* testsuite/17_intro/static.cc: Ignore AIX TOC reload warnings.
[official-gcc.git] / gcc / cfgcleanup.c
blob9c126102a543bc075cd9f85c7c4dd70909a97141
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
27 eliminated).
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "rtl.h"
37 #include "tree.h"
38 #include "hard-reg-set.h"
39 #include "regs.h"
40 #include "insn-config.h"
41 #include "flags.h"
42 #include "recog.h"
43 #include "diagnostic-core.h"
44 #include "cselib.h"
45 #include "params.h"
46 #include "tm_p.h"
47 #include "target.h"
48 #include "function.h" /* For inline functions in emit-rtl.h they need crtl. */
49 #include "emit-rtl.h"
50 #include "tree-pass.h"
51 #include "cfgloop.h"
52 #include "expr.h"
53 #include "df.h"
54 #include "dce.h"
55 #include "dbgcnt.h"
57 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59 /* Set to true when we are running first pass of try_optimize_cfg loop. */
60 static bool first_pass;
62 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
63 static bool crossjumps_occured;
65 /* Set to true if we couldn't run an optimization due to stale liveness
66 information; we should run df_analyze to enable more opportunities. */
67 static bool block_was_dirty;
69 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
70 static bool try_crossjump_bb (int, basic_block);
71 static bool outgoing_edges_match (int, basic_block, basic_block);
72 static enum replace_direction old_insns_match_p (int, rtx, rtx);
74 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
75 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block);
78 static bool try_forward_edges (int, basic_block);
79 static edge thread_jump (edge, basic_block);
80 static bool mark_effect (rtx, bitmap);
81 static void notice_new_block (basic_block);
82 static void update_forwarder_flag (basic_block);
83 static int mentions_nonequal_regs (rtx *, void *);
84 static void merge_memattrs (rtx, rtx);
86 /* Set flags for newly created block. */
88 static void
89 notice_new_block (basic_block bb)
91 if (!bb)
92 return;
94 if (forwarder_block_p (bb))
95 bb->flags |= BB_FORWARDER_BLOCK;
98 /* Recompute forwarder flag after block has been modified. */
100 static void
101 update_forwarder_flag (basic_block bb)
103 if (forwarder_block_p (bb))
104 bb->flags |= BB_FORWARDER_BLOCK;
105 else
106 bb->flags &= ~BB_FORWARDER_BLOCK;
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
112 static bool
113 try_simplify_condjump (basic_block cbranch_block)
115 basic_block jump_block, jump_dest_block, cbranch_dest_block;
116 edge cbranch_jump_edge, cbranch_fallthru_edge;
117 rtx cbranch_insn;
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block->succs) != 2)
121 return false;
123 /* Verify that we've got a normal conditional branch at the end
124 of the block. */
125 cbranch_insn = BB_END (cbranch_block);
126 if (!any_condjump_p (cbranch_insn))
127 return false;
129 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
130 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block = cbranch_fallthru_edge->dest;
136 if (!single_pred_p (jump_block)
137 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
138 || !FORWARDER_BLOCK_P (jump_block))
139 return false;
140 jump_dest_block = single_succ (jump_block);
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
144 and cold sections.
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
153 || (cbranch_jump_edge->flags & EDGE_CROSSING))
154 return false;
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
160 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
161 || !can_fallthru (jump_block, cbranch_dest_block))
162 return false;
164 /* Invert the conditional branch. */
165 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
166 return false;
168 if (dump_file)
169 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
170 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
172 /* Success. Update the CFG to match. Note that after this point
173 the edge variable names appear backwards; the redirection is done
174 this way to preserve edge profile data. */
175 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
176 cbranch_dest_block);
177 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
178 jump_dest_block);
179 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
180 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
181 update_br_prob_note (cbranch_block);
183 /* Delete the block with the unconditional jump, and clean up the mess. */
184 delete_basic_block (jump_block);
185 tidy_fallthru_edge (cbranch_jump_edge);
186 update_forwarder_flag (cbranch_block);
188 return true;
191 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
192 on register. Used by jump threading. */
194 static bool
195 mark_effect (rtx exp, regset nonequal)
197 int regno;
198 rtx dest;
199 switch (GET_CODE (exp))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
208 if (HARD_REGISTER_NUM_P (regno))
209 bitmap_clear_range (nonequal, regno,
210 hard_regno_nregs[regno][GET_MODE (dest)]);
211 else
212 bitmap_clear_bit (nonequal, regno);
214 return false;
216 case SET:
217 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
218 return false;
219 dest = SET_DEST (exp);
220 if (dest == pc_rtx)
221 return false;
222 if (!REG_P (dest))
223 return true;
224 regno = REGNO (dest);
225 if (HARD_REGISTER_NUM_P (regno))
226 bitmap_set_range (nonequal, regno,
227 hard_regno_nregs[regno][GET_MODE (dest)]);
228 else
229 bitmap_set_bit (nonequal, regno);
230 return false;
232 default:
233 return false;
237 /* Return nonzero if X is a register set in regset DATA.
238 Called via for_each_rtx. */
239 static int
240 mentions_nonequal_regs (rtx *x, void *data)
242 regset nonequal = (regset) data;
243 if (REG_P (*x))
245 int regno;
247 regno = REGNO (*x);
248 if (REGNO_REG_SET_P (nonequal, regno))
249 return 1;
250 if (regno < FIRST_PSEUDO_REGISTER)
252 int n = hard_regno_nregs[regno][GET_MODE (*x)];
253 while (--n > 0)
254 if (REGNO_REG_SET_P (nonequal, regno + n))
255 return 1;
258 return 0;
260 /* Attempt to prove that the basic block B will have no side effects and
261 always continues in the same edge if reached via E. Return the edge
262 if exist, NULL otherwise. */
264 static edge
265 thread_jump (edge e, basic_block b)
267 rtx set1, set2, cond1, cond2, insn;
268 enum rtx_code code1, code2, reversed_code2;
269 bool reverse1 = false;
270 unsigned i;
271 regset nonequal;
272 bool failed = false;
273 reg_set_iterator rsi;
275 if (b->flags & BB_NONTHREADABLE_BLOCK)
276 return NULL;
278 /* At the moment, we do handle only conditional jumps, but later we may
279 want to extend this code to tablejumps and others. */
280 if (EDGE_COUNT (e->src->succs) != 2)
281 return NULL;
282 if (EDGE_COUNT (b->succs) != 2)
284 b->flags |= BB_NONTHREADABLE_BLOCK;
285 return NULL;
288 /* Second branch must end with onlyjump, as we will eliminate the jump. */
289 if (!any_condjump_p (BB_END (e->src)))
290 return NULL;
292 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
294 b->flags |= BB_NONTHREADABLE_BLOCK;
295 return NULL;
298 set1 = pc_set (BB_END (e->src));
299 set2 = pc_set (BB_END (b));
300 if (((e->flags & EDGE_FALLTHRU) != 0)
301 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
302 reverse1 = true;
304 cond1 = XEXP (SET_SRC (set1), 0);
305 cond2 = XEXP (SET_SRC (set2), 0);
306 if (reverse1)
307 code1 = reversed_comparison_code (cond1, BB_END (e->src));
308 else
309 code1 = GET_CODE (cond1);
311 code2 = GET_CODE (cond2);
312 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
314 if (!comparison_dominates_p (code1, code2)
315 && !comparison_dominates_p (code1, reversed_code2))
316 return NULL;
318 /* Ensure that the comparison operators are equivalent.
319 ??? This is far too pessimistic. We should allow swapped operands,
320 different CCmodes, or for example comparisons for interval, that
321 dominate even when operands are not equivalent. */
322 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
323 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
324 return NULL;
326 /* Short circuit cases where block B contains some side effects, as we can't
327 safely bypass it. */
328 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
329 insn = NEXT_INSN (insn))
330 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
332 b->flags |= BB_NONTHREADABLE_BLOCK;
333 return NULL;
336 cselib_init (0);
338 /* First process all values computed in the source basic block. */
339 for (insn = NEXT_INSN (BB_HEAD (e->src));
340 insn != NEXT_INSN (BB_END (e->src));
341 insn = NEXT_INSN (insn))
342 if (INSN_P (insn))
343 cselib_process_insn (insn);
345 nonequal = BITMAP_ALLOC (NULL);
346 CLEAR_REG_SET (nonequal);
348 /* Now assume that we've continued by the edge E to B and continue
349 processing as if it were same basic block.
350 Our goal is to prove that whole block is an NOOP. */
352 for (insn = NEXT_INSN (BB_HEAD (b));
353 insn != NEXT_INSN (BB_END (b)) && !failed;
354 insn = NEXT_INSN (insn))
356 if (INSN_P (insn))
358 rtx pat = PATTERN (insn);
360 if (GET_CODE (pat) == PARALLEL)
362 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
363 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
365 else
366 failed |= mark_effect (pat, nonequal);
369 cselib_process_insn (insn);
372 /* Later we should clear nonequal of dead registers. So far we don't
373 have life information in cfg_cleanup. */
374 if (failed)
376 b->flags |= BB_NONTHREADABLE_BLOCK;
377 goto failed_exit;
380 /* cond2 must not mention any register that is not equal to the
381 former block. */
382 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
383 goto failed_exit;
385 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
386 goto failed_exit;
388 BITMAP_FREE (nonequal);
389 cselib_finish ();
390 if ((comparison_dominates_p (code1, code2) != 0)
391 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
392 return BRANCH_EDGE (b);
393 else
394 return FALLTHRU_EDGE (b);
396 failed_exit:
397 BITMAP_FREE (nonequal);
398 cselib_finish ();
399 return NULL;
402 /* Attempt to forward edges leaving basic block B.
403 Return true if successful. */
405 static bool
406 try_forward_edges (int mode, basic_block b)
408 bool changed = false;
409 edge_iterator ei;
410 edge e, *threaded_edges = NULL;
412 /* If we are partitioning hot/cold basic blocks, we don't want to
413 mess up unconditional or indirect jumps that cross between hot
414 and cold sections.
416 Basic block partitioning may result in some jumps that appear to
417 be optimizable (or blocks that appear to be mergeable), but which really
418 must be left untouched (they are required to make it safely across
419 partition boundaries). See the comments at the top of
420 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
422 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
423 return false;
425 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
427 basic_block target, first;
428 int counter, goto_locus;
429 bool threaded = false;
430 int nthreaded_edges = 0;
431 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
433 /* Skip complex edges because we don't know how to update them.
435 Still handle fallthru edges, as we can succeed to forward fallthru
436 edge to the same place as the branch edge of conditional branch
437 and turn conditional branch to an unconditional branch. */
438 if (e->flags & EDGE_COMPLEX)
440 ei_next (&ei);
441 continue;
444 target = first = e->dest;
445 counter = NUM_FIXED_BLOCKS;
446 goto_locus = e->goto_locus;
448 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
449 up jumps that cross between hot/cold sections.
451 Basic block partitioning may result in some jumps that appear
452 to be optimizable (or blocks that appear to be mergeable), but which
453 really must be left untouched (they are required to make it safely
454 across partition boundaries). See the comments at the top of
455 bb-reorder.c:partition_hot_cold_basic_blocks for complete
456 details. */
458 if (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
459 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
460 return changed;
462 while (counter < n_basic_blocks_for_fn (cfun))
464 basic_block new_target = NULL;
465 bool new_target_threaded = false;
466 may_thread |= (target->flags & BB_MODIFIED) != 0;
468 if (FORWARDER_BLOCK_P (target)
469 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
470 && single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
472 /* Bypass trivial infinite loops. */
473 new_target = single_succ (target);
474 if (target == new_target)
475 counter = n_basic_blocks_for_fn (cfun);
476 else if (!optimize)
478 /* When not optimizing, ensure that edges or forwarder
479 blocks with different locus are not optimized out. */
480 int new_locus = single_succ_edge (target)->goto_locus;
481 int locus = goto_locus;
483 if (new_locus != UNKNOWN_LOCATION
484 && locus != UNKNOWN_LOCATION
485 && new_locus != locus)
486 new_target = NULL;
487 else
489 rtx last;
491 if (new_locus != UNKNOWN_LOCATION)
492 locus = new_locus;
494 last = BB_END (target);
495 if (DEBUG_INSN_P (last))
496 last = prev_nondebug_insn (last);
498 new_locus = last && INSN_P (last)
499 ? INSN_LOCATION (last) : 0;
501 if (new_locus != UNKNOWN_LOCATION
502 && locus != UNKNOWN_LOCATION
503 && new_locus != locus)
504 new_target = NULL;
505 else
507 if (new_locus != UNKNOWN_LOCATION)
508 locus = new_locus;
510 goto_locus = locus;
516 /* Allow to thread only over one edge at time to simplify updating
517 of probabilities. */
518 else if ((mode & CLEANUP_THREADING) && may_thread)
520 edge t = thread_jump (e, target);
521 if (t)
523 if (!threaded_edges)
524 threaded_edges = XNEWVEC (edge,
525 n_basic_blocks_for_fn (cfun));
526 else
528 int i;
530 /* Detect an infinite loop across blocks not
531 including the start block. */
532 for (i = 0; i < nthreaded_edges; ++i)
533 if (threaded_edges[i] == t)
534 break;
535 if (i < nthreaded_edges)
537 counter = n_basic_blocks_for_fn (cfun);
538 break;
542 /* Detect an infinite loop across the start block. */
543 if (t->dest == b)
544 break;
546 gcc_assert (nthreaded_edges
547 < (n_basic_blocks_for_fn (cfun)
548 - NUM_FIXED_BLOCKS));
549 threaded_edges[nthreaded_edges++] = t;
551 new_target = t->dest;
552 new_target_threaded = true;
556 if (!new_target)
557 break;
559 counter++;
560 target = new_target;
561 threaded |= new_target_threaded;
564 if (counter >= n_basic_blocks_for_fn (cfun))
566 if (dump_file)
567 fprintf (dump_file, "Infinite loop in BB %i.\n",
568 target->index);
570 else if (target == first)
571 ; /* We didn't do anything. */
572 else
574 /* Save the values now, as the edge may get removed. */
575 gcov_type edge_count = e->count;
576 int edge_probability = e->probability;
577 int edge_frequency;
578 int n = 0;
580 e->goto_locus = goto_locus;
582 /* Don't force if target is exit block. */
583 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
585 notice_new_block (redirect_edge_and_branch_force (e, target));
586 if (dump_file)
587 fprintf (dump_file, "Conditionals threaded.\n");
589 else if (!redirect_edge_and_branch (e, target))
591 if (dump_file)
592 fprintf (dump_file,
593 "Forwarding edge %i->%i to %i failed.\n",
594 b->index, e->dest->index, target->index);
595 ei_next (&ei);
596 continue;
599 /* We successfully forwarded the edge. Now update profile
600 data: for each edge we traversed in the chain, remove
601 the original edge's execution count. */
602 edge_frequency = apply_probability (b->frequency, edge_probability);
606 edge t;
608 if (!single_succ_p (first))
610 gcc_assert (n < nthreaded_edges);
611 t = threaded_edges [n++];
612 gcc_assert (t->src == first);
613 update_bb_profile_for_threading (first, edge_frequency,
614 edge_count, t);
615 update_br_prob_note (first);
617 else
619 first->count -= edge_count;
620 if (first->count < 0)
621 first->count = 0;
622 first->frequency -= edge_frequency;
623 if (first->frequency < 0)
624 first->frequency = 0;
625 /* It is possible that as the result of
626 threading we've removed edge as it is
627 threaded to the fallthru edge. Avoid
628 getting out of sync. */
629 if (n < nthreaded_edges
630 && first == threaded_edges [n]->src)
631 n++;
632 t = single_succ_edge (first);
635 t->count -= edge_count;
636 if (t->count < 0)
637 t->count = 0;
638 first = t->dest;
640 while (first != target);
642 changed = true;
643 continue;
645 ei_next (&ei);
648 free (threaded_edges);
649 return changed;
653 /* Blocks A and B are to be merged into a single block. A has no incoming
654 fallthru edge, so it can be moved before B without adding or modifying
655 any jumps (aside from the jump from A to B). */
657 static void
658 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
660 rtx barrier;
662 /* If we are partitioning hot/cold basic blocks, we don't want to
663 mess up unconditional or indirect jumps that cross between hot
664 and cold sections.
666 Basic block partitioning may result in some jumps that appear to
667 be optimizable (or blocks that appear to be mergeable), but which really
668 must be left untouched (they are required to make it safely across
669 partition boundaries). See the comments at the top of
670 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
672 if (BB_PARTITION (a) != BB_PARTITION (b))
673 return;
675 barrier = next_nonnote_insn (BB_END (a));
676 gcc_assert (BARRIER_P (barrier));
677 delete_insn (barrier);
679 /* Scramble the insn chain. */
680 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
681 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
682 df_set_bb_dirty (a);
684 if (dump_file)
685 fprintf (dump_file, "Moved block %d before %d and merged.\n",
686 a->index, b->index);
688 /* Swap the records for the two blocks around. */
690 unlink_block (a);
691 link_block (a, b->prev_bb);
693 /* Now blocks A and B are contiguous. Merge them. */
694 merge_blocks (a, b);
697 /* Blocks A and B are to be merged into a single block. B has no outgoing
698 fallthru edge, so it can be moved after A without adding or modifying
699 any jumps (aside from the jump from A to B). */
701 static void
702 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
704 rtx barrier, real_b_end;
705 rtx label, table;
707 /* If we are partitioning hot/cold basic blocks, we don't want to
708 mess up unconditional or indirect jumps that cross between hot
709 and cold sections.
711 Basic block partitioning may result in some jumps that appear to
712 be optimizable (or blocks that appear to be mergeable), but which really
713 must be left untouched (they are required to make it safely across
714 partition boundaries). See the comments at the top of
715 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
717 if (BB_PARTITION (a) != BB_PARTITION (b))
718 return;
720 real_b_end = BB_END (b);
722 /* If there is a jump table following block B temporarily add the jump table
723 to block B so that it will also be moved to the correct location. */
724 if (tablejump_p (BB_END (b), &label, &table)
725 && prev_active_insn (label) == BB_END (b))
727 BB_END (b) = table;
730 /* There had better have been a barrier there. Delete it. */
731 barrier = NEXT_INSN (BB_END (b));
732 if (barrier && BARRIER_P (barrier))
733 delete_insn (barrier);
736 /* Scramble the insn chain. */
737 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
739 /* Restore the real end of b. */
740 BB_END (b) = real_b_end;
742 if (dump_file)
743 fprintf (dump_file, "Moved block %d after %d and merged.\n",
744 b->index, a->index);
746 /* Now blocks A and B are contiguous. Merge them. */
747 merge_blocks (a, b);
750 /* Attempt to merge basic blocks that are potentially non-adjacent.
751 Return NULL iff the attempt failed, otherwise return basic block
752 where cleanup_cfg should continue. Because the merging commonly
753 moves basic block away or introduces another optimization
754 possibility, return basic block just before B so cleanup_cfg don't
755 need to iterate.
757 It may be good idea to return basic block before C in the case
758 C has been moved after B and originally appeared earlier in the
759 insn sequence, but we have no information available about the
760 relative ordering of these two. Hopefully it is not too common. */
762 static basic_block
763 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
765 basic_block next;
767 /* If we are partitioning hot/cold basic blocks, we don't want to
768 mess up unconditional or indirect jumps that cross between hot
769 and cold sections.
771 Basic block partitioning may result in some jumps that appear to
772 be optimizable (or blocks that appear to be mergeable), but which really
773 must be left untouched (they are required to make it safely across
774 partition boundaries). See the comments at the top of
775 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
777 if (BB_PARTITION (b) != BB_PARTITION (c))
778 return NULL;
780 /* If B has a fallthru edge to C, no need to move anything. */
781 if (e->flags & EDGE_FALLTHRU)
783 int b_index = b->index, c_index = c->index;
785 /* Protect the loop latches. */
786 if (current_loops && c->loop_father->latch == c)
787 return NULL;
789 merge_blocks (b, c);
790 update_forwarder_flag (b);
792 if (dump_file)
793 fprintf (dump_file, "Merged %d and %d without moving.\n",
794 b_index, c_index);
796 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
799 /* Otherwise we will need to move code around. Do that only if expensive
800 transformations are allowed. */
801 else if (mode & CLEANUP_EXPENSIVE)
803 edge tmp_edge, b_fallthru_edge;
804 bool c_has_outgoing_fallthru;
805 bool b_has_incoming_fallthru;
807 /* Avoid overactive code motion, as the forwarder blocks should be
808 eliminated by edge redirection instead. One exception might have
809 been if B is a forwarder block and C has no fallthru edge, but
810 that should be cleaned up by bb-reorder instead. */
811 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
812 return NULL;
814 /* We must make sure to not munge nesting of lexical blocks,
815 and loop notes. This is done by squeezing out all the notes
816 and leaving them there to lie. Not ideal, but functional. */
818 tmp_edge = find_fallthru_edge (c->succs);
819 c_has_outgoing_fallthru = (tmp_edge != NULL);
821 tmp_edge = find_fallthru_edge (b->preds);
822 b_has_incoming_fallthru = (tmp_edge != NULL);
823 b_fallthru_edge = tmp_edge;
824 next = b->prev_bb;
825 if (next == c)
826 next = next->prev_bb;
828 /* Otherwise, we're going to try to move C after B. If C does
829 not have an outgoing fallthru, then it can be moved
830 immediately after B without introducing or modifying jumps. */
831 if (! c_has_outgoing_fallthru)
833 merge_blocks_move_successor_nojumps (b, c);
834 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
837 /* If B does not have an incoming fallthru, then it can be moved
838 immediately before C without introducing or modifying jumps.
839 C cannot be the first block, so we do not have to worry about
840 accessing a non-existent block. */
842 if (b_has_incoming_fallthru)
844 basic_block bb;
846 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
847 return NULL;
848 bb = force_nonfallthru (b_fallthru_edge);
849 if (bb)
850 notice_new_block (bb);
853 merge_blocks_move_predecessor_nojumps (b, c);
854 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
857 return NULL;
861 /* Removes the memory attributes of MEM expression
862 if they are not equal. */
864 void
865 merge_memattrs (rtx x, rtx y)
867 int i;
868 int j;
869 enum rtx_code code;
870 const char *fmt;
872 if (x == y)
873 return;
874 if (x == 0 || y == 0)
875 return;
877 code = GET_CODE (x);
879 if (code != GET_CODE (y))
880 return;
882 if (GET_MODE (x) != GET_MODE (y))
883 return;
885 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
887 if (! MEM_ATTRS (x))
888 MEM_ATTRS (y) = 0;
889 else if (! MEM_ATTRS (y))
890 MEM_ATTRS (x) = 0;
891 else
893 HOST_WIDE_INT mem_size;
895 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
897 set_mem_alias_set (x, 0);
898 set_mem_alias_set (y, 0);
901 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
903 set_mem_expr (x, 0);
904 set_mem_expr (y, 0);
905 clear_mem_offset (x);
906 clear_mem_offset (y);
908 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
909 || (MEM_OFFSET_KNOWN_P (x)
910 && MEM_OFFSET (x) != MEM_OFFSET (y)))
912 clear_mem_offset (x);
913 clear_mem_offset (y);
916 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
918 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
919 set_mem_size (x, mem_size);
920 set_mem_size (y, mem_size);
922 else
924 clear_mem_size (x);
925 clear_mem_size (y);
928 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
929 set_mem_align (y, MEM_ALIGN (x));
932 if (code == MEM)
934 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
936 MEM_READONLY_P (x) = 0;
937 MEM_READONLY_P (y) = 0;
939 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
941 MEM_NOTRAP_P (x) = 0;
942 MEM_NOTRAP_P (y) = 0;
944 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
946 MEM_VOLATILE_P (x) = 1;
947 MEM_VOLATILE_P (y) = 1;
951 fmt = GET_RTX_FORMAT (code);
952 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
954 switch (fmt[i])
956 case 'E':
957 /* Two vectors must have the same length. */
958 if (XVECLEN (x, i) != XVECLEN (y, i))
959 return;
961 for (j = 0; j < XVECLEN (x, i); j++)
962 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
964 break;
966 case 'e':
967 merge_memattrs (XEXP (x, i), XEXP (y, i));
970 return;
974 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
975 different single sets S1 and S2. */
977 static bool
978 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
980 int i;
981 rtx e1, e2;
983 if (p1 == s1 && p2 == s2)
984 return true;
986 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
987 return false;
989 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
990 return false;
992 for (i = 0; i < XVECLEN (p1, 0); i++)
994 e1 = XVECEXP (p1, 0, i);
995 e2 = XVECEXP (p2, 0, i);
996 if (e1 == s1 && e2 == s2)
997 continue;
998 if (reload_completed
999 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
1000 continue;
1002 return false;
1005 return true;
1008 /* Examine register notes on I1 and I2 and return:
1009 - dir_forward if I1 can be replaced by I2, or
1010 - dir_backward if I2 can be replaced by I1, or
1011 - dir_both if both are the case. */
1013 static enum replace_direction
1014 can_replace_by (rtx i1, rtx i2)
1016 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1017 bool c1, c2;
1019 /* Check for 2 sets. */
1020 s1 = single_set (i1);
1021 s2 = single_set (i2);
1022 if (s1 == NULL_RTX || s2 == NULL_RTX)
1023 return dir_none;
1025 /* Check that the 2 sets set the same dest. */
1026 d1 = SET_DEST (s1);
1027 d2 = SET_DEST (s2);
1028 if (!(reload_completed
1029 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1030 return dir_none;
1032 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1033 set dest to the same value. */
1034 note1 = find_reg_equal_equiv_note (i1);
1035 note2 = find_reg_equal_equiv_note (i2);
1036 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1037 || !CONST_INT_P (XEXP (note1, 0)))
1038 return dir_none;
1040 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1041 return dir_none;
1043 /* Although the 2 sets set dest to the same value, we cannot replace
1044 (set (dest) (const_int))
1046 (set (dest) (reg))
1047 because we don't know if the reg is live and has the same value at the
1048 location of replacement. */
1049 src1 = SET_SRC (s1);
1050 src2 = SET_SRC (s2);
1051 c1 = CONST_INT_P (src1);
1052 c2 = CONST_INT_P (src2);
1053 if (c1 && c2)
1054 return dir_both;
1055 else if (c2)
1056 return dir_forward;
1057 else if (c1)
1058 return dir_backward;
1060 return dir_none;
1063 /* Merges directions A and B. */
1065 static enum replace_direction
1066 merge_dir (enum replace_direction a, enum replace_direction b)
1068 /* Implements the following table:
1069 |bo fw bw no
1070 ---+-----------
1071 bo |bo fw bw no
1072 fw |-- fw no no
1073 bw |-- -- bw no
1074 no |-- -- -- no. */
1076 if (a == b)
1077 return a;
1079 if (a == dir_both)
1080 return b;
1081 if (b == dir_both)
1082 return a;
1084 return dir_none;
1087 /* Examine I1 and I2 and return:
1088 - dir_forward if I1 can be replaced by I2, or
1089 - dir_backward if I2 can be replaced by I1, or
1090 - dir_both if both are the case. */
1092 static enum replace_direction
1093 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1095 rtx p1, p2;
1097 /* Verify that I1 and I2 are equivalent. */
1098 if (GET_CODE (i1) != GET_CODE (i2))
1099 return dir_none;
1101 /* __builtin_unreachable() may lead to empty blocks (ending with
1102 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1103 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1104 return dir_both;
1106 /* ??? Do not allow cross-jumping between different stack levels. */
1107 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1108 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1109 if (p1 && p2)
1111 p1 = XEXP (p1, 0);
1112 p2 = XEXP (p2, 0);
1113 if (!rtx_equal_p (p1, p2))
1114 return dir_none;
1116 /* ??? Worse, this adjustment had better be constant lest we
1117 have differing incoming stack levels. */
1118 if (!frame_pointer_needed
1119 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1120 return dir_none;
1122 else if (p1 || p2)
1123 return dir_none;
1125 p1 = PATTERN (i1);
1126 p2 = PATTERN (i2);
1128 if (GET_CODE (p1) != GET_CODE (p2))
1129 return dir_none;
1131 /* If this is a CALL_INSN, compare register usage information.
1132 If we don't check this on stack register machines, the two
1133 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1134 numbers of stack registers in the same basic block.
1135 If we don't check this on machines with delay slots, a delay slot may
1136 be filled that clobbers a parameter expected by the subroutine.
1138 ??? We take the simple route for now and assume that if they're
1139 equal, they were constructed identically.
1141 Also check for identical exception regions. */
1143 if (CALL_P (i1))
1145 /* Ensure the same EH region. */
1146 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1147 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1149 if (!n1 && n2)
1150 return dir_none;
1152 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1153 return dir_none;
1155 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1156 CALL_INSN_FUNCTION_USAGE (i2))
1157 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1158 return dir_none;
1160 /* For address sanitizer, never crossjump __asan_report_* builtins,
1161 otherwise errors might be reported on incorrect lines. */
1162 if (flag_sanitize & SANITIZE_ADDRESS)
1164 rtx call = get_call_rtx_from (i1);
1165 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1167 rtx symbol = XEXP (XEXP (call, 0), 0);
1168 if (SYMBOL_REF_DECL (symbol)
1169 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1171 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1172 == BUILT_IN_NORMAL)
1173 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1174 >= BUILT_IN_ASAN_REPORT_LOAD1
1175 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1176 <= BUILT_IN_ASAN_REPORT_STORE16)
1177 return dir_none;
1183 #ifdef STACK_REGS
1184 /* If cross_jump_death_matters is not 0, the insn's mode
1185 indicates whether or not the insn contains any stack-like
1186 regs. */
1188 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1190 /* If register stack conversion has already been done, then
1191 death notes must also be compared before it is certain that
1192 the two instruction streams match. */
1194 rtx note;
1195 HARD_REG_SET i1_regset, i2_regset;
1197 CLEAR_HARD_REG_SET (i1_regset);
1198 CLEAR_HARD_REG_SET (i2_regset);
1200 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1201 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1202 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1204 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1205 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1206 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1208 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1209 return dir_none;
1211 #endif
1213 if (reload_completed
1214 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1215 return dir_both;
1217 return can_replace_by (i1, i2);
1220 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1221 flow_find_head_matching_sequence, ensure the notes match. */
1223 static void
1224 merge_notes (rtx i1, rtx i2)
1226 /* If the merged insns have different REG_EQUAL notes, then
1227 remove them. */
1228 rtx equiv1 = find_reg_equal_equiv_note (i1);
1229 rtx equiv2 = find_reg_equal_equiv_note (i2);
1231 if (equiv1 && !equiv2)
1232 remove_note (i1, equiv1);
1233 else if (!equiv1 && equiv2)
1234 remove_note (i2, equiv2);
1235 else if (equiv1 && equiv2
1236 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1238 remove_note (i1, equiv1);
1239 remove_note (i2, equiv2);
1243 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1244 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1245 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1246 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1247 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1249 static void
1250 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1251 bool *did_fallthru)
1253 edge fallthru;
1255 *did_fallthru = false;
1257 /* Ignore notes. */
1258 while (!NONDEBUG_INSN_P (*i1))
1260 if (*i1 != BB_HEAD (*bb1))
1262 *i1 = PREV_INSN (*i1);
1263 continue;
1266 if (!follow_fallthru)
1267 return;
1269 fallthru = find_fallthru_edge ((*bb1)->preds);
1270 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1271 || !single_succ_p (fallthru->src))
1272 return;
1274 *bb1 = fallthru->src;
1275 *i1 = BB_END (*bb1);
1276 *did_fallthru = true;
1280 /* Look through the insns at the end of BB1 and BB2 and find the longest
1281 sequence that are either equivalent, or allow forward or backward
1282 replacement. Store the first insns for that sequence in *F1 and *F2 and
1283 return the sequence length.
1285 DIR_P indicates the allowed replacement direction on function entry, and
1286 the actual replacement direction on function exit. If NULL, only equivalent
1287 sequences are allowed.
1289 To simplify callers of this function, if the blocks match exactly,
1290 store the head of the blocks in *F1 and *F2. */
1293 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1294 enum replace_direction *dir_p)
1296 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1297 int ninsns = 0;
1298 rtx p1;
1299 enum replace_direction dir, last_dir, afterlast_dir;
1300 bool follow_fallthru, did_fallthru;
1302 if (dir_p)
1303 dir = *dir_p;
1304 else
1305 dir = dir_both;
1306 afterlast_dir = dir;
1307 last_dir = afterlast_dir;
1309 /* Skip simple jumps at the end of the blocks. Complex jumps still
1310 need to be compared for equivalence, which we'll do below. */
1312 i1 = BB_END (bb1);
1313 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1314 if (onlyjump_p (i1)
1315 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1317 last1 = i1;
1318 i1 = PREV_INSN (i1);
1321 i2 = BB_END (bb2);
1322 if (onlyjump_p (i2)
1323 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1325 last2 = i2;
1326 /* Count everything except for unconditional jump as insn. */
1327 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1328 ninsns++;
1329 i2 = PREV_INSN (i2);
1332 while (true)
1334 /* In the following example, we can replace all jumps to C by jumps to A.
1336 This removes 4 duplicate insns.
1337 [bb A] insn1 [bb C] insn1
1338 insn2 insn2
1339 [bb B] insn3 insn3
1340 insn4 insn4
1341 jump_insn jump_insn
1343 We could also replace all jumps to A by jumps to C, but that leaves B
1344 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1345 step, all jumps to B would be replaced with jumps to the middle of C,
1346 achieving the same result with more effort.
1347 So we allow only the first possibility, which means that we don't allow
1348 fallthru in the block that's being replaced. */
1350 follow_fallthru = dir_p && dir != dir_forward;
1351 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1352 if (did_fallthru)
1353 dir = dir_backward;
1355 follow_fallthru = dir_p && dir != dir_backward;
1356 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1357 if (did_fallthru)
1358 dir = dir_forward;
1360 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1361 break;
1363 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1364 if (dir == dir_none || (!dir_p && dir != dir_both))
1365 break;
1367 merge_memattrs (i1, i2);
1369 /* Don't begin a cross-jump with a NOTE insn. */
1370 if (INSN_P (i1))
1372 merge_notes (i1, i2);
1374 afterlast1 = last1, afterlast2 = last2;
1375 last1 = i1, last2 = i2;
1376 afterlast_dir = last_dir;
1377 last_dir = dir;
1378 p1 = PATTERN (i1);
1379 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1380 ninsns++;
1383 i1 = PREV_INSN (i1);
1384 i2 = PREV_INSN (i2);
1387 #ifdef HAVE_cc0
1388 /* Don't allow the insn after a compare to be shared by
1389 cross-jumping unless the compare is also shared. */
1390 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1391 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1392 #endif
1394 /* Include preceding notes and labels in the cross-jump. One,
1395 this may bring us to the head of the blocks as requested above.
1396 Two, it keeps line number notes as matched as may be. */
1397 if (ninsns)
1399 bb1 = BLOCK_FOR_INSN (last1);
1400 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1401 last1 = PREV_INSN (last1);
1403 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1404 last1 = PREV_INSN (last1);
1406 bb2 = BLOCK_FOR_INSN (last2);
1407 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1408 last2 = PREV_INSN (last2);
1410 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1411 last2 = PREV_INSN (last2);
1413 *f1 = last1;
1414 *f2 = last2;
1417 if (dir_p)
1418 *dir_p = last_dir;
1419 return ninsns;
1422 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1423 the head of the two blocks. Do not include jumps at the end.
1424 If STOP_AFTER is nonzero, stop after finding that many matching
1425 instructions. */
1428 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1429 rtx *f2, int stop_after)
1431 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1432 int ninsns = 0;
1433 edge e;
1434 edge_iterator ei;
1435 int nehedges1 = 0, nehedges2 = 0;
1437 FOR_EACH_EDGE (e, ei, bb1->succs)
1438 if (e->flags & EDGE_EH)
1439 nehedges1++;
1440 FOR_EACH_EDGE (e, ei, bb2->succs)
1441 if (e->flags & EDGE_EH)
1442 nehedges2++;
1444 i1 = BB_HEAD (bb1);
1445 i2 = BB_HEAD (bb2);
1446 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1448 while (true)
1450 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1451 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1453 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1454 break;
1455 i1 = NEXT_INSN (i1);
1458 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1460 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1461 break;
1462 i2 = NEXT_INSN (i2);
1465 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1466 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1467 break;
1469 if (NOTE_P (i1) || NOTE_P (i2)
1470 || JUMP_P (i1) || JUMP_P (i2))
1471 break;
1473 /* A sanity check to make sure we're not merging insns with different
1474 effects on EH. If only one of them ends a basic block, it shouldn't
1475 have an EH edge; if both end a basic block, there should be the same
1476 number of EH edges. */
1477 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1478 && nehedges1 > 0)
1479 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1480 && nehedges2 > 0)
1481 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1482 && nehedges1 != nehedges2))
1483 break;
1485 if (old_insns_match_p (0, i1, i2) != dir_both)
1486 break;
1488 merge_memattrs (i1, i2);
1490 /* Don't begin a cross-jump with a NOTE insn. */
1491 if (INSN_P (i1))
1493 merge_notes (i1, i2);
1495 beforelast1 = last1, beforelast2 = last2;
1496 last1 = i1, last2 = i2;
1497 ninsns++;
1500 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1501 || (stop_after > 0 && ninsns == stop_after))
1502 break;
1504 i1 = NEXT_INSN (i1);
1505 i2 = NEXT_INSN (i2);
1508 #ifdef HAVE_cc0
1509 /* Don't allow a compare to be shared by cross-jumping unless the insn
1510 after the compare is also shared. */
1511 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1512 last1 = beforelast1, last2 = beforelast2, ninsns--;
1513 #endif
1515 if (ninsns)
1517 *f1 = last1;
1518 *f2 = last2;
1521 return ninsns;
1524 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1525 the branch instruction. This means that if we commonize the control
1526 flow before end of the basic block, the semantic remains unchanged.
1528 We may assume that there exists one edge with a common destination. */
1530 static bool
1531 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1533 int nehedges1 = 0, nehedges2 = 0;
1534 edge fallthru1 = 0, fallthru2 = 0;
1535 edge e1, e2;
1536 edge_iterator ei;
1538 /* If we performed shrink-wrapping, edges to the EXIT_BLOCK_PTR can
1539 only be distinguished for JUMP_INSNs. The two paths may differ in
1540 whether they went through the prologue. Sibcalls are fine, we know
1541 that we either didn't need or inserted an epilogue before them. */
1542 if (crtl->shrink_wrapped
1543 && single_succ_p (bb1)
1544 && single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
1545 && !JUMP_P (BB_END (bb1))
1546 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1547 return false;
1549 /* If BB1 has only one successor, we may be looking at either an
1550 unconditional jump, or a fake edge to exit. */
1551 if (single_succ_p (bb1)
1552 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1553 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1554 return (single_succ_p (bb2)
1555 && (single_succ_edge (bb2)->flags
1556 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1557 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1559 /* Match conditional jumps - this may get tricky when fallthru and branch
1560 edges are crossed. */
1561 if (EDGE_COUNT (bb1->succs) == 2
1562 && any_condjump_p (BB_END (bb1))
1563 && onlyjump_p (BB_END (bb1)))
1565 edge b1, f1, b2, f2;
1566 bool reverse, match;
1567 rtx set1, set2, cond1, cond2;
1568 enum rtx_code code1, code2;
1570 if (EDGE_COUNT (bb2->succs) != 2
1571 || !any_condjump_p (BB_END (bb2))
1572 || !onlyjump_p (BB_END (bb2)))
1573 return false;
1575 b1 = BRANCH_EDGE (bb1);
1576 b2 = BRANCH_EDGE (bb2);
1577 f1 = FALLTHRU_EDGE (bb1);
1578 f2 = FALLTHRU_EDGE (bb2);
1580 /* Get around possible forwarders on fallthru edges. Other cases
1581 should be optimized out already. */
1582 if (FORWARDER_BLOCK_P (f1->dest))
1583 f1 = single_succ_edge (f1->dest);
1585 if (FORWARDER_BLOCK_P (f2->dest))
1586 f2 = single_succ_edge (f2->dest);
1588 /* To simplify use of this function, return false if there are
1589 unneeded forwarder blocks. These will get eliminated later
1590 during cleanup_cfg. */
1591 if (FORWARDER_BLOCK_P (f1->dest)
1592 || FORWARDER_BLOCK_P (f2->dest)
1593 || FORWARDER_BLOCK_P (b1->dest)
1594 || FORWARDER_BLOCK_P (b2->dest))
1595 return false;
1597 if (f1->dest == f2->dest && b1->dest == b2->dest)
1598 reverse = false;
1599 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1600 reverse = true;
1601 else
1602 return false;
1604 set1 = pc_set (BB_END (bb1));
1605 set2 = pc_set (BB_END (bb2));
1606 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1607 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1608 reverse = !reverse;
1610 cond1 = XEXP (SET_SRC (set1), 0);
1611 cond2 = XEXP (SET_SRC (set2), 0);
1612 code1 = GET_CODE (cond1);
1613 if (reverse)
1614 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1615 else
1616 code2 = GET_CODE (cond2);
1618 if (code2 == UNKNOWN)
1619 return false;
1621 /* Verify codes and operands match. */
1622 match = ((code1 == code2
1623 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1624 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1625 || (code1 == swap_condition (code2)
1626 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1627 XEXP (cond2, 0))
1628 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1629 XEXP (cond2, 1))));
1631 /* If we return true, we will join the blocks. Which means that
1632 we will only have one branch prediction bit to work with. Thus
1633 we require the existing branches to have probabilities that are
1634 roughly similar. */
1635 if (match
1636 && optimize_bb_for_speed_p (bb1)
1637 && optimize_bb_for_speed_p (bb2))
1639 int prob2;
1641 if (b1->dest == b2->dest)
1642 prob2 = b2->probability;
1643 else
1644 /* Do not use f2 probability as f2 may be forwarded. */
1645 prob2 = REG_BR_PROB_BASE - b2->probability;
1647 /* Fail if the difference in probabilities is greater than 50%.
1648 This rules out two well-predicted branches with opposite
1649 outcomes. */
1650 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1652 if (dump_file)
1653 fprintf (dump_file,
1654 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1655 bb1->index, bb2->index, b1->probability, prob2);
1657 return false;
1661 if (dump_file && match)
1662 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1663 bb1->index, bb2->index);
1665 return match;
1668 /* Generic case - we are seeing a computed jump, table jump or trapping
1669 instruction. */
1671 /* Check whether there are tablejumps in the end of BB1 and BB2.
1672 Return true if they are identical. */
1674 rtx label1, label2;
1675 rtx table1, table2;
1677 if (tablejump_p (BB_END (bb1), &label1, &table1)
1678 && tablejump_p (BB_END (bb2), &label2, &table2)
1679 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1681 /* The labels should never be the same rtx. If they really are same
1682 the jump tables are same too. So disable crossjumping of blocks BB1
1683 and BB2 because when deleting the common insns in the end of BB1
1684 by delete_basic_block () the jump table would be deleted too. */
1685 /* If LABEL2 is referenced in BB1->END do not do anything
1686 because we would loose information when replacing
1687 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1688 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1690 /* Set IDENTICAL to true when the tables are identical. */
1691 bool identical = false;
1692 rtx p1, p2;
1694 p1 = PATTERN (table1);
1695 p2 = PATTERN (table2);
1696 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1698 identical = true;
1700 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1701 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1702 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1703 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1705 int i;
1707 identical = true;
1708 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1709 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1710 identical = false;
1713 if (identical)
1715 replace_label_data rr;
1716 bool match;
1718 /* Temporarily replace references to LABEL1 with LABEL2
1719 in BB1->END so that we could compare the instructions. */
1720 rr.r1 = label1;
1721 rr.r2 = label2;
1722 rr.update_label_nuses = false;
1723 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1725 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1726 == dir_both);
1727 if (dump_file && match)
1728 fprintf (dump_file,
1729 "Tablejumps in bb %i and %i match.\n",
1730 bb1->index, bb2->index);
1732 /* Set the original label in BB1->END because when deleting
1733 a block whose end is a tablejump, the tablejump referenced
1734 from the instruction is deleted too. */
1735 rr.r1 = label2;
1736 rr.r2 = label1;
1737 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1739 return match;
1742 return false;
1746 rtx last1 = BB_END (bb1);
1747 rtx last2 = BB_END (bb2);
1748 if (DEBUG_INSN_P (last1))
1749 last1 = prev_nondebug_insn (last1);
1750 if (DEBUG_INSN_P (last2))
1751 last2 = prev_nondebug_insn (last2);
1752 /* First ensure that the instructions match. There may be many outgoing
1753 edges so this test is generally cheaper. */
1754 if (old_insns_match_p (mode, last1, last2) != dir_both)
1755 return false;
1757 /* Search the outgoing edges, ensure that the counts do match, find possible
1758 fallthru and exception handling edges since these needs more
1759 validation. */
1760 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1761 return false;
1763 bool nonfakeedges = false;
1764 FOR_EACH_EDGE (e1, ei, bb1->succs)
1766 e2 = EDGE_SUCC (bb2, ei.index);
1768 if ((e1->flags & EDGE_FAKE) == 0)
1769 nonfakeedges = true;
1771 if (e1->flags & EDGE_EH)
1772 nehedges1++;
1774 if (e2->flags & EDGE_EH)
1775 nehedges2++;
1777 if (e1->flags & EDGE_FALLTHRU)
1778 fallthru1 = e1;
1779 if (e2->flags & EDGE_FALLTHRU)
1780 fallthru2 = e2;
1783 /* If number of edges of various types does not match, fail. */
1784 if (nehedges1 != nehedges2
1785 || (fallthru1 != 0) != (fallthru2 != 0))
1786 return false;
1788 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1789 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1790 attempt to optimize, as the two basic blocks might have different
1791 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1792 traps there should be REG_ARG_SIZE notes, they could be missing
1793 for __builtin_unreachable () uses though. */
1794 if (!nonfakeedges
1795 && !ACCUMULATE_OUTGOING_ARGS
1796 && (!INSN_P (last1)
1797 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1798 return false;
1800 /* fallthru edges must be forwarded to the same destination. */
1801 if (fallthru1)
1803 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1804 ? single_succ (fallthru1->dest): fallthru1->dest);
1805 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1806 ? single_succ (fallthru2->dest): fallthru2->dest);
1808 if (d1 != d2)
1809 return false;
1812 /* Ensure the same EH region. */
1814 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1815 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1817 if (!n1 && n2)
1818 return false;
1820 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1821 return false;
1824 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1825 version of sequence abstraction. */
1826 FOR_EACH_EDGE (e1, ei, bb2->succs)
1828 edge e2;
1829 edge_iterator ei;
1830 basic_block d1 = e1->dest;
1832 if (FORWARDER_BLOCK_P (d1))
1833 d1 = EDGE_SUCC (d1, 0)->dest;
1835 FOR_EACH_EDGE (e2, ei, bb1->succs)
1837 basic_block d2 = e2->dest;
1838 if (FORWARDER_BLOCK_P (d2))
1839 d2 = EDGE_SUCC (d2, 0)->dest;
1840 if (d1 == d2)
1841 break;
1844 if (!e2)
1845 return false;
1848 return true;
1851 /* Returns true if BB basic block has a preserve label. */
1853 static bool
1854 block_has_preserve_label (basic_block bb)
1856 return (bb
1857 && block_label (bb)
1858 && LABEL_PRESERVE_P (block_label (bb)));
1861 /* E1 and E2 are edges with the same destination block. Search their
1862 predecessors for common code. If found, redirect control flow from
1863 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1864 or the other way around (dir_backward). DIR specifies the allowed
1865 replacement direction. */
1867 static bool
1868 try_crossjump_to_edge (int mode, edge e1, edge e2,
1869 enum replace_direction dir)
1871 int nmatch;
1872 basic_block src1 = e1->src, src2 = e2->src;
1873 basic_block redirect_to, redirect_from, to_remove;
1874 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1875 rtx newpos1, newpos2;
1876 edge s;
1877 edge_iterator ei;
1879 newpos1 = newpos2 = NULL_RTX;
1881 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1882 to try this optimization.
1884 Basic block partitioning may result in some jumps that appear to
1885 be optimizable (or blocks that appear to be mergeable), but which really
1886 must be left untouched (they are required to make it safely across
1887 partition boundaries). See the comments at the top of
1888 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1890 if (crtl->has_bb_partition && reload_completed)
1891 return false;
1893 /* Search backward through forwarder blocks. We don't need to worry
1894 about multiple entry or chained forwarders, as they will be optimized
1895 away. We do this to look past the unconditional jump following a
1896 conditional jump that is required due to the current CFG shape. */
1897 if (single_pred_p (src1)
1898 && FORWARDER_BLOCK_P (src1))
1899 e1 = single_pred_edge (src1), src1 = e1->src;
1901 if (single_pred_p (src2)
1902 && FORWARDER_BLOCK_P (src2))
1903 e2 = single_pred_edge (src2), src2 = e2->src;
1905 /* Nothing to do if we reach ENTRY, or a common source block. */
1906 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1907 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1908 return false;
1909 if (src1 == src2)
1910 return false;
1912 /* Seeing more than 1 forwarder blocks would confuse us later... */
1913 if (FORWARDER_BLOCK_P (e1->dest)
1914 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1915 return false;
1917 if (FORWARDER_BLOCK_P (e2->dest)
1918 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1919 return false;
1921 /* Likewise with dead code (possibly newly created by the other optimizations
1922 of cfg_cleanup). */
1923 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1924 return false;
1926 /* Look for the common insn sequence, part the first ... */
1927 if (!outgoing_edges_match (mode, src1, src2))
1928 return false;
1930 /* ... and part the second. */
1931 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1933 osrc1 = src1;
1934 osrc2 = src2;
1935 if (newpos1 != NULL_RTX)
1936 src1 = BLOCK_FOR_INSN (newpos1);
1937 if (newpos2 != NULL_RTX)
1938 src2 = BLOCK_FOR_INSN (newpos2);
1940 if (dir == dir_backward)
1942 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1943 SWAP (basic_block, osrc1, osrc2);
1944 SWAP (basic_block, src1, src2);
1945 SWAP (edge, e1, e2);
1946 SWAP (rtx, newpos1, newpos2);
1947 #undef SWAP
1950 /* Don't proceed with the crossjump unless we found a sufficient number
1951 of matching instructions or the 'from' block was totally matched
1952 (such that its predecessors will hopefully be redirected and the
1953 block removed). */
1954 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1955 && (newpos1 != BB_HEAD (src1)))
1956 return false;
1958 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1959 if (block_has_preserve_label (e1->dest)
1960 && (e1->flags & EDGE_ABNORMAL))
1961 return false;
1963 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1964 will be deleted.
1965 If we have tablejumps in the end of SRC1 and SRC2
1966 they have been already compared for equivalence in outgoing_edges_match ()
1967 so replace the references to TABLE1 by references to TABLE2. */
1969 rtx label1, label2;
1970 rtx table1, table2;
1972 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1973 && tablejump_p (BB_END (osrc2), &label2, &table2)
1974 && label1 != label2)
1976 replace_label_data rr;
1977 rtx insn;
1979 /* Replace references to LABEL1 with LABEL2. */
1980 rr.r1 = label1;
1981 rr.r2 = label2;
1982 rr.update_label_nuses = true;
1983 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1985 /* Do not replace the label in SRC1->END because when deleting
1986 a block whose end is a tablejump, the tablejump referenced
1987 from the instruction is deleted too. */
1988 if (insn != BB_END (osrc1))
1989 for_each_rtx (&insn, replace_label, &rr);
1994 /* Avoid splitting if possible. We must always split when SRC2 has
1995 EH predecessor edges, or we may end up with basic blocks with both
1996 normal and EH predecessor edges. */
1997 if (newpos2 == BB_HEAD (src2)
1998 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1999 redirect_to = src2;
2000 else
2002 if (newpos2 == BB_HEAD (src2))
2004 /* Skip possible basic block header. */
2005 if (LABEL_P (newpos2))
2006 newpos2 = NEXT_INSN (newpos2);
2007 while (DEBUG_INSN_P (newpos2))
2008 newpos2 = NEXT_INSN (newpos2);
2009 if (NOTE_P (newpos2))
2010 newpos2 = NEXT_INSN (newpos2);
2011 while (DEBUG_INSN_P (newpos2))
2012 newpos2 = NEXT_INSN (newpos2);
2015 if (dump_file)
2016 fprintf (dump_file, "Splitting bb %i before %i insns\n",
2017 src2->index, nmatch);
2018 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
2021 if (dump_file)
2022 fprintf (dump_file,
2023 "Cross jumping from bb %i to bb %i; %i common insns\n",
2024 src1->index, src2->index, nmatch);
2026 /* We may have some registers visible through the block. */
2027 df_set_bb_dirty (redirect_to);
2029 if (osrc2 == src2)
2030 redirect_edges_to = redirect_to;
2031 else
2032 redirect_edges_to = osrc2;
2034 /* Recompute the frequencies and counts of outgoing edges. */
2035 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
2037 edge s2;
2038 edge_iterator ei;
2039 basic_block d = s->dest;
2041 if (FORWARDER_BLOCK_P (d))
2042 d = single_succ (d);
2044 FOR_EACH_EDGE (s2, ei, src1->succs)
2046 basic_block d2 = s2->dest;
2047 if (FORWARDER_BLOCK_P (d2))
2048 d2 = single_succ (d2);
2049 if (d == d2)
2050 break;
2053 s->count += s2->count;
2055 /* Take care to update possible forwarder blocks. We verified
2056 that there is no more than one in the chain, so we can't run
2057 into infinite loop. */
2058 if (FORWARDER_BLOCK_P (s->dest))
2060 single_succ_edge (s->dest)->count += s2->count;
2061 s->dest->count += s2->count;
2062 s->dest->frequency += EDGE_FREQUENCY (s);
2065 if (FORWARDER_BLOCK_P (s2->dest))
2067 single_succ_edge (s2->dest)->count -= s2->count;
2068 if (single_succ_edge (s2->dest)->count < 0)
2069 single_succ_edge (s2->dest)->count = 0;
2070 s2->dest->count -= s2->count;
2071 s2->dest->frequency -= EDGE_FREQUENCY (s);
2072 if (s2->dest->frequency < 0)
2073 s2->dest->frequency = 0;
2074 if (s2->dest->count < 0)
2075 s2->dest->count = 0;
2078 if (!redirect_edges_to->frequency && !src1->frequency)
2079 s->probability = (s->probability + s2->probability) / 2;
2080 else
2081 s->probability
2082 = ((s->probability * redirect_edges_to->frequency +
2083 s2->probability * src1->frequency)
2084 / (redirect_edges_to->frequency + src1->frequency));
2087 /* Adjust count and frequency for the block. An earlier jump
2088 threading pass may have left the profile in an inconsistent
2089 state (see update_bb_profile_for_threading) so we must be
2090 prepared for overflows. */
2091 tmp = redirect_to;
2094 tmp->count += src1->count;
2095 tmp->frequency += src1->frequency;
2096 if (tmp->frequency > BB_FREQ_MAX)
2097 tmp->frequency = BB_FREQ_MAX;
2098 if (tmp == redirect_edges_to)
2099 break;
2100 tmp = find_fallthru_edge (tmp->succs)->dest;
2102 while (true);
2103 update_br_prob_note (redirect_edges_to);
2105 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2107 /* Skip possible basic block header. */
2108 if (LABEL_P (newpos1))
2109 newpos1 = NEXT_INSN (newpos1);
2111 while (DEBUG_INSN_P (newpos1))
2112 newpos1 = NEXT_INSN (newpos1);
2114 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2115 newpos1 = NEXT_INSN (newpos1);
2117 while (DEBUG_INSN_P (newpos1))
2118 newpos1 = NEXT_INSN (newpos1);
2120 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2121 to_remove = single_succ (redirect_from);
2123 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2124 delete_basic_block (to_remove);
2126 update_forwarder_flag (redirect_from);
2127 if (redirect_to != src2)
2128 update_forwarder_flag (src2);
2130 return true;
2133 /* Search the predecessors of BB for common insn sequences. When found,
2134 share code between them by redirecting control flow. Return true if
2135 any changes made. */
2137 static bool
2138 try_crossjump_bb (int mode, basic_block bb)
2140 edge e, e2, fallthru;
2141 bool changed;
2142 unsigned max, ix, ix2;
2144 /* Nothing to do if there is not at least two incoming edges. */
2145 if (EDGE_COUNT (bb->preds) < 2)
2146 return false;
2148 /* Don't crossjump if this block ends in a computed jump,
2149 unless we are optimizing for size. */
2150 if (optimize_bb_for_size_p (bb)
2151 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2152 && computed_jump_p (BB_END (bb)))
2153 return false;
2155 /* If we are partitioning hot/cold basic blocks, we don't want to
2156 mess up unconditional or indirect jumps that cross between hot
2157 and cold sections.
2159 Basic block partitioning may result in some jumps that appear to
2160 be optimizable (or blocks that appear to be mergeable), but which really
2161 must be left untouched (they are required to make it safely across
2162 partition boundaries). See the comments at the top of
2163 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2165 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2166 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2167 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2168 return false;
2170 /* It is always cheapest to redirect a block that ends in a branch to
2171 a block that falls through into BB, as that adds no branches to the
2172 program. We'll try that combination first. */
2173 fallthru = NULL;
2174 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2176 if (EDGE_COUNT (bb->preds) > max)
2177 return false;
2179 fallthru = find_fallthru_edge (bb->preds);
2181 changed = false;
2182 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2184 e = EDGE_PRED (bb, ix);
2185 ix++;
2187 /* As noted above, first try with the fallthru predecessor (or, a
2188 fallthru predecessor if we are in cfglayout mode). */
2189 if (fallthru)
2191 /* Don't combine the fallthru edge into anything else.
2192 If there is a match, we'll do it the other way around. */
2193 if (e == fallthru)
2194 continue;
2195 /* If nothing changed since the last attempt, there is nothing
2196 we can do. */
2197 if (!first_pass
2198 && !((e->src->flags & BB_MODIFIED)
2199 || (fallthru->src->flags & BB_MODIFIED)))
2200 continue;
2202 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2204 changed = true;
2205 ix = 0;
2206 continue;
2210 /* Non-obvious work limiting check: Recognize that we're going
2211 to call try_crossjump_bb on every basic block. So if we have
2212 two blocks with lots of outgoing edges (a switch) and they
2213 share lots of common destinations, then we would do the
2214 cross-jump check once for each common destination.
2216 Now, if the blocks actually are cross-jump candidates, then
2217 all of their destinations will be shared. Which means that
2218 we only need check them for cross-jump candidacy once. We
2219 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2220 choosing to do the check from the block for which the edge
2221 in question is the first successor of A. */
2222 if (EDGE_SUCC (e->src, 0) != e)
2223 continue;
2225 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2227 e2 = EDGE_PRED (bb, ix2);
2229 if (e2 == e)
2230 continue;
2232 /* We've already checked the fallthru edge above. */
2233 if (e2 == fallthru)
2234 continue;
2236 /* The "first successor" check above only prevents multiple
2237 checks of crossjump(A,B). In order to prevent redundant
2238 checks of crossjump(B,A), require that A be the block
2239 with the lowest index. */
2240 if (e->src->index > e2->src->index)
2241 continue;
2243 /* If nothing changed since the last attempt, there is nothing
2244 we can do. */
2245 if (!first_pass
2246 && !((e->src->flags & BB_MODIFIED)
2247 || (e2->src->flags & BB_MODIFIED)))
2248 continue;
2250 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2251 direction. */
2252 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2254 changed = true;
2255 ix = 0;
2256 break;
2261 if (changed)
2262 crossjumps_occured = true;
2264 return changed;
2267 /* Search the successors of BB for common insn sequences. When found,
2268 share code between them by moving it across the basic block
2269 boundary. Return true if any changes made. */
2271 static bool
2272 try_head_merge_bb (basic_block bb)
2274 basic_block final_dest_bb = NULL;
2275 int max_match = INT_MAX;
2276 edge e0;
2277 rtx *headptr, *currptr, *nextptr;
2278 bool changed, moveall;
2279 unsigned ix;
2280 rtx e0_last_head, cond, move_before;
2281 unsigned nedges = EDGE_COUNT (bb->succs);
2282 rtx jump = BB_END (bb);
2283 regset live, live_union;
2285 /* Nothing to do if there is not at least two outgoing edges. */
2286 if (nedges < 2)
2287 return false;
2289 /* Don't crossjump if this block ends in a computed jump,
2290 unless we are optimizing for size. */
2291 if (optimize_bb_for_size_p (bb)
2292 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2293 && computed_jump_p (BB_END (bb)))
2294 return false;
2296 cond = get_condition (jump, &move_before, true, false);
2297 if (cond == NULL_RTX)
2299 #ifdef HAVE_cc0
2300 if (reg_mentioned_p (cc0_rtx, jump))
2301 move_before = prev_nonnote_nondebug_insn (jump);
2302 else
2303 #endif
2304 move_before = jump;
2307 for (ix = 0; ix < nedges; ix++)
2308 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
2309 return false;
2311 for (ix = 0; ix < nedges; ix++)
2313 edge e = EDGE_SUCC (bb, ix);
2314 basic_block other_bb = e->dest;
2316 if (df_get_bb_dirty (other_bb))
2318 block_was_dirty = true;
2319 return false;
2322 if (e->flags & EDGE_ABNORMAL)
2323 return false;
2325 /* Normally, all destination blocks must only be reachable from this
2326 block, i.e. they must have one incoming edge.
2328 There is one special case we can handle, that of multiple consecutive
2329 jumps where the first jumps to one of the targets of the second jump.
2330 This happens frequently in switch statements for default labels.
2331 The structure is as follows:
2332 FINAL_DEST_BB
2333 ....
2334 if (cond) jump A;
2335 fall through
2337 jump with targets A, B, C, D...
2339 has two incoming edges, from FINAL_DEST_BB and BB
2341 In this case, we can try to move the insns through BB and into
2342 FINAL_DEST_BB. */
2343 if (EDGE_COUNT (other_bb->preds) != 1)
2345 edge incoming_edge, incoming_bb_other_edge;
2346 edge_iterator ei;
2348 if (final_dest_bb != NULL
2349 || EDGE_COUNT (other_bb->preds) != 2)
2350 return false;
2352 /* We must be able to move the insns across the whole block. */
2353 move_before = BB_HEAD (bb);
2354 while (!NONDEBUG_INSN_P (move_before))
2355 move_before = NEXT_INSN (move_before);
2357 if (EDGE_COUNT (bb->preds) != 1)
2358 return false;
2359 incoming_edge = EDGE_PRED (bb, 0);
2360 final_dest_bb = incoming_edge->src;
2361 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2362 return false;
2363 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2364 if (incoming_bb_other_edge != incoming_edge)
2365 break;
2366 if (incoming_bb_other_edge->dest != other_bb)
2367 return false;
2371 e0 = EDGE_SUCC (bb, 0);
2372 e0_last_head = NULL_RTX;
2373 changed = false;
2375 for (ix = 1; ix < nedges; ix++)
2377 edge e = EDGE_SUCC (bb, ix);
2378 rtx e0_last, e_last;
2379 int nmatch;
2381 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2382 &e0_last, &e_last, 0);
2383 if (nmatch == 0)
2384 return false;
2386 if (nmatch < max_match)
2388 max_match = nmatch;
2389 e0_last_head = e0_last;
2393 /* If we matched an entire block, we probably have to avoid moving the
2394 last insn. */
2395 if (max_match > 0
2396 && e0_last_head == BB_END (e0->dest)
2397 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2398 || control_flow_insn_p (e0_last_head)))
2400 max_match--;
2401 if (max_match == 0)
2402 return false;
2404 e0_last_head = prev_real_insn (e0_last_head);
2405 while (DEBUG_INSN_P (e0_last_head));
2408 if (max_match == 0)
2409 return false;
2411 /* We must find a union of the live registers at each of the end points. */
2412 live = BITMAP_ALLOC (NULL);
2413 live_union = BITMAP_ALLOC (NULL);
2415 currptr = XNEWVEC (rtx, nedges);
2416 headptr = XNEWVEC (rtx, nedges);
2417 nextptr = XNEWVEC (rtx, nedges);
2419 for (ix = 0; ix < nedges; ix++)
2421 int j;
2422 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2423 rtx head = BB_HEAD (merge_bb);
2425 while (!NONDEBUG_INSN_P (head))
2426 head = NEXT_INSN (head);
2427 headptr[ix] = head;
2428 currptr[ix] = head;
2430 /* Compute the end point and live information */
2431 for (j = 1; j < max_match; j++)
2433 head = NEXT_INSN (head);
2434 while (!NONDEBUG_INSN_P (head));
2435 simulate_backwards_to_point (merge_bb, live, head);
2436 IOR_REG_SET (live_union, live);
2439 /* If we're moving across two blocks, verify the validity of the
2440 first move, then adjust the target and let the loop below deal
2441 with the final move. */
2442 if (final_dest_bb != NULL)
2444 rtx move_upto;
2446 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2447 jump, e0->dest, live_union,
2448 NULL, &move_upto);
2449 if (!moveall)
2451 if (move_upto == NULL_RTX)
2452 goto out;
2454 while (e0_last_head != move_upto)
2456 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2457 live_union);
2458 e0_last_head = PREV_INSN (e0_last_head);
2461 if (e0_last_head == NULL_RTX)
2462 goto out;
2464 jump = BB_END (final_dest_bb);
2465 cond = get_condition (jump, &move_before, true, false);
2466 if (cond == NULL_RTX)
2468 #ifdef HAVE_cc0
2469 if (reg_mentioned_p (cc0_rtx, jump))
2470 move_before = prev_nonnote_nondebug_insn (jump);
2471 else
2472 #endif
2473 move_before = jump;
2479 rtx move_upto;
2480 moveall = can_move_insns_across (currptr[0], e0_last_head,
2481 move_before, jump, e0->dest, live_union,
2482 NULL, &move_upto);
2483 if (!moveall && move_upto == NULL_RTX)
2485 if (jump == move_before)
2486 break;
2488 /* Try again, using a different insertion point. */
2489 move_before = jump;
2491 #ifdef HAVE_cc0
2492 /* Don't try moving before a cc0 user, as that may invalidate
2493 the cc0. */
2494 if (reg_mentioned_p (cc0_rtx, jump))
2495 break;
2496 #endif
2498 continue;
2501 if (final_dest_bb && !moveall)
2502 /* We haven't checked whether a partial move would be OK for the first
2503 move, so we have to fail this case. */
2504 break;
2506 changed = true;
2507 for (;;)
2509 if (currptr[0] == move_upto)
2510 break;
2511 for (ix = 0; ix < nedges; ix++)
2513 rtx curr = currptr[ix];
2515 curr = NEXT_INSN (curr);
2516 while (!NONDEBUG_INSN_P (curr));
2517 currptr[ix] = curr;
2521 /* If we can't currently move all of the identical insns, remember
2522 each insn after the range that we'll merge. */
2523 if (!moveall)
2524 for (ix = 0; ix < nedges; ix++)
2526 rtx curr = currptr[ix];
2528 curr = NEXT_INSN (curr);
2529 while (!NONDEBUG_INSN_P (curr));
2530 nextptr[ix] = curr;
2533 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2534 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2535 if (final_dest_bb != NULL)
2536 df_set_bb_dirty (final_dest_bb);
2537 df_set_bb_dirty (bb);
2538 for (ix = 1; ix < nedges; ix++)
2540 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2541 delete_insn_chain (headptr[ix], currptr[ix], false);
2543 if (!moveall)
2545 if (jump == move_before)
2546 break;
2548 /* For the unmerged insns, try a different insertion point. */
2549 move_before = jump;
2551 #ifdef HAVE_cc0
2552 /* Don't try moving before a cc0 user, as that may invalidate
2553 the cc0. */
2554 if (reg_mentioned_p (cc0_rtx, jump))
2555 break;
2556 #endif
2558 for (ix = 0; ix < nedges; ix++)
2559 currptr[ix] = headptr[ix] = nextptr[ix];
2562 while (!moveall);
2564 out:
2565 free (currptr);
2566 free (headptr);
2567 free (nextptr);
2569 crossjumps_occured |= changed;
2571 return changed;
2574 /* Return true if BB contains just bb note, or bb note followed
2575 by only DEBUG_INSNs. */
2577 static bool
2578 trivially_empty_bb_p (basic_block bb)
2580 rtx insn = BB_END (bb);
2582 while (1)
2584 if (insn == BB_HEAD (bb))
2585 return true;
2586 if (!DEBUG_INSN_P (insn))
2587 return false;
2588 insn = PREV_INSN (insn);
2592 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2593 instructions etc. Return nonzero if changes were made. */
2595 static bool
2596 try_optimize_cfg (int mode)
2598 bool changed_overall = false;
2599 bool changed;
2600 int iterations = 0;
2601 basic_block bb, b, next;
2603 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2604 clear_bb_flags ();
2606 crossjumps_occured = false;
2608 FOR_EACH_BB (bb)
2609 update_forwarder_flag (bb);
2611 if (! targetm.cannot_modify_jumps_p ())
2613 first_pass = true;
2614 /* Attempt to merge blocks as made possible by edge removal. If
2615 a block has only one successor, and the successor has only
2616 one predecessor, they may be combined. */
2619 block_was_dirty = false;
2620 changed = false;
2621 iterations++;
2623 if (dump_file)
2624 fprintf (dump_file,
2625 "\n\ntry_optimize_cfg iteration %i\n\n",
2626 iterations);
2628 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2629 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
2631 basic_block c;
2632 edge s;
2633 bool changed_here = false;
2635 /* Delete trivially dead basic blocks. This is either
2636 blocks with no predecessors, or empty blocks with no
2637 successors. However if the empty block with no
2638 successors is the successor of the ENTRY_BLOCK, it is
2639 kept. This ensures that the ENTRY_BLOCK will have a
2640 successor which is a precondition for many RTL
2641 passes. Empty blocks may result from expanding
2642 __builtin_unreachable (). */
2643 if (EDGE_COUNT (b->preds) == 0
2644 || (EDGE_COUNT (b->succs) == 0
2645 && trivially_empty_bb_p (b)
2646 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2647 != b))
2649 c = b->prev_bb;
2650 if (EDGE_COUNT (b->preds) > 0)
2652 edge e;
2653 edge_iterator ei;
2655 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2657 if (BB_FOOTER (b)
2658 && BARRIER_P (BB_FOOTER (b)))
2659 FOR_EACH_EDGE (e, ei, b->preds)
2660 if ((e->flags & EDGE_FALLTHRU)
2661 && BB_FOOTER (e->src) == NULL)
2663 if (BB_FOOTER (b))
2665 BB_FOOTER (e->src) = BB_FOOTER (b);
2666 BB_FOOTER (b) = NULL;
2668 else
2670 start_sequence ();
2671 BB_FOOTER (e->src) = emit_barrier ();
2672 end_sequence ();
2676 else
2678 rtx last = get_last_bb_insn (b);
2679 if (last && BARRIER_P (last))
2680 FOR_EACH_EDGE (e, ei, b->preds)
2681 if ((e->flags & EDGE_FALLTHRU))
2682 emit_barrier_after (BB_END (e->src));
2685 delete_basic_block (b);
2686 changed = true;
2687 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2688 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
2689 continue;
2692 /* Remove code labels no longer used. */
2693 if (single_pred_p (b)
2694 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2695 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2696 && LABEL_P (BB_HEAD (b))
2697 /* If the previous block ends with a branch to this
2698 block, we can't delete the label. Normally this
2699 is a condjump that is yet to be simplified, but
2700 if CASE_DROPS_THRU, this can be a tablejump with
2701 some element going to the same place as the
2702 default (fallthru). */
2703 && (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2704 || !JUMP_P (BB_END (single_pred (b)))
2705 || ! label_is_jump_target_p (BB_HEAD (b),
2706 BB_END (single_pred (b)))))
2708 delete_insn (BB_HEAD (b));
2709 if (dump_file)
2710 fprintf (dump_file, "Deleted label in block %i.\n",
2711 b->index);
2714 /* If we fall through an empty block, we can remove it. */
2715 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
2716 && single_pred_p (b)
2717 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2718 && !LABEL_P (BB_HEAD (b))
2719 && FORWARDER_BLOCK_P (b)
2720 /* Note that forwarder_block_p true ensures that
2721 there is a successor for this block. */
2722 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2723 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
2725 if (dump_file)
2726 fprintf (dump_file,
2727 "Deleting fallthru block %i.\n",
2728 b->index);
2730 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2731 ? b->next_bb : b->prev_bb);
2732 redirect_edge_succ_nodup (single_pred_edge (b),
2733 single_succ (b));
2734 delete_basic_block (b);
2735 changed = true;
2736 b = c;
2737 continue;
2740 /* Merge B with its single successor, if any. */
2741 if (single_succ_p (b)
2742 && (s = single_succ_edge (b))
2743 && !(s->flags & EDGE_COMPLEX)
2744 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2745 && single_pred_p (c)
2746 && b != c)
2748 /* When not in cfg_layout mode use code aware of reordering
2749 INSN. This code possibly creates new basic blocks so it
2750 does not fit merge_blocks interface and is kept here in
2751 hope that it will become useless once more of compiler
2752 is transformed to use cfg_layout mode. */
2754 if ((mode & CLEANUP_CFGLAYOUT)
2755 && can_merge_blocks_p (b, c))
2757 merge_blocks (b, c);
2758 update_forwarder_flag (b);
2759 changed_here = true;
2761 else if (!(mode & CLEANUP_CFGLAYOUT)
2762 /* If the jump insn has side effects,
2763 we can't kill the edge. */
2764 && (!JUMP_P (BB_END (b))
2765 || (reload_completed
2766 ? simplejump_p (BB_END (b))
2767 : (onlyjump_p (BB_END (b))
2768 && !tablejump_p (BB_END (b),
2769 NULL, NULL))))
2770 && (next = merge_blocks_move (s, b, c, mode)))
2772 b = next;
2773 changed_here = true;
2777 /* Simplify branch over branch. */
2778 if ((mode & CLEANUP_EXPENSIVE)
2779 && !(mode & CLEANUP_CFGLAYOUT)
2780 && try_simplify_condjump (b))
2781 changed_here = true;
2783 /* If B has a single outgoing edge, but uses a
2784 non-trivial jump instruction without side-effects, we
2785 can either delete the jump entirely, or replace it
2786 with a simple unconditional jump. */
2787 if (single_succ_p (b)
2788 && single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2789 && onlyjump_p (BB_END (b))
2790 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2791 && try_redirect_by_replacing_jump (single_succ_edge (b),
2792 single_succ (b),
2793 (mode & CLEANUP_CFGLAYOUT) != 0))
2795 update_forwarder_flag (b);
2796 changed_here = true;
2799 /* Simplify branch to branch. */
2800 if (try_forward_edges (mode, b))
2802 update_forwarder_flag (b);
2803 changed_here = true;
2806 /* Look for shared code between blocks. */
2807 if ((mode & CLEANUP_CROSSJUMP)
2808 && try_crossjump_bb (mode, b))
2809 changed_here = true;
2811 if ((mode & CLEANUP_CROSSJUMP)
2812 /* This can lengthen register lifetimes. Do it only after
2813 reload. */
2814 && reload_completed
2815 && try_head_merge_bb (b))
2816 changed_here = true;
2818 /* Don't get confused by the index shift caused by
2819 deleting blocks. */
2820 if (!changed_here)
2821 b = b->next_bb;
2822 else
2823 changed = true;
2826 if ((mode & CLEANUP_CROSSJUMP)
2827 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
2828 changed = true;
2830 if (block_was_dirty)
2832 /* This should only be set by head-merging. */
2833 gcc_assert (mode & CLEANUP_CROSSJUMP);
2834 df_analyze ();
2837 if (changed)
2839 /* Edge forwarding in particular can cause hot blocks previously
2840 reached by both hot and cold blocks to become dominated only
2841 by cold blocks. This will cause the verification below to fail,
2842 and lead to now cold code in the hot section. This is not easy
2843 to detect and fix during edge forwarding, and in some cases
2844 is only visible after newly unreachable blocks are deleted,
2845 which will be done in fixup_partitions. */
2846 fixup_partitions ();
2848 #ifdef ENABLE_CHECKING
2849 verify_flow_info ();
2850 #endif
2853 changed_overall |= changed;
2854 first_pass = false;
2856 while (changed);
2859 FOR_ALL_BB (b)
2860 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2862 return changed_overall;
2865 /* Delete all unreachable basic blocks. */
2867 bool
2868 delete_unreachable_blocks (void)
2870 bool changed = false;
2871 basic_block b, prev_bb;
2873 find_unreachable_blocks ();
2875 /* When we're in GIMPLE mode and there may be debug insns, we should
2876 delete blocks in reverse dominator order, so as to get a chance
2877 to substitute all released DEFs into debug stmts. If we don't
2878 have dominators information, walking blocks backward gets us a
2879 better chance of retaining most debug information than
2880 otherwise. */
2881 if (MAY_HAVE_DEBUG_INSNS && current_ir_type () == IR_GIMPLE
2882 && dom_info_available_p (CDI_DOMINATORS))
2884 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2885 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
2887 prev_bb = b->prev_bb;
2889 if (!(b->flags & BB_REACHABLE))
2891 /* Speed up the removal of blocks that don't dominate
2892 others. Walking backwards, this should be the common
2893 case. */
2894 if (!first_dom_son (CDI_DOMINATORS, b))
2895 delete_basic_block (b);
2896 else
2898 vec<basic_block> h
2899 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2901 while (h.length ())
2903 b = h.pop ();
2905 prev_bb = b->prev_bb;
2907 gcc_assert (!(b->flags & BB_REACHABLE));
2909 delete_basic_block (b);
2912 h.release ();
2915 changed = true;
2919 else
2921 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2922 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
2924 prev_bb = b->prev_bb;
2926 if (!(b->flags & BB_REACHABLE))
2928 delete_basic_block (b);
2929 changed = true;
2934 if (changed)
2935 tidy_fallthru_edges ();
2936 return changed;
2939 /* Delete any jump tables never referenced. We can't delete them at the
2940 time of removing tablejump insn as they are referenced by the preceding
2941 insns computing the destination, so we delay deleting and garbagecollect
2942 them once life information is computed. */
2943 void
2944 delete_dead_jumptables (void)
2946 basic_block bb;
2948 /* A dead jump table does not belong to any basic block. Scan insns
2949 between two adjacent basic blocks. */
2950 FOR_EACH_BB (bb)
2952 rtx insn, next;
2954 for (insn = NEXT_INSN (BB_END (bb));
2955 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2956 insn = next)
2958 next = NEXT_INSN (insn);
2959 if (LABEL_P (insn)
2960 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2961 && JUMP_TABLE_DATA_P (next))
2963 rtx label = insn, jump = next;
2965 if (dump_file)
2966 fprintf (dump_file, "Dead jumptable %i removed\n",
2967 INSN_UID (insn));
2969 next = NEXT_INSN (next);
2970 delete_insn (jump);
2971 delete_insn (label);
2978 /* Tidy the CFG by deleting unreachable code and whatnot. */
2980 bool
2981 cleanup_cfg (int mode)
2983 bool changed = false;
2985 /* Set the cfglayout mode flag here. We could update all the callers
2986 but that is just inconvenient, especially given that we eventually
2987 want to have cfglayout mode as the default. */
2988 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2989 mode |= CLEANUP_CFGLAYOUT;
2991 timevar_push (TV_CLEANUP_CFG);
2992 if (delete_unreachable_blocks ())
2994 changed = true;
2995 /* We've possibly created trivially dead code. Cleanup it right
2996 now to introduce more opportunities for try_optimize_cfg. */
2997 if (!(mode & (CLEANUP_NO_INSN_DEL))
2998 && !reload_completed)
2999 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3002 compact_blocks ();
3004 /* To tail-merge blocks ending in the same noreturn function (e.g.
3005 a call to abort) we have to insert fake edges to exit. Do this
3006 here once. The fake edges do not interfere with any other CFG
3007 cleanups. */
3008 if (mode & CLEANUP_CROSSJUMP)
3009 add_noreturn_fake_exit_edges ();
3011 if (!dbg_cnt (cfg_cleanup))
3012 return changed;
3014 while (try_optimize_cfg (mode))
3016 delete_unreachable_blocks (), changed = true;
3017 if (!(mode & CLEANUP_NO_INSN_DEL))
3019 /* Try to remove some trivially dead insns when doing an expensive
3020 cleanup. But delete_trivially_dead_insns doesn't work after
3021 reload (it only handles pseudos) and run_fast_dce is too costly
3022 to run in every iteration.
3024 For effective cross jumping, we really want to run a fast DCE to
3025 clean up any dead conditions, or they get in the way of performing
3026 useful tail merges.
3028 Other transformations in cleanup_cfg are not so sensitive to dead
3029 code, so delete_trivially_dead_insns or even doing nothing at all
3030 is good enough. */
3031 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3032 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3033 break;
3034 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
3035 run_fast_dce ();
3037 else
3038 break;
3041 if (mode & CLEANUP_CROSSJUMP)
3042 remove_fake_exit_edges ();
3044 /* Don't call delete_dead_jumptables in cfglayout mode, because
3045 that function assumes that jump tables are in the insns stream.
3046 But we also don't _have_ to delete dead jumptables in cfglayout
3047 mode because we shouldn't even be looking at things that are
3048 not in a basic block. Dead jumptables are cleaned up when
3049 going out of cfglayout mode. */
3050 if (!(mode & CLEANUP_CFGLAYOUT))
3051 delete_dead_jumptables ();
3053 /* ??? We probably do this way too often. */
3054 if (current_loops
3055 && (changed
3056 || (mode & CLEANUP_CFG_CHANGED)))
3058 timevar_push (TV_REPAIR_LOOPS);
3059 /* The above doesn't preserve dominance info if available. */
3060 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3061 calculate_dominance_info (CDI_DOMINATORS);
3062 fix_loop_structure (NULL);
3063 free_dominance_info (CDI_DOMINATORS);
3064 timevar_pop (TV_REPAIR_LOOPS);
3067 timevar_pop (TV_CLEANUP_CFG);
3069 return changed;
3072 static unsigned int
3073 execute_jump (void)
3075 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3076 if (dump_file)
3077 dump_flow_info (dump_file, dump_flags);
3078 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
3079 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
3080 return 0;
3083 namespace {
3085 const pass_data pass_data_jump =
3087 RTL_PASS, /* type */
3088 "jump", /* name */
3089 OPTGROUP_NONE, /* optinfo_flags */
3090 false, /* has_gate */
3091 true, /* has_execute */
3092 TV_JUMP, /* tv_id */
3093 0, /* properties_required */
3094 0, /* properties_provided */
3095 0, /* properties_destroyed */
3096 0, /* todo_flags_start */
3097 TODO_verify_rtl_sharing, /* todo_flags_finish */
3100 class pass_jump : public rtl_opt_pass
3102 public:
3103 pass_jump (gcc::context *ctxt)
3104 : rtl_opt_pass (pass_data_jump, ctxt)
3107 /* opt_pass methods: */
3108 unsigned int execute () { return execute_jump (); }
3110 }; // class pass_jump
3112 } // anon namespace
3114 rtl_opt_pass *
3115 make_pass_jump (gcc::context *ctxt)
3117 return new pass_jump (ctxt);
3120 static unsigned int
3121 execute_jump2 (void)
3123 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3124 return 0;
3127 namespace {
3129 const pass_data pass_data_jump2 =
3131 RTL_PASS, /* type */
3132 "jump2", /* name */
3133 OPTGROUP_NONE, /* optinfo_flags */
3134 false, /* has_gate */
3135 true, /* has_execute */
3136 TV_JUMP, /* tv_id */
3137 0, /* properties_required */
3138 0, /* properties_provided */
3139 0, /* properties_destroyed */
3140 0, /* todo_flags_start */
3141 TODO_verify_rtl_sharing, /* todo_flags_finish */
3144 class pass_jump2 : public rtl_opt_pass
3146 public:
3147 pass_jump2 (gcc::context *ctxt)
3148 : rtl_opt_pass (pass_data_jump2, ctxt)
3151 /* opt_pass methods: */
3152 unsigned int execute () { return execute_jump2 (); }
3154 }; // class pass_jump2
3156 } // anon namespace
3158 rtl_opt_pass *
3159 make_pass_jump2 (gcc::context *ctxt)
3161 return new pass_jump2 (ctxt);