testsuite: Update scanning symbol sections to support AIX.
[official-gcc.git] / gcc / postreload.c
blobc9e637500f17133c8b058174088192e33acad679
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "function-abi.h"
44 #include "rtl-iter.h"
46 static int reload_cse_noop_set_p (rtx);
47 static bool reload_cse_simplify (rtx_insn *, rtx);
48 static void reload_cse_regs_1 (void);
49 static int reload_cse_simplify_set (rtx, rtx_insn *);
50 static int reload_cse_simplify_operands (rtx_insn *, rtx);
52 static void reload_combine (void);
53 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
54 static void reload_combine_note_store (rtx, const_rtx, void *);
56 static bool reload_cse_move2add (rtx_insn *);
57 static void move2add_note_store (rtx, const_rtx, void *);
59 /* Call cse / combine like post-reload optimization phases.
60 FIRST is the first instruction. */
62 static void
63 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
65 bool moves_converted;
66 reload_cse_regs_1 ();
67 reload_combine ();
68 moves_converted = reload_cse_move2add (first);
69 if (flag_expensive_optimizations)
71 if (moves_converted)
72 reload_combine ();
73 reload_cse_regs_1 ();
77 /* See whether a single set SET is a noop. */
78 static int
79 reload_cse_noop_set_p (rtx set)
81 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
82 return 0;
84 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
87 /* Try to simplify INSN. Return true if the CFG may have changed. */
88 static bool
89 reload_cse_simplify (rtx_insn *insn, rtx testreg)
91 rtx body = PATTERN (insn);
92 basic_block insn_bb = BLOCK_FOR_INSN (insn);
93 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
95 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
96 to cse function calls. */
97 if (NO_FUNCTION_CSE && CALL_P (insn))
98 return false;
100 /* Remember if this insn has been sp += const_int. */
101 rtx sp_set = set_for_reg_notes (insn);
102 rtx sp_addend = NULL_RTX;
103 if (sp_set
104 && SET_DEST (sp_set) == stack_pointer_rtx
105 && GET_CODE (SET_SRC (sp_set)) == PLUS
106 && XEXP (SET_SRC (sp_set), 0) == stack_pointer_rtx
107 && CONST_INT_P (XEXP (SET_SRC (sp_set), 1)))
108 sp_addend = XEXP (SET_SRC (sp_set), 1);
110 if (GET_CODE (body) == SET)
112 int count = 0;
114 /* Simplify even if we may think it is a no-op.
115 We may think a memory load of a value smaller than WORD_SIZE
116 is redundant because we haven't taken into account possible
117 implicit extension. reload_cse_simplify_set() will bring
118 this out, so it's safer to simplify before we delete. */
119 count += reload_cse_simplify_set (body, insn);
121 if (!count && reload_cse_noop_set_p (body))
123 if (check_for_inc_dec (insn))
124 delete_insn_and_edges (insn);
125 /* We're done with this insn. */
126 goto done;
129 if (count > 0)
130 apply_change_group ();
131 else
132 reload_cse_simplify_operands (insn, testreg);
134 else if (GET_CODE (body) == PARALLEL)
136 int i;
137 int count = 0;
138 rtx value = NULL_RTX;
140 /* Registers mentioned in the clobber list for an asm cannot be reused
141 within the body of the asm. Invalidate those registers now so that
142 we don't try to substitute values for them. */
143 if (asm_noperands (body) >= 0)
145 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
147 rtx part = XVECEXP (body, 0, i);
148 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
149 cselib_invalidate_rtx (XEXP (part, 0));
153 /* If every action in a PARALLEL is a noop, we can delete
154 the entire PARALLEL. */
155 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
157 rtx part = XVECEXP (body, 0, i);
158 if (GET_CODE (part) == SET)
160 if (! reload_cse_noop_set_p (part))
161 break;
162 if (REG_P (SET_DEST (part))
163 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
165 if (value)
166 break;
167 value = SET_DEST (part);
170 else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
171 break;
174 if (i < 0)
176 if (check_for_inc_dec (insn))
177 delete_insn_and_edges (insn);
178 /* We're done with this insn. */
179 goto done;
182 /* It's not a no-op, but we can try to simplify it. */
183 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
184 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
185 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
187 if (count > 0)
188 apply_change_group ();
189 else
190 reload_cse_simplify_operands (insn, testreg);
193 /* If sp += const_int insn is changed into sp = reg;, add REG_EQUAL
194 note so that the stack_adjustments pass can undo it if beneficial. */
195 if (sp_addend
196 && SET_DEST (sp_set) == stack_pointer_rtx
197 && REG_P (SET_SRC (sp_set)))
198 set_dst_reg_note (insn, REG_EQUAL,
199 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
200 sp_addend), stack_pointer_rtx);
202 done:
203 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
206 /* Do a very simple CSE pass over the hard registers.
208 This function detects no-op moves where we happened to assign two
209 different pseudo-registers to the same hard register, and then
210 copied one to the other. Reload will generate a useless
211 instruction copying a register to itself.
213 This function also detects cases where we load a value from memory
214 into two different registers, and (if memory is more expensive than
215 registers) changes it to simply copy the first register into the
216 second register.
218 Another optimization is performed that scans the operands of each
219 instruction to see whether the value is already available in a
220 hard register. It then replaces the operand with the hard register
221 if possible, much like an optional reload would. */
223 static void
224 reload_cse_regs_1 (void)
226 bool cfg_changed = false;
227 basic_block bb;
228 rtx_insn *insn;
229 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
231 cselib_init (CSELIB_RECORD_MEMORY);
232 init_alias_analysis ();
234 FOR_EACH_BB_FN (bb, cfun)
235 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
238 cfg_changed |= reload_cse_simplify (insn, testreg);
240 cselib_process_insn (insn);
243 /* Clean up. */
244 end_alias_analysis ();
245 cselib_finish ();
246 if (cfg_changed)
247 cleanup_cfg (0);
250 /* Try to simplify a single SET instruction. SET is the set pattern.
251 INSN is the instruction it came from.
252 This function only handles one case: if we set a register to a value
253 which is not a register, we try to find that value in some other register
254 and change the set into a register copy. */
256 static int
257 reload_cse_simplify_set (rtx set, rtx_insn *insn)
259 int did_change = 0;
260 int dreg;
261 rtx src;
262 reg_class_t dclass;
263 int old_cost;
264 cselib_val *val;
265 struct elt_loc_list *l;
266 enum rtx_code extend_op = UNKNOWN;
267 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
269 dreg = true_regnum (SET_DEST (set));
270 if (dreg < 0)
271 return 0;
273 src = SET_SRC (set);
274 if (side_effects_p (src) || true_regnum (src) >= 0)
275 return 0;
277 dclass = REGNO_REG_CLASS (dreg);
279 /* When replacing a memory with a register, we need to honor assumptions
280 that combine made wrt the contents of sign bits. We'll do this by
281 generating an extend instruction instead of a reg->reg copy. Thus
282 the destination must be a register that we can widen. */
283 if (MEM_P (src)
284 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
285 && !REG_P (SET_DEST (set)))
286 return 0;
288 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
289 if (! val)
290 return 0;
292 /* If memory loads are cheaper than register copies, don't change them. */
293 if (MEM_P (src))
294 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
295 else if (REG_P (src))
296 old_cost = register_move_cost (GET_MODE (src),
297 REGNO_REG_CLASS (REGNO (src)), dclass);
298 else
299 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
301 for (l = val->locs; l; l = l->next)
303 rtx this_rtx = l->loc;
304 int this_cost;
306 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
308 if (extend_op != UNKNOWN)
310 wide_int result;
312 if (!CONST_SCALAR_INT_P (this_rtx))
313 continue;
315 switch (extend_op)
317 case ZERO_EXTEND:
318 result = wide_int::from (rtx_mode_t (this_rtx,
319 GET_MODE (src)),
320 BITS_PER_WORD, UNSIGNED);
321 break;
322 case SIGN_EXTEND:
323 result = wide_int::from (rtx_mode_t (this_rtx,
324 GET_MODE (src)),
325 BITS_PER_WORD, SIGNED);
326 break;
327 default:
328 gcc_unreachable ();
330 this_rtx = immed_wide_int_const (result, word_mode);
333 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
335 else if (REG_P (this_rtx))
337 if (extend_op != UNKNOWN)
339 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
340 this_cost = set_src_cost (this_rtx, word_mode, speed);
342 else
343 this_cost = register_move_cost (GET_MODE (this_rtx),
344 REGNO_REG_CLASS (REGNO (this_rtx)),
345 dclass);
347 else
348 continue;
350 /* If equal costs, prefer registers over anything else. That
351 tends to lead to smaller instructions on some machines. */
352 if (this_cost < old_cost
353 || (this_cost == old_cost
354 && REG_P (this_rtx)
355 && !REG_P (SET_SRC (set))))
357 if (extend_op != UNKNOWN
358 && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
359 GET_MODE (SET_DEST (set)), word_mode))
361 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
362 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
363 validate_change (insn, &SET_DEST (set), wide_dest, 1);
366 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
367 old_cost = this_cost, did_change = 1;
371 return did_change;
374 /* Try to replace operands in INSN with equivalent values that are already
375 in registers. This can be viewed as optional reloading.
377 For each non-register operand in the insn, see if any hard regs are
378 known to be equivalent to that operand. Record the alternatives which
379 can accept these hard registers. Among all alternatives, select the
380 ones which are better or equal to the one currently matching, where
381 "better" is in terms of '?' and '!' constraints. Among the remaining
382 alternatives, select the one which replaces most operands with
383 hard registers. */
385 static int
386 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
388 int i, j;
390 /* For each operand, all registers that are equivalent to it. */
391 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
393 const char *constraints[MAX_RECOG_OPERANDS];
395 /* Vector recording how bad an alternative is. */
396 int *alternative_reject;
397 /* Vector recording how many registers can be introduced by choosing
398 this alternative. */
399 int *alternative_nregs;
400 /* Array of vectors recording, for each operand and each alternative,
401 which hard register to substitute, or -1 if the operand should be
402 left as it is. */
403 int *op_alt_regno[MAX_RECOG_OPERANDS];
404 /* Array of alternatives, sorted in order of decreasing desirability. */
405 int *alternative_order;
407 extract_constrain_insn (insn);
409 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
410 return 0;
412 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
413 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
415 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
416 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
418 /* For each operand, find out which regs are equivalent. */
419 for (i = 0; i < recog_data.n_operands; i++)
421 cselib_val *v;
422 struct elt_loc_list *l;
423 rtx op;
425 CLEAR_HARD_REG_SET (equiv_regs[i]);
427 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
428 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
429 Likewise if we have a constant and the insn pattern doesn't tell us
430 the mode we need. */
431 if (LABEL_P (recog_data.operand[i])
432 || (NOTE_P (recog_data.operand[i])
433 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
434 || (CONSTANT_P (recog_data.operand[i])
435 && recog_data.operand_mode[i] == VOIDmode))
436 continue;
438 op = recog_data.operand[i];
439 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
441 rtx set = single_set (insn);
443 /* We might have multiple sets, some of which do implicit
444 extension. Punt on this for now. */
445 if (! set)
446 continue;
447 /* If the destination is also a MEM or a STRICT_LOW_PART, no
448 extension applies.
449 Also, if there is an explicit extension, we don't have to
450 worry about an implicit one. */
451 else if (MEM_P (SET_DEST (set))
452 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
453 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
454 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
455 ; /* Continue ordinary processing. */
456 /* If the register cannot change mode to word_mode, it follows that
457 it cannot have been used in word_mode. */
458 else if (REG_P (SET_DEST (set))
459 && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
460 GET_MODE (SET_DEST (set)),
461 word_mode))
462 ; /* Continue ordinary processing. */
463 /* If this is a straight load, make the extension explicit. */
464 else if (REG_P (SET_DEST (set))
465 && recog_data.n_operands == 2
466 && SET_SRC (set) == op
467 && SET_DEST (set) == recog_data.operand[1-i])
469 validate_change (insn, recog_data.operand_loc[i],
470 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
471 word_mode, op),
473 validate_change (insn, recog_data.operand_loc[1-i],
474 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
476 if (! apply_change_group ())
477 return 0;
478 return reload_cse_simplify_operands (insn, testreg);
480 else
481 /* ??? There might be arithmetic operations with memory that are
482 safe to optimize, but is it worth the trouble? */
483 continue;
486 if (side_effects_p (op))
487 continue;
488 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
489 if (! v)
490 continue;
492 for (l = v->locs; l; l = l->next)
493 if (REG_P (l->loc))
494 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
497 alternative_mask preferred = get_preferred_alternatives (insn);
498 for (i = 0; i < recog_data.n_operands; i++)
500 machine_mode mode;
501 int regno;
502 const char *p;
504 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
505 for (j = 0; j < recog_data.n_alternatives; j++)
506 op_alt_regno[i][j] = -1;
508 p = constraints[i] = recog_data.constraints[i];
509 mode = recog_data.operand_mode[i];
511 /* Add the reject values for each alternative given by the constraints
512 for this operand. */
513 j = 0;
514 while (*p != '\0')
516 char c = *p++;
517 if (c == ',')
518 j++;
519 else if (c == '?')
520 alternative_reject[j] += 3;
521 else if (c == '!')
522 alternative_reject[j] += 300;
525 /* We won't change operands which are already registers. We
526 also don't want to modify output operands. */
527 regno = true_regnum (recog_data.operand[i]);
528 if (regno >= 0
529 || constraints[i][0] == '='
530 || constraints[i][0] == '+')
531 continue;
533 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
535 enum reg_class rclass = NO_REGS;
537 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
538 continue;
540 set_mode_and_regno (testreg, mode, regno);
542 /* We found a register equal to this operand. Now look for all
543 alternatives that can accept this register and have not been
544 assigned a register they can use yet. */
545 j = 0;
546 p = constraints[i];
547 for (;;)
549 char c = *p;
551 switch (c)
553 case 'g':
554 rclass = reg_class_subunion[rclass][GENERAL_REGS];
555 break;
557 default:
558 rclass
559 = (reg_class_subunion
560 [rclass]
561 [reg_class_for_constraint (lookup_constraint (p))]);
562 break;
564 case ',': case '\0':
565 /* See if REGNO fits this alternative, and set it up as the
566 replacement register if we don't have one for this
567 alternative yet and the operand being replaced is not
568 a cheap CONST_INT. */
569 if (op_alt_regno[i][j] == -1
570 && TEST_BIT (preferred, j)
571 && reg_fits_class_p (testreg, rclass, 0, mode)
572 && (!CONST_INT_P (recog_data.operand[i])
573 || (set_src_cost (recog_data.operand[i], mode,
574 optimize_bb_for_speed_p
575 (BLOCK_FOR_INSN (insn)))
576 > set_src_cost (testreg, mode,
577 optimize_bb_for_speed_p
578 (BLOCK_FOR_INSN (insn))))))
580 alternative_nregs[j]++;
581 op_alt_regno[i][j] = regno;
583 j++;
584 rclass = NO_REGS;
585 break;
587 p += CONSTRAINT_LEN (c, p);
589 if (c == '\0')
590 break;
595 /* The loop below sets alternative_order[0] but -Wmaybe-uninitialized
596 can't know that. Clear it here to avoid the warning. */
597 alternative_order[0] = 0;
598 gcc_assert (!recog_data.n_alternatives
599 || (which_alternative >= 0
600 && which_alternative < recog_data.n_alternatives));
602 /* Record all alternatives which are better or equal to the currently
603 matching one in the alternative_order array. */
604 for (i = j = 0; i < recog_data.n_alternatives; i++)
605 if (alternative_reject[i] <= alternative_reject[which_alternative])
606 alternative_order[j++] = i;
607 recog_data.n_alternatives = j;
609 /* Sort it. Given a small number of alternatives, a dumb algorithm
610 won't hurt too much. */
611 for (i = 0; i < recog_data.n_alternatives - 1; i++)
613 int best = i;
614 int best_reject = alternative_reject[alternative_order[i]];
615 int best_nregs = alternative_nregs[alternative_order[i]];
617 for (j = i + 1; j < recog_data.n_alternatives; j++)
619 int this_reject = alternative_reject[alternative_order[j]];
620 int this_nregs = alternative_nregs[alternative_order[j]];
622 if (this_reject < best_reject
623 || (this_reject == best_reject && this_nregs > best_nregs))
625 best = j;
626 best_reject = this_reject;
627 best_nregs = this_nregs;
631 std::swap (alternative_order[best], alternative_order[i]);
634 /* Substitute the operands as determined by op_alt_regno for the best
635 alternative. */
636 j = alternative_order[0];
638 for (i = 0; i < recog_data.n_operands; i++)
640 machine_mode mode = recog_data.operand_mode[i];
641 if (op_alt_regno[i][j] == -1)
642 continue;
644 validate_change (insn, recog_data.operand_loc[i],
645 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
648 for (i = recog_data.n_dups - 1; i >= 0; i--)
650 int op = recog_data.dup_num[i];
651 machine_mode mode = recog_data.operand_mode[op];
653 if (op_alt_regno[op][j] == -1)
654 continue;
656 validate_change (insn, recog_data.dup_loc[i],
657 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
660 return apply_change_group ();
663 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
664 addressing now.
665 This code might also be useful when reload gave up on reg+reg addressing
666 because of clashes between the return register and INDEX_REG_CLASS. */
668 /* The maximum number of uses of a register we can keep track of to
669 replace them with reg+reg addressing. */
670 #define RELOAD_COMBINE_MAX_USES 16
672 /* Describes a recorded use of a register. */
673 struct reg_use
675 /* The insn where a register has been used. */
676 rtx_insn *insn;
677 /* Points to the memory reference enclosing the use, if any, NULL_RTX
678 otherwise. */
679 rtx containing_mem;
680 /* Location of the register within INSN. */
681 rtx *usep;
682 /* The reverse uid of the insn. */
683 int ruid;
686 /* If the register is used in some unknown fashion, USE_INDEX is negative.
687 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
688 indicates where it is first set or clobbered.
689 Otherwise, USE_INDEX is the index of the last encountered use of the
690 register (which is first among these we have seen since we scan backwards).
691 USE_RUID indicates the first encountered, i.e. last, of these uses.
692 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
693 with a constant offset; OFFSET contains this constant in that case.
694 STORE_RUID is always meaningful if we only want to use a value in a
695 register in a different place: it denotes the next insn in the insn
696 stream (i.e. the last encountered) that sets or clobbers the register.
697 REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
698 EXPR is the expression used when storing the register. */
699 static struct
701 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
702 rtx offset;
703 int use_index;
704 int store_ruid;
705 int real_store_ruid;
706 int use_ruid;
707 bool all_offsets_match;
708 rtx expr;
709 } reg_state[FIRST_PSEUDO_REGISTER];
711 /* Reverse linear uid. This is increased in reload_combine while scanning
712 the instructions from last to first. It is used to set last_label_ruid
713 and the store_ruid / use_ruid fields in reg_state. */
714 static int reload_combine_ruid;
716 /* The RUID of the last label we encountered in reload_combine. */
717 static int last_label_ruid;
719 /* The RUID of the last jump we encountered in reload_combine. */
720 static int last_jump_ruid;
722 /* The register numbers of the first and last index register. A value of
723 -1 in LAST_INDEX_REG indicates that we've previously computed these
724 values and found no suitable index registers. */
725 static int first_index_reg = -1;
726 static int last_index_reg;
728 #define LABEL_LIVE(LABEL) \
729 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
731 /* Subroutine of reload_combine_split_ruids, called to fix up a single
732 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
734 static inline void
735 reload_combine_split_one_ruid (int *pruid, int split_ruid)
737 if (*pruid > split_ruid)
738 (*pruid)++;
741 /* Called when we insert a new insn in a position we've already passed in
742 the scan. Examine all our state, increasing all ruids that are higher
743 than SPLIT_RUID by one in order to make room for a new insn. */
745 static void
746 reload_combine_split_ruids (int split_ruid)
748 unsigned i;
750 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
751 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
752 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
756 int j, idx = reg_state[i].use_index;
757 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
758 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
759 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
760 split_ruid);
761 if (idx < 0)
762 continue;
763 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
765 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
766 split_ruid);
771 /* Called when we are about to rescan a previously encountered insn with
772 reload_combine_note_use after modifying some part of it. This clears all
773 information about uses in that particular insn. */
775 static void
776 reload_combine_purge_insn_uses (rtx_insn *insn)
778 unsigned i;
780 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
782 int j, k, idx = reg_state[i].use_index;
783 if (idx < 0)
784 continue;
785 j = k = RELOAD_COMBINE_MAX_USES;
786 while (j-- > idx)
788 if (reg_state[i].reg_use[j].insn != insn)
790 k--;
791 if (k != j)
792 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
795 reg_state[i].use_index = k;
799 /* Called when we need to forget about all uses of REGNO after an insn
800 which is identified by RUID. */
802 static void
803 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
805 int j, k, idx = reg_state[regno].use_index;
806 if (idx < 0)
807 return;
808 j = k = RELOAD_COMBINE_MAX_USES;
809 while (j-- > idx)
811 if (reg_state[regno].reg_use[j].ruid >= ruid)
813 k--;
814 if (k != j)
815 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
818 reg_state[regno].use_index = k;
821 /* Find the use of REGNO with the ruid that is highest among those
822 lower than RUID_LIMIT, and return it if it is the only use of this
823 reg in the insn. Return NULL otherwise. */
825 static struct reg_use *
826 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
828 int i, best_ruid = 0;
829 int use_idx = reg_state[regno].use_index;
830 struct reg_use *retval;
832 if (use_idx < 0)
833 return NULL;
834 retval = NULL;
835 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
837 struct reg_use *use = reg_state[regno].reg_use + i;
838 int this_ruid = use->ruid;
839 if (this_ruid >= ruid_limit)
840 continue;
841 if (this_ruid > best_ruid)
843 best_ruid = this_ruid;
844 retval = use;
846 else if (this_ruid == best_ruid)
847 retval = NULL;
849 if (last_label_ruid >= best_ruid)
850 return NULL;
851 return retval;
854 /* After we've moved an add insn, fix up any debug insns that occur
855 between the old location of the add and the new location. REG is
856 the destination register of the add insn; REPLACEMENT is the
857 SET_SRC of the add. FROM and TO specify the range in which we
858 should make this change on debug insns. */
860 static void
861 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
863 rtx_insn *insn;
864 for (insn = from; insn != to; insn = NEXT_INSN (insn))
866 rtx t;
868 if (!DEBUG_BIND_INSN_P (insn))
869 continue;
871 t = INSN_VAR_LOCATION_LOC (insn);
872 t = simplify_replace_rtx (t, reg, replacement);
873 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
877 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
878 with SRC in the insn described by USE, taking costs into account. Return
879 true if we made the replacement. */
881 static bool
882 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
884 rtx_insn *use_insn = use->insn;
885 rtx mem = use->containing_mem;
886 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
888 if (mem != NULL_RTX)
890 addr_space_t as = MEM_ADDR_SPACE (mem);
891 rtx oldaddr = XEXP (mem, 0);
892 rtx newaddr = NULL_RTX;
893 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
894 int new_cost;
896 newaddr = simplify_replace_rtx (oldaddr, reg, src);
897 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
899 XEXP (mem, 0) = newaddr;
900 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
901 XEXP (mem, 0) = oldaddr;
902 if (new_cost <= old_cost
903 && validate_change (use_insn,
904 &XEXP (mem, 0), newaddr, 0))
905 return true;
908 else
910 rtx new_set = single_set (use_insn);
911 if (new_set
912 && REG_P (SET_DEST (new_set))
913 && GET_CODE (SET_SRC (new_set)) == PLUS
914 && REG_P (XEXP (SET_SRC (new_set), 0))
915 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
917 rtx new_src;
918 machine_mode mode = GET_MODE (SET_DEST (new_set));
919 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
921 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
922 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
924 if (set_src_cost (new_src, mode, speed) <= old_cost
925 && validate_change (use_insn, &SET_SRC (new_set),
926 new_src, 0))
927 return true;
930 return false;
933 /* Called by reload_combine when scanning INSN. This function tries to detect
934 patterns where a constant is added to a register, and the result is used
935 in an address.
936 Return true if no further processing is needed on INSN; false if it wasn't
937 recognized and should be handled normally. */
939 static bool
940 reload_combine_recognize_const_pattern (rtx_insn *insn)
942 int from_ruid = reload_combine_ruid;
943 rtx set, pat, reg, src, addreg;
944 unsigned int regno;
945 struct reg_use *use;
946 bool must_move_add;
947 rtx_insn *add_moved_after_insn = NULL;
948 int add_moved_after_ruid = 0;
949 int clobbered_regno = -1;
951 set = single_set (insn);
952 if (set == NULL_RTX)
953 return false;
955 reg = SET_DEST (set);
956 src = SET_SRC (set);
957 if (!REG_P (reg)
958 || REG_NREGS (reg) != 1
959 || GET_MODE (reg) != Pmode
960 || reg == stack_pointer_rtx)
961 return false;
963 regno = REGNO (reg);
965 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
966 uses of REG1 inside an address, or inside another add insn. If
967 possible and profitable, merge the addition into subsequent
968 uses. */
969 if (GET_CODE (src) != PLUS
970 || !REG_P (XEXP (src, 0))
971 || !CONSTANT_P (XEXP (src, 1)))
972 return false;
974 addreg = XEXP (src, 0);
975 must_move_add = rtx_equal_p (reg, addreg);
977 pat = PATTERN (insn);
978 if (must_move_add && set != pat)
980 /* We have to be careful when moving the add; apart from the
981 single_set there may also be clobbers. Recognize one special
982 case, that of one clobber alongside the set (likely a clobber
983 of the CC register). */
984 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
985 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
986 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
987 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
988 return false;
989 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
994 use = reload_combine_closest_single_use (regno, from_ruid);
996 if (use)
997 /* Start the search for the next use from here. */
998 from_ruid = use->ruid;
1000 if (use && GET_MODE (*use->usep) == Pmode)
1002 bool delete_add = false;
1003 rtx_insn *use_insn = use->insn;
1004 int use_ruid = use->ruid;
1006 /* Avoid moving the add insn past a jump. */
1007 if (must_move_add && use_ruid <= last_jump_ruid)
1008 break;
1010 /* If the add clobbers another hard reg in parallel, don't move
1011 it past a real set of this hard reg. */
1012 if (must_move_add && clobbered_regno >= 0
1013 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1014 break;
1016 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1017 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1018 break;
1020 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1021 /* Avoid moving a use of ADDREG past a point where it is stored. */
1022 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1023 break;
1025 /* We also must not move the addition past an insn that sets
1026 the same register, unless we can combine two add insns. */
1027 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1029 if (use->containing_mem == NULL_RTX)
1030 delete_add = true;
1031 else
1032 break;
1035 if (try_replace_in_use (use, reg, src))
1037 reload_combine_purge_insn_uses (use_insn);
1038 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1039 use_ruid, NULL_RTX);
1041 if (delete_add)
1043 fixup_debug_insns (reg, src, insn, use_insn);
1044 delete_insn (insn);
1045 return true;
1047 if (must_move_add)
1049 add_moved_after_insn = use_insn;
1050 add_moved_after_ruid = use_ruid;
1052 continue;
1055 /* If we get here, we couldn't handle this use. */
1056 if (must_move_add)
1057 break;
1059 while (use);
1061 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1062 /* Process the add normally. */
1063 return false;
1065 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1067 reorder_insns (insn, insn, add_moved_after_insn);
1068 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1069 reload_combine_split_ruids (add_moved_after_ruid - 1);
1070 reload_combine_note_use (&PATTERN (insn), insn,
1071 add_moved_after_ruid, NULL_RTX);
1072 reg_state[regno].store_ruid = add_moved_after_ruid;
1074 return true;
1077 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1078 can handle and improve. Return true if no further processing is needed on
1079 INSN; false if it wasn't recognized and should be handled normally. */
1081 static bool
1082 reload_combine_recognize_pattern (rtx_insn *insn)
1084 rtx set, reg, src;
1086 set = single_set (insn);
1087 if (set == NULL_RTX)
1088 return false;
1090 reg = SET_DEST (set);
1091 src = SET_SRC (set);
1092 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1093 return false;
1095 unsigned int regno = REGNO (reg);
1096 machine_mode mode = GET_MODE (reg);
1098 if (reg_state[regno].use_index < 0
1099 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1100 return false;
1102 for (int i = reg_state[regno].use_index;
1103 i < RELOAD_COMBINE_MAX_USES; i++)
1105 struct reg_use *use = reg_state[regno].reg_use + i;
1106 if (GET_MODE (*use->usep) != mode)
1107 return false;
1108 /* Don't try to adjust (use (REGX)). */
1109 if (GET_CODE (PATTERN (use->insn)) == USE
1110 && &XEXP (PATTERN (use->insn), 0) == use->usep)
1111 return false;
1114 /* Look for (set (REGX) (CONST_INT))
1115 (set (REGX) (PLUS (REGX) (REGY)))
1117 ... (MEM (REGX)) ...
1118 and convert it to
1119 (set (REGZ) (CONST_INT))
1121 ... (MEM (PLUS (REGZ) (REGY)))... .
1123 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1124 and that we know all uses of REGX before it dies.
1125 Also, explicitly check that REGX != REGY; our life information
1126 does not yet show whether REGY changes in this insn. */
1128 if (GET_CODE (src) == PLUS
1129 && reg_state[regno].all_offsets_match
1130 && last_index_reg != -1
1131 && REG_P (XEXP (src, 1))
1132 && rtx_equal_p (XEXP (src, 0), reg)
1133 && !rtx_equal_p (XEXP (src, 1), reg)
1134 && last_label_ruid < reg_state[regno].use_ruid)
1136 rtx base = XEXP (src, 1);
1137 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1138 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1139 rtx index_reg = NULL_RTX;
1140 rtx reg_sum = NULL_RTX;
1141 int i;
1143 /* Now we need to set INDEX_REG to an index register (denoted as
1144 REGZ in the illustration above) and REG_SUM to the expression
1145 register+register that we want to use to substitute uses of REG
1146 (typically in MEMs) with. First check REG and BASE for being
1147 index registers; we can use them even if they are not dead. */
1148 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1149 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1150 REGNO (base)))
1152 index_reg = reg;
1153 reg_sum = src;
1155 else
1157 /* Otherwise, look for a free index register. Since we have
1158 checked above that neither REG nor BASE are index registers,
1159 if we find anything at all, it will be different from these
1160 two registers. */
1161 for (i = first_index_reg; i <= last_index_reg; i++)
1163 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1164 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1165 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1166 && (crtl->abi->clobbers_full_reg_p (i)
1167 || df_regs_ever_live_p (i))
1168 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1169 && !fixed_regs[i] && !global_regs[i]
1170 && hard_regno_nregs (i, GET_MODE (reg)) == 1
1171 && targetm.hard_regno_scratch_ok (i))
1173 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1174 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1175 break;
1180 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1181 (REGY), i.e. BASE, is not clobbered before the last use we'll
1182 create. */
1183 if (reg_sum
1184 && prev_set
1185 && CONST_INT_P (SET_SRC (prev_set))
1186 && rtx_equal_p (SET_DEST (prev_set), reg)
1187 && (reg_state[REGNO (base)].store_ruid
1188 <= reg_state[regno].use_ruid))
1190 /* Change destination register and, if necessary, the constant
1191 value in PREV, the constant loading instruction. */
1192 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1193 if (reg_state[regno].offset != const0_rtx)
1195 HOST_WIDE_INT c
1196 = trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1197 + UINTVAL (reg_state[regno].offset),
1198 GET_MODE (index_reg));
1199 validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1202 /* Now for every use of REG that we have recorded, replace REG
1203 with REG_SUM. */
1204 for (i = reg_state[regno].use_index;
1205 i < RELOAD_COMBINE_MAX_USES; i++)
1206 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1207 reg_state[regno].reg_use[i].usep,
1208 /* Each change must have its own
1209 replacement. */
1210 reg_sum, 1);
1212 if (apply_change_group ())
1214 struct reg_use *lowest_ruid = NULL;
1216 /* For every new use of REG_SUM, we have to record the use
1217 of BASE therein, i.e. operand 1. */
1218 for (i = reg_state[regno].use_index;
1219 i < RELOAD_COMBINE_MAX_USES; i++)
1221 struct reg_use *use = reg_state[regno].reg_use + i;
1222 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1223 use->ruid, use->containing_mem);
1224 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1225 lowest_ruid = use;
1228 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1230 /* Delete the reg-reg addition. */
1231 delete_insn (insn);
1233 if (reg_state[regno].offset != const0_rtx)
1234 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1235 are now invalid. */
1236 remove_reg_equal_equiv_notes (prev);
1238 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1239 return true;
1243 return false;
1246 static void
1247 reload_combine (void)
1249 rtx_insn *insn, *prev;
1250 basic_block bb;
1251 unsigned int r;
1252 int min_labelno, n_labels;
1253 HARD_REG_SET ever_live_at_start, *label_live;
1255 /* To avoid wasting too much time later searching for an index register,
1256 determine the minimum and maximum index register numbers. */
1257 if (INDEX_REG_CLASS == NO_REGS)
1258 last_index_reg = -1;
1259 else if (first_index_reg == -1 && last_index_reg == 0)
1261 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1262 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1264 if (first_index_reg == -1)
1265 first_index_reg = r;
1267 last_index_reg = r;
1270 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1271 to -1 so we'll know to quit early the next time we get here. */
1272 if (first_index_reg == -1)
1274 last_index_reg = -1;
1275 return;
1279 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1280 information is a bit fuzzy immediately after reload, but it's
1281 still good enough to determine which registers are live at a jump
1282 destination. */
1283 min_labelno = get_first_label_num ();
1284 n_labels = max_label_num () - min_labelno;
1285 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1286 CLEAR_HARD_REG_SET (ever_live_at_start);
1288 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1290 insn = BB_HEAD (bb);
1291 if (LABEL_P (insn))
1293 HARD_REG_SET live;
1294 bitmap live_in = df_get_live_in (bb);
1296 REG_SET_TO_HARD_REG_SET (live, live_in);
1297 compute_use_by_pseudos (&live, live_in);
1298 LABEL_LIVE (insn) = live;
1299 ever_live_at_start |= live;
1303 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1304 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1305 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1307 reg_state[r].store_ruid = 0;
1308 reg_state[r].real_store_ruid = 0;
1309 if (fixed_regs[r])
1310 reg_state[r].use_index = -1;
1311 else
1312 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1315 for (insn = get_last_insn (); insn; insn = prev)
1317 bool control_flow_insn;
1318 rtx note;
1320 prev = PREV_INSN (insn);
1322 /* We cannot do our optimization across labels. Invalidating all the use
1323 information we have would be costly, so we just note where the label
1324 is and then later disable any optimization that would cross it. */
1325 if (LABEL_P (insn))
1326 last_label_ruid = reload_combine_ruid;
1327 else if (BARRIER_P (insn))
1329 /* Crossing a barrier resets all the use information. */
1330 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1331 if (! fixed_regs[r])
1332 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1334 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1335 /* Optimizations across insns being marked as volatile must be
1336 prevented. All the usage information is invalidated
1337 here. */
1338 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1339 if (! fixed_regs[r]
1340 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1341 reg_state[r].use_index = -1;
1343 if (! NONDEBUG_INSN_P (insn))
1344 continue;
1346 reload_combine_ruid++;
1348 control_flow_insn = control_flow_insn_p (insn);
1349 if (control_flow_insn)
1350 last_jump_ruid = reload_combine_ruid;
1352 if (reload_combine_recognize_const_pattern (insn)
1353 || reload_combine_recognize_pattern (insn))
1354 continue;
1356 note_stores (insn, reload_combine_note_store, NULL);
1358 if (CALL_P (insn))
1360 rtx link;
1361 HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
1363 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1364 if (TEST_HARD_REG_BIT (used_regs, r))
1366 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1367 reg_state[r].store_ruid = reload_combine_ruid;
1370 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1371 link = XEXP (link, 1))
1373 rtx setuse = XEXP (link, 0);
1374 rtx usage_rtx = XEXP (setuse, 0);
1376 if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
1378 unsigned int end_regno = END_REGNO (usage_rtx);
1379 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1380 reg_state[i].use_index = -1;
1385 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1387 /* Non-spill registers might be used at the call destination in
1388 some unknown fashion, so we have to mark the unknown use. */
1389 HARD_REG_SET *live;
1391 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1392 && JUMP_LABEL (insn))
1394 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1395 live = NULL;
1396 else
1397 live = &LABEL_LIVE (JUMP_LABEL (insn));
1399 else
1400 live = &ever_live_at_start;
1402 if (live)
1403 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1404 if (TEST_HARD_REG_BIT (*live, r))
1405 reg_state[r].use_index = -1;
1408 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1409 NULL_RTX);
1411 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1413 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1415 int regno = REGNO (XEXP (note, 0));
1416 reg_state[regno].store_ruid = reload_combine_ruid;
1417 reg_state[regno].real_store_ruid = reload_combine_ruid;
1418 reg_state[regno].use_index = -1;
1423 free (label_live);
1426 /* Check if DST is a register or a subreg of a register; if it is,
1427 update store_ruid, real_store_ruid and use_index in the reg_state
1428 structure accordingly. Called via note_stores from reload_combine. */
1430 static void
1431 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1433 int regno = 0;
1434 int i;
1435 machine_mode mode = GET_MODE (dst);
1437 if (GET_CODE (dst) == SUBREG)
1439 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1440 GET_MODE (SUBREG_REG (dst)),
1441 SUBREG_BYTE (dst),
1442 GET_MODE (dst));
1443 dst = SUBREG_REG (dst);
1446 /* Some targets do argument pushes without adding REG_INC notes. */
1448 if (MEM_P (dst))
1450 dst = XEXP (dst, 0);
1451 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1452 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1453 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1455 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1456 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1458 /* We could probably do better, but for now mark the register
1459 as used in an unknown fashion and set/clobbered at this
1460 insn. */
1461 reg_state[i].use_index = -1;
1462 reg_state[i].store_ruid = reload_combine_ruid;
1463 reg_state[i].real_store_ruid = reload_combine_ruid;
1466 else
1467 return;
1470 if (!REG_P (dst))
1471 return;
1472 regno += REGNO (dst);
1474 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1475 careful with registers / register parts that are not full words.
1476 Similarly for ZERO_EXTRACT. */
1477 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1478 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1480 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1482 reg_state[i].use_index = -1;
1483 reg_state[i].store_ruid = reload_combine_ruid;
1484 reg_state[i].real_store_ruid = reload_combine_ruid;
1487 else
1489 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1491 reg_state[i].store_ruid = reload_combine_ruid;
1492 if (GET_CODE (set) == SET)
1493 reg_state[i].real_store_ruid = reload_combine_ruid;
1494 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1499 /* XP points to a piece of rtl that has to be checked for any uses of
1500 registers.
1501 *XP is the pattern of INSN, or a part of it.
1502 Called from reload_combine, and recursively by itself. */
1503 static void
1504 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1506 rtx x = *xp;
1507 enum rtx_code code = x->code;
1508 const char *fmt;
1509 int i, j;
1510 rtx offset = const0_rtx; /* For the REG case below. */
1512 switch (code)
1514 case SET:
1515 if (REG_P (SET_DEST (x)))
1517 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1518 return;
1520 break;
1522 case USE:
1523 /* If this is the USE of a return value, we can't change it. */
1524 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1526 /* Mark the return register as used in an unknown fashion. */
1527 rtx reg = XEXP (x, 0);
1528 unsigned int end_regno = END_REGNO (reg);
1529 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1530 reg_state[regno].use_index = -1;
1531 return;
1533 break;
1535 case CLOBBER:
1536 if (REG_P (SET_DEST (x)))
1538 /* No spurious CLOBBERs of pseudo registers may remain. */
1539 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1540 return;
1542 break;
1544 case PLUS:
1545 /* We are interested in (plus (reg) (const_int)) . */
1546 if (!REG_P (XEXP (x, 0))
1547 || !CONST_INT_P (XEXP (x, 1)))
1548 break;
1549 offset = XEXP (x, 1);
1550 x = XEXP (x, 0);
1551 /* Fall through. */
1552 case REG:
1554 int regno = REGNO (x);
1555 int use_index;
1556 int nregs;
1558 /* No spurious USEs of pseudo registers may remain. */
1559 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1561 nregs = REG_NREGS (x);
1563 /* We can't substitute into multi-hard-reg uses. */
1564 if (nregs > 1)
1566 while (--nregs >= 0)
1567 reg_state[regno + nregs].use_index = -1;
1568 return;
1571 /* We may be called to update uses in previously seen insns.
1572 Don't add uses beyond the last store we saw. */
1573 if (ruid < reg_state[regno].store_ruid)
1574 return;
1576 /* If this register is already used in some unknown fashion, we
1577 can't do anything.
1578 If we decrement the index from zero to -1, we can't store more
1579 uses, so this register becomes used in an unknown fashion. */
1580 use_index = --reg_state[regno].use_index;
1581 if (use_index < 0)
1582 return;
1584 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1586 /* This is the first use of this register we have seen since we
1587 marked it as dead. */
1588 reg_state[regno].offset = offset;
1589 reg_state[regno].all_offsets_match = true;
1590 reg_state[regno].use_ruid = ruid;
1592 else
1594 if (reg_state[regno].use_ruid > ruid)
1595 reg_state[regno].use_ruid = ruid;
1597 if (! rtx_equal_p (offset, reg_state[regno].offset))
1598 reg_state[regno].all_offsets_match = false;
1601 reg_state[regno].reg_use[use_index].insn = insn;
1602 reg_state[regno].reg_use[use_index].ruid = ruid;
1603 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1604 reg_state[regno].reg_use[use_index].usep = xp;
1605 return;
1608 case MEM:
1609 containing_mem = x;
1610 break;
1612 default:
1613 break;
1616 /* Recursively process the components of X. */
1617 fmt = GET_RTX_FORMAT (code);
1618 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1620 if (fmt[i] == 'e')
1621 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1622 else if (fmt[i] == 'E')
1624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1625 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1626 containing_mem);
1631 /* See if we can reduce the cost of a constant by replacing a move
1632 with an add. We track situations in which a register is set to a
1633 constant or to a register plus a constant. */
1634 /* We cannot do our optimization across labels. Invalidating all the
1635 information about register contents we have would be costly, so we
1636 use move2add_last_label_luid to note where the label is and then
1637 later disable any optimization that would cross it.
1638 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1639 are only valid if reg_set_luid[n] is greater than
1640 move2add_last_label_luid.
1641 For a set that established a new (potential) base register with
1642 non-constant value, we use move2add_luid from the place where the
1643 setting insn is encountered; registers based off that base then
1644 get the same reg_set_luid. Constants all get
1645 move2add_last_label_luid + 1 as their reg_set_luid. */
1646 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1648 /* If reg_base_reg[n] is negative, register n has been set to
1649 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1650 If reg_base_reg[n] is non-negative, register n has been set to the
1651 sum of reg_offset[n] and the value of register reg_base_reg[n]
1652 before reg_set_luid[n], calculated in mode reg_mode[n] .
1653 For multi-hard-register registers, all but the first one are
1654 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1655 marks it as invalid. */
1656 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1657 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1658 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1659 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1661 /* move2add_luid is linearly increased while scanning the instructions
1662 from first to last. It is used to set reg_set_luid in
1663 reload_cse_move2add and move2add_note_store. */
1664 static int move2add_luid;
1666 /* move2add_last_label_luid is set whenever a label is found. Labels
1667 invalidate all previously collected reg_offset data. */
1668 static int move2add_last_label_luid;
1670 /* ??? We don't know how zero / sign extension is handled, hence we
1671 can't go from a narrower to a wider mode. */
1672 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1673 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1674 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1675 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1677 /* Record that REG is being set to a value with the mode of REG. */
1679 static void
1680 move2add_record_mode (rtx reg)
1682 int regno, nregs;
1683 machine_mode mode = GET_MODE (reg);
1685 if (GET_CODE (reg) == SUBREG)
1687 regno = subreg_regno (reg);
1688 nregs = subreg_nregs (reg);
1690 else if (REG_P (reg))
1692 regno = REGNO (reg);
1693 nregs = REG_NREGS (reg);
1695 else
1696 gcc_unreachable ();
1697 for (int i = nregs - 1; i > 0; i--)
1698 reg_mode[regno + i] = BLKmode;
1699 reg_mode[regno] = mode;
1702 /* Record that REG is being set to the sum of SYM and OFF. */
1704 static void
1705 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1707 int regno = REGNO (reg);
1709 move2add_record_mode (reg);
1710 reg_set_luid[regno] = move2add_luid;
1711 reg_base_reg[regno] = -1;
1712 reg_symbol_ref[regno] = sym;
1713 reg_offset[regno] = INTVAL (off);
1716 /* Check if REGNO contains a valid value in MODE. */
1718 static bool
1719 move2add_valid_value_p (int regno, scalar_int_mode mode)
1721 if (reg_set_luid[regno] <= move2add_last_label_luid)
1722 return false;
1724 if (mode != reg_mode[regno])
1726 scalar_int_mode old_mode;
1727 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1728 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
1729 return false;
1730 /* The value loaded into regno in reg_mode[regno] is also valid in
1731 mode after truncation only if (REG:mode regno) is the lowpart of
1732 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1733 regno of the lowpart might be different. */
1734 poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
1735 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1736 if (maybe_ne (s_off, 0))
1737 /* We could in principle adjust regno, check reg_mode[regno] to be
1738 BLKmode, and return s_off to the caller (vs. -1 for failure),
1739 but we currently have no callers that could make use of this
1740 information. */
1741 return false;
1744 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1745 if (reg_mode[i] != BLKmode)
1746 return false;
1747 return true;
1750 /* This function is called with INSN that sets REG (of mode MODE)
1751 to (SYM + OFF), while REG is known to already have value (SYM + offset).
1752 This function tries to change INSN into an add instruction
1753 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1754 It also updates the information about REG's known value.
1755 Return true if we made a change. */
1757 static bool
1758 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1759 rtx_insn *insn)
1761 rtx pat = PATTERN (insn);
1762 rtx src = SET_SRC (pat);
1763 int regno = REGNO (reg);
1764 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1765 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1766 bool changed = false;
1768 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1769 use (set (reg) (reg)) instead.
1770 We don't delete this insn, nor do we convert it into a
1771 note, to avoid losing register notes or the return
1772 value flag. jump2 already knows how to get rid of
1773 no-op moves. */
1774 if (new_src == const0_rtx)
1776 /* If the constants are different, this is a
1777 truncation, that, if turned into (set (reg)
1778 (reg)), would be discarded. Maybe we should
1779 try a truncMN pattern? */
1780 if (INTVAL (off) == reg_offset [regno])
1781 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1783 else
1785 struct full_rtx_costs oldcst, newcst;
1786 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1788 get_full_set_rtx_cost (pat, &oldcst);
1789 SET_SRC (pat) = tem;
1790 get_full_set_rtx_cost (pat, &newcst);
1791 SET_SRC (pat) = src;
1793 if (costs_lt_p (&newcst, &oldcst, speed)
1794 && have_add2_insn (reg, new_src))
1795 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1796 else if (sym == NULL_RTX && mode != BImode)
1798 scalar_int_mode narrow_mode;
1799 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1801 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1802 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1803 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1805 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1806 rtx narrow_src = gen_int_mode (INTVAL (off),
1807 narrow_mode);
1808 rtx new_set
1809 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1810 narrow_reg),
1811 narrow_src);
1812 get_full_set_rtx_cost (new_set, &newcst);
1813 if (costs_lt_p (&newcst, &oldcst, speed))
1815 changed = validate_change (insn, &PATTERN (insn),
1816 new_set, 0);
1817 if (changed)
1818 break;
1824 move2add_record_sym_value (reg, sym, off);
1825 return changed;
1829 /* This function is called with INSN that sets REG (of mode MODE) to
1830 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1831 function tries to find another register which is known to already have
1832 value (SYM + offset) and change INSN into an add instruction
1833 (set (REG) (plus (the found register) (OFF - offset))) if such
1834 a register is found. It also updates the information about
1835 REG's known value.
1836 Return true iff we made a change. */
1838 static bool
1839 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1840 rtx_insn *insn)
1842 rtx pat = PATTERN (insn);
1843 rtx src = SET_SRC (pat);
1844 int regno = REGNO (reg);
1845 int min_regno = 0;
1846 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1847 int i;
1848 bool changed = false;
1849 struct full_rtx_costs oldcst, newcst, mincst;
1850 rtx plus_expr;
1852 init_costs_to_max (&mincst);
1853 get_full_set_rtx_cost (pat, &oldcst);
1855 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1856 SET_SRC (pat) = plus_expr;
1858 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1859 if (move2add_valid_value_p (i, mode)
1860 && reg_base_reg[i] < 0
1861 && reg_symbol_ref[i] != NULL_RTX
1862 && rtx_equal_p (sym, reg_symbol_ref[i]))
1864 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1865 GET_MODE (reg));
1866 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1867 use (set (reg) (reg)) instead.
1868 We don't delete this insn, nor do we convert it into a
1869 note, to avoid losing register notes or the return
1870 value flag. jump2 already knows how to get rid of
1871 no-op moves. */
1872 if (new_src == const0_rtx)
1874 init_costs_to_zero (&mincst);
1875 min_regno = i;
1876 break;
1878 else
1880 XEXP (plus_expr, 1) = new_src;
1881 get_full_set_rtx_cost (pat, &newcst);
1883 if (costs_lt_p (&newcst, &mincst, speed))
1885 mincst = newcst;
1886 min_regno = i;
1890 SET_SRC (pat) = src;
1892 if (costs_lt_p (&mincst, &oldcst, speed))
1894 rtx tem;
1896 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1897 if (i != min_regno)
1899 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1900 GET_MODE (reg));
1901 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1903 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1904 changed = true;
1906 reg_set_luid[regno] = move2add_luid;
1907 move2add_record_sym_value (reg, sym, off);
1908 return changed;
1911 /* Convert move insns with constant inputs to additions if they are cheaper.
1912 Return true if any changes were made. */
1913 static bool
1914 reload_cse_move2add (rtx_insn *first)
1916 int i;
1917 rtx_insn *insn;
1918 bool changed = false;
1920 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1922 reg_set_luid[i] = 0;
1923 reg_offset[i] = 0;
1924 reg_base_reg[i] = 0;
1925 reg_symbol_ref[i] = NULL_RTX;
1926 reg_mode[i] = VOIDmode;
1929 move2add_last_label_luid = 0;
1930 move2add_luid = 2;
1931 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1933 rtx pat, note;
1935 if (LABEL_P (insn))
1937 move2add_last_label_luid = move2add_luid;
1938 /* We're going to increment move2add_luid twice after a
1939 label, so that we can use move2add_last_label_luid + 1 as
1940 the luid for constants. */
1941 move2add_luid++;
1942 continue;
1944 if (! INSN_P (insn))
1945 continue;
1946 pat = PATTERN (insn);
1947 /* For simplicity, we only perform this optimization on
1948 straightforward SETs. */
1949 scalar_int_mode mode;
1950 if (GET_CODE (pat) == SET
1951 && REG_P (SET_DEST (pat))
1952 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1954 rtx reg = SET_DEST (pat);
1955 int regno = REGNO (reg);
1956 rtx src = SET_SRC (pat);
1958 /* Check if we have valid information on the contents of this
1959 register in the mode of REG. */
1960 if (move2add_valid_value_p (regno, mode)
1961 && dbg_cnt (cse2_move2add))
1963 /* Try to transform (set (REGX) (CONST_INT A))
1965 (set (REGX) (CONST_INT B))
1967 (set (REGX) (CONST_INT A))
1969 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1971 (set (REGX) (CONST_INT A))
1973 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1976 if (CONST_INT_P (src)
1977 && reg_base_reg[regno] < 0
1978 && reg_symbol_ref[regno] == NULL_RTX)
1980 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1981 src, insn);
1982 continue;
1985 /* Try to transform (set (REGX) (REGY))
1986 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1988 (set (REGX) (REGY))
1989 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1991 (set (REGX) (REGY))
1992 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1994 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1995 else if (REG_P (src)
1996 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1997 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1998 && move2add_valid_value_p (REGNO (src), mode))
2000 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2001 rtx set = NULL_RTX;
2002 if (next)
2003 set = single_set (next);
2004 if (set
2005 && SET_DEST (set) == reg
2006 && GET_CODE (SET_SRC (set)) == PLUS
2007 && XEXP (SET_SRC (set), 0) == reg
2008 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2010 rtx src3 = XEXP (SET_SRC (set), 1);
2011 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2012 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2013 HOST_WIDE_INT regno_offset = reg_offset[regno];
2014 rtx new_src =
2015 gen_int_mode (added_offset
2016 + base_offset
2017 - regno_offset,
2018 mode);
2019 bool success = false;
2020 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2022 if (new_src == const0_rtx)
2023 /* See above why we create (set (reg) (reg)) here. */
2024 success
2025 = validate_change (next, &SET_SRC (set), reg, 0);
2026 else
2028 rtx old_src = SET_SRC (set);
2029 struct full_rtx_costs oldcst, newcst;
2030 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2032 get_full_set_rtx_cost (set, &oldcst);
2033 SET_SRC (set) = tem;
2034 get_full_set_src_cost (tem, mode, &newcst);
2035 SET_SRC (set) = old_src;
2036 costs_add_n_insns (&oldcst, 1);
2038 if (costs_lt_p (&newcst, &oldcst, speed)
2039 && have_add2_insn (reg, new_src))
2041 rtx newpat = gen_rtx_SET (reg, tem);
2042 success
2043 = validate_change (next, &PATTERN (next),
2044 newpat, 0);
2047 if (success)
2048 delete_insn (insn);
2049 changed |= success;
2050 insn = next;
2051 move2add_record_mode (reg);
2052 reg_offset[regno]
2053 = trunc_int_for_mode (added_offset + base_offset,
2054 mode);
2055 continue;
2060 /* Try to transform
2061 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2063 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2065 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2067 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2068 if ((GET_CODE (src) == SYMBOL_REF
2069 || (GET_CODE (src) == CONST
2070 && GET_CODE (XEXP (src, 0)) == PLUS
2071 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2072 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2073 && dbg_cnt (cse2_move2add))
2075 rtx sym, off;
2077 if (GET_CODE (src) == SYMBOL_REF)
2079 sym = src;
2080 off = const0_rtx;
2082 else
2084 sym = XEXP (XEXP (src, 0), 0);
2085 off = XEXP (XEXP (src, 0), 1);
2088 /* If the reg already contains the value which is sum of
2089 sym and some constant value, we can use an add2 insn. */
2090 if (move2add_valid_value_p (regno, mode)
2091 && reg_base_reg[regno] < 0
2092 && reg_symbol_ref[regno] != NULL_RTX
2093 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2094 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2096 /* Otherwise, we have to find a register whose value is sum
2097 of sym and some constant value. */
2098 else
2099 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2101 continue;
2105 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2107 if (REG_NOTE_KIND (note) == REG_INC
2108 && REG_P (XEXP (note, 0)))
2110 /* Reset the information about this register. */
2111 int regno = REGNO (XEXP (note, 0));
2112 if (regno < FIRST_PSEUDO_REGISTER)
2114 move2add_record_mode (XEXP (note, 0));
2115 reg_mode[regno] = VOIDmode;
2120 /* There are no REG_INC notes for SP autoinc. */
2121 subrtx_var_iterator::array_type array;
2122 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
2124 rtx mem = *iter;
2125 if (mem
2126 && MEM_P (mem)
2127 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
2129 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
2130 reg_mode[STACK_POINTER_REGNUM] = VOIDmode;
2134 note_stores (insn, move2add_note_store, insn);
2136 /* If INSN is a conditional branch, we try to extract an
2137 implicit set out of it. */
2138 if (any_condjump_p (insn))
2140 rtx cnd = fis_get_condition (insn);
2142 if (cnd != NULL_RTX
2143 && GET_CODE (cnd) == NE
2144 && REG_P (XEXP (cnd, 0))
2145 && !reg_set_p (XEXP (cnd, 0), insn)
2146 /* The following two checks, which are also in
2147 move2add_note_store, are intended to reduce the
2148 number of calls to gen_rtx_SET to avoid memory
2149 allocation if possible. */
2150 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2151 && REG_NREGS (XEXP (cnd, 0)) == 1
2152 && CONST_INT_P (XEXP (cnd, 1)))
2154 rtx implicit_set =
2155 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2156 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2160 /* If this is a CALL_INSN, all call used registers are stored with
2161 unknown values. */
2162 if (CALL_P (insn))
2164 function_abi callee_abi = insn_callee_abi (insn);
2165 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2166 if (reg_mode[i] != VOIDmode
2167 && reg_mode[i] != BLKmode
2168 && callee_abi.clobbers_reg_p (reg_mode[i], i))
2169 /* Reset the information about this register. */
2170 reg_mode[i] = VOIDmode;
2173 return changed;
2176 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2177 contains SET.
2178 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2179 Called from reload_cse_move2add via note_stores. */
2181 static void
2182 move2add_note_store (rtx dst, const_rtx set, void *data)
2184 rtx_insn *insn = (rtx_insn *) data;
2185 unsigned int regno = 0;
2186 scalar_int_mode mode;
2188 if (GET_CODE (dst) == SUBREG)
2189 regno = subreg_regno (dst);
2190 else if (REG_P (dst))
2191 regno = REGNO (dst);
2192 else
2193 return;
2195 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2196 goto invalidate;
2198 if (GET_CODE (set) == SET)
2200 rtx note, sym = NULL_RTX;
2201 rtx off;
2203 note = find_reg_equal_equiv_note (insn);
2204 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2206 sym = XEXP (note, 0);
2207 off = const0_rtx;
2209 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2210 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2211 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2212 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2214 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2215 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2218 if (sym != NULL_RTX)
2220 move2add_record_sym_value (dst, sym, off);
2221 return;
2225 if (GET_CODE (set) == SET
2226 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2227 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2229 rtx src = SET_SRC (set);
2230 rtx base_reg;
2231 unsigned HOST_WIDE_INT offset;
2232 int base_regno;
2234 switch (GET_CODE (src))
2236 case PLUS:
2237 if (REG_P (XEXP (src, 0)))
2239 base_reg = XEXP (src, 0);
2241 if (CONST_INT_P (XEXP (src, 1)))
2242 offset = UINTVAL (XEXP (src, 1));
2243 else if (REG_P (XEXP (src, 1))
2244 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2246 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2247 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2248 offset = reg_offset[REGNO (XEXP (src, 1))];
2249 /* Maybe the first register is known to be a
2250 constant. */
2251 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2252 && reg_base_reg[REGNO (base_reg)] < 0
2253 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2255 offset = reg_offset[REGNO (base_reg)];
2256 base_reg = XEXP (src, 1);
2258 else
2259 goto invalidate;
2261 else
2262 goto invalidate;
2264 break;
2267 goto invalidate;
2269 case REG:
2270 base_reg = src;
2271 offset = 0;
2272 break;
2274 case CONST_INT:
2275 /* Start tracking the register as a constant. */
2276 reg_base_reg[regno] = -1;
2277 reg_symbol_ref[regno] = NULL_RTX;
2278 reg_offset[regno] = INTVAL (SET_SRC (set));
2279 /* We assign the same luid to all registers set to constants. */
2280 reg_set_luid[regno] = move2add_last_label_luid + 1;
2281 move2add_record_mode (dst);
2282 return;
2284 default:
2285 goto invalidate;
2288 base_regno = REGNO (base_reg);
2289 /* If information about the base register is not valid, set it
2290 up as a new base register, pretending its value is known
2291 starting from the current insn. */
2292 if (!move2add_valid_value_p (base_regno, mode))
2294 reg_base_reg[base_regno] = base_regno;
2295 reg_symbol_ref[base_regno] = NULL_RTX;
2296 reg_offset[base_regno] = 0;
2297 reg_set_luid[base_regno] = move2add_luid;
2298 gcc_assert (GET_MODE (base_reg) == mode);
2299 move2add_record_mode (base_reg);
2302 /* Copy base information from our base register. */
2303 reg_set_luid[regno] = reg_set_luid[base_regno];
2304 reg_base_reg[regno] = reg_base_reg[base_regno];
2305 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2307 /* Compute the sum of the offsets or constants. */
2308 reg_offset[regno]
2309 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2311 move2add_record_mode (dst);
2313 else
2315 invalidate:
2316 /* Invalidate the contents of the register. */
2317 move2add_record_mode (dst);
2318 reg_mode[regno] = VOIDmode;
2322 namespace {
2324 const pass_data pass_data_postreload_cse =
2326 RTL_PASS, /* type */
2327 "postreload", /* name */
2328 OPTGROUP_NONE, /* optinfo_flags */
2329 TV_RELOAD_CSE_REGS, /* tv_id */
2330 0, /* properties_required */
2331 0, /* properties_provided */
2332 0, /* properties_destroyed */
2333 0, /* todo_flags_start */
2334 TODO_df_finish, /* todo_flags_finish */
2337 class pass_postreload_cse : public rtl_opt_pass
2339 public:
2340 pass_postreload_cse (gcc::context *ctxt)
2341 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2344 /* opt_pass methods: */
2345 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2347 virtual unsigned int execute (function *);
2349 }; // class pass_postreload_cse
2351 unsigned int
2352 pass_postreload_cse::execute (function *fun)
2354 if (!dbg_cnt (postreload_cse))
2355 return 0;
2357 /* Do a very simple CSE pass over just the hard registers. */
2358 reload_cse_regs (get_insns ());
2359 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2360 Remove any EH edges associated with them. */
2361 if (fun->can_throw_non_call_exceptions
2362 && purge_all_dead_edges ())
2363 cleanup_cfg (0);
2365 return 0;
2368 } // anon namespace
2370 rtl_opt_pass *
2371 make_pass_postreload_cse (gcc::context *ctxt)
2373 return new pass_postreload_cse (ctxt);