testsuite: Update scanning symbol sections to support AIX.
[official-gcc.git] / gcc / expmed.c
blobd34f0fb0b5445b4e2edc303e5e22f87fb2e4bf91
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2020 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Work around tree-optimization/91825. */
22 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "backend.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "predict.h"
32 #include "memmodel.h"
33 #include "tm_p.h"
34 #include "expmed.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "emit-rtl.h"
38 #include "diagnostic-core.h"
39 #include "fold-const.h"
40 #include "stor-layout.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "expr.h"
44 #include "langhooks.h"
45 #include "tree-vector-builder.h"
47 struct target_expmed default_target_expmed;
48 #if SWITCHABLE_TARGET
49 struct target_expmed *this_target_expmed = &default_target_expmed;
50 #endif
52 static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
53 unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT,
55 poly_uint64, poly_uint64,
56 machine_mode, rtx, bool, bool);
57 static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
58 unsigned HOST_WIDE_INT,
59 unsigned HOST_WIDE_INT,
60 poly_uint64, poly_uint64,
61 rtx, scalar_int_mode, bool);
62 static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
63 unsigned HOST_WIDE_INT,
64 unsigned HOST_WIDE_INT,
65 rtx, scalar_int_mode, bool);
66 static void store_split_bit_field (rtx, opt_scalar_int_mode,
67 unsigned HOST_WIDE_INT,
68 unsigned HOST_WIDE_INT,
69 poly_uint64, poly_uint64,
70 rtx, scalar_int_mode, bool);
71 static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
72 unsigned HOST_WIDE_INT,
73 unsigned HOST_WIDE_INT, int, rtx,
74 machine_mode, machine_mode, bool, bool);
75 static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
76 unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, rtx, int, bool);
78 static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
79 unsigned HOST_WIDE_INT,
80 unsigned HOST_WIDE_INT, rtx, int, bool);
81 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
82 static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
83 unsigned HOST_WIDE_INT,
84 unsigned HOST_WIDE_INT, int, bool);
85 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
86 static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
87 static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
89 /* Return a constant integer mask value of mode MODE with BITSIZE ones
90 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
91 The mask is truncated if necessary to the width of mode MODE. The
92 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
94 static inline rtx
95 mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
97 return immed_wide_int_const
98 (wi::shifted_mask (bitpos, bitsize, complement,
99 GET_MODE_PRECISION (mode)), mode);
102 /* Test whether a value is zero of a power of two. */
103 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
104 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
106 struct init_expmed_rtl
108 rtx reg;
109 rtx plus;
110 rtx neg;
111 rtx mult;
112 rtx sdiv;
113 rtx udiv;
114 rtx sdiv_32;
115 rtx smod_32;
116 rtx wide_mult;
117 rtx wide_lshr;
118 rtx wide_trunc;
119 rtx shift;
120 rtx shift_mult;
121 rtx shift_add;
122 rtx shift_sub0;
123 rtx shift_sub1;
124 rtx zext;
125 rtx trunc;
127 rtx pow2[MAX_BITS_PER_WORD];
128 rtx cint[MAX_BITS_PER_WORD];
131 static void
132 init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
133 scalar_int_mode from_mode, bool speed)
135 int to_size, from_size;
136 rtx which;
138 to_size = GET_MODE_PRECISION (to_mode);
139 from_size = GET_MODE_PRECISION (from_mode);
141 /* Most partial integers have a precision less than the "full"
142 integer it requires for storage. In case one doesn't, for
143 comparison purposes here, reduce the bit size by one in that
144 case. */
145 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
146 && pow2p_hwi (to_size))
147 to_size --;
148 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
149 && pow2p_hwi (from_size))
150 from_size --;
152 /* Assume cost of zero-extend and sign-extend is the same. */
153 which = (to_size < from_size ? all->trunc : all->zext);
155 PUT_MODE (all->reg, from_mode);
156 set_convert_cost (to_mode, from_mode, speed,
157 set_src_cost (which, to_mode, speed));
158 /* Restore all->reg's mode. */
159 PUT_MODE (all->reg, to_mode);
162 static void
163 init_expmed_one_mode (struct init_expmed_rtl *all,
164 machine_mode mode, int speed)
166 int m, n, mode_bitsize;
167 machine_mode mode_from;
169 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
171 PUT_MODE (all->reg, mode);
172 PUT_MODE (all->plus, mode);
173 PUT_MODE (all->neg, mode);
174 PUT_MODE (all->mult, mode);
175 PUT_MODE (all->sdiv, mode);
176 PUT_MODE (all->udiv, mode);
177 PUT_MODE (all->sdiv_32, mode);
178 PUT_MODE (all->smod_32, mode);
179 PUT_MODE (all->wide_trunc, mode);
180 PUT_MODE (all->shift, mode);
181 PUT_MODE (all->shift_mult, mode);
182 PUT_MODE (all->shift_add, mode);
183 PUT_MODE (all->shift_sub0, mode);
184 PUT_MODE (all->shift_sub1, mode);
185 PUT_MODE (all->zext, mode);
186 PUT_MODE (all->trunc, mode);
188 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
189 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
190 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
191 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
192 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
194 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
195 <= 2 * add_cost (speed, mode)));
196 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
197 <= 4 * add_cost (speed, mode)));
199 set_shift_cost (speed, mode, 0, 0);
201 int cost = add_cost (speed, mode);
202 set_shiftadd_cost (speed, mode, 0, cost);
203 set_shiftsub0_cost (speed, mode, 0, cost);
204 set_shiftsub1_cost (speed, mode, 0, cost);
207 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
208 for (m = 1; m < n; m++)
210 XEXP (all->shift, 1) = all->cint[m];
211 XEXP (all->shift_mult, 1) = all->pow2[m];
213 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
214 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
215 speed));
216 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
217 speed));
218 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
219 speed));
222 scalar_int_mode int_mode_to;
223 if (is_a <scalar_int_mode> (mode, &int_mode_to))
225 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
226 mode_from = (machine_mode)(mode_from + 1))
227 init_expmed_one_conv (all, int_mode_to,
228 as_a <scalar_int_mode> (mode_from), speed);
230 scalar_int_mode wider_mode;
231 if (GET_MODE_CLASS (int_mode_to) == MODE_INT
232 && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
234 PUT_MODE (all->reg, mode);
235 PUT_MODE (all->zext, wider_mode);
236 PUT_MODE (all->wide_mult, wider_mode);
237 PUT_MODE (all->wide_lshr, wider_mode);
238 XEXP (all->wide_lshr, 1)
239 = gen_int_shift_amount (wider_mode, mode_bitsize);
241 set_mul_widen_cost (speed, wider_mode,
242 set_src_cost (all->wide_mult, wider_mode, speed));
243 set_mul_highpart_cost (speed, int_mode_to,
244 set_src_cost (all->wide_trunc,
245 int_mode_to, speed));
250 void
251 init_expmed (void)
253 struct init_expmed_rtl all;
254 machine_mode mode = QImode;
255 int m, speed;
257 memset (&all, 0, sizeof all);
258 for (m = 1; m < MAX_BITS_PER_WORD; m++)
260 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
261 all.cint[m] = GEN_INT (m);
264 /* Avoid using hard regs in ways which may be unsupported. */
265 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
266 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
267 all.neg = gen_rtx_NEG (mode, all.reg);
268 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
269 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
270 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
271 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
272 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
273 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
274 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
275 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
276 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
277 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
278 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
279 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
280 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
281 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
282 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
284 for (speed = 0; speed < 2; speed++)
286 crtl->maybe_hot_insn_p = speed;
287 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
289 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
290 mode = (machine_mode)(mode + 1))
291 init_expmed_one_mode (&all, mode, speed);
293 if (MIN_MODE_PARTIAL_INT != VOIDmode)
294 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
295 mode = (machine_mode)(mode + 1))
296 init_expmed_one_mode (&all, mode, speed);
298 if (MIN_MODE_VECTOR_INT != VOIDmode)
299 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
300 mode = (machine_mode)(mode + 1))
301 init_expmed_one_mode (&all, mode, speed);
304 if (alg_hash_used_p ())
306 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
307 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
309 else
310 set_alg_hash_used_p (true);
311 default_rtl_profile ();
313 ggc_free (all.trunc);
314 ggc_free (all.shift_sub1);
315 ggc_free (all.shift_sub0);
316 ggc_free (all.shift_add);
317 ggc_free (all.shift_mult);
318 ggc_free (all.shift);
319 ggc_free (all.wide_trunc);
320 ggc_free (all.wide_lshr);
321 ggc_free (all.wide_mult);
322 ggc_free (all.zext);
323 ggc_free (all.smod_32);
324 ggc_free (all.sdiv_32);
325 ggc_free (all.udiv);
326 ggc_free (all.sdiv);
327 ggc_free (all.mult);
328 ggc_free (all.neg);
329 ggc_free (all.plus);
330 ggc_free (all.reg);
333 /* Return an rtx representing minus the value of X.
334 MODE is the intended mode of the result,
335 useful if X is a CONST_INT. */
338 negate_rtx (machine_mode mode, rtx x)
340 rtx result = simplify_unary_operation (NEG, mode, x, mode);
342 if (result == 0)
343 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
345 return result;
348 /* Whether reverse storage order is supported on the target. */
349 static int reverse_storage_order_supported = -1;
351 /* Check whether reverse storage order is supported on the target. */
353 static void
354 check_reverse_storage_order_support (void)
356 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
358 reverse_storage_order_supported = 0;
359 sorry ("reverse scalar storage order");
361 else
362 reverse_storage_order_supported = 1;
365 /* Whether reverse FP storage order is supported on the target. */
366 static int reverse_float_storage_order_supported = -1;
368 /* Check whether reverse FP storage order is supported on the target. */
370 static void
371 check_reverse_float_storage_order_support (void)
373 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
375 reverse_float_storage_order_supported = 0;
376 sorry ("reverse floating-point scalar storage order");
378 else
379 reverse_float_storage_order_supported = 1;
382 /* Return an rtx representing value of X with reverse storage order.
383 MODE is the intended mode of the result,
384 useful if X is a CONST_INT. */
387 flip_storage_order (machine_mode mode, rtx x)
389 scalar_int_mode int_mode;
390 rtx result;
392 if (mode == QImode)
393 return x;
395 if (COMPLEX_MODE_P (mode))
397 rtx real = read_complex_part (x, false);
398 rtx imag = read_complex_part (x, true);
400 real = flip_storage_order (GET_MODE_INNER (mode), real);
401 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
403 return gen_rtx_CONCAT (mode, real, imag);
406 if (__builtin_expect (reverse_storage_order_supported < 0, 0))
407 check_reverse_storage_order_support ();
409 if (!is_a <scalar_int_mode> (mode, &int_mode))
411 if (FLOAT_MODE_P (mode)
412 && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
413 check_reverse_float_storage_order_support ();
415 if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode))
417 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
418 return x;
420 x = gen_lowpart (int_mode, x);
423 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
424 if (result == 0)
425 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
427 if (int_mode != mode)
428 result = gen_lowpart (mode, result);
430 return result;
433 /* If MODE is set, adjust bitfield memory MEM so that it points to the
434 first unit of mode MODE that contains a bitfield of size BITSIZE at
435 bit position BITNUM. If MODE is not set, return a BLKmode reference
436 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
437 of the field within the new memory. */
439 static rtx
440 narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
441 unsigned HOST_WIDE_INT bitsize,
442 unsigned HOST_WIDE_INT bitnum,
443 unsigned HOST_WIDE_INT *new_bitnum)
445 scalar_int_mode imode;
446 if (mode.exists (&imode))
448 unsigned int unit = GET_MODE_BITSIZE (imode);
449 *new_bitnum = bitnum % unit;
450 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
451 return adjust_bitfield_address (mem, imode, offset);
453 else
455 *new_bitnum = bitnum % BITS_PER_UNIT;
456 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
457 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
458 / BITS_PER_UNIT);
459 return adjust_bitfield_address_size (mem, BLKmode, offset, size);
463 /* The caller wants to perform insertion or extraction PATTERN on a
464 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
465 BITREGION_START and BITREGION_END are as for store_bit_field
466 and FIELDMODE is the natural mode of the field.
468 Search for a mode that is compatible with the memory access
469 restrictions and (where applicable) with a register insertion or
470 extraction. Return the new memory on success, storing the adjusted
471 bit position in *NEW_BITNUM. Return null otherwise. */
473 static rtx
474 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
475 rtx op0, HOST_WIDE_INT bitsize,
476 HOST_WIDE_INT bitnum,
477 poly_uint64 bitregion_start,
478 poly_uint64 bitregion_end,
479 machine_mode fieldmode,
480 unsigned HOST_WIDE_INT *new_bitnum)
482 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
483 bitregion_end, MEM_ALIGN (op0),
484 MEM_VOLATILE_P (op0));
485 scalar_int_mode best_mode;
486 if (iter.next_mode (&best_mode))
488 /* We can use a memory in BEST_MODE. See whether this is true for
489 any wider modes. All other things being equal, we prefer to
490 use the widest mode possible because it tends to expose more
491 CSE opportunities. */
492 if (!iter.prefer_smaller_modes ())
494 /* Limit the search to the mode required by the corresponding
495 register insertion or extraction instruction, if any. */
496 scalar_int_mode limit_mode = word_mode;
497 extraction_insn insn;
498 if (get_best_reg_extraction_insn (&insn, pattern,
499 GET_MODE_BITSIZE (best_mode),
500 fieldmode))
501 limit_mode = insn.field_mode;
503 scalar_int_mode wider_mode;
504 while (iter.next_mode (&wider_mode)
505 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
506 best_mode = wider_mode;
508 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
509 new_bitnum);
511 return NULL_RTX;
514 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
515 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
516 offset is then BITNUM / BITS_PER_UNIT. */
518 static bool
519 lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
520 machine_mode struct_mode)
522 poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
523 if (BYTES_BIG_ENDIAN)
524 return (multiple_p (bitnum, BITS_PER_UNIT)
525 && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
526 || multiple_p (bitnum + bitsize,
527 regsize * BITS_PER_UNIT)));
528 else
529 return multiple_p (bitnum, regsize * BITS_PER_UNIT);
532 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
533 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
534 Return false if the access would touch memory outside the range
535 BITREGION_START to BITREGION_END for conformance to the C++ memory
536 model. */
538 static bool
539 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
540 unsigned HOST_WIDE_INT bitnum,
541 scalar_int_mode fieldmode,
542 poly_uint64 bitregion_start,
543 poly_uint64 bitregion_end)
545 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
547 /* -fstrict-volatile-bitfields must be enabled and we must have a
548 volatile MEM. */
549 if (!MEM_P (op0)
550 || !MEM_VOLATILE_P (op0)
551 || flag_strict_volatile_bitfields <= 0)
552 return false;
554 /* The bit size must not be larger than the field mode, and
555 the field mode must not be larger than a word. */
556 if (bitsize > modesize || modesize > BITS_PER_WORD)
557 return false;
559 /* Check for cases of unaligned fields that must be split. */
560 if (bitnum % modesize + bitsize > modesize)
561 return false;
563 /* The memory must be sufficiently aligned for a MODESIZE access.
564 This condition guarantees, that the memory access will not
565 touch anything after the end of the structure. */
566 if (MEM_ALIGN (op0) < modesize)
567 return false;
569 /* Check for cases where the C++ memory model applies. */
570 if (maybe_ne (bitregion_end, 0U)
571 && (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
572 || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
573 bitregion_end)))
574 return false;
576 return true;
579 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
580 bit number BITNUM can be treated as a simple value of mode MODE.
581 Store the byte offset in *BYTENUM if so. */
583 static bool
584 simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
585 machine_mode mode, poly_uint64 *bytenum)
587 return (MEM_P (op0)
588 && multiple_p (bitnum, BITS_PER_UNIT, bytenum)
589 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
590 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
591 || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
592 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
595 /* Try to use instruction INSV to store VALUE into a field of OP0.
596 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
597 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
598 are as for store_bit_field. */
600 static bool
601 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
602 opt_scalar_int_mode op0_mode,
603 unsigned HOST_WIDE_INT bitsize,
604 unsigned HOST_WIDE_INT bitnum,
605 rtx value, scalar_int_mode value_mode)
607 class expand_operand ops[4];
608 rtx value1;
609 rtx xop0 = op0;
610 rtx_insn *last = get_last_insn ();
611 bool copy_back = false;
613 scalar_int_mode op_mode = insv->field_mode;
614 unsigned int unit = GET_MODE_BITSIZE (op_mode);
615 if (bitsize == 0 || bitsize > unit)
616 return false;
618 if (MEM_P (xop0))
619 /* Get a reference to the first byte of the field. */
620 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
621 &bitnum);
622 else
624 /* Convert from counting within OP0 to counting in OP_MODE. */
625 if (BYTES_BIG_ENDIAN)
626 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
628 /* If xop0 is a register, we need it in OP_MODE
629 to make it acceptable to the format of insv. */
630 if (GET_CODE (xop0) == SUBREG)
631 /* We can't just change the mode, because this might clobber op0,
632 and we will need the original value of op0 if insv fails. */
633 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
634 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
635 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
638 /* If the destination is a paradoxical subreg such that we need a
639 truncate to the inner mode, perform the insertion on a temporary and
640 truncate the result to the original destination. Note that we can't
641 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
642 X) 0)) is (reg:N X). */
643 if (GET_CODE (xop0) == SUBREG
644 && REG_P (SUBREG_REG (xop0))
645 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
646 op_mode))
648 rtx tem = gen_reg_rtx (op_mode);
649 emit_move_insn (tem, xop0);
650 xop0 = tem;
651 copy_back = true;
654 /* There are similar overflow check at the start of store_bit_field_1,
655 but that only check the situation where the field lies completely
656 outside the register, while there do have situation where the field
657 lies partialy in the register, we need to adjust bitsize for this
658 partial overflow situation. Without this fix, pr48335-2.c on big-endian
659 will broken on those arch support bit insert instruction, like arm, aarch64
660 etc. */
661 if (bitsize + bitnum > unit && bitnum < unit)
663 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
664 "destination object, data truncated into %wu-bit",
665 bitsize, unit - bitnum);
666 bitsize = unit - bitnum;
669 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
670 "backwards" from the size of the unit we are inserting into.
671 Otherwise, we count bits from the most significant on a
672 BYTES/BITS_BIG_ENDIAN machine. */
674 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
675 bitnum = unit - bitsize - bitnum;
677 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
678 value1 = value;
679 if (value_mode != op_mode)
681 if (GET_MODE_BITSIZE (value_mode) >= bitsize)
683 rtx tmp;
684 /* Optimization: Don't bother really extending VALUE
685 if it has all the bits we will actually use. However,
686 if we must narrow it, be sure we do it correctly. */
688 if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
690 tmp = simplify_subreg (op_mode, value1, value_mode, 0);
691 if (! tmp)
692 tmp = simplify_gen_subreg (op_mode,
693 force_reg (value_mode, value1),
694 value_mode, 0);
696 else
698 tmp = gen_lowpart_if_possible (op_mode, value1);
699 if (! tmp)
700 tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
702 value1 = tmp;
704 else if (CONST_INT_P (value))
705 value1 = gen_int_mode (INTVAL (value), op_mode);
706 else
707 /* Parse phase is supposed to make VALUE's data type
708 match that of the component reference, which is a type
709 at least as wide as the field; so VALUE should have
710 a mode that corresponds to that type. */
711 gcc_assert (CONSTANT_P (value));
714 create_fixed_operand (&ops[0], xop0);
715 create_integer_operand (&ops[1], bitsize);
716 create_integer_operand (&ops[2], bitnum);
717 create_input_operand (&ops[3], value1, op_mode);
718 if (maybe_expand_insn (insv->icode, 4, ops))
720 if (copy_back)
721 convert_move (op0, xop0, true);
722 return true;
724 delete_insns_since (last);
725 return false;
728 /* A subroutine of store_bit_field, with the same arguments. Return true
729 if the operation could be implemented.
731 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
732 no other way of implementing the operation. If FALLBACK_P is false,
733 return false instead. */
735 static bool
736 store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
737 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
738 machine_mode fieldmode,
739 rtx value, bool reverse, bool fallback_p)
741 rtx op0 = str_rtx;
743 while (GET_CODE (op0) == SUBREG)
745 bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
746 op0 = SUBREG_REG (op0);
749 /* No action is needed if the target is a register and if the field
750 lies completely outside that register. This can occur if the source
751 code contains an out-of-bounds access to a small array. */
752 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
753 return true;
755 /* Use vec_set patterns for inserting parts of vectors whenever
756 available. */
757 machine_mode outermode = GET_MODE (op0);
758 scalar_mode innermode = GET_MODE_INNER (outermode);
759 poly_uint64 pos;
760 if (VECTOR_MODE_P (outermode)
761 && !MEM_P (op0)
762 && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
763 && fieldmode == innermode
764 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
765 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
767 class expand_operand ops[3];
768 enum insn_code icode = optab_handler (vec_set_optab, outermode);
770 create_fixed_operand (&ops[0], op0);
771 create_input_operand (&ops[1], value, innermode);
772 create_integer_operand (&ops[2], pos);
773 if (maybe_expand_insn (icode, 3, ops))
774 return true;
777 /* If the target is a register, overwriting the entire object, or storing
778 a full-word or multi-word field can be done with just a SUBREG. */
779 if (!MEM_P (op0)
780 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
782 /* Use the subreg machinery either to narrow OP0 to the required
783 words or to cope with mode punning between equal-sized modes.
784 In the latter case, use subreg on the rhs side, not lhs. */
785 rtx sub;
786 HOST_WIDE_INT regnum;
787 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
788 if (known_eq (bitnum, 0U)
789 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
791 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
792 if (sub)
794 if (reverse)
795 sub = flip_storage_order (GET_MODE (op0), sub);
796 emit_move_insn (op0, sub);
797 return true;
800 else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, &regnum)
801 && multiple_p (bitsize, regsize * BITS_PER_UNIT))
803 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
804 regnum * regsize);
805 if (sub)
807 if (reverse)
808 value = flip_storage_order (fieldmode, value);
809 emit_move_insn (sub, value);
810 return true;
815 /* If the target is memory, storing any naturally aligned field can be
816 done with a simple store. For targets that support fast unaligned
817 memory, any naturally sized, unit aligned field can be done directly. */
818 poly_uint64 bytenum;
819 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
821 op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
822 if (reverse)
823 value = flip_storage_order (fieldmode, value);
824 emit_move_insn (op0, value);
825 return true;
828 /* It's possible we'll need to handle other cases here for
829 polynomial bitnum and bitsize. */
831 /* From here on we need to be looking at a fixed-size insertion. */
832 unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
833 unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
835 /* Make sure we are playing with integral modes. Pun with subregs
836 if we aren't. This must come after the entire register case above,
837 since that case is valid for any mode. The following cases are only
838 valid for integral modes. */
839 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
840 scalar_int_mode imode;
841 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
843 if (MEM_P (op0))
844 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
845 0, MEM_SIZE (op0));
846 else if (!op0_mode.exists ())
848 if (ibitnum == 0
849 && known_eq (ibitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
850 && MEM_P (value)
851 && !reverse)
853 value = adjust_address (value, GET_MODE (op0), 0);
854 emit_move_insn (op0, value);
855 return true;
857 if (!fallback_p)
858 return false;
859 rtx temp = assign_stack_temp (GET_MODE (op0),
860 GET_MODE_SIZE (GET_MODE (op0)));
861 emit_move_insn (temp, op0);
862 store_bit_field_1 (temp, bitsize, bitnum, 0, 0, fieldmode, value,
863 reverse, fallback_p);
864 emit_move_insn (op0, temp);
865 return true;
867 else
868 op0 = gen_lowpart (op0_mode.require (), op0);
871 return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
872 bitregion_start, bitregion_end,
873 fieldmode, value, reverse, fallback_p);
876 /* Subroutine of store_bit_field_1, with the same arguments, except
877 that BITSIZE and BITNUM are constant. Handle cases specific to
878 integral modes. If OP0_MODE is defined, it is the mode of OP0,
879 otherwise OP0 is a BLKmode MEM. */
881 static bool
882 store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
883 unsigned HOST_WIDE_INT bitsize,
884 unsigned HOST_WIDE_INT bitnum,
885 poly_uint64 bitregion_start,
886 poly_uint64 bitregion_end,
887 machine_mode fieldmode,
888 rtx value, bool reverse, bool fallback_p)
890 /* Storing an lsb-aligned field in a register
891 can be done with a movstrict instruction. */
893 if (!MEM_P (op0)
894 && !reverse
895 && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
896 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
897 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
899 class expand_operand ops[2];
900 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
901 rtx arg0 = op0;
902 unsigned HOST_WIDE_INT subreg_off;
904 if (GET_CODE (arg0) == SUBREG)
906 /* Else we've got some float mode source being extracted into
907 a different float mode destination -- this combination of
908 subregs results in Severe Tire Damage. */
909 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
910 || GET_MODE_CLASS (fieldmode) == MODE_INT
911 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
912 arg0 = SUBREG_REG (arg0);
915 subreg_off = bitnum / BITS_PER_UNIT;
916 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
918 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
920 create_fixed_operand (&ops[0], arg0);
921 /* Shrink the source operand to FIELDMODE. */
922 create_convert_operand_to (&ops[1], value, fieldmode, false);
923 if (maybe_expand_insn (icode, 2, ops))
924 return true;
928 /* Handle fields bigger than a word. */
930 if (bitsize > BITS_PER_WORD)
932 /* Here we transfer the words of the field
933 in the order least significant first.
934 This is because the most significant word is the one which may
935 be less than full.
936 However, only do that if the value is not BLKmode. */
938 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
939 const int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
940 rtx_insn *last;
942 /* This is the mode we must force value to, so that there will be enough
943 subwords to extract. Note that fieldmode will often (always?) be
944 VOIDmode, because that is what store_field uses to indicate that this
945 is a bit field, but passing VOIDmode to operand_subword_force
946 is not allowed.
948 The mode must be fixed-size, since insertions into variable-sized
949 objects are meant to be handled before calling this function. */
950 fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
951 if (value_mode == VOIDmode)
952 value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
954 last = get_last_insn ();
955 for (int i = 0; i < nwords; i++)
957 /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
958 except maybe for the last iteration. */
959 const unsigned HOST_WIDE_INT new_bitsize
960 = MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
961 /* Bit offset from the starting bit number in the target. */
962 const unsigned int bit_offset
963 = backwards ^ reverse
964 ? MAX ((int) bitsize - (i + 1) * BITS_PER_WORD, 0)
965 : i * BITS_PER_WORD;
966 /* Starting word number in the value. */
967 const unsigned int wordnum
968 = backwards
969 ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD - (i + 1)
970 : i;
971 /* The chunk of the value in word_mode. We use bit-field extraction
972 in BLKmode to handle unaligned memory references and to shift the
973 last chunk right on big-endian machines if need be. */
974 rtx value_word
975 = fieldmode == BLKmode
976 ? extract_bit_field (value, new_bitsize, wordnum * BITS_PER_WORD,
977 1, NULL_RTX, word_mode, word_mode, false,
978 NULL)
979 : operand_subword_force (value, wordnum, value_mode);
981 if (!store_bit_field_1 (op0, new_bitsize,
982 bitnum + bit_offset,
983 bitregion_start, bitregion_end,
984 word_mode,
985 value_word, reverse, fallback_p))
987 delete_insns_since (last);
988 return false;
991 return true;
994 /* If VALUE has a floating-point or complex mode, access it as an
995 integer of the corresponding size. This can occur on a machine
996 with 64 bit registers that uses SFmode for float. It can also
997 occur for unaligned float or complex fields. */
998 rtx orig_value = value;
999 scalar_int_mode value_mode;
1000 if (GET_MODE (value) == VOIDmode)
1001 /* By this point we've dealt with values that are bigger than a word,
1002 so word_mode is a conservatively correct choice. */
1003 value_mode = word_mode;
1004 else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
1006 value_mode = int_mode_for_mode (GET_MODE (value)).require ();
1007 value = gen_reg_rtx (value_mode);
1008 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
1011 /* If OP0 is a multi-word register, narrow it to the affected word.
1012 If the region spans two words, defer to store_split_bit_field.
1013 Don't do this if op0 is a single hard register wider than word
1014 such as a float or vector register. */
1015 if (!MEM_P (op0)
1016 && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
1017 && (!REG_P (op0)
1018 || !HARD_REGISTER_P (op0)
1019 || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
1021 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1023 if (!fallback_p)
1024 return false;
1026 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1027 bitregion_start, bitregion_end,
1028 value, value_mode, reverse);
1029 return true;
1031 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1032 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1033 gcc_assert (op0);
1034 op0_mode = word_mode;
1035 bitnum %= BITS_PER_WORD;
1038 /* From here on we can assume that the field to be stored in fits
1039 within a word. If the destination is a register, it too fits
1040 in a word. */
1042 extraction_insn insv;
1043 if (!MEM_P (op0)
1044 && !reverse
1045 && get_best_reg_extraction_insn (&insv, EP_insv,
1046 GET_MODE_BITSIZE (op0_mode.require ()),
1047 fieldmode)
1048 && store_bit_field_using_insv (&insv, op0, op0_mode,
1049 bitsize, bitnum, value, value_mode))
1050 return true;
1052 /* If OP0 is a memory, try copying it to a register and seeing if a
1053 cheap register alternative is available. */
1054 if (MEM_P (op0) && !reverse)
1056 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1057 fieldmode)
1058 && store_bit_field_using_insv (&insv, op0, op0_mode,
1059 bitsize, bitnum, value, value_mode))
1060 return true;
1062 rtx_insn *last = get_last_insn ();
1064 /* Try loading part of OP0 into a register, inserting the bitfield
1065 into that, and then copying the result back to OP0. */
1066 unsigned HOST_WIDE_INT bitpos;
1067 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1068 bitregion_start, bitregion_end,
1069 fieldmode, &bitpos);
1070 if (xop0)
1072 rtx tempreg = copy_to_reg (xop0);
1073 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1074 bitregion_start, bitregion_end,
1075 fieldmode, orig_value, reverse, false))
1077 emit_move_insn (xop0, tempreg);
1078 return true;
1080 delete_insns_since (last);
1084 if (!fallback_p)
1085 return false;
1087 store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
1088 bitregion_end, value, value_mode, reverse);
1089 return true;
1092 /* Generate code to store value from rtx VALUE
1093 into a bit-field within structure STR_RTX
1094 containing BITSIZE bits starting at bit BITNUM.
1096 BITREGION_START is bitpos of the first bitfield in this region.
1097 BITREGION_END is the bitpos of the ending bitfield in this region.
1098 These two fields are 0, if the C++ memory model does not apply,
1099 or we are not interested in keeping track of bitfield regions.
1101 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1103 If REVERSE is true, the store is to be done in reverse order. */
1105 void
1106 store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1107 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1108 machine_mode fieldmode,
1109 rtx value, bool reverse)
1111 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1112 unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
1113 scalar_int_mode int_mode;
1114 if (bitsize.is_constant (&ibitsize)
1115 && bitnum.is_constant (&ibitnum)
1116 && is_a <scalar_int_mode> (fieldmode, &int_mode)
1117 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
1118 bitregion_start, bitregion_end))
1120 /* Storing of a full word can be done with a simple store.
1121 We know here that the field can be accessed with one single
1122 instruction. For targets that support unaligned memory,
1123 an unaligned access may be necessary. */
1124 if (ibitsize == GET_MODE_BITSIZE (int_mode))
1126 str_rtx = adjust_bitfield_address (str_rtx, int_mode,
1127 ibitnum / BITS_PER_UNIT);
1128 if (reverse)
1129 value = flip_storage_order (int_mode, value);
1130 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
1131 emit_move_insn (str_rtx, value);
1133 else
1135 rtx temp;
1137 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
1138 ibitnum, &ibitnum);
1139 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
1140 temp = copy_to_reg (str_rtx);
1141 if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
1142 int_mode, value, reverse, true))
1143 gcc_unreachable ();
1145 emit_move_insn (str_rtx, temp);
1148 return;
1151 /* Under the C++0x memory model, we must not touch bits outside the
1152 bit region. Adjust the address to start at the beginning of the
1153 bit region. */
1154 if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
1156 scalar_int_mode best_mode;
1157 machine_mode addr_mode = VOIDmode;
1159 poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
1160 bitnum -= bitregion_start;
1161 poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
1162 bitregion_end -= bitregion_start;
1163 bitregion_start = 0;
1164 if (bitsize.is_constant (&ibitsize)
1165 && bitnum.is_constant (&ibitnum)
1166 && get_best_mode (ibitsize, ibitnum,
1167 bitregion_start, bitregion_end,
1168 MEM_ALIGN (str_rtx), INT_MAX,
1169 MEM_VOLATILE_P (str_rtx), &best_mode))
1170 addr_mode = best_mode;
1171 str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
1172 offset, size);
1175 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1176 bitregion_start, bitregion_end,
1177 fieldmode, value, reverse, true))
1178 gcc_unreachable ();
1181 /* Use shifts and boolean operations to store VALUE into a bit field of
1182 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1183 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1184 the mode of VALUE.
1186 If REVERSE is true, the store is to be done in reverse order. */
1188 static void
1189 store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1190 unsigned HOST_WIDE_INT bitsize,
1191 unsigned HOST_WIDE_INT bitnum,
1192 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1193 rtx value, scalar_int_mode value_mode, bool reverse)
1195 /* There is a case not handled here:
1196 a structure with a known alignment of just a halfword
1197 and a field split across two aligned halfwords within the structure.
1198 Or likewise a structure with a known alignment of just a byte
1199 and a field split across two bytes.
1200 Such cases are not supposed to be able to occur. */
1202 scalar_int_mode best_mode;
1203 if (MEM_P (op0))
1205 unsigned int max_bitsize = BITS_PER_WORD;
1206 scalar_int_mode imode;
1207 if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
1208 max_bitsize = GET_MODE_BITSIZE (imode);
1210 if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1211 MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
1212 &best_mode))
1214 /* The only way this should occur is if the field spans word
1215 boundaries. */
1216 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1217 bitregion_start, bitregion_end,
1218 value, value_mode, reverse);
1219 return;
1222 op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
1224 else
1225 best_mode = op0_mode.require ();
1227 store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
1228 value, value_mode, reverse);
1231 /* Helper function for store_fixed_bit_field, stores
1232 the bit field always using MODE, which is the mode of OP0. The other
1233 arguments are as for store_fixed_bit_field. */
1235 static void
1236 store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
1237 unsigned HOST_WIDE_INT bitsize,
1238 unsigned HOST_WIDE_INT bitnum,
1239 rtx value, scalar_int_mode value_mode, bool reverse)
1241 rtx temp;
1242 int all_zero = 0;
1243 int all_one = 0;
1245 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1246 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1248 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1249 /* BITNUM is the distance between our msb
1250 and that of the containing datum.
1251 Convert it to the distance from the lsb. */
1252 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1254 /* Now BITNUM is always the distance between our lsb
1255 and that of OP0. */
1257 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1258 we must first convert its mode to MODE. */
1260 if (CONST_INT_P (value))
1262 unsigned HOST_WIDE_INT v = UINTVAL (value);
1264 if (bitsize < HOST_BITS_PER_WIDE_INT)
1265 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
1267 if (v == 0)
1268 all_zero = 1;
1269 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1270 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
1271 || (bitsize == HOST_BITS_PER_WIDE_INT
1272 && v == HOST_WIDE_INT_M1U))
1273 all_one = 1;
1275 value = lshift_value (mode, v, bitnum);
1277 else
1279 int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
1280 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1282 if (value_mode != mode)
1283 value = convert_to_mode (mode, value, 1);
1285 if (must_and)
1286 value = expand_binop (mode, and_optab, value,
1287 mask_rtx (mode, 0, bitsize, 0),
1288 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1289 if (bitnum > 0)
1290 value = expand_shift (LSHIFT_EXPR, mode, value,
1291 bitnum, NULL_RTX, 1);
1294 if (reverse)
1295 value = flip_storage_order (mode, value);
1297 /* Now clear the chosen bits in OP0,
1298 except that if VALUE is -1 we need not bother. */
1299 /* We keep the intermediates in registers to allow CSE to combine
1300 consecutive bitfield assignments. */
1302 temp = force_reg (mode, op0);
1304 if (! all_one)
1306 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1307 if (reverse)
1308 mask = flip_storage_order (mode, mask);
1309 temp = expand_binop (mode, and_optab, temp, mask,
1310 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1311 temp = force_reg (mode, temp);
1314 /* Now logical-or VALUE into OP0, unless it is zero. */
1316 if (! all_zero)
1318 temp = expand_binop (mode, ior_optab, temp, value,
1319 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1320 temp = force_reg (mode, temp);
1323 if (op0 != temp)
1325 op0 = copy_rtx (op0);
1326 emit_move_insn (op0, temp);
1330 /* Store a bit field that is split across multiple accessible memory objects.
1332 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1333 BITSIZE is the field width; BITPOS the position of its first bit
1334 (within the word).
1335 VALUE is the value to store, which has mode VALUE_MODE.
1336 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1337 a BLKmode MEM.
1339 If REVERSE is true, the store is to be done in reverse order.
1341 This does not yet handle fields wider than BITS_PER_WORD. */
1343 static void
1344 store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1345 unsigned HOST_WIDE_INT bitsize,
1346 unsigned HOST_WIDE_INT bitpos,
1347 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1348 rtx value, scalar_int_mode value_mode, bool reverse)
1350 unsigned int unit, total_bits, bitsdone = 0;
1352 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1353 much at a time. */
1354 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1355 unit = BITS_PER_WORD;
1356 else
1357 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1359 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1360 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1361 again, and we will mutually recurse forever. */
1362 if (MEM_P (op0) && op0_mode.exists ())
1363 unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
1365 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1366 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1367 that VALUE might be a floating-point constant. */
1368 if (CONSTANT_P (value) && !CONST_INT_P (value))
1370 rtx word = gen_lowpart_common (word_mode, value);
1372 if (word && (value != word))
1373 value = word;
1374 else
1375 value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
1376 value_mode = word_mode;
1379 total_bits = GET_MODE_BITSIZE (value_mode);
1381 while (bitsdone < bitsize)
1383 unsigned HOST_WIDE_INT thissize;
1384 unsigned HOST_WIDE_INT thispos;
1385 unsigned HOST_WIDE_INT offset;
1386 rtx part;
1388 offset = (bitpos + bitsdone) / unit;
1389 thispos = (bitpos + bitsdone) % unit;
1391 /* When region of bytes we can touch is restricted, decrease
1392 UNIT close to the end of the region as needed. If op0 is a REG
1393 or SUBREG of REG, don't do this, as there can't be data races
1394 on a register and we can expand shorter code in some cases. */
1395 if (maybe_ne (bitregion_end, 0U)
1396 && unit > BITS_PER_UNIT
1397 && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
1398 && !REG_P (op0)
1399 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1401 unit = unit / 2;
1402 continue;
1405 /* THISSIZE must not overrun a word boundary. Otherwise,
1406 store_fixed_bit_field will call us again, and we will mutually
1407 recurse forever. */
1408 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1409 thissize = MIN (thissize, unit - thispos);
1411 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1413 /* Fetch successively less significant portions. */
1414 if (CONST_INT_P (value))
1415 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1416 >> (bitsize - bitsdone - thissize))
1417 & ((HOST_WIDE_INT_1 << thissize) - 1));
1418 /* Likewise, but the source is little-endian. */
1419 else if (reverse)
1420 part = extract_fixed_bit_field (word_mode, value, value_mode,
1421 thissize,
1422 bitsize - bitsdone - thissize,
1423 NULL_RTX, 1, false);
1424 else
1425 /* The args are chosen so that the last part includes the
1426 lsb. Give extract_bit_field the value it needs (with
1427 endianness compensation) to fetch the piece we want. */
1428 part = extract_fixed_bit_field (word_mode, value, value_mode,
1429 thissize,
1430 total_bits - bitsize + bitsdone,
1431 NULL_RTX, 1, false);
1433 else
1435 /* Fetch successively more significant portions. */
1436 if (CONST_INT_P (value))
1437 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1438 >> bitsdone)
1439 & ((HOST_WIDE_INT_1 << thissize) - 1));
1440 /* Likewise, but the source is big-endian. */
1441 else if (reverse)
1442 part = extract_fixed_bit_field (word_mode, value, value_mode,
1443 thissize,
1444 total_bits - bitsdone - thissize,
1445 NULL_RTX, 1, false);
1446 else
1447 part = extract_fixed_bit_field (word_mode, value, value_mode,
1448 thissize, bitsdone, NULL_RTX,
1449 1, false);
1452 /* If OP0 is a register, then handle OFFSET here. */
1453 rtx op0_piece = op0;
1454 opt_scalar_int_mode op0_piece_mode = op0_mode;
1455 if (SUBREG_P (op0) || REG_P (op0))
1457 scalar_int_mode imode;
1458 if (op0_mode.exists (&imode)
1459 && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
1461 if (offset)
1462 op0_piece = const0_rtx;
1464 else
1466 op0_piece = operand_subword_force (op0,
1467 offset * unit / BITS_PER_WORD,
1468 GET_MODE (op0));
1469 op0_piece_mode = word_mode;
1471 offset &= BITS_PER_WORD / unit - 1;
1474 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1475 it is just an out-of-bounds access. Ignore it. */
1476 if (op0_piece != const0_rtx)
1477 store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
1478 offset * unit + thispos, bitregion_start,
1479 bitregion_end, part, word_mode, reverse);
1480 bitsdone += thissize;
1484 /* A subroutine of extract_bit_field_1 that converts return value X
1485 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1486 to extract_bit_field. */
1488 static rtx
1489 convert_extracted_bit_field (rtx x, machine_mode mode,
1490 machine_mode tmode, bool unsignedp)
1492 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1493 return x;
1495 /* If the x mode is not a scalar integral, first convert to the
1496 integer mode of that size and then access it as a floating-point
1497 value via a SUBREG. */
1498 if (!SCALAR_INT_MODE_P (tmode))
1500 scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
1501 x = convert_to_mode (int_mode, x, unsignedp);
1502 x = force_reg (int_mode, x);
1503 return gen_lowpart (tmode, x);
1506 return convert_to_mode (tmode, x, unsignedp);
1509 /* Try to use an ext(z)v pattern to extract a field from OP0.
1510 Return the extracted value on success, otherwise return null.
1511 EXTV describes the extraction instruction to use. If OP0_MODE
1512 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1513 The other arguments are as for extract_bit_field. */
1515 static rtx
1516 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1517 opt_scalar_int_mode op0_mode,
1518 unsigned HOST_WIDE_INT bitsize,
1519 unsigned HOST_WIDE_INT bitnum,
1520 int unsignedp, rtx target,
1521 machine_mode mode, machine_mode tmode)
1523 class expand_operand ops[4];
1524 rtx spec_target = target;
1525 rtx spec_target_subreg = 0;
1526 scalar_int_mode ext_mode = extv->field_mode;
1527 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1529 if (bitsize == 0 || unit < bitsize)
1530 return NULL_RTX;
1532 if (MEM_P (op0))
1533 /* Get a reference to the first byte of the field. */
1534 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1535 &bitnum);
1536 else
1538 /* Convert from counting within OP0 to counting in EXT_MODE. */
1539 if (BYTES_BIG_ENDIAN)
1540 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
1542 /* If op0 is a register, we need it in EXT_MODE to make it
1543 acceptable to the format of ext(z)v. */
1544 if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
1545 return NULL_RTX;
1546 if (REG_P (op0) && op0_mode.require () != ext_mode)
1547 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1550 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1551 "backwards" from the size of the unit we are extracting from.
1552 Otherwise, we count bits from the most significant on a
1553 BYTES/BITS_BIG_ENDIAN machine. */
1555 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1556 bitnum = unit - bitsize - bitnum;
1558 if (target == 0)
1559 target = spec_target = gen_reg_rtx (tmode);
1561 if (GET_MODE (target) != ext_mode)
1563 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1564 between the mode of the extraction (word_mode) and the target
1565 mode. Instead, create a temporary and use convert_move to set
1566 the target. */
1567 if (REG_P (target)
1568 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1570 target = gen_lowpart (ext_mode, target);
1571 if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
1572 spec_target_subreg = target;
1574 else
1575 target = gen_reg_rtx (ext_mode);
1578 create_output_operand (&ops[0], target, ext_mode);
1579 create_fixed_operand (&ops[1], op0);
1580 create_integer_operand (&ops[2], bitsize);
1581 create_integer_operand (&ops[3], bitnum);
1582 if (maybe_expand_insn (extv->icode, 4, ops))
1584 target = ops[0].value;
1585 if (target == spec_target)
1586 return target;
1587 if (target == spec_target_subreg)
1588 return spec_target;
1589 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1591 return NULL_RTX;
1594 /* See whether it would be valid to extract the part of OP0 described
1595 by BITNUM and BITSIZE into a value of mode MODE using a subreg
1596 operation. Return the subreg if so, otherwise return null. */
1598 static rtx
1599 extract_bit_field_as_subreg (machine_mode mode, rtx op0,
1600 poly_uint64 bitsize, poly_uint64 bitnum)
1602 poly_uint64 bytenum;
1603 if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
1604 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
1605 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1606 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0)))
1607 return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum);
1608 return NULL_RTX;
1611 /* A subroutine of extract_bit_field, with the same arguments.
1612 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1613 if we can find no other means of implementing the operation.
1614 if FALLBACK_P is false, return NULL instead. */
1616 static rtx
1617 extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1618 int unsignedp, rtx target, machine_mode mode,
1619 machine_mode tmode, bool reverse, bool fallback_p,
1620 rtx *alt_rtl)
1622 rtx op0 = str_rtx;
1623 machine_mode mode1;
1625 if (tmode == VOIDmode)
1626 tmode = mode;
1628 while (GET_CODE (op0) == SUBREG)
1630 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1631 op0 = SUBREG_REG (op0);
1634 /* If we have an out-of-bounds access to a register, just return an
1635 uninitialized register of the required mode. This can occur if the
1636 source code contains an out-of-bounds access to a small array. */
1637 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
1638 return gen_reg_rtx (tmode);
1640 if (REG_P (op0)
1641 && mode == GET_MODE (op0)
1642 && known_eq (bitnum, 0U)
1643 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
1645 if (reverse)
1646 op0 = flip_storage_order (mode, op0);
1647 /* We're trying to extract a full register from itself. */
1648 return op0;
1651 /* First try to check for vector from vector extractions. */
1652 if (VECTOR_MODE_P (GET_MODE (op0))
1653 && !MEM_P (op0)
1654 && VECTOR_MODE_P (tmode)
1655 && known_eq (bitsize, GET_MODE_BITSIZE (tmode))
1656 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
1658 machine_mode new_mode = GET_MODE (op0);
1659 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1661 scalar_mode inner_mode = GET_MODE_INNER (tmode);
1662 poly_uint64 nunits;
1663 if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)),
1664 GET_MODE_UNIT_BITSIZE (tmode), &nunits)
1665 || !related_vector_mode (tmode, inner_mode,
1666 nunits).exists (&new_mode)
1667 || maybe_ne (GET_MODE_SIZE (new_mode),
1668 GET_MODE_SIZE (GET_MODE (op0))))
1669 new_mode = VOIDmode;
1671 poly_uint64 pos;
1672 if (new_mode != VOIDmode
1673 && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
1674 != CODE_FOR_nothing)
1675 && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
1677 class expand_operand ops[3];
1678 machine_mode outermode = new_mode;
1679 machine_mode innermode = tmode;
1680 enum insn_code icode
1681 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1683 if (new_mode != GET_MODE (op0))
1684 op0 = gen_lowpart (new_mode, op0);
1685 create_output_operand (&ops[0], target, innermode);
1686 ops[0].target = 1;
1687 create_input_operand (&ops[1], op0, outermode);
1688 create_integer_operand (&ops[2], pos);
1689 if (maybe_expand_insn (icode, 3, ops))
1691 if (alt_rtl && ops[0].target)
1692 *alt_rtl = target;
1693 target = ops[0].value;
1694 if (GET_MODE (target) != mode)
1695 return gen_lowpart (tmode, target);
1696 return target;
1701 /* See if we can get a better vector mode before extracting. */
1702 if (VECTOR_MODE_P (GET_MODE (op0))
1703 && !MEM_P (op0)
1704 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1706 machine_mode new_mode;
1708 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1709 new_mode = MIN_MODE_VECTOR_FLOAT;
1710 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1711 new_mode = MIN_MODE_VECTOR_FRACT;
1712 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1713 new_mode = MIN_MODE_VECTOR_UFRACT;
1714 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1715 new_mode = MIN_MODE_VECTOR_ACCUM;
1716 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1717 new_mode = MIN_MODE_VECTOR_UACCUM;
1718 else
1719 new_mode = MIN_MODE_VECTOR_INT;
1721 FOR_EACH_MODE_FROM (new_mode, new_mode)
1722 if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
1723 && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
1724 && targetm.vector_mode_supported_p (new_mode))
1725 break;
1726 if (new_mode != VOIDmode)
1727 op0 = gen_lowpart (new_mode, op0);
1730 /* Use vec_extract patterns for extracting parts of vectors whenever
1731 available. If that fails, see whether the current modes and bitregion
1732 give a natural subreg. */
1733 machine_mode outermode = GET_MODE (op0);
1734 if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
1736 scalar_mode innermode = GET_MODE_INNER (outermode);
1737 enum insn_code icode
1738 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1739 poly_uint64 pos;
1740 if (icode != CODE_FOR_nothing
1741 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
1742 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
1744 class expand_operand ops[3];
1746 create_output_operand (&ops[0], target, innermode);
1747 ops[0].target = 1;
1748 create_input_operand (&ops[1], op0, outermode);
1749 create_integer_operand (&ops[2], pos);
1750 if (maybe_expand_insn (icode, 3, ops))
1752 if (alt_rtl && ops[0].target)
1753 *alt_rtl = target;
1754 target = ops[0].value;
1755 if (GET_MODE (target) != mode)
1756 return gen_lowpart (tmode, target);
1757 return target;
1760 /* Using subregs is useful if we're extracting one register vector
1761 from a multi-register vector. extract_bit_field_as_subreg checks
1762 for valid bitsize and bitnum, so we don't need to do that here. */
1763 if (VECTOR_MODE_P (mode))
1765 rtx sub = extract_bit_field_as_subreg (mode, op0, bitsize, bitnum);
1766 if (sub)
1767 return sub;
1771 /* Make sure we are playing with integral modes. Pun with subregs
1772 if we aren't. */
1773 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
1774 scalar_int_mode imode;
1775 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
1777 if (MEM_P (op0))
1778 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
1779 0, MEM_SIZE (op0));
1780 else if (op0_mode.exists (&imode))
1782 op0 = gen_lowpart (imode, op0);
1784 /* If we got a SUBREG, force it into a register since we
1785 aren't going to be able to do another SUBREG on it. */
1786 if (GET_CODE (op0) == SUBREG)
1787 op0 = force_reg (imode, op0);
1789 else
1791 poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
1792 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1793 emit_move_insn (mem, op0);
1794 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1798 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1799 If that's wrong, the solution is to test for it and set TARGET to 0
1800 if needed. */
1802 /* Get the mode of the field to use for atomic access or subreg
1803 conversion. */
1804 if (!SCALAR_INT_MODE_P (tmode)
1805 || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
1806 mode1 = mode;
1807 gcc_assert (mode1 != BLKmode);
1809 /* Extraction of a full MODE1 value can be done with a subreg as long
1810 as the least significant bit of the value is the least significant
1811 bit of either OP0 or a word of OP0. */
1812 if (!MEM_P (op0) && !reverse)
1814 rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum);
1815 if (sub)
1816 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1819 /* Extraction of a full MODE1 value can be done with a load as long as
1820 the field is on a byte boundary and is sufficiently aligned. */
1821 poly_uint64 bytenum;
1822 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
1824 op0 = adjust_bitfield_address (op0, mode1, bytenum);
1825 if (reverse)
1826 op0 = flip_storage_order (mode1, op0);
1827 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1830 /* If we have a memory source and a non-constant bit offset, restrict
1831 the memory to the referenced bytes. This is a worst-case fallback
1832 but is useful for things like vector booleans. */
1833 if (MEM_P (op0) && !bitnum.is_constant ())
1835 bytenum = bits_to_bytes_round_down (bitnum);
1836 bitnum = num_trailing_bits (bitnum);
1837 poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
1838 op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
1839 op0_mode = opt_scalar_int_mode ();
1842 /* It's possible we'll need to handle other cases here for
1843 polynomial bitnum and bitsize. */
1845 /* From here on we need to be looking at a fixed-size insertion. */
1846 return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
1847 bitnum.to_constant (), unsignedp,
1848 target, mode, tmode, reverse, fallback_p);
1851 /* Subroutine of extract_bit_field_1, with the same arguments, except
1852 that BITSIZE and BITNUM are constant. Handle cases specific to
1853 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1854 otherwise OP0 is a BLKmode MEM. */
1856 static rtx
1857 extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1858 unsigned HOST_WIDE_INT bitsize,
1859 unsigned HOST_WIDE_INT bitnum, int unsignedp,
1860 rtx target, machine_mode mode, machine_mode tmode,
1861 bool reverse, bool fallback_p)
1863 /* Handle fields bigger than a word. */
1865 if (bitsize > BITS_PER_WORD)
1867 /* Here we transfer the words of the field
1868 in the order least significant first.
1869 This is because the most significant word is the one which may
1870 be less than full. */
1872 const bool backwards = WORDS_BIG_ENDIAN;
1873 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1874 unsigned int i;
1875 rtx_insn *last;
1877 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1878 target = gen_reg_rtx (mode);
1880 /* In case we're about to clobber a base register or something
1881 (see gcc.c-torture/execute/20040625-1.c). */
1882 if (reg_mentioned_p (target, op0))
1883 target = gen_reg_rtx (mode);
1885 /* Indicate for flow that the entire target reg is being set. */
1886 emit_clobber (target);
1888 /* The mode must be fixed-size, since extract_bit_field_1 handles
1889 extractions from variable-sized objects before calling this
1890 function. */
1891 unsigned int target_size
1892 = GET_MODE_SIZE (GET_MODE (target)).to_constant ();
1893 last = get_last_insn ();
1894 for (i = 0; i < nwords; i++)
1896 /* If I is 0, use the low-order word in both field and target;
1897 if I is 1, use the next to lowest word; and so on. */
1898 /* Word number in TARGET to use. */
1899 unsigned int wordnum
1900 = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
1901 /* Offset from start of field in OP0. */
1902 unsigned int bit_offset = (backwards ^ reverse
1903 ? MAX ((int) bitsize - ((int) i + 1)
1904 * BITS_PER_WORD,
1906 : (int) i * BITS_PER_WORD);
1907 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1908 rtx result_part
1909 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1910 bitsize - i * BITS_PER_WORD),
1911 bitnum + bit_offset, 1, target_part,
1912 mode, word_mode, reverse, fallback_p, NULL);
1914 gcc_assert (target_part);
1915 if (!result_part)
1917 delete_insns_since (last);
1918 return NULL;
1921 if (result_part != target_part)
1922 emit_move_insn (target_part, result_part);
1925 if (unsignedp)
1927 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1928 need to be zero'd out. */
1929 if (target_size > nwords * UNITS_PER_WORD)
1931 unsigned int i, total_words;
1933 total_words = target_size / UNITS_PER_WORD;
1934 for (i = nwords; i < total_words; i++)
1935 emit_move_insn
1936 (operand_subword (target,
1937 backwards ? total_words - i - 1 : i,
1938 1, VOIDmode),
1939 const0_rtx);
1941 return target;
1944 /* Signed bit field: sign-extend with two arithmetic shifts. */
1945 target = expand_shift (LSHIFT_EXPR, mode, target,
1946 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1947 return expand_shift (RSHIFT_EXPR, mode, target,
1948 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1951 /* If OP0 is a multi-word register, narrow it to the affected word.
1952 If the region spans two words, defer to extract_split_bit_field. */
1953 if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
1955 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1957 if (!fallback_p)
1958 return NULL_RTX;
1959 target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
1960 unsignedp, reverse);
1961 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1963 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1964 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1965 op0_mode = word_mode;
1966 bitnum %= BITS_PER_WORD;
1969 /* From here on we know the desired field is smaller than a word.
1970 If OP0 is a register, it too fits within a word. */
1971 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1972 extraction_insn extv;
1973 if (!MEM_P (op0)
1974 && !reverse
1975 /* ??? We could limit the structure size to the part of OP0 that
1976 contains the field, with appropriate checks for endianness
1977 and TARGET_TRULY_NOOP_TRUNCATION. */
1978 && get_best_reg_extraction_insn (&extv, pattern,
1979 GET_MODE_BITSIZE (op0_mode.require ()),
1980 tmode))
1982 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1983 bitsize, bitnum,
1984 unsignedp, target, mode,
1985 tmode);
1986 if (result)
1987 return result;
1990 /* If OP0 is a memory, try copying it to a register and seeing if a
1991 cheap register alternative is available. */
1992 if (MEM_P (op0) & !reverse)
1994 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1995 tmode))
1997 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1998 bitsize, bitnum,
1999 unsignedp, target, mode,
2000 tmode);
2001 if (result)
2002 return result;
2005 rtx_insn *last = get_last_insn ();
2007 /* Try loading part of OP0 into a register and extracting the
2008 bitfield from that. */
2009 unsigned HOST_WIDE_INT bitpos;
2010 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
2011 0, 0, tmode, &bitpos);
2012 if (xop0)
2014 xop0 = copy_to_reg (xop0);
2015 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
2016 unsignedp, target,
2017 mode, tmode, reverse, false, NULL);
2018 if (result)
2019 return result;
2020 delete_insns_since (last);
2024 if (!fallback_p)
2025 return NULL;
2027 /* Find a correspondingly-sized integer field, so we can apply
2028 shifts and masks to it. */
2029 scalar_int_mode int_mode;
2030 if (!int_mode_for_mode (tmode).exists (&int_mode))
2031 /* If this fails, we should probably push op0 out to memory and then
2032 do a load. */
2033 int_mode = int_mode_for_mode (mode).require ();
2035 target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
2036 bitnum, target, unsignedp, reverse);
2038 /* Complex values must be reversed piecewise, so we need to undo the global
2039 reversal, convert to the complex mode and reverse again. */
2040 if (reverse && COMPLEX_MODE_P (tmode))
2042 target = flip_storage_order (int_mode, target);
2043 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2044 target = flip_storage_order (tmode, target);
2046 else
2047 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2049 return target;
2052 /* Generate code to extract a byte-field from STR_RTX
2053 containing BITSIZE bits, starting at BITNUM,
2054 and put it in TARGET if possible (if TARGET is nonzero).
2055 Regardless of TARGET, we return the rtx for where the value is placed.
2057 STR_RTX is the structure containing the byte (a REG or MEM).
2058 UNSIGNEDP is nonzero if this is an unsigned bit field.
2059 MODE is the natural mode of the field value once extracted.
2060 TMODE is the mode the caller would like the value to have;
2061 but the value may be returned with type MODE instead.
2063 If REVERSE is true, the extraction is to be done in reverse order.
2065 If a TARGET is specified and we can store in it at no extra cost,
2066 we do so, and return TARGET.
2067 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2068 if they are equally easy.
2070 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
2071 then *ALT_RTL is set to TARGET (before legitimziation). */
2074 extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
2075 int unsignedp, rtx target, machine_mode mode,
2076 machine_mode tmode, bool reverse, rtx *alt_rtl)
2078 machine_mode mode1;
2080 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2081 if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0))
2082 mode1 = GET_MODE (str_rtx);
2083 else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0))
2084 mode1 = GET_MODE (target);
2085 else
2086 mode1 = tmode;
2088 unsigned HOST_WIDE_INT ibitsize, ibitnum;
2089 scalar_int_mode int_mode;
2090 if (bitsize.is_constant (&ibitsize)
2091 && bitnum.is_constant (&ibitnum)
2092 && is_a <scalar_int_mode> (mode1, &int_mode)
2093 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
2094 int_mode, 0, 0))
2096 /* Extraction of a full INT_MODE value can be done with a simple load.
2097 We know here that the field can be accessed with one single
2098 instruction. For targets that support unaligned memory,
2099 an unaligned access may be necessary. */
2100 if (ibitsize == GET_MODE_BITSIZE (int_mode))
2102 rtx result = adjust_bitfield_address (str_rtx, int_mode,
2103 ibitnum / BITS_PER_UNIT);
2104 if (reverse)
2105 result = flip_storage_order (int_mode, result);
2106 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
2107 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
2110 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
2111 &ibitnum);
2112 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
2113 str_rtx = copy_to_reg (str_rtx);
2114 return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
2115 target, mode, tmode, reverse, true, alt_rtl);
2118 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
2119 target, mode, tmode, reverse, true, alt_rtl);
2122 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2123 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2124 otherwise OP0 is a BLKmode MEM.
2126 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2127 If REVERSE is true, the extraction is to be done in reverse order.
2129 If TARGET is nonzero, attempts to store the value there
2130 and return TARGET, but this is not guaranteed.
2131 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2133 static rtx
2134 extract_fixed_bit_field (machine_mode tmode, rtx op0,
2135 opt_scalar_int_mode op0_mode,
2136 unsigned HOST_WIDE_INT bitsize,
2137 unsigned HOST_WIDE_INT bitnum, rtx target,
2138 int unsignedp, bool reverse)
2140 scalar_int_mode mode;
2141 if (MEM_P (op0))
2143 if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
2144 BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
2145 /* The only way this should occur is if the field spans word
2146 boundaries. */
2147 return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
2148 unsignedp, reverse);
2150 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
2152 else
2153 mode = op0_mode.require ();
2155 return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
2156 target, unsignedp, reverse);
2159 /* Helper function for extract_fixed_bit_field, extracts
2160 the bit field always using MODE, which is the mode of OP0.
2161 The other arguments are as for extract_fixed_bit_field. */
2163 static rtx
2164 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
2165 unsigned HOST_WIDE_INT bitsize,
2166 unsigned HOST_WIDE_INT bitnum, rtx target,
2167 int unsignedp, bool reverse)
2169 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2170 for invalid input, such as extract equivalent of f5 from
2171 gcc.dg/pr48335-2.c. */
2173 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2174 /* BITNUM is the distance between our msb and that of OP0.
2175 Convert it to the distance from the lsb. */
2176 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2178 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2179 We have reduced the big-endian case to the little-endian case. */
2180 if (reverse)
2181 op0 = flip_storage_order (mode, op0);
2183 if (unsignedp)
2185 if (bitnum)
2187 /* If the field does not already start at the lsb,
2188 shift it so it does. */
2189 /* Maybe propagate the target for the shift. */
2190 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2191 if (tmode != mode)
2192 subtarget = 0;
2193 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2195 /* Convert the value to the desired mode. TMODE must also be a
2196 scalar integer for this conversion to make sense, since we
2197 shouldn't reinterpret the bits. */
2198 scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
2199 if (mode != new_mode)
2200 op0 = convert_to_mode (new_mode, op0, 1);
2202 /* Unless the msb of the field used to be the msb when we shifted,
2203 mask out the upper bits. */
2205 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
2206 return expand_binop (new_mode, and_optab, op0,
2207 mask_rtx (new_mode, 0, bitsize, 0),
2208 target, 1, OPTAB_LIB_WIDEN);
2209 return op0;
2212 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2213 then arithmetic-shift its lsb to the lsb of the word. */
2214 op0 = force_reg (mode, op0);
2216 /* Find the narrowest integer mode that contains the field. */
2218 opt_scalar_int_mode mode_iter;
2219 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2220 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
2221 break;
2223 mode = mode_iter.require ();
2224 op0 = convert_to_mode (mode, op0, 0);
2226 if (mode != tmode)
2227 target = 0;
2229 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2231 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2232 /* Maybe propagate the target for the shift. */
2233 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2234 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2237 return expand_shift (RSHIFT_EXPR, mode, op0,
2238 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2241 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2242 VALUE << BITPOS. */
2244 static rtx
2245 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2246 int bitpos)
2248 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
2251 /* Extract a bit field that is split across two words
2252 and return an RTX for the result.
2254 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2255 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2256 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2257 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2258 a BLKmode MEM.
2260 If REVERSE is true, the extraction is to be done in reverse order. */
2262 static rtx
2263 extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
2264 unsigned HOST_WIDE_INT bitsize,
2265 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2266 bool reverse)
2268 unsigned int unit;
2269 unsigned int bitsdone = 0;
2270 rtx result = NULL_RTX;
2271 int first = 1;
2273 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2274 much at a time. */
2275 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2276 unit = BITS_PER_WORD;
2277 else
2278 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2280 while (bitsdone < bitsize)
2282 unsigned HOST_WIDE_INT thissize;
2283 rtx part;
2284 unsigned HOST_WIDE_INT thispos;
2285 unsigned HOST_WIDE_INT offset;
2287 offset = (bitpos + bitsdone) / unit;
2288 thispos = (bitpos + bitsdone) % unit;
2290 /* THISSIZE must not overrun a word boundary. Otherwise,
2291 extract_fixed_bit_field will call us again, and we will mutually
2292 recurse forever. */
2293 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2294 thissize = MIN (thissize, unit - thispos);
2296 /* If OP0 is a register, then handle OFFSET here. */
2297 rtx op0_piece = op0;
2298 opt_scalar_int_mode op0_piece_mode = op0_mode;
2299 if (SUBREG_P (op0) || REG_P (op0))
2301 op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
2302 op0_piece_mode = word_mode;
2303 offset = 0;
2306 /* Extract the parts in bit-counting order,
2307 whose meaning is determined by BYTES_PER_UNIT.
2308 OFFSET is in UNITs, and UNIT is in bits. */
2309 part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
2310 thissize, offset * unit + thispos,
2311 0, 1, reverse);
2312 bitsdone += thissize;
2314 /* Shift this part into place for the result. */
2315 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2317 if (bitsize != bitsdone)
2318 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2319 bitsize - bitsdone, 0, 1);
2321 else
2323 if (bitsdone != thissize)
2324 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2325 bitsdone - thissize, 0, 1);
2328 if (first)
2329 result = part;
2330 else
2331 /* Combine the parts with bitwise or. This works
2332 because we extracted each part as an unsigned bit field. */
2333 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2334 OPTAB_LIB_WIDEN);
2336 first = 0;
2339 /* Unsigned bit field: we are done. */
2340 if (unsignedp)
2341 return result;
2342 /* Signed bit field: sign-extend with two arithmetic shifts. */
2343 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2344 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2345 return expand_shift (RSHIFT_EXPR, word_mode, result,
2346 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2349 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2350 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2351 MODE, fill the upper bits with zeros. Fail if the layout of either
2352 mode is unknown (as for CC modes) or if the extraction would involve
2353 unprofitable mode punning. Return the value on success, otherwise
2354 return null.
2356 This is different from gen_lowpart* in these respects:
2358 - the returned value must always be considered an rvalue
2360 - when MODE is wider than SRC_MODE, the extraction involves
2361 a zero extension
2363 - when MODE is smaller than SRC_MODE, the extraction involves
2364 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2366 In other words, this routine performs a computation, whereas the
2367 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2368 operations. */
2371 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2373 scalar_int_mode int_mode, src_int_mode;
2375 if (mode == src_mode)
2376 return src;
2378 if (CONSTANT_P (src))
2380 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2381 fails, it will happily create (subreg (symbol_ref)) or similar
2382 invalid SUBREGs. */
2383 poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
2384 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2385 if (ret)
2386 return ret;
2388 if (GET_MODE (src) == VOIDmode
2389 || !validate_subreg (mode, src_mode, src, byte))
2390 return NULL_RTX;
2392 src = force_reg (GET_MODE (src), src);
2393 return gen_rtx_SUBREG (mode, src, byte);
2396 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2397 return NULL_RTX;
2399 if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
2400 && targetm.modes_tieable_p (mode, src_mode))
2402 rtx x = gen_lowpart_common (mode, src);
2403 if (x)
2404 return x;
2407 if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
2408 || !int_mode_for_mode (mode).exists (&int_mode))
2409 return NULL_RTX;
2411 if (!targetm.modes_tieable_p (src_int_mode, src_mode))
2412 return NULL_RTX;
2413 if (!targetm.modes_tieable_p (int_mode, mode))
2414 return NULL_RTX;
2416 src = gen_lowpart (src_int_mode, src);
2417 if (!validate_subreg (int_mode, src_int_mode, src,
2418 subreg_lowpart_offset (int_mode, src_int_mode)))
2419 return NULL_RTX;
2421 src = convert_modes (int_mode, src_int_mode, src, true);
2422 src = gen_lowpart (mode, src);
2423 return src;
2426 /* Add INC into TARGET. */
2428 void
2429 expand_inc (rtx target, rtx inc)
2431 rtx value = expand_binop (GET_MODE (target), add_optab,
2432 target, inc,
2433 target, 0, OPTAB_LIB_WIDEN);
2434 if (value != target)
2435 emit_move_insn (target, value);
2438 /* Subtract DEC from TARGET. */
2440 void
2441 expand_dec (rtx target, rtx dec)
2443 rtx value = expand_binop (GET_MODE (target), sub_optab,
2444 target, dec,
2445 target, 0, OPTAB_LIB_WIDEN);
2446 if (value != target)
2447 emit_move_insn (target, value);
2450 /* Output a shift instruction for expression code CODE,
2451 with SHIFTED being the rtx for the value to shift,
2452 and AMOUNT the rtx for the amount to shift by.
2453 Store the result in the rtx TARGET, if that is convenient.
2454 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2455 Return the rtx for where the value is.
2456 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2457 in which case 0 is returned. */
2459 static rtx
2460 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2461 rtx amount, rtx target, int unsignedp, bool may_fail = false)
2463 rtx op1, temp = 0;
2464 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2465 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2466 optab lshift_optab = ashl_optab;
2467 optab rshift_arith_optab = ashr_optab;
2468 optab rshift_uns_optab = lshr_optab;
2469 optab lrotate_optab = rotl_optab;
2470 optab rrotate_optab = rotr_optab;
2471 machine_mode op1_mode;
2472 scalar_mode scalar_mode = GET_MODE_INNER (mode);
2473 int attempt;
2474 bool speed = optimize_insn_for_speed_p ();
2476 op1 = amount;
2477 op1_mode = GET_MODE (op1);
2479 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2480 shift amount is a vector, use the vector/vector shift patterns. */
2481 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2483 lshift_optab = vashl_optab;
2484 rshift_arith_optab = vashr_optab;
2485 rshift_uns_optab = vlshr_optab;
2486 lrotate_optab = vrotl_optab;
2487 rrotate_optab = vrotr_optab;
2490 /* Previously detected shift-counts computed by NEGATE_EXPR
2491 and shifted in the other direction; but that does not work
2492 on all machines. */
2494 if (SHIFT_COUNT_TRUNCATED)
2496 if (CONST_INT_P (op1)
2497 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2498 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2499 op1 = gen_int_shift_amount (mode,
2500 (unsigned HOST_WIDE_INT) INTVAL (op1)
2501 % GET_MODE_BITSIZE (scalar_mode));
2502 else if (GET_CODE (op1) == SUBREG
2503 && subreg_lowpart_p (op1)
2504 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2505 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2506 op1 = SUBREG_REG (op1);
2509 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2510 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2511 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2512 amount instead. */
2513 if (rotate
2514 && CONST_INT_P (op1)
2515 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2516 GET_MODE_BITSIZE (scalar_mode) - 1))
2518 op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
2519 - INTVAL (op1)));
2520 left = !left;
2521 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2524 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2525 Note that this is not the case for bigger values. For instance a rotation
2526 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2527 0x04030201 (bswapsi). */
2528 if (rotate
2529 && CONST_INT_P (op1)
2530 && INTVAL (op1) == BITS_PER_UNIT
2531 && GET_MODE_SIZE (scalar_mode) == 2
2532 && optab_handler (bswap_optab, mode) != CODE_FOR_nothing)
2533 return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);
2535 if (op1 == const0_rtx)
2536 return shifted;
2538 /* Check whether its cheaper to implement a left shift by a constant
2539 bit count by a sequence of additions. */
2540 if (code == LSHIFT_EXPR
2541 && CONST_INT_P (op1)
2542 && INTVAL (op1) > 0
2543 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2544 && INTVAL (op1) < MAX_BITS_PER_WORD
2545 && (shift_cost (speed, mode, INTVAL (op1))
2546 > INTVAL (op1) * add_cost (speed, mode))
2547 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2549 int i;
2550 for (i = 0; i < INTVAL (op1); i++)
2552 temp = force_reg (mode, shifted);
2553 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2554 unsignedp, OPTAB_LIB_WIDEN);
2556 return shifted;
2559 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2561 enum optab_methods methods;
2563 if (attempt == 0)
2564 methods = OPTAB_DIRECT;
2565 else if (attempt == 1)
2566 methods = OPTAB_WIDEN;
2567 else
2568 methods = OPTAB_LIB_WIDEN;
2570 if (rotate)
2572 /* Widening does not work for rotation. */
2573 if (methods == OPTAB_WIDEN)
2574 continue;
2575 else if (methods == OPTAB_LIB_WIDEN)
2577 /* If we have been unable to open-code this by a rotation,
2578 do it as the IOR of two shifts. I.e., to rotate A
2579 by N bits, compute
2580 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2581 where C is the bitsize of A.
2583 It is theoretically possible that the target machine might
2584 not be able to perform either shift and hence we would
2585 be making two libcalls rather than just the one for the
2586 shift (similarly if IOR could not be done). We will allow
2587 this extremely unlikely lossage to avoid complicating the
2588 code below. */
2590 rtx subtarget = target == shifted ? 0 : target;
2591 rtx new_amount, other_amount;
2592 rtx temp1;
2594 new_amount = op1;
2595 if (op1 == const0_rtx)
2596 return shifted;
2597 else if (CONST_INT_P (op1))
2598 other_amount = gen_int_shift_amount
2599 (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2600 else
2602 other_amount
2603 = simplify_gen_unary (NEG, GET_MODE (op1),
2604 op1, GET_MODE (op1));
2605 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2606 other_amount
2607 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2608 gen_int_mode (mask, GET_MODE (op1)));
2611 shifted = force_reg (mode, shifted);
2613 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2614 mode, shifted, new_amount, 0, 1);
2615 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2616 mode, shifted, other_amount,
2617 subtarget, 1);
2618 return expand_binop (mode, ior_optab, temp, temp1, target,
2619 unsignedp, methods);
2622 temp = expand_binop (mode,
2623 left ? lrotate_optab : rrotate_optab,
2624 shifted, op1, target, unsignedp, methods);
2626 else if (unsignedp)
2627 temp = expand_binop (mode,
2628 left ? lshift_optab : rshift_uns_optab,
2629 shifted, op1, target, unsignedp, methods);
2631 /* Do arithmetic shifts.
2632 Also, if we are going to widen the operand, we can just as well
2633 use an arithmetic right-shift instead of a logical one. */
2634 if (temp == 0 && ! rotate
2635 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2637 enum optab_methods methods1 = methods;
2639 /* If trying to widen a log shift to an arithmetic shift,
2640 don't accept an arithmetic shift of the same size. */
2641 if (unsignedp)
2642 methods1 = OPTAB_MUST_WIDEN;
2644 /* Arithmetic shift */
2646 temp = expand_binop (mode,
2647 left ? lshift_optab : rshift_arith_optab,
2648 shifted, op1, target, unsignedp, methods1);
2651 /* We used to try extzv here for logical right shifts, but that was
2652 only useful for one machine, the VAX, and caused poor code
2653 generation there for lshrdi3, so the code was deleted and a
2654 define_expand for lshrsi3 was added to vax.md. */
2657 gcc_assert (temp != NULL_RTX || may_fail);
2658 return temp;
2661 /* Output a shift instruction for expression code CODE,
2662 with SHIFTED being the rtx for the value to shift,
2663 and AMOUNT the amount to shift by.
2664 Store the result in the rtx TARGET, if that is convenient.
2665 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2666 Return the rtx for where the value is. */
2669 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2670 poly_int64 amount, rtx target, int unsignedp)
2672 return expand_shift_1 (code, mode, shifted,
2673 gen_int_shift_amount (mode, amount),
2674 target, unsignedp);
2677 /* Likewise, but return 0 if that cannot be done. */
2679 static rtx
2680 maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2681 int amount, rtx target, int unsignedp)
2683 return expand_shift_1 (code, mode,
2684 shifted, GEN_INT (amount), target, unsignedp, true);
2687 /* Output a shift instruction for expression code CODE,
2688 with SHIFTED being the rtx for the value to shift,
2689 and AMOUNT the tree for the amount to shift by.
2690 Store the result in the rtx TARGET, if that is convenient.
2691 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2692 Return the rtx for where the value is. */
2695 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2696 tree amount, rtx target, int unsignedp)
2698 return expand_shift_1 (code, mode,
2699 shifted, expand_normal (amount), target, unsignedp);
2703 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2704 const struct mult_cost *, machine_mode mode);
2705 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2706 const struct algorithm *, enum mult_variant);
2707 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2708 static rtx extract_high_half (scalar_int_mode, rtx);
2709 static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
2710 static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
2711 int, int);
2712 /* Compute and return the best algorithm for multiplying by T.
2713 The algorithm must cost less than cost_limit
2714 If retval.cost >= COST_LIMIT, no algorithm was found and all
2715 other field of the returned struct are undefined.
2716 MODE is the machine mode of the multiplication. */
2718 static void
2719 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2720 const struct mult_cost *cost_limit, machine_mode mode)
2722 int m;
2723 struct algorithm *alg_in, *best_alg;
2724 struct mult_cost best_cost;
2725 struct mult_cost new_limit;
2726 int op_cost, op_latency;
2727 unsigned HOST_WIDE_INT orig_t = t;
2728 unsigned HOST_WIDE_INT q;
2729 int maxm, hash_index;
2730 bool cache_hit = false;
2731 enum alg_code cache_alg = alg_zero;
2732 bool speed = optimize_insn_for_speed_p ();
2733 scalar_int_mode imode;
2734 struct alg_hash_entry *entry_ptr;
2736 /* Indicate that no algorithm is yet found. If no algorithm
2737 is found, this value will be returned and indicate failure. */
2738 alg_out->cost.cost = cost_limit->cost + 1;
2739 alg_out->cost.latency = cost_limit->latency + 1;
2741 if (cost_limit->cost < 0
2742 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2743 return;
2745 /* Be prepared for vector modes. */
2746 imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
2748 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2750 /* Restrict the bits of "t" to the multiplication's mode. */
2751 t &= GET_MODE_MASK (imode);
2753 /* t == 1 can be done in zero cost. */
2754 if (t == 1)
2756 alg_out->ops = 1;
2757 alg_out->cost.cost = 0;
2758 alg_out->cost.latency = 0;
2759 alg_out->op[0] = alg_m;
2760 return;
2763 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2764 fail now. */
2765 if (t == 0)
2767 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2768 return;
2769 else
2771 alg_out->ops = 1;
2772 alg_out->cost.cost = zero_cost (speed);
2773 alg_out->cost.latency = zero_cost (speed);
2774 alg_out->op[0] = alg_zero;
2775 return;
2779 /* We'll be needing a couple extra algorithm structures now. */
2781 alg_in = XALLOCA (struct algorithm);
2782 best_alg = XALLOCA (struct algorithm);
2783 best_cost = *cost_limit;
2785 /* Compute the hash index. */
2786 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2788 /* See if we already know what to do for T. */
2789 entry_ptr = alg_hash_entry_ptr (hash_index);
2790 if (entry_ptr->t == t
2791 && entry_ptr->mode == mode
2792 && entry_ptr->speed == speed
2793 && entry_ptr->alg != alg_unknown)
2795 cache_alg = entry_ptr->alg;
2797 if (cache_alg == alg_impossible)
2799 /* The cache tells us that it's impossible to synthesize
2800 multiplication by T within entry_ptr->cost. */
2801 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2802 /* COST_LIMIT is at least as restrictive as the one
2803 recorded in the hash table, in which case we have no
2804 hope of synthesizing a multiplication. Just
2805 return. */
2806 return;
2808 /* If we get here, COST_LIMIT is less restrictive than the
2809 one recorded in the hash table, so we may be able to
2810 synthesize a multiplication. Proceed as if we didn't
2811 have the cache entry. */
2813 else
2815 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2816 /* The cached algorithm shows that this multiplication
2817 requires more cost than COST_LIMIT. Just return. This
2818 way, we don't clobber this cache entry with
2819 alg_impossible but retain useful information. */
2820 return;
2822 cache_hit = true;
2824 switch (cache_alg)
2826 case alg_shift:
2827 goto do_alg_shift;
2829 case alg_add_t_m2:
2830 case alg_sub_t_m2:
2831 goto do_alg_addsub_t_m2;
2833 case alg_add_factor:
2834 case alg_sub_factor:
2835 goto do_alg_addsub_factor;
2837 case alg_add_t2_m:
2838 goto do_alg_add_t2_m;
2840 case alg_sub_t2_m:
2841 goto do_alg_sub_t2_m;
2843 default:
2844 gcc_unreachable ();
2849 /* If we have a group of zero bits at the low-order part of T, try
2850 multiplying by the remaining bits and then doing a shift. */
2852 if ((t & 1) == 0)
2854 do_alg_shift:
2855 m = ctz_or_zero (t); /* m = number of low zero bits */
2856 if (m < maxm)
2858 q = t >> m;
2859 /* The function expand_shift will choose between a shift and
2860 a sequence of additions, so the observed cost is given as
2861 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2862 op_cost = m * add_cost (speed, mode);
2863 if (shift_cost (speed, mode, m) < op_cost)
2864 op_cost = shift_cost (speed, mode, m);
2865 new_limit.cost = best_cost.cost - op_cost;
2866 new_limit.latency = best_cost.latency - op_cost;
2867 synth_mult (alg_in, q, &new_limit, mode);
2869 alg_in->cost.cost += op_cost;
2870 alg_in->cost.latency += op_cost;
2871 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2873 best_cost = alg_in->cost;
2874 std::swap (alg_in, best_alg);
2875 best_alg->log[best_alg->ops] = m;
2876 best_alg->op[best_alg->ops] = alg_shift;
2879 /* See if treating ORIG_T as a signed number yields a better
2880 sequence. Try this sequence only for a negative ORIG_T
2881 as it would be useless for a non-negative ORIG_T. */
2882 if ((HOST_WIDE_INT) orig_t < 0)
2884 /* Shift ORIG_T as follows because a right shift of a
2885 negative-valued signed type is implementation
2886 defined. */
2887 q = ~(~orig_t >> m);
2888 /* The function expand_shift will choose between a shift
2889 and a sequence of additions, so the observed cost is
2890 given as MIN (m * add_cost(speed, mode),
2891 shift_cost(speed, mode, m)). */
2892 op_cost = m * add_cost (speed, mode);
2893 if (shift_cost (speed, mode, m) < op_cost)
2894 op_cost = shift_cost (speed, mode, m);
2895 new_limit.cost = best_cost.cost - op_cost;
2896 new_limit.latency = best_cost.latency - op_cost;
2897 synth_mult (alg_in, q, &new_limit, mode);
2899 alg_in->cost.cost += op_cost;
2900 alg_in->cost.latency += op_cost;
2901 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2903 best_cost = alg_in->cost;
2904 std::swap (alg_in, best_alg);
2905 best_alg->log[best_alg->ops] = m;
2906 best_alg->op[best_alg->ops] = alg_shift;
2910 if (cache_hit)
2911 goto done;
2914 /* If we have an odd number, add or subtract one. */
2915 if ((t & 1) != 0)
2917 unsigned HOST_WIDE_INT w;
2919 do_alg_addsub_t_m2:
2920 for (w = 1; (w & t) != 0; w <<= 1)
2922 /* If T was -1, then W will be zero after the loop. This is another
2923 case where T ends with ...111. Handling this with (T + 1) and
2924 subtract 1 produces slightly better code and results in algorithm
2925 selection much faster than treating it like the ...0111 case
2926 below. */
2927 if (w == 0
2928 || (w > 2
2929 /* Reject the case where t is 3.
2930 Thus we prefer addition in that case. */
2931 && t != 3))
2933 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2935 op_cost = add_cost (speed, mode);
2936 new_limit.cost = best_cost.cost - op_cost;
2937 new_limit.latency = best_cost.latency - op_cost;
2938 synth_mult (alg_in, t + 1, &new_limit, mode);
2940 alg_in->cost.cost += op_cost;
2941 alg_in->cost.latency += op_cost;
2942 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2944 best_cost = alg_in->cost;
2945 std::swap (alg_in, best_alg);
2946 best_alg->log[best_alg->ops] = 0;
2947 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2950 else
2952 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2954 op_cost = add_cost (speed, mode);
2955 new_limit.cost = best_cost.cost - op_cost;
2956 new_limit.latency = best_cost.latency - op_cost;
2957 synth_mult (alg_in, t - 1, &new_limit, mode);
2959 alg_in->cost.cost += op_cost;
2960 alg_in->cost.latency += op_cost;
2961 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2963 best_cost = alg_in->cost;
2964 std::swap (alg_in, best_alg);
2965 best_alg->log[best_alg->ops] = 0;
2966 best_alg->op[best_alg->ops] = alg_add_t_m2;
2970 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2971 quickly with a - a * n for some appropriate constant n. */
2972 m = exact_log2 (-orig_t + 1);
2973 if (m >= 0 && m < maxm)
2975 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2976 /* If the target has a cheap shift-and-subtract insn use
2977 that in preference to a shift insn followed by a sub insn.
2978 Assume that the shift-and-sub is "atomic" with a latency
2979 equal to it's cost, otherwise assume that on superscalar
2980 hardware the shift may be executed concurrently with the
2981 earlier steps in the algorithm. */
2982 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2984 op_cost = shiftsub1_cost (speed, mode, m);
2985 op_latency = op_cost;
2987 else
2988 op_latency = add_cost (speed, mode);
2990 new_limit.cost = best_cost.cost - op_cost;
2991 new_limit.latency = best_cost.latency - op_latency;
2992 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2993 &new_limit, mode);
2995 alg_in->cost.cost += op_cost;
2996 alg_in->cost.latency += op_latency;
2997 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2999 best_cost = alg_in->cost;
3000 std::swap (alg_in, best_alg);
3001 best_alg->log[best_alg->ops] = m;
3002 best_alg->op[best_alg->ops] = alg_sub_t_m2;
3006 if (cache_hit)
3007 goto done;
3010 /* Look for factors of t of the form
3011 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
3012 If we find such a factor, we can multiply by t using an algorithm that
3013 multiplies by q, shift the result by m and add/subtract it to itself.
3015 We search for large factors first and loop down, even if large factors
3016 are less probable than small; if we find a large factor we will find a
3017 good sequence quickly, and therefore be able to prune (by decreasing
3018 COST_LIMIT) the search. */
3020 do_alg_addsub_factor:
3021 for (m = floor_log2 (t - 1); m >= 2; m--)
3023 unsigned HOST_WIDE_INT d;
3025 d = (HOST_WIDE_INT_1U << m) + 1;
3026 if (t % d == 0 && t > d && m < maxm
3027 && (!cache_hit || cache_alg == alg_add_factor))
3029 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3030 if (shiftadd_cost (speed, mode, m) <= op_cost)
3031 op_cost = shiftadd_cost (speed, mode, m);
3033 op_latency = op_cost;
3036 new_limit.cost = best_cost.cost - op_cost;
3037 new_limit.latency = best_cost.latency - op_latency;
3038 synth_mult (alg_in, t / d, &new_limit, mode);
3040 alg_in->cost.cost += op_cost;
3041 alg_in->cost.latency += op_latency;
3042 if (alg_in->cost.latency < op_cost)
3043 alg_in->cost.latency = op_cost;
3044 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3046 best_cost = alg_in->cost;
3047 std::swap (alg_in, best_alg);
3048 best_alg->log[best_alg->ops] = m;
3049 best_alg->op[best_alg->ops] = alg_add_factor;
3051 /* Other factors will have been taken care of in the recursion. */
3052 break;
3055 d = (HOST_WIDE_INT_1U << m) - 1;
3056 if (t % d == 0 && t > d && m < maxm
3057 && (!cache_hit || cache_alg == alg_sub_factor))
3059 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3060 if (shiftsub0_cost (speed, mode, m) <= op_cost)
3061 op_cost = shiftsub0_cost (speed, mode, m);
3063 op_latency = op_cost;
3065 new_limit.cost = best_cost.cost - op_cost;
3066 new_limit.latency = best_cost.latency - op_latency;
3067 synth_mult (alg_in, t / d, &new_limit, mode);
3069 alg_in->cost.cost += op_cost;
3070 alg_in->cost.latency += op_latency;
3071 if (alg_in->cost.latency < op_cost)
3072 alg_in->cost.latency = op_cost;
3073 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3075 best_cost = alg_in->cost;
3076 std::swap (alg_in, best_alg);
3077 best_alg->log[best_alg->ops] = m;
3078 best_alg->op[best_alg->ops] = alg_sub_factor;
3080 break;
3083 if (cache_hit)
3084 goto done;
3086 /* Try shift-and-add (load effective address) instructions,
3087 i.e. do a*3, a*5, a*9. */
3088 if ((t & 1) != 0)
3090 do_alg_add_t2_m:
3091 q = t - 1;
3092 m = ctz_hwi (q);
3093 if (q && m < maxm)
3095 op_cost = shiftadd_cost (speed, mode, m);
3096 new_limit.cost = best_cost.cost - op_cost;
3097 new_limit.latency = best_cost.latency - op_cost;
3098 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
3100 alg_in->cost.cost += op_cost;
3101 alg_in->cost.latency += op_cost;
3102 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3104 best_cost = alg_in->cost;
3105 std::swap (alg_in, best_alg);
3106 best_alg->log[best_alg->ops] = m;
3107 best_alg->op[best_alg->ops] = alg_add_t2_m;
3110 if (cache_hit)
3111 goto done;
3113 do_alg_sub_t2_m:
3114 q = t + 1;
3115 m = ctz_hwi (q);
3116 if (q && m < maxm)
3118 op_cost = shiftsub0_cost (speed, mode, m);
3119 new_limit.cost = best_cost.cost - op_cost;
3120 new_limit.latency = best_cost.latency - op_cost;
3121 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
3123 alg_in->cost.cost += op_cost;
3124 alg_in->cost.latency += op_cost;
3125 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3127 best_cost = alg_in->cost;
3128 std::swap (alg_in, best_alg);
3129 best_alg->log[best_alg->ops] = m;
3130 best_alg->op[best_alg->ops] = alg_sub_t2_m;
3133 if (cache_hit)
3134 goto done;
3137 done:
3138 /* If best_cost has not decreased, we have not found any algorithm. */
3139 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
3141 /* We failed to find an algorithm. Record alg_impossible for
3142 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3143 we are asked to find an algorithm for T within the same or
3144 lower COST_LIMIT, we can immediately return to the
3145 caller. */
3146 entry_ptr->t = t;
3147 entry_ptr->mode = mode;
3148 entry_ptr->speed = speed;
3149 entry_ptr->alg = alg_impossible;
3150 entry_ptr->cost = *cost_limit;
3151 return;
3154 /* Cache the result. */
3155 if (!cache_hit)
3157 entry_ptr->t = t;
3158 entry_ptr->mode = mode;
3159 entry_ptr->speed = speed;
3160 entry_ptr->alg = best_alg->op[best_alg->ops];
3161 entry_ptr->cost.cost = best_cost.cost;
3162 entry_ptr->cost.latency = best_cost.latency;
3165 /* If we are getting a too long sequence for `struct algorithm'
3166 to record, make this search fail. */
3167 if (best_alg->ops == MAX_BITS_PER_WORD)
3168 return;
3170 /* Copy the algorithm from temporary space to the space at alg_out.
3171 We avoid using structure assignment because the majority of
3172 best_alg is normally undefined, and this is a critical function. */
3173 alg_out->ops = best_alg->ops + 1;
3174 alg_out->cost = best_cost;
3175 memcpy (alg_out->op, best_alg->op,
3176 alg_out->ops * sizeof *alg_out->op);
3177 memcpy (alg_out->log, best_alg->log,
3178 alg_out->ops * sizeof *alg_out->log);
3181 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3182 Try three variations:
3184 - a shift/add sequence based on VAL itself
3185 - a shift/add sequence based on -VAL, followed by a negation
3186 - a shift/add sequence based on VAL - 1, followed by an addition.
3188 Return true if the cheapest of these cost less than MULT_COST,
3189 describing the algorithm in *ALG and final fixup in *VARIANT. */
3191 bool
3192 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3193 struct algorithm *alg, enum mult_variant *variant,
3194 int mult_cost)
3196 struct algorithm alg2;
3197 struct mult_cost limit;
3198 int op_cost;
3199 bool speed = optimize_insn_for_speed_p ();
3201 /* Fail quickly for impossible bounds. */
3202 if (mult_cost < 0)
3203 return false;
3205 /* Ensure that mult_cost provides a reasonable upper bound.
3206 Any constant multiplication can be performed with less
3207 than 2 * bits additions. */
3208 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3209 if (mult_cost > op_cost)
3210 mult_cost = op_cost;
3212 *variant = basic_variant;
3213 limit.cost = mult_cost;
3214 limit.latency = mult_cost;
3215 synth_mult (alg, val, &limit, mode);
3217 /* This works only if the inverted value actually fits in an
3218 `unsigned int' */
3219 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3221 op_cost = neg_cost (speed, mode);
3222 if (MULT_COST_LESS (&alg->cost, mult_cost))
3224 limit.cost = alg->cost.cost - op_cost;
3225 limit.latency = alg->cost.latency - op_cost;
3227 else
3229 limit.cost = mult_cost - op_cost;
3230 limit.latency = mult_cost - op_cost;
3233 synth_mult (&alg2, -val, &limit, mode);
3234 alg2.cost.cost += op_cost;
3235 alg2.cost.latency += op_cost;
3236 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3237 *alg = alg2, *variant = negate_variant;
3240 /* This proves very useful for division-by-constant. */
3241 op_cost = add_cost (speed, mode);
3242 if (MULT_COST_LESS (&alg->cost, mult_cost))
3244 limit.cost = alg->cost.cost - op_cost;
3245 limit.latency = alg->cost.latency - op_cost;
3247 else
3249 limit.cost = mult_cost - op_cost;
3250 limit.latency = mult_cost - op_cost;
3253 synth_mult (&alg2, val - 1, &limit, mode);
3254 alg2.cost.cost += op_cost;
3255 alg2.cost.latency += op_cost;
3256 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3257 *alg = alg2, *variant = add_variant;
3259 return MULT_COST_LESS (&alg->cost, mult_cost);
3262 /* A subroutine of expand_mult, used for constant multiplications.
3263 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3264 convenient. Use the shift/add sequence described by ALG and apply
3265 the final fixup specified by VARIANT. */
3267 static rtx
3268 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3269 rtx target, const struct algorithm *alg,
3270 enum mult_variant variant)
3272 unsigned HOST_WIDE_INT val_so_far;
3273 rtx_insn *insn;
3274 rtx accum, tem;
3275 int opno;
3276 machine_mode nmode;
3278 /* Avoid referencing memory over and over and invalid sharing
3279 on SUBREGs. */
3280 op0 = force_reg (mode, op0);
3282 /* ACCUM starts out either as OP0 or as a zero, depending on
3283 the first operation. */
3285 if (alg->op[0] == alg_zero)
3287 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3288 val_so_far = 0;
3290 else if (alg->op[0] == alg_m)
3292 accum = copy_to_mode_reg (mode, op0);
3293 val_so_far = 1;
3295 else
3296 gcc_unreachable ();
3298 for (opno = 1; opno < alg->ops; opno++)
3300 int log = alg->log[opno];
3301 rtx shift_subtarget = optimize ? 0 : accum;
3302 rtx add_target
3303 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3304 && !optimize)
3305 ? target : 0;
3306 rtx accum_target = optimize ? 0 : accum;
3307 rtx accum_inner;
3309 switch (alg->op[opno])
3311 case alg_shift:
3312 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3313 /* REG_EQUAL note will be attached to the following insn. */
3314 emit_move_insn (accum, tem);
3315 val_so_far <<= log;
3316 break;
3318 case alg_add_t_m2:
3319 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3320 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3321 add_target ? add_target : accum_target);
3322 val_so_far += HOST_WIDE_INT_1U << log;
3323 break;
3325 case alg_sub_t_m2:
3326 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3327 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3328 add_target ? add_target : accum_target);
3329 val_so_far -= HOST_WIDE_INT_1U << log;
3330 break;
3332 case alg_add_t2_m:
3333 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3334 log, shift_subtarget, 0);
3335 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3336 add_target ? add_target : accum_target);
3337 val_so_far = (val_so_far << log) + 1;
3338 break;
3340 case alg_sub_t2_m:
3341 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3342 log, shift_subtarget, 0);
3343 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3344 add_target ? add_target : accum_target);
3345 val_so_far = (val_so_far << log) - 1;
3346 break;
3348 case alg_add_factor:
3349 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3350 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3351 add_target ? add_target : accum_target);
3352 val_so_far += val_so_far << log;
3353 break;
3355 case alg_sub_factor:
3356 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3357 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3358 (add_target
3359 ? add_target : (optimize ? 0 : tem)));
3360 val_so_far = (val_so_far << log) - val_so_far;
3361 break;
3363 default:
3364 gcc_unreachable ();
3367 if (SCALAR_INT_MODE_P (mode))
3369 /* Write a REG_EQUAL note on the last insn so that we can cse
3370 multiplication sequences. Note that if ACCUM is a SUBREG,
3371 we've set the inner register and must properly indicate that. */
3372 tem = op0, nmode = mode;
3373 accum_inner = accum;
3374 if (GET_CODE (accum) == SUBREG)
3376 accum_inner = SUBREG_REG (accum);
3377 nmode = GET_MODE (accum_inner);
3378 tem = gen_lowpart (nmode, op0);
3381 /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
3382 In that case, only the low bits of accum would be guaranteed to
3383 be equal to the content of the REG_EQUAL note, the upper bits
3384 can be anything. */
3385 if (!paradoxical_subreg_p (tem))
3387 insn = get_last_insn ();
3388 wide_int wval_so_far
3389 = wi::uhwi (val_so_far,
3390 GET_MODE_PRECISION (as_a <scalar_mode> (nmode)));
3391 rtx c = immed_wide_int_const (wval_so_far, nmode);
3392 set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
3393 accum_inner);
3398 if (variant == negate_variant)
3400 val_so_far = -val_so_far;
3401 accum = expand_unop (mode, neg_optab, accum, target, 0);
3403 else if (variant == add_variant)
3405 val_so_far = val_so_far + 1;
3406 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3409 /* Compare only the bits of val and val_so_far that are significant
3410 in the result mode, to avoid sign-/zero-extension confusion. */
3411 nmode = GET_MODE_INNER (mode);
3412 val &= GET_MODE_MASK (nmode);
3413 val_so_far &= GET_MODE_MASK (nmode);
3414 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
3416 return accum;
3419 /* Perform a multiplication and return an rtx for the result.
3420 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3421 TARGET is a suggestion for where to store the result (an rtx).
3423 We check specially for a constant integer as OP1.
3424 If you want this check for OP0 as well, then before calling
3425 you should swap the two operands if OP0 would be constant. */
3428 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3429 int unsignedp, bool no_libcall)
3431 enum mult_variant variant;
3432 struct algorithm algorithm;
3433 rtx scalar_op1;
3434 int max_cost;
3435 bool speed = optimize_insn_for_speed_p ();
3436 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3438 if (CONSTANT_P (op0))
3439 std::swap (op0, op1);
3441 /* For vectors, there are several simplifications that can be made if
3442 all elements of the vector constant are identical. */
3443 scalar_op1 = unwrap_const_vec_duplicate (op1);
3445 if (INTEGRAL_MODE_P (mode))
3447 rtx fake_reg;
3448 HOST_WIDE_INT coeff;
3449 bool is_neg;
3450 int mode_bitsize;
3452 if (op1 == CONST0_RTX (mode))
3453 return op1;
3454 if (op1 == CONST1_RTX (mode))
3455 return op0;
3456 if (op1 == CONSTM1_RTX (mode))
3457 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3458 op0, target, 0);
3460 if (do_trapv)
3461 goto skip_synth;
3463 /* If mode is integer vector mode, check if the backend supports
3464 vector lshift (by scalar or vector) at all. If not, we can't use
3465 synthetized multiply. */
3466 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3467 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3468 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3469 goto skip_synth;
3471 /* These are the operations that are potentially turned into
3472 a sequence of shifts and additions. */
3473 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3475 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3476 less than or equal in size to `unsigned int' this doesn't matter.
3477 If the mode is larger than `unsigned int', then synth_mult works
3478 only if the constant value exactly fits in an `unsigned int' without
3479 any truncation. This means that multiplying by negative values does
3480 not work; results are off by 2^32 on a 32 bit machine. */
3481 if (CONST_INT_P (scalar_op1))
3483 coeff = INTVAL (scalar_op1);
3484 is_neg = coeff < 0;
3486 #if TARGET_SUPPORTS_WIDE_INT
3487 else if (CONST_WIDE_INT_P (scalar_op1))
3488 #else
3489 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3490 #endif
3492 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
3493 /* Perfect power of 2 (other than 1, which is handled above). */
3494 if (shift > 0)
3495 return expand_shift (LSHIFT_EXPR, mode, op0,
3496 shift, target, unsignedp);
3497 else
3498 goto skip_synth;
3500 else
3501 goto skip_synth;
3503 /* We used to test optimize here, on the grounds that it's better to
3504 produce a smaller program when -O is not used. But this causes
3505 such a terrible slowdown sometimes that it seems better to always
3506 use synth_mult. */
3508 /* Special case powers of two. */
3509 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3510 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3511 return expand_shift (LSHIFT_EXPR, mode, op0,
3512 floor_log2 (coeff), target, unsignedp);
3514 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3516 /* Attempt to handle multiplication of DImode values by negative
3517 coefficients, by performing the multiplication by a positive
3518 multiplier and then inverting the result. */
3519 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3521 /* Its safe to use -coeff even for INT_MIN, as the
3522 result is interpreted as an unsigned coefficient.
3523 Exclude cost of op0 from max_cost to match the cost
3524 calculation of the synth_mult. */
3525 coeff = -(unsigned HOST_WIDE_INT) coeff;
3526 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3527 mode, speed)
3528 - neg_cost (speed, mode));
3529 if (max_cost <= 0)
3530 goto skip_synth;
3532 /* Special case powers of two. */
3533 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3535 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3536 floor_log2 (coeff), target, unsignedp);
3537 return expand_unop (mode, neg_optab, temp, target, 0);
3540 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3541 max_cost))
3543 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3544 &algorithm, variant);
3545 return expand_unop (mode, neg_optab, temp, target, 0);
3547 goto skip_synth;
3550 /* Exclude cost of op0 from max_cost to match the cost
3551 calculation of the synth_mult. */
3552 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3553 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3554 return expand_mult_const (mode, op0, coeff, target,
3555 &algorithm, variant);
3557 skip_synth:
3559 /* Expand x*2.0 as x+x. */
3560 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3561 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3563 op0 = force_reg (GET_MODE (op0), op0);
3564 return expand_binop (mode, add_optab, op0, op0,
3565 target, unsignedp,
3566 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3569 /* This used to use umul_optab if unsigned, but for non-widening multiply
3570 there is no difference between signed and unsigned. */
3571 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3572 op0, op1, target, unsignedp,
3573 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3574 gcc_assert (op0 || no_libcall);
3575 return op0;
3578 /* Return a cost estimate for multiplying a register by the given
3579 COEFFicient in the given MODE and SPEED. */
3582 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3584 int max_cost;
3585 struct algorithm algorithm;
3586 enum mult_variant variant;
3588 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3589 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3590 mode, speed);
3591 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3592 return algorithm.cost.cost;
3593 else
3594 return max_cost;
3597 /* Perform a widening multiplication and return an rtx for the result.
3598 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3599 TARGET is a suggestion for where to store the result (an rtx).
3600 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3601 or smul_widen_optab.
3603 We check specially for a constant integer as OP1, comparing the
3604 cost of a widening multiply against the cost of a sequence of shifts
3605 and adds. */
3608 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3609 int unsignedp, optab this_optab)
3611 bool speed = optimize_insn_for_speed_p ();
3612 rtx cop1;
3614 if (CONST_INT_P (op1)
3615 && GET_MODE (op0) != VOIDmode
3616 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3617 this_optab == umul_widen_optab))
3618 && CONST_INT_P (cop1)
3619 && (INTVAL (cop1) >= 0
3620 || HWI_COMPUTABLE_MODE_P (mode)))
3622 HOST_WIDE_INT coeff = INTVAL (cop1);
3623 int max_cost;
3624 enum mult_variant variant;
3625 struct algorithm algorithm;
3627 if (coeff == 0)
3628 return CONST0_RTX (mode);
3630 /* Special case powers of two. */
3631 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3633 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3634 return expand_shift (LSHIFT_EXPR, mode, op0,
3635 floor_log2 (coeff), target, unsignedp);
3638 /* Exclude cost of op0 from max_cost to match the cost
3639 calculation of the synth_mult. */
3640 max_cost = mul_widen_cost (speed, mode);
3641 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3642 max_cost))
3644 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3645 return expand_mult_const (mode, op0, coeff, target,
3646 &algorithm, variant);
3649 return expand_binop (mode, this_optab, op0, op1, target,
3650 unsignedp, OPTAB_LIB_WIDEN);
3653 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3654 replace division by D, and put the least significant N bits of the result
3655 in *MULTIPLIER_PTR and return the most significant bit.
3657 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3658 needed precision is in PRECISION (should be <= N).
3660 PRECISION should be as small as possible so this function can choose
3661 multiplier more freely.
3663 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3664 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3666 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3667 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3669 unsigned HOST_WIDE_INT
3670 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3671 unsigned HOST_WIDE_INT *multiplier_ptr,
3672 int *post_shift_ptr, int *lgup_ptr)
3674 int lgup, post_shift;
3675 int pow, pow2;
3677 /* lgup = ceil(log2(divisor)); */
3678 lgup = ceil_log2 (d);
3680 gcc_assert (lgup <= n);
3682 pow = n + lgup;
3683 pow2 = n + lgup - precision;
3685 /* mlow = 2^(N + lgup)/d */
3686 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3687 wide_int mlow = wi::udiv_trunc (val, d);
3689 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3690 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3691 wide_int mhigh = wi::udiv_trunc (val, d);
3693 /* If precision == N, then mlow, mhigh exceed 2^N
3694 (but they do not exceed 2^(N+1)). */
3696 /* Reduce to lowest terms. */
3697 for (post_shift = lgup; post_shift > 0; post_shift--)
3699 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3700 HOST_BITS_PER_WIDE_INT);
3701 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3702 HOST_BITS_PER_WIDE_INT);
3703 if (ml_lo >= mh_lo)
3704 break;
3706 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3707 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3710 *post_shift_ptr = post_shift;
3711 *lgup_ptr = lgup;
3712 if (n < HOST_BITS_PER_WIDE_INT)
3714 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
3715 *multiplier_ptr = mhigh.to_uhwi () & mask;
3716 return mhigh.to_uhwi () > mask;
3718 else
3720 *multiplier_ptr = mhigh.to_uhwi ();
3721 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3725 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3726 congruent to 1 (mod 2**N). */
3728 static unsigned HOST_WIDE_INT
3729 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3731 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3733 /* The algorithm notes that the choice y = x satisfies
3734 x*y == 1 mod 2^3, since x is assumed odd.
3735 Each iteration doubles the number of bits of significance in y. */
3737 unsigned HOST_WIDE_INT mask;
3738 unsigned HOST_WIDE_INT y = x;
3739 int nbit = 3;
3741 mask = (n == HOST_BITS_PER_WIDE_INT
3742 ? HOST_WIDE_INT_M1U
3743 : (HOST_WIDE_INT_1U << n) - 1);
3745 while (nbit < n)
3747 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3748 nbit *= 2;
3750 return y;
3753 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3754 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3755 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3756 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3757 become signed.
3759 The result is put in TARGET if that is convenient.
3761 MODE is the mode of operation. */
3764 expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
3765 rtx op1, rtx target, int unsignedp)
3767 rtx tem;
3768 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3770 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3771 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3772 tem = expand_and (mode, tem, op1, NULL_RTX);
3773 adj_operand
3774 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3775 adj_operand);
3777 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3778 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3779 tem = expand_and (mode, tem, op0, NULL_RTX);
3780 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3781 target);
3783 return target;
3786 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3788 static rtx
3789 extract_high_half (scalar_int_mode mode, rtx op)
3791 if (mode == word_mode)
3792 return gen_highpart (mode, op);
3794 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3796 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3797 GET_MODE_BITSIZE (mode), 0, 1);
3798 return convert_modes (mode, wider_mode, op, 0);
3801 /* Like expmed_mult_highpart, but only consider using a multiplication
3802 optab. OP1 is an rtx for the constant operand. */
3804 static rtx
3805 expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
3806 rtx target, int unsignedp, int max_cost)
3808 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3809 optab moptab;
3810 rtx tem;
3811 int size;
3812 bool speed = optimize_insn_for_speed_p ();
3814 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3816 size = GET_MODE_BITSIZE (mode);
3818 /* Firstly, try using a multiplication insn that only generates the needed
3819 high part of the product, and in the sign flavor of unsignedp. */
3820 if (mul_highpart_cost (speed, mode) < max_cost)
3822 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3823 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3824 unsignedp, OPTAB_DIRECT);
3825 if (tem)
3826 return tem;
3829 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3830 Need to adjust the result after the multiplication. */
3831 if (size - 1 < BITS_PER_WORD
3832 && (mul_highpart_cost (speed, mode)
3833 + 2 * shift_cost (speed, mode, size-1)
3834 + 4 * add_cost (speed, mode) < max_cost))
3836 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3837 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3838 unsignedp, OPTAB_DIRECT);
3839 if (tem)
3840 /* We used the wrong signedness. Adjust the result. */
3841 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3842 tem, unsignedp);
3845 /* Try widening multiplication. */
3846 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3847 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3848 && mul_widen_cost (speed, wider_mode) < max_cost)
3850 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3851 unsignedp, OPTAB_WIDEN);
3852 if (tem)
3853 return extract_high_half (mode, tem);
3856 /* Try widening the mode and perform a non-widening multiplication. */
3857 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3858 && size - 1 < BITS_PER_WORD
3859 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3860 < max_cost))
3862 rtx_insn *insns;
3863 rtx wop0, wop1;
3865 /* We need to widen the operands, for example to ensure the
3866 constant multiplier is correctly sign or zero extended.
3867 Use a sequence to clean-up any instructions emitted by
3868 the conversions if things don't work out. */
3869 start_sequence ();
3870 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3871 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3872 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3873 unsignedp, OPTAB_WIDEN);
3874 insns = get_insns ();
3875 end_sequence ();
3877 if (tem)
3879 emit_insn (insns);
3880 return extract_high_half (mode, tem);
3884 /* Try widening multiplication of opposite signedness, and adjust. */
3885 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3886 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3887 && size - 1 < BITS_PER_WORD
3888 && (mul_widen_cost (speed, wider_mode)
3889 + 2 * shift_cost (speed, mode, size-1)
3890 + 4 * add_cost (speed, mode) < max_cost))
3892 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3893 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3894 if (tem != 0)
3896 tem = extract_high_half (mode, tem);
3897 /* We used the wrong signedness. Adjust the result. */
3898 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3899 target, unsignedp);
3903 return 0;
3906 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3907 putting the high half of the result in TARGET if that is convenient,
3908 and return where the result is. If the operation cannot be performed,
3909 0 is returned.
3911 MODE is the mode of operation and result.
3913 UNSIGNEDP nonzero means unsigned multiply.
3915 MAX_COST is the total allowed cost for the expanded RTL. */
3917 static rtx
3918 expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
3919 rtx target, int unsignedp, int max_cost)
3921 unsigned HOST_WIDE_INT cnst1;
3922 int extra_cost;
3923 bool sign_adjust = false;
3924 enum mult_variant variant;
3925 struct algorithm alg;
3926 rtx tem;
3927 bool speed = optimize_insn_for_speed_p ();
3929 /* We can't support modes wider than HOST_BITS_PER_INT. */
3930 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3932 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3934 /* We can't optimize modes wider than BITS_PER_WORD.
3935 ??? We might be able to perform double-word arithmetic if
3936 mode == word_mode, however all the cost calculations in
3937 synth_mult etc. assume single-word operations. */
3938 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3939 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3940 return expmed_mult_highpart_optab (mode, op0, op1, target,
3941 unsignedp, max_cost);
3943 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3945 /* Check whether we try to multiply by a negative constant. */
3946 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3948 sign_adjust = true;
3949 extra_cost += add_cost (speed, mode);
3952 /* See whether shift/add multiplication is cheap enough. */
3953 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3954 max_cost - extra_cost))
3956 /* See whether the specialized multiplication optabs are
3957 cheaper than the shift/add version. */
3958 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3959 alg.cost.cost + extra_cost);
3960 if (tem)
3961 return tem;
3963 tem = convert_to_mode (wider_mode, op0, unsignedp);
3964 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3965 tem = extract_high_half (mode, tem);
3967 /* Adjust result for signedness. */
3968 if (sign_adjust)
3969 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3971 return tem;
3973 return expmed_mult_highpart_optab (mode, op0, op1, target,
3974 unsignedp, max_cost);
3978 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3980 static rtx
3981 expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
3983 rtx result, temp, shift;
3984 rtx_code_label *label;
3985 int logd;
3986 int prec = GET_MODE_PRECISION (mode);
3988 logd = floor_log2 (d);
3989 result = gen_reg_rtx (mode);
3991 /* Avoid conditional branches when they're expensive. */
3992 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3993 && optimize_insn_for_speed_p ())
3995 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3996 mode, 0, -1);
3997 if (signmask)
3999 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
4000 signmask = force_reg (mode, signmask);
4001 shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
4003 /* Use the rtx_cost of a LSHIFTRT instruction to determine
4004 which instruction sequence to use. If logical right shifts
4005 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
4006 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
4008 temp = gen_rtx_LSHIFTRT (mode, result, shift);
4009 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
4010 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
4011 > COSTS_N_INSNS (2)))
4013 temp = expand_binop (mode, xor_optab, op0, signmask,
4014 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4015 temp = expand_binop (mode, sub_optab, temp, signmask,
4016 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4017 temp = expand_binop (mode, and_optab, temp,
4018 gen_int_mode (masklow, mode),
4019 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4020 temp = expand_binop (mode, xor_optab, temp, signmask,
4021 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4022 temp = expand_binop (mode, sub_optab, temp, signmask,
4023 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4025 else
4027 signmask = expand_binop (mode, lshr_optab, signmask, shift,
4028 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4029 signmask = force_reg (mode, signmask);
4031 temp = expand_binop (mode, add_optab, op0, signmask,
4032 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4033 temp = expand_binop (mode, and_optab, temp,
4034 gen_int_mode (masklow, mode),
4035 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4036 temp = expand_binop (mode, sub_optab, temp, signmask,
4037 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4039 return temp;
4043 /* Mask contains the mode's signbit and the significant bits of the
4044 modulus. By including the signbit in the operation, many targets
4045 can avoid an explicit compare operation in the following comparison
4046 against zero. */
4047 wide_int mask = wi::mask (logd, false, prec);
4048 mask = wi::set_bit (mask, prec - 1);
4050 temp = expand_binop (mode, and_optab, op0,
4051 immed_wide_int_const (mask, mode),
4052 result, 1, OPTAB_LIB_WIDEN);
4053 if (temp != result)
4054 emit_move_insn (result, temp);
4056 label = gen_label_rtx ();
4057 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
4059 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
4060 0, OPTAB_LIB_WIDEN);
4062 mask = wi::mask (logd, true, prec);
4063 temp = expand_binop (mode, ior_optab, temp,
4064 immed_wide_int_const (mask, mode),
4065 result, 1, OPTAB_LIB_WIDEN);
4066 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
4067 0, OPTAB_LIB_WIDEN);
4068 if (temp != result)
4069 emit_move_insn (result, temp);
4070 emit_label (label);
4071 return result;
4074 /* Expand signed division of OP0 by a power of two D in mode MODE.
4075 This routine is only called for positive values of D. */
4077 static rtx
4078 expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
4080 rtx temp;
4081 rtx_code_label *label;
4082 int logd;
4084 logd = floor_log2 (d);
4086 if (d == 2
4087 && BRANCH_COST (optimize_insn_for_speed_p (),
4088 false) >= 1)
4090 temp = gen_reg_rtx (mode);
4091 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
4092 if (temp != NULL_RTX)
4094 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4095 0, OPTAB_LIB_WIDEN);
4096 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4100 if (HAVE_conditional_move
4101 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4103 rtx temp2;
4105 start_sequence ();
4106 temp2 = copy_to_mode_reg (mode, op0);
4107 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
4108 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4109 temp = force_reg (mode, temp);
4111 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4112 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
4113 mode, temp, temp2, mode, 0);
4114 if (temp2)
4116 rtx_insn *seq = get_insns ();
4117 end_sequence ();
4118 emit_insn (seq);
4119 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
4121 end_sequence ();
4124 if (BRANCH_COST (optimize_insn_for_speed_p (),
4125 false) >= 2)
4127 int ushift = GET_MODE_BITSIZE (mode) - logd;
4129 temp = gen_reg_rtx (mode);
4130 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
4131 if (temp != NULL_RTX)
4133 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
4134 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
4135 > COSTS_N_INSNS (1))
4136 temp = expand_binop (mode, and_optab, temp,
4137 gen_int_mode (d - 1, mode),
4138 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4139 else
4140 temp = expand_shift (RSHIFT_EXPR, mode, temp,
4141 ushift, NULL_RTX, 1);
4142 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4143 0, OPTAB_LIB_WIDEN);
4144 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4148 label = gen_label_rtx ();
4149 temp = copy_to_mode_reg (mode, op0);
4150 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
4151 expand_inc (temp, gen_int_mode (d - 1, mode));
4152 emit_label (label);
4153 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4156 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4157 if that is convenient, and returning where the result is.
4158 You may request either the quotient or the remainder as the result;
4159 specify REM_FLAG nonzero to get the remainder.
4161 CODE is the expression code for which kind of division this is;
4162 it controls how rounding is done. MODE is the machine mode to use.
4163 UNSIGNEDP nonzero means do unsigned division. */
4165 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4166 and then correct it by or'ing in missing high bits
4167 if result of ANDI is nonzero.
4168 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4169 This could optimize to a bfexts instruction.
4170 But C doesn't use these operations, so their optimizations are
4171 left for later. */
4172 /* ??? For modulo, we don't actually need the highpart of the first product,
4173 the low part will do nicely. And for small divisors, the second multiply
4174 can also be a low-part only multiply or even be completely left out.
4175 E.g. to calculate the remainder of a division by 3 with a 32 bit
4176 multiply, multiply with 0x55555556 and extract the upper two bits;
4177 the result is exact for inputs up to 0x1fffffff.
4178 The input range can be reduced by using cross-sum rules.
4179 For odd divisors >= 3, the following table gives right shift counts
4180 so that if a number is shifted by an integer multiple of the given
4181 amount, the remainder stays the same:
4182 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4183 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4184 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4185 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4186 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4188 Cross-sum rules for even numbers can be derived by leaving as many bits
4189 to the right alone as the divisor has zeros to the right.
4190 E.g. if x is an unsigned 32 bit number:
4191 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4195 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4196 rtx op0, rtx op1, rtx target, int unsignedp)
4198 machine_mode compute_mode;
4199 rtx tquotient;
4200 rtx quotient = 0, remainder = 0;
4201 rtx_insn *last;
4202 rtx_insn *insn;
4203 optab optab1, optab2;
4204 int op1_is_constant, op1_is_pow2 = 0;
4205 int max_cost, extra_cost;
4206 static HOST_WIDE_INT last_div_const = 0;
4207 bool speed = optimize_insn_for_speed_p ();
4209 op1_is_constant = CONST_INT_P (op1);
4210 if (op1_is_constant)
4212 wide_int ext_op1 = rtx_mode_t (op1, mode);
4213 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4214 || (! unsignedp
4215 && wi::popcount (wi::neg (ext_op1)) == 1));
4219 This is the structure of expand_divmod:
4221 First comes code to fix up the operands so we can perform the operations
4222 correctly and efficiently.
4224 Second comes a switch statement with code specific for each rounding mode.
4225 For some special operands this code emits all RTL for the desired
4226 operation, for other cases, it generates only a quotient and stores it in
4227 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4228 to indicate that it has not done anything.
4230 Last comes code that finishes the operation. If QUOTIENT is set and
4231 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4232 QUOTIENT is not set, it is computed using trunc rounding.
4234 We try to generate special code for division and remainder when OP1 is a
4235 constant. If |OP1| = 2**n we can use shifts and some other fast
4236 operations. For other values of OP1, we compute a carefully selected
4237 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4238 by m.
4240 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4241 half of the product. Different strategies for generating the product are
4242 implemented in expmed_mult_highpart.
4244 If what we actually want is the remainder, we generate that by another
4245 by-constant multiplication and a subtraction. */
4247 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4248 code below will malfunction if we are, so check here and handle
4249 the special case if so. */
4250 if (op1 == const1_rtx)
4251 return rem_flag ? const0_rtx : op0;
4253 /* When dividing by -1, we could get an overflow.
4254 negv_optab can handle overflows. */
4255 if (! unsignedp && op1 == constm1_rtx)
4257 if (rem_flag)
4258 return const0_rtx;
4259 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4260 ? negv_optab : neg_optab, op0, target, 0);
4263 if (target
4264 /* Don't use the function value register as a target
4265 since we have to read it as well as write it,
4266 and function-inlining gets confused by this. */
4267 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4268 /* Don't clobber an operand while doing a multi-step calculation. */
4269 || ((rem_flag || op1_is_constant)
4270 && (reg_mentioned_p (target, op0)
4271 || (MEM_P (op0) && MEM_P (target))))
4272 || reg_mentioned_p (target, op1)
4273 || (MEM_P (op1) && MEM_P (target))))
4274 target = 0;
4276 /* Get the mode in which to perform this computation. Normally it will
4277 be MODE, but sometimes we can't do the desired operation in MODE.
4278 If so, pick a wider mode in which we can do the operation. Convert
4279 to that mode at the start to avoid repeated conversions.
4281 First see what operations we need. These depend on the expression
4282 we are evaluating. (We assume that divxx3 insns exist under the
4283 same conditions that modxx3 insns and that these insns don't normally
4284 fail. If these assumptions are not correct, we may generate less
4285 efficient code in some cases.)
4287 Then see if we find a mode in which we can open-code that operation
4288 (either a division, modulus, or shift). Finally, check for the smallest
4289 mode for which we can do the operation with a library call. */
4291 /* We might want to refine this now that we have division-by-constant
4292 optimization. Since expmed_mult_highpart tries so many variants, it is
4293 not straightforward to generalize this. Maybe we should make an array
4294 of possible modes in init_expmed? Save this for GCC 2.7. */
4296 optab1 = (op1_is_pow2
4297 ? (unsignedp ? lshr_optab : ashr_optab)
4298 : (unsignedp ? udiv_optab : sdiv_optab));
4299 optab2 = (op1_is_pow2 ? optab1
4300 : (unsignedp ? udivmod_optab : sdivmod_optab));
4302 FOR_EACH_MODE_FROM (compute_mode, mode)
4303 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4304 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4305 break;
4307 if (compute_mode == VOIDmode)
4308 FOR_EACH_MODE_FROM (compute_mode, mode)
4309 if (optab_libfunc (optab1, compute_mode)
4310 || optab_libfunc (optab2, compute_mode))
4311 break;
4313 /* If we still couldn't find a mode, use MODE, but expand_binop will
4314 probably die. */
4315 if (compute_mode == VOIDmode)
4316 compute_mode = mode;
4318 if (target && GET_MODE (target) == compute_mode)
4319 tquotient = target;
4320 else
4321 tquotient = gen_reg_rtx (compute_mode);
4323 #if 0
4324 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4325 (mode), and thereby get better code when OP1 is a constant. Do that
4326 later. It will require going over all usages of SIZE below. */
4327 size = GET_MODE_BITSIZE (mode);
4328 #endif
4330 /* Only deduct something for a REM if the last divide done was
4331 for a different constant. Then set the constant of the last
4332 divide. */
4333 max_cost = (unsignedp
4334 ? udiv_cost (speed, compute_mode)
4335 : sdiv_cost (speed, compute_mode));
4336 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4337 && INTVAL (op1) == last_div_const))
4338 max_cost -= (mul_cost (speed, compute_mode)
4339 + add_cost (speed, compute_mode));
4341 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4343 /* Now convert to the best mode to use. */
4344 if (compute_mode != mode)
4346 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4347 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4349 /* convert_modes may have placed op1 into a register, so we
4350 must recompute the following. */
4351 op1_is_constant = CONST_INT_P (op1);
4352 if (op1_is_constant)
4354 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4355 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4356 || (! unsignedp
4357 && wi::popcount (wi::neg (ext_op1)) == 1));
4359 else
4360 op1_is_pow2 = 0;
4363 /* If one of the operands is a volatile MEM, copy it into a register. */
4365 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4366 op0 = force_reg (compute_mode, op0);
4367 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4368 op1 = force_reg (compute_mode, op1);
4370 /* If we need the remainder or if OP1 is constant, we need to
4371 put OP0 in a register in case it has any queued subexpressions. */
4372 if (rem_flag || op1_is_constant)
4373 op0 = force_reg (compute_mode, op0);
4375 last = get_last_insn ();
4377 /* Promote floor rounding to trunc rounding for unsigned operations. */
4378 if (unsignedp)
4380 if (code == FLOOR_DIV_EXPR)
4381 code = TRUNC_DIV_EXPR;
4382 if (code == FLOOR_MOD_EXPR)
4383 code = TRUNC_MOD_EXPR;
4384 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4385 code = TRUNC_DIV_EXPR;
4388 if (op1 != const0_rtx)
4389 switch (code)
4391 case TRUNC_MOD_EXPR:
4392 case TRUNC_DIV_EXPR:
4393 if (op1_is_constant)
4395 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4396 int size = GET_MODE_BITSIZE (int_mode);
4397 if (unsignedp)
4399 unsigned HOST_WIDE_INT mh, ml;
4400 int pre_shift, post_shift;
4401 int dummy;
4402 wide_int wd = rtx_mode_t (op1, int_mode);
4403 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
4405 if (wi::popcount (wd) == 1)
4407 pre_shift = floor_log2 (d);
4408 if (rem_flag)
4410 unsigned HOST_WIDE_INT mask
4411 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4412 remainder
4413 = expand_binop (int_mode, and_optab, op0,
4414 gen_int_mode (mask, int_mode),
4415 remainder, 1,
4416 OPTAB_LIB_WIDEN);
4417 if (remainder)
4418 return gen_lowpart (mode, remainder);
4420 quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
4421 pre_shift, tquotient, 1);
4423 else if (size <= HOST_BITS_PER_WIDE_INT)
4425 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
4427 /* Most significant bit of divisor is set; emit an scc
4428 insn. */
4429 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4430 int_mode, 1, 1);
4432 else
4434 /* Find a suitable multiplier and right shift count
4435 instead of multiplying with D. */
4437 mh = choose_multiplier (d, size, size,
4438 &ml, &post_shift, &dummy);
4440 /* If the suggested multiplier is more than SIZE bits,
4441 we can do better for even divisors, using an
4442 initial right shift. */
4443 if (mh != 0 && (d & 1) == 0)
4445 pre_shift = ctz_or_zero (d);
4446 mh = choose_multiplier (d >> pre_shift, size,
4447 size - pre_shift,
4448 &ml, &post_shift, &dummy);
4449 gcc_assert (!mh);
4451 else
4452 pre_shift = 0;
4454 if (mh != 0)
4456 rtx t1, t2, t3, t4;
4458 if (post_shift - 1 >= BITS_PER_WORD)
4459 goto fail1;
4461 extra_cost
4462 = (shift_cost (speed, int_mode, post_shift - 1)
4463 + shift_cost (speed, int_mode, 1)
4464 + 2 * add_cost (speed, int_mode));
4465 t1 = expmed_mult_highpart
4466 (int_mode, op0, gen_int_mode (ml, int_mode),
4467 NULL_RTX, 1, max_cost - extra_cost);
4468 if (t1 == 0)
4469 goto fail1;
4470 t2 = force_operand (gen_rtx_MINUS (int_mode,
4471 op0, t1),
4472 NULL_RTX);
4473 t3 = expand_shift (RSHIFT_EXPR, int_mode,
4474 t2, 1, NULL_RTX, 1);
4475 t4 = force_operand (gen_rtx_PLUS (int_mode,
4476 t1, t3),
4477 NULL_RTX);
4478 quotient = expand_shift
4479 (RSHIFT_EXPR, int_mode, t4,
4480 post_shift - 1, tquotient, 1);
4482 else
4484 rtx t1, t2;
4486 if (pre_shift >= BITS_PER_WORD
4487 || post_shift >= BITS_PER_WORD)
4488 goto fail1;
4490 t1 = expand_shift
4491 (RSHIFT_EXPR, int_mode, op0,
4492 pre_shift, NULL_RTX, 1);
4493 extra_cost
4494 = (shift_cost (speed, int_mode, pre_shift)
4495 + shift_cost (speed, int_mode, post_shift));
4496 t2 = expmed_mult_highpart
4497 (int_mode, t1,
4498 gen_int_mode (ml, int_mode),
4499 NULL_RTX, 1, max_cost - extra_cost);
4500 if (t2 == 0)
4501 goto fail1;
4502 quotient = expand_shift
4503 (RSHIFT_EXPR, int_mode, t2,
4504 post_shift, tquotient, 1);
4508 else /* Too wide mode to use tricky code */
4509 break;
4511 insn = get_last_insn ();
4512 if (insn != last)
4513 set_dst_reg_note (insn, REG_EQUAL,
4514 gen_rtx_UDIV (int_mode, op0, op1),
4515 quotient);
4517 else /* TRUNC_DIV, signed */
4519 unsigned HOST_WIDE_INT ml;
4520 int lgup, post_shift;
4521 rtx mlr;
4522 HOST_WIDE_INT d = INTVAL (op1);
4523 unsigned HOST_WIDE_INT abs_d;
4525 /* Not prepared to handle division/remainder by
4526 0xffffffffffffffff8000000000000000 etc. */
4527 if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
4528 break;
4530 /* Since d might be INT_MIN, we have to cast to
4531 unsigned HOST_WIDE_INT before negating to avoid
4532 undefined signed overflow. */
4533 abs_d = (d >= 0
4534 ? (unsigned HOST_WIDE_INT) d
4535 : - (unsigned HOST_WIDE_INT) d);
4537 /* n rem d = n rem -d */
4538 if (rem_flag && d < 0)
4540 d = abs_d;
4541 op1 = gen_int_mode (abs_d, int_mode);
4544 if (d == 1)
4545 quotient = op0;
4546 else if (d == -1)
4547 quotient = expand_unop (int_mode, neg_optab, op0,
4548 tquotient, 0);
4549 else if (size <= HOST_BITS_PER_WIDE_INT
4550 && abs_d == HOST_WIDE_INT_1U << (size - 1))
4552 /* This case is not handled correctly below. */
4553 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4554 int_mode, 1, 1);
4555 if (quotient == 0)
4556 goto fail1;
4558 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4559 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
4560 && (rem_flag
4561 ? smod_pow2_cheap (speed, int_mode)
4562 : sdiv_pow2_cheap (speed, int_mode))
4563 /* We assume that cheap metric is true if the
4564 optab has an expander for this mode. */
4565 && ((optab_handler ((rem_flag ? smod_optab
4566 : sdiv_optab),
4567 int_mode)
4568 != CODE_FOR_nothing)
4569 || (optab_handler (sdivmod_optab, int_mode)
4570 != CODE_FOR_nothing)))
4572 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4574 if (rem_flag)
4576 remainder = expand_smod_pow2 (int_mode, op0, d);
4577 if (remainder)
4578 return gen_lowpart (mode, remainder);
4581 if (sdiv_pow2_cheap (speed, int_mode)
4582 && ((optab_handler (sdiv_optab, int_mode)
4583 != CODE_FOR_nothing)
4584 || (optab_handler (sdivmod_optab, int_mode)
4585 != CODE_FOR_nothing)))
4586 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4587 int_mode, op0,
4588 gen_int_mode (abs_d,
4589 int_mode),
4590 NULL_RTX, 0);
4591 else
4592 quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
4594 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4595 negate the quotient. */
4596 if (d < 0)
4598 insn = get_last_insn ();
4599 if (insn != last
4600 && abs_d < (HOST_WIDE_INT_1U
4601 << (HOST_BITS_PER_WIDE_INT - 1)))
4602 set_dst_reg_note (insn, REG_EQUAL,
4603 gen_rtx_DIV (int_mode, op0,
4604 gen_int_mode
4605 (abs_d,
4606 int_mode)),
4607 quotient);
4609 quotient = expand_unop (int_mode, neg_optab,
4610 quotient, quotient, 0);
4613 else if (size <= HOST_BITS_PER_WIDE_INT)
4615 choose_multiplier (abs_d, size, size - 1,
4616 &ml, &post_shift, &lgup);
4617 if (ml < HOST_WIDE_INT_1U << (size - 1))
4619 rtx t1, t2, t3;
4621 if (post_shift >= BITS_PER_WORD
4622 || size - 1 >= BITS_PER_WORD)
4623 goto fail1;
4625 extra_cost = (shift_cost (speed, int_mode, post_shift)
4626 + shift_cost (speed, int_mode, size - 1)
4627 + add_cost (speed, int_mode));
4628 t1 = expmed_mult_highpart
4629 (int_mode, op0, gen_int_mode (ml, int_mode),
4630 NULL_RTX, 0, max_cost - extra_cost);
4631 if (t1 == 0)
4632 goto fail1;
4633 t2 = expand_shift
4634 (RSHIFT_EXPR, int_mode, t1,
4635 post_shift, NULL_RTX, 0);
4636 t3 = expand_shift
4637 (RSHIFT_EXPR, int_mode, op0,
4638 size - 1, NULL_RTX, 0);
4639 if (d < 0)
4640 quotient
4641 = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
4642 tquotient);
4643 else
4644 quotient
4645 = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
4646 tquotient);
4648 else
4650 rtx t1, t2, t3, t4;
4652 if (post_shift >= BITS_PER_WORD
4653 || size - 1 >= BITS_PER_WORD)
4654 goto fail1;
4656 ml |= HOST_WIDE_INT_M1U << (size - 1);
4657 mlr = gen_int_mode (ml, int_mode);
4658 extra_cost = (shift_cost (speed, int_mode, post_shift)
4659 + shift_cost (speed, int_mode, size - 1)
4660 + 2 * add_cost (speed, int_mode));
4661 t1 = expmed_mult_highpart (int_mode, op0, mlr,
4662 NULL_RTX, 0,
4663 max_cost - extra_cost);
4664 if (t1 == 0)
4665 goto fail1;
4666 t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
4667 NULL_RTX);
4668 t3 = expand_shift
4669 (RSHIFT_EXPR, int_mode, t2,
4670 post_shift, NULL_RTX, 0);
4671 t4 = expand_shift
4672 (RSHIFT_EXPR, int_mode, op0,
4673 size - 1, NULL_RTX, 0);
4674 if (d < 0)
4675 quotient
4676 = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
4677 tquotient);
4678 else
4679 quotient
4680 = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
4681 tquotient);
4684 else /* Too wide mode to use tricky code */
4685 break;
4687 insn = get_last_insn ();
4688 if (insn != last)
4689 set_dst_reg_note (insn, REG_EQUAL,
4690 gen_rtx_DIV (int_mode, op0, op1),
4691 quotient);
4693 break;
4695 fail1:
4696 delete_insns_since (last);
4697 break;
4699 case FLOOR_DIV_EXPR:
4700 case FLOOR_MOD_EXPR:
4701 /* We will come here only for signed operations. */
4702 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
4704 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4705 int size = GET_MODE_BITSIZE (int_mode);
4706 unsigned HOST_WIDE_INT mh, ml;
4707 int pre_shift, lgup, post_shift;
4708 HOST_WIDE_INT d = INTVAL (op1);
4710 if (d > 0)
4712 /* We could just as easily deal with negative constants here,
4713 but it does not seem worth the trouble for GCC 2.6. */
4714 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4716 pre_shift = floor_log2 (d);
4717 if (rem_flag)
4719 unsigned HOST_WIDE_INT mask
4720 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4721 remainder = expand_binop
4722 (int_mode, and_optab, op0,
4723 gen_int_mode (mask, int_mode),
4724 remainder, 0, OPTAB_LIB_WIDEN);
4725 if (remainder)
4726 return gen_lowpart (mode, remainder);
4728 quotient = expand_shift
4729 (RSHIFT_EXPR, int_mode, op0,
4730 pre_shift, tquotient, 0);
4732 else
4734 rtx t1, t2, t3, t4;
4736 mh = choose_multiplier (d, size, size - 1,
4737 &ml, &post_shift, &lgup);
4738 gcc_assert (!mh);
4740 if (post_shift < BITS_PER_WORD
4741 && size - 1 < BITS_PER_WORD)
4743 t1 = expand_shift
4744 (RSHIFT_EXPR, int_mode, op0,
4745 size - 1, NULL_RTX, 0);
4746 t2 = expand_binop (int_mode, xor_optab, op0, t1,
4747 NULL_RTX, 0, OPTAB_WIDEN);
4748 extra_cost = (shift_cost (speed, int_mode, post_shift)
4749 + shift_cost (speed, int_mode, size - 1)
4750 + 2 * add_cost (speed, int_mode));
4751 t3 = expmed_mult_highpart
4752 (int_mode, t2, gen_int_mode (ml, int_mode),
4753 NULL_RTX, 1, max_cost - extra_cost);
4754 if (t3 != 0)
4756 t4 = expand_shift
4757 (RSHIFT_EXPR, int_mode, t3,
4758 post_shift, NULL_RTX, 1);
4759 quotient = expand_binop (int_mode, xor_optab,
4760 t4, t1, tquotient, 0,
4761 OPTAB_WIDEN);
4766 else
4768 rtx nsign, t1, t2, t3, t4;
4769 t1 = force_operand (gen_rtx_PLUS (int_mode,
4770 op0, constm1_rtx), NULL_RTX);
4771 t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
4772 0, OPTAB_WIDEN);
4773 nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
4774 size - 1, NULL_RTX, 0);
4775 t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
4776 NULL_RTX);
4777 t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
4778 NULL_RTX, 0);
4779 if (t4)
4781 rtx t5;
4782 t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
4783 NULL_RTX, 0);
4784 quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
4785 tquotient);
4790 if (quotient != 0)
4791 break;
4792 delete_insns_since (last);
4794 /* Try using an instruction that produces both the quotient and
4795 remainder, using truncation. We can easily compensate the quotient
4796 or remainder to get floor rounding, once we have the remainder.
4797 Notice that we compute also the final remainder value here,
4798 and return the result right away. */
4799 if (target == 0 || GET_MODE (target) != compute_mode)
4800 target = gen_reg_rtx (compute_mode);
4802 if (rem_flag)
4804 remainder
4805 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4806 quotient = gen_reg_rtx (compute_mode);
4808 else
4810 quotient
4811 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4812 remainder = gen_reg_rtx (compute_mode);
4815 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4816 quotient, remainder, 0))
4818 /* This could be computed with a branch-less sequence.
4819 Save that for later. */
4820 rtx tem;
4821 rtx_code_label *label = gen_label_rtx ();
4822 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4823 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4824 NULL_RTX, 0, OPTAB_WIDEN);
4825 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4826 expand_dec (quotient, const1_rtx);
4827 expand_inc (remainder, op1);
4828 emit_label (label);
4829 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4832 /* No luck with division elimination or divmod. Have to do it
4833 by conditionally adjusting op0 *and* the result. */
4835 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4836 rtx adjusted_op0;
4837 rtx tem;
4839 quotient = gen_reg_rtx (compute_mode);
4840 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4841 label1 = gen_label_rtx ();
4842 label2 = gen_label_rtx ();
4843 label3 = gen_label_rtx ();
4844 label4 = gen_label_rtx ();
4845 label5 = gen_label_rtx ();
4846 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4847 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4848 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4849 quotient, 0, OPTAB_LIB_WIDEN);
4850 if (tem != quotient)
4851 emit_move_insn (quotient, tem);
4852 emit_jump_insn (targetm.gen_jump (label5));
4853 emit_barrier ();
4854 emit_label (label1);
4855 expand_inc (adjusted_op0, const1_rtx);
4856 emit_jump_insn (targetm.gen_jump (label4));
4857 emit_barrier ();
4858 emit_label (label2);
4859 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4860 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4861 quotient, 0, OPTAB_LIB_WIDEN);
4862 if (tem != quotient)
4863 emit_move_insn (quotient, tem);
4864 emit_jump_insn (targetm.gen_jump (label5));
4865 emit_barrier ();
4866 emit_label (label3);
4867 expand_dec (adjusted_op0, const1_rtx);
4868 emit_label (label4);
4869 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4870 quotient, 0, OPTAB_LIB_WIDEN);
4871 if (tem != quotient)
4872 emit_move_insn (quotient, tem);
4873 expand_dec (quotient, const1_rtx);
4874 emit_label (label5);
4876 break;
4878 case CEIL_DIV_EXPR:
4879 case CEIL_MOD_EXPR:
4880 if (unsignedp)
4882 if (op1_is_constant
4883 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4884 && (HWI_COMPUTABLE_MODE_P (compute_mode)
4885 || INTVAL (op1) >= 0))
4887 scalar_int_mode int_mode
4888 = as_a <scalar_int_mode> (compute_mode);
4889 rtx t1, t2, t3;
4890 unsigned HOST_WIDE_INT d = INTVAL (op1);
4891 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
4892 floor_log2 (d), tquotient, 1);
4893 t2 = expand_binop (int_mode, and_optab, op0,
4894 gen_int_mode (d - 1, int_mode),
4895 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4896 t3 = gen_reg_rtx (int_mode);
4897 t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
4898 if (t3 == 0)
4900 rtx_code_label *lab;
4901 lab = gen_label_rtx ();
4902 do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
4903 expand_inc (t1, const1_rtx);
4904 emit_label (lab);
4905 quotient = t1;
4907 else
4908 quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
4909 tquotient);
4910 break;
4913 /* Try using an instruction that produces both the quotient and
4914 remainder, using truncation. We can easily compensate the
4915 quotient or remainder to get ceiling rounding, once we have the
4916 remainder. Notice that we compute also the final remainder
4917 value here, and return the result right away. */
4918 if (target == 0 || GET_MODE (target) != compute_mode)
4919 target = gen_reg_rtx (compute_mode);
4921 if (rem_flag)
4923 remainder = (REG_P (target)
4924 ? target : gen_reg_rtx (compute_mode));
4925 quotient = gen_reg_rtx (compute_mode);
4927 else
4929 quotient = (REG_P (target)
4930 ? target : gen_reg_rtx (compute_mode));
4931 remainder = gen_reg_rtx (compute_mode);
4934 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4935 remainder, 1))
4937 /* This could be computed with a branch-less sequence.
4938 Save that for later. */
4939 rtx_code_label *label = gen_label_rtx ();
4940 do_cmp_and_jump (remainder, const0_rtx, EQ,
4941 compute_mode, label);
4942 expand_inc (quotient, const1_rtx);
4943 expand_dec (remainder, op1);
4944 emit_label (label);
4945 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4948 /* No luck with division elimination or divmod. Have to do it
4949 by conditionally adjusting op0 *and* the result. */
4951 rtx_code_label *label1, *label2;
4952 rtx adjusted_op0, tem;
4954 quotient = gen_reg_rtx (compute_mode);
4955 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4956 label1 = gen_label_rtx ();
4957 label2 = gen_label_rtx ();
4958 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4959 compute_mode, label1);
4960 emit_move_insn (quotient, const0_rtx);
4961 emit_jump_insn (targetm.gen_jump (label2));
4962 emit_barrier ();
4963 emit_label (label1);
4964 expand_dec (adjusted_op0, const1_rtx);
4965 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4966 quotient, 1, OPTAB_LIB_WIDEN);
4967 if (tem != quotient)
4968 emit_move_insn (quotient, tem);
4969 expand_inc (quotient, const1_rtx);
4970 emit_label (label2);
4973 else /* signed */
4975 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4976 && INTVAL (op1) >= 0)
4978 /* This is extremely similar to the code for the unsigned case
4979 above. For 2.7 we should merge these variants, but for
4980 2.6.1 I don't want to touch the code for unsigned since that
4981 get used in C. The signed case will only be used by other
4982 languages (Ada). */
4984 rtx t1, t2, t3;
4985 unsigned HOST_WIDE_INT d = INTVAL (op1);
4986 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4987 floor_log2 (d), tquotient, 0);
4988 t2 = expand_binop (compute_mode, and_optab, op0,
4989 gen_int_mode (d - 1, compute_mode),
4990 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4991 t3 = gen_reg_rtx (compute_mode);
4992 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4993 compute_mode, 1, 1);
4994 if (t3 == 0)
4996 rtx_code_label *lab;
4997 lab = gen_label_rtx ();
4998 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4999 expand_inc (t1, const1_rtx);
5000 emit_label (lab);
5001 quotient = t1;
5003 else
5004 quotient = force_operand (gen_rtx_PLUS (compute_mode,
5005 t1, t3),
5006 tquotient);
5007 break;
5010 /* Try using an instruction that produces both the quotient and
5011 remainder, using truncation. We can easily compensate the
5012 quotient or remainder to get ceiling rounding, once we have the
5013 remainder. Notice that we compute also the final remainder
5014 value here, and return the result right away. */
5015 if (target == 0 || GET_MODE (target) != compute_mode)
5016 target = gen_reg_rtx (compute_mode);
5017 if (rem_flag)
5019 remainder= (REG_P (target)
5020 ? target : gen_reg_rtx (compute_mode));
5021 quotient = gen_reg_rtx (compute_mode);
5023 else
5025 quotient = (REG_P (target)
5026 ? target : gen_reg_rtx (compute_mode));
5027 remainder = gen_reg_rtx (compute_mode);
5030 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
5031 remainder, 0))
5033 /* This could be computed with a branch-less sequence.
5034 Save that for later. */
5035 rtx tem;
5036 rtx_code_label *label = gen_label_rtx ();
5037 do_cmp_and_jump (remainder, const0_rtx, EQ,
5038 compute_mode, label);
5039 tem = expand_binop (compute_mode, xor_optab, op0, op1,
5040 NULL_RTX, 0, OPTAB_WIDEN);
5041 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
5042 expand_inc (quotient, const1_rtx);
5043 expand_dec (remainder, op1);
5044 emit_label (label);
5045 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5048 /* No luck with division elimination or divmod. Have to do it
5049 by conditionally adjusting op0 *and* the result. */
5051 rtx_code_label *label1, *label2, *label3, *label4, *label5;
5052 rtx adjusted_op0;
5053 rtx tem;
5055 quotient = gen_reg_rtx (compute_mode);
5056 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
5057 label1 = gen_label_rtx ();
5058 label2 = gen_label_rtx ();
5059 label3 = gen_label_rtx ();
5060 label4 = gen_label_rtx ();
5061 label5 = gen_label_rtx ();
5062 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
5063 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
5064 compute_mode, label1);
5065 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5066 quotient, 0, OPTAB_LIB_WIDEN);
5067 if (tem != quotient)
5068 emit_move_insn (quotient, tem);
5069 emit_jump_insn (targetm.gen_jump (label5));
5070 emit_barrier ();
5071 emit_label (label1);
5072 expand_dec (adjusted_op0, const1_rtx);
5073 emit_jump_insn (targetm.gen_jump (label4));
5074 emit_barrier ();
5075 emit_label (label2);
5076 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
5077 compute_mode, label3);
5078 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5079 quotient, 0, OPTAB_LIB_WIDEN);
5080 if (tem != quotient)
5081 emit_move_insn (quotient, tem);
5082 emit_jump_insn (targetm.gen_jump (label5));
5083 emit_barrier ();
5084 emit_label (label3);
5085 expand_inc (adjusted_op0, const1_rtx);
5086 emit_label (label4);
5087 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5088 quotient, 0, OPTAB_LIB_WIDEN);
5089 if (tem != quotient)
5090 emit_move_insn (quotient, tem);
5091 expand_inc (quotient, const1_rtx);
5092 emit_label (label5);
5095 break;
5097 case EXACT_DIV_EXPR:
5098 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
5100 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5101 int size = GET_MODE_BITSIZE (int_mode);
5102 HOST_WIDE_INT d = INTVAL (op1);
5103 unsigned HOST_WIDE_INT ml;
5104 int pre_shift;
5105 rtx t1;
5107 pre_shift = ctz_or_zero (d);
5108 ml = invert_mod2n (d >> pre_shift, size);
5109 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5110 pre_shift, NULL_RTX, unsignedp);
5111 quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
5112 NULL_RTX, 1);
5114 insn = get_last_insn ();
5115 set_dst_reg_note (insn, REG_EQUAL,
5116 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
5117 int_mode, op0, op1),
5118 quotient);
5120 break;
5122 case ROUND_DIV_EXPR:
5123 case ROUND_MOD_EXPR:
5124 if (unsignedp)
5126 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5127 rtx tem;
5128 rtx_code_label *label;
5129 label = gen_label_rtx ();
5130 quotient = gen_reg_rtx (int_mode);
5131 remainder = gen_reg_rtx (int_mode);
5132 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
5134 rtx tem;
5135 quotient = expand_binop (int_mode, udiv_optab, op0, op1,
5136 quotient, 1, OPTAB_LIB_WIDEN);
5137 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
5138 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5139 remainder, 1, OPTAB_LIB_WIDEN);
5141 tem = plus_constant (int_mode, op1, -1);
5142 tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
5143 do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
5144 expand_inc (quotient, const1_rtx);
5145 expand_dec (remainder, op1);
5146 emit_label (label);
5148 else
5150 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5151 int size = GET_MODE_BITSIZE (int_mode);
5152 rtx abs_rem, abs_op1, tem, mask;
5153 rtx_code_label *label;
5154 label = gen_label_rtx ();
5155 quotient = gen_reg_rtx (int_mode);
5156 remainder = gen_reg_rtx (int_mode);
5157 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5159 rtx tem;
5160 quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
5161 quotient, 0, OPTAB_LIB_WIDEN);
5162 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
5163 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5164 remainder, 0, OPTAB_LIB_WIDEN);
5166 abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
5167 abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
5168 tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
5169 1, NULL_RTX, 1);
5170 do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
5171 tem = expand_binop (int_mode, xor_optab, op0, op1,
5172 NULL_RTX, 0, OPTAB_WIDEN);
5173 mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
5174 size - 1, NULL_RTX, 0);
5175 tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
5176 NULL_RTX, 0, OPTAB_WIDEN);
5177 tem = expand_binop (int_mode, sub_optab, tem, mask,
5178 NULL_RTX, 0, OPTAB_WIDEN);
5179 expand_inc (quotient, tem);
5180 tem = expand_binop (int_mode, xor_optab, mask, op1,
5181 NULL_RTX, 0, OPTAB_WIDEN);
5182 tem = expand_binop (int_mode, sub_optab, tem, mask,
5183 NULL_RTX, 0, OPTAB_WIDEN);
5184 expand_dec (remainder, tem);
5185 emit_label (label);
5187 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5189 default:
5190 gcc_unreachable ();
5193 if (quotient == 0)
5195 if (target && GET_MODE (target) != compute_mode)
5196 target = 0;
5198 if (rem_flag)
5200 /* Try to produce the remainder without producing the quotient.
5201 If we seem to have a divmod pattern that does not require widening,
5202 don't try widening here. We should really have a WIDEN argument
5203 to expand_twoval_binop, since what we'd really like to do here is
5204 1) try a mod insn in compute_mode
5205 2) try a divmod insn in compute_mode
5206 3) try a div insn in compute_mode and multiply-subtract to get
5207 remainder
5208 4) try the same things with widening allowed. */
5209 remainder
5210 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5211 op0, op1, target,
5212 unsignedp,
5213 ((optab_handler (optab2, compute_mode)
5214 != CODE_FOR_nothing)
5215 ? OPTAB_DIRECT : OPTAB_WIDEN));
5216 if (remainder == 0)
5218 /* No luck there. Can we do remainder and divide at once
5219 without a library call? */
5220 remainder = gen_reg_rtx (compute_mode);
5221 if (! expand_twoval_binop ((unsignedp
5222 ? udivmod_optab
5223 : sdivmod_optab),
5224 op0, op1,
5225 NULL_RTX, remainder, unsignedp))
5226 remainder = 0;
5229 if (remainder)
5230 return gen_lowpart (mode, remainder);
5233 /* Produce the quotient. Try a quotient insn, but not a library call.
5234 If we have a divmod in this mode, use it in preference to widening
5235 the div (for this test we assume it will not fail). Note that optab2
5236 is set to the one of the two optabs that the call below will use. */
5237 quotient
5238 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5239 op0, op1, rem_flag ? NULL_RTX : target,
5240 unsignedp,
5241 ((optab_handler (optab2, compute_mode)
5242 != CODE_FOR_nothing)
5243 ? OPTAB_DIRECT : OPTAB_WIDEN));
5245 if (quotient == 0)
5247 /* No luck there. Try a quotient-and-remainder insn,
5248 keeping the quotient alone. */
5249 quotient = gen_reg_rtx (compute_mode);
5250 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5251 op0, op1,
5252 quotient, NULL_RTX, unsignedp))
5254 quotient = 0;
5255 if (! rem_flag)
5256 /* Still no luck. If we are not computing the remainder,
5257 use a library call for the quotient. */
5258 quotient = sign_expand_binop (compute_mode,
5259 udiv_optab, sdiv_optab,
5260 op0, op1, target,
5261 unsignedp, OPTAB_LIB_WIDEN);
5266 if (rem_flag)
5268 if (target && GET_MODE (target) != compute_mode)
5269 target = 0;
5271 if (quotient == 0)
5273 /* No divide instruction either. Use library for remainder. */
5274 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5275 op0, op1, target,
5276 unsignedp, OPTAB_LIB_WIDEN);
5277 /* No remainder function. Try a quotient-and-remainder
5278 function, keeping the remainder. */
5279 if (!remainder)
5281 remainder = gen_reg_rtx (compute_mode);
5282 if (!expand_twoval_binop_libfunc
5283 (unsignedp ? udivmod_optab : sdivmod_optab,
5284 op0, op1,
5285 NULL_RTX, remainder,
5286 unsignedp ? UMOD : MOD))
5287 remainder = NULL_RTX;
5290 else
5292 /* We divided. Now finish doing X - Y * (X / Y). */
5293 remainder = expand_mult (compute_mode, quotient, op1,
5294 NULL_RTX, unsignedp);
5295 remainder = expand_binop (compute_mode, sub_optab, op0,
5296 remainder, target, unsignedp,
5297 OPTAB_LIB_WIDEN);
5301 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5304 /* Return a tree node with data type TYPE, describing the value of X.
5305 Usually this is an VAR_DECL, if there is no obvious better choice.
5306 X may be an expression, however we only support those expressions
5307 generated by loop.c. */
5309 tree
5310 make_tree (tree type, rtx x)
5312 tree t;
5314 switch (GET_CODE (x))
5316 case CONST_INT:
5317 case CONST_WIDE_INT:
5318 t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
5319 return t;
5321 case CONST_DOUBLE:
5322 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5323 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5324 t = wide_int_to_tree (type,
5325 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5326 HOST_BITS_PER_WIDE_INT * 2));
5327 else
5328 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5330 return t;
5332 case CONST_VECTOR:
5334 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5335 unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
5336 tree itype = TREE_TYPE (type);
5338 /* Build a tree with vector elements. */
5339 tree_vector_builder elts (type, npatterns, nelts_per_pattern);
5340 unsigned int count = elts.encoded_nelts ();
5341 for (unsigned int i = 0; i < count; ++i)
5343 rtx elt = CONST_VECTOR_ELT (x, i);
5344 elts.quick_push (make_tree (itype, elt));
5347 return elts.build ();
5350 case PLUS:
5351 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5352 make_tree (type, XEXP (x, 1)));
5354 case MINUS:
5355 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5356 make_tree (type, XEXP (x, 1)));
5358 case NEG:
5359 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5361 case MULT:
5362 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5363 make_tree (type, XEXP (x, 1)));
5365 case ASHIFT:
5366 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5367 make_tree (type, XEXP (x, 1)));
5369 case LSHIFTRT:
5370 t = unsigned_type_for (type);
5371 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5372 make_tree (t, XEXP (x, 0)),
5373 make_tree (type, XEXP (x, 1))));
5375 case ASHIFTRT:
5376 t = signed_type_for (type);
5377 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5378 make_tree (t, XEXP (x, 0)),
5379 make_tree (type, XEXP (x, 1))));
5381 case DIV:
5382 if (TREE_CODE (type) != REAL_TYPE)
5383 t = signed_type_for (type);
5384 else
5385 t = type;
5387 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5388 make_tree (t, XEXP (x, 0)),
5389 make_tree (t, XEXP (x, 1))));
5390 case UDIV:
5391 t = unsigned_type_for (type);
5392 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5393 make_tree (t, XEXP (x, 0)),
5394 make_tree (t, XEXP (x, 1))));
5396 case SIGN_EXTEND:
5397 case ZERO_EXTEND:
5398 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5399 GET_CODE (x) == ZERO_EXTEND);
5400 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5402 case CONST:
5403 return make_tree (type, XEXP (x, 0));
5405 case SYMBOL_REF:
5406 t = SYMBOL_REF_DECL (x);
5407 if (t)
5408 return fold_convert (type, build_fold_addr_expr (t));
5409 /* fall through. */
5411 default:
5412 if (CONST_POLY_INT_P (x))
5413 return wide_int_to_tree (t, const_poly_int_value (x));
5415 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5417 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5418 address mode to pointer mode. */
5419 if (POINTER_TYPE_P (type))
5420 x = convert_memory_address_addr_space
5421 (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5423 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5424 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5425 t->decl_with_rtl.rtl = x;
5427 return t;
5431 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5432 and returning TARGET.
5434 If TARGET is 0, a pseudo-register or constant is returned. */
5437 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5439 rtx tem = 0;
5441 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5442 tem = simplify_binary_operation (AND, mode, op0, op1);
5443 if (tem == 0)
5444 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5446 if (target == 0)
5447 target = tem;
5448 else if (tem != target)
5449 emit_move_insn (target, tem);
5450 return target;
5453 /* Helper function for emit_store_flag. */
5455 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5456 machine_mode mode, machine_mode compare_mode,
5457 int unsignedp, rtx x, rtx y, int normalizep,
5458 machine_mode target_mode)
5460 class expand_operand ops[4];
5461 rtx op0, comparison, subtarget;
5462 rtx_insn *last;
5463 scalar_int_mode result_mode = targetm.cstore_mode (icode);
5464 scalar_int_mode int_target_mode;
5466 last = get_last_insn ();
5467 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5468 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5469 if (!x || !y)
5471 delete_insns_since (last);
5472 return NULL_RTX;
5475 if (target_mode == VOIDmode)
5476 int_target_mode = result_mode;
5477 else
5478 int_target_mode = as_a <scalar_int_mode> (target_mode);
5479 if (!target)
5480 target = gen_reg_rtx (int_target_mode);
5482 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5484 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5485 create_fixed_operand (&ops[1], comparison);
5486 create_fixed_operand (&ops[2], x);
5487 create_fixed_operand (&ops[3], y);
5488 if (!maybe_expand_insn (icode, 4, ops))
5490 delete_insns_since (last);
5491 return NULL_RTX;
5493 subtarget = ops[0].value;
5495 /* If we are converting to a wider mode, first convert to
5496 INT_TARGET_MODE, then normalize. This produces better combining
5497 opportunities on machines that have a SIGN_EXTRACT when we are
5498 testing a single bit. This mostly benefits the 68k.
5500 If STORE_FLAG_VALUE does not have the sign bit set when
5501 interpreted in MODE, we can do this conversion as unsigned, which
5502 is usually more efficient. */
5503 if (GET_MODE_PRECISION (int_target_mode) > GET_MODE_PRECISION (result_mode))
5505 gcc_assert (GET_MODE_PRECISION (result_mode) != 1
5506 || STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1);
5508 bool unsignedp = (STORE_FLAG_VALUE >= 0);
5509 convert_move (target, subtarget, unsignedp);
5511 op0 = target;
5512 result_mode = int_target_mode;
5514 else
5515 op0 = subtarget;
5517 /* If we want to keep subexpressions around, don't reuse our last
5518 target. */
5519 if (optimize)
5520 subtarget = 0;
5522 /* Now normalize to the proper value in MODE. Sometimes we don't
5523 have to do anything. */
5524 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5526 /* STORE_FLAG_VALUE might be the most negative number, so write
5527 the comparison this way to avoid a compiler-time warning. */
5528 else if (- normalizep == STORE_FLAG_VALUE)
5529 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5531 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5532 it hard to use a value of just the sign bit due to ANSI integer
5533 constant typing rules. */
5534 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5535 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5536 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5537 normalizep == 1);
5538 else
5540 gcc_assert (STORE_FLAG_VALUE & 1);
5542 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5543 if (normalizep == -1)
5544 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5547 /* If we were converting to a smaller mode, do the conversion now. */
5548 if (int_target_mode != result_mode)
5550 convert_move (target, op0, 0);
5551 return target;
5553 else
5554 return op0;
5558 /* A subroutine of emit_store_flag only including "tricks" that do not
5559 need a recursive call. These are kept separate to avoid infinite
5560 loops. */
5562 static rtx
5563 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5564 machine_mode mode, int unsignedp, int normalizep,
5565 machine_mode target_mode)
5567 rtx subtarget;
5568 enum insn_code icode;
5569 machine_mode compare_mode;
5570 enum mode_class mclass;
5571 enum rtx_code scode;
5573 if (unsignedp)
5574 code = unsigned_condition (code);
5575 scode = swap_condition (code);
5577 /* If one operand is constant, make it the second one. Only do this
5578 if the other operand is not constant as well. */
5580 if (swap_commutative_operands_p (op0, op1))
5582 std::swap (op0, op1);
5583 code = swap_condition (code);
5586 if (mode == VOIDmode)
5587 mode = GET_MODE (op0);
5589 if (CONST_SCALAR_INT_P (op1))
5590 canonicalize_comparison (mode, &code, &op1);
5592 /* For some comparisons with 1 and -1, we can convert this to
5593 comparisons with zero. This will often produce more opportunities for
5594 store-flag insns. */
5596 switch (code)
5598 case LT:
5599 if (op1 == const1_rtx)
5600 op1 = const0_rtx, code = LE;
5601 break;
5602 case LE:
5603 if (op1 == constm1_rtx)
5604 op1 = const0_rtx, code = LT;
5605 break;
5606 case GE:
5607 if (op1 == const1_rtx)
5608 op1 = const0_rtx, code = GT;
5609 break;
5610 case GT:
5611 if (op1 == constm1_rtx)
5612 op1 = const0_rtx, code = GE;
5613 break;
5614 case GEU:
5615 if (op1 == const1_rtx)
5616 op1 = const0_rtx, code = NE;
5617 break;
5618 case LTU:
5619 if (op1 == const1_rtx)
5620 op1 = const0_rtx, code = EQ;
5621 break;
5622 default:
5623 break;
5626 /* If we are comparing a double-word integer with zero or -1, we can
5627 convert the comparison into one involving a single word. */
5628 scalar_int_mode int_mode;
5629 if (is_int_mode (mode, &int_mode)
5630 && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
5631 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5633 rtx tem;
5634 if ((code == EQ || code == NE)
5635 && (op1 == const0_rtx || op1 == constm1_rtx))
5637 rtx op00, op01;
5639 /* Do a logical OR or AND of the two words and compare the
5640 result. */
5641 op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
5642 op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
5643 tem = expand_binop (word_mode,
5644 op1 == const0_rtx ? ior_optab : and_optab,
5645 op00, op01, NULL_RTX, unsignedp,
5646 OPTAB_DIRECT);
5648 if (tem != 0)
5649 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5650 unsignedp, normalizep);
5652 else if ((code == LT || code == GE) && op1 == const0_rtx)
5654 rtx op0h;
5656 /* If testing the sign bit, can just test on high word. */
5657 op0h = simplify_gen_subreg (word_mode, op0, int_mode,
5658 subreg_highpart_offset (word_mode,
5659 int_mode));
5660 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5661 unsignedp, normalizep);
5663 else
5664 tem = NULL_RTX;
5666 if (tem)
5668 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5669 return tem;
5670 if (!target)
5671 target = gen_reg_rtx (target_mode);
5673 convert_move (target, tem,
5674 !val_signbit_known_set_p (word_mode,
5675 (normalizep ? normalizep
5676 : STORE_FLAG_VALUE)));
5677 return target;
5681 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5682 complement of A (for GE) and shifting the sign bit to the low bit. */
5683 if (op1 == const0_rtx && (code == LT || code == GE)
5684 && is_int_mode (mode, &int_mode)
5685 && (normalizep || STORE_FLAG_VALUE == 1
5686 || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
5688 scalar_int_mode int_target_mode;
5689 subtarget = target;
5691 if (!target)
5692 int_target_mode = int_mode;
5693 else
5695 /* If the result is to be wider than OP0, it is best to convert it
5696 first. If it is to be narrower, it is *incorrect* to convert it
5697 first. */
5698 int_target_mode = as_a <scalar_int_mode> (target_mode);
5699 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
5701 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5702 int_mode = int_target_mode;
5706 if (int_target_mode != int_mode)
5707 subtarget = 0;
5709 if (code == GE)
5710 op0 = expand_unop (int_mode, one_cmpl_optab, op0,
5711 ((STORE_FLAG_VALUE == 1 || normalizep)
5712 ? 0 : subtarget), 0);
5714 if (STORE_FLAG_VALUE == 1 || normalizep)
5715 /* If we are supposed to produce a 0/1 value, we want to do
5716 a logical shift from the sign bit to the low-order bit; for
5717 a -1/0 value, we do an arithmetic shift. */
5718 op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5719 GET_MODE_BITSIZE (int_mode) - 1,
5720 subtarget, normalizep != -1);
5722 if (int_mode != int_target_mode)
5723 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5725 return op0;
5728 mclass = GET_MODE_CLASS (mode);
5729 FOR_EACH_MODE_FROM (compare_mode, mode)
5731 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5732 icode = optab_handler (cstore_optab, optab_mode);
5733 if (icode != CODE_FOR_nothing)
5735 do_pending_stack_adjust ();
5736 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5737 unsignedp, op0, op1, normalizep, target_mode);
5738 if (tem)
5739 return tem;
5741 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5743 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5744 unsignedp, op1, op0, normalizep, target_mode);
5745 if (tem)
5746 return tem;
5748 break;
5752 return 0;
5755 /* Subroutine of emit_store_flag that handles cases in which the operands
5756 are scalar integers. SUBTARGET is the target to use for temporary
5757 operations and TRUEVAL is the value to store when the condition is
5758 true. All other arguments are as for emit_store_flag. */
5761 emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
5762 rtx op1, scalar_int_mode mode, int unsignedp,
5763 int normalizep, rtx trueval)
5765 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5766 rtx_insn *last = get_last_insn ();
5768 /* If this is an equality comparison of integers, we can try to exclusive-or
5769 (or subtract) the two operands and use a recursive call to try the
5770 comparison with zero. Don't do any of these cases if branches are
5771 very cheap. */
5773 if ((code == EQ || code == NE) && op1 != const0_rtx)
5775 rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5776 OPTAB_WIDEN);
5778 if (tem == 0)
5779 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5780 OPTAB_WIDEN);
5781 if (tem != 0)
5782 tem = emit_store_flag (target, code, tem, const0_rtx,
5783 mode, unsignedp, normalizep);
5784 if (tem != 0)
5785 return tem;
5787 delete_insns_since (last);
5790 /* For integer comparisons, try the reverse comparison. However, for
5791 small X and if we'd have anyway to extend, implementing "X != 0"
5792 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5793 rtx_code rcode = reverse_condition (code);
5794 if (can_compare_p (rcode, mode, ccp_store_flag)
5795 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5796 && code == NE
5797 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5798 && op1 == const0_rtx))
5800 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5801 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5803 /* Again, for the reverse comparison, use either an addition or a XOR. */
5804 if (want_add
5805 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5806 optimize_insn_for_speed_p ()) == 0)
5808 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5809 STORE_FLAG_VALUE, target_mode);
5810 if (tem != 0)
5811 tem = expand_binop (target_mode, add_optab, tem,
5812 gen_int_mode (normalizep, target_mode),
5813 target, 0, OPTAB_WIDEN);
5814 if (tem != 0)
5815 return tem;
5817 else if (!want_add
5818 && rtx_cost (trueval, mode, XOR, 1,
5819 optimize_insn_for_speed_p ()) == 0)
5821 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5822 normalizep, target_mode);
5823 if (tem != 0)
5824 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5825 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5826 if (tem != 0)
5827 return tem;
5830 delete_insns_since (last);
5833 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5834 the constant zero. Reject all other comparisons at this point. Only
5835 do LE and GT if branches are expensive since they are expensive on
5836 2-operand machines. */
5838 if (op1 != const0_rtx
5839 || (code != EQ && code != NE
5840 && (BRANCH_COST (optimize_insn_for_speed_p (),
5841 false) <= 1 || (code != LE && code != GT))))
5842 return 0;
5844 /* Try to put the result of the comparison in the sign bit. Assume we can't
5845 do the necessary operation below. */
5847 rtx tem = 0;
5849 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5850 the sign bit set. */
5852 if (code == LE)
5854 /* This is destructive, so SUBTARGET can't be OP0. */
5855 if (rtx_equal_p (subtarget, op0))
5856 subtarget = 0;
5858 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5859 OPTAB_WIDEN);
5860 if (tem)
5861 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5862 OPTAB_WIDEN);
5865 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5866 number of bits in the mode of OP0, minus one. */
5868 if (code == GT)
5870 if (rtx_equal_p (subtarget, op0))
5871 subtarget = 0;
5873 tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
5874 GET_MODE_BITSIZE (mode) - 1,
5875 subtarget, 0);
5876 if (tem)
5877 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5878 OPTAB_WIDEN);
5881 if (code == EQ || code == NE)
5883 /* For EQ or NE, one way to do the comparison is to apply an operation
5884 that converts the operand into a positive number if it is nonzero
5885 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5886 for NE we negate. This puts the result in the sign bit. Then we
5887 normalize with a shift, if needed.
5889 Two operations that can do the above actions are ABS and FFS, so try
5890 them. If that doesn't work, and MODE is smaller than a full word,
5891 we can use zero-extension to the wider mode (an unsigned conversion)
5892 as the operation. */
5894 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5895 that is compensated by the subsequent overflow when subtracting
5896 one / negating. */
5898 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5899 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5900 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5901 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5902 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5904 tem = convert_modes (word_mode, mode, op0, 1);
5905 mode = word_mode;
5908 if (tem != 0)
5910 if (code == EQ)
5911 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5912 0, OPTAB_WIDEN);
5913 else
5914 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5917 /* If we couldn't do it that way, for NE we can "or" the two's complement
5918 of the value with itself. For EQ, we take the one's complement of
5919 that "or", which is an extra insn, so we only handle EQ if branches
5920 are expensive. */
5922 if (tem == 0
5923 && (code == NE
5924 || BRANCH_COST (optimize_insn_for_speed_p (),
5925 false) > 1))
5927 if (rtx_equal_p (subtarget, op0))
5928 subtarget = 0;
5930 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5931 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5932 OPTAB_WIDEN);
5934 if (tem && code == EQ)
5935 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5939 if (tem && normalizep)
5940 tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
5941 GET_MODE_BITSIZE (mode) - 1,
5942 subtarget, normalizep == 1);
5944 if (tem)
5946 if (!target)
5948 else if (GET_MODE (tem) != target_mode)
5950 convert_move (target, tem, 0);
5951 tem = target;
5953 else if (!subtarget)
5955 emit_move_insn (target, tem);
5956 tem = target;
5959 else
5960 delete_insns_since (last);
5962 return tem;
5965 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5966 and storing in TARGET. Normally return TARGET.
5967 Return 0 if that cannot be done.
5969 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5970 it is VOIDmode, they cannot both be CONST_INT.
5972 UNSIGNEDP is for the case where we have to widen the operands
5973 to perform the operation. It says to use zero-extension.
5975 NORMALIZEP is 1 if we should convert the result to be either zero
5976 or one. Normalize is -1 if we should convert the result to be
5977 either zero or -1. If NORMALIZEP is zero, the result will be left
5978 "raw" out of the scc insn. */
5981 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5982 machine_mode mode, int unsignedp, int normalizep)
5984 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5985 enum rtx_code rcode;
5986 rtx subtarget;
5987 rtx tem, trueval;
5988 rtx_insn *last;
5990 /* If we compare constants, we shouldn't use a store-flag operation,
5991 but a constant load. We can get there via the vanilla route that
5992 usually generates a compare-branch sequence, but will in this case
5993 fold the comparison to a constant, and thus elide the branch. */
5994 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5995 return NULL_RTX;
5997 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5998 target_mode);
5999 if (tem)
6000 return tem;
6002 /* If we reached here, we can't do this with a scc insn, however there
6003 are some comparisons that can be done in other ways. Don't do any
6004 of these cases if branches are very cheap. */
6005 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
6006 return 0;
6008 /* See what we need to return. We can only return a 1, -1, or the
6009 sign bit. */
6011 if (normalizep == 0)
6013 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6014 normalizep = STORE_FLAG_VALUE;
6016 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
6018 else
6019 return 0;
6022 last = get_last_insn ();
6024 /* If optimizing, use different pseudo registers for each insn, instead
6025 of reusing the same pseudo. This leads to better CSE, but slows
6026 down the compiler, since there are more pseudos. */
6027 subtarget = (!optimize
6028 && (target_mode == mode)) ? target : NULL_RTX;
6029 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
6031 /* For floating-point comparisons, try the reverse comparison or try
6032 changing the "orderedness" of the comparison. */
6033 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
6035 enum rtx_code first_code;
6036 bool and_them;
6038 rcode = reverse_condition_maybe_unordered (code);
6039 if (can_compare_p (rcode, mode, ccp_store_flag)
6040 && (code == ORDERED || code == UNORDERED
6041 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6042 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6044 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
6045 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
6047 /* For the reverse comparison, use either an addition or a XOR. */
6048 if (want_add
6049 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
6050 optimize_insn_for_speed_p ()) == 0)
6052 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6053 STORE_FLAG_VALUE, target_mode);
6054 if (tem)
6055 return expand_binop (target_mode, add_optab, tem,
6056 gen_int_mode (normalizep, target_mode),
6057 target, 0, OPTAB_WIDEN);
6059 else if (!want_add
6060 && rtx_cost (trueval, mode, XOR, 1,
6061 optimize_insn_for_speed_p ()) == 0)
6063 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6064 normalizep, target_mode);
6065 if (tem)
6066 return expand_binop (target_mode, xor_optab, tem, trueval,
6067 target, INTVAL (trueval) >= 0,
6068 OPTAB_WIDEN);
6072 delete_insns_since (last);
6074 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6075 if (code == ORDERED || code == UNORDERED)
6076 return 0;
6078 and_them = split_comparison (code, mode, &first_code, &code);
6080 /* If there are no NaNs, the first comparison should always fall through.
6081 Effectively change the comparison to the other one. */
6082 if (!HONOR_NANS (mode))
6084 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
6085 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
6086 target_mode);
6089 if (!HAVE_conditional_move)
6090 return 0;
6092 /* Do not turn a trapping comparison into a non-trapping one. */
6093 if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
6094 && flag_trapping_math)
6095 return 0;
6097 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6098 conditional move. */
6099 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
6100 normalizep, target_mode);
6101 if (tem == 0)
6102 return 0;
6104 if (and_them)
6105 tem = emit_conditional_move (target, code, op0, op1, mode,
6106 tem, const0_rtx, GET_MODE (tem), 0);
6107 else
6108 tem = emit_conditional_move (target, code, op0, op1, mode,
6109 trueval, tem, GET_MODE (tem), 0);
6111 if (tem == 0)
6112 delete_insns_since (last);
6113 return tem;
6116 /* The remaining tricks only apply to integer comparisons. */
6118 scalar_int_mode int_mode;
6119 if (is_int_mode (mode, &int_mode))
6120 return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
6121 unsignedp, normalizep, trueval);
6123 return 0;
6126 /* Like emit_store_flag, but always succeeds. */
6129 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
6130 machine_mode mode, int unsignedp, int normalizep)
6132 rtx tem;
6133 rtx_code_label *label;
6134 rtx trueval, falseval;
6136 /* First see if emit_store_flag can do the job. */
6137 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
6138 if (tem != 0)
6139 return tem;
6141 /* If one operand is constant, make it the second one. Only do this
6142 if the other operand is not constant as well. */
6143 if (swap_commutative_operands_p (op0, op1))
6145 std::swap (op0, op1);
6146 code = swap_condition (code);
6149 if (mode == VOIDmode)
6150 mode = GET_MODE (op0);
6152 if (!target)
6153 target = gen_reg_rtx (word_mode);
6155 /* If this failed, we have to do this with set/compare/jump/set code.
6156 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6157 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
6158 if (code == NE
6159 && GET_MODE_CLASS (mode) == MODE_INT
6160 && REG_P (target)
6161 && op0 == target
6162 && op1 == const0_rtx)
6164 label = gen_label_rtx ();
6165 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
6166 NULL_RTX, NULL, label,
6167 profile_probability::uninitialized ());
6168 emit_move_insn (target, trueval);
6169 emit_label (label);
6170 return target;
6173 if (!REG_P (target)
6174 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
6175 target = gen_reg_rtx (GET_MODE (target));
6177 /* Jump in the right direction if the target cannot implement CODE
6178 but can jump on its reverse condition. */
6179 falseval = const0_rtx;
6180 if (! can_compare_p (code, mode, ccp_jump)
6181 && (! FLOAT_MODE_P (mode)
6182 || code == ORDERED || code == UNORDERED
6183 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6184 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6186 enum rtx_code rcode;
6187 if (FLOAT_MODE_P (mode))
6188 rcode = reverse_condition_maybe_unordered (code);
6189 else
6190 rcode = reverse_condition (code);
6192 /* Canonicalize to UNORDERED for the libcall. */
6193 if (can_compare_p (rcode, mode, ccp_jump)
6194 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
6196 falseval = trueval;
6197 trueval = const0_rtx;
6198 code = rcode;
6202 emit_move_insn (target, trueval);
6203 label = gen_label_rtx ();
6204 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
6205 label, profile_probability::uninitialized ());
6207 emit_move_insn (target, falseval);
6208 emit_label (label);
6210 return target;
6213 /* Helper function for canonicalize_cmp_for_target. Swap between inclusive
6214 and exclusive ranges in order to create an equivalent comparison. See
6215 canonicalize_cmp_for_target for the possible cases. */
6217 static enum rtx_code
6218 equivalent_cmp_code (enum rtx_code code)
6220 switch (code)
6222 case GT:
6223 return GE;
6224 case GE:
6225 return GT;
6226 case LT:
6227 return LE;
6228 case LE:
6229 return LT;
6230 case GTU:
6231 return GEU;
6232 case GEU:
6233 return GTU;
6234 case LTU:
6235 return LEU;
6236 case LEU:
6237 return LTU;
6239 default:
6240 return code;
6244 /* Choose the more appropiate immediate in scalar integer comparisons. The
6245 purpose of this is to end up with an immediate which can be loaded into a
6246 register in fewer moves, if possible.
6248 For each integer comparison there exists an equivalent choice:
6249 i) a > b or a >= b + 1
6250 ii) a <= b or a < b + 1
6251 iii) a >= b or a > b - 1
6252 iv) a < b or a <= b - 1
6254 MODE is the mode of the first operand.
6255 CODE points to the comparison code.
6256 IMM points to the rtx containing the immediate. *IMM must satisfy
6257 CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
6258 on exit. */
6260 void
6261 canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm)
6263 if (!SCALAR_INT_MODE_P (mode))
6264 return;
6266 int to_add = 0;
6267 enum signop sgn = unsigned_condition_p (*code) ? UNSIGNED : SIGNED;
6269 /* Extract the immediate value from the rtx. */
6270 wide_int imm_val = rtx_mode_t (*imm, mode);
6272 if (*code == GT || *code == GTU || *code == LE || *code == LEU)
6273 to_add = 1;
6274 else if (*code == GE || *code == GEU || *code == LT || *code == LTU)
6275 to_add = -1;
6276 else
6277 return;
6279 /* Check for overflow/underflow in the case of signed values and
6280 wrapping around in the case of unsigned values. If any occur
6281 cancel the optimization. */
6282 wi::overflow_type overflow = wi::OVF_NONE;
6283 wide_int imm_modif;
6285 if (to_add == 1)
6286 imm_modif = wi::add (imm_val, 1, sgn, &overflow);
6287 else
6288 imm_modif = wi::sub (imm_val, 1, sgn, &overflow);
6290 if (overflow)
6291 return;
6293 /* The following creates a pseudo; if we cannot do that, bail out. */
6294 if (!can_create_pseudo_p ())
6295 return;
6297 rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
6298 rtx new_imm = immed_wide_int_const (imm_modif, mode);
6300 rtx_insn *old_rtx = gen_move_insn (reg, *imm);
6301 rtx_insn *new_rtx = gen_move_insn (reg, new_imm);
6303 /* Update the immediate and the code. */
6304 if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true))
6306 *code = equivalent_cmp_code (*code);
6307 *imm = new_imm;
6313 /* Perform possibly multi-word comparison and conditional jump to LABEL
6314 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6315 now a thin wrapper around do_compare_rtx_and_jump. */
6317 static void
6318 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
6319 rtx_code_label *label)
6321 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
6322 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
6323 NULL, label, profile_probability::uninitialized ());