 begin
13370 if Biased then
13371 Set_Has_Biased_Representation (E);
13373 if Warn_On_Biased_Representation then
13374 Error_Msg_NE
13375 ("?B?" & Msg & " forces biased representation for&", N, E);
13376 end if;
13377 end if;
13378 end Set_Biased;
13380 --------------------
13381 -- Set_Enum_Esize --
13382 --------------------
13384 procedure Set_Enum_Esize (T : Entity_Id) is
13385 Lo : Uint;
13386 Hi : Uint;
13387 Sz : Nat;
13389 begin
13390 Init_Alignment (T);
13392 -- Find the minimum standard size (8,16,32,64) that fits
13394 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13395 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13397 if Lo < 0 then
13398 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13399 Sz := Standard_Character_Size; -- May be > 8 on some targets
13401 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13402 Sz := 16;
13404 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13405 Sz := 32;
13407 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13408 Sz := 64;
13409 end if;
13411 else
13412 if Hi < Uint_2**08 then
13413 Sz := Standard_Character_Size; -- May be > 8 on some targets
13415 elsif Hi < Uint_2**16 then
13416 Sz := 16;
13418 elsif Hi < Uint_2**32 then
13419 Sz := 32;
13421 else pragma Assert (Hi < Uint_2**63);
13422 Sz := 64;
13423 end if;
13424 end if;
13426 -- That minimum is the proper size unless we have a foreign convention
13427 -- and the size required is 32 or less, in which case we bump the size
13428 -- up to 32. This is required for C and C++ and seems reasonable for
13429 -- all other foreign conventions.
13431 if Has_Foreign_Convention (T)
13432 and then Esize (T) < Standard_Integer_Size
13434 -- Don't do this if Short_Enums on target
13436 and then not Target_Short_Enums
13437 then
13438 Init_Esize (T, Standard_Integer_Size);
13439 else
13440 Init_Esize (T, Sz);
13441 end if;
13442 end Set_Enum_Esize;
13444 -----------------------------
13445 -- Uninstall_Discriminants --
13446 -----------------------------
13448 procedure Uninstall_Discriminants (E : Entity_Id) is
13449 Disc : Entity_Id;
13450 Prev : Entity_Id;
13451 Outer : Entity_Id;
13453 begin
13454 -- Discriminants have been made visible for type declarations and
13455 -- protected type declarations, not for subtype declarations.
13457 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13458 Disc := First_Discriminant (E);
13459 while Present (Disc) loop
13460 if Disc /= Current_Entity (Disc) then
13461 Prev := Current_Entity (Disc);
13462 while Present (Prev)
13463 and then Present (Homonym (Prev))
13464 and then Homonym (Prev) /= Disc
13465 loop
13466 Prev := Homonym (Prev);
13467 end loop;
13468 else
13469 Prev := Empty;
13470 end if;
13472 Set_Is_Immediately_Visible (Disc, False);
13474 Outer := Homonym (Disc);
13475 while Present (Outer) and then Scope (Outer) = E loop
13476 Outer := Homonym (Outer);
13477 end loop;
13479 -- Reset homonym link of other entities, but do not modify link
13480 -- between entities in current scope, so that the back end can
13481 -- have a proper count of local overloadings.
13483 if No (Prev) then
13484 Set_Name_Entity_Id (Chars (Disc), Outer);
13486 elsif Scope (Prev) /= Scope (Disc) then
13487 Set_Homonym (Prev, Outer);
13488 end if;
13490 Next_Discriminant (Disc);
13491 end loop;
13492 end if;
13493 end Uninstall_Discriminants;
13495 -------------------------------------------
13496 -- Uninstall_Discriminants_And_Pop_Scope --
13497 -------------------------------------------
13499 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13500 begin
13501 if Is_Type (E) and then Has_Discriminants (E) then
13502 Uninstall_Discriminants (E);
13503 Pop_Scope;
13504 end if;
13505 end Uninstall_Discriminants_And_Pop_Scope;
13507 ------------------------------
13508 -- Validate_Address_Clauses --
13509 ------------------------------
13511 procedure Validate_Address_Clauses is
13512 function Offset_Value (Expr : Node_Id) return Uint;
13513 -- Given an Address attribute reference, return the value in bits of its
13514 -- offset from the first bit of the underlying entity, or 0 if it is not
13515 -- known at compile time.
13517 ------------------
13518 -- Offset_Value --
13519 ------------------
13521 function Offset_Value (Expr : Node_Id) return Uint is
13522 N : Node_Id := Prefix (Expr);
13523 Off : Uint;
13524 Val : Uint := Uint_0;
13526 begin
13527 -- Climb the prefix chain and compute the cumulative offset
13529 loop
13530 if Is_Entity_Name (N) then
13531 return Val;
13533 elsif Nkind (N) = N_Selected_Component then
13534 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13535 if Off /= No_Uint and then Off >= Uint_0 then
13536 Val := Val + Off;
13537 N := Prefix (N);
13538 else
13539 return Uint_0;
13540 end if;
13542 elsif Nkind (N) = N_Indexed_Component then
13543 Off := Indexed_Component_Bit_Offset (N);
13544 if Off /= No_Uint then
13545 Val := Val + Off;
13546 N := Prefix (N);
13547 else
13548 return Uint_0;
13549 end if;
13551 else
13552 return Uint_0;
13553 end if;
13554 end loop;
13555 end Offset_Value;
13557 -- Start of processing for Validate_Address_Clauses
13559 begin
13560 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13561 declare
13562 ACCR : Address_Clause_Check_Record
13563 renames Address_Clause_Checks.Table (J);
13565 Expr : Node_Id;
13567 X_Alignment : Uint;
13568 Y_Alignment : Uint := Uint_0;
13570 X_Size : Uint;
13571 Y_Size : Uint := Uint_0;
13573 X_Offs : Uint;
13575 begin
13576 -- Skip processing of this entry if warning already posted
13578 if not Address_Warning_Posted (ACCR.N) then
13579 Expr := Original_Node (Expression (ACCR.N));
13581 -- Get alignments, sizes and offset, if any
13583 X_Alignment := Alignment (ACCR.X);
13584 X_Size := Esize (ACCR.X);
13586 if Present (ACCR.Y) then
13587 Y_Alignment := Alignment (ACCR.Y);
13588 Y_Size := Esize (ACCR.Y);
13589 end if;
13591 if ACCR.Off
13592 and then Nkind (Expr) = N_Attribute_Reference
13593 and then Attribute_Name (Expr) = Name_Address
13594 then
13595 X_Offs := Offset_Value (Expr);
13596 else
13597 X_Offs := Uint_0;
13598 end if;
13600 -- Check for known value not multiple of alignment
13602 if No (ACCR.Y) then
13603 if not Alignment_Checks_Suppressed (ACCR)
13604 and then X_Alignment /= 0
13605 and then ACCR.A mod X_Alignment /= 0
13606 then
13607 Error_Msg_NE
13608 ("??specified address for& is inconsistent with "
13609 & "alignment", ACCR.N, ACCR.X);
13610 Error_Msg_N
13611 ("\??program execution may be erroneous (RM 13.3(27))",
13612 ACCR.N);
13614 Error_Msg_Uint_1 := X_Alignment;
13615 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13616 end if;
13618 -- Check for large object overlaying smaller one
13620 elsif Y_Size > Uint_0
13621 and then X_Size > Uint_0
13622 and then X_Offs + X_Size > Y_Size
13623 then
13624 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13625 Error_Msg_N
13626 ("\??program execution may be erroneous", ACCR.N);
13628 Error_Msg_Uint_1 := X_Size;
13629 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13631 Error_Msg_Uint_1 := Y_Size;
13632 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13634 if Y_Size >= X_Size then
13635 Error_Msg_Uint_1 := X_Offs;
13636 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
13637 end if;
13639 -- Check for inadequate alignment, both of the base object
13640 -- and of the offset, if any. We only do this check if the
13641 -- run-time Alignment_Check is active. No point in warning
13642 -- if this check has been suppressed (or is suppressed by
13643 -- default in the non-strict alignment machine case).
13645 -- Note: we do not check the alignment if we gave a size
13646 -- warning, since it would likely be redundant.
13648 elsif not Alignment_Checks_Suppressed (ACCR)
13649 and then Y_Alignment /= Uint_0
13650 and then
13651 (Y_Alignment < X_Alignment
13652 or else
13653 (ACCR.Off
13654 and then Nkind (Expr) = N_Attribute_Reference
13655 and then Attribute_Name (Expr) = Name_Address
13656 and then Has_Compatible_Alignment
13657 (ACCR.X, Prefix (Expr), True) /=
13658 Known_Compatible))
13659 then
13660 Error_Msg_NE
13661 ("??specified address for& may be inconsistent with "
13662 & "alignment", ACCR.N, ACCR.X);
13663 Error_Msg_N
13664 ("\??program execution may be erroneous (RM 13.3(27))",
13665 ACCR.N);
13667 Error_Msg_Uint_1 := X_Alignment;
13668 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13670 Error_Msg_Uint_1 := Y_Alignment;
13671 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13673 if Y_Alignment >= X_Alignment then
13674 Error_Msg_N
13675 ("\??but offset is not multiple of alignment", ACCR.N);
13676 end if;
13677 end if;
13678 end if;
13679 end;
13680 end loop;
13681 end Validate_Address_Clauses;
13683 -----------------------------------------
13684 -- Validate_Compile_Time_Warning_Error --
13685 -----------------------------------------
13687 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13688 begin
13689 Compile_Time_Warnings_Errors.Append
13690 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13691 Scope => Current_Scope,
13692 Prag => N));
13693 end Validate_Compile_Time_Warning_Error;
13695 ------------------------------------------
13696 -- Validate_Compile_Time_Warning_Errors --
13697 ------------------------------------------
13699 procedure Validate_Compile_Time_Warning_Errors is
13700 procedure Set_Scope (S : Entity_Id);
13701 -- Install all enclosing scopes of S along with S itself
13703 procedure Unset_Scope (S : Entity_Id);
13704 -- Uninstall all enclosing scopes of S along with S itself
13706 ---------------
13707 -- Set_Scope --
13708 ---------------
13710 procedure Set_Scope (S : Entity_Id) is
13711 begin
13712 if S /= Standard_Standard then
13713 Set_Scope (Scope (S));
13714 end if;
13716 Push_Scope (S);
13717 end Set_Scope;
13719 -----------------
13720 -- Unset_Scope --
13721 -----------------
13723 procedure Unset_Scope (S : Entity_Id) is
13724 begin
13725 if S /= Standard_Standard then
13726 Unset_Scope (Scope (S));
13727 end if;
13729 Pop_Scope;
13730 end Unset_Scope;
13732 -- Start of processing for Validate_Compile_Time_Warning_Errors
13734 begin
13735 Expander_Mode_Save_And_Set (False);
13736 In_Compile_Time_Warning_Or_Error := True;
13738 for N in Compile_Time_Warnings_Errors.First ..
13739 Compile_Time_Warnings_Errors.Last
13740 loop
13741 declare
13742 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13744 begin
13745 Set_Scope (T.Scope);
13746 Reset_Analyzed_Flags (T.Prag);
13747 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13748 Unset_Scope (T.Scope);
13749 end;
13750 end loop;
13752 In_Compile_Time_Warning_Or_Error := False;
13753 Expander_Mode_Restore;
13754 end Validate_Compile_Time_Warning_Errors;
13756 ---------------------------
13757 -- Validate_Independence --
13758 ---------------------------
13760 procedure Validate_Independence is
13761 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13762 N : Node_Id;
13763 E : Entity_Id;
13764 IC : Boolean;
13765 Comp : Entity_Id;
13766 Addr : Node_Id;
13767 P : Node_Id;
13769 procedure Check_Array_Type (Atyp : Entity_Id);
13770 -- Checks if the array type Atyp has independent components, and
13771 -- if not, outputs an appropriate set of error messages.
13773 procedure No_Independence;
13774 -- Output message that independence cannot be guaranteed
13776 function OK_Component (C : Entity_Id) return Boolean;
13777 -- Checks one component to see if it is independently accessible, and
13778 -- if so yields True, otherwise yields False if independent access
13779 -- cannot be guaranteed. This is a conservative routine, it only
13780 -- returns True if it knows for sure, it returns False if it knows
13781 -- there is a problem, or it cannot be sure there is no problem.
13783 procedure Reason_Bad_Component (C : Entity_Id);
13784 -- Outputs continuation message if a reason can be determined for
13785 -- the component C being bad.
13787 ----------------------
13788 -- Check_Array_Type --
13789 ----------------------
13791 procedure Check_Array_Type (Atyp : Entity_Id) is
13792 Ctyp : constant Entity_Id := Component_Type (Atyp);
13794 begin
13795 -- OK if no alignment clause, no pack, and no component size
13797 if not Has_Component_Size_Clause (Atyp)
13798 and then not Has_Alignment_Clause (Atyp)
13799 and then not Is_Packed (Atyp)
13800 then
13801 return;
13802 end if;
13804 -- Case of component size is greater than or equal to 64 and the
13805 -- alignment of the array is at least as large as the alignment
13806 -- of the component. We are definitely OK in this situation.
13808 if Known_Component_Size (Atyp)
13809 and then Component_Size (Atyp) >= 64
13810 and then Known_Alignment (Atyp)
13811 and then Known_Alignment (Ctyp)
13812 and then Alignment (Atyp) >= Alignment (Ctyp)
13813 then
13814 return;
13815 end if;
13817 -- Check actual component size
13819 if not Known_Component_Size (Atyp)
13820 or else not (Addressable (Component_Size (Atyp))
13821 and then Component_Size (Atyp) < 64)
13822 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13823 then
13824 No_Independence;
13826 -- Bad component size, check reason
13828 if Has_Component_Size_Clause (Atyp) then
13829 P := Get_Attribute_Definition_Clause
13830 (Atyp, Attribute_Component_Size);
13832 if Present (P) then
13833 Error_Msg_Sloc := Sloc (P);
13834 Error_Msg_N ("\because of Component_Size clause#", N);
13835 return;
13836 end if;
13837 end if;
13839 if Is_Packed (Atyp) then
13840 P := Get_Rep_Pragma (Atyp, Name_Pack);
13842 if Present (P) then
13843 Error_Msg_Sloc := Sloc (P);
13844 Error_Msg_N ("\because of pragma Pack#", N);
13845 return;
13846 end if;
13847 end if;
13849 -- No reason found, just return
13851 return;
13852 end if;
13854 -- Array type is OK independence-wise
13856 return;
13857 end Check_Array_Type;
13859 ---------------------
13860 -- No_Independence --
13861 ---------------------
13863 procedure No_Independence is
13864 begin
13865 if Pragma_Name (N) = Name_Independent then
13866 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13867 else
13868 Error_Msg_NE
13869 ("independent components cannot be guaranteed for&", N, E);
13870 end if;
13871 end No_Independence;
13873 ------------------
13874 -- OK_Component --
13875 ------------------
13877 function OK_Component (C : Entity_Id) return Boolean is
13878 Rec : constant Entity_Id := Scope (C);
13879 Ctyp : constant Entity_Id := Etype (C);
13881 begin
13882 -- OK if no component clause, no Pack, and no alignment clause
13884 if No (Component_Clause (C))
13885 and then not Is_Packed (Rec)
13886 and then not Has_Alignment_Clause (Rec)
13887 then
13888 return True;
13889 end if;
13891 -- Here we look at the actual component layout. A component is
13892 -- addressable if its size is a multiple of the Esize of the
13893 -- component type, and its starting position in the record has
13894 -- appropriate alignment, and the record itself has appropriate
13895 -- alignment to guarantee the component alignment.
13897 -- Make sure sizes are static, always assume the worst for any
13898 -- cases where we cannot check static values.
13900 if not (Known_Static_Esize (C)
13901 and then
13902 Known_Static_Esize (Ctyp))
13903 then
13904 return False;
13905 end if;
13907 -- Size of component must be addressable or greater than 64 bits
13908 -- and a multiple of bytes.
13910 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13911 return False;
13912 end if;
13914 -- Check size is proper multiple
13916 if Esize (C) mod Esize (Ctyp) /= 0 then
13917 return False;
13918 end if;
13920 -- Check alignment of component is OK
13922 if not Known_Component_Bit_Offset (C)
13923 or else Component_Bit_Offset (C) < Uint_0
13924 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13925 then
13926 return False;
13927 end if;
13929 -- Check alignment of record type is OK
13931 if not Known_Alignment (Rec)
13932 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13933 then
13934 return False;
13935 end if;
13937 -- All tests passed, component is addressable
13939 return True;
13940 end OK_Component;
13942 --------------------------
13943 -- Reason_Bad_Component --
13944 --------------------------
13946 procedure Reason_Bad_Component (C : Entity_Id) is
13947 Rec : constant Entity_Id := Scope (C);
13948 Ctyp : constant Entity_Id := Etype (C);
13950 begin
13951 -- If component clause present assume that's the problem
13953 if Present (Component_Clause (C)) then
13954 Error_Msg_Sloc := Sloc (Component_Clause (C));
13955 Error_Msg_N ("\because of Component_Clause#", N);
13956 return;
13957 end if;
13959 -- If pragma Pack clause present, assume that's the problem
13961 if Is_Packed (Rec) then
13962 P := Get_Rep_Pragma (Rec, Name_Pack);
13964 if Present (P) then
13965 Error_Msg_Sloc := Sloc (P);
13966 Error_Msg_N ("\because of pragma Pack#", N);
13967 return;
13968 end if;
13969 end if;
13971 -- See if record has bad alignment clause
13973 if Has_Alignment_Clause (Rec)
13974 and then Known_Alignment (Rec)
13975 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13976 then
13977 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13979 if Present (P) then
13980 Error_Msg_Sloc := Sloc (P);
13981 Error_Msg_N ("\because of Alignment clause#", N);
13982 end if;
13983 end if;
13985 -- Couldn't find a reason, so return without a message
13987 return;
13988 end Reason_Bad_Component;
13990 -- Start of processing for Validate_Independence
13992 begin
13993 for J in Independence_Checks.First .. Independence_Checks.Last loop
13994 N := Independence_Checks.Table (J).N;
13995 E := Independence_Checks.Table (J).E;
13996 IC := Pragma_Name (N) = Name_Independent_Components;
13998 -- Deal with component case
14000 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
14001 if not OK_Component (E) then
14002 No_Independence;
14003 Reason_Bad_Component (E);
14004 goto Continue;
14005 end if;
14006 end if;
14008 -- Deal with record with Independent_Components
14010 if IC and then Is_Record_Type (E) then
14011 Comp := First_Component_Or_Discriminant (E);
14012 while Present (Comp) loop
14013 if not OK_Component (Comp) then
14014 No_Independence;
14015 Reason_Bad_Component (Comp);
14016 goto Continue;
14017 end if;
14019 Next_Component_Or_Discriminant (Comp);
14020 end loop;
14021 end if;
14023 -- Deal with address clause case
14025 if Is_Object (E) then
14026 Addr := Address_Clause (E);
14028 if Present (Addr) then
14029 No_Independence;
14030 Error_Msg_Sloc := Sloc (Addr);
14031 Error_Msg_N ("\because of Address clause#", N);
14032 goto Continue;
14033 end if;
14034 end if;
14036 -- Deal with independent components for array type
14038 if IC and then Is_Array_Type (E) then
14039 Check_Array_Type (E);
14040 end if;
14042 -- Deal with independent components for array object
14044 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14045 Check_Array_Type (Etype (E));
14046 end if;
14048 <<Continue>> null;
14049 end loop;
14050 end Validate_Independence;
14052 ------------------------------
14053 -- Validate_Iterable_Aspect --
14054 ------------------------------
14056 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14057 Assoc : Node_Id;
14058 Expr : Node_Id;
14060 Prim : Node_Id;
14061 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14063 First_Id : Entity_Id;
14064 Last_Id : Entity_Id;
14065 Next_Id : Entity_Id;
14066 Has_Element_Id : Entity_Id;
14067 Element_Id : Entity_Id;
14069 begin
14070 -- If previous error aspect is unusable
14072 if Cursor = Any_Type then
14073 return;
14074 end if;
14076 First_Id := Empty;
14077 Last_Id := Empty;
14078 Next_Id := Empty;
14079 Has_Element_Id := Empty;
14080 Element_Id := Empty;
14082 -- Each expression must resolve to a function with the proper signature
14084 Assoc := First (Component_Associations (Expression (ASN)));
14085 while Present (Assoc) loop
14086 Expr := Expression (Assoc);
14087 Analyze (Expr);
14089 Prim := First (Choices (Assoc));
14091 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14092 Error_Msg_N ("illegal name in association", Prim);
14094 elsif Chars (Prim) = Name_First then
14095 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14096 First_Id := Entity (Expr);
14098 elsif Chars (Prim) = Name_Last then
14099 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14100 Last_Id := Entity (Expr);
14102 elsif Chars (Prim) = Name_Previous then
14103 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14104 Last_Id := Entity (Expr);
14106 elsif Chars (Prim) = Name_Next then
14107 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14108 Next_Id := Entity (Expr);
14110 elsif Chars (Prim) = Name_Has_Element then
14111 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14112 Has_Element_Id := Entity (Expr);
14114 elsif Chars (Prim) = Name_Element then
14115 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14116 Element_Id := Entity (Expr);
14118 else
14119 Error_Msg_N ("invalid name for iterable function", Prim);
14120 end if;
14122 Next (Assoc);
14123 end loop;
14125 if No (First_Id) then
14126 Error_Msg_N ("match for First primitive not found", ASN);
14128 elsif No (Next_Id) then
14129 Error_Msg_N ("match for Next primitive not found", ASN);
14131 elsif No (Has_Element_Id) then
14132 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14134 elsif No (Element_Id) or else No (Last_Id) then
14135 null; -- optional
14136 end if;
14137 end Validate_Iterable_Aspect;
14139 -----------------------------------
14140 -- Validate_Unchecked_Conversion --
14141 -----------------------------------
14143 procedure Validate_Unchecked_Conversion
14144 (N : Node_Id;
14145 Act_Unit : Entity_Id)
14147 Source : Entity_Id;
14148 Target : Entity_Id;
14149 Vnode : Node_Id;
14151 begin
14152 -- Obtain source and target types. Note that we call Ancestor_Subtype
14153 -- here because the processing for generic instantiation always makes
14154 -- subtypes, and we want the original frozen actual types.
14156 -- If we are dealing with private types, then do the check on their
14157 -- fully declared counterparts if the full declarations have been
14158 -- encountered (they don't have to be visible, but they must exist).
14160 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14162 if Is_Private_Type (Source)
14163 and then Present (Underlying_Type (Source))
14164 then
14165 Source := Underlying_Type (Source);
14166 end if;
14168 Target := Ancestor_Subtype (Etype (Act_Unit));
14170 -- If either type is generic, the instantiation happens within a generic
14171 -- unit, and there is nothing to check. The proper check will happen
14172 -- when the enclosing generic is instantiated.
14174 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14175 return;
14176 end if;
14178 if Is_Private_Type (Target)
14179 and then Present (Underlying_Type (Target))
14180 then
14181 Target := Underlying_Type (Target);
14182 end if;
14184 -- Source may be unconstrained array, but not target, except in relaxed
14185 -- semantics mode.
14187 if Is_Array_Type (Target)
14188 and then not Is_Constrained (Target)
14189 and then not Relaxed_RM_Semantics
14190 then
14191 Error_Msg_N
14192 ("unchecked conversion to unconstrained array not allowed", N);
14193 return;
14194 end if;
14196 -- Warn if conversion between two different convention pointers
14198 if Is_Access_Type (Target)
14199 and then Is_Access_Type (Source)
14200 and then Convention (Target) /= Convention (Source)
14201 and then Warn_On_Unchecked_Conversion
14202 then
14203 -- Give warnings for subprogram pointers only on most targets
14205 if Is_Access_Subprogram_Type (Target)
14206 or else Is_Access_Subprogram_Type (Source)
14207 then
14208 Error_Msg_N
14209 ("?z?conversion between pointers with different conventions!",
14211 end if;
14212 end if;
14214 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14215 -- warning when compiling GNAT-related sources.
14217 if Warn_On_Unchecked_Conversion
14218 and then not In_Predefined_Unit (N)
14219 and then RTU_Loaded (Ada_Calendar)
14220 and then (Chars (Source) = Name_Time
14221 or else
14222 Chars (Target) = Name_Time)
14223 then
14224 -- If Ada.Calendar is loaded and the name of one of the operands is
14225 -- Time, there is a good chance that this is Ada.Calendar.Time.
14227 declare
14228 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14229 begin
14230 pragma Assert (Present (Calendar_Time));
14232 if Source = Calendar_Time or else Target = Calendar_Time then
14233 Error_Msg_N
14234 ("?z?representation of 'Time values may change between "
14235 & "'G'N'A'T versions", N);
14236 end if;
14237 end;
14238 end if;
14240 -- Make entry in unchecked conversion table for later processing by
14241 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14242 -- (using values set by the back end where possible). This is only done
14243 -- if the appropriate warning is active.
14245 if Warn_On_Unchecked_Conversion then
14246 Unchecked_Conversions.Append
14247 (New_Val => UC_Entry'(Eloc => Sloc (N),
14248 Source => Source,
14249 Target => Target,
14250 Act_Unit => Act_Unit));
14252 -- If both sizes are known statically now, then back-end annotation
14253 -- is not required to do a proper check but if either size is not
14254 -- known statically, then we need the annotation.
14256 if Known_Static_RM_Size (Source)
14257 and then
14258 Known_Static_RM_Size (Target)
14259 then
14260 null;
14261 else
14262 Back_Annotate_Rep_Info := True;
14263 end if;
14264 end if;
14266 -- If unchecked conversion to access type, and access type is declared
14267 -- in the same unit as the unchecked conversion, then set the flag
14268 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14270 if Is_Access_Type (Target) and then
14271 In_Same_Source_Unit (Target, N)
14272 then
14273 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14274 end if;
14276 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14277 -- the back end needs to perform special validation checks.
14279 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14280 -- have full expansion and the back end is called ???
14282 Vnode :=
14283 Make_Validate_Unchecked_Conversion (Sloc (N));
14284 Set_Source_Type (Vnode, Source);
14285 Set_Target_Type (Vnode, Target);
14287 -- If the unchecked conversion node is in a list, just insert before it.
14288 -- If not we have some strange case, not worth bothering about.
14290 if Is_List_Member (N) then
14291 Insert_After (N, Vnode);
14292 end if;
14293 end Validate_Unchecked_Conversion;
14295 ------------------------------------
14296 -- Validate_Unchecked_Conversions --
14297 ------------------------------------
14299 procedure Validate_Unchecked_Conversions is
14300 begin
14301 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14302 declare
14303 T : UC_Entry renames Unchecked_Conversions.Table (N);
14305 Act_Unit : constant Entity_Id := T.Act_Unit;
14306 Eloc : constant Source_Ptr := T.Eloc;
14307 Source : constant Entity_Id := T.Source;
14308 Target : constant Entity_Id := T.Target;
14310 Source_Siz : Uint;
14311 Target_Siz : Uint;
14313 begin
14314 -- Skip if function marked as warnings off
14316 if Warnings_Off (Act_Unit) then
14317 goto Continue;
14318 end if;
14320 -- This validation check, which warns if we have unequal sizes for
14321 -- unchecked conversion, and thus potentially implementation
14322 -- dependent semantics, is one of the few occasions on which we
14323 -- use the official RM size instead of Esize. See description in
14324 -- Einfo "Handling of Type'Size Values" for details.
14326 if Serious_Errors_Detected = 0
14327 and then Known_Static_RM_Size (Source)
14328 and then Known_Static_RM_Size (Target)
14330 -- Don't do the check if warnings off for either type, note the
14331 -- deliberate use of OR here instead of OR ELSE to get the flag
14332 -- Warnings_Off_Used set for both types if appropriate.
14334 and then not (Has_Warnings_Off (Source)
14336 Has_Warnings_Off (Target))
14337 then
14338 Source_Siz := RM_Size (Source);
14339 Target_Siz := RM_Size (Target);
14341 if Source_Siz /= Target_Siz then
14342 Error_Msg
14343 ("?z?types for unchecked conversion have different sizes!",
14344 Eloc, Act_Unit);
14346 if All_Errors_Mode then
14347 Error_Msg_Name_1 := Chars (Source);
14348 Error_Msg_Uint_1 := Source_Siz;
14349 Error_Msg_Name_2 := Chars (Target);
14350 Error_Msg_Uint_2 := Target_Siz;
14351 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14353 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14355 if Is_Discrete_Type (Source)
14356 and then
14357 Is_Discrete_Type (Target)
14358 then
14359 if Source_Siz > Target_Siz then
14360 Error_Msg
14361 ("\?z?^ high order bits of source will "
14362 & "be ignored!", Eloc);
14364 elsif Is_Unsigned_Type (Source) then
14365 Error_Msg
14366 ("\?z?source will be extended with ^ high order "
14367 & "zero bits!", Eloc);
14369 else
14370 Error_Msg
14371 ("\?z?source will be extended with ^ high order "
14372 & "sign bits!", Eloc);
14373 end if;
14375 elsif Source_Siz < Target_Siz then
14376 if Is_Discrete_Type (Target) then
14377 if Bytes_Big_Endian then
14378 Error_Msg
14379 ("\?z?target value will include ^ undefined "
14380 & "low order bits!", Eloc, Act_Unit);
14381 else
14382 Error_Msg
14383 ("\?z?target value will include ^ undefined "
14384 & "high order bits!", Eloc, Act_Unit);
14385 end if;
14387 else
14388 Error_Msg
14389 ("\?z?^ trailing bits of target value will be "
14390 & "undefined!", Eloc, Act_Unit);
14391 end if;
14393 else pragma Assert (Source_Siz > Target_Siz);
14394 if Is_Discrete_Type (Source) then
14395 if Bytes_Big_Endian then
14396 Error_Msg
14397 ("\?z?^ low order bits of source will be "
14398 & "ignored!", Eloc, Act_Unit);
14399 else
14400 Error_Msg
14401 ("\?z?^ high order bits of source will be "
14402 & "ignored!", Eloc, Act_Unit);
14403 end if;
14405 else
14406 Error_Msg
14407 ("\?z?^ trailing bits of source will be "
14408 & "ignored!", Eloc, Act_Unit);
14409 end if;
14410 end if;
14411 end if;
14412 end if;
14413 end if;
14415 -- If both types are access types, we need to check the alignment.
14416 -- If the alignment of both is specified, we can do it here.
14418 if Serious_Errors_Detected = 0
14419 and then Is_Access_Type (Source)
14420 and then Is_Access_Type (Target)
14421 and then Target_Strict_Alignment
14422 and then Present (Designated_Type (Source))
14423 and then Present (Designated_Type (Target))
14424 then
14425 declare
14426 D_Source : constant Entity_Id := Designated_Type (Source);
14427 D_Target : constant Entity_Id := Designated_Type (Target);
14429 begin
14430 if Known_Alignment (D_Source)
14431 and then
14432 Known_Alignment (D_Target)
14433 then
14434 declare
14435 Source_Align : constant Uint := Alignment (D_Source);
14436 Target_Align : constant Uint := Alignment (D_Target);
14438 begin
14439 if Source_Align < Target_Align
14440 and then not Is_Tagged_Type (D_Source)
14442 -- Suppress warning if warnings suppressed on either
14443 -- type or either designated type. Note the use of
14444 -- OR here instead of OR ELSE. That is intentional,
14445 -- we would like to set flag Warnings_Off_Used in
14446 -- all types for which warnings are suppressed.
14448 and then not (Has_Warnings_Off (D_Source)
14450 Has_Warnings_Off (D_Target)
14452 Has_Warnings_Off (Source)
14454 Has_Warnings_Off (Target))
14455 then
14456 Error_Msg_Uint_1 := Target_Align;
14457 Error_Msg_Uint_2 := Source_Align;
14458 Error_Msg_Node_1 := D_Target;
14459 Error_Msg_Node_2 := D_Source;
14460 Error_Msg
14461 ("?z?alignment of & (^) is stricter than "
14462 & "alignment of & (^)!", Eloc, Act_Unit);
14463 Error_Msg
14464 ("\?z?resulting access value may have invalid "
14465 & "alignment!", Eloc, Act_Unit);
14466 end if;
14467 end;
14468 end if;
14469 end;
14470 end if;
14471 end;
14473 <<Continue>>
14474 null;
14475 end loop;
14476 end Validate_Unchecked_Conversions;
14478 end Sem_Ch13;