testsuite: Update scanning symbol sections to support AIX.
[official-gcc.git] / gcc / tree-ssa-sink.c
blob207aae2818aec7e67d3b89517eeb67b77e76d93c
1 /* Code sinking for trees
2 Copyright (C) 2001-2020 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "cfganal.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "cfgloop.h"
37 #include "tree-eh.h"
39 /* TODO:
40 1. Sinking store only using scalar promotion (IE without moving the RHS):
42 *q = p;
43 p = p + 1;
44 if (something)
45 *q = <not p>;
46 else
47 y = *q;
50 should become
51 sinktemp = p;
52 p = p + 1;
53 if (something)
54 *q = <not p>;
55 else
57 *q = sinktemp;
58 y = *q
60 Store copy propagation will take care of the store elimination above.
63 2. Sinking using Partial Dead Code Elimination. */
66 static struct
68 /* The number of statements sunk down the flowgraph by code sinking. */
69 int sunk;
71 /* The number of stores commoned and sunk down by store commoning. */
72 int commoned;
73 } sink_stats;
76 /* Given a PHI, and one of its arguments (DEF), find the edge for
77 that argument and return it. If the argument occurs twice in the PHI node,
78 we return NULL. */
80 static basic_block
81 find_bb_for_arg (gphi *phi, tree def)
83 size_t i;
84 bool foundone = false;
85 basic_block result = NULL;
86 for (i = 0; i < gimple_phi_num_args (phi); i++)
87 if (PHI_ARG_DEF (phi, i) == def)
89 if (foundone)
90 return NULL;
91 foundone = true;
92 result = gimple_phi_arg_edge (phi, i)->src;
94 return result;
97 /* When the first immediate use is in a statement, then return true if all
98 immediate uses in IMM are in the same statement.
99 We could also do the case where the first immediate use is in a phi node,
100 and all the other uses are in phis in the same basic block, but this
101 requires some expensive checking later (you have to make sure no def/vdef
102 in the statement occurs for multiple edges in the various phi nodes it's
103 used in, so that you only have one place you can sink it to. */
105 static bool
106 all_immediate_uses_same_place (def_operand_p def_p)
108 tree var = DEF_FROM_PTR (def_p);
109 imm_use_iterator imm_iter;
110 use_operand_p use_p;
112 gimple *firstuse = NULL;
113 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
115 if (is_gimple_debug (USE_STMT (use_p)))
116 continue;
117 if (firstuse == NULL)
118 firstuse = USE_STMT (use_p);
119 else
120 if (firstuse != USE_STMT (use_p))
121 return false;
124 return true;
127 /* Find the nearest common dominator of all of the immediate uses in IMM. */
129 static basic_block
130 nearest_common_dominator_of_uses (def_operand_p def_p, bool *debug_stmts)
132 tree var = DEF_FROM_PTR (def_p);
133 auto_bitmap blocks;
134 basic_block commondom;
135 unsigned int j;
136 bitmap_iterator bi;
137 imm_use_iterator imm_iter;
138 use_operand_p use_p;
140 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
142 gimple *usestmt = USE_STMT (use_p);
143 basic_block useblock;
145 if (gphi *phi = dyn_cast <gphi *> (usestmt))
147 int idx = PHI_ARG_INDEX_FROM_USE (use_p);
149 useblock = gimple_phi_arg_edge (phi, idx)->src;
151 else if (is_gimple_debug (usestmt))
153 *debug_stmts = true;
154 continue;
156 else
158 useblock = gimple_bb (usestmt);
161 /* Short circuit. Nothing dominates the entry block. */
162 if (useblock == ENTRY_BLOCK_PTR_FOR_FN (cfun))
163 return NULL;
165 bitmap_set_bit (blocks, useblock->index);
167 commondom = BASIC_BLOCK_FOR_FN (cfun, bitmap_first_set_bit (blocks));
168 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
169 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
170 BASIC_BLOCK_FOR_FN (cfun, j));
171 return commondom;
174 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
175 tree, return the best basic block between them (inclusive) to place
176 statements.
178 We want the most control dependent block in the shallowest loop nest.
180 If the resulting block is in a shallower loop nest, then use it. Else
181 only use the resulting block if it has significantly lower execution
182 frequency than EARLY_BB to avoid gratuitous statement movement. We
183 consider statements with VOPS more desirable to move.
185 This pass would obviously benefit from PDO as it utilizes block
186 frequencies. It would also benefit from recomputing frequencies
187 if profile data is not available since frequencies often get out
188 of sync with reality. */
190 static basic_block
191 select_best_block (basic_block early_bb,
192 basic_block late_bb,
193 gimple *stmt)
195 basic_block best_bb = late_bb;
196 basic_block temp_bb = late_bb;
197 int threshold;
199 while (temp_bb != early_bb)
201 /* If we've moved into a lower loop nest, then that becomes
202 our best block. */
203 if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb))
204 best_bb = temp_bb;
206 /* Walk up the dominator tree, hopefully we'll find a shallower
207 loop nest. */
208 temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
211 /* If we found a shallower loop nest, then we always consider that
212 a win. This will always give us the most control dependent block
213 within that loop nest. */
214 if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb))
215 return best_bb;
217 /* Get the sinking threshold. If the statement to be moved has memory
218 operands, then increase the threshold by 7% as those are even more
219 profitable to avoid, clamping at 100%. */
220 threshold = param_sink_frequency_threshold;
221 if (gimple_vuse (stmt) || gimple_vdef (stmt))
223 threshold += 7;
224 if (threshold > 100)
225 threshold = 100;
228 /* If BEST_BB is at the same nesting level, then require it to have
229 significantly lower execution frequency to avoid gratuitous movement. */
230 if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb)
231 /* If result of comparsion is unknown, prefer EARLY_BB.
232 Thus use !(...>=..) rather than (...<...) */
233 && !(best_bb->count.apply_scale (100, 1)
234 >= early_bb->count.apply_scale (threshold, 1)))
235 return best_bb;
237 /* No better block found, so return EARLY_BB, which happens to be the
238 statement's original block. */
239 return early_bb;
242 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
243 determine the location to sink the statement to, if any.
244 Returns true if there is such location; in that case, TOGSI points to the
245 statement before that STMT should be moved. */
247 static bool
248 statement_sink_location (gimple *stmt, basic_block frombb,
249 gimple_stmt_iterator *togsi, bool *zero_uses_p)
251 gimple *use;
252 use_operand_p one_use = NULL_USE_OPERAND_P;
253 basic_block sinkbb;
254 use_operand_p use_p;
255 def_operand_p def_p;
256 ssa_op_iter iter;
257 imm_use_iterator imm_iter;
259 *zero_uses_p = false;
261 /* We only can sink assignments and non-looping const/pure calls. */
262 int cf;
263 if (!is_gimple_assign (stmt)
264 && (!is_gimple_call (stmt)
265 || !((cf = gimple_call_flags (stmt)) & (ECF_CONST|ECF_PURE))
266 || (cf & ECF_LOOPING_CONST_OR_PURE)))
267 return false;
269 /* We only can sink stmts with a single definition. */
270 def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
271 if (def_p == NULL_DEF_OPERAND_P)
272 return false;
274 /* There are a few classes of things we can't or don't move, some because we
275 don't have code to handle it, some because it's not profitable and some
276 because it's not legal.
278 We can't sink things that may be global stores, at least not without
279 calculating a lot more information, because we may cause it to no longer
280 be seen by an external routine that needs it depending on where it gets
281 moved to.
283 We can't sink statements that end basic blocks without splitting the
284 incoming edge for the sink location to place it there.
286 We can't sink statements that have volatile operands.
288 We don't want to sink dead code, so anything with 0 immediate uses is not
289 sunk.
291 Don't sink BLKmode assignments if current function has any local explicit
292 register variables, as BLKmode assignments may involve memcpy or memset
293 calls or, on some targets, inline expansion thereof that sometimes need
294 to use specific hard registers.
297 if (stmt_ends_bb_p (stmt)
298 || gimple_has_side_effects (stmt)
299 || (cfun->has_local_explicit_reg_vars
300 && TYPE_MODE (TREE_TYPE (gimple_get_lhs (stmt))) == BLKmode))
301 return false;
303 /* Return if there are no immediate uses of this stmt. */
304 if (has_zero_uses (DEF_FROM_PTR (def_p)))
306 *zero_uses_p = true;
307 return false;
310 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
311 return false;
313 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
315 tree use = USE_FROM_PTR (use_p);
316 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
317 return false;
320 use = NULL;
322 /* If stmt is a store the one and only use needs to be the VOP
323 merging PHI node. */
324 if (virtual_operand_p (DEF_FROM_PTR (def_p)))
326 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
328 gimple *use_stmt = USE_STMT (use_p);
330 /* A killing definition is not a use. */
331 if ((gimple_has_lhs (use_stmt)
332 && operand_equal_p (gimple_get_lhs (stmt),
333 gimple_get_lhs (use_stmt), 0))
334 || stmt_kills_ref_p (use_stmt, gimple_get_lhs (stmt)))
336 /* If use_stmt is or might be a nop assignment then USE_STMT
337 acts as a use as well as definition. */
338 if (stmt != use_stmt
339 && ref_maybe_used_by_stmt_p (use_stmt,
340 gimple_get_lhs (stmt)))
341 return false;
342 continue;
345 if (gimple_code (use_stmt) != GIMPLE_PHI)
346 return false;
348 if (use
349 && use != use_stmt)
350 return false;
352 use = use_stmt;
354 if (!use)
355 return false;
357 /* If all the immediate uses are not in the same place, find the nearest
358 common dominator of all the immediate uses. For PHI nodes, we have to
359 find the nearest common dominator of all of the predecessor blocks, since
360 that is where insertion would have to take place. */
361 else if (gimple_vuse (stmt)
362 || !all_immediate_uses_same_place (def_p))
364 bool debug_stmts = false;
365 basic_block commondom = nearest_common_dominator_of_uses (def_p,
366 &debug_stmts);
368 if (commondom == frombb)
369 return false;
371 /* If this is a load then do not sink past any stores.
372 Look for virtual definitions in the path from frombb to the sink
373 location computed from the real uses and if found, adjust
374 that it a common dominator. */
375 if (gimple_vuse (stmt))
377 /* Do not sink loads from hard registers. */
378 if (gimple_assign_single_p (stmt)
379 && TREE_CODE (gimple_assign_rhs1 (stmt)) == VAR_DECL
380 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
381 return false;
383 imm_use_iterator imm_iter;
384 use_operand_p use_p;
385 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vuse (stmt))
387 gimple *use_stmt = USE_STMT (use_p);
388 basic_block bb = gimple_bb (use_stmt);
389 /* For PHI nodes the block we know sth about is the incoming block
390 with the use. */
391 if (gimple_code (use_stmt) == GIMPLE_PHI)
393 /* In case the PHI node post-dominates the current insert location
394 we can disregard it. But make sure it is not dominating
395 it as well as can happen in a CFG cycle. */
396 if (commondom != bb
397 && !dominated_by_p (CDI_DOMINATORS, commondom, bb)
398 && dominated_by_p (CDI_POST_DOMINATORS, commondom, bb))
399 continue;
400 bb = EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src;
402 else if (!gimple_vdef (use_stmt))
403 continue;
404 /* If the use is not dominated by the path entry it is not on
405 the path. */
406 if (!dominated_by_p (CDI_DOMINATORS, bb, frombb))
407 continue;
408 /* There is no easy way to disregard defs not on the path from
409 frombb to commondom so just consider them all. */
410 commondom = nearest_common_dominator (CDI_DOMINATORS, bb, commondom);
411 if (commondom == frombb)
412 return false;
416 /* Our common dominator has to be dominated by frombb in order to be a
417 trivially safe place to put this statement, since it has multiple
418 uses. */
419 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
420 return false;
422 commondom = select_best_block (frombb, commondom, stmt);
424 if (commondom == frombb)
425 return false;
427 *togsi = gsi_after_labels (commondom);
429 return true;
431 else
433 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
435 if (is_gimple_debug (USE_STMT (one_use)))
436 continue;
437 break;
439 use = USE_STMT (one_use);
441 if (gimple_code (use) != GIMPLE_PHI)
443 sinkbb = select_best_block (frombb, gimple_bb (use), stmt);
445 if (sinkbb == frombb)
446 return false;
448 if (sinkbb == gimple_bb (use))
449 *togsi = gsi_for_stmt (use);
450 else
451 *togsi = gsi_after_labels (sinkbb);
453 return true;
457 sinkbb = find_bb_for_arg (as_a <gphi *> (use), DEF_FROM_PTR (def_p));
459 /* This can happen if there are multiple uses in a PHI. */
460 if (!sinkbb)
461 return false;
463 sinkbb = select_best_block (frombb, sinkbb, stmt);
464 if (!sinkbb || sinkbb == frombb)
465 return false;
467 /* If the latch block is empty, don't make it non-empty by sinking
468 something into it. */
469 if (sinkbb == frombb->loop_father->latch
470 && empty_block_p (sinkbb))
471 return false;
473 *togsi = gsi_after_labels (sinkbb);
475 return true;
478 /* Very simplistic code to sink common stores from the predecessor through
479 our virtual PHI. We do this before sinking stmts from BB as it might
480 expose sinking opportunities of the merged stores.
481 Once we have partial dead code elimination through sth like SSU-PRE this
482 should be moved there. */
484 static unsigned
485 sink_common_stores_to_bb (basic_block bb)
487 unsigned todo = 0;
488 gphi *phi;
490 if (EDGE_COUNT (bb->preds) > 1
491 && (phi = get_virtual_phi (bb)))
493 /* Repeat until no more common stores are found. */
494 while (1)
496 gimple *first_store = NULL;
497 auto_vec <tree, 5> vdefs;
498 gimple_stmt_iterator gsi;
500 /* Search for common stores defined by all virtual PHI args.
501 ??? Common stores not present in all predecessors could
502 be handled by inserting a forwarder to sink to. Generally
503 this involves deciding which stores to do this for if
504 multiple common stores are present for different sets of
505 predecessors. See PR11832 for an interesting case. */
506 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
508 tree arg = gimple_phi_arg_def (phi, i);
509 gimple *def = SSA_NAME_DEF_STMT (arg);
510 if (! is_gimple_assign (def)
511 || stmt_can_throw_internal (cfun, def)
512 || (gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL))
514 /* ??? We could handle some cascading with the def being
515 another PHI. We'd have to insert multiple PHIs for
516 the rhs then though (if they are not all equal). */
517 first_store = NULL;
518 break;
520 /* ??? Do not try to do anything fancy with aliasing, thus
521 do not sink across non-aliased loads (or even stores,
522 so different store order will make the sinking fail). */
523 bool all_uses_on_phi = true;
524 imm_use_iterator iter;
525 use_operand_p use_p;
526 FOR_EACH_IMM_USE_FAST (use_p, iter, arg)
527 if (USE_STMT (use_p) != phi)
529 all_uses_on_phi = false;
530 break;
532 if (! all_uses_on_phi)
534 first_store = NULL;
535 break;
537 /* Check all stores are to the same LHS. */
538 if (! first_store)
539 first_store = def;
540 /* ??? We could handle differing SSA uses in the LHS by inserting
541 PHIs for them. */
542 else if (! operand_equal_p (gimple_assign_lhs (first_store),
543 gimple_assign_lhs (def), 0)
544 || (gimple_clobber_p (first_store)
545 != gimple_clobber_p (def)))
547 first_store = NULL;
548 break;
550 vdefs.safe_push (arg);
552 if (! first_store)
553 break;
555 /* Check if we need a PHI node to merge the stored values. */
556 bool allsame = true;
557 if (!gimple_clobber_p (first_store))
558 for (unsigned i = 1; i < vdefs.length (); ++i)
560 gimple *def = SSA_NAME_DEF_STMT (vdefs[i]);
561 if (! operand_equal_p (gimple_assign_rhs1 (first_store),
562 gimple_assign_rhs1 (def), 0))
564 allsame = false;
565 break;
569 /* We cannot handle aggregate values if we need to merge them. */
570 tree type = TREE_TYPE (gimple_assign_lhs (first_store));
571 if (! allsame
572 && ! is_gimple_reg_type (type))
573 break;
575 if (dump_enabled_p ())
577 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
578 first_store,
579 "sinking common stores %sto ",
580 allsame ? "with same value " : "");
581 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS, TDF_SLIM,
582 gimple_assign_lhs (first_store));
583 dump_printf (MSG_OPTIMIZED_LOCATIONS, "\n");
586 /* Insert a PHI to merge differing stored values if necessary.
587 Note that in general inserting PHIs isn't a very good idea as
588 it makes the job of coalescing and register allocation harder.
589 Even common SSA uses on the rhs/lhs might extend their lifetime
590 across multiple edges by this code motion which makes
591 register allocation harder. */
592 tree from;
593 if (! allsame)
595 from = make_ssa_name (type);
596 gphi *newphi = create_phi_node (from, bb);
597 for (unsigned i = 0; i < vdefs.length (); ++i)
599 gimple *def = SSA_NAME_DEF_STMT (vdefs[i]);
600 add_phi_arg (newphi, gimple_assign_rhs1 (def),
601 EDGE_PRED (bb, i), UNKNOWN_LOCATION);
604 else
605 from = gimple_assign_rhs1 (first_store);
607 /* Remove all stores. */
608 for (unsigned i = 0; i < vdefs.length (); ++i)
609 TREE_VISITED (vdefs[i]) = 1;
610 for (unsigned i = 0; i < vdefs.length (); ++i)
611 /* If we have more than one use of a VDEF on the PHI make sure
612 we remove the defining stmt only once. */
613 if (TREE_VISITED (vdefs[i]))
615 TREE_VISITED (vdefs[i]) = 0;
616 gimple *def = SSA_NAME_DEF_STMT (vdefs[i]);
617 gsi = gsi_for_stmt (def);
618 unlink_stmt_vdef (def);
619 gsi_remove (&gsi, true);
620 release_defs (def);
623 /* Insert the first store at the beginning of the merge BB. */
624 gimple_set_vdef (first_store, gimple_phi_result (phi));
625 SSA_NAME_DEF_STMT (gimple_vdef (first_store)) = first_store;
626 gimple_phi_set_result (phi, make_ssa_name (gimple_vop (cfun)));
627 gimple_set_vuse (first_store, gimple_phi_result (phi));
628 gimple_assign_set_rhs1 (first_store, from);
629 /* ??? Should we reset first_stores location? */
630 gsi = gsi_after_labels (bb);
631 gsi_insert_before (&gsi, first_store, GSI_SAME_STMT);
632 sink_stats.commoned++;
634 todo |= TODO_cleanup_cfg;
637 /* We could now have empty predecessors that we could remove,
638 forming a proper CFG for further sinking. Note that even
639 CFG cleanup doesn't do this fully at the moment and it
640 doesn't preserve post-dominators in the process either.
641 The mergephi pass might do it though. gcc.dg/tree-ssa/ssa-sink-13.c
642 shows this nicely if you disable tail merging or (same effect)
643 make the stored values unequal. */
646 return todo;
649 /* Perform code sinking on BB */
651 static unsigned
652 sink_code_in_bb (basic_block bb)
654 basic_block son;
655 gimple_stmt_iterator gsi;
656 edge_iterator ei;
657 edge e;
658 bool last = true;
659 unsigned todo = 0;
661 /* Sink common stores from the predecessor through our virtual PHI. */
662 todo |= sink_common_stores_to_bb (bb);
664 /* If this block doesn't dominate anything, there can't be any place to sink
665 the statements to. */
666 if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
667 goto earlyout;
669 /* We can't move things across abnormal edges, so don't try. */
670 FOR_EACH_EDGE (e, ei, bb->succs)
671 if (e->flags & EDGE_ABNORMAL)
672 goto earlyout;
674 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
676 gimple *stmt = gsi_stmt (gsi);
677 gimple_stmt_iterator togsi;
678 bool zero_uses_p;
680 if (!statement_sink_location (stmt, bb, &togsi, &zero_uses_p))
682 gimple_stmt_iterator saved = gsi;
683 if (!gsi_end_p (gsi))
684 gsi_prev (&gsi);
685 /* If we face a dead stmt remove it as it possibly blocks
686 sinking of uses. */
687 if (zero_uses_p
688 && ! gimple_vdef (stmt))
690 gsi_remove (&saved, true);
691 release_defs (stmt);
693 else
694 last = false;
695 continue;
697 if (dump_file)
699 fprintf (dump_file, "Sinking ");
700 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
701 fprintf (dump_file, " from bb %d to bb %d\n",
702 bb->index, (gsi_bb (togsi))->index);
705 /* Update virtual operands of statements in the path we
706 do not sink to. */
707 if (gimple_vdef (stmt))
709 imm_use_iterator iter;
710 use_operand_p use_p;
711 gimple *vuse_stmt;
713 FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
714 if (gimple_code (vuse_stmt) != GIMPLE_PHI)
715 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
716 SET_USE (use_p, gimple_vuse (stmt));
719 /* If this is the end of the basic block, we need to insert at the end
720 of the basic block. */
721 if (gsi_end_p (togsi))
722 gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
723 else
724 gsi_move_before (&gsi, &togsi);
726 sink_stats.sunk++;
728 /* If we've just removed the last statement of the BB, the
729 gsi_end_p() test below would fail, but gsi_prev() would have
730 succeeded, and we want it to succeed. So we keep track of
731 whether we're at the last statement and pick up the new last
732 statement. */
733 if (last)
735 gsi = gsi_last_bb (bb);
736 continue;
739 last = false;
740 if (!gsi_end_p (gsi))
741 gsi_prev (&gsi);
744 earlyout:
745 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
746 son;
747 son = next_dom_son (CDI_POST_DOMINATORS, son))
749 todo |= sink_code_in_bb (son);
752 return todo;
755 /* Perform code sinking.
756 This moves code down the flowgraph when we know it would be
757 profitable to do so, or it wouldn't increase the number of
758 executions of the statement.
760 IE given
762 a_1 = b + c;
763 if (<something>)
766 else
768 foo (&b, &c);
769 a_5 = b + c;
771 a_6 = PHI (a_5, a_1);
772 USE a_6.
774 we'll transform this into:
776 if (<something>)
778 a_1 = b + c;
780 else
782 foo (&b, &c);
783 a_5 = b + c;
785 a_6 = PHI (a_5, a_1);
786 USE a_6.
788 Note that this reduces the number of computations of a = b + c to 1
789 when we take the else edge, instead of 2.
791 namespace {
793 const pass_data pass_data_sink_code =
795 GIMPLE_PASS, /* type */
796 "sink", /* name */
797 OPTGROUP_NONE, /* optinfo_flags */
798 TV_TREE_SINK, /* tv_id */
799 /* PROP_no_crit_edges is ensured by running split_edges_for_insertion in
800 pass_data_sink_code::execute (). */
801 ( PROP_cfg | PROP_ssa ), /* properties_required */
802 0, /* properties_provided */
803 0, /* properties_destroyed */
804 0, /* todo_flags_start */
805 TODO_update_ssa, /* todo_flags_finish */
808 class pass_sink_code : public gimple_opt_pass
810 public:
811 pass_sink_code (gcc::context *ctxt)
812 : gimple_opt_pass (pass_data_sink_code, ctxt)
815 /* opt_pass methods: */
816 virtual bool gate (function *) { return flag_tree_sink != 0; }
817 virtual unsigned int execute (function *);
819 }; // class pass_sink_code
821 unsigned int
822 pass_sink_code::execute (function *fun)
824 loop_optimizer_init (LOOPS_NORMAL);
825 split_edges_for_insertion ();
826 connect_infinite_loops_to_exit ();
827 memset (&sink_stats, 0, sizeof (sink_stats));
828 calculate_dominance_info (CDI_DOMINATORS);
829 calculate_dominance_info (CDI_POST_DOMINATORS);
830 unsigned todo = sink_code_in_bb (EXIT_BLOCK_PTR_FOR_FN (fun));
831 statistics_counter_event (fun, "Sunk statements", sink_stats.sunk);
832 statistics_counter_event (fun, "Commoned stores", sink_stats.commoned);
833 free_dominance_info (CDI_POST_DOMINATORS);
834 remove_fake_exit_edges ();
835 loop_optimizer_finalize ();
837 return todo;
840 } // anon namespace
842 gimple_opt_pass *
843 make_pass_sink_code (gcc::context *ctxt)
845 return new pass_sink_code (ctxt);