testsuite: Update scanning symbol sections to support AIX.
[official-gcc.git] / gcc / tree-if-conv.c
blob2062758f40ffc01accc93de14c3b56d88837b72a
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Devang Patel <dpatel@apple.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass implements a tree level if-conversion of loops. Its
22 initial goal is to help the vectorizer to vectorize loops with
23 conditions.
25 A short description of if-conversion:
27 o Decide if a loop is if-convertible or not.
28 o Walk all loop basic blocks in breadth first order (BFS order).
29 o Remove conditional statements (at the end of basic block)
30 and propagate condition into destination basic blocks'
31 predicate list.
32 o Replace modify expression with conditional modify expression
33 using current basic block's condition.
34 o Merge all basic blocks
35 o Replace phi nodes with conditional modify expr
36 o Merge all basic blocks into header
38 Sample transformation:
40 INPUT
41 -----
43 # i_23 = PHI <0(0), i_18(10)>;
44 <L0>:;
45 j_15 = A[i_23];
46 if (j_15 > 41) goto <L1>; else goto <L17>;
48 <L17>:;
49 goto <bb 3> (<L3>);
51 <L1>:;
53 # iftmp.2_4 = PHI <0(8), 42(2)>;
54 <L3>:;
55 A[i_23] = iftmp.2_4;
56 i_18 = i_23 + 1;
57 if (i_18 <= 15) goto <L19>; else goto <L18>;
59 <L19>:;
60 goto <bb 1> (<L0>);
62 <L18>:;
64 OUTPUT
65 ------
67 # i_23 = PHI <0(0), i_18(10)>;
68 <L0>:;
69 j_15 = A[i_23];
71 <L3>:;
72 iftmp.2_4 = j_15 > 41 ? 42 : 0;
73 A[i_23] = iftmp.2_4;
74 i_18 = i_23 + 1;
75 if (i_18 <= 15) goto <L19>; else goto <L18>;
77 <L19>:;
78 goto <bb 1> (<L0>);
80 <L18>:;
83 #include "config.h"
84 #include "system.h"
85 #include "coretypes.h"
86 #include "backend.h"
87 #include "rtl.h"
88 #include "tree.h"
89 #include "gimple.h"
90 #include "cfghooks.h"
91 #include "tree-pass.h"
92 #include "ssa.h"
93 #include "expmed.h"
94 #include "optabs-query.h"
95 #include "gimple-pretty-print.h"
96 #include "alias.h"
97 #include "fold-const.h"
98 #include "stor-layout.h"
99 #include "gimple-fold.h"
100 #include "gimplify.h"
101 #include "gimple-iterator.h"
102 #include "gimplify-me.h"
103 #include "tree-cfg.h"
104 #include "tree-into-ssa.h"
105 #include "tree-ssa.h"
106 #include "cfgloop.h"
107 #include "tree-data-ref.h"
108 #include "tree-scalar-evolution.h"
109 #include "tree-ssa-loop.h"
110 #include "tree-ssa-loop-niter.h"
111 #include "tree-ssa-loop-ivopts.h"
112 #include "tree-ssa-address.h"
113 #include "dbgcnt.h"
114 #include "tree-hash-traits.h"
115 #include "varasm.h"
116 #include "builtins.h"
117 #include "cfganal.h"
118 #include "internal-fn.h"
119 #include "fold-const.h"
120 #include "tree-ssa-sccvn.h"
121 #include "tree-cfgcleanup.h"
122 #include "tree-ssa-dse.h"
124 /* Only handle PHIs with no more arguments unless we are asked to by
125 simd pragma. */
126 #define MAX_PHI_ARG_NUM \
127 ((unsigned) param_max_tree_if_conversion_phi_args)
129 /* True if we've converted a statement that was only executed when some
130 condition C was true, and if for correctness we need to predicate the
131 statement to ensure that it is a no-op when C is false. See
132 predicate_statements for the kinds of predication we support. */
133 static bool need_to_predicate;
135 /* Indicate if there are any complicated PHIs that need to be handled in
136 if-conversion. Complicated PHI has more than two arguments and can't
137 be degenerated to two arguments PHI. See more information in comment
138 before phi_convertible_by_degenerating_args. */
139 static bool any_complicated_phi;
141 /* Hash for struct innermost_loop_behavior. It depends on the user to
142 free the memory. */
144 struct innermost_loop_behavior_hash : nofree_ptr_hash <innermost_loop_behavior>
146 static inline hashval_t hash (const value_type &);
147 static inline bool equal (const value_type &,
148 const compare_type &);
151 inline hashval_t
152 innermost_loop_behavior_hash::hash (const value_type &e)
154 hashval_t hash;
156 hash = iterative_hash_expr (e->base_address, 0);
157 hash = iterative_hash_expr (e->offset, hash);
158 hash = iterative_hash_expr (e->init, hash);
159 return iterative_hash_expr (e->step, hash);
162 inline bool
163 innermost_loop_behavior_hash::equal (const value_type &e1,
164 const compare_type &e2)
166 if ((e1->base_address && !e2->base_address)
167 || (!e1->base_address && e2->base_address)
168 || (!e1->offset && e2->offset)
169 || (e1->offset && !e2->offset)
170 || (!e1->init && e2->init)
171 || (e1->init && !e2->init)
172 || (!e1->step && e2->step)
173 || (e1->step && !e2->step))
174 return false;
176 if (e1->base_address && e2->base_address
177 && !operand_equal_p (e1->base_address, e2->base_address, 0))
178 return false;
179 if (e1->offset && e2->offset
180 && !operand_equal_p (e1->offset, e2->offset, 0))
181 return false;
182 if (e1->init && e2->init
183 && !operand_equal_p (e1->init, e2->init, 0))
184 return false;
185 if (e1->step && e2->step
186 && !operand_equal_p (e1->step, e2->step, 0))
187 return false;
189 return true;
192 /* List of basic blocks in if-conversion-suitable order. */
193 static basic_block *ifc_bbs;
195 /* Hash table to store <DR's innermost loop behavior, DR> pairs. */
196 static hash_map<innermost_loop_behavior_hash,
197 data_reference_p> *innermost_DR_map;
199 /* Hash table to store <base reference, DR> pairs. */
200 static hash_map<tree_operand_hash, data_reference_p> *baseref_DR_map;
202 /* List of redundant SSA names: the first should be replaced by the second. */
203 static vec< std::pair<tree, tree> > redundant_ssa_names;
205 /* Structure used to predicate basic blocks. This is attached to the
206 ->aux field of the BBs in the loop to be if-converted. */
207 struct bb_predicate {
209 /* The condition under which this basic block is executed. */
210 tree predicate;
212 /* PREDICATE is gimplified, and the sequence of statements is
213 recorded here, in order to avoid the duplication of computations
214 that occur in previous conditions. See PR44483. */
215 gimple_seq predicate_gimplified_stmts;
218 /* Returns true when the basic block BB has a predicate. */
220 static inline bool
221 bb_has_predicate (basic_block bb)
223 return bb->aux != NULL;
226 /* Returns the gimplified predicate for basic block BB. */
228 static inline tree
229 bb_predicate (basic_block bb)
231 return ((struct bb_predicate *) bb->aux)->predicate;
234 /* Sets the gimplified predicate COND for basic block BB. */
236 static inline void
237 set_bb_predicate (basic_block bb, tree cond)
239 gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
240 && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
241 || is_gimple_condexpr (cond));
242 ((struct bb_predicate *) bb->aux)->predicate = cond;
245 /* Returns the sequence of statements of the gimplification of the
246 predicate for basic block BB. */
248 static inline gimple_seq
249 bb_predicate_gimplified_stmts (basic_block bb)
251 return ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts;
254 /* Sets the sequence of statements STMTS of the gimplification of the
255 predicate for basic block BB. */
257 static inline void
258 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
260 ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts = stmts;
263 /* Adds the sequence of statements STMTS to the sequence of statements
264 of the predicate for basic block BB. */
266 static inline void
267 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
269 /* We might have updated some stmts in STMTS via force_gimple_operand
270 calling fold_stmt and that producing multiple stmts. Delink immediate
271 uses so update_ssa after loop versioning doesn't get confused for
272 the not yet inserted predicates.
273 ??? This should go away once we reliably avoid updating stmts
274 not in any BB. */
275 for (gimple_stmt_iterator gsi = gsi_start (stmts);
276 !gsi_end_p (gsi); gsi_next (&gsi))
278 gimple *stmt = gsi_stmt (gsi);
279 delink_stmt_imm_use (stmt);
280 gimple_set_modified (stmt, true);
282 gimple_seq_add_seq_without_update
283 (&(((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts), stmts);
286 /* Initializes to TRUE the predicate of basic block BB. */
288 static inline void
289 init_bb_predicate (basic_block bb)
291 bb->aux = XNEW (struct bb_predicate);
292 set_bb_predicate_gimplified_stmts (bb, NULL);
293 set_bb_predicate (bb, boolean_true_node);
296 /* Release the SSA_NAMEs associated with the predicate of basic block BB. */
298 static inline void
299 release_bb_predicate (basic_block bb)
301 gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
302 if (stmts)
304 /* Ensure that these stmts haven't yet been added to a bb. */
305 if (flag_checking)
306 for (gimple_stmt_iterator i = gsi_start (stmts);
307 !gsi_end_p (i); gsi_next (&i))
308 gcc_assert (! gimple_bb (gsi_stmt (i)));
310 /* Discard them. */
311 gimple_seq_discard (stmts);
312 set_bb_predicate_gimplified_stmts (bb, NULL);
316 /* Free the predicate of basic block BB. */
318 static inline void
319 free_bb_predicate (basic_block bb)
321 if (!bb_has_predicate (bb))
322 return;
324 release_bb_predicate (bb);
325 free (bb->aux);
326 bb->aux = NULL;
329 /* Reinitialize predicate of BB with the true predicate. */
331 static inline void
332 reset_bb_predicate (basic_block bb)
334 if (!bb_has_predicate (bb))
335 init_bb_predicate (bb);
336 else
338 release_bb_predicate (bb);
339 set_bb_predicate (bb, boolean_true_node);
343 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
344 the expression EXPR. Inserts the statement created for this
345 computation before GSI and leaves the iterator GSI at the same
346 statement. */
348 static tree
349 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
351 tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
352 gimple *stmt = gimple_build_assign (new_name, expr);
353 gimple_set_vuse (stmt, gimple_vuse (gsi_stmt (*gsi)));
354 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
355 return new_name;
358 /* Return true when COND is a false predicate. */
360 static inline bool
361 is_false_predicate (tree cond)
363 return (cond != NULL_TREE
364 && (cond == boolean_false_node
365 || integer_zerop (cond)));
368 /* Return true when COND is a true predicate. */
370 static inline bool
371 is_true_predicate (tree cond)
373 return (cond == NULL_TREE
374 || cond == boolean_true_node
375 || integer_onep (cond));
378 /* Returns true when BB has a predicate that is not trivial: true or
379 NULL_TREE. */
381 static inline bool
382 is_predicated (basic_block bb)
384 return !is_true_predicate (bb_predicate (bb));
387 /* Parses the predicate COND and returns its comparison code and
388 operands OP0 and OP1. */
390 static enum tree_code
391 parse_predicate (tree cond, tree *op0, tree *op1)
393 gimple *s;
395 if (TREE_CODE (cond) == SSA_NAME
396 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
398 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
400 *op0 = gimple_assign_rhs1 (s);
401 *op1 = gimple_assign_rhs2 (s);
402 return gimple_assign_rhs_code (s);
405 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
407 tree op = gimple_assign_rhs1 (s);
408 tree type = TREE_TYPE (op);
409 enum tree_code code = parse_predicate (op, op0, op1);
411 return code == ERROR_MARK ? ERROR_MARK
412 : invert_tree_comparison (code, HONOR_NANS (type));
415 return ERROR_MARK;
418 if (COMPARISON_CLASS_P (cond))
420 *op0 = TREE_OPERAND (cond, 0);
421 *op1 = TREE_OPERAND (cond, 1);
422 return TREE_CODE (cond);
425 return ERROR_MARK;
428 /* Returns the fold of predicate C1 OR C2 at location LOC. */
430 static tree
431 fold_or_predicates (location_t loc, tree c1, tree c2)
433 tree op1a, op1b, op2a, op2b;
434 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
435 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
437 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
439 tree t = maybe_fold_or_comparisons (boolean_type_node, code1, op1a, op1b,
440 code2, op2a, op2b);
441 if (t)
442 return t;
445 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
448 /* Returns either a COND_EXPR or the folded expression if the folded
449 expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
450 a constant or a SSA_NAME. */
452 static tree
453 fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
455 tree rhs1, lhs1, cond_expr;
457 /* If COND is comparison r != 0 and r has boolean type, convert COND
458 to SSA_NAME to accept by vect bool pattern. */
459 if (TREE_CODE (cond) == NE_EXPR)
461 tree op0 = TREE_OPERAND (cond, 0);
462 tree op1 = TREE_OPERAND (cond, 1);
463 if (TREE_CODE (op0) == SSA_NAME
464 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
465 && (integer_zerop (op1)))
466 cond = op0;
468 cond_expr = fold_ternary (COND_EXPR, type, cond, rhs, lhs);
470 if (cond_expr == NULL_TREE)
471 return build3 (COND_EXPR, type, cond, rhs, lhs);
473 STRIP_USELESS_TYPE_CONVERSION (cond_expr);
475 if (is_gimple_val (cond_expr))
476 return cond_expr;
478 if (TREE_CODE (cond_expr) == ABS_EXPR)
480 rhs1 = TREE_OPERAND (cond_expr, 1);
481 STRIP_USELESS_TYPE_CONVERSION (rhs1);
482 if (is_gimple_val (rhs1))
483 return build1 (ABS_EXPR, type, rhs1);
486 if (TREE_CODE (cond_expr) == MIN_EXPR
487 || TREE_CODE (cond_expr) == MAX_EXPR)
489 lhs1 = TREE_OPERAND (cond_expr, 0);
490 STRIP_USELESS_TYPE_CONVERSION (lhs1);
491 rhs1 = TREE_OPERAND (cond_expr, 1);
492 STRIP_USELESS_TYPE_CONVERSION (rhs1);
493 if (is_gimple_val (rhs1) && is_gimple_val (lhs1))
494 return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
496 return build3 (COND_EXPR, type, cond, rhs, lhs);
499 /* Add condition NC to the predicate list of basic block BB. LOOP is
500 the loop to be if-converted. Use predicate of cd-equivalent block
501 for join bb if it exists: we call basic blocks bb1 and bb2
502 cd-equivalent if they are executed under the same condition. */
504 static inline void
505 add_to_predicate_list (class loop *loop, basic_block bb, tree nc)
507 tree bc, *tp;
508 basic_block dom_bb;
510 if (is_true_predicate (nc))
511 return;
513 /* If dominance tells us this basic block is always executed,
514 don't record any predicates for it. */
515 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
516 return;
518 dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
519 /* We use notion of cd equivalence to get simpler predicate for
520 join block, e.g. if join block has 2 predecessors with predicates
521 p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of
522 p1 & p2 | p1 & !p2. */
523 if (dom_bb != loop->header
524 && get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb)
526 gcc_assert (flow_bb_inside_loop_p (loop, dom_bb));
527 bc = bb_predicate (dom_bb);
528 if (!is_true_predicate (bc))
529 set_bb_predicate (bb, bc);
530 else
531 gcc_assert (is_true_predicate (bb_predicate (bb)));
532 if (dump_file && (dump_flags & TDF_DETAILS))
533 fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n",
534 dom_bb->index, bb->index);
535 return;
538 if (!is_predicated (bb))
539 bc = nc;
540 else
542 bc = bb_predicate (bb);
543 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
544 if (is_true_predicate (bc))
546 reset_bb_predicate (bb);
547 return;
551 /* Allow a TRUTH_NOT_EXPR around the main predicate. */
552 if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
553 tp = &TREE_OPERAND (bc, 0);
554 else
555 tp = &bc;
556 if (!is_gimple_condexpr (*tp))
558 gimple_seq stmts;
559 *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
560 add_bb_predicate_gimplified_stmts (bb, stmts);
562 set_bb_predicate (bb, bc);
565 /* Add the condition COND to the previous condition PREV_COND, and add
566 this to the predicate list of the destination of edge E. LOOP is
567 the loop to be if-converted. */
569 static void
570 add_to_dst_predicate_list (class loop *loop, edge e,
571 tree prev_cond, tree cond)
573 if (!flow_bb_inside_loop_p (loop, e->dest))
574 return;
576 if (!is_true_predicate (prev_cond))
577 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
578 prev_cond, cond);
580 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest))
581 add_to_predicate_list (loop, e->dest, cond);
584 /* Return true if one of the successor edges of BB exits LOOP. */
586 static bool
587 bb_with_exit_edge_p (class loop *loop, basic_block bb)
589 edge e;
590 edge_iterator ei;
592 FOR_EACH_EDGE (e, ei, bb->succs)
593 if (loop_exit_edge_p (loop, e))
594 return true;
596 return false;
599 /* Given PHI which has more than two arguments, this function checks if
600 it's if-convertible by degenerating its arguments. Specifically, if
601 below two conditions are satisfied:
603 1) Number of PHI arguments with different values equals to 2 and one
604 argument has the only occurrence.
605 2) The edge corresponding to the unique argument isn't critical edge.
607 Such PHI can be handled as PHIs have only two arguments. For example,
608 below PHI:
610 res = PHI <A_1(e1), A_1(e2), A_2(e3)>;
612 can be transformed into:
614 res = (predicate of e3) ? A_2 : A_1;
616 Return TRUE if it is the case, FALSE otherwise. */
618 static bool
619 phi_convertible_by_degenerating_args (gphi *phi)
621 edge e;
622 tree arg, t1 = NULL, t2 = NULL;
623 unsigned int i, i1 = 0, i2 = 0, n1 = 0, n2 = 0;
624 unsigned int num_args = gimple_phi_num_args (phi);
626 gcc_assert (num_args > 2);
628 for (i = 0; i < num_args; i++)
630 arg = gimple_phi_arg_def (phi, i);
631 if (t1 == NULL || operand_equal_p (t1, arg, 0))
633 n1++;
634 i1 = i;
635 t1 = arg;
637 else if (t2 == NULL || operand_equal_p (t2, arg, 0))
639 n2++;
640 i2 = i;
641 t2 = arg;
643 else
644 return false;
647 if (n1 != 1 && n2 != 1)
648 return false;
650 /* Check if the edge corresponding to the unique arg is critical. */
651 e = gimple_phi_arg_edge (phi, (n1 == 1) ? i1 : i2);
652 if (EDGE_COUNT (e->src->succs) > 1)
653 return false;
655 return true;
658 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
659 and it belongs to basic block BB. Note at this point, it is sure
660 that PHI is if-convertible. This function updates global variable
661 ANY_COMPLICATED_PHI if PHI is complicated. */
663 static bool
664 if_convertible_phi_p (class loop *loop, basic_block bb, gphi *phi)
666 if (dump_file && (dump_flags & TDF_DETAILS))
668 fprintf (dump_file, "-------------------------\n");
669 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
672 if (bb != loop->header
673 && gimple_phi_num_args (phi) > 2
674 && !phi_convertible_by_degenerating_args (phi))
675 any_complicated_phi = true;
677 return true;
680 /* Records the status of a data reference. This struct is attached to
681 each DR->aux field. */
683 struct ifc_dr {
684 bool rw_unconditionally;
685 bool w_unconditionally;
686 bool written_at_least_once;
688 tree rw_predicate;
689 tree w_predicate;
690 tree base_w_predicate;
693 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
694 #define DR_BASE_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->written_at_least_once)
695 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
696 #define DR_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->w_unconditionally)
698 /* Iterates over DR's and stores refs, DR and base refs, DR pairs in
699 HASH tables. While storing them in HASH table, it checks if the
700 reference is unconditionally read or written and stores that as a flag
701 information. For base reference it checks if it is written atlest once
702 unconditionally and stores it as flag information along with DR.
703 In other words for every data reference A in STMT there exist other
704 accesses to a data reference with the same base with predicates that
705 add up (OR-up) to the true predicate: this ensures that the data
706 reference A is touched (read or written) on every iteration of the
707 if-converted loop. */
708 static void
709 hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a)
712 data_reference_p *master_dr, *base_master_dr;
713 tree base_ref = DR_BASE_OBJECT (a);
714 innermost_loop_behavior *innermost = &DR_INNERMOST (a);
715 tree ca = bb_predicate (gimple_bb (DR_STMT (a)));
716 bool exist1, exist2;
718 master_dr = &innermost_DR_map->get_or_insert (innermost, &exist1);
719 if (!exist1)
720 *master_dr = a;
722 if (DR_IS_WRITE (a))
724 IFC_DR (*master_dr)->w_predicate
725 = fold_or_predicates (UNKNOWN_LOCATION, ca,
726 IFC_DR (*master_dr)->w_predicate);
727 if (is_true_predicate (IFC_DR (*master_dr)->w_predicate))
728 DR_W_UNCONDITIONALLY (*master_dr) = true;
730 IFC_DR (*master_dr)->rw_predicate
731 = fold_or_predicates (UNKNOWN_LOCATION, ca,
732 IFC_DR (*master_dr)->rw_predicate);
733 if (is_true_predicate (IFC_DR (*master_dr)->rw_predicate))
734 DR_RW_UNCONDITIONALLY (*master_dr) = true;
736 if (DR_IS_WRITE (a))
738 base_master_dr = &baseref_DR_map->get_or_insert (base_ref, &exist2);
739 if (!exist2)
740 *base_master_dr = a;
741 IFC_DR (*base_master_dr)->base_w_predicate
742 = fold_or_predicates (UNKNOWN_LOCATION, ca,
743 IFC_DR (*base_master_dr)->base_w_predicate);
744 if (is_true_predicate (IFC_DR (*base_master_dr)->base_w_predicate))
745 DR_BASE_W_UNCONDITIONALLY (*base_master_dr) = true;
749 /* Return TRUE if can prove the index IDX of an array reference REF is
750 within array bound. Return false otherwise. */
752 static bool
753 idx_within_array_bound (tree ref, tree *idx, void *dta)
755 wi::overflow_type overflow;
756 widest_int niter, valid_niter, delta, wi_step;
757 tree ev, init, step;
758 tree low, high;
759 class loop *loop = (class loop*) dta;
761 /* Only support within-bound access for array references. */
762 if (TREE_CODE (ref) != ARRAY_REF)
763 return false;
765 /* For arrays at the end of the structure, we are not guaranteed that they
766 do not really extend over their declared size. However, for arrays of
767 size greater than one, this is unlikely to be intended. */
768 if (array_at_struct_end_p (ref))
769 return false;
771 ev = analyze_scalar_evolution (loop, *idx);
772 ev = instantiate_parameters (loop, ev);
773 init = initial_condition (ev);
774 step = evolution_part_in_loop_num (ev, loop->num);
776 if (!init || TREE_CODE (init) != INTEGER_CST
777 || (step && TREE_CODE (step) != INTEGER_CST))
778 return false;
780 low = array_ref_low_bound (ref);
781 high = array_ref_up_bound (ref);
783 /* The case of nonconstant bounds could be handled, but it would be
784 complicated. */
785 if (TREE_CODE (low) != INTEGER_CST
786 || !high || TREE_CODE (high) != INTEGER_CST)
787 return false;
789 /* Check if the intial idx is within bound. */
790 if (wi::to_widest (init) < wi::to_widest (low)
791 || wi::to_widest (init) > wi::to_widest (high))
792 return false;
794 /* The idx is always within bound. */
795 if (!step || integer_zerop (step))
796 return true;
798 if (!max_loop_iterations (loop, &niter))
799 return false;
801 if (wi::to_widest (step) < 0)
803 delta = wi::to_widest (init) - wi::to_widest (low);
804 wi_step = -wi::to_widest (step);
806 else
808 delta = wi::to_widest (high) - wi::to_widest (init);
809 wi_step = wi::to_widest (step);
812 valid_niter = wi::div_floor (delta, wi_step, SIGNED, &overflow);
813 /* The iteration space of idx is within array bound. */
814 if (!overflow && niter <= valid_niter)
815 return true;
817 return false;
820 /* Return TRUE if ref is a within bound array reference. */
822 static bool
823 ref_within_array_bound (gimple *stmt, tree ref)
825 class loop *loop = loop_containing_stmt (stmt);
827 gcc_assert (loop != NULL);
828 return for_each_index (&ref, idx_within_array_bound, loop);
832 /* Given a memory reference expression T, return TRUE if base object
833 it refers to is writable. The base object of a memory reference
834 is the main object being referenced, which is returned by function
835 get_base_address. */
837 static bool
838 base_object_writable (tree ref)
840 tree base_tree = get_base_address (ref);
842 return (base_tree
843 && DECL_P (base_tree)
844 && decl_binds_to_current_def_p (base_tree)
845 && !TREE_READONLY (base_tree));
848 /* Return true when the memory references of STMT won't trap in the
849 if-converted code. There are two things that we have to check for:
851 - writes to memory occur to writable memory: if-conversion of
852 memory writes transforms the conditional memory writes into
853 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
854 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
855 be executed at all in the original code, it may be a readonly
856 memory. To check that A is not const-qualified, we check that
857 there exists at least an unconditional write to A in the current
858 function.
860 - reads or writes to memory are valid memory accesses for every
861 iteration. To check that the memory accesses are correctly formed
862 and that we are allowed to read and write in these locations, we
863 check that the memory accesses to be if-converted occur at every
864 iteration unconditionally.
866 Returns true for the memory reference in STMT, same memory reference
867 is read or written unconditionally atleast once and the base memory
868 reference is written unconditionally once. This is to check reference
869 will not write fault. Also retuns true if the memory reference is
870 unconditionally read once then we are conditionally writing to memory
871 which is defined as read and write and is bound to the definition
872 we are seeing. */
873 static bool
874 ifcvt_memrefs_wont_trap (gimple *stmt, vec<data_reference_p> drs)
876 /* If DR didn't see a reference here we can't use it to tell
877 whether the ref traps or not. */
878 if (gimple_uid (stmt) == 0)
879 return false;
881 data_reference_p *master_dr, *base_master_dr;
882 data_reference_p a = drs[gimple_uid (stmt) - 1];
884 tree base = DR_BASE_OBJECT (a);
885 innermost_loop_behavior *innermost = &DR_INNERMOST (a);
887 gcc_assert (DR_STMT (a) == stmt);
888 gcc_assert (DR_BASE_ADDRESS (a) || DR_OFFSET (a)
889 || DR_INIT (a) || DR_STEP (a));
891 master_dr = innermost_DR_map->get (innermost);
892 gcc_assert (master_dr != NULL);
894 base_master_dr = baseref_DR_map->get (base);
896 /* If a is unconditionally written to it doesn't trap. */
897 if (DR_W_UNCONDITIONALLY (*master_dr))
898 return true;
900 /* If a is unconditionally accessed then ...
902 Even a is conditional access, we can treat it as an unconditional
903 one if it's an array reference and all its index are within array
904 bound. */
905 if (DR_RW_UNCONDITIONALLY (*master_dr)
906 || ref_within_array_bound (stmt, DR_REF (a)))
908 /* an unconditional read won't trap. */
909 if (DR_IS_READ (a))
910 return true;
912 /* an unconditionaly write won't trap if the base is written
913 to unconditionally. */
914 if (base_master_dr
915 && DR_BASE_W_UNCONDITIONALLY (*base_master_dr))
916 return flag_store_data_races;
917 /* or the base is known to be not readonly. */
918 else if (base_object_writable (DR_REF (a)))
919 return flag_store_data_races;
922 return false;
925 /* Return true if STMT could be converted into a masked load or store
926 (conditional load or store based on a mask computed from bb predicate). */
928 static bool
929 ifcvt_can_use_mask_load_store (gimple *stmt)
931 /* Check whether this is a load or store. */
932 tree lhs = gimple_assign_lhs (stmt);
933 bool is_load;
934 tree ref;
935 if (gimple_store_p (stmt))
937 if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
938 return false;
939 is_load = false;
940 ref = lhs;
942 else if (gimple_assign_load_p (stmt))
944 is_load = true;
945 ref = gimple_assign_rhs1 (stmt);
947 else
948 return false;
950 if (may_be_nonaddressable_p (ref))
951 return false;
953 /* Mask should be integer mode of the same size as the load/store
954 mode. */
955 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
956 if (!int_mode_for_mode (mode).exists () || VECTOR_MODE_P (mode))
957 return false;
959 if (can_vec_mask_load_store_p (mode, VOIDmode, is_load))
960 return true;
962 return false;
965 /* Return true if STMT could be converted from an operation that is
966 unconditional to one that is conditional on a bb predicate mask. */
968 static bool
969 ifcvt_can_predicate (gimple *stmt)
971 basic_block bb = gimple_bb (stmt);
973 if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
974 || bb->loop_father->dont_vectorize
975 || gimple_has_volatile_ops (stmt))
976 return false;
978 if (gimple_assign_single_p (stmt))
979 return ifcvt_can_use_mask_load_store (stmt);
981 tree_code code = gimple_assign_rhs_code (stmt);
982 tree lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
983 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
984 if (!types_compatible_p (lhs_type, rhs_type))
985 return false;
986 internal_fn cond_fn = get_conditional_internal_fn (code);
987 return (cond_fn != IFN_LAST
988 && vectorized_internal_fn_supported_p (cond_fn, lhs_type));
991 /* Return true when STMT is if-convertible.
993 GIMPLE_ASSIGN statement is not if-convertible if,
994 - it is not movable,
995 - it could trap,
996 - LHS is not var decl. */
998 static bool
999 if_convertible_gimple_assign_stmt_p (gimple *stmt,
1000 vec<data_reference_p> refs)
1002 tree lhs = gimple_assign_lhs (stmt);
1004 if (dump_file && (dump_flags & TDF_DETAILS))
1006 fprintf (dump_file, "-------------------------\n");
1007 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1010 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
1011 return false;
1013 /* Some of these constrains might be too conservative. */
1014 if (stmt_ends_bb_p (stmt)
1015 || gimple_has_volatile_ops (stmt)
1016 || (TREE_CODE (lhs) == SSA_NAME
1017 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1018 || gimple_has_side_effects (stmt))
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1021 fprintf (dump_file, "stmt not suitable for ifcvt\n");
1022 return false;
1025 /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
1026 in between if_convertible_loop_p and combine_blocks
1027 we can perform loop versioning. */
1028 gimple_set_plf (stmt, GF_PLF_2, false);
1030 if ((! gimple_vuse (stmt)
1031 || gimple_could_trap_p_1 (stmt, false, false)
1032 || ! ifcvt_memrefs_wont_trap (stmt, refs))
1033 && gimple_could_trap_p (stmt))
1035 if (ifcvt_can_predicate (stmt))
1037 gimple_set_plf (stmt, GF_PLF_2, true);
1038 need_to_predicate = true;
1039 return true;
1041 if (dump_file && (dump_flags & TDF_DETAILS))
1042 fprintf (dump_file, "tree could trap...\n");
1043 return false;
1046 /* When if-converting stores force versioning, likewise if we
1047 ended up generating store data races. */
1048 if (gimple_vdef (stmt))
1049 need_to_predicate = true;
1051 return true;
1054 /* Return true when STMT is if-convertible.
1056 A statement is if-convertible if:
1057 - it is an if-convertible GIMPLE_ASSIGN,
1058 - it is a GIMPLE_LABEL or a GIMPLE_COND,
1059 - it is builtins call. */
1061 static bool
1062 if_convertible_stmt_p (gimple *stmt, vec<data_reference_p> refs)
1064 switch (gimple_code (stmt))
1066 case GIMPLE_LABEL:
1067 case GIMPLE_DEBUG:
1068 case GIMPLE_COND:
1069 return true;
1071 case GIMPLE_ASSIGN:
1072 return if_convertible_gimple_assign_stmt_p (stmt, refs);
1074 case GIMPLE_CALL:
1076 tree fndecl = gimple_call_fndecl (stmt);
1077 if (fndecl)
1079 int flags = gimple_call_flags (stmt);
1080 if ((flags & ECF_CONST)
1081 && !(flags & ECF_LOOPING_CONST_OR_PURE)
1082 /* We can only vectorize some builtins at the moment,
1083 so restrict if-conversion to those. */
1084 && fndecl_built_in_p (fndecl))
1085 return true;
1087 return false;
1090 default:
1091 /* Don't know what to do with 'em so don't do anything. */
1092 if (dump_file && (dump_flags & TDF_DETAILS))
1094 fprintf (dump_file, "don't know what to do\n");
1095 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1097 return false;
1100 return true;
1103 /* Assumes that BB has more than 1 predecessors.
1104 Returns false if at least one successor is not on critical edge
1105 and true otherwise. */
1107 static inline bool
1108 all_preds_critical_p (basic_block bb)
1110 edge e;
1111 edge_iterator ei;
1113 FOR_EACH_EDGE (e, ei, bb->preds)
1114 if (EDGE_COUNT (e->src->succs) == 1)
1115 return false;
1116 return true;
1119 /* Return true when BB is if-convertible. This routine does not check
1120 basic block's statements and phis.
1122 A basic block is not if-convertible if:
1123 - it is non-empty and it is after the exit block (in BFS order),
1124 - it is after the exit block but before the latch,
1125 - its edges are not normal.
1127 EXIT_BB is the basic block containing the exit of the LOOP. BB is
1128 inside LOOP. */
1130 static bool
1131 if_convertible_bb_p (class loop *loop, basic_block bb, basic_block exit_bb)
1133 edge e;
1134 edge_iterator ei;
1136 if (dump_file && (dump_flags & TDF_DETAILS))
1137 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
1139 if (EDGE_COUNT (bb->succs) > 2)
1140 return false;
1142 gimple *last = last_stmt (bb);
1143 if (gcall *call = safe_dyn_cast <gcall *> (last))
1144 if (gimple_call_ctrl_altering_p (call))
1145 return false;
1147 if (exit_bb)
1149 if (bb != loop->latch)
1151 if (dump_file && (dump_flags & TDF_DETAILS))
1152 fprintf (dump_file, "basic block after exit bb but before latch\n");
1153 return false;
1155 else if (!empty_block_p (bb))
1157 if (dump_file && (dump_flags & TDF_DETAILS))
1158 fprintf (dump_file, "non empty basic block after exit bb\n");
1159 return false;
1161 else if (bb == loop->latch
1162 && bb != exit_bb
1163 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
1165 if (dump_file && (dump_flags & TDF_DETAILS))
1166 fprintf (dump_file, "latch is not dominated by exit_block\n");
1167 return false;
1171 /* Be less adventurous and handle only normal edges. */
1172 FOR_EACH_EDGE (e, ei, bb->succs)
1173 if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
1175 if (dump_file && (dump_flags & TDF_DETAILS))
1176 fprintf (dump_file, "Difficult to handle edges\n");
1177 return false;
1180 return true;
1183 /* Return true when all predecessor blocks of BB are visited. The
1184 VISITED bitmap keeps track of the visited blocks. */
1186 static bool
1187 pred_blocks_visited_p (basic_block bb, bitmap *visited)
1189 edge e;
1190 edge_iterator ei;
1191 FOR_EACH_EDGE (e, ei, bb->preds)
1192 if (!bitmap_bit_p (*visited, e->src->index))
1193 return false;
1195 return true;
1198 /* Get body of a LOOP in suitable order for if-conversion. It is
1199 caller's responsibility to deallocate basic block list.
1200 If-conversion suitable order is, breadth first sort (BFS) order
1201 with an additional constraint: select a block only if all its
1202 predecessors are already selected. */
1204 static basic_block *
1205 get_loop_body_in_if_conv_order (const class loop *loop)
1207 basic_block *blocks, *blocks_in_bfs_order;
1208 basic_block bb;
1209 bitmap visited;
1210 unsigned int index = 0;
1211 unsigned int visited_count = 0;
1213 gcc_assert (loop->num_nodes);
1214 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1216 blocks = XCNEWVEC (basic_block, loop->num_nodes);
1217 visited = BITMAP_ALLOC (NULL);
1219 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
1221 index = 0;
1222 while (index < loop->num_nodes)
1224 bb = blocks_in_bfs_order [index];
1226 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1228 free (blocks_in_bfs_order);
1229 BITMAP_FREE (visited);
1230 free (blocks);
1231 return NULL;
1234 if (!bitmap_bit_p (visited, bb->index))
1236 if (pred_blocks_visited_p (bb, &visited)
1237 || bb == loop->header)
1239 /* This block is now visited. */
1240 bitmap_set_bit (visited, bb->index);
1241 blocks[visited_count++] = bb;
1245 index++;
1247 if (index == loop->num_nodes
1248 && visited_count != loop->num_nodes)
1249 /* Not done yet. */
1250 index = 0;
1252 free (blocks_in_bfs_order);
1253 BITMAP_FREE (visited);
1254 return blocks;
1257 /* Returns true when the analysis of the predicates for all the basic
1258 blocks in LOOP succeeded.
1260 predicate_bbs first allocates the predicates of the basic blocks.
1261 These fields are then initialized with the tree expressions
1262 representing the predicates under which a basic block is executed
1263 in the LOOP. As the loop->header is executed at each iteration, it
1264 has the "true" predicate. Other statements executed under a
1265 condition are predicated with that condition, for example
1267 | if (x)
1268 | S1;
1269 | else
1270 | S2;
1272 S1 will be predicated with "x", and
1273 S2 will be predicated with "!x". */
1275 static void
1276 predicate_bbs (loop_p loop)
1278 unsigned int i;
1280 for (i = 0; i < loop->num_nodes; i++)
1281 init_bb_predicate (ifc_bbs[i]);
1283 for (i = 0; i < loop->num_nodes; i++)
1285 basic_block bb = ifc_bbs[i];
1286 tree cond;
1287 gimple *stmt;
1289 /* The loop latch and loop exit block are always executed and
1290 have no extra conditions to be processed: skip them. */
1291 if (bb == loop->latch
1292 || bb_with_exit_edge_p (loop, bb))
1294 reset_bb_predicate (bb);
1295 continue;
1298 cond = bb_predicate (bb);
1299 stmt = last_stmt (bb);
1300 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1302 tree c2;
1303 edge true_edge, false_edge;
1304 location_t loc = gimple_location (stmt);
1305 tree c = build2_loc (loc, gimple_cond_code (stmt),
1306 boolean_type_node,
1307 gimple_cond_lhs (stmt),
1308 gimple_cond_rhs (stmt));
1310 /* Add new condition into destination's predicate list. */
1311 extract_true_false_edges_from_block (gimple_bb (stmt),
1312 &true_edge, &false_edge);
1314 /* If C is true, then TRUE_EDGE is taken. */
1315 add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
1316 unshare_expr (c));
1318 /* If C is false, then FALSE_EDGE is taken. */
1319 c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
1320 unshare_expr (c));
1321 add_to_dst_predicate_list (loop, false_edge,
1322 unshare_expr (cond), c2);
1324 cond = NULL_TREE;
1327 /* If current bb has only one successor, then consider it as an
1328 unconditional goto. */
1329 if (single_succ_p (bb))
1331 basic_block bb_n = single_succ (bb);
1333 /* The successor bb inherits the predicate of its
1334 predecessor. If there is no predicate in the predecessor
1335 bb, then consider the successor bb as always executed. */
1336 if (cond == NULL_TREE)
1337 cond = boolean_true_node;
1339 add_to_predicate_list (loop, bb_n, cond);
1343 /* The loop header is always executed. */
1344 reset_bb_predicate (loop->header);
1345 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1346 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1349 /* Build region by adding loop pre-header and post-header blocks. */
1351 static vec<basic_block>
1352 build_region (class loop *loop)
1354 vec<basic_block> region = vNULL;
1355 basic_block exit_bb = NULL;
1357 gcc_assert (ifc_bbs);
1358 /* The first element is loop pre-header. */
1359 region.safe_push (loop_preheader_edge (loop)->src);
1361 for (unsigned int i = 0; i < loop->num_nodes; i++)
1363 basic_block bb = ifc_bbs[i];
1364 region.safe_push (bb);
1365 /* Find loop postheader. */
1366 edge e;
1367 edge_iterator ei;
1368 FOR_EACH_EDGE (e, ei, bb->succs)
1369 if (loop_exit_edge_p (loop, e))
1371 exit_bb = e->dest;
1372 break;
1375 /* The last element is loop post-header. */
1376 gcc_assert (exit_bb);
1377 region.safe_push (exit_bb);
1378 return region;
1381 /* Return true when LOOP is if-convertible. This is a helper function
1382 for if_convertible_loop_p. REFS and DDRS are initialized and freed
1383 in if_convertible_loop_p. */
1385 static bool
1386 if_convertible_loop_p_1 (class loop *loop, vec<data_reference_p> *refs)
1388 unsigned int i;
1389 basic_block exit_bb = NULL;
1390 vec<basic_block> region;
1392 if (find_data_references_in_loop (loop, refs) == chrec_dont_know)
1393 return false;
1395 calculate_dominance_info (CDI_DOMINATORS);
1397 /* Allow statements that can be handled during if-conversion. */
1398 ifc_bbs = get_loop_body_in_if_conv_order (loop);
1399 if (!ifc_bbs)
1401 if (dump_file && (dump_flags & TDF_DETAILS))
1402 fprintf (dump_file, "Irreducible loop\n");
1403 return false;
1406 for (i = 0; i < loop->num_nodes; i++)
1408 basic_block bb = ifc_bbs[i];
1410 if (!if_convertible_bb_p (loop, bb, exit_bb))
1411 return false;
1413 if (bb_with_exit_edge_p (loop, bb))
1414 exit_bb = bb;
1417 for (i = 0; i < loop->num_nodes; i++)
1419 basic_block bb = ifc_bbs[i];
1420 gimple_stmt_iterator gsi;
1422 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1423 switch (gimple_code (gsi_stmt (gsi)))
1425 case GIMPLE_LABEL:
1426 case GIMPLE_ASSIGN:
1427 case GIMPLE_CALL:
1428 case GIMPLE_DEBUG:
1429 case GIMPLE_COND:
1430 gimple_set_uid (gsi_stmt (gsi), 0);
1431 break;
1432 default:
1433 return false;
1437 data_reference_p dr;
1439 innermost_DR_map
1440 = new hash_map<innermost_loop_behavior_hash, data_reference_p>;
1441 baseref_DR_map = new hash_map<tree_operand_hash, data_reference_p>;
1443 /* Compute post-dominator tree locally. */
1444 region = build_region (loop);
1445 calculate_dominance_info_for_region (CDI_POST_DOMINATORS, region);
1447 predicate_bbs (loop);
1449 /* Free post-dominator tree since it is not used after predication. */
1450 free_dominance_info_for_region (cfun, CDI_POST_DOMINATORS, region);
1451 region.release ();
1453 for (i = 0; refs->iterate (i, &dr); i++)
1455 tree ref = DR_REF (dr);
1457 dr->aux = XNEW (struct ifc_dr);
1458 DR_BASE_W_UNCONDITIONALLY (dr) = false;
1459 DR_RW_UNCONDITIONALLY (dr) = false;
1460 DR_W_UNCONDITIONALLY (dr) = false;
1461 IFC_DR (dr)->rw_predicate = boolean_false_node;
1462 IFC_DR (dr)->w_predicate = boolean_false_node;
1463 IFC_DR (dr)->base_w_predicate = boolean_false_node;
1464 if (gimple_uid (DR_STMT (dr)) == 0)
1465 gimple_set_uid (DR_STMT (dr), i + 1);
1467 /* If DR doesn't have innermost loop behavior or it's a compound
1468 memory reference, we synthesize its innermost loop behavior
1469 for hashing. */
1470 if (TREE_CODE (ref) == COMPONENT_REF
1471 || TREE_CODE (ref) == IMAGPART_EXPR
1472 || TREE_CODE (ref) == REALPART_EXPR
1473 || !(DR_BASE_ADDRESS (dr) || DR_OFFSET (dr)
1474 || DR_INIT (dr) || DR_STEP (dr)))
1476 while (TREE_CODE (ref) == COMPONENT_REF
1477 || TREE_CODE (ref) == IMAGPART_EXPR
1478 || TREE_CODE (ref) == REALPART_EXPR)
1479 ref = TREE_OPERAND (ref, 0);
1481 memset (&DR_INNERMOST (dr), 0, sizeof (DR_INNERMOST (dr)));
1482 DR_BASE_ADDRESS (dr) = ref;
1484 hash_memrefs_baserefs_and_store_DRs_read_written_info (dr);
1487 for (i = 0; i < loop->num_nodes; i++)
1489 basic_block bb = ifc_bbs[i];
1490 gimple_stmt_iterator itr;
1492 /* Check the if-convertibility of statements in predicated BBs. */
1493 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1494 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1495 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
1496 return false;
1499 /* Checking PHIs needs to be done after stmts, as the fact whether there
1500 are any masked loads or stores affects the tests. */
1501 for (i = 0; i < loop->num_nodes; i++)
1503 basic_block bb = ifc_bbs[i];
1504 gphi_iterator itr;
1506 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1507 if (!if_convertible_phi_p (loop, bb, itr.phi ()))
1508 return false;
1511 if (dump_file)
1512 fprintf (dump_file, "Applying if-conversion\n");
1514 return true;
1517 /* Return true when LOOP is if-convertible.
1518 LOOP is if-convertible if:
1519 - it is innermost,
1520 - it has two or more basic blocks,
1521 - it has only one exit,
1522 - loop header is not the exit edge,
1523 - if its basic blocks and phi nodes are if convertible. */
1525 static bool
1526 if_convertible_loop_p (class loop *loop)
1528 edge e;
1529 edge_iterator ei;
1530 bool res = false;
1531 vec<data_reference_p> refs;
1533 /* Handle only innermost loop. */
1534 if (!loop || loop->inner)
1536 if (dump_file && (dump_flags & TDF_DETAILS))
1537 fprintf (dump_file, "not innermost loop\n");
1538 return false;
1541 /* If only one block, no need for if-conversion. */
1542 if (loop->num_nodes <= 2)
1544 if (dump_file && (dump_flags & TDF_DETAILS))
1545 fprintf (dump_file, "less than 2 basic blocks\n");
1546 return false;
1549 /* More than one loop exit is too much to handle. */
1550 if (!single_exit (loop))
1552 if (dump_file && (dump_flags & TDF_DETAILS))
1553 fprintf (dump_file, "multiple exits\n");
1554 return false;
1557 /* If one of the loop header's edge is an exit edge then do not
1558 apply if-conversion. */
1559 FOR_EACH_EDGE (e, ei, loop->header->succs)
1560 if (loop_exit_edge_p (loop, e))
1561 return false;
1563 refs.create (5);
1564 res = if_convertible_loop_p_1 (loop, &refs);
1566 data_reference_p dr;
1567 unsigned int i;
1568 for (i = 0; refs.iterate (i, &dr); i++)
1569 free (dr->aux);
1571 free_data_refs (refs);
1573 delete innermost_DR_map;
1574 innermost_DR_map = NULL;
1576 delete baseref_DR_map;
1577 baseref_DR_map = NULL;
1579 return res;
1582 /* Returns true if def-stmt for phi argument ARG is simple increment/decrement
1583 which is in predicated basic block.
1584 In fact, the following PHI pattern is searching:
1585 loop-header:
1586 reduc_1 = PHI <..., reduc_2>
1588 if (...)
1589 reduc_3 = ...
1590 reduc_2 = PHI <reduc_1, reduc_3>
1592 ARG_0 and ARG_1 are correspondent PHI arguments.
1593 REDUC, OP0 and OP1 contain reduction stmt and its operands.
1594 EXTENDED is true if PHI has > 2 arguments. */
1596 static bool
1597 is_cond_scalar_reduction (gimple *phi, gimple **reduc, tree arg_0, tree arg_1,
1598 tree *op0, tree *op1, bool extended)
1600 tree lhs, r_op1, r_op2;
1601 gimple *stmt;
1602 gimple *header_phi = NULL;
1603 enum tree_code reduction_op;
1604 basic_block bb = gimple_bb (phi);
1605 class loop *loop = bb->loop_father;
1606 edge latch_e = loop_latch_edge (loop);
1607 imm_use_iterator imm_iter;
1608 use_operand_p use_p;
1609 edge e;
1610 edge_iterator ei;
1611 bool result = false;
1612 if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
1613 return false;
1615 if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
1617 lhs = arg_1;
1618 header_phi = SSA_NAME_DEF_STMT (arg_0);
1619 stmt = SSA_NAME_DEF_STMT (arg_1);
1621 else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
1623 lhs = arg_0;
1624 header_phi = SSA_NAME_DEF_STMT (arg_1);
1625 stmt = SSA_NAME_DEF_STMT (arg_0);
1627 else
1628 return false;
1629 if (gimple_bb (header_phi) != loop->header)
1630 return false;
1632 if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
1633 return false;
1635 if (gimple_code (stmt) != GIMPLE_ASSIGN
1636 || gimple_has_volatile_ops (stmt))
1637 return false;
1639 if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1640 return false;
1642 if (!is_predicated (gimple_bb (stmt)))
1643 return false;
1645 /* Check that stmt-block is predecessor of phi-block. */
1646 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
1647 if (e->dest == bb)
1649 result = true;
1650 break;
1652 if (!result)
1653 return false;
1655 if (!has_single_use (lhs))
1656 return false;
1658 reduction_op = gimple_assign_rhs_code (stmt);
1659 if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR)
1660 return false;
1661 r_op1 = gimple_assign_rhs1 (stmt);
1662 r_op2 = gimple_assign_rhs2 (stmt);
1664 /* Make R_OP1 to hold reduction variable. */
1665 if (r_op2 == PHI_RESULT (header_phi)
1666 && reduction_op == PLUS_EXPR)
1667 std::swap (r_op1, r_op2);
1668 else if (r_op1 != PHI_RESULT (header_phi))
1669 return false;
1671 /* Check that R_OP1 is used in reduction stmt or in PHI only. */
1672 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1)
1674 gimple *use_stmt = USE_STMT (use_p);
1675 if (is_gimple_debug (use_stmt))
1676 continue;
1677 if (use_stmt == stmt)
1678 continue;
1679 if (gimple_code (use_stmt) != GIMPLE_PHI)
1680 return false;
1683 *op0 = r_op1; *op1 = r_op2;
1684 *reduc = stmt;
1685 return true;
1688 /* Converts conditional scalar reduction into unconditional form, e.g.
1689 bb_4
1690 if (_5 != 0) goto bb_5 else goto bb_6
1691 end_bb_4
1692 bb_5
1693 res_6 = res_13 + 1;
1694 end_bb_5
1695 bb_6
1696 # res_2 = PHI <res_13(4), res_6(5)>
1697 end_bb_6
1699 will be converted into sequence
1700 _ifc__1 = _5 != 0 ? 1 : 0;
1701 res_2 = res_13 + _ifc__1;
1702 Argument SWAP tells that arguments of conditional expression should be
1703 swapped.
1704 Returns rhs of resulting PHI assignment. */
1706 static tree
1707 convert_scalar_cond_reduction (gimple *reduc, gimple_stmt_iterator *gsi,
1708 tree cond, tree op0, tree op1, bool swap)
1710 gimple_stmt_iterator stmt_it;
1711 gimple *new_assign;
1712 tree rhs;
1713 tree rhs1 = gimple_assign_rhs1 (reduc);
1714 tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
1715 tree c;
1716 tree zero = build_zero_cst (TREE_TYPE (rhs1));
1718 if (dump_file && (dump_flags & TDF_DETAILS))
1720 fprintf (dump_file, "Found cond scalar reduction.\n");
1721 print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
1724 /* Build cond expression using COND and constant operand
1725 of reduction rhs. */
1726 c = fold_build_cond_expr (TREE_TYPE (rhs1),
1727 unshare_expr (cond),
1728 swap ? zero : op1,
1729 swap ? op1 : zero);
1731 /* Create assignment stmt and insert it at GSI. */
1732 new_assign = gimple_build_assign (tmp, c);
1733 gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
1734 /* Build rhs for unconditional increment/decrement. */
1735 rhs = fold_build2 (gimple_assign_rhs_code (reduc),
1736 TREE_TYPE (rhs1), op0, tmp);
1738 /* Delete original reduction stmt. */
1739 stmt_it = gsi_for_stmt (reduc);
1740 gsi_remove (&stmt_it, true);
1741 release_defs (reduc);
1742 return rhs;
1745 /* Produce condition for all occurrences of ARG in PHI node. */
1747 static tree
1748 gen_phi_arg_condition (gphi *phi, vec<int> *occur,
1749 gimple_stmt_iterator *gsi)
1751 int len;
1752 int i;
1753 tree cond = NULL_TREE;
1754 tree c;
1755 edge e;
1757 len = occur->length ();
1758 gcc_assert (len > 0);
1759 for (i = 0; i < len; i++)
1761 e = gimple_phi_arg_edge (phi, (*occur)[i]);
1762 c = bb_predicate (e->src);
1763 if (is_true_predicate (c))
1765 cond = c;
1766 break;
1768 c = force_gimple_operand_gsi_1 (gsi, unshare_expr (c),
1769 is_gimple_condexpr, NULL_TREE,
1770 true, GSI_SAME_STMT);
1771 if (cond != NULL_TREE)
1773 /* Must build OR expression. */
1774 cond = fold_or_predicates (EXPR_LOCATION (c), c, cond);
1775 cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
1776 is_gimple_condexpr, NULL_TREE,
1777 true, GSI_SAME_STMT);
1779 else
1780 cond = c;
1782 gcc_assert (cond != NULL_TREE);
1783 return cond;
1786 /* Local valueization callback that follows all-use SSA edges. */
1788 static tree
1789 ifcvt_follow_ssa_use_edges (tree val)
1791 return val;
1794 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1795 This routine can handle PHI nodes with more than two arguments.
1797 For example,
1798 S1: A = PHI <x1(1), x2(5)>
1799 is converted into,
1800 S2: A = cond ? x1 : x2;
1802 The generated code is inserted at GSI that points to the top of
1803 basic block's statement list.
1804 If PHI node has more than two arguments a chain of conditional
1805 expression is produced. */
1808 static void
1809 predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi)
1811 gimple *new_stmt = NULL, *reduc;
1812 tree rhs, res, arg0, arg1, op0, op1, scev;
1813 tree cond;
1814 unsigned int index0;
1815 unsigned int max, args_len;
1816 edge e;
1817 basic_block bb;
1818 unsigned int i;
1820 res = gimple_phi_result (phi);
1821 if (virtual_operand_p (res))
1822 return;
1824 if ((rhs = degenerate_phi_result (phi))
1825 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1826 res))
1827 && !chrec_contains_undetermined (scev)
1828 && scev != res
1829 && (rhs = gimple_phi_arg_def (phi, 0))))
1831 if (dump_file && (dump_flags & TDF_DETAILS))
1833 fprintf (dump_file, "Degenerate phi!\n");
1834 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1836 new_stmt = gimple_build_assign (res, rhs);
1837 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1838 update_stmt (new_stmt);
1839 return;
1842 bb = gimple_bb (phi);
1843 if (EDGE_COUNT (bb->preds) == 2)
1845 /* Predicate ordinary PHI node with 2 arguments. */
1846 edge first_edge, second_edge;
1847 basic_block true_bb;
1848 first_edge = EDGE_PRED (bb, 0);
1849 second_edge = EDGE_PRED (bb, 1);
1850 cond = bb_predicate (first_edge->src);
1851 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1852 std::swap (first_edge, second_edge);
1853 if (EDGE_COUNT (first_edge->src->succs) > 1)
1855 cond = bb_predicate (second_edge->src);
1856 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1857 cond = TREE_OPERAND (cond, 0);
1858 else
1859 first_edge = second_edge;
1861 else
1862 cond = bb_predicate (first_edge->src);
1863 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1864 cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
1865 is_gimple_condexpr, NULL_TREE,
1866 true, GSI_SAME_STMT);
1867 true_bb = first_edge->src;
1868 if (EDGE_PRED (bb, 1)->src == true_bb)
1870 arg0 = gimple_phi_arg_def (phi, 1);
1871 arg1 = gimple_phi_arg_def (phi, 0);
1873 else
1875 arg0 = gimple_phi_arg_def (phi, 0);
1876 arg1 = gimple_phi_arg_def (phi, 1);
1878 if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1,
1879 &op0, &op1, false))
1880 /* Convert reduction stmt into vectorizable form. */
1881 rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
1882 true_bb != gimple_bb (reduc));
1883 else
1884 /* Build new RHS using selected condition and arguments. */
1885 rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1886 arg0, arg1);
1887 new_stmt = gimple_build_assign (res, rhs);
1888 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1889 gimple_stmt_iterator new_gsi = gsi_for_stmt (new_stmt);
1890 if (fold_stmt (&new_gsi, ifcvt_follow_ssa_use_edges))
1892 new_stmt = gsi_stmt (new_gsi);
1893 update_stmt (new_stmt);
1896 if (dump_file && (dump_flags & TDF_DETAILS))
1898 fprintf (dump_file, "new phi replacement stmt\n");
1899 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1901 return;
1904 /* Create hashmap for PHI node which contain vector of argument indexes
1905 having the same value. */
1906 bool swap = false;
1907 hash_map<tree_operand_hash, auto_vec<int> > phi_arg_map;
1908 unsigned int num_args = gimple_phi_num_args (phi);
1909 int max_ind = -1;
1910 /* Vector of different PHI argument values. */
1911 auto_vec<tree> args (num_args);
1913 /* Compute phi_arg_map. */
1914 for (i = 0; i < num_args; i++)
1916 tree arg;
1918 arg = gimple_phi_arg_def (phi, i);
1919 if (!phi_arg_map.get (arg))
1920 args.quick_push (arg);
1921 phi_arg_map.get_or_insert (arg).safe_push (i);
1924 /* Determine element with max number of occurrences. */
1925 max_ind = -1;
1926 max = 1;
1927 args_len = args.length ();
1928 for (i = 0; i < args_len; i++)
1930 unsigned int len;
1931 if ((len = phi_arg_map.get (args[i])->length ()) > max)
1933 max_ind = (int) i;
1934 max = len;
1938 /* Put element with max number of occurences to the end of ARGS. */
1939 if (max_ind != -1 && max_ind +1 != (int) args_len)
1940 std::swap (args[args_len - 1], args[max_ind]);
1942 /* Handle one special case when number of arguments with different values
1943 is equal 2 and one argument has the only occurrence. Such PHI can be
1944 handled as if would have only 2 arguments. */
1945 if (args_len == 2 && phi_arg_map.get (args[0])->length () == 1)
1947 vec<int> *indexes;
1948 indexes = phi_arg_map.get (args[0]);
1949 index0 = (*indexes)[0];
1950 arg0 = args[0];
1951 arg1 = args[1];
1952 e = gimple_phi_arg_edge (phi, index0);
1953 cond = bb_predicate (e->src);
1954 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1956 swap = true;
1957 cond = TREE_OPERAND (cond, 0);
1959 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1960 cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
1961 is_gimple_condexpr, NULL_TREE,
1962 true, GSI_SAME_STMT);
1963 if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1,
1964 &op0, &op1, true)))
1965 rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1966 swap? arg1 : arg0,
1967 swap? arg0 : arg1);
1968 else
1969 /* Convert reduction stmt into vectorizable form. */
1970 rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
1971 swap);
1972 new_stmt = gimple_build_assign (res, rhs);
1973 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1974 update_stmt (new_stmt);
1976 else
1978 /* Common case. */
1979 vec<int> *indexes;
1980 tree type = TREE_TYPE (gimple_phi_result (phi));
1981 tree lhs;
1982 arg1 = args[1];
1983 for (i = 0; i < args_len; i++)
1985 arg0 = args[i];
1986 indexes = phi_arg_map.get (args[i]);
1987 if (i != args_len - 1)
1988 lhs = make_temp_ssa_name (type, NULL, "_ifc_");
1989 else
1990 lhs = res;
1991 cond = gen_phi_arg_condition (phi, indexes, gsi);
1992 rhs = fold_build_cond_expr (type, unshare_expr (cond),
1993 arg0, arg1);
1994 new_stmt = gimple_build_assign (lhs, rhs);
1995 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1996 update_stmt (new_stmt);
1997 arg1 = lhs;
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2003 fprintf (dump_file, "new extended phi replacement stmt\n");
2004 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
2008 /* Replaces in LOOP all the scalar phi nodes other than those in the
2009 LOOP->header block with conditional modify expressions. */
2011 static void
2012 predicate_all_scalar_phis (class loop *loop)
2014 basic_block bb;
2015 unsigned int orig_loop_num_nodes = loop->num_nodes;
2016 unsigned int i;
2018 for (i = 1; i < orig_loop_num_nodes; i++)
2020 gphi *phi;
2021 gimple_stmt_iterator gsi;
2022 gphi_iterator phi_gsi;
2023 bb = ifc_bbs[i];
2025 if (bb == loop->header)
2026 continue;
2028 phi_gsi = gsi_start_phis (bb);
2029 if (gsi_end_p (phi_gsi))
2030 continue;
2032 gsi = gsi_after_labels (bb);
2033 while (!gsi_end_p (phi_gsi))
2035 phi = phi_gsi.phi ();
2036 if (virtual_operand_p (gimple_phi_result (phi)))
2037 gsi_next (&phi_gsi);
2038 else
2040 predicate_scalar_phi (phi, &gsi);
2041 remove_phi_node (&phi_gsi, false);
2047 /* Insert in each basic block of LOOP the statements produced by the
2048 gimplification of the predicates. */
2050 static void
2051 insert_gimplified_predicates (loop_p loop)
2053 unsigned int i;
2055 for (i = 0; i < loop->num_nodes; i++)
2057 basic_block bb = ifc_bbs[i];
2058 gimple_seq stmts;
2059 if (!is_predicated (bb))
2060 gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL);
2061 if (!is_predicated (bb))
2063 /* Do not insert statements for a basic block that is not
2064 predicated. Also make sure that the predicate of the
2065 basic block is set to true. */
2066 reset_bb_predicate (bb);
2067 continue;
2070 stmts = bb_predicate_gimplified_stmts (bb);
2071 if (stmts)
2073 if (need_to_predicate)
2075 /* Insert the predicate of the BB just after the label,
2076 as the if-conversion of memory writes will use this
2077 predicate. */
2078 gimple_stmt_iterator gsi = gsi_after_labels (bb);
2079 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2081 else
2083 /* Insert the predicate of the BB at the end of the BB
2084 as this would reduce the register pressure: the only
2085 use of this predicate will be in successor BBs. */
2086 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2088 if (gsi_end_p (gsi)
2089 || stmt_ends_bb_p (gsi_stmt (gsi)))
2090 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2091 else
2092 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
2095 /* Once the sequence is code generated, set it to NULL. */
2096 set_bb_predicate_gimplified_stmts (bb, NULL);
2101 /* Helper function for predicate_statements. Returns index of existent
2102 mask if it was created for given SIZE and -1 otherwise. */
2104 static int
2105 mask_exists (int size, vec<int> vec)
2107 unsigned int ix;
2108 int v;
2109 FOR_EACH_VEC_ELT (vec, ix, v)
2110 if (v == size)
2111 return (int) ix;
2112 return -1;
2115 /* Helper function for predicate_statements. STMT is a memory read or
2116 write and it needs to be predicated by MASK. Return a statement
2117 that does so. */
2119 static gimple *
2120 predicate_load_or_store (gimple_stmt_iterator *gsi, gassign *stmt, tree mask)
2122 gcall *new_stmt;
2124 tree lhs = gimple_assign_lhs (stmt);
2125 tree rhs = gimple_assign_rhs1 (stmt);
2126 tree ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
2127 mark_addressable (ref);
2128 tree addr = force_gimple_operand_gsi (gsi, build_fold_addr_expr (ref),
2129 true, NULL_TREE, true, GSI_SAME_STMT);
2130 tree ptr = build_int_cst (reference_alias_ptr_type (ref),
2131 get_object_alignment (ref));
2132 /* Copy points-to info if possible. */
2133 if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
2134 copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
2135 ref);
2136 if (TREE_CODE (lhs) == SSA_NAME)
2138 new_stmt
2139 = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
2140 ptr, mask);
2141 gimple_call_set_lhs (new_stmt, lhs);
2142 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2144 else
2146 new_stmt
2147 = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
2148 mask, rhs);
2149 gimple_move_vops (new_stmt, stmt);
2151 gimple_call_set_nothrow (new_stmt, true);
2152 return new_stmt;
2155 /* STMT uses OP_LHS. Check whether it is equivalent to:
2157 ... = OP_MASK ? OP_LHS : X;
2159 Return X if so, otherwise return null. OP_MASK is an SSA_NAME that is
2160 known to have value OP_COND. */
2162 static tree
2163 check_redundant_cond_expr (gimple *stmt, tree op_mask, tree op_cond,
2164 tree op_lhs)
2166 gassign *assign = dyn_cast <gassign *> (stmt);
2167 if (!assign || gimple_assign_rhs_code (assign) != COND_EXPR)
2168 return NULL_TREE;
2170 tree use_cond = gimple_assign_rhs1 (assign);
2171 tree if_true = gimple_assign_rhs2 (assign);
2172 tree if_false = gimple_assign_rhs3 (assign);
2174 if ((use_cond == op_mask || operand_equal_p (use_cond, op_cond, 0))
2175 && if_true == op_lhs)
2176 return if_false;
2178 if (inverse_conditions_p (use_cond, op_cond) && if_false == op_lhs)
2179 return if_true;
2181 return NULL_TREE;
2184 /* Return true if VALUE is available for use at STMT. SSA_NAMES is
2185 the set of SSA names defined earlier in STMT's block. */
2187 static bool
2188 value_available_p (gimple *stmt, hash_set<tree_ssa_name_hash> *ssa_names,
2189 tree value)
2191 if (is_gimple_min_invariant (value))
2192 return true;
2194 if (TREE_CODE (value) == SSA_NAME)
2196 if (SSA_NAME_IS_DEFAULT_DEF (value))
2197 return true;
2199 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (value));
2200 basic_block use_bb = gimple_bb (stmt);
2201 return (def_bb == use_bb
2202 ? ssa_names->contains (value)
2203 : dominated_by_p (CDI_DOMINATORS, use_bb, def_bb));
2206 return false;
2209 /* Helper function for predicate_statements. STMT is a potentially-trapping
2210 arithmetic operation that needs to be predicated by MASK, an SSA_NAME that
2211 has value COND. Return a statement that does so. SSA_NAMES is the set of
2212 SSA names defined earlier in STMT's block. */
2214 static gimple *
2215 predicate_rhs_code (gassign *stmt, tree mask, tree cond,
2216 hash_set<tree_ssa_name_hash> *ssa_names)
2218 tree lhs = gimple_assign_lhs (stmt);
2219 tree_code code = gimple_assign_rhs_code (stmt);
2220 unsigned int nops = gimple_num_ops (stmt);
2221 internal_fn cond_fn = get_conditional_internal_fn (code);
2223 /* Construct the arguments to the conditional internal function. */
2224 auto_vec<tree, 8> args;
2225 args.safe_grow (nops + 1, true);
2226 args[0] = mask;
2227 for (unsigned int i = 1; i < nops; ++i)
2228 args[i] = gimple_op (stmt, i);
2229 args[nops] = NULL_TREE;
2231 /* Look for uses of the result to see whether they are COND_EXPRs that can
2232 be folded into the conditional call. */
2233 imm_use_iterator imm_iter;
2234 gimple *use_stmt;
2235 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
2237 tree new_else = check_redundant_cond_expr (use_stmt, mask, cond, lhs);
2238 if (new_else && value_available_p (stmt, ssa_names, new_else))
2240 if (!args[nops])
2241 args[nops] = new_else;
2242 if (operand_equal_p (new_else, args[nops], 0))
2244 /* We have:
2246 LHS = IFN_COND (MASK, ..., ELSE);
2247 X = MASK ? LHS : ELSE;
2249 which makes X equivalent to LHS. */
2250 tree use_lhs = gimple_assign_lhs (use_stmt);
2251 redundant_ssa_names.safe_push (std::make_pair (use_lhs, lhs));
2255 if (!args[nops])
2256 args[nops] = targetm.preferred_else_value (cond_fn, TREE_TYPE (lhs),
2257 nops - 1, &args[1]);
2259 /* Create and insert the call. */
2260 gcall *new_stmt = gimple_build_call_internal_vec (cond_fn, args);
2261 gimple_call_set_lhs (new_stmt, lhs);
2262 gimple_call_set_nothrow (new_stmt, true);
2264 return new_stmt;
2267 /* Predicate each write to memory in LOOP.
2269 This function transforms control flow constructs containing memory
2270 writes of the form:
2272 | for (i = 0; i < N; i++)
2273 | if (cond)
2274 | A[i] = expr;
2276 into the following form that does not contain control flow:
2278 | for (i = 0; i < N; i++)
2279 | A[i] = cond ? expr : A[i];
2281 The original CFG looks like this:
2283 | bb_0
2284 | i = 0
2285 | end_bb_0
2287 | bb_1
2288 | if (i < N) goto bb_5 else goto bb_2
2289 | end_bb_1
2291 | bb_2
2292 | cond = some_computation;
2293 | if (cond) goto bb_3 else goto bb_4
2294 | end_bb_2
2296 | bb_3
2297 | A[i] = expr;
2298 | goto bb_4
2299 | end_bb_3
2301 | bb_4
2302 | goto bb_1
2303 | end_bb_4
2305 insert_gimplified_predicates inserts the computation of the COND
2306 expression at the beginning of the destination basic block:
2308 | bb_0
2309 | i = 0
2310 | end_bb_0
2312 | bb_1
2313 | if (i < N) goto bb_5 else goto bb_2
2314 | end_bb_1
2316 | bb_2
2317 | cond = some_computation;
2318 | if (cond) goto bb_3 else goto bb_4
2319 | end_bb_2
2321 | bb_3
2322 | cond = some_computation;
2323 | A[i] = expr;
2324 | goto bb_4
2325 | end_bb_3
2327 | bb_4
2328 | goto bb_1
2329 | end_bb_4
2331 predicate_statements is then predicating the memory write as follows:
2333 | bb_0
2334 | i = 0
2335 | end_bb_0
2337 | bb_1
2338 | if (i < N) goto bb_5 else goto bb_2
2339 | end_bb_1
2341 | bb_2
2342 | if (cond) goto bb_3 else goto bb_4
2343 | end_bb_2
2345 | bb_3
2346 | cond = some_computation;
2347 | A[i] = cond ? expr : A[i];
2348 | goto bb_4
2349 | end_bb_3
2351 | bb_4
2352 | goto bb_1
2353 | end_bb_4
2355 and finally combine_blocks removes the basic block boundaries making
2356 the loop vectorizable:
2358 | bb_0
2359 | i = 0
2360 | if (i < N) goto bb_5 else goto bb_1
2361 | end_bb_0
2363 | bb_1
2364 | cond = some_computation;
2365 | A[i] = cond ? expr : A[i];
2366 | if (i < N) goto bb_5 else goto bb_4
2367 | end_bb_1
2369 | bb_4
2370 | goto bb_1
2371 | end_bb_4
2374 static void
2375 predicate_statements (loop_p loop)
2377 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
2378 auto_vec<int, 1> vect_sizes;
2379 auto_vec<tree, 1> vect_masks;
2380 hash_set<tree_ssa_name_hash> ssa_names;
2382 for (i = 1; i < orig_loop_num_nodes; i++)
2384 gimple_stmt_iterator gsi;
2385 basic_block bb = ifc_bbs[i];
2386 tree cond = bb_predicate (bb);
2387 bool swap;
2388 int index;
2390 if (is_true_predicate (cond))
2391 continue;
2393 swap = false;
2394 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2396 swap = true;
2397 cond = TREE_OPERAND (cond, 0);
2400 vect_sizes.truncate (0);
2401 vect_masks.truncate (0);
2403 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
2405 gassign *stmt = dyn_cast <gassign *> (gsi_stmt (gsi));
2406 if (!stmt)
2408 else if (is_false_predicate (cond)
2409 && gimple_vdef (stmt))
2411 unlink_stmt_vdef (stmt);
2412 gsi_remove (&gsi, true);
2413 release_defs (stmt);
2414 continue;
2416 else if (gimple_plf (stmt, GF_PLF_2))
2418 tree lhs = gimple_assign_lhs (stmt);
2419 tree mask;
2420 gimple *new_stmt;
2421 gimple_seq stmts = NULL;
2422 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
2423 /* We checked before setting GF_PLF_2 that an equivalent
2424 integer mode exists. */
2425 int bitsize = GET_MODE_BITSIZE (mode).to_constant ();
2426 if (!vect_sizes.is_empty ()
2427 && (index = mask_exists (bitsize, vect_sizes)) != -1)
2428 /* Use created mask. */
2429 mask = vect_masks[index];
2430 else
2432 if (COMPARISON_CLASS_P (cond))
2433 mask = gimple_build (&stmts, TREE_CODE (cond),
2434 boolean_type_node,
2435 TREE_OPERAND (cond, 0),
2436 TREE_OPERAND (cond, 1));
2437 else
2438 mask = cond;
2440 if (swap)
2442 tree true_val
2443 = constant_boolean_node (true, TREE_TYPE (mask));
2444 mask = gimple_build (&stmts, BIT_XOR_EXPR,
2445 TREE_TYPE (mask), mask, true_val);
2447 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2449 /* Save mask and its size for further use. */
2450 vect_sizes.safe_push (bitsize);
2451 vect_masks.safe_push (mask);
2453 if (gimple_assign_single_p (stmt))
2454 new_stmt = predicate_load_or_store (&gsi, stmt, mask);
2455 else
2456 new_stmt = predicate_rhs_code (stmt, mask, cond, &ssa_names);
2458 gsi_replace (&gsi, new_stmt, true);
2460 else if (gimple_vdef (stmt))
2462 tree lhs = gimple_assign_lhs (stmt);
2463 tree rhs = gimple_assign_rhs1 (stmt);
2464 tree type = TREE_TYPE (lhs);
2466 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
2467 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
2468 if (swap)
2469 std::swap (lhs, rhs);
2470 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
2471 is_gimple_condexpr, NULL_TREE,
2472 true, GSI_SAME_STMT);
2473 rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
2474 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
2475 update_stmt (stmt);
2477 tree lhs = gimple_get_lhs (gsi_stmt (gsi));
2478 if (lhs && TREE_CODE (lhs) == SSA_NAME)
2479 ssa_names.add (lhs);
2480 gsi_next (&gsi);
2482 ssa_names.empty ();
2486 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
2487 other than the exit and latch of the LOOP. Also resets the
2488 GIMPLE_DEBUG information. */
2490 static void
2491 remove_conditions_and_labels (loop_p loop)
2493 gimple_stmt_iterator gsi;
2494 unsigned int i;
2496 for (i = 0; i < loop->num_nodes; i++)
2498 basic_block bb = ifc_bbs[i];
2500 if (bb_with_exit_edge_p (loop, bb)
2501 || bb == loop->latch)
2502 continue;
2504 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2505 switch (gimple_code (gsi_stmt (gsi)))
2507 case GIMPLE_COND:
2508 case GIMPLE_LABEL:
2509 gsi_remove (&gsi, true);
2510 break;
2512 case GIMPLE_DEBUG:
2513 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
2514 if (gimple_debug_bind_p (gsi_stmt (gsi)))
2516 gimple_debug_bind_reset_value (gsi_stmt (gsi));
2517 update_stmt (gsi_stmt (gsi));
2519 gsi_next (&gsi);
2520 break;
2522 default:
2523 gsi_next (&gsi);
2528 /* Combine all the basic blocks from LOOP into one or two super basic
2529 blocks. Replace PHI nodes with conditional modify expressions. */
2531 static void
2532 combine_blocks (class loop *loop)
2534 basic_block bb, exit_bb, merge_target_bb;
2535 unsigned int orig_loop_num_nodes = loop->num_nodes;
2536 unsigned int i;
2537 edge e;
2538 edge_iterator ei;
2540 remove_conditions_and_labels (loop);
2541 insert_gimplified_predicates (loop);
2542 predicate_all_scalar_phis (loop);
2544 if (need_to_predicate)
2545 predicate_statements (loop);
2547 /* Merge basic blocks. */
2548 exit_bb = NULL;
2549 bool *predicated = XNEWVEC (bool, orig_loop_num_nodes);
2550 for (i = 0; i < orig_loop_num_nodes; i++)
2552 bb = ifc_bbs[i];
2553 predicated[i] = !is_true_predicate (bb_predicate (bb));
2554 free_bb_predicate (bb);
2555 if (bb_with_exit_edge_p (loop, bb))
2557 gcc_assert (exit_bb == NULL);
2558 exit_bb = bb;
2561 gcc_assert (exit_bb != loop->latch);
2563 merge_target_bb = loop->header;
2565 /* Get at the virtual def valid for uses starting at the first block
2566 we merge into the header. Without a virtual PHI the loop has the
2567 same virtual use on all stmts. */
2568 gphi *vphi = get_virtual_phi (loop->header);
2569 tree last_vdef = NULL_TREE;
2570 if (vphi)
2572 last_vdef = gimple_phi_result (vphi);
2573 for (gimple_stmt_iterator gsi = gsi_start_bb (loop->header);
2574 ! gsi_end_p (gsi); gsi_next (&gsi))
2575 if (gimple_vdef (gsi_stmt (gsi)))
2576 last_vdef = gimple_vdef (gsi_stmt (gsi));
2578 for (i = 1; i < orig_loop_num_nodes; i++)
2580 gimple_stmt_iterator gsi;
2581 gimple_stmt_iterator last;
2583 bb = ifc_bbs[i];
2585 if (bb == exit_bb || bb == loop->latch)
2586 continue;
2588 /* We release virtual PHIs late because we have to propagate them
2589 out using the current VUSE. The def might be the one used
2590 after the loop. */
2591 vphi = get_virtual_phi (bb);
2592 if (vphi)
2594 /* When there's just loads inside the loop a stray virtual
2595 PHI merging the uses can appear, update last_vdef from
2596 it. */
2597 if (!last_vdef)
2598 last_vdef = gimple_phi_arg_def (vphi, 0);
2599 imm_use_iterator iter;
2600 use_operand_p use_p;
2601 gimple *use_stmt;
2602 FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
2604 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2605 SET_USE (use_p, last_vdef);
2607 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi)))
2608 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1;
2609 gsi = gsi_for_stmt (vphi);
2610 remove_phi_node (&gsi, true);
2613 /* Make stmts member of loop->header and clear range info from all stmts
2614 in BB which is now no longer executed conditional on a predicate we
2615 could have derived it from. */
2616 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2618 gimple *stmt = gsi_stmt (gsi);
2619 gimple_set_bb (stmt, merge_target_bb);
2620 /* Update virtual operands. */
2621 if (last_vdef)
2623 use_operand_p use_p = ssa_vuse_operand (stmt);
2624 if (use_p
2625 && USE_FROM_PTR (use_p) != last_vdef)
2626 SET_USE (use_p, last_vdef);
2627 if (gimple_vdef (stmt))
2628 last_vdef = gimple_vdef (stmt);
2630 else
2631 /* If this is the first load we arrive at update last_vdef
2632 so we handle stray PHIs correctly. */
2633 last_vdef = gimple_vuse (stmt);
2634 if (predicated[i])
2636 ssa_op_iter i;
2637 tree op;
2638 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
2639 reset_flow_sensitive_info (op);
2643 /* Update stmt list. */
2644 last = gsi_last_bb (merge_target_bb);
2645 gsi_insert_seq_after_without_update (&last, bb_seq (bb), GSI_NEW_STMT);
2646 set_bb_seq (bb, NULL);
2649 /* Fixup virtual operands in the exit block. */
2650 if (exit_bb
2651 && exit_bb != loop->header)
2653 /* We release virtual PHIs late because we have to propagate them
2654 out using the current VUSE. The def might be the one used
2655 after the loop. */
2656 vphi = get_virtual_phi (exit_bb);
2657 if (vphi)
2659 /* When there's just loads inside the loop a stray virtual
2660 PHI merging the uses can appear, update last_vdef from
2661 it. */
2662 if (!last_vdef)
2663 last_vdef = gimple_phi_arg_def (vphi, 0);
2664 imm_use_iterator iter;
2665 use_operand_p use_p;
2666 gimple *use_stmt;
2667 FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
2669 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2670 SET_USE (use_p, last_vdef);
2672 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi)))
2673 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1;
2674 gimple_stmt_iterator gsi = gsi_for_stmt (vphi);
2675 remove_phi_node (&gsi, true);
2679 /* Now remove all the edges in the loop, except for those from the exit
2680 block and delete the blocks we elided. */
2681 for (i = 1; i < orig_loop_num_nodes; i++)
2683 bb = ifc_bbs[i];
2685 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
2687 if (e->src == exit_bb)
2688 ei_next (&ei);
2689 else
2690 remove_edge (e);
2693 for (i = 1; i < orig_loop_num_nodes; i++)
2695 bb = ifc_bbs[i];
2697 if (bb == exit_bb || bb == loop->latch)
2698 continue;
2700 delete_basic_block (bb);
2703 /* Re-connect the exit block. */
2704 if (exit_bb != NULL)
2706 if (exit_bb != loop->header)
2708 /* Connect this node to loop header. */
2709 make_single_succ_edge (loop->header, exit_bb, EDGE_FALLTHRU);
2710 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
2713 /* Redirect non-exit edges to loop->latch. */
2714 FOR_EACH_EDGE (e, ei, exit_bb->succs)
2716 if (!loop_exit_edge_p (loop, e))
2717 redirect_edge_and_branch (e, loop->latch);
2719 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
2721 else
2723 /* If the loop does not have an exit, reconnect header and latch. */
2724 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
2725 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
2728 /* If possible, merge loop header to the block with the exit edge.
2729 This reduces the number of basic blocks to two, to please the
2730 vectorizer that handles only loops with two nodes. */
2731 if (exit_bb
2732 && exit_bb != loop->header)
2734 if (can_merge_blocks_p (loop->header, exit_bb))
2735 merge_blocks (loop->header, exit_bb);
2738 free (ifc_bbs);
2739 ifc_bbs = NULL;
2740 free (predicated);
2743 /* Version LOOP before if-converting it; the original loop
2744 will be if-converted, the new copy of the loop will not,
2745 and the LOOP_VECTORIZED internal call will be guarding which
2746 loop to execute. The vectorizer pass will fold this
2747 internal call into either true or false.
2749 Note that this function intentionally invalidates profile. Both edges
2750 out of LOOP_VECTORIZED must have 100% probability so the profile remains
2751 consistent after the condition is folded in the vectorizer. */
2753 static class loop *
2754 version_loop_for_if_conversion (class loop *loop, vec<gimple *> *preds)
2756 basic_block cond_bb;
2757 tree cond = make_ssa_name (boolean_type_node);
2758 class loop *new_loop;
2759 gimple *g;
2760 gimple_stmt_iterator gsi;
2761 unsigned int save_length;
2763 g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
2764 build_int_cst (integer_type_node, loop->num),
2765 integer_zero_node);
2766 gimple_call_set_lhs (g, cond);
2768 /* Save BB->aux around loop_version as that uses the same field. */
2769 save_length = loop->inner ? loop->inner->num_nodes : loop->num_nodes;
2770 void **saved_preds = XALLOCAVEC (void *, save_length);
2771 for (unsigned i = 0; i < save_length; i++)
2772 saved_preds[i] = ifc_bbs[i]->aux;
2774 initialize_original_copy_tables ();
2775 /* At this point we invalidate porfile confistency until IFN_LOOP_VECTORIZED
2776 is re-merged in the vectorizer. */
2777 new_loop = loop_version (loop, cond, &cond_bb,
2778 profile_probability::always (),
2779 profile_probability::always (),
2780 profile_probability::always (),
2781 profile_probability::always (), true);
2782 free_original_copy_tables ();
2784 for (unsigned i = 0; i < save_length; i++)
2785 ifc_bbs[i]->aux = saved_preds[i];
2787 if (new_loop == NULL)
2788 return NULL;
2790 new_loop->dont_vectorize = true;
2791 new_loop->force_vectorize = false;
2792 gsi = gsi_last_bb (cond_bb);
2793 gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
2794 if (preds)
2795 preds->safe_push (g);
2796 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2797 update_ssa (TODO_update_ssa);
2798 return new_loop;
2801 /* Return true when LOOP satisfies the follow conditions that will
2802 allow it to be recognized by the vectorizer for outer-loop
2803 vectorization:
2804 - The loop is not the root node of the loop tree.
2805 - The loop has exactly one inner loop.
2806 - The loop has a single exit.
2807 - The loop header has a single successor, which is the inner
2808 loop header.
2809 - Each of the inner and outer loop latches have a single
2810 predecessor.
2811 - The loop exit block has a single predecessor, which is the
2812 inner loop's exit block. */
2814 static bool
2815 versionable_outer_loop_p (class loop *loop)
2817 if (!loop_outer (loop)
2818 || loop->dont_vectorize
2819 || !loop->inner
2820 || loop->inner->next
2821 || !single_exit (loop)
2822 || !single_succ_p (loop->header)
2823 || single_succ (loop->header) != loop->inner->header
2824 || !single_pred_p (loop->latch)
2825 || !single_pred_p (loop->inner->latch))
2826 return false;
2828 basic_block outer_exit = single_pred (loop->latch);
2829 basic_block inner_exit = single_pred (loop->inner->latch);
2831 if (!single_pred_p (outer_exit) || single_pred (outer_exit) != inner_exit)
2832 return false;
2834 if (dump_file)
2835 fprintf (dump_file, "Found vectorizable outer loop for versioning\n");
2837 return true;
2840 /* Performs splitting of critical edges. Skip splitting and return false
2841 if LOOP will not be converted because:
2843 - LOOP is not well formed.
2844 - LOOP has PHI with more than MAX_PHI_ARG_NUM arguments.
2846 Last restriction is valid only if AGGRESSIVE_IF_CONV is false. */
2848 static bool
2849 ifcvt_split_critical_edges (class loop *loop, bool aggressive_if_conv)
2851 basic_block *body;
2852 basic_block bb;
2853 unsigned int num = loop->num_nodes;
2854 unsigned int i;
2855 gimple *stmt;
2856 edge e;
2857 edge_iterator ei;
2858 auto_vec<edge> critical_edges;
2860 /* Loop is not well formed. */
2861 if (num <= 2 || loop->inner || !single_exit (loop))
2862 return false;
2864 body = get_loop_body (loop);
2865 for (i = 0; i < num; i++)
2867 bb = body[i];
2868 if (!aggressive_if_conv
2869 && phi_nodes (bb)
2870 && EDGE_COUNT (bb->preds) > MAX_PHI_ARG_NUM)
2872 if (dump_file && (dump_flags & TDF_DETAILS))
2873 fprintf (dump_file,
2874 "BB %d has complicated PHI with more than %u args.\n",
2875 bb->index, MAX_PHI_ARG_NUM);
2877 free (body);
2878 return false;
2880 if (bb == loop->latch || bb_with_exit_edge_p (loop, bb))
2881 continue;
2883 stmt = last_stmt (bb);
2884 /* Skip basic blocks not ending with conditional branch. */
2885 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2886 continue;
2888 FOR_EACH_EDGE (e, ei, bb->succs)
2889 if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop)
2890 critical_edges.safe_push (e);
2892 free (body);
2894 while (critical_edges.length () > 0)
2896 e = critical_edges.pop ();
2897 /* Don't split if bb can be predicated along non-critical edge. */
2898 if (EDGE_COUNT (e->dest->preds) > 2 || all_preds_critical_p (e->dest))
2899 split_edge (e);
2902 return true;
2905 /* Delete redundant statements produced by predication which prevents
2906 loop vectorization. */
2908 static void
2909 ifcvt_local_dce (class loop *loop)
2911 gimple *stmt;
2912 gimple *stmt1;
2913 gimple *phi;
2914 gimple_stmt_iterator gsi;
2915 auto_vec<gimple *> worklist;
2916 enum gimple_code code;
2917 use_operand_p use_p;
2918 imm_use_iterator imm_iter;
2919 std::pair <tree, tree> *name_pair;
2920 unsigned int i;
2922 FOR_EACH_VEC_ELT (redundant_ssa_names, i, name_pair)
2923 replace_uses_by (name_pair->first, name_pair->second);
2924 redundant_ssa_names.release ();
2926 /* The loop has a single BB only. */
2927 basic_block bb = loop->header;
2928 tree latch_vdef = NULL_TREE;
2930 worklist.create (64);
2931 /* Consider all phi as live statements. */
2932 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2934 phi = gsi_stmt (gsi);
2935 gimple_set_plf (phi, GF_PLF_2, true);
2936 worklist.safe_push (phi);
2937 if (virtual_operand_p (gimple_phi_result (phi)))
2938 latch_vdef = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2940 /* Consider load/store statements, CALL and COND as live. */
2941 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2943 stmt = gsi_stmt (gsi);
2944 if (is_gimple_debug (stmt))
2946 gimple_set_plf (stmt, GF_PLF_2, true);
2947 continue;
2949 if (gimple_store_p (stmt) || gimple_assign_load_p (stmt))
2951 gimple_set_plf (stmt, GF_PLF_2, true);
2952 worklist.safe_push (stmt);
2953 continue;
2955 code = gimple_code (stmt);
2956 if (code == GIMPLE_COND || code == GIMPLE_CALL)
2958 gimple_set_plf (stmt, GF_PLF_2, true);
2959 worklist.safe_push (stmt);
2960 continue;
2962 gimple_set_plf (stmt, GF_PLF_2, false);
2964 if (code == GIMPLE_ASSIGN)
2966 tree lhs = gimple_assign_lhs (stmt);
2967 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2969 stmt1 = USE_STMT (use_p);
2970 if (!is_gimple_debug (stmt1) && gimple_bb (stmt1) != bb)
2972 gimple_set_plf (stmt, GF_PLF_2, true);
2973 worklist.safe_push (stmt);
2974 break;
2979 /* Propagate liveness through arguments of live stmt. */
2980 while (worklist.length () > 0)
2982 ssa_op_iter iter;
2983 use_operand_p use_p;
2984 tree use;
2986 stmt = worklist.pop ();
2987 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2989 use = USE_FROM_PTR (use_p);
2990 if (TREE_CODE (use) != SSA_NAME)
2991 continue;
2992 stmt1 = SSA_NAME_DEF_STMT (use);
2993 if (gimple_bb (stmt1) != bb || gimple_plf (stmt1, GF_PLF_2))
2994 continue;
2995 gimple_set_plf (stmt1, GF_PLF_2, true);
2996 worklist.safe_push (stmt1);
2999 /* Delete dead statements. */
3000 gsi = gsi_last_bb (bb);
3001 while (!gsi_end_p (gsi))
3003 gimple_stmt_iterator gsiprev = gsi;
3004 gsi_prev (&gsiprev);
3005 stmt = gsi_stmt (gsi);
3006 if (gimple_store_p (stmt))
3008 tree lhs = gimple_get_lhs (stmt);
3009 ao_ref write;
3010 ao_ref_init (&write, lhs);
3012 if (dse_classify_store (&write, stmt, false, NULL, NULL, latch_vdef)
3013 == DSE_STORE_DEAD)
3014 delete_dead_or_redundant_assignment (&gsi, "dead");
3015 gsi = gsiprev;
3016 continue;
3019 if (gimple_plf (stmt, GF_PLF_2))
3021 gsi = gsiprev;
3022 continue;
3024 if (dump_file && (dump_flags & TDF_DETAILS))
3026 fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index);
3027 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3029 gsi_remove (&gsi, true);
3030 release_defs (stmt);
3031 gsi = gsiprev;
3035 /* If-convert LOOP when it is legal. For the moment this pass has no
3036 profitability analysis. Returns non-zero todo flags when something
3037 changed. */
3039 unsigned int
3040 tree_if_conversion (class loop *loop, vec<gimple *> *preds)
3042 unsigned int todo = 0;
3043 bool aggressive_if_conv;
3044 class loop *rloop;
3045 bitmap exit_bbs;
3047 again:
3048 rloop = NULL;
3049 ifc_bbs = NULL;
3050 need_to_predicate = false;
3051 any_complicated_phi = false;
3053 /* Apply more aggressive if-conversion when loop or its outer loop were
3054 marked with simd pragma. When that's the case, we try to if-convert
3055 loop containing PHIs with more than MAX_PHI_ARG_NUM arguments. */
3056 aggressive_if_conv = loop->force_vectorize;
3057 if (!aggressive_if_conv)
3059 class loop *outer_loop = loop_outer (loop);
3060 if (outer_loop && outer_loop->force_vectorize)
3061 aggressive_if_conv = true;
3064 if (!ifcvt_split_critical_edges (loop, aggressive_if_conv))
3065 goto cleanup;
3067 if (!if_convertible_loop_p (loop)
3068 || !dbg_cnt (if_conversion_tree))
3069 goto cleanup;
3071 if ((need_to_predicate || any_complicated_phi)
3072 && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
3073 || loop->dont_vectorize))
3074 goto cleanup;
3076 /* Since we have no cost model, always version loops unless the user
3077 specified -ftree-loop-if-convert or unless versioning is required.
3078 Either version this loop, or if the pattern is right for outer-loop
3079 vectorization, version the outer loop. In the latter case we will
3080 still if-convert the original inner loop. */
3081 if (need_to_predicate
3082 || any_complicated_phi
3083 || flag_tree_loop_if_convert != 1)
3085 class loop *vloop
3086 = (versionable_outer_loop_p (loop_outer (loop))
3087 ? loop_outer (loop) : loop);
3088 class loop *nloop = version_loop_for_if_conversion (vloop, preds);
3089 if (nloop == NULL)
3090 goto cleanup;
3091 if (vloop != loop)
3093 /* If versionable_outer_loop_p decided to version the
3094 outer loop, version also the inner loop of the non-vectorized
3095 loop copy. So we transform:
3096 loop1
3097 loop2
3098 into:
3099 if (LOOP_VECTORIZED (1, 3))
3101 loop1
3102 loop2
3104 else
3105 loop3 (copy of loop1)
3106 if (LOOP_VECTORIZED (4, 5))
3107 loop4 (copy of loop2)
3108 else
3109 loop5 (copy of loop4) */
3110 gcc_assert (nloop->inner && nloop->inner->next == NULL);
3111 rloop = nloop->inner;
3115 /* Now all statements are if-convertible. Combine all the basic
3116 blocks into one huge basic block doing the if-conversion
3117 on-the-fly. */
3118 combine_blocks (loop);
3120 /* Perform local CSE, this esp. helps the vectorizer analysis if loads
3121 and stores are involved. CSE only the loop body, not the entry
3122 PHIs, those are to be kept in sync with the non-if-converted copy.
3123 ??? We'll still keep dead stores though. */
3124 exit_bbs = BITMAP_ALLOC (NULL);
3125 bitmap_set_bit (exit_bbs, single_exit (loop)->dest->index);
3126 bitmap_set_bit (exit_bbs, loop->latch->index);
3127 todo |= do_rpo_vn (cfun, loop_preheader_edge (loop), exit_bbs);
3129 /* Delete dead predicate computations. */
3130 ifcvt_local_dce (loop);
3131 BITMAP_FREE (exit_bbs);
3133 todo |= TODO_cleanup_cfg;
3135 cleanup:
3136 if (ifc_bbs)
3138 unsigned int i;
3140 for (i = 0; i < loop->num_nodes; i++)
3141 free_bb_predicate (ifc_bbs[i]);
3143 free (ifc_bbs);
3144 ifc_bbs = NULL;
3146 if (rloop != NULL)
3148 loop = rloop;
3149 goto again;
3152 return todo;
3155 /* Tree if-conversion pass management. */
3157 namespace {
3159 const pass_data pass_data_if_conversion =
3161 GIMPLE_PASS, /* type */
3162 "ifcvt", /* name */
3163 OPTGROUP_NONE, /* optinfo_flags */
3164 TV_TREE_LOOP_IFCVT, /* tv_id */
3165 ( PROP_cfg | PROP_ssa ), /* properties_required */
3166 0, /* properties_provided */
3167 0, /* properties_destroyed */
3168 0, /* todo_flags_start */
3169 0, /* todo_flags_finish */
3172 class pass_if_conversion : public gimple_opt_pass
3174 public:
3175 pass_if_conversion (gcc::context *ctxt)
3176 : gimple_opt_pass (pass_data_if_conversion, ctxt)
3179 /* opt_pass methods: */
3180 virtual bool gate (function *);
3181 virtual unsigned int execute (function *);
3183 }; // class pass_if_conversion
3185 bool
3186 pass_if_conversion::gate (function *fun)
3188 return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
3189 && flag_tree_loop_if_convert != 0)
3190 || flag_tree_loop_if_convert == 1);
3193 unsigned int
3194 pass_if_conversion::execute (function *fun)
3196 class loop *loop;
3197 unsigned todo = 0;
3199 if (number_of_loops (fun) <= 1)
3200 return 0;
3202 auto_vec<gimple *> preds;
3203 FOR_EACH_LOOP (loop, 0)
3204 if (flag_tree_loop_if_convert == 1
3205 || ((flag_tree_loop_vectorize || loop->force_vectorize)
3206 && !loop->dont_vectorize))
3207 todo |= tree_if_conversion (loop, &preds);
3209 if (todo)
3211 free_numbers_of_iterations_estimates (fun);
3212 scev_reset ();
3215 if (flag_checking)
3217 basic_block bb;
3218 FOR_EACH_BB_FN (bb, fun)
3219 gcc_assert (!bb->aux);
3222 /* Perform IL update now, it might elide some loops. */
3223 if (todo & TODO_cleanup_cfg)
3225 cleanup_tree_cfg ();
3226 if (need_ssa_update_p (fun))
3227 todo |= TODO_update_ssa;
3229 if (todo & TODO_update_ssa_any)
3230 update_ssa (todo & TODO_update_ssa_any);
3232 /* If if-conversion elided the loop fall back to the original one. */
3233 for (unsigned i = 0; i < preds.length (); ++i)
3235 gimple *g = preds[i];
3236 if (!gimple_bb (g))
3237 continue;
3238 unsigned ifcvt_loop = tree_to_uhwi (gimple_call_arg (g, 0));
3239 if (!get_loop (fun, ifcvt_loop))
3241 if (dump_file)
3242 fprintf (dump_file, "If-converted loop vanished\n");
3243 fold_loop_internal_call (g, boolean_false_node);
3247 return 0;
3250 } // anon namespace
3252 gimple_opt_pass *
3253 make_pass_if_conversion (gcc::context *ctxt)
3255 return new pass_if_conversion (ctxt);