testsuite: Update scanning symbol sections to support AIX.
[official-gcc.git] / gcc / combine.c
blobed1ad45de838436d580a8efe11c7e56f17fe9557
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 #include "function-abi.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx_insn *i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
256 static vec<reg_stat_type> reg_stat;
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
266 static unsigned int reg_n_sets_max;
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
271 static int mem_last_set;
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
276 static int last_call_luid;
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
284 static rtx_insn *subst_insn;
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
293 static int subst_low_luid;
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
298 static HARD_REG_SET newpat_used_regs;
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
304 static rtx_insn *added_links_insn;
306 /* And similarly, for notes. */
308 static rtx_insn *added_notes_insn;
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
315 /* Length of the currently allocated uid_insn_cost array. */
317 static int max_uid_known;
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
322 static int *uid_insn_cost;
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
333 static struct insn_link **uid_log_links;
335 static inline int
336 insn_uid_check (const_rtx insn)
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
349 /* Links for LOG_LINKS are allocated from this obstack. */
351 static struct obstack insn_link_obstack;
353 /* Allocate a link. */
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
367 /* Incremented for each basic block. */
369 static int label_tick;
371 /* Reset to label_tick for each extended basic block in scanning order. */
373 static int label_tick_ebb_start;
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
378 static scalar_int_mode nonzero_bits_mode;
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
386 static int nonzero_sign_valid;
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
394 struct undo
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
408 struct undobuf
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
415 static struct undobuf undobuf;
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
420 static int n_occurrences;
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
541 rtx_insn *ret;
542 unsigned int nregs;
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs, true);
548 return ret;
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
567 switch (code)
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
589 return find_single_use_1 (dest, &SET_SRC (x));
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
595 default:
596 break;
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 if (fmt[i] == 'e')
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
620 else if (fmt[i] == 'E')
622 int j;
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
642 return result;
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
668 if (dest == cc0_rtx)
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
681 if (!REG_P (dest))
682 return 0;
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
694 if (link)
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
703 return 0;
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
712 static void
713 do_SUBST (rtx *into, rtx newval)
715 struct undo *buf;
716 rtx oldval = *into;
718 if (oldval == newval)
719 return;
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
756 buf->next = undobuf.undos, undobuf.undos = buf;
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
765 static void
766 do_SUBST_INT (int *into, int newval)
768 struct undo *buf;
769 int oldval = *into;
771 if (oldval == newval)
772 return;
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
784 buf->next = undobuf.undos, undobuf.undos = buf;
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
800 if (oldval == newval)
801 return;
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
813 buf->next = undobuf.undos, undobuf.undos = buf;
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 struct undo *buf;
824 struct insn_link * oldval = *into;
826 if (oldval == newval)
827 return;
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
839 buf->next = undobuf.undos, undobuf.undos = buf;
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
864 if (i1)
866 i1_cost = INSN_COST (i1);
867 if (i0)
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 else
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
880 else
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
912 else
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
918 if (undobuf.other_insn)
920 int old_other_cost, new_other_cost;
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
936 else
937 old_cost = 0;
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
944 if (dump_file)
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
968 if (reject)
969 return false;
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
981 return true;
985 /* Delete any insns that copy a register to itself.
986 Return true if the CFG was changed. */
988 static bool
989 delete_noop_moves (void)
991 rtx_insn *insn, *next;
992 basic_block bb;
994 bool edges_deleted = false;
996 FOR_EACH_BB_FN (bb, cfun)
998 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1000 next = NEXT_INSN (insn);
1001 if (INSN_P (insn) && noop_move_p (insn))
1003 if (dump_file)
1004 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1006 edges_deleted |= delete_insn_and_edges (insn);
1011 return edges_deleted;
1015 /* Return false if we do not want to (or cannot) combine DEF. */
1016 static bool
1017 can_combine_def_p (df_ref def)
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 return false;
1023 unsigned int regno = DF_REF_REGNO (def);
1025 /* Do not combine frame pointer adjustments. */
1026 if ((regno == FRAME_POINTER_REGNUM
1027 && (!reload_completed || frame_pointer_needed))
1028 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1029 && regno == HARD_FRAME_POINTER_REGNUM
1030 && (!reload_completed || frame_pointer_needed))
1031 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1033 return false;
1035 return true;
1038 /* Return false if we do not want to (or cannot) combine USE. */
1039 static bool
1040 can_combine_use_p (df_ref use)
1042 /* Do not consider the usage of the stack pointer by function call. */
1043 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1044 return false;
1046 return true;
1049 /* Fill in log links field for all insns. */
1051 static void
1052 create_log_links (void)
1054 basic_block bb;
1055 rtx_insn **next_use;
1056 rtx_insn *insn;
1057 df_ref def, use;
1059 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1061 /* Pass through each block from the end, recording the uses of each
1062 register and establishing log links when def is encountered.
1063 Note that we do not clear next_use array in order to save time,
1064 so we have to test whether the use is in the same basic block as def.
1066 There are a few cases below when we do not consider the definition or
1067 usage -- these are taken from original flow.c did. Don't ask me why it is
1068 done this way; I don't know and if it works, I don't want to know. */
1070 FOR_EACH_BB_FN (bb, cfun)
1072 FOR_BB_INSNS_REVERSE (bb, insn)
1074 if (!NONDEBUG_INSN_P (insn))
1075 continue;
1077 /* Log links are created only once. */
1078 gcc_assert (!LOG_LINKS (insn));
1080 FOR_EACH_INSN_DEF (def, insn)
1082 unsigned int regno = DF_REF_REGNO (def);
1083 rtx_insn *use_insn;
1085 if (!next_use[regno])
1086 continue;
1088 if (!can_combine_def_p (def))
1089 continue;
1091 use_insn = next_use[regno];
1092 next_use[regno] = NULL;
1094 if (BLOCK_FOR_INSN (use_insn) != bb)
1095 continue;
1097 /* flow.c claimed:
1099 We don't build a LOG_LINK for hard registers contained
1100 in ASM_OPERANDs. If these registers get replaced,
1101 we might wind up changing the semantics of the insn,
1102 even if reload can make what appear to be valid
1103 assignments later. */
1104 if (regno < FIRST_PSEUDO_REGISTER
1105 && asm_noperands (PATTERN (use_insn)) >= 0)
1106 continue;
1108 /* Don't add duplicate links between instructions. */
1109 struct insn_link *links;
1110 FOR_EACH_LOG_LINK (links, use_insn)
1111 if (insn == links->insn && regno == links->regno)
1112 break;
1114 if (!links)
1115 LOG_LINKS (use_insn)
1116 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1119 FOR_EACH_INSN_USE (use, insn)
1120 if (can_combine_use_p (use))
1121 next_use[DF_REF_REGNO (use)] = insn;
1125 free (next_use);
1128 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1129 true if we found a LOG_LINK that proves that A feeds B. This only works
1130 if there are no instructions between A and B which could have a link
1131 depending on A, since in that case we would not record a link for B.
1132 We also check the implicit dependency created by a cc0 setter/user
1133 pair. */
1135 static bool
1136 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1138 struct insn_link *links;
1139 FOR_EACH_LOG_LINK (links, b)
1140 if (links->insn == a)
1141 return true;
1142 if (HAVE_cc0 && sets_cc0_p (a))
1143 return true;
1144 return false;
1147 /* Main entry point for combiner. F is the first insn of the function.
1148 NREGS is the first unused pseudo-reg number.
1150 Return nonzero if the CFG was changed (e.g. if the combiner has
1151 turned an indirect jump instruction into a direct jump). */
1152 static int
1153 combine_instructions (rtx_insn *f, unsigned int nregs)
1155 rtx_insn *insn, *next;
1156 rtx_insn *prev;
1157 struct insn_link *links, *nextlinks;
1158 rtx_insn *first;
1159 basic_block last_bb;
1161 int new_direct_jump_p = 0;
1163 for (first = f; first && !NONDEBUG_INSN_P (first); )
1164 first = NEXT_INSN (first);
1165 if (!first)
1166 return 0;
1168 combine_attempts = 0;
1169 combine_merges = 0;
1170 combine_extras = 0;
1171 combine_successes = 0;
1173 rtl_hooks = combine_rtl_hooks;
1175 reg_stat.safe_grow_cleared (nregs, true);
1177 init_recog_no_volatile ();
1179 /* Allocate array for insn info. */
1180 max_uid_known = get_max_uid ();
1181 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1182 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1183 gcc_obstack_init (&insn_link_obstack);
1185 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1187 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1188 problems when, for example, we have j <<= 1 in a loop. */
1190 nonzero_sign_valid = 0;
1191 label_tick = label_tick_ebb_start = 1;
1193 /* Scan all SETs and see if we can deduce anything about what
1194 bits are known to be zero for some registers and how many copies
1195 of the sign bit are known to exist for those registers.
1197 Also set any known values so that we can use it while searching
1198 for what bits are known to be set. */
1200 setup_incoming_promotions (first);
1201 /* Allow the entry block and the first block to fall into the same EBB.
1202 Conceptually the incoming promotions are assigned to the entry block. */
1203 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1205 create_log_links ();
1206 FOR_EACH_BB_FN (this_basic_block, cfun)
1208 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1209 last_call_luid = 0;
1210 mem_last_set = -1;
1212 label_tick++;
1213 if (!single_pred_p (this_basic_block)
1214 || single_pred (this_basic_block) != last_bb)
1215 label_tick_ebb_start = label_tick;
1216 last_bb = this_basic_block;
1218 FOR_BB_INSNS (this_basic_block, insn)
1219 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1221 rtx links;
1223 subst_low_luid = DF_INSN_LUID (insn);
1224 subst_insn = insn;
1226 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1227 record_dead_and_set_regs (insn);
1229 if (AUTO_INC_DEC)
1230 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 if (REG_NOTE_KIND (links) == REG_INC)
1232 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 insn);
1235 /* Record the current insn_cost of this instruction. */
1236 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1237 if (dump_file)
1239 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1240 dump_insn_slim (dump_file, insn);
1245 nonzero_sign_valid = 1;
1247 /* Now scan all the insns in forward order. */
1248 label_tick = label_tick_ebb_start = 1;
1249 init_reg_last ();
1250 setup_incoming_promotions (first);
1251 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1252 int max_combine = param_max_combine_insns;
1254 FOR_EACH_BB_FN (this_basic_block, cfun)
1256 rtx_insn *last_combined_insn = NULL;
1258 /* Ignore instruction combination in basic blocks that are going to
1259 be removed as unreachable anyway. See PR82386. */
1260 if (EDGE_COUNT (this_basic_block->preds) == 0)
1261 continue;
1263 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1264 last_call_luid = 0;
1265 mem_last_set = -1;
1267 label_tick++;
1268 if (!single_pred_p (this_basic_block)
1269 || single_pred (this_basic_block) != last_bb)
1270 label_tick_ebb_start = label_tick;
1271 last_bb = this_basic_block;
1273 rtl_profile_for_bb (this_basic_block);
1274 for (insn = BB_HEAD (this_basic_block);
1275 insn != NEXT_INSN (BB_END (this_basic_block));
1276 insn = next ? next : NEXT_INSN (insn))
1278 next = 0;
1279 if (!NONDEBUG_INSN_P (insn))
1280 continue;
1282 while (last_combined_insn
1283 && (!NONDEBUG_INSN_P (last_combined_insn)
1284 || last_combined_insn->deleted ()))
1285 last_combined_insn = PREV_INSN (last_combined_insn);
1286 if (last_combined_insn == NULL_RTX
1287 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1288 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1289 last_combined_insn = insn;
1291 /* See if we know about function return values before this
1292 insn based upon SUBREG flags. */
1293 check_promoted_subreg (insn, PATTERN (insn));
1295 /* See if we can find hardregs and subreg of pseudos in
1296 narrower modes. This could help turning TRUNCATEs
1297 into SUBREGs. */
1298 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1300 /* Try this insn with each insn it links back to. */
1302 FOR_EACH_LOG_LINK (links, insn)
1303 if ((next = try_combine (insn, links->insn, NULL,
1304 NULL, &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1307 statistics_counter_event (cfun, "two-insn combine", 1);
1308 goto retry;
1311 /* Try each sequence of three linked insns ending with this one. */
1313 if (max_combine >= 3)
1314 FOR_EACH_LOG_LINK (links, insn)
1316 rtx_insn *link = links->insn;
1318 /* If the linked insn has been replaced by a note, then there
1319 is no point in pursuing this chain any further. */
1320 if (NOTE_P (link))
1321 continue;
1323 FOR_EACH_LOG_LINK (nextlinks, link)
1324 if ((next = try_combine (insn, link, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1328 statistics_counter_event (cfun, "three-insn combine", 1);
1329 goto retry;
1333 /* Try to combine a jump insn that uses CC0
1334 with a preceding insn that sets CC0, and maybe with its
1335 logical predecessor as well.
1336 This is how we make decrement-and-branch insns.
1337 We need this special code because data flow connections
1338 via CC0 do not get entered in LOG_LINKS. */
1340 if (HAVE_cc0
1341 && JUMP_P (insn)
1342 && (prev = prev_nonnote_insn (insn)) != 0
1343 && NONJUMP_INSN_P (prev)
1344 && sets_cc0_p (PATTERN (prev)))
1346 if ((next = try_combine (insn, prev, NULL, NULL,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1351 FOR_EACH_LOG_LINK (nextlinks, prev)
1352 if ((next = try_combine (insn, prev, nextlinks->insn,
1353 NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1358 /* Do the same for an insn that explicitly references CC0. */
1359 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1360 && (prev = prev_nonnote_insn (insn)) != 0
1361 && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev))
1363 && GET_CODE (PATTERN (insn)) == SET
1364 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1366 if ((next = try_combine (insn, prev, NULL, NULL,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1371 FOR_EACH_LOG_LINK (nextlinks, prev)
1372 if ((next = try_combine (insn, prev, nextlinks->insn,
1373 NULL, &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1378 /* Finally, see if any of the insns that this insn links to
1379 explicitly references CC0. If so, try this insn, that insn,
1380 and its predecessor if it sets CC0. */
1381 if (HAVE_cc0)
1383 FOR_EACH_LOG_LINK (links, insn)
1384 if (NONJUMP_INSN_P (links->insn)
1385 && GET_CODE (PATTERN (links->insn)) == SET
1386 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1387 && (prev = prev_nonnote_insn (links->insn)) != 0
1388 && NONJUMP_INSN_P (prev)
1389 && sets_cc0_p (PATTERN (prev))
1390 && (next = try_combine (insn, links->insn,
1391 prev, NULL, &new_direct_jump_p,
1392 last_combined_insn)) != 0)
1393 goto retry;
1396 /* Try combining an insn with two different insns whose results it
1397 uses. */
1398 if (max_combine >= 3)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 for (nextlinks = links->next; nextlinks;
1401 nextlinks = nextlinks->next)
1402 if ((next = try_combine (insn, links->insn,
1403 nextlinks->insn, NULL,
1404 &new_direct_jump_p,
1405 last_combined_insn)) != 0)
1408 statistics_counter_event (cfun, "three-insn combine", 1);
1409 goto retry;
1412 /* Try four-instruction combinations. */
1413 if (max_combine >= 4)
1414 FOR_EACH_LOG_LINK (links, insn)
1416 struct insn_link *next1;
1417 rtx_insn *link = links->insn;
1419 /* If the linked insn has been replaced by a note, then there
1420 is no point in pursuing this chain any further. */
1421 if (NOTE_P (link))
1422 continue;
1424 FOR_EACH_LOG_LINK (next1, link)
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I1 -> I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1439 /* I0, I1 -> I2, I2 -> I3. */
1440 for (nextlinks = next1->next; nextlinks;
1441 nextlinks = nextlinks->next)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1452 for (next1 = links->next; next1; next1 = next1->next)
1454 rtx_insn *link1 = next1->insn;
1455 if (NOTE_P (link1))
1456 continue;
1457 /* I0 -> I2; I1, I2 -> I3. */
1458 FOR_EACH_LOG_LINK (nextlinks, link)
1459 if ((next = try_combine (insn, link, link1,
1460 nextlinks->insn,
1461 &new_direct_jump_p,
1462 last_combined_insn)) != 0)
1464 statistics_counter_event (cfun, "four-insn combine", 1);
1465 goto retry;
1467 /* I0 -> I1; I1, I2 -> I3. */
1468 FOR_EACH_LOG_LINK (nextlinks, link1)
1469 if ((next = try_combine (insn, link, link1,
1470 nextlinks->insn,
1471 &new_direct_jump_p,
1472 last_combined_insn)) != 0)
1474 statistics_counter_event (cfun, "four-insn combine", 1);
1475 goto retry;
1480 /* Try this insn with each REG_EQUAL note it links back to. */
1481 FOR_EACH_LOG_LINK (links, insn)
1483 rtx set, note;
1484 rtx_insn *temp = links->insn;
1485 if ((set = single_set (temp)) != 0
1486 && (note = find_reg_equal_equiv_note (temp)) != 0
1487 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1488 && ! side_effects_p (SET_SRC (set))
1489 /* Avoid using a register that may already been marked
1490 dead by an earlier instruction. */
1491 && ! unmentioned_reg_p (note, SET_SRC (set))
1492 && (GET_MODE (note) == VOIDmode
1493 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1494 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1495 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1496 || (GET_MODE (XEXP (SET_DEST (set), 0))
1497 == GET_MODE (note))))))
1499 /* Temporarily replace the set's source with the
1500 contents of the REG_EQUAL note. The insn will
1501 be deleted or recognized by try_combine. */
1502 rtx orig_src = SET_SRC (set);
1503 rtx orig_dest = SET_DEST (set);
1504 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1505 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1506 SET_SRC (set) = note;
1507 i2mod = temp;
1508 i2mod_old_rhs = copy_rtx (orig_src);
1509 i2mod_new_rhs = copy_rtx (note);
1510 next = try_combine (insn, i2mod, NULL, NULL,
1511 &new_direct_jump_p,
1512 last_combined_insn);
1513 i2mod = NULL;
1514 if (next)
1516 statistics_counter_event (cfun, "insn-with-note combine", 1);
1517 goto retry;
1519 SET_SRC (set) = orig_src;
1520 SET_DEST (set) = orig_dest;
1524 if (!NOTE_P (insn))
1525 record_dead_and_set_regs (insn);
1527 retry:
1532 default_rtl_profile ();
1533 clear_bb_flags ();
1534 new_direct_jump_p |= purge_all_dead_edges ();
1535 new_direct_jump_p |= delete_noop_moves ();
1537 /* Clean up. */
1538 obstack_free (&insn_link_obstack, NULL);
1539 free (uid_log_links);
1540 free (uid_insn_cost);
1541 reg_stat.release ();
1544 struct undo *undo, *next;
1545 for (undo = undobuf.frees; undo; undo = next)
1547 next = undo->next;
1548 free (undo);
1550 undobuf.frees = 0;
1553 total_attempts += combine_attempts;
1554 total_merges += combine_merges;
1555 total_extras += combine_extras;
1556 total_successes += combine_successes;
1558 nonzero_sign_valid = 0;
1559 rtl_hooks = general_rtl_hooks;
1561 /* Make recognizer allow volatile MEMs again. */
1562 init_recog ();
1564 return new_direct_jump_p;
1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1569 static void
1570 init_reg_last (void)
1572 unsigned int i;
1573 reg_stat_type *p;
1575 FOR_EACH_VEC_ELT (reg_stat, i, p)
1576 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1579 /* Set up any promoted values for incoming argument registers. */
1581 static void
1582 setup_incoming_promotions (rtx_insn *first)
1584 tree arg;
1585 bool strictly_local = false;
1587 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1588 arg = DECL_CHAIN (arg))
1590 rtx x, reg = DECL_INCOMING_RTL (arg);
1591 int uns1, uns3;
1592 machine_mode mode1, mode2, mode3, mode4;
1594 /* Only continue if the incoming argument is in a register. */
1595 if (!REG_P (reg))
1596 continue;
1598 /* Determine, if possible, whether all call sites of the current
1599 function lie within the current compilation unit. (This does
1600 take into account the exporting of a function via taking its
1601 address, and so forth.) */
1602 strictly_local
1603 = cgraph_node::local_info_node (current_function_decl)->local;
1605 /* The mode and signedness of the argument before any promotions happen
1606 (equal to the mode of the pseudo holding it at that stage). */
1607 mode1 = TYPE_MODE (TREE_TYPE (arg));
1608 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1610 /* The mode and signedness of the argument after any source language and
1611 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1612 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1613 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1615 /* The mode and signedness of the argument as it is actually passed,
1616 see assign_parm_setup_reg in function.c. */
1617 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1618 TREE_TYPE (cfun->decl), 0);
1620 /* The mode of the register in which the argument is being passed. */
1621 mode4 = GET_MODE (reg);
1623 /* Eliminate sign extensions in the callee when:
1624 (a) A mode promotion has occurred; */
1625 if (mode1 == mode3)
1626 continue;
1627 /* (b) The mode of the register is the same as the mode of
1628 the argument as it is passed; */
1629 if (mode3 != mode4)
1630 continue;
1631 /* (c) There's no language level extension; */
1632 if (mode1 == mode2)
1634 /* (c.1) All callers are from the current compilation unit. If that's
1635 the case we don't have to rely on an ABI, we only have to know
1636 what we're generating right now, and we know that we will do the
1637 mode1 to mode2 promotion with the given sign. */
1638 else if (!strictly_local)
1639 continue;
1640 /* (c.2) The combination of the two promotions is useful. This is
1641 true when the signs match, or if the first promotion is unsigned.
1642 In the later case, (sign_extend (zero_extend x)) is the same as
1643 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1644 else if (uns1)
1645 uns3 = true;
1646 else if (uns3)
1647 continue;
1649 /* Record that the value was promoted from mode1 to mode3,
1650 so that any sign extension at the head of the current
1651 function may be eliminated. */
1652 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1653 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1654 record_value_for_reg (reg, first, x);
1658 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1659 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1660 because some machines (maybe most) will actually do the sign-extension and
1661 this is the conservative approach.
1663 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1664 kludge. */
1666 static rtx
1667 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1669 scalar_int_mode int_mode;
1670 if (CONST_INT_P (src)
1671 && is_a <scalar_int_mode> (mode, &int_mode)
1672 && GET_MODE_PRECISION (int_mode) < prec
1673 && INTVAL (src) > 0
1674 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1675 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1677 return src;
1680 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1681 and SET. */
1683 static void
1684 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1685 rtx x)
1687 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1688 unsigned HOST_WIDE_INT bits = 0;
1689 rtx reg_equal = NULL, src = SET_SRC (set);
1690 unsigned int num = 0;
1692 if (reg_equal_note)
1693 reg_equal = XEXP (reg_equal_note, 0);
1695 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1697 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1698 if (reg_equal)
1699 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1702 /* Don't call nonzero_bits if it cannot change anything. */
1703 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1705 machine_mode mode = GET_MODE (x);
1706 if (GET_MODE_CLASS (mode) == MODE_INT
1707 && HWI_COMPUTABLE_MODE_P (mode))
1708 mode = nonzero_bits_mode;
1709 bits = nonzero_bits (src, mode);
1710 if (reg_equal && bits)
1711 bits &= nonzero_bits (reg_equal, mode);
1712 rsp->nonzero_bits |= bits;
1715 /* Don't call num_sign_bit_copies if it cannot change anything. */
1716 if (rsp->sign_bit_copies != 1)
1718 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1719 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1721 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1722 if (num == 0 || numeq > num)
1723 num = numeq;
1725 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1726 rsp->sign_bit_copies = num;
1730 /* Called via note_stores. If X is a pseudo that is narrower than
1731 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1733 If we are setting only a portion of X and we can't figure out what
1734 portion, assume all bits will be used since we don't know what will
1735 be happening.
1737 Similarly, set how many bits of X are known to be copies of the sign bit
1738 at all locations in the function. This is the smallest number implied
1739 by any set of X. */
1741 static void
1742 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1744 rtx_insn *insn = (rtx_insn *) data;
1745 scalar_int_mode mode;
1747 if (REG_P (x)
1748 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1749 /* If this register is undefined at the start of the file, we can't
1750 say what its contents were. */
1751 && ! REGNO_REG_SET_P
1752 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1753 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1754 && HWI_COMPUTABLE_MODE_P (mode))
1756 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1758 if (set == 0 || GET_CODE (set) == CLOBBER)
1760 rsp->nonzero_bits = GET_MODE_MASK (mode);
1761 rsp->sign_bit_copies = 1;
1762 return;
1765 /* If this register is being initialized using itself, and the
1766 register is uninitialized in this basic block, and there are
1767 no LOG_LINKS which set the register, then part of the
1768 register is uninitialized. In that case we can't assume
1769 anything about the number of nonzero bits.
1771 ??? We could do better if we checked this in
1772 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1773 could avoid making assumptions about the insn which initially
1774 sets the register, while still using the information in other
1775 insns. We would have to be careful to check every insn
1776 involved in the combination. */
1778 if (insn
1779 && reg_referenced_p (x, PATTERN (insn))
1780 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1781 REGNO (x)))
1783 struct insn_link *link;
1785 FOR_EACH_LOG_LINK (link, insn)
1786 if (dead_or_set_p (link->insn, x))
1787 break;
1788 if (!link)
1790 rsp->nonzero_bits = GET_MODE_MASK (mode);
1791 rsp->sign_bit_copies = 1;
1792 return;
1796 /* If this is a complex assignment, see if we can convert it into a
1797 simple assignment. */
1798 set = expand_field_assignment (set);
1800 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1801 set what we know about X. */
1803 if (SET_DEST (set) == x
1804 || (paradoxical_subreg_p (SET_DEST (set))
1805 && SUBREG_REG (SET_DEST (set)) == x))
1806 update_rsp_from_reg_equal (rsp, insn, set, x);
1807 else
1809 rsp->nonzero_bits = GET_MODE_MASK (mode);
1810 rsp->sign_bit_copies = 1;
1815 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1816 optionally insns that were previously combined into I3 or that will be
1817 combined into the merger of INSN and I3. The order is PRED, PRED2,
1818 INSN, SUCC, SUCC2, I3.
1820 Return 0 if the combination is not allowed for any reason.
1822 If the combination is allowed, *PDEST will be set to the single
1823 destination of INSN and *PSRC to the single source, and this function
1824 will return 1. */
1826 static int
1827 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1828 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1829 rtx *pdest, rtx *psrc)
1831 int i;
1832 const_rtx set = 0;
1833 rtx src, dest;
1834 rtx_insn *p;
1835 rtx link;
1836 bool all_adjacent = true;
1837 int (*is_volatile_p) (const_rtx);
1839 if (succ)
1841 if (succ2)
1843 if (next_active_insn (succ2) != i3)
1844 all_adjacent = false;
1845 if (next_active_insn (succ) != succ2)
1846 all_adjacent = false;
1848 else if (next_active_insn (succ) != i3)
1849 all_adjacent = false;
1850 if (next_active_insn (insn) != succ)
1851 all_adjacent = false;
1853 else if (next_active_insn (insn) != i3)
1854 all_adjacent = false;
1856 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1857 or a PARALLEL consisting of such a SET and CLOBBERs.
1859 If INSN has CLOBBER parallel parts, ignore them for our processing.
1860 By definition, these happen during the execution of the insn. When it
1861 is merged with another insn, all bets are off. If they are, in fact,
1862 needed and aren't also supplied in I3, they may be added by
1863 recog_for_combine. Otherwise, it won't match.
1865 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1866 note.
1868 Get the source and destination of INSN. If more than one, can't
1869 combine. */
1871 if (GET_CODE (PATTERN (insn)) == SET)
1872 set = PATTERN (insn);
1873 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1874 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1876 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1878 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1880 switch (GET_CODE (elt))
1882 /* This is important to combine floating point insns
1883 for the SH4 port. */
1884 case USE:
1885 /* Combining an isolated USE doesn't make sense.
1886 We depend here on combinable_i3pat to reject them. */
1887 /* The code below this loop only verifies that the inputs of
1888 the SET in INSN do not change. We call reg_set_between_p
1889 to verify that the REG in the USE does not change between
1890 I3 and INSN.
1891 If the USE in INSN was for a pseudo register, the matching
1892 insn pattern will likely match any register; combining this
1893 with any other USE would only be safe if we knew that the
1894 used registers have identical values, or if there was
1895 something to tell them apart, e.g. different modes. For
1896 now, we forgo such complicated tests and simply disallow
1897 combining of USES of pseudo registers with any other USE. */
1898 if (REG_P (XEXP (elt, 0))
1899 && GET_CODE (PATTERN (i3)) == PARALLEL)
1901 rtx i3pat = PATTERN (i3);
1902 int i = XVECLEN (i3pat, 0) - 1;
1903 unsigned int regno = REGNO (XEXP (elt, 0));
1907 rtx i3elt = XVECEXP (i3pat, 0, i);
1909 if (GET_CODE (i3elt) == USE
1910 && REG_P (XEXP (i3elt, 0))
1911 && (REGNO (XEXP (i3elt, 0)) == regno
1912 ? reg_set_between_p (XEXP (elt, 0),
1913 PREV_INSN (insn), i3)
1914 : regno >= FIRST_PSEUDO_REGISTER))
1915 return 0;
1917 while (--i >= 0);
1919 break;
1921 /* We can ignore CLOBBERs. */
1922 case CLOBBER:
1923 break;
1925 case SET:
1926 /* Ignore SETs whose result isn't used but not those that
1927 have side-effects. */
1928 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1929 && insn_nothrow_p (insn)
1930 && !side_effects_p (elt))
1931 break;
1933 /* If we have already found a SET, this is a second one and
1934 so we cannot combine with this insn. */
1935 if (set)
1936 return 0;
1938 set = elt;
1939 break;
1941 default:
1942 /* Anything else means we can't combine. */
1943 return 0;
1947 if (set == 0
1948 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1949 so don't do anything with it. */
1950 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1951 return 0;
1953 else
1954 return 0;
1956 if (set == 0)
1957 return 0;
1959 /* The simplification in expand_field_assignment may call back to
1960 get_last_value, so set safe guard here. */
1961 subst_low_luid = DF_INSN_LUID (insn);
1963 set = expand_field_assignment (set);
1964 src = SET_SRC (set), dest = SET_DEST (set);
1966 /* Do not eliminate user-specified register if it is in an
1967 asm input because we may break the register asm usage defined
1968 in GCC manual if allow to do so.
1969 Be aware that this may cover more cases than we expect but this
1970 should be harmless. */
1971 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1972 && extract_asm_operands (PATTERN (i3)))
1973 return 0;
1975 /* Don't eliminate a store in the stack pointer. */
1976 if (dest == stack_pointer_rtx
1977 /* Don't combine with an insn that sets a register to itself if it has
1978 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1979 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1980 /* Can't merge an ASM_OPERANDS. */
1981 || GET_CODE (src) == ASM_OPERANDS
1982 /* Can't merge a function call. */
1983 || GET_CODE (src) == CALL
1984 /* Don't eliminate a function call argument. */
1985 || (CALL_P (i3)
1986 && (find_reg_fusage (i3, USE, dest)
1987 || (REG_P (dest)
1988 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1989 && global_regs[REGNO (dest)])))
1990 /* Don't substitute into an incremented register. */
1991 || FIND_REG_INC_NOTE (i3, dest)
1992 || (succ && FIND_REG_INC_NOTE (succ, dest))
1993 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1994 /* Don't substitute into a non-local goto, this confuses CFG. */
1995 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1996 /* Make sure that DEST is not used after INSN but before SUCC, or
1997 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1998 || (!all_adjacent
1999 && ((succ2
2000 && (reg_used_between_p (dest, succ2, i3)
2001 || reg_used_between_p (dest, succ, succ2)))
2002 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2003 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2004 || (succ
2005 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2006 that case SUCC is not in the insn stream, so use SUCC2
2007 instead for this test. */
2008 && reg_used_between_p (dest, insn,
2009 succ2
2010 && INSN_UID (succ) == INSN_UID (succ2)
2011 ? succ2 : succ))))
2012 /* Make sure that the value that is to be substituted for the register
2013 does not use any registers whose values alter in between. However,
2014 If the insns are adjacent, a use can't cross a set even though we
2015 think it might (this can happen for a sequence of insns each setting
2016 the same destination; last_set of that register might point to
2017 a NOTE). If INSN has a REG_EQUIV note, the register is always
2018 equivalent to the memory so the substitution is valid even if there
2019 are intervening stores. Also, don't move a volatile asm or
2020 UNSPEC_VOLATILE across any other insns. */
2021 || (! all_adjacent
2022 && (((!MEM_P (src)
2023 || ! find_reg_note (insn, REG_EQUIV, src))
2024 && modified_between_p (src, insn, i3))
2025 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2026 || GET_CODE (src) == UNSPEC_VOLATILE))
2027 /* Don't combine across a CALL_INSN, because that would possibly
2028 change whether the life span of some REGs crosses calls or not,
2029 and it is a pain to update that information.
2030 Exception: if source is a constant, moving it later can't hurt.
2031 Accept that as a special case. */
2032 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2033 return 0;
2035 /* DEST must either be a REG or CC0. */
2036 if (REG_P (dest))
2038 /* If register alignment is being enforced for multi-word items in all
2039 cases except for parameters, it is possible to have a register copy
2040 insn referencing a hard register that is not allowed to contain the
2041 mode being copied and which would not be valid as an operand of most
2042 insns. Eliminate this problem by not combining with such an insn.
2044 Also, on some machines we don't want to extend the life of a hard
2045 register. */
2047 if (REG_P (src)
2048 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2049 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2050 /* Don't extend the life of a hard register unless it is
2051 user variable (if we have few registers) or it can't
2052 fit into the desired register (meaning something special
2053 is going on).
2054 Also avoid substituting a return register into I3, because
2055 reload can't handle a conflict with constraints of other
2056 inputs. */
2057 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2058 && !targetm.hard_regno_mode_ok (REGNO (src),
2059 GET_MODE (src)))))
2060 return 0;
2062 else if (GET_CODE (dest) != CC0)
2063 return 0;
2066 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2067 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2068 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2070 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2072 /* If the clobber represents an earlyclobber operand, we must not
2073 substitute an expression containing the clobbered register.
2074 As we do not analyze the constraint strings here, we have to
2075 make the conservative assumption. However, if the register is
2076 a fixed hard reg, the clobber cannot represent any operand;
2077 we leave it up to the machine description to either accept or
2078 reject use-and-clobber patterns. */
2079 if (!REG_P (reg)
2080 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2081 || !fixed_regs[REGNO (reg)])
2082 if (reg_overlap_mentioned_p (reg, src))
2083 return 0;
2086 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2087 or not), reject, unless nothing volatile comes between it and I3 */
2089 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2091 /* Make sure neither succ nor succ2 contains a volatile reference. */
2092 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2093 return 0;
2094 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2095 return 0;
2096 /* We'll check insns between INSN and I3 below. */
2099 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2100 to be an explicit register variable, and was chosen for a reason. */
2102 if (GET_CODE (src) == ASM_OPERANDS
2103 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2104 return 0;
2106 /* If INSN contains volatile references (specifically volatile MEMs),
2107 we cannot combine across any other volatile references.
2108 Even if INSN doesn't contain volatile references, any intervening
2109 volatile insn might affect machine state. */
2111 is_volatile_p = volatile_refs_p (PATTERN (insn))
2112 ? volatile_refs_p
2113 : volatile_insn_p;
2115 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2116 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2117 return 0;
2119 /* If INSN contains an autoincrement or autodecrement, make sure that
2120 register is not used between there and I3, and not already used in
2121 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2122 Also insist that I3 not be a jump if using LRA; if it were one
2123 and the incremented register were spilled, we would lose.
2124 Reload handles this correctly. */
2126 if (AUTO_INC_DEC)
2127 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2128 if (REG_NOTE_KIND (link) == REG_INC
2129 && ((JUMP_P (i3) && targetm.lra_p ())
2130 || reg_used_between_p (XEXP (link, 0), insn, i3)
2131 || (pred != NULL_RTX
2132 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2133 || (pred2 != NULL_RTX
2134 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2135 || (succ != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2137 || (succ2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2139 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2140 return 0;
2142 /* Don't combine an insn that follows a CC0-setting insn.
2143 An insn that uses CC0 must not be separated from the one that sets it.
2144 We do, however, allow I2 to follow a CC0-setting insn if that insn
2145 is passed as I1; in that case it will be deleted also.
2146 We also allow combining in this case if all the insns are adjacent
2147 because that would leave the two CC0 insns adjacent as well.
2148 It would be more logical to test whether CC0 occurs inside I1 or I2,
2149 but that would be much slower, and this ought to be equivalent. */
2151 if (HAVE_cc0)
2153 p = prev_nonnote_insn (insn);
2154 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2155 && ! all_adjacent)
2156 return 0;
2159 /* If we get here, we have passed all the tests and the combination is
2160 to be allowed. */
2162 *pdest = dest;
2163 *psrc = src;
2165 return 1;
2168 /* LOC is the location within I3 that contains its pattern or the component
2169 of a PARALLEL of the pattern. We validate that it is valid for combining.
2171 One problem is if I3 modifies its output, as opposed to replacing it
2172 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2173 doing so would produce an insn that is not equivalent to the original insns.
2175 Consider:
2177 (set (reg:DI 101) (reg:DI 100))
2178 (set (subreg:SI (reg:DI 101) 0) <foo>)
2180 This is NOT equivalent to:
2182 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2183 (set (reg:DI 101) (reg:DI 100))])
2185 Not only does this modify 100 (in which case it might still be valid
2186 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2188 We can also run into a problem if I2 sets a register that I1
2189 uses and I1 gets directly substituted into I3 (not via I2). In that
2190 case, we would be getting the wrong value of I2DEST into I3, so we
2191 must reject the combination. This case occurs when I2 and I1 both
2192 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2193 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2194 of a SET must prevent combination from occurring. The same situation
2195 can occur for I0, in which case I0_NOT_IN_SRC is set.
2197 Before doing the above check, we first try to expand a field assignment
2198 into a set of logical operations.
2200 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2201 we place a register that is both set and used within I3. If more than one
2202 such register is detected, we fail.
2204 Return 1 if the combination is valid, zero otherwise. */
2206 static int
2207 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2208 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2210 rtx x = *loc;
2212 if (GET_CODE (x) == SET)
2214 rtx set = x ;
2215 rtx dest = SET_DEST (set);
2216 rtx src = SET_SRC (set);
2217 rtx inner_dest = dest;
2218 rtx subdest;
2220 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2221 || GET_CODE (inner_dest) == SUBREG
2222 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2223 inner_dest = XEXP (inner_dest, 0);
2225 /* Check for the case where I3 modifies its output, as discussed
2226 above. We don't want to prevent pseudos from being combined
2227 into the address of a MEM, so only prevent the combination if
2228 i1 or i2 set the same MEM. */
2229 if ((inner_dest != dest &&
2230 (!MEM_P (inner_dest)
2231 || rtx_equal_p (i2dest, inner_dest)
2232 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2233 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2234 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2235 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2236 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2238 /* This is the same test done in can_combine_p except we can't test
2239 all_adjacent; we don't have to, since this instruction will stay
2240 in place, thus we are not considering increasing the lifetime of
2241 INNER_DEST.
2243 Also, if this insn sets a function argument, combining it with
2244 something that might need a spill could clobber a previous
2245 function argument; the all_adjacent test in can_combine_p also
2246 checks this; here, we do a more specific test for this case. */
2248 || (REG_P (inner_dest)
2249 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2250 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2251 GET_MODE (inner_dest)))
2252 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2253 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2254 return 0;
2256 /* If DEST is used in I3, it is being killed in this insn, so
2257 record that for later. We have to consider paradoxical
2258 subregs here, since they kill the whole register, but we
2259 ignore partial subregs, STRICT_LOW_PART, etc.
2260 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2261 STACK_POINTER_REGNUM, since these are always considered to be
2262 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2263 subdest = dest;
2264 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2265 subdest = SUBREG_REG (subdest);
2266 if (pi3dest_killed
2267 && REG_P (subdest)
2268 && reg_referenced_p (subdest, PATTERN (i3))
2269 && REGNO (subdest) != FRAME_POINTER_REGNUM
2270 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2271 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2272 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2273 || (REGNO (subdest) != ARG_POINTER_REGNUM
2274 || ! fixed_regs [REGNO (subdest)]))
2275 && REGNO (subdest) != STACK_POINTER_REGNUM)
2277 if (*pi3dest_killed)
2278 return 0;
2280 *pi3dest_killed = subdest;
2284 else if (GET_CODE (x) == PARALLEL)
2286 int i;
2288 for (i = 0; i < XVECLEN (x, 0); i++)
2289 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2290 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2291 return 0;
2294 return 1;
2297 /* Return 1 if X is an arithmetic expression that contains a multiplication
2298 and division. We don't count multiplications by powers of two here. */
2300 static int
2301 contains_muldiv (rtx x)
2303 switch (GET_CODE (x))
2305 case MOD: case DIV: case UMOD: case UDIV:
2306 return 1;
2308 case MULT:
2309 return ! (CONST_INT_P (XEXP (x, 1))
2310 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2311 default:
2312 if (BINARY_P (x))
2313 return contains_muldiv (XEXP (x, 0))
2314 || contains_muldiv (XEXP (x, 1));
2316 if (UNARY_P (x))
2317 return contains_muldiv (XEXP (x, 0));
2319 return 0;
2323 /* Determine whether INSN can be used in a combination. Return nonzero if
2324 not. This is used in try_combine to detect early some cases where we
2325 can't perform combinations. */
2327 static int
2328 cant_combine_insn_p (rtx_insn *insn)
2330 rtx set;
2331 rtx src, dest;
2333 /* If this isn't really an insn, we can't do anything.
2334 This can occur when flow deletes an insn that it has merged into an
2335 auto-increment address. */
2336 if (!NONDEBUG_INSN_P (insn))
2337 return 1;
2339 /* Never combine loads and stores involving hard regs that are likely
2340 to be spilled. The register allocator can usually handle such
2341 reg-reg moves by tying. If we allow the combiner to make
2342 substitutions of likely-spilled regs, reload might die.
2343 As an exception, we allow combinations involving fixed regs; these are
2344 not available to the register allocator so there's no risk involved. */
2346 set = single_set (insn);
2347 if (! set)
2348 return 0;
2349 src = SET_SRC (set);
2350 dest = SET_DEST (set);
2351 if (GET_CODE (src) == SUBREG)
2352 src = SUBREG_REG (src);
2353 if (GET_CODE (dest) == SUBREG)
2354 dest = SUBREG_REG (dest);
2355 if (REG_P (src) && REG_P (dest)
2356 && ((HARD_REGISTER_P (src)
2357 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2358 #ifdef LEAF_REGISTERS
2359 && ! LEAF_REGISTERS [REGNO (src)])
2360 #else
2362 #endif
2363 || (HARD_REGISTER_P (dest)
2364 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2365 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2366 return 1;
2368 return 0;
2371 struct likely_spilled_retval_info
2373 unsigned regno, nregs;
2374 unsigned mask;
2377 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2378 hard registers that are known to be written to / clobbered in full. */
2379 static void
2380 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2382 struct likely_spilled_retval_info *const info =
2383 (struct likely_spilled_retval_info *) data;
2384 unsigned regno, nregs;
2385 unsigned new_mask;
2387 if (!REG_P (XEXP (set, 0)))
2388 return;
2389 regno = REGNO (x);
2390 if (regno >= info->regno + info->nregs)
2391 return;
2392 nregs = REG_NREGS (x);
2393 if (regno + nregs <= info->regno)
2394 return;
2395 new_mask = (2U << (nregs - 1)) - 1;
2396 if (regno < info->regno)
2397 new_mask >>= info->regno - regno;
2398 else
2399 new_mask <<= regno - info->regno;
2400 info->mask &= ~new_mask;
2403 /* Return nonzero iff part of the return value is live during INSN, and
2404 it is likely spilled. This can happen when more than one insn is needed
2405 to copy the return value, e.g. when we consider to combine into the
2406 second copy insn for a complex value. */
2408 static int
2409 likely_spilled_retval_p (rtx_insn *insn)
2411 rtx_insn *use = BB_END (this_basic_block);
2412 rtx reg;
2413 rtx_insn *p;
2414 unsigned regno, nregs;
2415 /* We assume here that no machine mode needs more than
2416 32 hard registers when the value overlaps with a register
2417 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2418 unsigned mask;
2419 struct likely_spilled_retval_info info;
2421 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2422 return 0;
2423 reg = XEXP (PATTERN (use), 0);
2424 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2425 return 0;
2426 regno = REGNO (reg);
2427 nregs = REG_NREGS (reg);
2428 if (nregs == 1)
2429 return 0;
2430 mask = (2U << (nregs - 1)) - 1;
2432 /* Disregard parts of the return value that are set later. */
2433 info.regno = regno;
2434 info.nregs = nregs;
2435 info.mask = mask;
2436 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2437 if (INSN_P (p))
2438 note_stores (p, likely_spilled_retval_1, &info);
2439 mask = info.mask;
2441 /* Check if any of the (probably) live return value registers is
2442 likely spilled. */
2443 nregs --;
2446 if ((mask & 1 << nregs)
2447 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2448 return 1;
2449 } while (nregs--);
2450 return 0;
2453 /* Adjust INSN after we made a change to its destination.
2455 Changing the destination can invalidate notes that say something about
2456 the results of the insn and a LOG_LINK pointing to the insn. */
2458 static void
2459 adjust_for_new_dest (rtx_insn *insn)
2461 /* For notes, be conservative and simply remove them. */
2462 remove_reg_equal_equiv_notes (insn, true);
2464 /* The new insn will have a destination that was previously the destination
2465 of an insn just above it. Call distribute_links to make a LOG_LINK from
2466 the next use of that destination. */
2468 rtx set = single_set (insn);
2469 gcc_assert (set);
2471 rtx reg = SET_DEST (set);
2473 while (GET_CODE (reg) == ZERO_EXTRACT
2474 || GET_CODE (reg) == STRICT_LOW_PART
2475 || GET_CODE (reg) == SUBREG)
2476 reg = XEXP (reg, 0);
2477 gcc_assert (REG_P (reg));
2479 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2481 df_insn_rescan (insn);
2484 /* Return TRUE if combine can reuse reg X in mode MODE.
2485 ADDED_SETS is nonzero if the original set is still required. */
2486 static bool
2487 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2489 unsigned int regno;
2491 if (!REG_P (x))
2492 return false;
2494 /* Don't change between modes with different underlying register sizes,
2495 since this could lead to invalid subregs. */
2496 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2497 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2498 return false;
2500 regno = REGNO (x);
2501 /* Allow hard registers if the new mode is legal, and occupies no more
2502 registers than the old mode. */
2503 if (regno < FIRST_PSEUDO_REGISTER)
2504 return (targetm.hard_regno_mode_ok (regno, mode)
2505 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2507 /* Or a pseudo that is only used once. */
2508 return (regno < reg_n_sets_max
2509 && REG_N_SETS (regno) == 1
2510 && !added_sets
2511 && !REG_USERVAR_P (x));
2515 /* Check whether X, the destination of a set, refers to part of
2516 the register specified by REG. */
2518 static bool
2519 reg_subword_p (rtx x, rtx reg)
2521 /* Check that reg is an integer mode register. */
2522 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2523 return false;
2525 if (GET_CODE (x) == STRICT_LOW_PART
2526 || GET_CODE (x) == ZERO_EXTRACT)
2527 x = XEXP (x, 0);
2529 return GET_CODE (x) == SUBREG
2530 && SUBREG_REG (x) == reg
2531 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2534 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2535 Note that the INSN should be deleted *after* removing dead edges, so
2536 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2537 but not for a (set (pc) (label_ref FOO)). */
2539 static void
2540 update_cfg_for_uncondjump (rtx_insn *insn)
2542 basic_block bb = BLOCK_FOR_INSN (insn);
2543 gcc_assert (BB_END (bb) == insn);
2545 purge_dead_edges (bb);
2547 delete_insn (insn);
2548 if (EDGE_COUNT (bb->succs) == 1)
2550 rtx_insn *insn;
2552 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2554 /* Remove barriers from the footer if there are any. */
2555 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2556 if (BARRIER_P (insn))
2558 if (PREV_INSN (insn))
2559 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2560 else
2561 BB_FOOTER (bb) = NEXT_INSN (insn);
2562 if (NEXT_INSN (insn))
2563 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2565 else if (LABEL_P (insn))
2566 break;
2570 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2571 by an arbitrary number of CLOBBERs. */
2572 static bool
2573 is_parallel_of_n_reg_sets (rtx pat, int n)
2575 if (GET_CODE (pat) != PARALLEL)
2576 return false;
2578 int len = XVECLEN (pat, 0);
2579 if (len < n)
2580 return false;
2582 int i;
2583 for (i = 0; i < n; i++)
2584 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2585 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2586 return false;
2587 for ( ; i < len; i++)
2588 switch (GET_CODE (XVECEXP (pat, 0, i)))
2590 case CLOBBER:
2591 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2592 return false;
2593 break;
2594 default:
2595 return false;
2597 return true;
2600 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2601 CLOBBERs), can be split into individual SETs in that order, without
2602 changing semantics. */
2603 static bool
2604 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2606 if (!insn_nothrow_p (insn))
2607 return false;
2609 rtx pat = PATTERN (insn);
2611 int i, j;
2612 for (i = 0; i < n; i++)
2614 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2615 return false;
2617 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2619 for (j = i + 1; j < n; j++)
2620 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2621 return false;
2624 return true;
2627 /* Return whether X is just a single_set, with the source
2628 a general_operand. */
2629 static bool
2630 is_just_move (rtx_insn *x)
2632 rtx set = single_set (x);
2633 if (!set)
2634 return false;
2636 return general_operand (SET_SRC (set), VOIDmode);
2639 /* Callback function to count autoincs. */
2641 static int
2642 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2644 (*((int *) arg))++;
2646 return 0;
2649 /* Try to combine the insns I0, I1 and I2 into I3.
2650 Here I0, I1 and I2 appear earlier than I3.
2651 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2654 If we are combining more than two insns and the resulting insn is not
2655 recognized, try splitting it into two insns. If that happens, I2 and I3
2656 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2657 Otherwise, I0, I1 and I2 are pseudo-deleted.
2659 Return 0 if the combination does not work. Then nothing is changed.
2660 If we did the combination, return the insn at which combine should
2661 resume scanning.
2663 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2664 new direct jump instruction.
2666 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2667 been I3 passed to an earlier try_combine within the same basic
2668 block. */
2670 static rtx_insn *
2671 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2672 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2674 /* New patterns for I3 and I2, respectively. */
2675 rtx newpat, newi2pat = 0;
2676 rtvec newpat_vec_with_clobbers = 0;
2677 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2678 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2679 dead. */
2680 int added_sets_0, added_sets_1, added_sets_2;
2681 /* Total number of SETs to put into I3. */
2682 int total_sets;
2683 /* Nonzero if I2's or I1's body now appears in I3. */
2684 int i2_is_used = 0, i1_is_used = 0;
2685 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2686 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2687 /* Contains I3 if the destination of I3 is used in its source, which means
2688 that the old life of I3 is being killed. If that usage is placed into
2689 I2 and not in I3, a REG_DEAD note must be made. */
2690 rtx i3dest_killed = 0;
2691 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2692 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2693 /* Copy of SET_SRC of I1 and I0, if needed. */
2694 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2695 /* Set if I2DEST was reused as a scratch register. */
2696 bool i2scratch = false;
2697 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2698 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2699 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2700 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2701 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2702 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2703 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2704 /* Notes that must be added to REG_NOTES in I3 and I2. */
2705 rtx new_i3_notes, new_i2_notes;
2706 /* Notes that we substituted I3 into I2 instead of the normal case. */
2707 int i3_subst_into_i2 = 0;
2708 /* Notes that I1, I2 or I3 is a MULT operation. */
2709 int have_mult = 0;
2710 int swap_i2i3 = 0;
2711 int split_i2i3 = 0;
2712 int changed_i3_dest = 0;
2713 bool i2_was_move = false, i3_was_move = false;
2714 int n_auto_inc = 0;
2716 int maxreg;
2717 rtx_insn *temp_insn;
2718 rtx temp_expr;
2719 struct insn_link *link;
2720 rtx other_pat = 0;
2721 rtx new_other_notes;
2722 int i;
2723 scalar_int_mode dest_mode, temp_mode;
2725 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2726 never be). */
2727 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2728 return 0;
2730 /* Only try four-insn combinations when there's high likelihood of
2731 success. Look for simple insns, such as loads of constants or
2732 binary operations involving a constant. */
2733 if (i0)
2735 int i;
2736 int ngood = 0;
2737 int nshift = 0;
2738 rtx set0, set3;
2740 if (!flag_expensive_optimizations)
2741 return 0;
2743 for (i = 0; i < 4; i++)
2745 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2746 rtx set = single_set (insn);
2747 rtx src;
2748 if (!set)
2749 continue;
2750 src = SET_SRC (set);
2751 if (CONSTANT_P (src))
2753 ngood += 2;
2754 break;
2756 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2757 ngood++;
2758 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2759 || GET_CODE (src) == LSHIFTRT)
2760 nshift++;
2763 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2764 are likely manipulating its value. Ideally we'll be able to combine
2765 all four insns into a bitfield insertion of some kind.
2767 Note the source in I0 might be inside a sign/zero extension and the
2768 memory modes in I0 and I3 might be different. So extract the address
2769 from the destination of I3 and search for it in the source of I0.
2771 In the event that there's a match but the source/dest do not actually
2772 refer to the same memory, the worst that happens is we try some
2773 combinations that we wouldn't have otherwise. */
2774 if ((set0 = single_set (i0))
2775 /* Ensure the source of SET0 is a MEM, possibly buried inside
2776 an extension. */
2777 && (GET_CODE (SET_SRC (set0)) == MEM
2778 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2779 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2780 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2781 && (set3 = single_set (i3))
2782 /* Ensure the destination of SET3 is a MEM. */
2783 && GET_CODE (SET_DEST (set3)) == MEM
2784 /* Would it be better to extract the base address for the MEM
2785 in SET3 and look for that? I don't have cases where it matters
2786 but I could envision such cases. */
2787 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2788 ngood += 2;
2790 if (ngood < 2 && nshift < 2)
2791 return 0;
2794 /* Exit early if one of the insns involved can't be used for
2795 combinations. */
2796 if (CALL_P (i2)
2797 || (i1 && CALL_P (i1))
2798 || (i0 && CALL_P (i0))
2799 || cant_combine_insn_p (i3)
2800 || cant_combine_insn_p (i2)
2801 || (i1 && cant_combine_insn_p (i1))
2802 || (i0 && cant_combine_insn_p (i0))
2803 || likely_spilled_retval_p (i3))
2804 return 0;
2806 combine_attempts++;
2807 undobuf.other_insn = 0;
2809 /* Reset the hard register usage information. */
2810 CLEAR_HARD_REG_SET (newpat_used_regs);
2812 if (dump_file && (dump_flags & TDF_DETAILS))
2814 if (i0)
2815 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2816 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2817 else if (i1)
2818 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2819 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2820 else
2821 fprintf (dump_file, "\nTrying %d -> %d:\n",
2822 INSN_UID (i2), INSN_UID (i3));
2824 if (i0)
2825 dump_insn_slim (dump_file, i0);
2826 if (i1)
2827 dump_insn_slim (dump_file, i1);
2828 dump_insn_slim (dump_file, i2);
2829 dump_insn_slim (dump_file, i3);
2832 /* If multiple insns feed into one of I2 or I3, they can be in any
2833 order. To simplify the code below, reorder them in sequence. */
2834 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2835 std::swap (i0, i2);
2836 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2837 std::swap (i0, i1);
2838 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2839 std::swap (i1, i2);
2841 added_links_insn = 0;
2842 added_notes_insn = 0;
2844 /* First check for one important special case that the code below will
2845 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2846 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2847 we may be able to replace that destination with the destination of I3.
2848 This occurs in the common code where we compute both a quotient and
2849 remainder into a structure, in which case we want to do the computation
2850 directly into the structure to avoid register-register copies.
2852 Note that this case handles both multiple sets in I2 and also cases
2853 where I2 has a number of CLOBBERs inside the PARALLEL.
2855 We make very conservative checks below and only try to handle the
2856 most common cases of this. For example, we only handle the case
2857 where I2 and I3 are adjacent to avoid making difficult register
2858 usage tests. */
2860 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2861 && REG_P (SET_SRC (PATTERN (i3)))
2862 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2863 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2864 && GET_CODE (PATTERN (i2)) == PARALLEL
2865 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2866 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2867 below would need to check what is inside (and reg_overlap_mentioned_p
2868 doesn't support those codes anyway). Don't allow those destinations;
2869 the resulting insn isn't likely to be recognized anyway. */
2870 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2871 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2872 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2873 SET_DEST (PATTERN (i3)))
2874 && next_active_insn (i2) == i3)
2876 rtx p2 = PATTERN (i2);
2878 /* Make sure that the destination of I3,
2879 which we are going to substitute into one output of I2,
2880 is not used within another output of I2. We must avoid making this:
2881 (parallel [(set (mem (reg 69)) ...)
2882 (set (reg 69) ...)])
2883 which is not well-defined as to order of actions.
2884 (Besides, reload can't handle output reloads for this.)
2886 The problem can also happen if the dest of I3 is a memory ref,
2887 if another dest in I2 is an indirect memory ref.
2889 Neither can this PARALLEL be an asm. We do not allow combining
2890 that usually (see can_combine_p), so do not here either. */
2891 bool ok = true;
2892 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2894 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2895 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2896 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2897 SET_DEST (XVECEXP (p2, 0, i))))
2898 ok = false;
2899 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2900 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2901 ok = false;
2904 if (ok)
2905 for (i = 0; i < XVECLEN (p2, 0); i++)
2906 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2907 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2909 combine_merges++;
2911 subst_insn = i3;
2912 subst_low_luid = DF_INSN_LUID (i2);
2914 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2915 i2src = SET_SRC (XVECEXP (p2, 0, i));
2916 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2917 i2dest_killed = dead_or_set_p (i2, i2dest);
2919 /* Replace the dest in I2 with our dest and make the resulting
2920 insn the new pattern for I3. Then skip to where we validate
2921 the pattern. Everything was set up above. */
2922 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2923 newpat = p2;
2924 i3_subst_into_i2 = 1;
2925 goto validate_replacement;
2929 /* If I2 is setting a pseudo to a constant and I3 is setting some
2930 sub-part of it to another constant, merge them by making a new
2931 constant. */
2932 if (i1 == 0
2933 && (temp_expr = single_set (i2)) != 0
2934 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2935 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2936 && GET_CODE (PATTERN (i3)) == SET
2937 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2938 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2940 rtx dest = SET_DEST (PATTERN (i3));
2941 rtx temp_dest = SET_DEST (temp_expr);
2942 int offset = -1;
2943 int width = 0;
2945 if (GET_CODE (dest) == ZERO_EXTRACT)
2947 if (CONST_INT_P (XEXP (dest, 1))
2948 && CONST_INT_P (XEXP (dest, 2))
2949 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2950 &dest_mode))
2952 width = INTVAL (XEXP (dest, 1));
2953 offset = INTVAL (XEXP (dest, 2));
2954 dest = XEXP (dest, 0);
2955 if (BITS_BIG_ENDIAN)
2956 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2959 else
2961 if (GET_CODE (dest) == STRICT_LOW_PART)
2962 dest = XEXP (dest, 0);
2963 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2965 width = GET_MODE_PRECISION (dest_mode);
2966 offset = 0;
2970 if (offset >= 0)
2972 /* If this is the low part, we're done. */
2973 if (subreg_lowpart_p (dest))
2975 /* Handle the case where inner is twice the size of outer. */
2976 else if (GET_MODE_PRECISION (temp_mode)
2977 == 2 * GET_MODE_PRECISION (dest_mode))
2978 offset += GET_MODE_PRECISION (dest_mode);
2979 /* Otherwise give up for now. */
2980 else
2981 offset = -1;
2984 if (offset >= 0)
2986 rtx inner = SET_SRC (PATTERN (i3));
2987 rtx outer = SET_SRC (temp_expr);
2989 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2990 rtx_mode_t (inner, dest_mode),
2991 offset, width);
2993 combine_merges++;
2994 subst_insn = i3;
2995 subst_low_luid = DF_INSN_LUID (i2);
2996 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2997 i2dest = temp_dest;
2998 i2dest_killed = dead_or_set_p (i2, i2dest);
3000 /* Replace the source in I2 with the new constant and make the
3001 resulting insn the new pattern for I3. Then skip to where we
3002 validate the pattern. Everything was set up above. */
3003 SUBST (SET_SRC (temp_expr),
3004 immed_wide_int_const (o, temp_mode));
3006 newpat = PATTERN (i2);
3008 /* The dest of I3 has been replaced with the dest of I2. */
3009 changed_i3_dest = 1;
3010 goto validate_replacement;
3014 /* If we have no I1 and I2 looks like:
3015 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3016 (set Y OP)])
3017 make up a dummy I1 that is
3018 (set Y OP)
3019 and change I2 to be
3020 (set (reg:CC X) (compare:CC Y (const_int 0)))
3022 (We can ignore any trailing CLOBBERs.)
3024 This undoes a previous combination and allows us to match a branch-and-
3025 decrement insn. */
3027 if (!HAVE_cc0 && i1 == 0
3028 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3029 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3030 == MODE_CC)
3031 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3032 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3033 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3034 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3035 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3036 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3038 /* We make I1 with the same INSN_UID as I2. This gives it
3039 the same DF_INSN_LUID for value tracking. Our fake I1 will
3040 never appear in the insn stream so giving it the same INSN_UID
3041 as I2 will not cause a problem. */
3043 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3044 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3045 -1, NULL_RTX);
3046 INSN_UID (i1) = INSN_UID (i2);
3048 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3049 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3050 SET_DEST (PATTERN (i1)));
3051 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3052 SUBST_LINK (LOG_LINKS (i2),
3053 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3056 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3057 make those two SETs separate I1 and I2 insns, and make an I0 that is
3058 the original I1. */
3059 if (!HAVE_cc0 && i0 == 0
3060 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3061 && can_split_parallel_of_n_reg_sets (i2, 2)
3062 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3063 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3064 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3065 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3067 /* If there is no I1, there is no I0 either. */
3068 i0 = i1;
3070 /* We make I1 with the same INSN_UID as I2. This gives it
3071 the same DF_INSN_LUID for value tracking. Our fake I1 will
3072 never appear in the insn stream so giving it the same INSN_UID
3073 as I2 will not cause a problem. */
3075 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3076 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3077 -1, NULL_RTX);
3078 INSN_UID (i1) = INSN_UID (i2);
3080 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3083 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3084 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3086 if (dump_file && (dump_flags & TDF_DETAILS))
3087 fprintf (dump_file, "Can't combine i2 into i3\n");
3088 undo_all ();
3089 return 0;
3091 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3093 if (dump_file && (dump_flags & TDF_DETAILS))
3094 fprintf (dump_file, "Can't combine i1 into i3\n");
3095 undo_all ();
3096 return 0;
3098 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3100 if (dump_file && (dump_flags & TDF_DETAILS))
3101 fprintf (dump_file, "Can't combine i0 into i3\n");
3102 undo_all ();
3103 return 0;
3106 /* Record whether i2 and i3 are trivial moves. */
3107 i2_was_move = is_just_move (i2);
3108 i3_was_move = is_just_move (i3);
3110 /* Record whether I2DEST is used in I2SRC and similarly for the other
3111 cases. Knowing this will help in register status updating below. */
3112 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3113 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3114 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3115 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3116 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3117 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3118 i2dest_killed = dead_or_set_p (i2, i2dest);
3119 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3120 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3122 /* For the earlier insns, determine which of the subsequent ones they
3123 feed. */
3124 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3125 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3126 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3127 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3128 && reg_overlap_mentioned_p (i0dest, i2src))));
3130 /* Ensure that I3's pattern can be the destination of combines. */
3131 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3132 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3133 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3134 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3135 &i3dest_killed))
3137 undo_all ();
3138 return 0;
3141 /* See if any of the insns is a MULT operation. Unless one is, we will
3142 reject a combination that is, since it must be slower. Be conservative
3143 here. */
3144 if (GET_CODE (i2src) == MULT
3145 || (i1 != 0 && GET_CODE (i1src) == MULT)
3146 || (i0 != 0 && GET_CODE (i0src) == MULT)
3147 || (GET_CODE (PATTERN (i3)) == SET
3148 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3149 have_mult = 1;
3151 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3152 We used to do this EXCEPT in one case: I3 has a post-inc in an
3153 output operand. However, that exception can give rise to insns like
3154 mov r3,(r3)+
3155 which is a famous insn on the PDP-11 where the value of r3 used as the
3156 source was model-dependent. Avoid this sort of thing. */
3158 #if 0
3159 if (!(GET_CODE (PATTERN (i3)) == SET
3160 && REG_P (SET_SRC (PATTERN (i3)))
3161 && MEM_P (SET_DEST (PATTERN (i3)))
3162 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3163 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3164 /* It's not the exception. */
3165 #endif
3166 if (AUTO_INC_DEC)
3168 rtx link;
3169 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3170 if (REG_NOTE_KIND (link) == REG_INC
3171 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3172 || (i1 != 0
3173 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3175 undo_all ();
3176 return 0;
3180 /* See if the SETs in I1 or I2 need to be kept around in the merged
3181 instruction: whenever the value set there is still needed past I3.
3182 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3184 For the SET in I1, we have two cases: if I1 and I2 independently feed
3185 into I3, the set in I1 needs to be kept around unless I1DEST dies
3186 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3187 in I1 needs to be kept around unless I1DEST dies or is set in either
3188 I2 or I3. The same considerations apply to I0. */
3190 added_sets_2 = !dead_or_set_p (i3, i2dest);
3192 if (i1)
3193 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3194 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3195 else
3196 added_sets_1 = 0;
3198 if (i0)
3199 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3200 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3201 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3202 && dead_or_set_p (i2, i0dest)));
3203 else
3204 added_sets_0 = 0;
3206 /* We are about to copy insns for the case where they need to be kept
3207 around. Check that they can be copied in the merged instruction. */
3209 if (targetm.cannot_copy_insn_p
3210 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3211 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3212 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3214 undo_all ();
3215 return 0;
3218 /* Count how many auto_inc expressions there were in the original insns;
3219 we need to have the same number in the resulting patterns. */
3221 if (i0)
3222 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3223 if (i1)
3224 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3225 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3226 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3228 /* If the set in I2 needs to be kept around, we must make a copy of
3229 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3230 PATTERN (I2), we are only substituting for the original I1DEST, not into
3231 an already-substituted copy. This also prevents making self-referential
3232 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3233 I2DEST. */
3235 if (added_sets_2)
3237 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3238 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3239 else
3240 i2pat = copy_rtx (PATTERN (i2));
3243 if (added_sets_1)
3245 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3246 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3247 else
3248 i1pat = copy_rtx (PATTERN (i1));
3251 if (added_sets_0)
3253 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3254 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3255 else
3256 i0pat = copy_rtx (PATTERN (i0));
3259 combine_merges++;
3261 /* Substitute in the latest insn for the regs set by the earlier ones. */
3263 maxreg = max_reg_num ();
3265 subst_insn = i3;
3267 /* Many machines that don't use CC0 have insns that can both perform an
3268 arithmetic operation and set the condition code. These operations will
3269 be represented as a PARALLEL with the first element of the vector
3270 being a COMPARE of an arithmetic operation with the constant zero.
3271 The second element of the vector will set some pseudo to the result
3272 of the same arithmetic operation. If we simplify the COMPARE, we won't
3273 match such a pattern and so will generate an extra insn. Here we test
3274 for this case, where both the comparison and the operation result are
3275 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3276 I2SRC. Later we will make the PARALLEL that contains I2. */
3278 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3279 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3280 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3281 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3283 rtx newpat_dest;
3284 rtx *cc_use_loc = NULL;
3285 rtx_insn *cc_use_insn = NULL;
3286 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3287 machine_mode compare_mode, orig_compare_mode;
3288 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3289 scalar_int_mode mode;
3291 newpat = PATTERN (i3);
3292 newpat_dest = SET_DEST (newpat);
3293 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3295 if (undobuf.other_insn == 0
3296 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3297 &cc_use_insn)))
3299 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3300 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3301 compare_code = simplify_compare_const (compare_code, mode,
3302 op0, &op1);
3303 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3306 /* Do the rest only if op1 is const0_rtx, which may be the
3307 result of simplification. */
3308 if (op1 == const0_rtx)
3310 /* If a single use of the CC is found, prepare to modify it
3311 when SELECT_CC_MODE returns a new CC-class mode, or when
3312 the above simplify_compare_const() returned a new comparison
3313 operator. undobuf.other_insn is assigned the CC use insn
3314 when modifying it. */
3315 if (cc_use_loc)
3317 #ifdef SELECT_CC_MODE
3318 machine_mode new_mode
3319 = SELECT_CC_MODE (compare_code, op0, op1);
3320 if (new_mode != orig_compare_mode
3321 && can_change_dest_mode (SET_DEST (newpat),
3322 added_sets_2, new_mode))
3324 unsigned int regno = REGNO (newpat_dest);
3325 compare_mode = new_mode;
3326 if (regno < FIRST_PSEUDO_REGISTER)
3327 newpat_dest = gen_rtx_REG (compare_mode, regno);
3328 else
3330 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3331 newpat_dest = regno_reg_rtx[regno];
3334 #endif
3335 /* Cases for modifying the CC-using comparison. */
3336 if (compare_code != orig_compare_code
3337 /* ??? Do we need to verify the zero rtx? */
3338 && XEXP (*cc_use_loc, 1) == const0_rtx)
3340 /* Replace cc_use_loc with entire new RTX. */
3341 SUBST (*cc_use_loc,
3342 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3343 newpat_dest, const0_rtx));
3344 undobuf.other_insn = cc_use_insn;
3346 else if (compare_mode != orig_compare_mode)
3348 /* Just replace the CC reg with a new mode. */
3349 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3350 undobuf.other_insn = cc_use_insn;
3354 /* Now we modify the current newpat:
3355 First, SET_DEST(newpat) is updated if the CC mode has been
3356 altered. For targets without SELECT_CC_MODE, this should be
3357 optimized away. */
3358 if (compare_mode != orig_compare_mode)
3359 SUBST (SET_DEST (newpat), newpat_dest);
3360 /* This is always done to propagate i2src into newpat. */
3361 SUBST (SET_SRC (newpat),
3362 gen_rtx_COMPARE (compare_mode, op0, op1));
3363 /* Create new version of i2pat if needed; the below PARALLEL
3364 creation needs this to work correctly. */
3365 if (! rtx_equal_p (i2src, op0))
3366 i2pat = gen_rtx_SET (i2dest, op0);
3367 i2_is_used = 1;
3371 if (i2_is_used == 0)
3373 /* It is possible that the source of I2 or I1 may be performing
3374 an unneeded operation, such as a ZERO_EXTEND of something
3375 that is known to have the high part zero. Handle that case
3376 by letting subst look at the inner insns.
3378 Another way to do this would be to have a function that tries
3379 to simplify a single insn instead of merging two or more
3380 insns. We don't do this because of the potential of infinite
3381 loops and because of the potential extra memory required.
3382 However, doing it the way we are is a bit of a kludge and
3383 doesn't catch all cases.
3385 But only do this if -fexpensive-optimizations since it slows
3386 things down and doesn't usually win.
3388 This is not done in the COMPARE case above because the
3389 unmodified I2PAT is used in the PARALLEL and so a pattern
3390 with a modified I2SRC would not match. */
3392 if (flag_expensive_optimizations)
3394 /* Pass pc_rtx so no substitutions are done, just
3395 simplifications. */
3396 if (i1)
3398 subst_low_luid = DF_INSN_LUID (i1);
3399 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3402 subst_low_luid = DF_INSN_LUID (i2);
3403 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3406 n_occurrences = 0; /* `subst' counts here */
3407 subst_low_luid = DF_INSN_LUID (i2);
3409 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3410 copy of I2SRC each time we substitute it, in order to avoid creating
3411 self-referential RTL when we will be substituting I1SRC for I1DEST
3412 later. Likewise if I0 feeds into I2, either directly or indirectly
3413 through I1, and I0DEST is in I0SRC. */
3414 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3415 (i1_feeds_i2_n && i1dest_in_i1src)
3416 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3417 && i0dest_in_i0src));
3418 substed_i2 = 1;
3420 /* Record whether I2's body now appears within I3's body. */
3421 i2_is_used = n_occurrences;
3424 /* If we already got a failure, don't try to do more. Otherwise, try to
3425 substitute I1 if we have it. */
3427 if (i1 && GET_CODE (newpat) != CLOBBER)
3429 /* Before we can do this substitution, we must redo the test done
3430 above (see detailed comments there) that ensures I1DEST isn't
3431 mentioned in any SETs in NEWPAT that are field assignments. */
3432 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3433 0, 0, 0))
3435 undo_all ();
3436 return 0;
3439 n_occurrences = 0;
3440 subst_low_luid = DF_INSN_LUID (i1);
3442 /* If the following substitution will modify I1SRC, make a copy of it
3443 for the case where it is substituted for I1DEST in I2PAT later. */
3444 if (added_sets_2 && i1_feeds_i2_n)
3445 i1src_copy = copy_rtx (i1src);
3447 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3448 copy of I1SRC each time we substitute it, in order to avoid creating
3449 self-referential RTL when we will be substituting I0SRC for I0DEST
3450 later. */
3451 newpat = subst (newpat, i1dest, i1src, 0, 0,
3452 i0_feeds_i1_n && i0dest_in_i0src);
3453 substed_i1 = 1;
3455 /* Record whether I1's body now appears within I3's body. */
3456 i1_is_used = n_occurrences;
3459 /* Likewise for I0 if we have it. */
3461 if (i0 && GET_CODE (newpat) != CLOBBER)
3463 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3464 0, 0, 0))
3466 undo_all ();
3467 return 0;
3470 /* If the following substitution will modify I0SRC, make a copy of it
3471 for the case where it is substituted for I0DEST in I1PAT later. */
3472 if (added_sets_1 && i0_feeds_i1_n)
3473 i0src_copy = copy_rtx (i0src);
3474 /* And a copy for I0DEST in I2PAT substitution. */
3475 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3476 || (i0_feeds_i2_n)))
3477 i0src_copy2 = copy_rtx (i0src);
3479 n_occurrences = 0;
3480 subst_low_luid = DF_INSN_LUID (i0);
3481 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3482 substed_i0 = 1;
3485 if (n_auto_inc)
3487 int new_n_auto_inc = 0;
3488 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3490 if (n_auto_inc != new_n_auto_inc)
3492 if (dump_file && (dump_flags & TDF_DETAILS))
3493 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3494 undo_all ();
3495 return 0;
3499 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3500 to count all the ways that I2SRC and I1SRC can be used. */
3501 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3502 && i2_is_used + added_sets_2 > 1)
3503 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3504 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3505 > 1))
3506 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3507 && (n_occurrences + added_sets_0
3508 + (added_sets_1 && i0_feeds_i1_n)
3509 + (added_sets_2 && i0_feeds_i2_n)
3510 > 1))
3511 /* Fail if we tried to make a new register. */
3512 || max_reg_num () != maxreg
3513 /* Fail if we couldn't do something and have a CLOBBER. */
3514 || GET_CODE (newpat) == CLOBBER
3515 /* Fail if this new pattern is a MULT and we didn't have one before
3516 at the outer level. */
3517 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3518 && ! have_mult))
3520 undo_all ();
3521 return 0;
3524 /* If the actions of the earlier insns must be kept
3525 in addition to substituting them into the latest one,
3526 we must make a new PARALLEL for the latest insn
3527 to hold additional the SETs. */
3529 if (added_sets_0 || added_sets_1 || added_sets_2)
3531 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3532 combine_extras++;
3534 if (GET_CODE (newpat) == PARALLEL)
3536 rtvec old = XVEC (newpat, 0);
3537 total_sets = XVECLEN (newpat, 0) + extra_sets;
3538 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3539 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3540 sizeof (old->elem[0]) * old->num_elem);
3542 else
3544 rtx old = newpat;
3545 total_sets = 1 + extra_sets;
3546 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3547 XVECEXP (newpat, 0, 0) = old;
3550 if (added_sets_0)
3551 XVECEXP (newpat, 0, --total_sets) = i0pat;
3553 if (added_sets_1)
3555 rtx t = i1pat;
3556 if (i0_feeds_i1_n)
3557 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3559 XVECEXP (newpat, 0, --total_sets) = t;
3561 if (added_sets_2)
3563 rtx t = i2pat;
3564 if (i1_feeds_i2_n)
3565 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3566 i0_feeds_i1_n && i0dest_in_i0src);
3567 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3568 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3570 XVECEXP (newpat, 0, --total_sets) = t;
3574 validate_replacement:
3576 /* Note which hard regs this insn has as inputs. */
3577 mark_used_regs_combine (newpat);
3579 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3580 consider splitting this pattern, we might need these clobbers. */
3581 if (i1 && GET_CODE (newpat) == PARALLEL
3582 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3584 int len = XVECLEN (newpat, 0);
3586 newpat_vec_with_clobbers = rtvec_alloc (len);
3587 for (i = 0; i < len; i++)
3588 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3591 /* We have recognized nothing yet. */
3592 insn_code_number = -1;
3594 /* See if this is a PARALLEL of two SETs where one SET's destination is
3595 a register that is unused and this isn't marked as an instruction that
3596 might trap in an EH region. In that case, we just need the other SET.
3597 We prefer this over the PARALLEL.
3599 This can occur when simplifying a divmod insn. We *must* test for this
3600 case here because the code below that splits two independent SETs doesn't
3601 handle this case correctly when it updates the register status.
3603 It's pointless doing this if we originally had two sets, one from
3604 i3, and one from i2. Combining then splitting the parallel results
3605 in the original i2 again plus an invalid insn (which we delete).
3606 The net effect is only to move instructions around, which makes
3607 debug info less accurate.
3609 If the remaining SET came from I2 its destination should not be used
3610 between I2 and I3. See PR82024. */
3612 if (!(added_sets_2 && i1 == 0)
3613 && is_parallel_of_n_reg_sets (newpat, 2)
3614 && asm_noperands (newpat) < 0)
3616 rtx set0 = XVECEXP (newpat, 0, 0);
3617 rtx set1 = XVECEXP (newpat, 0, 1);
3618 rtx oldpat = newpat;
3620 if (((REG_P (SET_DEST (set1))
3621 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3622 || (GET_CODE (SET_DEST (set1)) == SUBREG
3623 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3624 && insn_nothrow_p (i3)
3625 && !side_effects_p (SET_SRC (set1)))
3627 newpat = set0;
3628 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3631 else if (((REG_P (SET_DEST (set0))
3632 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3633 || (GET_CODE (SET_DEST (set0)) == SUBREG
3634 && find_reg_note (i3, REG_UNUSED,
3635 SUBREG_REG (SET_DEST (set0)))))
3636 && insn_nothrow_p (i3)
3637 && !side_effects_p (SET_SRC (set0)))
3639 rtx dest = SET_DEST (set1);
3640 if (GET_CODE (dest) == SUBREG)
3641 dest = SUBREG_REG (dest);
3642 if (!reg_used_between_p (dest, i2, i3))
3644 newpat = set1;
3645 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3647 if (insn_code_number >= 0)
3648 changed_i3_dest = 1;
3652 if (insn_code_number < 0)
3653 newpat = oldpat;
3656 /* Is the result of combination a valid instruction? */
3657 if (insn_code_number < 0)
3658 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3660 /* If we were combining three insns and the result is a simple SET
3661 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3662 insns. There are two ways to do this. It can be split using a
3663 machine-specific method (like when you have an addition of a large
3664 constant) or by combine in the function find_split_point. */
3666 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3667 && asm_noperands (newpat) < 0)
3669 rtx parallel, *split;
3670 rtx_insn *m_split_insn;
3672 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3673 use I2DEST as a scratch register will help. In the latter case,
3674 convert I2DEST to the mode of the source of NEWPAT if we can. */
3676 m_split_insn = combine_split_insns (newpat, i3);
3678 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3679 inputs of NEWPAT. */
3681 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3682 possible to try that as a scratch reg. This would require adding
3683 more code to make it work though. */
3685 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3687 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3689 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3690 (temporarily, until we are committed to this instruction
3691 combination) does not work: for example, any call to nonzero_bits
3692 on the register (from a splitter in the MD file, for example)
3693 will get the old information, which is invalid.
3695 Since nowadays we can create registers during combine just fine,
3696 we should just create a new one here, not reuse i2dest. */
3698 /* First try to split using the original register as a
3699 scratch register. */
3700 parallel = gen_rtx_PARALLEL (VOIDmode,
3701 gen_rtvec (2, newpat,
3702 gen_rtx_CLOBBER (VOIDmode,
3703 i2dest)));
3704 m_split_insn = combine_split_insns (parallel, i3);
3706 /* If that didn't work, try changing the mode of I2DEST if
3707 we can. */
3708 if (m_split_insn == 0
3709 && new_mode != GET_MODE (i2dest)
3710 && new_mode != VOIDmode
3711 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3713 machine_mode old_mode = GET_MODE (i2dest);
3714 rtx ni2dest;
3716 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3717 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3718 else
3720 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3721 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3724 parallel = (gen_rtx_PARALLEL
3725 (VOIDmode,
3726 gen_rtvec (2, newpat,
3727 gen_rtx_CLOBBER (VOIDmode,
3728 ni2dest))));
3729 m_split_insn = combine_split_insns (parallel, i3);
3731 if (m_split_insn == 0
3732 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3734 struct undo *buf;
3736 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3737 buf = undobuf.undos;
3738 undobuf.undos = buf->next;
3739 buf->next = undobuf.frees;
3740 undobuf.frees = buf;
3744 i2scratch = m_split_insn != 0;
3747 /* If recog_for_combine has discarded clobbers, try to use them
3748 again for the split. */
3749 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3751 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3752 m_split_insn = combine_split_insns (parallel, i3);
3755 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3757 rtx m_split_pat = PATTERN (m_split_insn);
3758 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3759 if (insn_code_number >= 0)
3760 newpat = m_split_pat;
3762 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3763 && (next_nonnote_nondebug_insn (i2) == i3
3764 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3766 rtx i2set, i3set;
3767 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3768 newi2pat = PATTERN (m_split_insn);
3770 i3set = single_set (NEXT_INSN (m_split_insn));
3771 i2set = single_set (m_split_insn);
3773 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3775 /* If I2 or I3 has multiple SETs, we won't know how to track
3776 register status, so don't use these insns. If I2's destination
3777 is used between I2 and I3, we also can't use these insns. */
3779 if (i2_code_number >= 0 && i2set && i3set
3780 && (next_nonnote_nondebug_insn (i2) == i3
3781 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3782 insn_code_number = recog_for_combine (&newi3pat, i3,
3783 &new_i3_notes);
3784 if (insn_code_number >= 0)
3785 newpat = newi3pat;
3787 /* It is possible that both insns now set the destination of I3.
3788 If so, we must show an extra use of it. */
3790 if (insn_code_number >= 0)
3792 rtx new_i3_dest = SET_DEST (i3set);
3793 rtx new_i2_dest = SET_DEST (i2set);
3795 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3796 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3797 || GET_CODE (new_i3_dest) == SUBREG)
3798 new_i3_dest = XEXP (new_i3_dest, 0);
3800 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3801 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3802 || GET_CODE (new_i2_dest) == SUBREG)
3803 new_i2_dest = XEXP (new_i2_dest, 0);
3805 if (REG_P (new_i3_dest)
3806 && REG_P (new_i2_dest)
3807 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3808 && REGNO (new_i2_dest) < reg_n_sets_max)
3809 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3813 /* If we can split it and use I2DEST, go ahead and see if that
3814 helps things be recognized. Verify that none of the registers
3815 are set between I2 and I3. */
3816 if (insn_code_number < 0
3817 && (split = find_split_point (&newpat, i3, false)) != 0
3818 && (!HAVE_cc0 || REG_P (i2dest))
3819 /* We need I2DEST in the proper mode. If it is a hard register
3820 or the only use of a pseudo, we can change its mode.
3821 Make sure we don't change a hard register to have a mode that
3822 isn't valid for it, or change the number of registers. */
3823 && (GET_MODE (*split) == GET_MODE (i2dest)
3824 || GET_MODE (*split) == VOIDmode
3825 || can_change_dest_mode (i2dest, added_sets_2,
3826 GET_MODE (*split)))
3827 && (next_nonnote_nondebug_insn (i2) == i3
3828 || !modified_between_p (*split, i2, i3))
3829 /* We can't overwrite I2DEST if its value is still used by
3830 NEWPAT. */
3831 && ! reg_referenced_p (i2dest, newpat))
3833 rtx newdest = i2dest;
3834 enum rtx_code split_code = GET_CODE (*split);
3835 machine_mode split_mode = GET_MODE (*split);
3836 bool subst_done = false;
3837 newi2pat = NULL_RTX;
3839 i2scratch = true;
3841 /* *SPLIT may be part of I2SRC, so make sure we have the
3842 original expression around for later debug processing.
3843 We should not need I2SRC any more in other cases. */
3844 if (MAY_HAVE_DEBUG_BIND_INSNS)
3845 i2src = copy_rtx (i2src);
3846 else
3847 i2src = NULL;
3849 /* Get NEWDEST as a register in the proper mode. We have already
3850 validated that we can do this. */
3851 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3853 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3854 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3855 else
3857 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3858 newdest = regno_reg_rtx[REGNO (i2dest)];
3862 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3863 an ASHIFT. This can occur if it was inside a PLUS and hence
3864 appeared to be a memory address. This is a kludge. */
3865 if (split_code == MULT
3866 && CONST_INT_P (XEXP (*split, 1))
3867 && INTVAL (XEXP (*split, 1)) > 0
3868 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3870 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3871 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3872 XEXP (*split, 0), i_rtx));
3873 /* Update split_code because we may not have a multiply
3874 anymore. */
3875 split_code = GET_CODE (*split);
3878 /* Similarly for (plus (mult FOO (const_int pow2))). */
3879 if (split_code == PLUS
3880 && GET_CODE (XEXP (*split, 0)) == MULT
3881 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3882 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3883 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3885 rtx nsplit = XEXP (*split, 0);
3886 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3887 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3888 XEXP (nsplit, 0),
3889 i_rtx));
3890 /* Update split_code because we may not have a multiply
3891 anymore. */
3892 split_code = GET_CODE (*split);
3895 #ifdef INSN_SCHEDULING
3896 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3897 be written as a ZERO_EXTEND. */
3898 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3900 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3901 what it really is. */
3902 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3903 == SIGN_EXTEND)
3904 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3905 SUBREG_REG (*split)));
3906 else
3907 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3908 SUBREG_REG (*split)));
3910 #endif
3912 /* Attempt to split binary operators using arithmetic identities. */
3913 if (BINARY_P (SET_SRC (newpat))
3914 && split_mode == GET_MODE (SET_SRC (newpat))
3915 && ! side_effects_p (SET_SRC (newpat)))
3917 rtx setsrc = SET_SRC (newpat);
3918 machine_mode mode = GET_MODE (setsrc);
3919 enum rtx_code code = GET_CODE (setsrc);
3920 rtx src_op0 = XEXP (setsrc, 0);
3921 rtx src_op1 = XEXP (setsrc, 1);
3923 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3924 if (rtx_equal_p (src_op0, src_op1))
3926 newi2pat = gen_rtx_SET (newdest, src_op0);
3927 SUBST (XEXP (setsrc, 0), newdest);
3928 SUBST (XEXP (setsrc, 1), newdest);
3929 subst_done = true;
3931 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3932 else if ((code == PLUS || code == MULT)
3933 && GET_CODE (src_op0) == code
3934 && GET_CODE (XEXP (src_op0, 0)) == code
3935 && (INTEGRAL_MODE_P (mode)
3936 || (FLOAT_MODE_P (mode)
3937 && flag_unsafe_math_optimizations)))
3939 rtx p = XEXP (XEXP (src_op0, 0), 0);
3940 rtx q = XEXP (XEXP (src_op0, 0), 1);
3941 rtx r = XEXP (src_op0, 1);
3942 rtx s = src_op1;
3944 /* Split both "((X op Y) op X) op Y" and
3945 "((X op Y) op Y) op X" as "T op T" where T is
3946 "X op Y". */
3947 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3948 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3950 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3951 SUBST (XEXP (setsrc, 0), newdest);
3952 SUBST (XEXP (setsrc, 1), newdest);
3953 subst_done = true;
3955 /* Split "((X op X) op Y) op Y)" as "T op T" where
3956 T is "X op Y". */
3957 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3959 rtx tmp = simplify_gen_binary (code, mode, p, r);
3960 newi2pat = gen_rtx_SET (newdest, tmp);
3961 SUBST (XEXP (setsrc, 0), newdest);
3962 SUBST (XEXP (setsrc, 1), newdest);
3963 subst_done = true;
3968 if (!subst_done)
3970 newi2pat = gen_rtx_SET (newdest, *split);
3971 SUBST (*split, newdest);
3974 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3976 /* recog_for_combine might have added CLOBBERs to newi2pat.
3977 Make sure NEWPAT does not depend on the clobbered regs. */
3978 if (GET_CODE (newi2pat) == PARALLEL)
3979 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3980 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3982 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3983 if (reg_overlap_mentioned_p (reg, newpat))
3985 undo_all ();
3986 return 0;
3990 /* If the split point was a MULT and we didn't have one before,
3991 don't use one now. */
3992 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3993 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3997 /* Check for a case where we loaded from memory in a narrow mode and
3998 then sign extended it, but we need both registers. In that case,
3999 we have a PARALLEL with both loads from the same memory location.
4000 We can split this into a load from memory followed by a register-register
4001 copy. This saves at least one insn, more if register allocation can
4002 eliminate the copy.
4004 We cannot do this if the destination of the first assignment is a
4005 condition code register or cc0. We eliminate this case by making sure
4006 the SET_DEST and SET_SRC have the same mode.
4008 We cannot do this if the destination of the second assignment is
4009 a register that we have already assumed is zero-extended. Similarly
4010 for a SUBREG of such a register. */
4012 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4013 && GET_CODE (newpat) == PARALLEL
4014 && XVECLEN (newpat, 0) == 2
4015 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4016 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4017 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4018 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4019 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4020 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4021 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4022 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4023 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4024 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4025 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4026 (REG_P (temp_expr)
4027 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4028 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4029 BITS_PER_WORD)
4030 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4031 HOST_BITS_PER_INT)
4032 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4033 != GET_MODE_MASK (word_mode))))
4034 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4035 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4036 (REG_P (temp_expr)
4037 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4038 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4039 BITS_PER_WORD)
4040 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4041 HOST_BITS_PER_INT)
4042 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4043 != GET_MODE_MASK (word_mode)))))
4044 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4045 SET_SRC (XVECEXP (newpat, 0, 1)))
4046 && ! find_reg_note (i3, REG_UNUSED,
4047 SET_DEST (XVECEXP (newpat, 0, 0))))
4049 rtx ni2dest;
4051 newi2pat = XVECEXP (newpat, 0, 0);
4052 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4053 newpat = XVECEXP (newpat, 0, 1);
4054 SUBST (SET_SRC (newpat),
4055 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4056 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4058 if (i2_code_number >= 0)
4059 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4061 if (insn_code_number >= 0)
4062 swap_i2i3 = 1;
4065 /* Similarly, check for a case where we have a PARALLEL of two independent
4066 SETs but we started with three insns. In this case, we can do the sets
4067 as two separate insns. This case occurs when some SET allows two
4068 other insns to combine, but the destination of that SET is still live.
4070 Also do this if we started with two insns and (at least) one of the
4071 resulting sets is a noop; this noop will be deleted later.
4073 Also do this if we started with two insns neither of which was a simple
4074 move. */
4076 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4077 && GET_CODE (newpat) == PARALLEL
4078 && XVECLEN (newpat, 0) == 2
4079 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4080 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4081 && (i1
4082 || set_noop_p (XVECEXP (newpat, 0, 0))
4083 || set_noop_p (XVECEXP (newpat, 0, 1))
4084 || (!i2_was_move && !i3_was_move))
4085 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4086 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4087 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4088 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4089 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4090 XVECEXP (newpat, 0, 0))
4091 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4092 XVECEXP (newpat, 0, 1))
4093 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4094 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4096 rtx set0 = XVECEXP (newpat, 0, 0);
4097 rtx set1 = XVECEXP (newpat, 0, 1);
4099 /* Normally, it doesn't matter which of the two is done first,
4100 but the one that references cc0 can't be the second, and
4101 one which uses any regs/memory set in between i2 and i3 can't
4102 be first. The PARALLEL might also have been pre-existing in i3,
4103 so we need to make sure that we won't wrongly hoist a SET to i2
4104 that would conflict with a death note present in there, or would
4105 have its dest modified between i2 and i3. */
4106 if (!modified_between_p (SET_SRC (set1), i2, i3)
4107 && !(REG_P (SET_DEST (set1))
4108 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4109 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4110 && find_reg_note (i2, REG_DEAD,
4111 SUBREG_REG (SET_DEST (set1))))
4112 && !modified_between_p (SET_DEST (set1), i2, i3)
4113 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4114 /* If I3 is a jump, ensure that set0 is a jump so that
4115 we do not create invalid RTL. */
4116 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4119 newi2pat = set1;
4120 newpat = set0;
4122 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4123 && !(REG_P (SET_DEST (set0))
4124 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4125 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4126 && find_reg_note (i2, REG_DEAD,
4127 SUBREG_REG (SET_DEST (set0))))
4128 && !modified_between_p (SET_DEST (set0), i2, i3)
4129 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4130 /* If I3 is a jump, ensure that set1 is a jump so that
4131 we do not create invalid RTL. */
4132 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4135 newi2pat = set0;
4136 newpat = set1;
4138 else
4140 undo_all ();
4141 return 0;
4144 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4146 if (i2_code_number >= 0)
4148 /* recog_for_combine might have added CLOBBERs to newi2pat.
4149 Make sure NEWPAT does not depend on the clobbered regs. */
4150 if (GET_CODE (newi2pat) == PARALLEL)
4152 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4153 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4155 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4156 if (reg_overlap_mentioned_p (reg, newpat))
4158 undo_all ();
4159 return 0;
4164 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4166 if (insn_code_number >= 0)
4167 split_i2i3 = 1;
4171 /* If it still isn't recognized, fail and change things back the way they
4172 were. */
4173 if ((insn_code_number < 0
4174 /* Is the result a reasonable ASM_OPERANDS? */
4175 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4177 undo_all ();
4178 return 0;
4181 /* If we had to change another insn, make sure it is valid also. */
4182 if (undobuf.other_insn)
4184 CLEAR_HARD_REG_SET (newpat_used_regs);
4186 other_pat = PATTERN (undobuf.other_insn);
4187 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4188 &new_other_notes);
4190 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4192 undo_all ();
4193 return 0;
4197 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4198 they are adjacent to each other or not. */
4199 if (HAVE_cc0)
4201 rtx_insn *p = prev_nonnote_insn (i3);
4202 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4203 && sets_cc0_p (newi2pat))
4205 undo_all ();
4206 return 0;
4210 /* Only allow this combination if insn_cost reports that the
4211 replacement instructions are cheaper than the originals. */
4212 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4214 undo_all ();
4215 return 0;
4218 if (MAY_HAVE_DEBUG_BIND_INSNS)
4220 struct undo *undo;
4222 for (undo = undobuf.undos; undo; undo = undo->next)
4223 if (undo->kind == UNDO_MODE)
4225 rtx reg = *undo->where.r;
4226 machine_mode new_mode = GET_MODE (reg);
4227 machine_mode old_mode = undo->old_contents.m;
4229 /* Temporarily revert mode back. */
4230 adjust_reg_mode (reg, old_mode);
4232 if (reg == i2dest && i2scratch)
4234 /* If we used i2dest as a scratch register with a
4235 different mode, substitute it for the original
4236 i2src while its original mode is temporarily
4237 restored, and then clear i2scratch so that we don't
4238 do it again later. */
4239 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4240 this_basic_block);
4241 i2scratch = false;
4242 /* Put back the new mode. */
4243 adjust_reg_mode (reg, new_mode);
4245 else
4247 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4248 rtx_insn *first, *last;
4250 if (reg == i2dest)
4252 first = i2;
4253 last = last_combined_insn;
4255 else
4257 first = i3;
4258 last = undobuf.other_insn;
4259 gcc_assert (last);
4260 if (DF_INSN_LUID (last)
4261 < DF_INSN_LUID (last_combined_insn))
4262 last = last_combined_insn;
4265 /* We're dealing with a reg that changed mode but not
4266 meaning, so we want to turn it into a subreg for
4267 the new mode. However, because of REG sharing and
4268 because its mode had already changed, we have to do
4269 it in two steps. First, replace any debug uses of
4270 reg, with its original mode temporarily restored,
4271 with this copy we have created; then, replace the
4272 copy with the SUBREG of the original shared reg,
4273 once again changed to the new mode. */
4274 propagate_for_debug (first, last, reg, tempreg,
4275 this_basic_block);
4276 adjust_reg_mode (reg, new_mode);
4277 propagate_for_debug (first, last, tempreg,
4278 lowpart_subreg (old_mode, reg, new_mode),
4279 this_basic_block);
4284 /* If we will be able to accept this, we have made a
4285 change to the destination of I3. This requires us to
4286 do a few adjustments. */
4288 if (changed_i3_dest)
4290 PATTERN (i3) = newpat;
4291 adjust_for_new_dest (i3);
4294 /* We now know that we can do this combination. Merge the insns and
4295 update the status of registers and LOG_LINKS. */
4297 if (undobuf.other_insn)
4299 rtx note, next;
4301 PATTERN (undobuf.other_insn) = other_pat;
4303 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4304 ensure that they are still valid. Then add any non-duplicate
4305 notes added by recog_for_combine. */
4306 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4308 next = XEXP (note, 1);
4310 if ((REG_NOTE_KIND (note) == REG_DEAD
4311 && !reg_referenced_p (XEXP (note, 0),
4312 PATTERN (undobuf.other_insn)))
4313 ||(REG_NOTE_KIND (note) == REG_UNUSED
4314 && !reg_set_p (XEXP (note, 0),
4315 PATTERN (undobuf.other_insn)))
4316 /* Simply drop equal note since it may be no longer valid
4317 for other_insn. It may be possible to record that CC
4318 register is changed and only discard those notes, but
4319 in practice it's unnecessary complication and doesn't
4320 give any meaningful improvement.
4322 See PR78559. */
4323 || REG_NOTE_KIND (note) == REG_EQUAL
4324 || REG_NOTE_KIND (note) == REG_EQUIV)
4325 remove_note (undobuf.other_insn, note);
4328 distribute_notes (new_other_notes, undobuf.other_insn,
4329 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4330 NULL_RTX);
4333 if (swap_i2i3)
4335 /* I3 now uses what used to be its destination and which is now
4336 I2's destination. This requires us to do a few adjustments. */
4337 PATTERN (i3) = newpat;
4338 adjust_for_new_dest (i3);
4341 if (swap_i2i3 || split_i2i3)
4343 /* We might need a LOG_LINK from I3 to I2. But then we used to
4344 have one, so we still will.
4346 However, some later insn might be using I2's dest and have
4347 a LOG_LINK pointing at I3. We should change it to point at
4348 I2 instead. */
4350 /* newi2pat is usually a SET here; however, recog_for_combine might
4351 have added some clobbers. */
4352 rtx x = newi2pat;
4353 if (GET_CODE (x) == PARALLEL)
4354 x = XVECEXP (newi2pat, 0, 0);
4356 if (REG_P (SET_DEST (x))
4357 || (GET_CODE (SET_DEST (x)) == SUBREG
4358 && REG_P (SUBREG_REG (SET_DEST (x)))))
4360 unsigned int regno = reg_or_subregno (SET_DEST (x));
4362 bool done = false;
4363 for (rtx_insn *insn = NEXT_INSN (i3);
4364 !done
4365 && insn
4366 && NONDEBUG_INSN_P (insn)
4367 && BLOCK_FOR_INSN (insn) == this_basic_block;
4368 insn = NEXT_INSN (insn))
4370 struct insn_link *link;
4371 FOR_EACH_LOG_LINK (link, insn)
4372 if (link->insn == i3 && link->regno == regno)
4374 link->insn = i2;
4375 done = true;
4376 break;
4383 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4384 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4385 rtx midnotes = 0;
4386 int from_luid;
4387 /* Compute which registers we expect to eliminate. newi2pat may be setting
4388 either i3dest or i2dest, so we must check it. */
4389 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4390 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4391 || !i2dest_killed
4392 ? 0 : i2dest);
4393 /* For i1, we need to compute both local elimination and global
4394 elimination information with respect to newi2pat because i1dest
4395 may be the same as i3dest, in which case newi2pat may be setting
4396 i1dest. Global information is used when distributing REG_DEAD
4397 note for i2 and i3, in which case it does matter if newi2pat sets
4398 i1dest or not.
4400 Local information is used when distributing REG_DEAD note for i1,
4401 in which case it doesn't matter if newi2pat sets i1dest or not.
4402 See PR62151, if we have four insns combination:
4403 i0: r0 <- i0src
4404 i1: r1 <- i1src (using r0)
4405 REG_DEAD (r0)
4406 i2: r0 <- i2src (using r1)
4407 i3: r3 <- i3src (using r0)
4408 ix: using r0
4409 From i1's point of view, r0 is eliminated, no matter if it is set
4410 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4411 should be discarded.
4413 Note local information only affects cases in forms like "I1->I2->I3",
4414 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4415 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4416 i0dest anyway. */
4417 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4418 || !i1dest_killed
4419 ? 0 : i1dest);
4420 rtx elim_i1 = (local_elim_i1 == 0
4421 || (newi2pat && reg_set_p (i1dest, newi2pat))
4422 ? 0 : i1dest);
4423 /* Same case as i1. */
4424 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4425 ? 0 : i0dest);
4426 rtx elim_i0 = (local_elim_i0 == 0
4427 || (newi2pat && reg_set_p (i0dest, newi2pat))
4428 ? 0 : i0dest);
4430 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4431 clear them. */
4432 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4433 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4434 if (i1)
4435 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4436 if (i0)
4437 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4439 /* Ensure that we do not have something that should not be shared but
4440 occurs multiple times in the new insns. Check this by first
4441 resetting all the `used' flags and then copying anything is shared. */
4443 reset_used_flags (i3notes);
4444 reset_used_flags (i2notes);
4445 reset_used_flags (i1notes);
4446 reset_used_flags (i0notes);
4447 reset_used_flags (newpat);
4448 reset_used_flags (newi2pat);
4449 if (undobuf.other_insn)
4450 reset_used_flags (PATTERN (undobuf.other_insn));
4452 i3notes = copy_rtx_if_shared (i3notes);
4453 i2notes = copy_rtx_if_shared (i2notes);
4454 i1notes = copy_rtx_if_shared (i1notes);
4455 i0notes = copy_rtx_if_shared (i0notes);
4456 newpat = copy_rtx_if_shared (newpat);
4457 newi2pat = copy_rtx_if_shared (newi2pat);
4458 if (undobuf.other_insn)
4459 reset_used_flags (PATTERN (undobuf.other_insn));
4461 INSN_CODE (i3) = insn_code_number;
4462 PATTERN (i3) = newpat;
4464 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4466 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4467 link = XEXP (link, 1))
4469 if (substed_i2)
4471 /* I2SRC must still be meaningful at this point. Some
4472 splitting operations can invalidate I2SRC, but those
4473 operations do not apply to calls. */
4474 gcc_assert (i2src);
4475 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4476 i2dest, i2src);
4478 if (substed_i1)
4479 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4480 i1dest, i1src);
4481 if (substed_i0)
4482 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4483 i0dest, i0src);
4487 if (undobuf.other_insn)
4488 INSN_CODE (undobuf.other_insn) = other_code_number;
4490 /* We had one special case above where I2 had more than one set and
4491 we replaced a destination of one of those sets with the destination
4492 of I3. In that case, we have to update LOG_LINKS of insns later
4493 in this basic block. Note that this (expensive) case is rare.
4495 Also, in this case, we must pretend that all REG_NOTEs for I2
4496 actually came from I3, so that REG_UNUSED notes from I2 will be
4497 properly handled. */
4499 if (i3_subst_into_i2)
4501 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4502 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4503 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4504 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4505 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4506 && ! find_reg_note (i2, REG_UNUSED,
4507 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4508 for (temp_insn = NEXT_INSN (i2);
4509 temp_insn
4510 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4511 || BB_HEAD (this_basic_block) != temp_insn);
4512 temp_insn = NEXT_INSN (temp_insn))
4513 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4514 FOR_EACH_LOG_LINK (link, temp_insn)
4515 if (link->insn == i2)
4516 link->insn = i3;
4518 if (i3notes)
4520 rtx link = i3notes;
4521 while (XEXP (link, 1))
4522 link = XEXP (link, 1);
4523 XEXP (link, 1) = i2notes;
4525 else
4526 i3notes = i2notes;
4527 i2notes = 0;
4530 LOG_LINKS (i3) = NULL;
4531 REG_NOTES (i3) = 0;
4532 LOG_LINKS (i2) = NULL;
4533 REG_NOTES (i2) = 0;
4535 if (newi2pat)
4537 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4538 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4539 this_basic_block);
4540 INSN_CODE (i2) = i2_code_number;
4541 PATTERN (i2) = newi2pat;
4543 else
4545 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4546 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4547 this_basic_block);
4548 SET_INSN_DELETED (i2);
4551 if (i1)
4553 LOG_LINKS (i1) = NULL;
4554 REG_NOTES (i1) = 0;
4555 if (MAY_HAVE_DEBUG_BIND_INSNS)
4556 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4557 this_basic_block);
4558 SET_INSN_DELETED (i1);
4561 if (i0)
4563 LOG_LINKS (i0) = NULL;
4564 REG_NOTES (i0) = 0;
4565 if (MAY_HAVE_DEBUG_BIND_INSNS)
4566 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4567 this_basic_block);
4568 SET_INSN_DELETED (i0);
4571 /* Get death notes for everything that is now used in either I3 or
4572 I2 and used to die in a previous insn. If we built two new
4573 patterns, move from I1 to I2 then I2 to I3 so that we get the
4574 proper movement on registers that I2 modifies. */
4576 if (i0)
4577 from_luid = DF_INSN_LUID (i0);
4578 else if (i1)
4579 from_luid = DF_INSN_LUID (i1);
4580 else
4581 from_luid = DF_INSN_LUID (i2);
4582 if (newi2pat)
4583 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4584 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4586 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4587 if (i3notes)
4588 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4589 elim_i2, elim_i1, elim_i0);
4590 if (i2notes)
4591 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4592 elim_i2, elim_i1, elim_i0);
4593 if (i1notes)
4594 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4595 elim_i2, local_elim_i1, local_elim_i0);
4596 if (i0notes)
4597 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4598 elim_i2, elim_i1, local_elim_i0);
4599 if (midnotes)
4600 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4601 elim_i2, elim_i1, elim_i0);
4603 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4604 know these are REG_UNUSED and want them to go to the desired insn,
4605 so we always pass it as i3. */
4607 if (newi2pat && new_i2_notes)
4608 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4609 NULL_RTX);
4611 if (new_i3_notes)
4612 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4613 NULL_RTX);
4615 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4616 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4617 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4618 in that case, it might delete I2. Similarly for I2 and I1.
4619 Show an additional death due to the REG_DEAD note we make here. If
4620 we discard it in distribute_notes, we will decrement it again. */
4622 if (i3dest_killed)
4624 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4625 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4626 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4627 elim_i1, elim_i0);
4628 else
4629 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4630 elim_i2, elim_i1, elim_i0);
4633 if (i2dest_in_i2src)
4635 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4636 if (newi2pat && reg_set_p (i2dest, newi2pat))
4637 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4638 NULL_RTX, NULL_RTX);
4639 else
4640 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4641 NULL_RTX, NULL_RTX, NULL_RTX);
4644 if (i1dest_in_i1src)
4646 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4647 if (newi2pat && reg_set_p (i1dest, newi2pat))
4648 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4649 NULL_RTX, NULL_RTX);
4650 else
4651 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4652 NULL_RTX, NULL_RTX, NULL_RTX);
4655 if (i0dest_in_i0src)
4657 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4658 if (newi2pat && reg_set_p (i0dest, newi2pat))
4659 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4660 NULL_RTX, NULL_RTX);
4661 else
4662 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4663 NULL_RTX, NULL_RTX, NULL_RTX);
4666 distribute_links (i3links);
4667 distribute_links (i2links);
4668 distribute_links (i1links);
4669 distribute_links (i0links);
4671 if (REG_P (i2dest))
4673 struct insn_link *link;
4674 rtx_insn *i2_insn = 0;
4675 rtx i2_val = 0, set;
4677 /* The insn that used to set this register doesn't exist, and
4678 this life of the register may not exist either. See if one of
4679 I3's links points to an insn that sets I2DEST. If it does,
4680 that is now the last known value for I2DEST. If we don't update
4681 this and I2 set the register to a value that depended on its old
4682 contents, we will get confused. If this insn is used, thing
4683 will be set correctly in combine_instructions. */
4684 FOR_EACH_LOG_LINK (link, i3)
4685 if ((set = single_set (link->insn)) != 0
4686 && rtx_equal_p (i2dest, SET_DEST (set)))
4687 i2_insn = link->insn, i2_val = SET_SRC (set);
4689 record_value_for_reg (i2dest, i2_insn, i2_val);
4691 /* If the reg formerly set in I2 died only once and that was in I3,
4692 zero its use count so it won't make `reload' do any work. */
4693 if (! added_sets_2
4694 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4695 && ! i2dest_in_i2src
4696 && REGNO (i2dest) < reg_n_sets_max)
4697 INC_REG_N_SETS (REGNO (i2dest), -1);
4700 if (i1 && REG_P (i1dest))
4702 struct insn_link *link;
4703 rtx_insn *i1_insn = 0;
4704 rtx i1_val = 0, set;
4706 FOR_EACH_LOG_LINK (link, i3)
4707 if ((set = single_set (link->insn)) != 0
4708 && rtx_equal_p (i1dest, SET_DEST (set)))
4709 i1_insn = link->insn, i1_val = SET_SRC (set);
4711 record_value_for_reg (i1dest, i1_insn, i1_val);
4713 if (! added_sets_1
4714 && ! i1dest_in_i1src
4715 && REGNO (i1dest) < reg_n_sets_max)
4716 INC_REG_N_SETS (REGNO (i1dest), -1);
4719 if (i0 && REG_P (i0dest))
4721 struct insn_link *link;
4722 rtx_insn *i0_insn = 0;
4723 rtx i0_val = 0, set;
4725 FOR_EACH_LOG_LINK (link, i3)
4726 if ((set = single_set (link->insn)) != 0
4727 && rtx_equal_p (i0dest, SET_DEST (set)))
4728 i0_insn = link->insn, i0_val = SET_SRC (set);
4730 record_value_for_reg (i0dest, i0_insn, i0_val);
4732 if (! added_sets_0
4733 && ! i0dest_in_i0src
4734 && REGNO (i0dest) < reg_n_sets_max)
4735 INC_REG_N_SETS (REGNO (i0dest), -1);
4738 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4739 been made to this insn. The order is important, because newi2pat
4740 can affect nonzero_bits of newpat. */
4741 if (newi2pat)
4742 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4743 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4746 if (undobuf.other_insn != NULL_RTX)
4748 if (dump_file)
4750 fprintf (dump_file, "modifying other_insn ");
4751 dump_insn_slim (dump_file, undobuf.other_insn);
4753 df_insn_rescan (undobuf.other_insn);
4756 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4758 if (dump_file)
4760 fprintf (dump_file, "modifying insn i0 ");
4761 dump_insn_slim (dump_file, i0);
4763 df_insn_rescan (i0);
4766 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4768 if (dump_file)
4770 fprintf (dump_file, "modifying insn i1 ");
4771 dump_insn_slim (dump_file, i1);
4773 df_insn_rescan (i1);
4776 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4778 if (dump_file)
4780 fprintf (dump_file, "modifying insn i2 ");
4781 dump_insn_slim (dump_file, i2);
4783 df_insn_rescan (i2);
4786 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4788 if (dump_file)
4790 fprintf (dump_file, "modifying insn i3 ");
4791 dump_insn_slim (dump_file, i3);
4793 df_insn_rescan (i3);
4796 /* Set new_direct_jump_p if a new return or simple jump instruction
4797 has been created. Adjust the CFG accordingly. */
4798 if (returnjump_p (i3) || any_uncondjump_p (i3))
4800 *new_direct_jump_p = 1;
4801 mark_jump_label (PATTERN (i3), i3, 0);
4802 update_cfg_for_uncondjump (i3);
4805 if (undobuf.other_insn != NULL_RTX
4806 && (returnjump_p (undobuf.other_insn)
4807 || any_uncondjump_p (undobuf.other_insn)))
4809 *new_direct_jump_p = 1;
4810 update_cfg_for_uncondjump (undobuf.other_insn);
4813 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4814 && XEXP (PATTERN (i3), 0) == const1_rtx)
4816 basic_block bb = BLOCK_FOR_INSN (i3);
4817 gcc_assert (bb);
4818 remove_edge (split_block (bb, i3));
4819 emit_barrier_after_bb (bb);
4820 *new_direct_jump_p = 1;
4823 if (undobuf.other_insn
4824 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4825 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4827 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4828 gcc_assert (bb);
4829 remove_edge (split_block (bb, undobuf.other_insn));
4830 emit_barrier_after_bb (bb);
4831 *new_direct_jump_p = 1;
4834 /* A noop might also need cleaning up of CFG, if it comes from the
4835 simplification of a jump. */
4836 if (JUMP_P (i3)
4837 && GET_CODE (newpat) == SET
4838 && SET_SRC (newpat) == pc_rtx
4839 && SET_DEST (newpat) == pc_rtx)
4841 *new_direct_jump_p = 1;
4842 update_cfg_for_uncondjump (i3);
4845 if (undobuf.other_insn != NULL_RTX
4846 && JUMP_P (undobuf.other_insn)
4847 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4848 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4849 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4851 *new_direct_jump_p = 1;
4852 update_cfg_for_uncondjump (undobuf.other_insn);
4855 combine_successes++;
4856 undo_commit ();
4858 rtx_insn *ret = newi2pat ? i2 : i3;
4859 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4860 ret = added_links_insn;
4861 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4862 ret = added_notes_insn;
4864 return ret;
4867 /* Get a marker for undoing to the current state. */
4869 static void *
4870 get_undo_marker (void)
4872 return undobuf.undos;
4875 /* Undo the modifications up to the marker. */
4877 static void
4878 undo_to_marker (void *marker)
4880 struct undo *undo, *next;
4882 for (undo = undobuf.undos; undo != marker; undo = next)
4884 gcc_assert (undo);
4886 next = undo->next;
4887 switch (undo->kind)
4889 case UNDO_RTX:
4890 *undo->where.r = undo->old_contents.r;
4891 break;
4892 case UNDO_INT:
4893 *undo->where.i = undo->old_contents.i;
4894 break;
4895 case UNDO_MODE:
4896 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4897 break;
4898 case UNDO_LINKS:
4899 *undo->where.l = undo->old_contents.l;
4900 break;
4901 default:
4902 gcc_unreachable ();
4905 undo->next = undobuf.frees;
4906 undobuf.frees = undo;
4909 undobuf.undos = (struct undo *) marker;
4912 /* Undo all the modifications recorded in undobuf. */
4914 static void
4915 undo_all (void)
4917 undo_to_marker (0);
4920 /* We've committed to accepting the changes we made. Move all
4921 of the undos to the free list. */
4923 static void
4924 undo_commit (void)
4926 struct undo *undo, *next;
4928 for (undo = undobuf.undos; undo; undo = next)
4930 next = undo->next;
4931 undo->next = undobuf.frees;
4932 undobuf.frees = undo;
4934 undobuf.undos = 0;
4937 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4938 where we have an arithmetic expression and return that point. LOC will
4939 be inside INSN.
4941 try_combine will call this function to see if an insn can be split into
4942 two insns. */
4944 static rtx *
4945 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4947 rtx x = *loc;
4948 enum rtx_code code = GET_CODE (x);
4949 rtx *split;
4950 unsigned HOST_WIDE_INT len = 0;
4951 HOST_WIDE_INT pos = 0;
4952 int unsignedp = 0;
4953 rtx inner = NULL_RTX;
4954 scalar_int_mode mode, inner_mode;
4956 /* First special-case some codes. */
4957 switch (code)
4959 case SUBREG:
4960 #ifdef INSN_SCHEDULING
4961 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4962 point. */
4963 if (MEM_P (SUBREG_REG (x)))
4964 return loc;
4965 #endif
4966 return find_split_point (&SUBREG_REG (x), insn, false);
4968 case MEM:
4969 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4970 using LO_SUM and HIGH. */
4971 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4972 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4974 machine_mode address_mode = get_address_mode (x);
4976 SUBST (XEXP (x, 0),
4977 gen_rtx_LO_SUM (address_mode,
4978 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4979 XEXP (x, 0)));
4980 return &XEXP (XEXP (x, 0), 0);
4983 /* If we have a PLUS whose second operand is a constant and the
4984 address is not valid, perhaps we can split it up using
4985 the machine-specific way to split large constants. We use
4986 the first pseudo-reg (one of the virtual regs) as a placeholder;
4987 it will not remain in the result. */
4988 if (GET_CODE (XEXP (x, 0)) == PLUS
4989 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4990 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4991 MEM_ADDR_SPACE (x)))
4993 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4994 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4995 subst_insn);
4997 /* This should have produced two insns, each of which sets our
4998 placeholder. If the source of the second is a valid address,
4999 we can put both sources together and make a split point
5000 in the middle. */
5002 if (seq
5003 && NEXT_INSN (seq) != NULL_RTX
5004 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
5005 && NONJUMP_INSN_P (seq)
5006 && GET_CODE (PATTERN (seq)) == SET
5007 && SET_DEST (PATTERN (seq)) == reg
5008 && ! reg_mentioned_p (reg,
5009 SET_SRC (PATTERN (seq)))
5010 && NONJUMP_INSN_P (NEXT_INSN (seq))
5011 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5012 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5013 && memory_address_addr_space_p
5014 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5015 MEM_ADDR_SPACE (x)))
5017 rtx src1 = SET_SRC (PATTERN (seq));
5018 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5020 /* Replace the placeholder in SRC2 with SRC1. If we can
5021 find where in SRC2 it was placed, that can become our
5022 split point and we can replace this address with SRC2.
5023 Just try two obvious places. */
5025 src2 = replace_rtx (src2, reg, src1);
5026 split = 0;
5027 if (XEXP (src2, 0) == src1)
5028 split = &XEXP (src2, 0);
5029 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5030 && XEXP (XEXP (src2, 0), 0) == src1)
5031 split = &XEXP (XEXP (src2, 0), 0);
5033 if (split)
5035 SUBST (XEXP (x, 0), src2);
5036 return split;
5040 /* If that didn't work and we have a nested plus, like:
5041 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5042 is valid address, try to split (REG1 * CONST1). */
5043 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5044 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5045 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5046 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5047 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5048 0), 0)))))
5050 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5051 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5052 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5053 MEM_ADDR_SPACE (x)))
5055 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5056 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5058 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5060 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5061 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5062 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5063 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5064 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5065 0), 1)))))
5067 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5068 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5069 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5070 MEM_ADDR_SPACE (x)))
5072 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5073 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5075 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5078 /* If that didn't work, perhaps the first operand is complex and
5079 needs to be computed separately, so make a split point there.
5080 This will occur on machines that just support REG + CONST
5081 and have a constant moved through some previous computation. */
5082 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5083 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5084 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5085 return &XEXP (XEXP (x, 0), 0);
5088 /* If we have a PLUS whose first operand is complex, try computing it
5089 separately by making a split there. */
5090 if (GET_CODE (XEXP (x, 0)) == PLUS
5091 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5092 MEM_ADDR_SPACE (x))
5093 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5094 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5095 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5096 return &XEXP (XEXP (x, 0), 0);
5097 break;
5099 case SET:
5100 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5101 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5102 we need to put the operand into a register. So split at that
5103 point. */
5105 if (SET_DEST (x) == cc0_rtx
5106 && GET_CODE (SET_SRC (x)) != COMPARE
5107 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5108 && !OBJECT_P (SET_SRC (x))
5109 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5110 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5111 return &SET_SRC (x);
5113 /* See if we can split SET_SRC as it stands. */
5114 split = find_split_point (&SET_SRC (x), insn, true);
5115 if (split && split != &SET_SRC (x))
5116 return split;
5118 /* See if we can split SET_DEST as it stands. */
5119 split = find_split_point (&SET_DEST (x), insn, false);
5120 if (split && split != &SET_DEST (x))
5121 return split;
5123 /* See if this is a bitfield assignment with everything constant. If
5124 so, this is an IOR of an AND, so split it into that. */
5125 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5126 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5127 &inner_mode)
5128 && HWI_COMPUTABLE_MODE_P (inner_mode)
5129 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5130 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5131 && CONST_INT_P (SET_SRC (x))
5132 && ((INTVAL (XEXP (SET_DEST (x), 1))
5133 + INTVAL (XEXP (SET_DEST (x), 2)))
5134 <= GET_MODE_PRECISION (inner_mode))
5135 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5137 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5138 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5139 rtx dest = XEXP (SET_DEST (x), 0);
5140 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5141 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5142 rtx or_mask;
5144 if (BITS_BIG_ENDIAN)
5145 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5147 or_mask = gen_int_mode (src << pos, inner_mode);
5148 if (src == mask)
5149 SUBST (SET_SRC (x),
5150 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5151 else
5153 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5154 SUBST (SET_SRC (x),
5155 simplify_gen_binary (IOR, inner_mode,
5156 simplify_gen_binary (AND, inner_mode,
5157 dest, negmask),
5158 or_mask));
5161 SUBST (SET_DEST (x), dest);
5163 split = find_split_point (&SET_SRC (x), insn, true);
5164 if (split && split != &SET_SRC (x))
5165 return split;
5168 /* Otherwise, see if this is an operation that we can split into two.
5169 If so, try to split that. */
5170 code = GET_CODE (SET_SRC (x));
5172 switch (code)
5174 case AND:
5175 /* If we are AND'ing with a large constant that is only a single
5176 bit and the result is only being used in a context where we
5177 need to know if it is zero or nonzero, replace it with a bit
5178 extraction. This will avoid the large constant, which might
5179 have taken more than one insn to make. If the constant were
5180 not a valid argument to the AND but took only one insn to make,
5181 this is no worse, but if it took more than one insn, it will
5182 be better. */
5184 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5185 && REG_P (XEXP (SET_SRC (x), 0))
5186 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5187 && REG_P (SET_DEST (x))
5188 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5189 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5190 && XEXP (*split, 0) == SET_DEST (x)
5191 && XEXP (*split, 1) == const0_rtx)
5193 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5194 XEXP (SET_SRC (x), 0),
5195 pos, NULL_RTX, 1, 1, 0, 0);
5196 if (extraction != 0)
5198 SUBST (SET_SRC (x), extraction);
5199 return find_split_point (loc, insn, false);
5202 break;
5204 case NE:
5205 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5206 is known to be on, this can be converted into a NEG of a shift. */
5207 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5208 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5209 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5210 GET_MODE (XEXP (SET_SRC (x),
5211 0))))) >= 1))
5213 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5214 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5215 SUBST (SET_SRC (x),
5216 gen_rtx_NEG (mode,
5217 gen_rtx_LSHIFTRT (mode,
5218 XEXP (SET_SRC (x), 0),
5219 pos_rtx)));
5221 split = find_split_point (&SET_SRC (x), insn, true);
5222 if (split && split != &SET_SRC (x))
5223 return split;
5225 break;
5227 case SIGN_EXTEND:
5228 inner = XEXP (SET_SRC (x), 0);
5230 /* We can't optimize if either mode is a partial integer
5231 mode as we don't know how many bits are significant
5232 in those modes. */
5233 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5234 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5235 break;
5237 pos = 0;
5238 len = GET_MODE_PRECISION (inner_mode);
5239 unsignedp = 0;
5240 break;
5242 case SIGN_EXTRACT:
5243 case ZERO_EXTRACT:
5244 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5245 &inner_mode)
5246 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5247 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5249 inner = XEXP (SET_SRC (x), 0);
5250 len = INTVAL (XEXP (SET_SRC (x), 1));
5251 pos = INTVAL (XEXP (SET_SRC (x), 2));
5253 if (BITS_BIG_ENDIAN)
5254 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5255 unsignedp = (code == ZERO_EXTRACT);
5257 break;
5259 default:
5260 break;
5263 if (len
5264 && known_subrange_p (pos, len,
5265 0, GET_MODE_PRECISION (GET_MODE (inner)))
5266 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5268 /* For unsigned, we have a choice of a shift followed by an
5269 AND or two shifts. Use two shifts for field sizes where the
5270 constant might be too large. We assume here that we can
5271 always at least get 8-bit constants in an AND insn, which is
5272 true for every current RISC. */
5274 if (unsignedp && len <= 8)
5276 unsigned HOST_WIDE_INT mask
5277 = (HOST_WIDE_INT_1U << len) - 1;
5278 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5279 SUBST (SET_SRC (x),
5280 gen_rtx_AND (mode,
5281 gen_rtx_LSHIFTRT
5282 (mode, gen_lowpart (mode, inner), pos_rtx),
5283 gen_int_mode (mask, mode)));
5285 split = find_split_point (&SET_SRC (x), insn, true);
5286 if (split && split != &SET_SRC (x))
5287 return split;
5289 else
5291 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5292 int right_bits = GET_MODE_PRECISION (mode) - len;
5293 SUBST (SET_SRC (x),
5294 gen_rtx_fmt_ee
5295 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5296 gen_rtx_ASHIFT (mode,
5297 gen_lowpart (mode, inner),
5298 gen_int_shift_amount (mode, left_bits)),
5299 gen_int_shift_amount (mode, right_bits)));
5301 split = find_split_point (&SET_SRC (x), insn, true);
5302 if (split && split != &SET_SRC (x))
5303 return split;
5307 /* See if this is a simple operation with a constant as the second
5308 operand. It might be that this constant is out of range and hence
5309 could be used as a split point. */
5310 if (BINARY_P (SET_SRC (x))
5311 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5312 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5313 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5314 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5315 return &XEXP (SET_SRC (x), 1);
5317 /* Finally, see if this is a simple operation with its first operand
5318 not in a register. The operation might require this operand in a
5319 register, so return it as a split point. We can always do this
5320 because if the first operand were another operation, we would have
5321 already found it as a split point. */
5322 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5323 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5324 return &XEXP (SET_SRC (x), 0);
5326 return 0;
5328 case AND:
5329 case IOR:
5330 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5331 it is better to write this as (not (ior A B)) so we can split it.
5332 Similarly for IOR. */
5333 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5335 SUBST (*loc,
5336 gen_rtx_NOT (GET_MODE (x),
5337 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5338 GET_MODE (x),
5339 XEXP (XEXP (x, 0), 0),
5340 XEXP (XEXP (x, 1), 0))));
5341 return find_split_point (loc, insn, set_src);
5344 /* Many RISC machines have a large set of logical insns. If the
5345 second operand is a NOT, put it first so we will try to split the
5346 other operand first. */
5347 if (GET_CODE (XEXP (x, 1)) == NOT)
5349 rtx tem = XEXP (x, 0);
5350 SUBST (XEXP (x, 0), XEXP (x, 1));
5351 SUBST (XEXP (x, 1), tem);
5353 break;
5355 case PLUS:
5356 case MINUS:
5357 /* Canonicalization can produce (minus A (mult B C)), where C is a
5358 constant. It may be better to try splitting (plus (mult B -C) A)
5359 instead if this isn't a multiply by a power of two. */
5360 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5361 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5362 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5364 machine_mode mode = GET_MODE (x);
5365 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5366 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5367 SUBST (*loc, gen_rtx_PLUS (mode,
5368 gen_rtx_MULT (mode,
5369 XEXP (XEXP (x, 1), 0),
5370 gen_int_mode (other_int,
5371 mode)),
5372 XEXP (x, 0)));
5373 return find_split_point (loc, insn, set_src);
5376 /* Split at a multiply-accumulate instruction. However if this is
5377 the SET_SRC, we likely do not have such an instruction and it's
5378 worthless to try this split. */
5379 if (!set_src
5380 && (GET_CODE (XEXP (x, 0)) == MULT
5381 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5382 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5383 return loc;
5385 default:
5386 break;
5389 /* Otherwise, select our actions depending on our rtx class. */
5390 switch (GET_RTX_CLASS (code))
5392 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5393 case RTX_TERNARY:
5394 split = find_split_point (&XEXP (x, 2), insn, false);
5395 if (split)
5396 return split;
5397 /* fall through */
5398 case RTX_BIN_ARITH:
5399 case RTX_COMM_ARITH:
5400 case RTX_COMPARE:
5401 case RTX_COMM_COMPARE:
5402 split = find_split_point (&XEXP (x, 1), insn, false);
5403 if (split)
5404 return split;
5405 /* fall through */
5406 case RTX_UNARY:
5407 /* Some machines have (and (shift ...) ...) insns. If X is not
5408 an AND, but XEXP (X, 0) is, use it as our split point. */
5409 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5410 return &XEXP (x, 0);
5412 split = find_split_point (&XEXP (x, 0), insn, false);
5413 if (split)
5414 return split;
5415 return loc;
5417 default:
5418 /* Otherwise, we don't have a split point. */
5419 return 0;
5423 /* Throughout X, replace FROM with TO, and return the result.
5424 The result is TO if X is FROM;
5425 otherwise the result is X, but its contents may have been modified.
5426 If they were modified, a record was made in undobuf so that
5427 undo_all will (among other things) return X to its original state.
5429 If the number of changes necessary is too much to record to undo,
5430 the excess changes are not made, so the result is invalid.
5431 The changes already made can still be undone.
5432 undobuf.num_undo is incremented for such changes, so by testing that
5433 the caller can tell whether the result is valid.
5435 `n_occurrences' is incremented each time FROM is replaced.
5437 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5439 IN_COND is nonzero if we are at the top level of a condition.
5441 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5442 by copying if `n_occurrences' is nonzero. */
5444 static rtx
5445 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5447 enum rtx_code code = GET_CODE (x);
5448 machine_mode op0_mode = VOIDmode;
5449 const char *fmt;
5450 int len, i;
5451 rtx new_rtx;
5453 /* Two expressions are equal if they are identical copies of a shared
5454 RTX or if they are both registers with the same register number
5455 and mode. */
5457 #define COMBINE_RTX_EQUAL_P(X,Y) \
5458 ((X) == (Y) \
5459 || (REG_P (X) && REG_P (Y) \
5460 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5462 /* Do not substitute into clobbers of regs -- this will never result in
5463 valid RTL. */
5464 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5465 return x;
5467 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5469 n_occurrences++;
5470 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5473 /* If X and FROM are the same register but different modes, they
5474 will not have been seen as equal above. However, the log links code
5475 will make a LOG_LINKS entry for that case. If we do nothing, we
5476 will try to rerecognize our original insn and, when it succeeds,
5477 we will delete the feeding insn, which is incorrect.
5479 So force this insn not to match in this (rare) case. */
5480 if (! in_dest && code == REG && REG_P (from)
5481 && reg_overlap_mentioned_p (x, from))
5482 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5484 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5485 of which may contain things that can be combined. */
5486 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5487 return x;
5489 /* It is possible to have a subexpression appear twice in the insn.
5490 Suppose that FROM is a register that appears within TO.
5491 Then, after that subexpression has been scanned once by `subst',
5492 the second time it is scanned, TO may be found. If we were
5493 to scan TO here, we would find FROM within it and create a
5494 self-referent rtl structure which is completely wrong. */
5495 if (COMBINE_RTX_EQUAL_P (x, to))
5496 return to;
5498 /* Parallel asm_operands need special attention because all of the
5499 inputs are shared across the arms. Furthermore, unsharing the
5500 rtl results in recognition failures. Failure to handle this case
5501 specially can result in circular rtl.
5503 Solve this by doing a normal pass across the first entry of the
5504 parallel, and only processing the SET_DESTs of the subsequent
5505 entries. Ug. */
5507 if (code == PARALLEL
5508 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5509 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5511 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5513 /* If this substitution failed, this whole thing fails. */
5514 if (GET_CODE (new_rtx) == CLOBBER
5515 && XEXP (new_rtx, 0) == const0_rtx)
5516 return new_rtx;
5518 SUBST (XVECEXP (x, 0, 0), new_rtx);
5520 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5522 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5524 if (!REG_P (dest)
5525 && GET_CODE (dest) != CC0
5526 && GET_CODE (dest) != PC)
5528 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5530 /* If this substitution failed, this whole thing fails. */
5531 if (GET_CODE (new_rtx) == CLOBBER
5532 && XEXP (new_rtx, 0) == const0_rtx)
5533 return new_rtx;
5535 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5539 else
5541 len = GET_RTX_LENGTH (code);
5542 fmt = GET_RTX_FORMAT (code);
5544 /* We don't need to process a SET_DEST that is a register, CC0,
5545 or PC, so set up to skip this common case. All other cases
5546 where we want to suppress replacing something inside a
5547 SET_SRC are handled via the IN_DEST operand. */
5548 if (code == SET
5549 && (REG_P (SET_DEST (x))
5550 || GET_CODE (SET_DEST (x)) == CC0
5551 || GET_CODE (SET_DEST (x)) == PC))
5552 fmt = "ie";
5554 /* Trying to simplify the operands of a widening MULT is not likely
5555 to create RTL matching a machine insn. */
5556 if (code == MULT
5557 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5558 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5559 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5560 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5561 && REG_P (XEXP (XEXP (x, 0), 0))
5562 && REG_P (XEXP (XEXP (x, 1), 0))
5563 && from == to)
5564 return x;
5567 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5568 constant. */
5569 if (fmt[0] == 'e')
5570 op0_mode = GET_MODE (XEXP (x, 0));
5572 for (i = 0; i < len; i++)
5574 if (fmt[i] == 'E')
5576 int j;
5577 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5579 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5581 new_rtx = (unique_copy && n_occurrences
5582 ? copy_rtx (to) : to);
5583 n_occurrences++;
5585 else
5587 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5588 unique_copy);
5590 /* If this substitution failed, this whole thing
5591 fails. */
5592 if (GET_CODE (new_rtx) == CLOBBER
5593 && XEXP (new_rtx, 0) == const0_rtx)
5594 return new_rtx;
5597 SUBST (XVECEXP (x, i, j), new_rtx);
5600 else if (fmt[i] == 'e')
5602 /* If this is a register being set, ignore it. */
5603 new_rtx = XEXP (x, i);
5604 if (in_dest
5605 && i == 0
5606 && (((code == SUBREG || code == ZERO_EXTRACT)
5607 && REG_P (new_rtx))
5608 || code == STRICT_LOW_PART))
5611 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5613 /* In general, don't install a subreg involving two
5614 modes not tieable. It can worsen register
5615 allocation, and can even make invalid reload
5616 insns, since the reg inside may need to be copied
5617 from in the outside mode, and that may be invalid
5618 if it is an fp reg copied in integer mode.
5620 We allow two exceptions to this: It is valid if
5621 it is inside another SUBREG and the mode of that
5622 SUBREG and the mode of the inside of TO is
5623 tieable and it is valid if X is a SET that copies
5624 FROM to CC0. */
5626 if (GET_CODE (to) == SUBREG
5627 && !targetm.modes_tieable_p (GET_MODE (to),
5628 GET_MODE (SUBREG_REG (to)))
5629 && ! (code == SUBREG
5630 && (targetm.modes_tieable_p
5631 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5632 && (!HAVE_cc0
5633 || (! (code == SET
5634 && i == 1
5635 && XEXP (x, 0) == cc0_rtx))))
5636 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5638 if (code == SUBREG
5639 && REG_P (to)
5640 && REGNO (to) < FIRST_PSEUDO_REGISTER
5641 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5642 SUBREG_BYTE (x),
5643 GET_MODE (x)) < 0)
5644 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5646 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5647 n_occurrences++;
5649 else
5650 /* If we are in a SET_DEST, suppress most cases unless we
5651 have gone inside a MEM, in which case we want to
5652 simplify the address. We assume here that things that
5653 are actually part of the destination have their inner
5654 parts in the first expression. This is true for SUBREG,
5655 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5656 things aside from REG and MEM that should appear in a
5657 SET_DEST. */
5658 new_rtx = subst (XEXP (x, i), from, to,
5659 (((in_dest
5660 && (code == SUBREG || code == STRICT_LOW_PART
5661 || code == ZERO_EXTRACT))
5662 || code == SET)
5663 && i == 0),
5664 code == IF_THEN_ELSE && i == 0,
5665 unique_copy);
5667 /* If we found that we will have to reject this combination,
5668 indicate that by returning the CLOBBER ourselves, rather than
5669 an expression containing it. This will speed things up as
5670 well as prevent accidents where two CLOBBERs are considered
5671 to be equal, thus producing an incorrect simplification. */
5673 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5674 return new_rtx;
5676 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5678 machine_mode mode = GET_MODE (x);
5680 x = simplify_subreg (GET_MODE (x), new_rtx,
5681 GET_MODE (SUBREG_REG (x)),
5682 SUBREG_BYTE (x));
5683 if (! x)
5684 x = gen_rtx_CLOBBER (mode, const0_rtx);
5686 else if (CONST_SCALAR_INT_P (new_rtx)
5687 && (GET_CODE (x) == ZERO_EXTEND
5688 || GET_CODE (x) == SIGN_EXTEND
5689 || GET_CODE (x) == FLOAT
5690 || GET_CODE (x) == UNSIGNED_FLOAT))
5692 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5693 new_rtx,
5694 GET_MODE (XEXP (x, 0)));
5695 if (!x)
5696 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5698 else
5699 SUBST (XEXP (x, i), new_rtx);
5704 /* Check if we are loading something from the constant pool via float
5705 extension; in this case we would undo compress_float_constant
5706 optimization and degenerate constant load to an immediate value. */
5707 if (GET_CODE (x) == FLOAT_EXTEND
5708 && MEM_P (XEXP (x, 0))
5709 && MEM_READONLY_P (XEXP (x, 0)))
5711 rtx tmp = avoid_constant_pool_reference (x);
5712 if (x != tmp)
5713 return x;
5716 /* Try to simplify X. If the simplification changed the code, it is likely
5717 that further simplification will help, so loop, but limit the number
5718 of repetitions that will be performed. */
5720 for (i = 0; i < 4; i++)
5722 /* If X is sufficiently simple, don't bother trying to do anything
5723 with it. */
5724 if (code != CONST_INT && code != REG && code != CLOBBER)
5725 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5727 if (GET_CODE (x) == code)
5728 break;
5730 code = GET_CODE (x);
5732 /* We no longer know the original mode of operand 0 since we
5733 have changed the form of X) */
5734 op0_mode = VOIDmode;
5737 return x;
5740 /* If X is a commutative operation whose operands are not in the canonical
5741 order, use substitutions to swap them. */
5743 static void
5744 maybe_swap_commutative_operands (rtx x)
5746 if (COMMUTATIVE_ARITH_P (x)
5747 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5749 rtx temp = XEXP (x, 0);
5750 SUBST (XEXP (x, 0), XEXP (x, 1));
5751 SUBST (XEXP (x, 1), temp);
5755 /* Simplify X, a piece of RTL. We just operate on the expression at the
5756 outer level; call `subst' to simplify recursively. Return the new
5757 expression.
5759 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5760 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5761 of a condition. */
5763 static rtx
5764 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5765 int in_cond)
5767 enum rtx_code code = GET_CODE (x);
5768 machine_mode mode = GET_MODE (x);
5769 scalar_int_mode int_mode;
5770 rtx temp;
5771 int i;
5773 /* If this is a commutative operation, put a constant last and a complex
5774 expression first. We don't need to do this for comparisons here. */
5775 maybe_swap_commutative_operands (x);
5777 /* Try to fold this expression in case we have constants that weren't
5778 present before. */
5779 temp = 0;
5780 switch (GET_RTX_CLASS (code))
5782 case RTX_UNARY:
5783 if (op0_mode == VOIDmode)
5784 op0_mode = GET_MODE (XEXP (x, 0));
5785 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5786 break;
5787 case RTX_COMPARE:
5788 case RTX_COMM_COMPARE:
5790 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5791 if (cmp_mode == VOIDmode)
5793 cmp_mode = GET_MODE (XEXP (x, 1));
5794 if (cmp_mode == VOIDmode)
5795 cmp_mode = op0_mode;
5797 temp = simplify_relational_operation (code, mode, cmp_mode,
5798 XEXP (x, 0), XEXP (x, 1));
5800 break;
5801 case RTX_COMM_ARITH:
5802 case RTX_BIN_ARITH:
5803 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5804 break;
5805 case RTX_BITFIELD_OPS:
5806 case RTX_TERNARY:
5807 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5808 XEXP (x, 1), XEXP (x, 2));
5809 break;
5810 default:
5811 break;
5814 if (temp)
5816 x = temp;
5817 code = GET_CODE (temp);
5818 op0_mode = VOIDmode;
5819 mode = GET_MODE (temp);
5822 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5823 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5824 things. Check for cases where both arms are testing the same
5825 condition.
5827 Don't do anything if all operands are very simple. */
5829 if ((BINARY_P (x)
5830 && ((!OBJECT_P (XEXP (x, 0))
5831 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5832 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5833 || (!OBJECT_P (XEXP (x, 1))
5834 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5835 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5836 || (UNARY_P (x)
5837 && (!OBJECT_P (XEXP (x, 0))
5838 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5839 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5841 rtx cond, true_rtx, false_rtx;
5843 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5844 if (cond != 0
5845 /* If everything is a comparison, what we have is highly unlikely
5846 to be simpler, so don't use it. */
5847 && ! (COMPARISON_P (x)
5848 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5849 /* Similarly, if we end up with one of the expressions the same
5850 as the original, it is certainly not simpler. */
5851 && ! rtx_equal_p (x, true_rtx)
5852 && ! rtx_equal_p (x, false_rtx))
5854 rtx cop1 = const0_rtx;
5855 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5857 if (cond_code == NE && COMPARISON_P (cond))
5858 return x;
5860 /* Simplify the alternative arms; this may collapse the true and
5861 false arms to store-flag values. Be careful to use copy_rtx
5862 here since true_rtx or false_rtx might share RTL with x as a
5863 result of the if_then_else_cond call above. */
5864 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5865 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5867 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5868 is unlikely to be simpler. */
5869 if (general_operand (true_rtx, VOIDmode)
5870 && general_operand (false_rtx, VOIDmode))
5872 enum rtx_code reversed;
5874 /* Restarting if we generate a store-flag expression will cause
5875 us to loop. Just drop through in this case. */
5877 /* If the result values are STORE_FLAG_VALUE and zero, we can
5878 just make the comparison operation. */
5879 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5880 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5881 cond, cop1);
5882 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5883 && ((reversed = reversed_comparison_code_parts
5884 (cond_code, cond, cop1, NULL))
5885 != UNKNOWN))
5886 x = simplify_gen_relational (reversed, mode, VOIDmode,
5887 cond, cop1);
5889 /* Likewise, we can make the negate of a comparison operation
5890 if the result values are - STORE_FLAG_VALUE and zero. */
5891 else if (CONST_INT_P (true_rtx)
5892 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5893 && false_rtx == const0_rtx)
5894 x = simplify_gen_unary (NEG, mode,
5895 simplify_gen_relational (cond_code,
5896 mode, VOIDmode,
5897 cond, cop1),
5898 mode);
5899 else if (CONST_INT_P (false_rtx)
5900 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5901 && true_rtx == const0_rtx
5902 && ((reversed = reversed_comparison_code_parts
5903 (cond_code, cond, cop1, NULL))
5904 != UNKNOWN))
5905 x = simplify_gen_unary (NEG, mode,
5906 simplify_gen_relational (reversed,
5907 mode, VOIDmode,
5908 cond, cop1),
5909 mode);
5911 code = GET_CODE (x);
5912 op0_mode = VOIDmode;
5917 /* First see if we can apply the inverse distributive law. */
5918 if (code == PLUS || code == MINUS
5919 || code == AND || code == IOR || code == XOR)
5921 x = apply_distributive_law (x);
5922 code = GET_CODE (x);
5923 op0_mode = VOIDmode;
5926 /* If CODE is an associative operation not otherwise handled, see if we
5927 can associate some operands. This can win if they are constants or
5928 if they are logically related (i.e. (a & b) & a). */
5929 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5930 || code == AND || code == IOR || code == XOR
5931 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5932 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5933 || (flag_associative_math && FLOAT_MODE_P (mode))))
5935 if (GET_CODE (XEXP (x, 0)) == code)
5937 rtx other = XEXP (XEXP (x, 0), 0);
5938 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5939 rtx inner_op1 = XEXP (x, 1);
5940 rtx inner;
5942 /* Make sure we pass the constant operand if any as the second
5943 one if this is a commutative operation. */
5944 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5945 std::swap (inner_op0, inner_op1);
5946 inner = simplify_binary_operation (code == MINUS ? PLUS
5947 : code == DIV ? MULT
5948 : code,
5949 mode, inner_op0, inner_op1);
5951 /* For commutative operations, try the other pair if that one
5952 didn't simplify. */
5953 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5955 other = XEXP (XEXP (x, 0), 1);
5956 inner = simplify_binary_operation (code, mode,
5957 XEXP (XEXP (x, 0), 0),
5958 XEXP (x, 1));
5961 if (inner)
5962 return simplify_gen_binary (code, mode, other, inner);
5966 /* A little bit of algebraic simplification here. */
5967 switch (code)
5969 case MEM:
5970 /* Ensure that our address has any ASHIFTs converted to MULT in case
5971 address-recognizing predicates are called later. */
5972 temp = make_compound_operation (XEXP (x, 0), MEM);
5973 SUBST (XEXP (x, 0), temp);
5974 break;
5976 case SUBREG:
5977 if (op0_mode == VOIDmode)
5978 op0_mode = GET_MODE (SUBREG_REG (x));
5980 /* See if this can be moved to simplify_subreg. */
5981 if (CONSTANT_P (SUBREG_REG (x))
5982 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5983 /* Don't call gen_lowpart if the inner mode
5984 is VOIDmode and we cannot simplify it, as SUBREG without
5985 inner mode is invalid. */
5986 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5987 || gen_lowpart_common (mode, SUBREG_REG (x))))
5988 return gen_lowpart (mode, SUBREG_REG (x));
5990 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5991 break;
5993 rtx temp;
5994 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5995 SUBREG_BYTE (x));
5996 if (temp)
5997 return temp;
5999 /* If op is known to have all lower bits zero, the result is zero. */
6000 scalar_int_mode int_mode, int_op0_mode;
6001 if (!in_dest
6002 && is_a <scalar_int_mode> (mode, &int_mode)
6003 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
6004 && (GET_MODE_PRECISION (int_mode)
6005 < GET_MODE_PRECISION (int_op0_mode))
6006 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6007 SUBREG_BYTE (x))
6008 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6009 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6010 & GET_MODE_MASK (int_mode)) == 0)
6011 && !side_effects_p (SUBREG_REG (x)))
6012 return CONST0_RTX (int_mode);
6015 /* Don't change the mode of the MEM if that would change the meaning
6016 of the address. */
6017 if (MEM_P (SUBREG_REG (x))
6018 && (MEM_VOLATILE_P (SUBREG_REG (x))
6019 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6020 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6021 return gen_rtx_CLOBBER (mode, const0_rtx);
6023 /* Note that we cannot do any narrowing for non-constants since
6024 we might have been counting on using the fact that some bits were
6025 zero. We now do this in the SET. */
6027 break;
6029 case NEG:
6030 temp = expand_compound_operation (XEXP (x, 0));
6032 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6033 replaced by (lshiftrt X C). This will convert
6034 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6036 if (GET_CODE (temp) == ASHIFTRT
6037 && CONST_INT_P (XEXP (temp, 1))
6038 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6039 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6040 INTVAL (XEXP (temp, 1)));
6042 /* If X has only a single bit that might be nonzero, say, bit I, convert
6043 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6044 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6045 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6046 or a SUBREG of one since we'd be making the expression more
6047 complex if it was just a register. */
6049 if (!REG_P (temp)
6050 && ! (GET_CODE (temp) == SUBREG
6051 && REG_P (SUBREG_REG (temp)))
6052 && is_a <scalar_int_mode> (mode, &int_mode)
6053 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6055 rtx temp1 = simplify_shift_const
6056 (NULL_RTX, ASHIFTRT, int_mode,
6057 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6058 GET_MODE_PRECISION (int_mode) - 1 - i),
6059 GET_MODE_PRECISION (int_mode) - 1 - i);
6061 /* If all we did was surround TEMP with the two shifts, we
6062 haven't improved anything, so don't use it. Otherwise,
6063 we are better off with TEMP1. */
6064 if (GET_CODE (temp1) != ASHIFTRT
6065 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6066 || XEXP (XEXP (temp1, 0), 0) != temp)
6067 return temp1;
6069 break;
6071 case TRUNCATE:
6072 /* We can't handle truncation to a partial integer mode here
6073 because we don't know the real bitsize of the partial
6074 integer mode. */
6075 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6076 break;
6078 if (HWI_COMPUTABLE_MODE_P (mode))
6079 SUBST (XEXP (x, 0),
6080 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6081 GET_MODE_MASK (mode), 0));
6083 /* We can truncate a constant value and return it. */
6085 poly_int64 c;
6086 if (poly_int_rtx_p (XEXP (x, 0), &c))
6087 return gen_int_mode (c, mode);
6090 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6091 whose value is a comparison can be replaced with a subreg if
6092 STORE_FLAG_VALUE permits. */
6093 if (HWI_COMPUTABLE_MODE_P (mode)
6094 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6095 && (temp = get_last_value (XEXP (x, 0)))
6096 && COMPARISON_P (temp))
6097 return gen_lowpart (mode, XEXP (x, 0));
6098 break;
6100 case CONST:
6101 /* (const (const X)) can become (const X). Do it this way rather than
6102 returning the inner CONST since CONST can be shared with a
6103 REG_EQUAL note. */
6104 if (GET_CODE (XEXP (x, 0)) == CONST)
6105 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6106 break;
6108 case LO_SUM:
6109 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6110 can add in an offset. find_split_point will split this address up
6111 again if it doesn't match. */
6112 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6113 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6114 return XEXP (x, 1);
6115 break;
6117 case PLUS:
6118 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6119 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6120 bit-field and can be replaced by either a sign_extend or a
6121 sign_extract. The `and' may be a zero_extend and the two
6122 <c>, -<c> constants may be reversed. */
6123 if (GET_CODE (XEXP (x, 0)) == XOR
6124 && is_a <scalar_int_mode> (mode, &int_mode)
6125 && CONST_INT_P (XEXP (x, 1))
6126 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6127 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6128 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6129 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6130 && HWI_COMPUTABLE_MODE_P (int_mode)
6131 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6132 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6133 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6134 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6135 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6136 && known_eq ((GET_MODE_PRECISION
6137 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6138 (unsigned int) i + 1))))
6139 return simplify_shift_const
6140 (NULL_RTX, ASHIFTRT, int_mode,
6141 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6142 XEXP (XEXP (XEXP (x, 0), 0), 0),
6143 GET_MODE_PRECISION (int_mode) - (i + 1)),
6144 GET_MODE_PRECISION (int_mode) - (i + 1));
6146 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6147 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6148 the bitsize of the mode - 1. This allows simplification of
6149 "a = (b & 8) == 0;" */
6150 if (XEXP (x, 1) == constm1_rtx
6151 && !REG_P (XEXP (x, 0))
6152 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6153 && REG_P (SUBREG_REG (XEXP (x, 0))))
6154 && is_a <scalar_int_mode> (mode, &int_mode)
6155 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6156 return simplify_shift_const
6157 (NULL_RTX, ASHIFTRT, int_mode,
6158 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6159 gen_rtx_XOR (int_mode, XEXP (x, 0),
6160 const1_rtx),
6161 GET_MODE_PRECISION (int_mode) - 1),
6162 GET_MODE_PRECISION (int_mode) - 1);
6164 /* If we are adding two things that have no bits in common, convert
6165 the addition into an IOR. This will often be further simplified,
6166 for example in cases like ((a & 1) + (a & 2)), which can
6167 become a & 3. */
6169 if (HWI_COMPUTABLE_MODE_P (mode)
6170 && (nonzero_bits (XEXP (x, 0), mode)
6171 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6173 /* Try to simplify the expression further. */
6174 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6175 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6177 /* If we could, great. If not, do not go ahead with the IOR
6178 replacement, since PLUS appears in many special purpose
6179 address arithmetic instructions. */
6180 if (GET_CODE (temp) != CLOBBER
6181 && (GET_CODE (temp) != IOR
6182 || ((XEXP (temp, 0) != XEXP (x, 0)
6183 || XEXP (temp, 1) != XEXP (x, 1))
6184 && (XEXP (temp, 0) != XEXP (x, 1)
6185 || XEXP (temp, 1) != XEXP (x, 0)))))
6186 return temp;
6189 /* Canonicalize x + x into x << 1. */
6190 if (GET_MODE_CLASS (mode) == MODE_INT
6191 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6192 && !side_effects_p (XEXP (x, 0)))
6193 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6195 break;
6197 case MINUS:
6198 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6199 (and <foo> (const_int pow2-1)) */
6200 if (is_a <scalar_int_mode> (mode, &int_mode)
6201 && GET_CODE (XEXP (x, 1)) == AND
6202 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6203 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6204 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6205 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6206 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6207 break;
6209 case MULT:
6210 /* If we have (mult (plus A B) C), apply the distributive law and then
6211 the inverse distributive law to see if things simplify. This
6212 occurs mostly in addresses, often when unrolling loops. */
6214 if (GET_CODE (XEXP (x, 0)) == PLUS)
6216 rtx result = distribute_and_simplify_rtx (x, 0);
6217 if (result)
6218 return result;
6221 /* Try simplify a*(b/c) as (a*b)/c. */
6222 if (FLOAT_MODE_P (mode) && flag_associative_math
6223 && GET_CODE (XEXP (x, 0)) == DIV)
6225 rtx tem = simplify_binary_operation (MULT, mode,
6226 XEXP (XEXP (x, 0), 0),
6227 XEXP (x, 1));
6228 if (tem)
6229 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6231 break;
6233 case UDIV:
6234 /* If this is a divide by a power of two, treat it as a shift if
6235 its first operand is a shift. */
6236 if (is_a <scalar_int_mode> (mode, &int_mode)
6237 && CONST_INT_P (XEXP (x, 1))
6238 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6239 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6240 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6241 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6242 || GET_CODE (XEXP (x, 0)) == ROTATE
6243 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6244 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6245 XEXP (x, 0), i);
6246 break;
6248 case EQ: case NE:
6249 case GT: case GTU: case GE: case GEU:
6250 case LT: case LTU: case LE: case LEU:
6251 case UNEQ: case LTGT:
6252 case UNGT: case UNGE:
6253 case UNLT: case UNLE:
6254 case UNORDERED: case ORDERED:
6255 /* If the first operand is a condition code, we can't do anything
6256 with it. */
6257 if (GET_CODE (XEXP (x, 0)) == COMPARE
6258 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6259 && ! CC0_P (XEXP (x, 0))))
6261 rtx op0 = XEXP (x, 0);
6262 rtx op1 = XEXP (x, 1);
6263 enum rtx_code new_code;
6265 if (GET_CODE (op0) == COMPARE)
6266 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6268 /* Simplify our comparison, if possible. */
6269 new_code = simplify_comparison (code, &op0, &op1);
6271 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6272 if only the low-order bit is possibly nonzero in X (such as when
6273 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6274 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6275 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6276 (plus X 1).
6278 Remove any ZERO_EXTRACT we made when thinking this was a
6279 comparison. It may now be simpler to use, e.g., an AND. If a
6280 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6281 the call to make_compound_operation in the SET case.
6283 Don't apply these optimizations if the caller would
6284 prefer a comparison rather than a value.
6285 E.g., for the condition in an IF_THEN_ELSE most targets need
6286 an explicit comparison. */
6288 if (in_cond)
6291 else if (STORE_FLAG_VALUE == 1
6292 && new_code == NE
6293 && is_int_mode (mode, &int_mode)
6294 && op1 == const0_rtx
6295 && int_mode == GET_MODE (op0)
6296 && nonzero_bits (op0, int_mode) == 1)
6297 return gen_lowpart (int_mode,
6298 expand_compound_operation (op0));
6300 else if (STORE_FLAG_VALUE == 1
6301 && new_code == NE
6302 && is_int_mode (mode, &int_mode)
6303 && op1 == const0_rtx
6304 && int_mode == GET_MODE (op0)
6305 && (num_sign_bit_copies (op0, int_mode)
6306 == GET_MODE_PRECISION (int_mode)))
6308 op0 = expand_compound_operation (op0);
6309 return simplify_gen_unary (NEG, int_mode,
6310 gen_lowpart (int_mode, op0),
6311 int_mode);
6314 else if (STORE_FLAG_VALUE == 1
6315 && new_code == EQ
6316 && is_int_mode (mode, &int_mode)
6317 && op1 == const0_rtx
6318 && int_mode == GET_MODE (op0)
6319 && nonzero_bits (op0, int_mode) == 1)
6321 op0 = expand_compound_operation (op0);
6322 return simplify_gen_binary (XOR, int_mode,
6323 gen_lowpart (int_mode, op0),
6324 const1_rtx);
6327 else if (STORE_FLAG_VALUE == 1
6328 && new_code == EQ
6329 && is_int_mode (mode, &int_mode)
6330 && op1 == const0_rtx
6331 && int_mode == GET_MODE (op0)
6332 && (num_sign_bit_copies (op0, int_mode)
6333 == GET_MODE_PRECISION (int_mode)))
6335 op0 = expand_compound_operation (op0);
6336 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6339 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6340 those above. */
6341 if (in_cond)
6344 else if (STORE_FLAG_VALUE == -1
6345 && new_code == NE
6346 && is_int_mode (mode, &int_mode)
6347 && op1 == const0_rtx
6348 && int_mode == GET_MODE (op0)
6349 && (num_sign_bit_copies (op0, int_mode)
6350 == GET_MODE_PRECISION (int_mode)))
6351 return gen_lowpart (int_mode, expand_compound_operation (op0));
6353 else if (STORE_FLAG_VALUE == -1
6354 && new_code == NE
6355 && is_int_mode (mode, &int_mode)
6356 && op1 == const0_rtx
6357 && int_mode == GET_MODE (op0)
6358 && nonzero_bits (op0, int_mode) == 1)
6360 op0 = expand_compound_operation (op0);
6361 return simplify_gen_unary (NEG, int_mode,
6362 gen_lowpart (int_mode, op0),
6363 int_mode);
6366 else if (STORE_FLAG_VALUE == -1
6367 && new_code == EQ
6368 && is_int_mode (mode, &int_mode)
6369 && op1 == const0_rtx
6370 && int_mode == GET_MODE (op0)
6371 && (num_sign_bit_copies (op0, int_mode)
6372 == GET_MODE_PRECISION (int_mode)))
6374 op0 = expand_compound_operation (op0);
6375 return simplify_gen_unary (NOT, int_mode,
6376 gen_lowpart (int_mode, op0),
6377 int_mode);
6380 /* If X is 0/1, (eq X 0) is X-1. */
6381 else if (STORE_FLAG_VALUE == -1
6382 && new_code == EQ
6383 && is_int_mode (mode, &int_mode)
6384 && op1 == const0_rtx
6385 && int_mode == GET_MODE (op0)
6386 && nonzero_bits (op0, int_mode) == 1)
6388 op0 = expand_compound_operation (op0);
6389 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6392 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6393 one bit that might be nonzero, we can convert (ne x 0) to
6394 (ashift x c) where C puts the bit in the sign bit. Remove any
6395 AND with STORE_FLAG_VALUE when we are done, since we are only
6396 going to test the sign bit. */
6397 if (new_code == NE
6398 && is_int_mode (mode, &int_mode)
6399 && HWI_COMPUTABLE_MODE_P (int_mode)
6400 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6401 && op1 == const0_rtx
6402 && int_mode == GET_MODE (op0)
6403 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6405 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6406 expand_compound_operation (op0),
6407 GET_MODE_PRECISION (int_mode) - 1 - i);
6408 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6409 return XEXP (x, 0);
6410 else
6411 return x;
6414 /* If the code changed, return a whole new comparison.
6415 We also need to avoid using SUBST in cases where
6416 simplify_comparison has widened a comparison with a CONST_INT,
6417 since in that case the wider CONST_INT may fail the sanity
6418 checks in do_SUBST. */
6419 if (new_code != code
6420 || (CONST_INT_P (op1)
6421 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6422 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6423 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6425 /* Otherwise, keep this operation, but maybe change its operands.
6426 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6427 SUBST (XEXP (x, 0), op0);
6428 SUBST (XEXP (x, 1), op1);
6430 break;
6432 case IF_THEN_ELSE:
6433 return simplify_if_then_else (x);
6435 case ZERO_EXTRACT:
6436 case SIGN_EXTRACT:
6437 case ZERO_EXTEND:
6438 case SIGN_EXTEND:
6439 /* If we are processing SET_DEST, we are done. */
6440 if (in_dest)
6441 return x;
6443 return expand_compound_operation (x);
6445 case SET:
6446 return simplify_set (x);
6448 case AND:
6449 case IOR:
6450 return simplify_logical (x);
6452 case ASHIFT:
6453 case LSHIFTRT:
6454 case ASHIFTRT:
6455 case ROTATE:
6456 case ROTATERT:
6457 /* If this is a shift by a constant amount, simplify it. */
6458 if (CONST_INT_P (XEXP (x, 1)))
6459 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6460 INTVAL (XEXP (x, 1)));
6462 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6463 SUBST (XEXP (x, 1),
6464 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6465 (HOST_WIDE_INT_1U
6466 << exact_log2 (GET_MODE_UNIT_BITSIZE
6467 (GET_MODE (x))))
6468 - 1,
6469 0));
6470 break;
6472 default:
6473 break;
6476 return x;
6479 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6481 static rtx
6482 simplify_if_then_else (rtx x)
6484 machine_mode mode = GET_MODE (x);
6485 rtx cond = XEXP (x, 0);
6486 rtx true_rtx = XEXP (x, 1);
6487 rtx false_rtx = XEXP (x, 2);
6488 enum rtx_code true_code = GET_CODE (cond);
6489 int comparison_p = COMPARISON_P (cond);
6490 rtx temp;
6491 int i;
6492 enum rtx_code false_code;
6493 rtx reversed;
6494 scalar_int_mode int_mode, inner_mode;
6496 /* Simplify storing of the truth value. */
6497 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6498 return simplify_gen_relational (true_code, mode, VOIDmode,
6499 XEXP (cond, 0), XEXP (cond, 1));
6501 /* Also when the truth value has to be reversed. */
6502 if (comparison_p
6503 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6504 && (reversed = reversed_comparison (cond, mode)))
6505 return reversed;
6507 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6508 in it is being compared against certain values. Get the true and false
6509 comparisons and see if that says anything about the value of each arm. */
6511 if (comparison_p
6512 && ((false_code = reversed_comparison_code (cond, NULL))
6513 != UNKNOWN)
6514 && REG_P (XEXP (cond, 0)))
6516 HOST_WIDE_INT nzb;
6517 rtx from = XEXP (cond, 0);
6518 rtx true_val = XEXP (cond, 1);
6519 rtx false_val = true_val;
6520 int swapped = 0;
6522 /* If FALSE_CODE is EQ, swap the codes and arms. */
6524 if (false_code == EQ)
6526 swapped = 1, true_code = EQ, false_code = NE;
6527 std::swap (true_rtx, false_rtx);
6530 scalar_int_mode from_mode;
6531 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6533 /* If we are comparing against zero and the expression being
6534 tested has only a single bit that might be nonzero, that is
6535 its value when it is not equal to zero. Similarly if it is
6536 known to be -1 or 0. */
6537 if (true_code == EQ
6538 && true_val == const0_rtx
6539 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6541 false_code = EQ;
6542 false_val = gen_int_mode (nzb, from_mode);
6544 else if (true_code == EQ
6545 && true_val == const0_rtx
6546 && (num_sign_bit_copies (from, from_mode)
6547 == GET_MODE_PRECISION (from_mode)))
6549 false_code = EQ;
6550 false_val = constm1_rtx;
6554 /* Now simplify an arm if we know the value of the register in the
6555 branch and it is used in the arm. Be careful due to the potential
6556 of locally-shared RTL. */
6558 if (reg_mentioned_p (from, true_rtx))
6559 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6560 from, true_val),
6561 pc_rtx, pc_rtx, 0, 0, 0);
6562 if (reg_mentioned_p (from, false_rtx))
6563 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6564 from, false_val),
6565 pc_rtx, pc_rtx, 0, 0, 0);
6567 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6568 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6570 true_rtx = XEXP (x, 1);
6571 false_rtx = XEXP (x, 2);
6572 true_code = GET_CODE (cond);
6575 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6576 reversed, do so to avoid needing two sets of patterns for
6577 subtract-and-branch insns. Similarly if we have a constant in the true
6578 arm, the false arm is the same as the first operand of the comparison, or
6579 the false arm is more complicated than the true arm. */
6581 if (comparison_p
6582 && reversed_comparison_code (cond, NULL) != UNKNOWN
6583 && (true_rtx == pc_rtx
6584 || (CONSTANT_P (true_rtx)
6585 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6586 || true_rtx == const0_rtx
6587 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6588 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6589 && !OBJECT_P (false_rtx))
6590 || reg_mentioned_p (true_rtx, false_rtx)
6591 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6593 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6594 SUBST (XEXP (x, 1), false_rtx);
6595 SUBST (XEXP (x, 2), true_rtx);
6597 std::swap (true_rtx, false_rtx);
6598 cond = XEXP (x, 0);
6600 /* It is possible that the conditional has been simplified out. */
6601 true_code = GET_CODE (cond);
6602 comparison_p = COMPARISON_P (cond);
6605 /* If the two arms are identical, we don't need the comparison. */
6607 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6608 return true_rtx;
6610 /* Convert a == b ? b : a to "a". */
6611 if (true_code == EQ && ! side_effects_p (cond)
6612 && !HONOR_NANS (mode)
6613 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6614 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6615 return false_rtx;
6616 else if (true_code == NE && ! side_effects_p (cond)
6617 && !HONOR_NANS (mode)
6618 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6619 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6620 return true_rtx;
6622 /* Look for cases where we have (abs x) or (neg (abs X)). */
6624 if (GET_MODE_CLASS (mode) == MODE_INT
6625 && comparison_p
6626 && XEXP (cond, 1) == const0_rtx
6627 && GET_CODE (false_rtx) == NEG
6628 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6629 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6630 && ! side_effects_p (true_rtx))
6631 switch (true_code)
6633 case GT:
6634 case GE:
6635 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6636 case LT:
6637 case LE:
6638 return
6639 simplify_gen_unary (NEG, mode,
6640 simplify_gen_unary (ABS, mode, true_rtx, mode),
6641 mode);
6642 default:
6643 break;
6646 /* Look for MIN or MAX. */
6648 if ((! FLOAT_MODE_P (mode)
6649 || (flag_unsafe_math_optimizations
6650 && !HONOR_NANS (mode)
6651 && !HONOR_SIGNED_ZEROS (mode)))
6652 && comparison_p
6653 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6654 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6655 && ! side_effects_p (cond))
6656 switch (true_code)
6658 case GE:
6659 case GT:
6660 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6661 case LE:
6662 case LT:
6663 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6664 case GEU:
6665 case GTU:
6666 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6667 case LEU:
6668 case LTU:
6669 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6670 default:
6671 break;
6674 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6675 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6676 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6677 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6678 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6679 neither 1 or -1, but it isn't worth checking for. */
6681 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6682 && comparison_p
6683 && is_int_mode (mode, &int_mode)
6684 && ! side_effects_p (x))
6686 rtx t = make_compound_operation (true_rtx, SET);
6687 rtx f = make_compound_operation (false_rtx, SET);
6688 rtx cond_op0 = XEXP (cond, 0);
6689 rtx cond_op1 = XEXP (cond, 1);
6690 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6691 scalar_int_mode m = int_mode;
6692 rtx z = 0, c1 = NULL_RTX;
6694 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6695 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6696 || GET_CODE (t) == ASHIFT
6697 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6698 && rtx_equal_p (XEXP (t, 0), f))
6699 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6701 /* If an identity-zero op is commutative, check whether there
6702 would be a match if we swapped the operands. */
6703 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6704 || GET_CODE (t) == XOR)
6705 && rtx_equal_p (XEXP (t, 1), f))
6706 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6707 else if (GET_CODE (t) == SIGN_EXTEND
6708 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6709 && (GET_CODE (XEXP (t, 0)) == PLUS
6710 || GET_CODE (XEXP (t, 0)) == MINUS
6711 || GET_CODE (XEXP (t, 0)) == IOR
6712 || GET_CODE (XEXP (t, 0)) == XOR
6713 || GET_CODE (XEXP (t, 0)) == ASHIFT
6714 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6715 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6716 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6717 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6718 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6719 && (num_sign_bit_copies (f, GET_MODE (f))
6720 > (unsigned int)
6721 (GET_MODE_PRECISION (int_mode)
6722 - GET_MODE_PRECISION (inner_mode))))
6724 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6725 extend_op = SIGN_EXTEND;
6726 m = inner_mode;
6728 else if (GET_CODE (t) == SIGN_EXTEND
6729 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6730 && (GET_CODE (XEXP (t, 0)) == PLUS
6731 || GET_CODE (XEXP (t, 0)) == IOR
6732 || GET_CODE (XEXP (t, 0)) == XOR)
6733 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6734 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6735 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6736 && (num_sign_bit_copies (f, GET_MODE (f))
6737 > (unsigned int)
6738 (GET_MODE_PRECISION (int_mode)
6739 - GET_MODE_PRECISION (inner_mode))))
6741 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6742 extend_op = SIGN_EXTEND;
6743 m = inner_mode;
6745 else if (GET_CODE (t) == ZERO_EXTEND
6746 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6747 && (GET_CODE (XEXP (t, 0)) == PLUS
6748 || GET_CODE (XEXP (t, 0)) == MINUS
6749 || GET_CODE (XEXP (t, 0)) == IOR
6750 || GET_CODE (XEXP (t, 0)) == XOR
6751 || GET_CODE (XEXP (t, 0)) == ASHIFT
6752 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6753 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6754 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6755 && HWI_COMPUTABLE_MODE_P (int_mode)
6756 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6757 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6758 && ((nonzero_bits (f, GET_MODE (f))
6759 & ~GET_MODE_MASK (inner_mode))
6760 == 0))
6762 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6763 extend_op = ZERO_EXTEND;
6764 m = inner_mode;
6766 else if (GET_CODE (t) == ZERO_EXTEND
6767 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6768 && (GET_CODE (XEXP (t, 0)) == PLUS
6769 || GET_CODE (XEXP (t, 0)) == IOR
6770 || GET_CODE (XEXP (t, 0)) == XOR)
6771 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6772 && HWI_COMPUTABLE_MODE_P (int_mode)
6773 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6774 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6775 && ((nonzero_bits (f, GET_MODE (f))
6776 & ~GET_MODE_MASK (inner_mode))
6777 == 0))
6779 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6780 extend_op = ZERO_EXTEND;
6781 m = inner_mode;
6784 if (z)
6786 machine_mode cm = m;
6787 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6788 && GET_MODE (c1) != VOIDmode)
6789 cm = GET_MODE (c1);
6790 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6791 cond_op0, cond_op1),
6792 pc_rtx, pc_rtx, 0, 0, 0);
6793 temp = simplify_gen_binary (MULT, cm, temp,
6794 simplify_gen_binary (MULT, cm, c1,
6795 const_true_rtx));
6796 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6797 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6799 if (extend_op != UNKNOWN)
6800 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6802 return temp;
6806 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6807 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6808 negation of a single bit, we can convert this operation to a shift. We
6809 can actually do this more generally, but it doesn't seem worth it. */
6811 if (true_code == NE
6812 && is_a <scalar_int_mode> (mode, &int_mode)
6813 && XEXP (cond, 1) == const0_rtx
6814 && false_rtx == const0_rtx
6815 && CONST_INT_P (true_rtx)
6816 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6817 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6818 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6819 == GET_MODE_PRECISION (int_mode))
6820 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6821 return
6822 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6823 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6825 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6826 non-zero bit in A is C1. */
6827 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6828 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6829 && is_a <scalar_int_mode> (mode, &int_mode)
6830 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6831 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6832 == nonzero_bits (XEXP (cond, 0), inner_mode)
6833 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6835 rtx val = XEXP (cond, 0);
6836 if (inner_mode == int_mode)
6837 return val;
6838 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6839 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6842 return x;
6845 /* Simplify X, a SET expression. Return the new expression. */
6847 static rtx
6848 simplify_set (rtx x)
6850 rtx src = SET_SRC (x);
6851 rtx dest = SET_DEST (x);
6852 machine_mode mode
6853 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6854 rtx_insn *other_insn;
6855 rtx *cc_use;
6856 scalar_int_mode int_mode;
6858 /* (set (pc) (return)) gets written as (return). */
6859 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6860 return src;
6862 /* Now that we know for sure which bits of SRC we are using, see if we can
6863 simplify the expression for the object knowing that we only need the
6864 low-order bits. */
6866 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6868 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6869 SUBST (SET_SRC (x), src);
6872 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6873 the comparison result and try to simplify it unless we already have used
6874 undobuf.other_insn. */
6875 if ((GET_MODE_CLASS (mode) == MODE_CC
6876 || GET_CODE (src) == COMPARE
6877 || CC0_P (dest))
6878 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6879 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6880 && COMPARISON_P (*cc_use)
6881 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6883 enum rtx_code old_code = GET_CODE (*cc_use);
6884 enum rtx_code new_code;
6885 rtx op0, op1, tmp;
6886 int other_changed = 0;
6887 rtx inner_compare = NULL_RTX;
6888 machine_mode compare_mode = GET_MODE (dest);
6890 if (GET_CODE (src) == COMPARE)
6892 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6893 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6895 inner_compare = op0;
6896 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6899 else
6900 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6902 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6903 op0, op1);
6904 if (!tmp)
6905 new_code = old_code;
6906 else if (!CONSTANT_P (tmp))
6908 new_code = GET_CODE (tmp);
6909 op0 = XEXP (tmp, 0);
6910 op1 = XEXP (tmp, 1);
6912 else
6914 rtx pat = PATTERN (other_insn);
6915 undobuf.other_insn = other_insn;
6916 SUBST (*cc_use, tmp);
6918 /* Attempt to simplify CC user. */
6919 if (GET_CODE (pat) == SET)
6921 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6922 if (new_rtx != NULL_RTX)
6923 SUBST (SET_SRC (pat), new_rtx);
6926 /* Convert X into a no-op move. */
6927 SUBST (SET_DEST (x), pc_rtx);
6928 SUBST (SET_SRC (x), pc_rtx);
6929 return x;
6932 /* Simplify our comparison, if possible. */
6933 new_code = simplify_comparison (new_code, &op0, &op1);
6935 #ifdef SELECT_CC_MODE
6936 /* If this machine has CC modes other than CCmode, check to see if we
6937 need to use a different CC mode here. */
6938 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6939 compare_mode = GET_MODE (op0);
6940 else if (inner_compare
6941 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6942 && new_code == old_code
6943 && op0 == XEXP (inner_compare, 0)
6944 && op1 == XEXP (inner_compare, 1))
6945 compare_mode = GET_MODE (inner_compare);
6946 else
6947 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6949 /* If the mode changed, we have to change SET_DEST, the mode in the
6950 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6951 a hard register, just build new versions with the proper mode. If it
6952 is a pseudo, we lose unless it is only time we set the pseudo, in
6953 which case we can safely change its mode. */
6954 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6956 if (can_change_dest_mode (dest, 0, compare_mode))
6958 unsigned int regno = REGNO (dest);
6959 rtx new_dest;
6961 if (regno < FIRST_PSEUDO_REGISTER)
6962 new_dest = gen_rtx_REG (compare_mode, regno);
6963 else
6965 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6966 new_dest = regno_reg_rtx[regno];
6969 SUBST (SET_DEST (x), new_dest);
6970 SUBST (XEXP (*cc_use, 0), new_dest);
6971 other_changed = 1;
6973 dest = new_dest;
6976 #endif /* SELECT_CC_MODE */
6978 /* If the code changed, we have to build a new comparison in
6979 undobuf.other_insn. */
6980 if (new_code != old_code)
6982 int other_changed_previously = other_changed;
6983 unsigned HOST_WIDE_INT mask;
6984 rtx old_cc_use = *cc_use;
6986 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6987 dest, const0_rtx));
6988 other_changed = 1;
6990 /* If the only change we made was to change an EQ into an NE or
6991 vice versa, OP0 has only one bit that might be nonzero, and OP1
6992 is zero, check if changing the user of the condition code will
6993 produce a valid insn. If it won't, we can keep the original code
6994 in that insn by surrounding our operation with an XOR. */
6996 if (((old_code == NE && new_code == EQ)
6997 || (old_code == EQ && new_code == NE))
6998 && ! other_changed_previously && op1 == const0_rtx
6999 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
7000 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
7002 rtx pat = PATTERN (other_insn), note = 0;
7004 if ((recog_for_combine (&pat, other_insn, &note) < 0
7005 && ! check_asm_operands (pat)))
7007 *cc_use = old_cc_use;
7008 other_changed = 0;
7010 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7011 gen_int_mode (mask,
7012 GET_MODE (op0)));
7017 if (other_changed)
7018 undobuf.other_insn = other_insn;
7020 /* Don't generate a compare of a CC with 0, just use that CC. */
7021 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7023 SUBST (SET_SRC (x), op0);
7024 src = SET_SRC (x);
7026 /* Otherwise, if we didn't previously have the same COMPARE we
7027 want, create it from scratch. */
7028 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7029 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7031 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7032 src = SET_SRC (x);
7035 else
7037 /* Get SET_SRC in a form where we have placed back any
7038 compound expressions. Then do the checks below. */
7039 src = make_compound_operation (src, SET);
7040 SUBST (SET_SRC (x), src);
7043 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7044 and X being a REG or (subreg (reg)), we may be able to convert this to
7045 (set (subreg:m2 x) (op)).
7047 We can always do this if M1 is narrower than M2 because that means that
7048 we only care about the low bits of the result.
7050 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7051 perform a narrower operation than requested since the high-order bits will
7052 be undefined. On machine where it is defined, this transformation is safe
7053 as long as M1 and M2 have the same number of words. */
7055 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7056 && !OBJECT_P (SUBREG_REG (src))
7057 && (known_equal_after_align_up
7058 (GET_MODE_SIZE (GET_MODE (src)),
7059 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7060 UNITS_PER_WORD))
7061 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7062 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7063 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7064 GET_MODE (SUBREG_REG (src)),
7065 GET_MODE (src)))
7066 && (REG_P (dest)
7067 || (GET_CODE (dest) == SUBREG
7068 && REG_P (SUBREG_REG (dest)))))
7070 SUBST (SET_DEST (x),
7071 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7072 dest));
7073 SUBST (SET_SRC (x), SUBREG_REG (src));
7075 src = SET_SRC (x), dest = SET_DEST (x);
7078 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7079 in SRC. */
7080 if (dest == cc0_rtx
7081 && partial_subreg_p (src)
7082 && subreg_lowpart_p (src))
7084 rtx inner = SUBREG_REG (src);
7085 machine_mode inner_mode = GET_MODE (inner);
7087 /* Here we make sure that we don't have a sign bit on. */
7088 if (val_signbit_known_clear_p (GET_MODE (src),
7089 nonzero_bits (inner, inner_mode)))
7091 SUBST (SET_SRC (x), inner);
7092 src = SET_SRC (x);
7096 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7097 would require a paradoxical subreg. Replace the subreg with a
7098 zero_extend to avoid the reload that would otherwise be required.
7099 Don't do this unless we have a scalar integer mode, otherwise the
7100 transformation is incorrect. */
7102 enum rtx_code extend_op;
7103 if (paradoxical_subreg_p (src)
7104 && MEM_P (SUBREG_REG (src))
7105 && SCALAR_INT_MODE_P (GET_MODE (src))
7106 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7108 SUBST (SET_SRC (x),
7109 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7111 src = SET_SRC (x);
7114 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7115 are comparing an item known to be 0 or -1 against 0, use a logical
7116 operation instead. Check for one of the arms being an IOR of the other
7117 arm with some value. We compute three terms to be IOR'ed together. In
7118 practice, at most two will be nonzero. Then we do the IOR's. */
7120 if (GET_CODE (dest) != PC
7121 && GET_CODE (src) == IF_THEN_ELSE
7122 && is_int_mode (GET_MODE (src), &int_mode)
7123 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7124 && XEXP (XEXP (src, 0), 1) == const0_rtx
7125 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7126 && (!HAVE_conditional_move
7127 || ! can_conditionally_move_p (int_mode))
7128 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7129 == GET_MODE_PRECISION (int_mode))
7130 && ! side_effects_p (src))
7132 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7133 ? XEXP (src, 1) : XEXP (src, 2));
7134 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7135 ? XEXP (src, 2) : XEXP (src, 1));
7136 rtx term1 = const0_rtx, term2, term3;
7138 if (GET_CODE (true_rtx) == IOR
7139 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7140 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7141 else if (GET_CODE (true_rtx) == IOR
7142 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7143 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7144 else if (GET_CODE (false_rtx) == IOR
7145 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7146 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7147 else if (GET_CODE (false_rtx) == IOR
7148 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7149 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7151 term2 = simplify_gen_binary (AND, int_mode,
7152 XEXP (XEXP (src, 0), 0), true_rtx);
7153 term3 = simplify_gen_binary (AND, int_mode,
7154 simplify_gen_unary (NOT, int_mode,
7155 XEXP (XEXP (src, 0), 0),
7156 int_mode),
7157 false_rtx);
7159 SUBST (SET_SRC (x),
7160 simplify_gen_binary (IOR, int_mode,
7161 simplify_gen_binary (IOR, int_mode,
7162 term1, term2),
7163 term3));
7165 src = SET_SRC (x);
7168 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7169 whole thing fail. */
7170 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7171 return src;
7172 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7173 return dest;
7174 else
7175 /* Convert this into a field assignment operation, if possible. */
7176 return make_field_assignment (x);
7179 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7180 result. */
7182 static rtx
7183 simplify_logical (rtx x)
7185 rtx op0 = XEXP (x, 0);
7186 rtx op1 = XEXP (x, 1);
7187 scalar_int_mode mode;
7189 switch (GET_CODE (x))
7191 case AND:
7192 /* We can call simplify_and_const_int only if we don't lose
7193 any (sign) bits when converting INTVAL (op1) to
7194 "unsigned HOST_WIDE_INT". */
7195 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7196 && CONST_INT_P (op1)
7197 && (HWI_COMPUTABLE_MODE_P (mode)
7198 || INTVAL (op1) > 0))
7200 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7201 if (GET_CODE (x) != AND)
7202 return x;
7204 op0 = XEXP (x, 0);
7205 op1 = XEXP (x, 1);
7208 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7209 apply the distributive law and then the inverse distributive
7210 law to see if things simplify. */
7211 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7213 rtx result = distribute_and_simplify_rtx (x, 0);
7214 if (result)
7215 return result;
7217 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7219 rtx result = distribute_and_simplify_rtx (x, 1);
7220 if (result)
7221 return result;
7223 break;
7225 case IOR:
7226 /* If we have (ior (and A B) C), apply the distributive law and then
7227 the inverse distributive law to see if things simplify. */
7229 if (GET_CODE (op0) == AND)
7231 rtx result = distribute_and_simplify_rtx (x, 0);
7232 if (result)
7233 return result;
7236 if (GET_CODE (op1) == AND)
7238 rtx result = distribute_and_simplify_rtx (x, 1);
7239 if (result)
7240 return result;
7242 break;
7244 default:
7245 gcc_unreachable ();
7248 return x;
7251 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7252 operations" because they can be replaced with two more basic operations.
7253 ZERO_EXTEND is also considered "compound" because it can be replaced with
7254 an AND operation, which is simpler, though only one operation.
7256 The function expand_compound_operation is called with an rtx expression
7257 and will convert it to the appropriate shifts and AND operations,
7258 simplifying at each stage.
7260 The function make_compound_operation is called to convert an expression
7261 consisting of shifts and ANDs into the equivalent compound expression.
7262 It is the inverse of this function, loosely speaking. */
7264 static rtx
7265 expand_compound_operation (rtx x)
7267 unsigned HOST_WIDE_INT pos = 0, len;
7268 int unsignedp = 0;
7269 unsigned int modewidth;
7270 rtx tem;
7271 scalar_int_mode inner_mode;
7273 switch (GET_CODE (x))
7275 case ZERO_EXTEND:
7276 unsignedp = 1;
7277 /* FALLTHRU */
7278 case SIGN_EXTEND:
7279 /* We can't necessarily use a const_int for a multiword mode;
7280 it depends on implicitly extending the value.
7281 Since we don't know the right way to extend it,
7282 we can't tell whether the implicit way is right.
7284 Even for a mode that is no wider than a const_int,
7285 we can't win, because we need to sign extend one of its bits through
7286 the rest of it, and we don't know which bit. */
7287 if (CONST_INT_P (XEXP (x, 0)))
7288 return x;
7290 /* Reject modes that aren't scalar integers because turning vector
7291 or complex modes into shifts causes problems. */
7292 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7293 return x;
7295 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7296 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7297 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7298 reloaded. If not for that, MEM's would very rarely be safe.
7300 Reject modes bigger than a word, because we might not be able
7301 to reference a two-register group starting with an arbitrary register
7302 (and currently gen_lowpart might crash for a SUBREG). */
7304 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7305 return x;
7307 len = GET_MODE_PRECISION (inner_mode);
7308 /* If the inner object has VOIDmode (the only way this can happen
7309 is if it is an ASM_OPERANDS), we can't do anything since we don't
7310 know how much masking to do. */
7311 if (len == 0)
7312 return x;
7314 break;
7316 case ZERO_EXTRACT:
7317 unsignedp = 1;
7319 /* fall through */
7321 case SIGN_EXTRACT:
7322 /* If the operand is a CLOBBER, just return it. */
7323 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7324 return XEXP (x, 0);
7326 if (!CONST_INT_P (XEXP (x, 1))
7327 || !CONST_INT_P (XEXP (x, 2)))
7328 return x;
7330 /* Reject modes that aren't scalar integers because turning vector
7331 or complex modes into shifts causes problems. */
7332 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7333 return x;
7335 len = INTVAL (XEXP (x, 1));
7336 pos = INTVAL (XEXP (x, 2));
7338 /* This should stay within the object being extracted, fail otherwise. */
7339 if (len + pos > GET_MODE_PRECISION (inner_mode))
7340 return x;
7342 if (BITS_BIG_ENDIAN)
7343 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7345 break;
7347 default:
7348 return x;
7351 /* We've rejected non-scalar operations by now. */
7352 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7354 /* Convert sign extension to zero extension, if we know that the high
7355 bit is not set, as this is easier to optimize. It will be converted
7356 back to cheaper alternative in make_extraction. */
7357 if (GET_CODE (x) == SIGN_EXTEND
7358 && HWI_COMPUTABLE_MODE_P (mode)
7359 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7360 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7361 == 0))
7363 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7364 rtx temp2 = expand_compound_operation (temp);
7366 /* Make sure this is a profitable operation. */
7367 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7368 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7369 return temp2;
7370 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7371 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7372 return temp;
7373 else
7374 return x;
7377 /* We can optimize some special cases of ZERO_EXTEND. */
7378 if (GET_CODE (x) == ZERO_EXTEND)
7380 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7381 know that the last value didn't have any inappropriate bits
7382 set. */
7383 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7384 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7385 && HWI_COMPUTABLE_MODE_P (mode)
7386 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7387 & ~GET_MODE_MASK (inner_mode)) == 0)
7388 return XEXP (XEXP (x, 0), 0);
7390 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7391 if (GET_CODE (XEXP (x, 0)) == SUBREG
7392 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7393 && subreg_lowpart_p (XEXP (x, 0))
7394 && HWI_COMPUTABLE_MODE_P (mode)
7395 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7396 & ~GET_MODE_MASK (inner_mode)) == 0)
7397 return SUBREG_REG (XEXP (x, 0));
7399 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7400 is a comparison and STORE_FLAG_VALUE permits. This is like
7401 the first case, but it works even when MODE is larger
7402 than HOST_WIDE_INT. */
7403 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7404 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7405 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7406 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7407 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7408 return XEXP (XEXP (x, 0), 0);
7410 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7411 if (GET_CODE (XEXP (x, 0)) == SUBREG
7412 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7413 && subreg_lowpart_p (XEXP (x, 0))
7414 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7415 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7416 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7417 return SUBREG_REG (XEXP (x, 0));
7421 /* If we reach here, we want to return a pair of shifts. The inner
7422 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7423 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7424 logical depending on the value of UNSIGNEDP.
7426 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7427 converted into an AND of a shift.
7429 We must check for the case where the left shift would have a negative
7430 count. This can happen in a case like (x >> 31) & 255 on machines
7431 that can't shift by a constant. On those machines, we would first
7432 combine the shift with the AND to produce a variable-position
7433 extraction. Then the constant of 31 would be substituted in
7434 to produce such a position. */
7436 modewidth = GET_MODE_PRECISION (mode);
7437 if (modewidth >= pos + len)
7439 tem = gen_lowpart (mode, XEXP (x, 0));
7440 if (!tem || GET_CODE (tem) == CLOBBER)
7441 return x;
7442 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7443 tem, modewidth - pos - len);
7444 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7445 mode, tem, modewidth - len);
7447 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7448 tem = simplify_and_const_int (NULL_RTX, mode,
7449 simplify_shift_const (NULL_RTX, LSHIFTRT,
7450 mode, XEXP (x, 0),
7451 pos),
7452 (HOST_WIDE_INT_1U << len) - 1);
7453 else
7454 /* Any other cases we can't handle. */
7455 return x;
7457 /* If we couldn't do this for some reason, return the original
7458 expression. */
7459 if (GET_CODE (tem) == CLOBBER)
7460 return x;
7462 return tem;
7465 /* X is a SET which contains an assignment of one object into
7466 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7467 or certain SUBREGS). If possible, convert it into a series of
7468 logical operations.
7470 We half-heartedly support variable positions, but do not at all
7471 support variable lengths. */
7473 static const_rtx
7474 expand_field_assignment (const_rtx x)
7476 rtx inner;
7477 rtx pos; /* Always counts from low bit. */
7478 int len, inner_len;
7479 rtx mask, cleared, masked;
7480 scalar_int_mode compute_mode;
7482 /* Loop until we find something we can't simplify. */
7483 while (1)
7485 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7486 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7488 rtx x0 = XEXP (SET_DEST (x), 0);
7489 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7490 break;
7491 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7492 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7493 MAX_MODE_INT);
7495 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7496 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7498 inner = XEXP (SET_DEST (x), 0);
7499 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7500 break;
7502 len = INTVAL (XEXP (SET_DEST (x), 1));
7503 pos = XEXP (SET_DEST (x), 2);
7505 /* A constant position should stay within the width of INNER. */
7506 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7507 break;
7509 if (BITS_BIG_ENDIAN)
7511 if (CONST_INT_P (pos))
7512 pos = GEN_INT (inner_len - len - INTVAL (pos));
7513 else if (GET_CODE (pos) == MINUS
7514 && CONST_INT_P (XEXP (pos, 1))
7515 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7516 /* If position is ADJUST - X, new position is X. */
7517 pos = XEXP (pos, 0);
7518 else
7519 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7520 gen_int_mode (inner_len - len,
7521 GET_MODE (pos)),
7522 pos);
7526 /* If the destination is a subreg that overwrites the whole of the inner
7527 register, we can move the subreg to the source. */
7528 else if (GET_CODE (SET_DEST (x)) == SUBREG
7529 /* We need SUBREGs to compute nonzero_bits properly. */
7530 && nonzero_sign_valid
7531 && !read_modify_subreg_p (SET_DEST (x)))
7533 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7534 gen_lowpart
7535 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7536 SET_SRC (x)));
7537 continue;
7539 else
7540 break;
7542 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7543 inner = SUBREG_REG (inner);
7545 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7546 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7548 /* Don't do anything for vector or complex integral types. */
7549 if (! FLOAT_MODE_P (GET_MODE (inner)))
7550 break;
7552 /* Try to find an integral mode to pun with. */
7553 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7554 .exists (&compute_mode))
7555 break;
7557 inner = gen_lowpart (compute_mode, inner);
7560 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7561 if (len >= HOST_BITS_PER_WIDE_INT)
7562 break;
7564 /* Don't try to compute in too wide unsupported modes. */
7565 if (!targetm.scalar_mode_supported_p (compute_mode))
7566 break;
7568 /* Now compute the equivalent expression. Make a copy of INNER
7569 for the SET_DEST in case it is a MEM into which we will substitute;
7570 we don't want shared RTL in that case. */
7571 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7572 compute_mode);
7573 cleared = simplify_gen_binary (AND, compute_mode,
7574 simplify_gen_unary (NOT, compute_mode,
7575 simplify_gen_binary (ASHIFT,
7576 compute_mode,
7577 mask, pos),
7578 compute_mode),
7579 inner);
7580 masked = simplify_gen_binary (ASHIFT, compute_mode,
7581 simplify_gen_binary (
7582 AND, compute_mode,
7583 gen_lowpart (compute_mode, SET_SRC (x)),
7584 mask),
7585 pos);
7587 x = gen_rtx_SET (copy_rtx (inner),
7588 simplify_gen_binary (IOR, compute_mode,
7589 cleared, masked));
7592 return x;
7595 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7596 it is an RTX that represents the (variable) starting position; otherwise,
7597 POS is the (constant) starting bit position. Both are counted from the LSB.
7599 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7601 IN_DEST is nonzero if this is a reference in the destination of a SET.
7602 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7603 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7604 be used.
7606 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7607 ZERO_EXTRACT should be built even for bits starting at bit 0.
7609 MODE is the desired mode of the result (if IN_DEST == 0).
7611 The result is an RTX for the extraction or NULL_RTX if the target
7612 can't handle it. */
7614 static rtx
7615 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7616 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7617 int in_dest, int in_compare)
7619 /* This mode describes the size of the storage area
7620 to fetch the overall value from. Within that, we
7621 ignore the POS lowest bits, etc. */
7622 machine_mode is_mode = GET_MODE (inner);
7623 machine_mode inner_mode;
7624 scalar_int_mode wanted_inner_mode;
7625 scalar_int_mode wanted_inner_reg_mode = word_mode;
7626 scalar_int_mode pos_mode = word_mode;
7627 machine_mode extraction_mode = word_mode;
7628 rtx new_rtx = 0;
7629 rtx orig_pos_rtx = pos_rtx;
7630 HOST_WIDE_INT orig_pos;
7632 if (pos_rtx && CONST_INT_P (pos_rtx))
7633 pos = INTVAL (pos_rtx), pos_rtx = 0;
7635 if (GET_CODE (inner) == SUBREG
7636 && subreg_lowpart_p (inner)
7637 && (paradoxical_subreg_p (inner)
7638 /* If trying or potentionally trying to extract
7639 bits outside of is_mode, don't look through
7640 non-paradoxical SUBREGs. See PR82192. */
7641 || (pos_rtx == NULL_RTX
7642 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7644 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7645 consider just the QI as the memory to extract from.
7646 The subreg adds or removes high bits; its mode is
7647 irrelevant to the meaning of this extraction,
7648 since POS and LEN count from the lsb. */
7649 if (MEM_P (SUBREG_REG (inner)))
7650 is_mode = GET_MODE (SUBREG_REG (inner));
7651 inner = SUBREG_REG (inner);
7653 else if (GET_CODE (inner) == ASHIFT
7654 && CONST_INT_P (XEXP (inner, 1))
7655 && pos_rtx == 0 && pos == 0
7656 && len > UINTVAL (XEXP (inner, 1)))
7658 /* We're extracting the least significant bits of an rtx
7659 (ashift X (const_int C)), where LEN > C. Extract the
7660 least significant (LEN - C) bits of X, giving an rtx
7661 whose mode is MODE, then shift it left C times. */
7662 new_rtx = make_extraction (mode, XEXP (inner, 0),
7663 0, 0, len - INTVAL (XEXP (inner, 1)),
7664 unsignedp, in_dest, in_compare);
7665 if (new_rtx != 0)
7666 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7668 else if (GET_CODE (inner) == MULT
7669 && CONST_INT_P (XEXP (inner, 1))
7670 && pos_rtx == 0 && pos == 0)
7672 /* We're extracting the least significant bits of an rtx
7673 (mult X (const_int 2^C)), where LEN > C. Extract the
7674 least significant (LEN - C) bits of X, giving an rtx
7675 whose mode is MODE, then multiply it by 2^C. */
7676 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7677 if (IN_RANGE (shift_amt, 1, len - 1))
7679 new_rtx = make_extraction (mode, XEXP (inner, 0),
7680 0, 0, len - shift_amt,
7681 unsignedp, in_dest, in_compare);
7682 if (new_rtx)
7683 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7686 else if (GET_CODE (inner) == TRUNCATE
7687 /* If trying or potentionally trying to extract
7688 bits outside of is_mode, don't look through
7689 TRUNCATE. See PR82192. */
7690 && pos_rtx == NULL_RTX
7691 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7692 inner = XEXP (inner, 0);
7694 inner_mode = GET_MODE (inner);
7696 /* See if this can be done without an extraction. We never can if the
7697 width of the field is not the same as that of some integer mode. For
7698 registers, we can only avoid the extraction if the position is at the
7699 low-order bit and this is either not in the destination or we have the
7700 appropriate STRICT_LOW_PART operation available.
7702 For MEM, we can avoid an extract if the field starts on an appropriate
7703 boundary and we can change the mode of the memory reference. */
7705 scalar_int_mode tmode;
7706 if (int_mode_for_size (len, 1).exists (&tmode)
7707 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7708 && !MEM_P (inner)
7709 && (pos == 0 || REG_P (inner))
7710 && (inner_mode == tmode
7711 || !REG_P (inner)
7712 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7713 || reg_truncated_to_mode (tmode, inner))
7714 && (! in_dest
7715 || (REG_P (inner)
7716 && have_insn_for (STRICT_LOW_PART, tmode))))
7717 || (MEM_P (inner) && pos_rtx == 0
7718 && (pos
7719 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7720 : BITS_PER_UNIT)) == 0
7721 /* We can't do this if we are widening INNER_MODE (it
7722 may not be aligned, for one thing). */
7723 && !paradoxical_subreg_p (tmode, inner_mode)
7724 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7725 && (inner_mode == tmode
7726 || (! mode_dependent_address_p (XEXP (inner, 0),
7727 MEM_ADDR_SPACE (inner))
7728 && ! MEM_VOLATILE_P (inner))))))
7730 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7731 field. If the original and current mode are the same, we need not
7732 adjust the offset. Otherwise, we do if bytes big endian.
7734 If INNER is not a MEM, get a piece consisting of just the field
7735 of interest (in this case POS % BITS_PER_WORD must be 0). */
7737 if (MEM_P (inner))
7739 poly_int64 offset;
7741 /* POS counts from lsb, but make OFFSET count in memory order. */
7742 if (BYTES_BIG_ENDIAN)
7743 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7744 - len - pos);
7745 else
7746 offset = pos / BITS_PER_UNIT;
7748 new_rtx = adjust_address_nv (inner, tmode, offset);
7750 else if (REG_P (inner))
7752 if (tmode != inner_mode)
7754 /* We can't call gen_lowpart in a DEST since we
7755 always want a SUBREG (see below) and it would sometimes
7756 return a new hard register. */
7757 if (pos || in_dest)
7759 poly_uint64 offset
7760 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7762 /* Avoid creating invalid subregs, for example when
7763 simplifying (x>>32)&255. */
7764 if (!validate_subreg (tmode, inner_mode, inner, offset))
7765 return NULL_RTX;
7767 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7769 else
7770 new_rtx = gen_lowpart (tmode, inner);
7772 else
7773 new_rtx = inner;
7775 else
7776 new_rtx = force_to_mode (inner, tmode,
7777 len >= HOST_BITS_PER_WIDE_INT
7778 ? HOST_WIDE_INT_M1U
7779 : (HOST_WIDE_INT_1U << len) - 1, 0);
7781 /* If this extraction is going into the destination of a SET,
7782 make a STRICT_LOW_PART unless we made a MEM. */
7784 if (in_dest)
7785 return (MEM_P (new_rtx) ? new_rtx
7786 : (GET_CODE (new_rtx) != SUBREG
7787 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7788 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7790 if (mode == tmode)
7791 return new_rtx;
7793 if (CONST_SCALAR_INT_P (new_rtx))
7794 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7795 mode, new_rtx, tmode);
7797 /* If we know that no extraneous bits are set, and that the high
7798 bit is not set, convert the extraction to the cheaper of
7799 sign and zero extension, that are equivalent in these cases. */
7800 if (flag_expensive_optimizations
7801 && (HWI_COMPUTABLE_MODE_P (tmode)
7802 && ((nonzero_bits (new_rtx, tmode)
7803 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7804 == 0)))
7806 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7807 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7809 /* Prefer ZERO_EXTENSION, since it gives more information to
7810 backends. */
7811 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7812 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7813 return temp;
7814 return temp1;
7817 /* Otherwise, sign- or zero-extend unless we already are in the
7818 proper mode. */
7820 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7821 mode, new_rtx));
7824 /* Unless this is a COMPARE or we have a funny memory reference,
7825 don't do anything with zero-extending field extracts starting at
7826 the low-order bit since they are simple AND operations. */
7827 if (pos_rtx == 0 && pos == 0 && ! in_dest
7828 && ! in_compare && unsignedp)
7829 return 0;
7831 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7832 if the position is not a constant and the length is not 1. In all
7833 other cases, we would only be going outside our object in cases when
7834 an original shift would have been undefined. */
7835 if (MEM_P (inner)
7836 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7837 || (pos_rtx != 0 && len != 1)))
7838 return 0;
7840 enum extraction_pattern pattern = (in_dest ? EP_insv
7841 : unsignedp ? EP_extzv : EP_extv);
7843 /* If INNER is not from memory, we want it to have the mode of a register
7844 extraction pattern's structure operand, or word_mode if there is no
7845 such pattern. The same applies to extraction_mode and pos_mode
7846 and their respective operands.
7848 For memory, assume that the desired extraction_mode and pos_mode
7849 are the same as for a register operation, since at present we don't
7850 have named patterns for aligned memory structures. */
7851 class extraction_insn insn;
7852 unsigned int inner_size;
7853 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7854 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7856 wanted_inner_reg_mode = insn.struct_mode.require ();
7857 pos_mode = insn.pos_mode;
7858 extraction_mode = insn.field_mode;
7861 /* Never narrow an object, since that might not be safe. */
7863 if (mode != VOIDmode
7864 && partial_subreg_p (extraction_mode, mode))
7865 extraction_mode = mode;
7867 /* Punt if len is too large for extraction_mode. */
7868 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7869 return NULL_RTX;
7871 if (!MEM_P (inner))
7872 wanted_inner_mode = wanted_inner_reg_mode;
7873 else
7875 /* Be careful not to go beyond the extracted object and maintain the
7876 natural alignment of the memory. */
7877 wanted_inner_mode = smallest_int_mode_for_size (len);
7878 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7879 > GET_MODE_BITSIZE (wanted_inner_mode))
7880 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7883 orig_pos = pos;
7885 if (BITS_BIG_ENDIAN)
7887 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7888 BITS_BIG_ENDIAN style. If position is constant, compute new
7889 position. Otherwise, build subtraction.
7890 Note that POS is relative to the mode of the original argument.
7891 If it's a MEM we need to recompute POS relative to that.
7892 However, if we're extracting from (or inserting into) a register,
7893 we want to recompute POS relative to wanted_inner_mode. */
7894 int width;
7895 if (!MEM_P (inner))
7896 width = GET_MODE_BITSIZE (wanted_inner_mode);
7897 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7898 return NULL_RTX;
7900 if (pos_rtx == 0)
7901 pos = width - len - pos;
7902 else
7903 pos_rtx
7904 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7905 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7906 pos_rtx);
7907 /* POS may be less than 0 now, but we check for that below.
7908 Note that it can only be less than 0 if !MEM_P (inner). */
7911 /* If INNER has a wider mode, and this is a constant extraction, try to
7912 make it smaller and adjust the byte to point to the byte containing
7913 the value. */
7914 if (wanted_inner_mode != VOIDmode
7915 && inner_mode != wanted_inner_mode
7916 && ! pos_rtx
7917 && partial_subreg_p (wanted_inner_mode, is_mode)
7918 && MEM_P (inner)
7919 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7920 && ! MEM_VOLATILE_P (inner))
7922 poly_int64 offset = 0;
7924 /* The computations below will be correct if the machine is big
7925 endian in both bits and bytes or little endian in bits and bytes.
7926 If it is mixed, we must adjust. */
7928 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7929 adjust OFFSET to compensate. */
7930 if (BYTES_BIG_ENDIAN
7931 && paradoxical_subreg_p (is_mode, inner_mode))
7932 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7934 /* We can now move to the desired byte. */
7935 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7936 * GET_MODE_SIZE (wanted_inner_mode);
7937 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7939 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7940 && is_mode != wanted_inner_mode)
7941 offset = (GET_MODE_SIZE (is_mode)
7942 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7944 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7947 /* If INNER is not memory, get it into the proper mode. If we are changing
7948 its mode, POS must be a constant and smaller than the size of the new
7949 mode. */
7950 else if (!MEM_P (inner))
7952 /* On the LHS, don't create paradoxical subregs implicitely truncating
7953 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7954 if (in_dest
7955 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7956 wanted_inner_mode))
7957 return NULL_RTX;
7959 if (GET_MODE (inner) != wanted_inner_mode
7960 && (pos_rtx != 0
7961 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7962 return NULL_RTX;
7964 if (orig_pos < 0)
7965 return NULL_RTX;
7967 inner = force_to_mode (inner, wanted_inner_mode,
7968 pos_rtx
7969 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7970 ? HOST_WIDE_INT_M1U
7971 : (((HOST_WIDE_INT_1U << len) - 1)
7972 << orig_pos),
7976 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7977 have to zero extend. Otherwise, we can just use a SUBREG.
7979 We dealt with constant rtxes earlier, so pos_rtx cannot
7980 have VOIDmode at this point. */
7981 if (pos_rtx != 0
7982 && (GET_MODE_SIZE (pos_mode)
7983 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7985 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7986 GET_MODE (pos_rtx));
7988 /* If we know that no extraneous bits are set, and that the high
7989 bit is not set, convert extraction to cheaper one - either
7990 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7991 cases. */
7992 if (flag_expensive_optimizations
7993 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7994 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7995 & ~(((unsigned HOST_WIDE_INT)
7996 GET_MODE_MASK (GET_MODE (pos_rtx)))
7997 >> 1))
7998 == 0)))
8000 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
8001 GET_MODE (pos_rtx));
8003 /* Prefer ZERO_EXTENSION, since it gives more information to
8004 backends. */
8005 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
8006 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
8007 temp = temp1;
8009 pos_rtx = temp;
8012 /* Make POS_RTX unless we already have it and it is correct. If we don't
8013 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
8014 be a CONST_INT. */
8015 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
8016 pos_rtx = orig_pos_rtx;
8018 else if (pos_rtx == 0)
8019 pos_rtx = GEN_INT (pos);
8021 /* Make the required operation. See if we can use existing rtx. */
8022 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
8023 extraction_mode, inner, GEN_INT (len), pos_rtx);
8024 if (! in_dest)
8025 new_rtx = gen_lowpart (mode, new_rtx);
8027 return new_rtx;
8030 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8031 can be commuted with any other operations in X. Return X without
8032 that shift if so. */
8034 static rtx
8035 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8037 enum rtx_code code = GET_CODE (x);
8038 rtx tem;
8040 switch (code)
8042 case ASHIFT:
8043 /* This is the shift itself. If it is wide enough, we will return
8044 either the value being shifted if the shift count is equal to
8045 COUNT or a shift for the difference. */
8046 if (CONST_INT_P (XEXP (x, 1))
8047 && INTVAL (XEXP (x, 1)) >= count)
8048 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8049 INTVAL (XEXP (x, 1)) - count);
8050 break;
8052 case NEG: case NOT:
8053 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8054 return simplify_gen_unary (code, mode, tem, mode);
8056 break;
8058 case PLUS: case IOR: case XOR: case AND:
8059 /* If we can safely shift this constant and we find the inner shift,
8060 make a new operation. */
8061 if (CONST_INT_P (XEXP (x, 1))
8062 && (UINTVAL (XEXP (x, 1))
8063 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8064 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8066 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8067 return simplify_gen_binary (code, mode, tem,
8068 gen_int_mode (val, mode));
8070 break;
8072 default:
8073 break;
8076 return 0;
8079 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8080 level of the expression and MODE is its mode. IN_CODE is as for
8081 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8082 that should be used when recursing on operands of *X_PTR.
8084 There are two possible actions:
8086 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8087 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8089 - Return a new rtx, which the caller returns directly. */
8091 static rtx
8092 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8093 enum rtx_code in_code,
8094 enum rtx_code *next_code_ptr)
8096 rtx x = *x_ptr;
8097 enum rtx_code next_code = *next_code_ptr;
8098 enum rtx_code code = GET_CODE (x);
8099 int mode_width = GET_MODE_PRECISION (mode);
8100 rtx rhs, lhs;
8101 rtx new_rtx = 0;
8102 int i;
8103 rtx tem;
8104 scalar_int_mode inner_mode;
8105 bool equality_comparison = false;
8107 if (in_code == EQ)
8109 equality_comparison = true;
8110 in_code = COMPARE;
8113 /* Process depending on the code of this operation. If NEW is set
8114 nonzero, it will be returned. */
8116 switch (code)
8118 case ASHIFT:
8119 /* Convert shifts by constants into multiplications if inside
8120 an address. */
8121 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8122 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8123 && INTVAL (XEXP (x, 1)) >= 0)
8125 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8126 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8128 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8129 if (GET_CODE (new_rtx) == NEG)
8131 new_rtx = XEXP (new_rtx, 0);
8132 multval = -multval;
8134 multval = trunc_int_for_mode (multval, mode);
8135 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8137 break;
8139 case PLUS:
8140 lhs = XEXP (x, 0);
8141 rhs = XEXP (x, 1);
8142 lhs = make_compound_operation (lhs, next_code);
8143 rhs = make_compound_operation (rhs, next_code);
8144 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8146 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8147 XEXP (lhs, 1));
8148 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8150 else if (GET_CODE (lhs) == MULT
8151 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8153 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8154 simplify_gen_unary (NEG, mode,
8155 XEXP (lhs, 1),
8156 mode));
8157 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8159 else
8161 SUBST (XEXP (x, 0), lhs);
8162 SUBST (XEXP (x, 1), rhs);
8164 maybe_swap_commutative_operands (x);
8165 return x;
8167 case MINUS:
8168 lhs = XEXP (x, 0);
8169 rhs = XEXP (x, 1);
8170 lhs = make_compound_operation (lhs, next_code);
8171 rhs = make_compound_operation (rhs, next_code);
8172 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8174 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8175 XEXP (rhs, 1));
8176 return simplify_gen_binary (PLUS, mode, tem, lhs);
8178 else if (GET_CODE (rhs) == MULT
8179 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8181 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8182 simplify_gen_unary (NEG, mode,
8183 XEXP (rhs, 1),
8184 mode));
8185 return simplify_gen_binary (PLUS, mode, tem, lhs);
8187 else
8189 SUBST (XEXP (x, 0), lhs);
8190 SUBST (XEXP (x, 1), rhs);
8191 return x;
8194 case AND:
8195 /* If the second operand is not a constant, we can't do anything
8196 with it. */
8197 if (!CONST_INT_P (XEXP (x, 1)))
8198 break;
8200 /* If the constant is a power of two minus one and the first operand
8201 is a logical right shift, make an extraction. */
8202 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8203 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8205 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8206 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8207 i, 1, 0, in_code == COMPARE);
8210 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8211 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8212 && subreg_lowpart_p (XEXP (x, 0))
8213 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8214 &inner_mode)
8215 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8216 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8218 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8219 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8220 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8221 XEXP (inner_x0, 1),
8222 i, 1, 0, in_code == COMPARE);
8224 /* If we narrowed the mode when dropping the subreg, then we lose. */
8225 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8226 new_rtx = NULL;
8228 /* If that didn't give anything, see if the AND simplifies on
8229 its own. */
8230 if (!new_rtx && i >= 0)
8232 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8233 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8234 0, in_code == COMPARE);
8237 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8238 else if ((GET_CODE (XEXP (x, 0)) == XOR
8239 || GET_CODE (XEXP (x, 0)) == IOR)
8240 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8241 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8242 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8244 /* Apply the distributive law, and then try to make extractions. */
8245 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8246 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8247 XEXP (x, 1)),
8248 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8249 XEXP (x, 1)));
8250 new_rtx = make_compound_operation (new_rtx, in_code);
8253 /* If we are have (and (rotate X C) M) and C is larger than the number
8254 of bits in M, this is an extraction. */
8256 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8257 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8258 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8259 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8261 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8262 new_rtx = make_extraction (mode, new_rtx,
8263 (GET_MODE_PRECISION (mode)
8264 - INTVAL (XEXP (XEXP (x, 0), 1))),
8265 NULL_RTX, i, 1, 0, in_code == COMPARE);
8268 /* On machines without logical shifts, if the operand of the AND is
8269 a logical shift and our mask turns off all the propagated sign
8270 bits, we can replace the logical shift with an arithmetic shift. */
8271 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8272 && !have_insn_for (LSHIFTRT, mode)
8273 && have_insn_for (ASHIFTRT, mode)
8274 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8275 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8276 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8277 && mode_width <= HOST_BITS_PER_WIDE_INT)
8279 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8281 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8282 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8283 SUBST (XEXP (x, 0),
8284 gen_rtx_ASHIFTRT (mode,
8285 make_compound_operation (XEXP (XEXP (x,
8288 next_code),
8289 XEXP (XEXP (x, 0), 1)));
8292 /* If the constant is one less than a power of two, this might be
8293 representable by an extraction even if no shift is present.
8294 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8295 we are in a COMPARE. */
8296 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8297 new_rtx = make_extraction (mode,
8298 make_compound_operation (XEXP (x, 0),
8299 next_code),
8300 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8302 /* If we are in a comparison and this is an AND with a power of two,
8303 convert this into the appropriate bit extract. */
8304 else if (in_code == COMPARE
8305 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8306 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8307 new_rtx = make_extraction (mode,
8308 make_compound_operation (XEXP (x, 0),
8309 next_code),
8310 i, NULL_RTX, 1, 1, 0, 1);
8312 /* If the one operand is a paradoxical subreg of a register or memory and
8313 the constant (limited to the smaller mode) has only zero bits where
8314 the sub expression has known zero bits, this can be expressed as
8315 a zero_extend. */
8316 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8318 rtx sub;
8320 sub = XEXP (XEXP (x, 0), 0);
8321 machine_mode sub_mode = GET_MODE (sub);
8322 int sub_width;
8323 if ((REG_P (sub) || MEM_P (sub))
8324 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8325 && sub_width < mode_width)
8327 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8328 unsigned HOST_WIDE_INT mask;
8330 /* original AND constant with all the known zero bits set */
8331 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8332 if ((mask & mode_mask) == mode_mask)
8334 new_rtx = make_compound_operation (sub, next_code);
8335 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8336 1, 0, in_code == COMPARE);
8341 break;
8343 case LSHIFTRT:
8344 /* If the sign bit is known to be zero, replace this with an
8345 arithmetic shift. */
8346 if (have_insn_for (ASHIFTRT, mode)
8347 && ! have_insn_for (LSHIFTRT, mode)
8348 && mode_width <= HOST_BITS_PER_WIDE_INT
8349 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8351 new_rtx = gen_rtx_ASHIFTRT (mode,
8352 make_compound_operation (XEXP (x, 0),
8353 next_code),
8354 XEXP (x, 1));
8355 break;
8358 /* fall through */
8360 case ASHIFTRT:
8361 lhs = XEXP (x, 0);
8362 rhs = XEXP (x, 1);
8364 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8365 this is a SIGN_EXTRACT. */
8366 if (CONST_INT_P (rhs)
8367 && GET_CODE (lhs) == ASHIFT
8368 && CONST_INT_P (XEXP (lhs, 1))
8369 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8370 && INTVAL (XEXP (lhs, 1)) >= 0
8371 && INTVAL (rhs) < mode_width)
8373 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8374 new_rtx = make_extraction (mode, new_rtx,
8375 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8376 NULL_RTX, mode_width - INTVAL (rhs),
8377 code == LSHIFTRT, 0, in_code == COMPARE);
8378 break;
8381 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8382 If so, try to merge the shifts into a SIGN_EXTEND. We could
8383 also do this for some cases of SIGN_EXTRACT, but it doesn't
8384 seem worth the effort; the case checked for occurs on Alpha. */
8386 if (!OBJECT_P (lhs)
8387 && ! (GET_CODE (lhs) == SUBREG
8388 && (OBJECT_P (SUBREG_REG (lhs))))
8389 && CONST_INT_P (rhs)
8390 && INTVAL (rhs) >= 0
8391 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8392 && INTVAL (rhs) < mode_width
8393 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8394 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8395 next_code),
8396 0, NULL_RTX, mode_width - INTVAL (rhs),
8397 code == LSHIFTRT, 0, in_code == COMPARE);
8399 break;
8401 case SUBREG:
8402 /* Call ourselves recursively on the inner expression. If we are
8403 narrowing the object and it has a different RTL code from
8404 what it originally did, do this SUBREG as a force_to_mode. */
8406 rtx inner = SUBREG_REG (x), simplified;
8407 enum rtx_code subreg_code = in_code;
8409 /* If the SUBREG is masking of a logical right shift,
8410 make an extraction. */
8411 if (GET_CODE (inner) == LSHIFTRT
8412 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8413 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8414 && CONST_INT_P (XEXP (inner, 1))
8415 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8416 && subreg_lowpart_p (x))
8418 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8419 int width = GET_MODE_PRECISION (inner_mode)
8420 - INTVAL (XEXP (inner, 1));
8421 if (width > mode_width)
8422 width = mode_width;
8423 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8424 width, 1, 0, in_code == COMPARE);
8425 break;
8428 /* If in_code is COMPARE, it isn't always safe to pass it through
8429 to the recursive make_compound_operation call. */
8430 if (subreg_code == COMPARE
8431 && (!subreg_lowpart_p (x)
8432 || GET_CODE (inner) == SUBREG
8433 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8434 is (const_int 0), rather than
8435 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8436 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8437 for non-equality comparisons against 0 is not equivalent
8438 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8439 || (GET_CODE (inner) == AND
8440 && CONST_INT_P (XEXP (inner, 1))
8441 && partial_subreg_p (x)
8442 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8443 >= GET_MODE_BITSIZE (mode) - 1)))
8444 subreg_code = SET;
8446 tem = make_compound_operation (inner, subreg_code);
8448 simplified
8449 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8450 if (simplified)
8451 tem = simplified;
8453 if (GET_CODE (tem) != GET_CODE (inner)
8454 && partial_subreg_p (x)
8455 && subreg_lowpart_p (x))
8457 rtx newer
8458 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8460 /* If we have something other than a SUBREG, we might have
8461 done an expansion, so rerun ourselves. */
8462 if (GET_CODE (newer) != SUBREG)
8463 newer = make_compound_operation (newer, in_code);
8465 /* force_to_mode can expand compounds. If it just re-expanded
8466 the compound, use gen_lowpart to convert to the desired
8467 mode. */
8468 if (rtx_equal_p (newer, x)
8469 /* Likewise if it re-expanded the compound only partially.
8470 This happens for SUBREG of ZERO_EXTRACT if they extract
8471 the same number of bits. */
8472 || (GET_CODE (newer) == SUBREG
8473 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8474 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8475 && GET_CODE (inner) == AND
8476 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8477 return gen_lowpart (GET_MODE (x), tem);
8479 return newer;
8482 if (simplified)
8483 return tem;
8485 break;
8487 default:
8488 break;
8491 if (new_rtx)
8492 *x_ptr = gen_lowpart (mode, new_rtx);
8493 *next_code_ptr = next_code;
8494 return NULL_RTX;
8497 /* Look at the expression rooted at X. Look for expressions
8498 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8499 Form these expressions.
8501 Return the new rtx, usually just X.
8503 Also, for machines like the VAX that don't have logical shift insns,
8504 try to convert logical to arithmetic shift operations in cases where
8505 they are equivalent. This undoes the canonicalizations to logical
8506 shifts done elsewhere.
8508 We try, as much as possible, to re-use rtl expressions to save memory.
8510 IN_CODE says what kind of expression we are processing. Normally, it is
8511 SET. In a memory address it is MEM. When processing the arguments of
8512 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8513 precisely it is an equality comparison against zero. */
8516 make_compound_operation (rtx x, enum rtx_code in_code)
8518 enum rtx_code code = GET_CODE (x);
8519 const char *fmt;
8520 int i, j;
8521 enum rtx_code next_code;
8522 rtx new_rtx, tem;
8524 /* Select the code to be used in recursive calls. Once we are inside an
8525 address, we stay there. If we have a comparison, set to COMPARE,
8526 but once inside, go back to our default of SET. */
8528 next_code = (code == MEM ? MEM
8529 : ((code == COMPARE || COMPARISON_P (x))
8530 && XEXP (x, 1) == const0_rtx) ? COMPARE
8531 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8533 scalar_int_mode mode;
8534 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8536 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8537 &next_code);
8538 if (new_rtx)
8539 return new_rtx;
8540 code = GET_CODE (x);
8543 /* Now recursively process each operand of this operation. We need to
8544 handle ZERO_EXTEND specially so that we don't lose track of the
8545 inner mode. */
8546 if (code == ZERO_EXTEND)
8548 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8549 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8550 new_rtx, GET_MODE (XEXP (x, 0)));
8551 if (tem)
8552 return tem;
8553 SUBST (XEXP (x, 0), new_rtx);
8554 return x;
8557 fmt = GET_RTX_FORMAT (code);
8558 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8559 if (fmt[i] == 'e')
8561 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8562 SUBST (XEXP (x, i), new_rtx);
8564 else if (fmt[i] == 'E')
8565 for (j = 0; j < XVECLEN (x, i); j++)
8567 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8568 SUBST (XVECEXP (x, i, j), new_rtx);
8571 maybe_swap_commutative_operands (x);
8572 return x;
8575 /* Given M see if it is a value that would select a field of bits
8576 within an item, but not the entire word. Return -1 if not.
8577 Otherwise, return the starting position of the field, where 0 is the
8578 low-order bit.
8580 *PLEN is set to the length of the field. */
8582 static int
8583 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8585 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8586 int pos = m ? ctz_hwi (m) : -1;
8587 int len = 0;
8589 if (pos >= 0)
8590 /* Now shift off the low-order zero bits and see if we have a
8591 power of two minus 1. */
8592 len = exact_log2 ((m >> pos) + 1);
8594 if (len <= 0)
8595 pos = -1;
8597 *plen = len;
8598 return pos;
8601 /* If X refers to a register that equals REG in value, replace these
8602 references with REG. */
8603 static rtx
8604 canon_reg_for_combine (rtx x, rtx reg)
8606 rtx op0, op1, op2;
8607 const char *fmt;
8608 int i;
8609 bool copied;
8611 enum rtx_code code = GET_CODE (x);
8612 switch (GET_RTX_CLASS (code))
8614 case RTX_UNARY:
8615 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8616 if (op0 != XEXP (x, 0))
8617 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8618 GET_MODE (reg));
8619 break;
8621 case RTX_BIN_ARITH:
8622 case RTX_COMM_ARITH:
8623 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8624 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8625 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8626 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8627 break;
8629 case RTX_COMPARE:
8630 case RTX_COMM_COMPARE:
8631 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8632 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8633 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8634 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8635 GET_MODE (op0), op0, op1);
8636 break;
8638 case RTX_TERNARY:
8639 case RTX_BITFIELD_OPS:
8640 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8641 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8642 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8643 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8644 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8645 GET_MODE (op0), op0, op1, op2);
8646 /* FALLTHRU */
8648 case RTX_OBJ:
8649 if (REG_P (x))
8651 if (rtx_equal_p (get_last_value (reg), x)
8652 || rtx_equal_p (reg, get_last_value (x)))
8653 return reg;
8654 else
8655 break;
8658 /* fall through */
8660 default:
8661 fmt = GET_RTX_FORMAT (code);
8662 copied = false;
8663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8664 if (fmt[i] == 'e')
8666 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8667 if (op != XEXP (x, i))
8669 if (!copied)
8671 copied = true;
8672 x = copy_rtx (x);
8674 XEXP (x, i) = op;
8677 else if (fmt[i] == 'E')
8679 int j;
8680 for (j = 0; j < XVECLEN (x, i); j++)
8682 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8683 if (op != XVECEXP (x, i, j))
8685 if (!copied)
8687 copied = true;
8688 x = copy_rtx (x);
8690 XVECEXP (x, i, j) = op;
8695 break;
8698 return x;
8701 /* Return X converted to MODE. If the value is already truncated to
8702 MODE we can just return a subreg even though in the general case we
8703 would need an explicit truncation. */
8705 static rtx
8706 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8708 if (!CONST_INT_P (x)
8709 && partial_subreg_p (mode, GET_MODE (x))
8710 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8711 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8713 /* Bit-cast X into an integer mode. */
8714 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8715 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8716 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8717 x, GET_MODE (x));
8720 return gen_lowpart (mode, x);
8723 /* See if X can be simplified knowing that we will only refer to it in
8724 MODE and will only refer to those bits that are nonzero in MASK.
8725 If other bits are being computed or if masking operations are done
8726 that select a superset of the bits in MASK, they can sometimes be
8727 ignored.
8729 Return a possibly simplified expression, but always convert X to
8730 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8732 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8733 are all off in X. This is used when X will be complemented, by either
8734 NOT, NEG, or XOR. */
8736 static rtx
8737 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8738 int just_select)
8740 enum rtx_code code = GET_CODE (x);
8741 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8742 machine_mode op_mode;
8743 unsigned HOST_WIDE_INT nonzero;
8745 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8746 code below will do the wrong thing since the mode of such an
8747 expression is VOIDmode.
8749 Also do nothing if X is a CLOBBER; this can happen if X was
8750 the return value from a call to gen_lowpart. */
8751 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8752 return x;
8754 /* We want to perform the operation in its present mode unless we know
8755 that the operation is valid in MODE, in which case we do the operation
8756 in MODE. */
8757 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8758 && have_insn_for (code, mode))
8759 ? mode : GET_MODE (x));
8761 /* It is not valid to do a right-shift in a narrower mode
8762 than the one it came in with. */
8763 if ((code == LSHIFTRT || code == ASHIFTRT)
8764 && partial_subreg_p (mode, GET_MODE (x)))
8765 op_mode = GET_MODE (x);
8767 /* Truncate MASK to fit OP_MODE. */
8768 if (op_mode)
8769 mask &= GET_MODE_MASK (op_mode);
8771 /* Determine what bits of X are guaranteed to be (non)zero. */
8772 nonzero = nonzero_bits (x, mode);
8774 /* If none of the bits in X are needed, return a zero. */
8775 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8776 x = const0_rtx;
8778 /* If X is a CONST_INT, return a new one. Do this here since the
8779 test below will fail. */
8780 if (CONST_INT_P (x))
8782 if (SCALAR_INT_MODE_P (mode))
8783 return gen_int_mode (INTVAL (x) & mask, mode);
8784 else
8786 x = GEN_INT (INTVAL (x) & mask);
8787 return gen_lowpart_common (mode, x);
8791 /* If X is narrower than MODE and we want all the bits in X's mode, just
8792 get X in the proper mode. */
8793 if (paradoxical_subreg_p (mode, GET_MODE (x))
8794 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8795 return gen_lowpart (mode, x);
8797 /* We can ignore the effect of a SUBREG if it narrows the mode or
8798 if the constant masks to zero all the bits the mode doesn't have. */
8799 if (GET_CODE (x) == SUBREG
8800 && subreg_lowpart_p (x)
8801 && (partial_subreg_p (x)
8802 || (mask
8803 & GET_MODE_MASK (GET_MODE (x))
8804 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8805 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8807 scalar_int_mode int_mode, xmode;
8808 if (is_a <scalar_int_mode> (mode, &int_mode)
8809 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8810 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8811 integer too. */
8812 return force_int_to_mode (x, int_mode, xmode,
8813 as_a <scalar_int_mode> (op_mode),
8814 mask, just_select);
8816 return gen_lowpart_or_truncate (mode, x);
8819 /* Subroutine of force_to_mode that handles cases in which both X and
8820 the result are scalar integers. MODE is the mode of the result,
8821 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8822 is preferred for simplified versions of X. The other arguments
8823 are as for force_to_mode. */
8825 static rtx
8826 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8827 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8828 int just_select)
8830 enum rtx_code code = GET_CODE (x);
8831 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8832 unsigned HOST_WIDE_INT fuller_mask;
8833 rtx op0, op1, temp;
8834 poly_int64 const_op0;
8836 /* When we have an arithmetic operation, or a shift whose count we
8837 do not know, we need to assume that all bits up to the highest-order
8838 bit in MASK will be needed. This is how we form such a mask. */
8839 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8840 fuller_mask = HOST_WIDE_INT_M1U;
8841 else
8842 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8843 - 1);
8845 switch (code)
8847 case CLOBBER:
8848 /* If X is a (clobber (const_int)), return it since we know we are
8849 generating something that won't match. */
8850 return x;
8852 case SIGN_EXTEND:
8853 case ZERO_EXTEND:
8854 case ZERO_EXTRACT:
8855 case SIGN_EXTRACT:
8856 x = expand_compound_operation (x);
8857 if (GET_CODE (x) != code)
8858 return force_to_mode (x, mode, mask, next_select);
8859 break;
8861 case TRUNCATE:
8862 /* Similarly for a truncate. */
8863 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8865 case AND:
8866 /* If this is an AND with a constant, convert it into an AND
8867 whose constant is the AND of that constant with MASK. If it
8868 remains an AND of MASK, delete it since it is redundant. */
8870 if (CONST_INT_P (XEXP (x, 1)))
8872 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8873 mask & INTVAL (XEXP (x, 1)));
8874 xmode = op_mode;
8876 /* If X is still an AND, see if it is an AND with a mask that
8877 is just some low-order bits. If so, and it is MASK, we don't
8878 need it. */
8880 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8881 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8882 x = XEXP (x, 0);
8884 /* If it remains an AND, try making another AND with the bits
8885 in the mode mask that aren't in MASK turned on. If the
8886 constant in the AND is wide enough, this might make a
8887 cheaper constant. */
8889 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8890 && GET_MODE_MASK (xmode) != mask
8891 && HWI_COMPUTABLE_MODE_P (xmode))
8893 unsigned HOST_WIDE_INT cval
8894 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8895 rtx y;
8897 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8898 gen_int_mode (cval, xmode));
8899 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8900 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8901 x = y;
8904 break;
8907 goto binop;
8909 case PLUS:
8910 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8911 low-order bits (as in an alignment operation) and FOO is already
8912 aligned to that boundary, mask C1 to that boundary as well.
8913 This may eliminate that PLUS and, later, the AND. */
8916 unsigned int width = GET_MODE_PRECISION (mode);
8917 unsigned HOST_WIDE_INT smask = mask;
8919 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8920 number, sign extend it. */
8922 if (width < HOST_BITS_PER_WIDE_INT
8923 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8924 smask |= HOST_WIDE_INT_M1U << width;
8926 if (CONST_INT_P (XEXP (x, 1))
8927 && pow2p_hwi (- smask)
8928 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8929 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8930 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8931 (INTVAL (XEXP (x, 1)) & smask)),
8932 mode, smask, next_select);
8935 /* fall through */
8937 case MULT:
8938 /* Substituting into the operands of a widening MULT is not likely to
8939 create RTL matching a machine insn. */
8940 if (code == MULT
8941 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8942 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8943 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8944 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8945 && REG_P (XEXP (XEXP (x, 0), 0))
8946 && REG_P (XEXP (XEXP (x, 1), 0)))
8947 return gen_lowpart_or_truncate (mode, x);
8949 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8950 most significant bit in MASK since carries from those bits will
8951 affect the bits we are interested in. */
8952 mask = fuller_mask;
8953 goto binop;
8955 case MINUS:
8956 /* If X is (minus C Y) where C's least set bit is larger than any bit
8957 in the mask, then we may replace with (neg Y). */
8958 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8959 && known_alignment (poly_uint64 (const_op0)) > mask)
8961 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8962 return force_to_mode (x, mode, mask, next_select);
8965 /* Similarly, if C contains every bit in the fuller_mask, then we may
8966 replace with (not Y). */
8967 if (CONST_INT_P (XEXP (x, 0))
8968 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8970 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8971 return force_to_mode (x, mode, mask, next_select);
8974 mask = fuller_mask;
8975 goto binop;
8977 case IOR:
8978 case XOR:
8979 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8980 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8981 operation which may be a bitfield extraction. Ensure that the
8982 constant we form is not wider than the mode of X. */
8984 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8985 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8986 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8987 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8988 && CONST_INT_P (XEXP (x, 1))
8989 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8990 + floor_log2 (INTVAL (XEXP (x, 1))))
8991 < GET_MODE_PRECISION (xmode))
8992 && (UINTVAL (XEXP (x, 1))
8993 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8995 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8996 << INTVAL (XEXP (XEXP (x, 0), 1)),
8997 xmode);
8998 temp = simplify_gen_binary (GET_CODE (x), xmode,
8999 XEXP (XEXP (x, 0), 0), temp);
9000 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
9001 XEXP (XEXP (x, 0), 1));
9002 return force_to_mode (x, mode, mask, next_select);
9005 binop:
9006 /* For most binary operations, just propagate into the operation and
9007 change the mode if we have an operation of that mode. */
9009 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
9010 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
9012 /* If we ended up truncating both operands, truncate the result of the
9013 operation instead. */
9014 if (GET_CODE (op0) == TRUNCATE
9015 && GET_CODE (op1) == TRUNCATE)
9017 op0 = XEXP (op0, 0);
9018 op1 = XEXP (op1, 0);
9021 op0 = gen_lowpart_or_truncate (op_mode, op0);
9022 op1 = gen_lowpart_or_truncate (op_mode, op1);
9024 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
9026 x = simplify_gen_binary (code, op_mode, op0, op1);
9027 xmode = op_mode;
9029 break;
9031 case ASHIFT:
9032 /* For left shifts, do the same, but just for the first operand.
9033 However, we cannot do anything with shifts where we cannot
9034 guarantee that the counts are smaller than the size of the mode
9035 because such a count will have a different meaning in a
9036 wider mode. */
9038 if (! (CONST_INT_P (XEXP (x, 1))
9039 && INTVAL (XEXP (x, 1)) >= 0
9040 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9041 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9042 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9043 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9044 break;
9046 /* If the shift count is a constant and we can do arithmetic in
9047 the mode of the shift, refine which bits we need. Otherwise, use the
9048 conservative form of the mask. */
9049 if (CONST_INT_P (XEXP (x, 1))
9050 && INTVAL (XEXP (x, 1)) >= 0
9051 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9052 && HWI_COMPUTABLE_MODE_P (op_mode))
9053 mask >>= INTVAL (XEXP (x, 1));
9054 else
9055 mask = fuller_mask;
9057 op0 = gen_lowpart_or_truncate (op_mode,
9058 force_to_mode (XEXP (x, 0), mode,
9059 mask, next_select));
9061 if (op_mode != xmode || op0 != XEXP (x, 0))
9063 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9064 xmode = op_mode;
9066 break;
9068 case LSHIFTRT:
9069 /* Here we can only do something if the shift count is a constant,
9070 this shift constant is valid for the host, and we can do arithmetic
9071 in OP_MODE. */
9073 if (CONST_INT_P (XEXP (x, 1))
9074 && INTVAL (XEXP (x, 1)) >= 0
9075 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9076 && HWI_COMPUTABLE_MODE_P (op_mode))
9078 rtx inner = XEXP (x, 0);
9079 unsigned HOST_WIDE_INT inner_mask;
9081 /* Select the mask of the bits we need for the shift operand. */
9082 inner_mask = mask << INTVAL (XEXP (x, 1));
9084 /* We can only change the mode of the shift if we can do arithmetic
9085 in the mode of the shift and INNER_MASK is no wider than the
9086 width of X's mode. */
9087 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9088 op_mode = xmode;
9090 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9092 if (xmode != op_mode || inner != XEXP (x, 0))
9094 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9095 xmode = op_mode;
9099 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9100 shift and AND produces only copies of the sign bit (C2 is one less
9101 than a power of two), we can do this with just a shift. */
9103 if (GET_CODE (x) == LSHIFTRT
9104 && CONST_INT_P (XEXP (x, 1))
9105 /* The shift puts one of the sign bit copies in the least significant
9106 bit. */
9107 && ((INTVAL (XEXP (x, 1))
9108 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9109 >= GET_MODE_PRECISION (xmode))
9110 && pow2p_hwi (mask + 1)
9111 /* Number of bits left after the shift must be more than the mask
9112 needs. */
9113 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9114 <= GET_MODE_PRECISION (xmode))
9115 /* Must be more sign bit copies than the mask needs. */
9116 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9117 >= exact_log2 (mask + 1)))
9119 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9120 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9121 gen_int_shift_amount (xmode, nbits));
9123 goto shiftrt;
9125 case ASHIFTRT:
9126 /* If we are just looking for the sign bit, we don't need this shift at
9127 all, even if it has a variable count. */
9128 if (val_signbit_p (xmode, mask))
9129 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9131 /* If this is a shift by a constant, get a mask that contains those bits
9132 that are not copies of the sign bit. We then have two cases: If
9133 MASK only includes those bits, this can be a logical shift, which may
9134 allow simplifications. If MASK is a single-bit field not within
9135 those bits, we are requesting a copy of the sign bit and hence can
9136 shift the sign bit to the appropriate location. */
9138 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9139 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9141 unsigned HOST_WIDE_INT nonzero;
9142 int i;
9144 /* If the considered data is wider than HOST_WIDE_INT, we can't
9145 represent a mask for all its bits in a single scalar.
9146 But we only care about the lower bits, so calculate these. */
9148 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9150 nonzero = HOST_WIDE_INT_M1U;
9152 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9153 is the number of bits a full-width mask would have set.
9154 We need only shift if these are fewer than nonzero can
9155 hold. If not, we must keep all bits set in nonzero. */
9157 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9158 < HOST_BITS_PER_WIDE_INT)
9159 nonzero >>= INTVAL (XEXP (x, 1))
9160 + HOST_BITS_PER_WIDE_INT
9161 - GET_MODE_PRECISION (xmode);
9163 else
9165 nonzero = GET_MODE_MASK (xmode);
9166 nonzero >>= INTVAL (XEXP (x, 1));
9169 if ((mask & ~nonzero) == 0)
9171 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9172 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9173 if (GET_CODE (x) != ASHIFTRT)
9174 return force_to_mode (x, mode, mask, next_select);
9177 else if ((i = exact_log2 (mask)) >= 0)
9179 x = simplify_shift_const
9180 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9181 GET_MODE_PRECISION (xmode) - 1 - i);
9183 if (GET_CODE (x) != ASHIFTRT)
9184 return force_to_mode (x, mode, mask, next_select);
9188 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9189 even if the shift count isn't a constant. */
9190 if (mask == 1)
9191 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9193 shiftrt:
9195 /* If this is a zero- or sign-extension operation that just affects bits
9196 we don't care about, remove it. Be sure the call above returned
9197 something that is still a shift. */
9199 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9200 && CONST_INT_P (XEXP (x, 1))
9201 && INTVAL (XEXP (x, 1)) >= 0
9202 && (INTVAL (XEXP (x, 1))
9203 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9204 && GET_CODE (XEXP (x, 0)) == ASHIFT
9205 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9206 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9207 next_select);
9209 break;
9211 case ROTATE:
9212 case ROTATERT:
9213 /* If the shift count is constant and we can do computations
9214 in the mode of X, compute where the bits we care about are.
9215 Otherwise, we can't do anything. Don't change the mode of
9216 the shift or propagate MODE into the shift, though. */
9217 if (CONST_INT_P (XEXP (x, 1))
9218 && INTVAL (XEXP (x, 1)) >= 0)
9220 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9221 xmode, gen_int_mode (mask, xmode),
9222 XEXP (x, 1));
9223 if (temp && CONST_INT_P (temp))
9224 x = simplify_gen_binary (code, xmode,
9225 force_to_mode (XEXP (x, 0), xmode,
9226 INTVAL (temp), next_select),
9227 XEXP (x, 1));
9229 break;
9231 case NEG:
9232 /* If we just want the low-order bit, the NEG isn't needed since it
9233 won't change the low-order bit. */
9234 if (mask == 1)
9235 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9237 /* We need any bits less significant than the most significant bit in
9238 MASK since carries from those bits will affect the bits we are
9239 interested in. */
9240 mask = fuller_mask;
9241 goto unop;
9243 case NOT:
9244 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9245 same as the XOR case above. Ensure that the constant we form is not
9246 wider than the mode of X. */
9248 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9249 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9250 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9251 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9252 < GET_MODE_PRECISION (xmode))
9253 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9255 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9256 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9257 x = simplify_gen_binary (LSHIFTRT, xmode,
9258 temp, XEXP (XEXP (x, 0), 1));
9260 return force_to_mode (x, mode, mask, next_select);
9263 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9264 use the full mask inside the NOT. */
9265 mask = fuller_mask;
9267 unop:
9268 op0 = gen_lowpart_or_truncate (op_mode,
9269 force_to_mode (XEXP (x, 0), mode, mask,
9270 next_select));
9271 if (op_mode != xmode || op0 != XEXP (x, 0))
9273 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9274 xmode = op_mode;
9276 break;
9278 case NE:
9279 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9280 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9281 which is equal to STORE_FLAG_VALUE. */
9282 if ((mask & ~STORE_FLAG_VALUE) == 0
9283 && XEXP (x, 1) == const0_rtx
9284 && GET_MODE (XEXP (x, 0)) == mode
9285 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9286 && (nonzero_bits (XEXP (x, 0), mode)
9287 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9288 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9290 break;
9292 case IF_THEN_ELSE:
9293 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9294 written in a narrower mode. We play it safe and do not do so. */
9296 op0 = gen_lowpart_or_truncate (xmode,
9297 force_to_mode (XEXP (x, 1), mode,
9298 mask, next_select));
9299 op1 = gen_lowpart_or_truncate (xmode,
9300 force_to_mode (XEXP (x, 2), mode,
9301 mask, next_select));
9302 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9303 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9304 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9305 op0, op1);
9306 break;
9308 default:
9309 break;
9312 /* Ensure we return a value of the proper mode. */
9313 return gen_lowpart_or_truncate (mode, x);
9316 /* Return nonzero if X is an expression that has one of two values depending on
9317 whether some other value is zero or nonzero. In that case, we return the
9318 value that is being tested, *PTRUE is set to the value if the rtx being
9319 returned has a nonzero value, and *PFALSE is set to the other alternative.
9321 If we return zero, we set *PTRUE and *PFALSE to X. */
9323 static rtx
9324 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9326 machine_mode mode = GET_MODE (x);
9327 enum rtx_code code = GET_CODE (x);
9328 rtx cond0, cond1, true0, true1, false0, false1;
9329 unsigned HOST_WIDE_INT nz;
9330 scalar_int_mode int_mode;
9332 /* If we are comparing a value against zero, we are done. */
9333 if ((code == NE || code == EQ)
9334 && XEXP (x, 1) == const0_rtx)
9336 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9337 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9338 return XEXP (x, 0);
9341 /* If this is a unary operation whose operand has one of two values, apply
9342 our opcode to compute those values. */
9343 else if (UNARY_P (x)
9344 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9346 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9347 *pfalse = simplify_gen_unary (code, mode, false0,
9348 GET_MODE (XEXP (x, 0)));
9349 return cond0;
9352 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9353 make can't possibly match and would suppress other optimizations. */
9354 else if (code == COMPARE)
9357 /* If this is a binary operation, see if either side has only one of two
9358 values. If either one does or if both do and they are conditional on
9359 the same value, compute the new true and false values. */
9360 else if (BINARY_P (x))
9362 rtx op0 = XEXP (x, 0);
9363 rtx op1 = XEXP (x, 1);
9364 cond0 = if_then_else_cond (op0, &true0, &false0);
9365 cond1 = if_then_else_cond (op1, &true1, &false1);
9367 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9368 && (REG_P (op0) || REG_P (op1)))
9370 /* Try to enable a simplification by undoing work done by
9371 if_then_else_cond if it converted a REG into something more
9372 complex. */
9373 if (REG_P (op0))
9375 cond0 = 0;
9376 true0 = false0 = op0;
9378 else
9380 cond1 = 0;
9381 true1 = false1 = op1;
9385 if ((cond0 != 0 || cond1 != 0)
9386 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9388 /* If if_then_else_cond returned zero, then true/false are the
9389 same rtl. We must copy one of them to prevent invalid rtl
9390 sharing. */
9391 if (cond0 == 0)
9392 true0 = copy_rtx (true0);
9393 else if (cond1 == 0)
9394 true1 = copy_rtx (true1);
9396 if (COMPARISON_P (x))
9398 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9399 true0, true1);
9400 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9401 false0, false1);
9403 else
9405 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9406 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9409 return cond0 ? cond0 : cond1;
9412 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9413 operands is zero when the other is nonzero, and vice-versa,
9414 and STORE_FLAG_VALUE is 1 or -1. */
9416 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9417 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9418 || code == UMAX)
9419 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9421 rtx op0 = XEXP (XEXP (x, 0), 1);
9422 rtx op1 = XEXP (XEXP (x, 1), 1);
9424 cond0 = XEXP (XEXP (x, 0), 0);
9425 cond1 = XEXP (XEXP (x, 1), 0);
9427 if (COMPARISON_P (cond0)
9428 && COMPARISON_P (cond1)
9429 && SCALAR_INT_MODE_P (mode)
9430 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9431 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9432 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9433 || ((swap_condition (GET_CODE (cond0))
9434 == reversed_comparison_code (cond1, NULL))
9435 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9436 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9437 && ! side_effects_p (x))
9439 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9440 *pfalse = simplify_gen_binary (MULT, mode,
9441 (code == MINUS
9442 ? simplify_gen_unary (NEG, mode,
9443 op1, mode)
9444 : op1),
9445 const_true_rtx);
9446 return cond0;
9450 /* Similarly for MULT, AND and UMIN, except that for these the result
9451 is always zero. */
9452 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9453 && (code == MULT || code == AND || code == UMIN)
9454 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9456 cond0 = XEXP (XEXP (x, 0), 0);
9457 cond1 = XEXP (XEXP (x, 1), 0);
9459 if (COMPARISON_P (cond0)
9460 && COMPARISON_P (cond1)
9461 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9462 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9463 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9464 || ((swap_condition (GET_CODE (cond0))
9465 == reversed_comparison_code (cond1, NULL))
9466 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9467 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9468 && ! side_effects_p (x))
9470 *ptrue = *pfalse = const0_rtx;
9471 return cond0;
9476 else if (code == IF_THEN_ELSE)
9478 /* If we have IF_THEN_ELSE already, extract the condition and
9479 canonicalize it if it is NE or EQ. */
9480 cond0 = XEXP (x, 0);
9481 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9482 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9483 return XEXP (cond0, 0);
9484 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9486 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9487 return XEXP (cond0, 0);
9489 else
9490 return cond0;
9493 /* If X is a SUBREG, we can narrow both the true and false values
9494 if the inner expression, if there is a condition. */
9495 else if (code == SUBREG
9496 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9497 &false0)) != 0)
9499 true0 = simplify_gen_subreg (mode, true0,
9500 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9501 false0 = simplify_gen_subreg (mode, false0,
9502 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9503 if (true0 && false0)
9505 *ptrue = true0;
9506 *pfalse = false0;
9507 return cond0;
9511 /* If X is a constant, this isn't special and will cause confusions
9512 if we treat it as such. Likewise if it is equivalent to a constant. */
9513 else if (CONSTANT_P (x)
9514 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9517 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9518 will be least confusing to the rest of the compiler. */
9519 else if (mode == BImode)
9521 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9522 return x;
9525 /* If X is known to be either 0 or -1, those are the true and
9526 false values when testing X. */
9527 else if (x == constm1_rtx || x == const0_rtx
9528 || (is_a <scalar_int_mode> (mode, &int_mode)
9529 && (num_sign_bit_copies (x, int_mode)
9530 == GET_MODE_PRECISION (int_mode))))
9532 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9533 return x;
9536 /* Likewise for 0 or a single bit. */
9537 else if (HWI_COMPUTABLE_MODE_P (mode)
9538 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9540 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9541 return x;
9544 /* Otherwise fail; show no condition with true and false values the same. */
9545 *ptrue = *pfalse = x;
9546 return 0;
9549 /* Return the value of expression X given the fact that condition COND
9550 is known to be true when applied to REG as its first operand and VAL
9551 as its second. X is known to not be shared and so can be modified in
9552 place.
9554 We only handle the simplest cases, and specifically those cases that
9555 arise with IF_THEN_ELSE expressions. */
9557 static rtx
9558 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9560 enum rtx_code code = GET_CODE (x);
9561 const char *fmt;
9562 int i, j;
9564 if (side_effects_p (x))
9565 return x;
9567 /* If either operand of the condition is a floating point value,
9568 then we have to avoid collapsing an EQ comparison. */
9569 if (cond == EQ
9570 && rtx_equal_p (x, reg)
9571 && ! FLOAT_MODE_P (GET_MODE (x))
9572 && ! FLOAT_MODE_P (GET_MODE (val)))
9573 return val;
9575 if (cond == UNEQ && rtx_equal_p (x, reg))
9576 return val;
9578 /* If X is (abs REG) and we know something about REG's relationship
9579 with zero, we may be able to simplify this. */
9581 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9582 switch (cond)
9584 case GE: case GT: case EQ:
9585 return XEXP (x, 0);
9586 case LT: case LE:
9587 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9588 XEXP (x, 0),
9589 GET_MODE (XEXP (x, 0)));
9590 default:
9591 break;
9594 /* The only other cases we handle are MIN, MAX, and comparisons if the
9595 operands are the same as REG and VAL. */
9597 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9599 if (rtx_equal_p (XEXP (x, 0), val))
9601 std::swap (val, reg);
9602 cond = swap_condition (cond);
9605 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9607 if (COMPARISON_P (x))
9609 if (comparison_dominates_p (cond, code))
9610 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9612 code = reversed_comparison_code (x, NULL);
9613 if (code != UNKNOWN
9614 && comparison_dominates_p (cond, code))
9615 return CONST0_RTX (GET_MODE (x));
9616 else
9617 return x;
9619 else if (code == SMAX || code == SMIN
9620 || code == UMIN || code == UMAX)
9622 int unsignedp = (code == UMIN || code == UMAX);
9624 /* Do not reverse the condition when it is NE or EQ.
9625 This is because we cannot conclude anything about
9626 the value of 'SMAX (x, y)' when x is not equal to y,
9627 but we can when x equals y. */
9628 if ((code == SMAX || code == UMAX)
9629 && ! (cond == EQ || cond == NE))
9630 cond = reverse_condition (cond);
9632 switch (cond)
9634 case GE: case GT:
9635 return unsignedp ? x : XEXP (x, 1);
9636 case LE: case LT:
9637 return unsignedp ? x : XEXP (x, 0);
9638 case GEU: case GTU:
9639 return unsignedp ? XEXP (x, 1) : x;
9640 case LEU: case LTU:
9641 return unsignedp ? XEXP (x, 0) : x;
9642 default:
9643 break;
9648 else if (code == SUBREG)
9650 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9651 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9653 if (SUBREG_REG (x) != r)
9655 /* We must simplify subreg here, before we lose track of the
9656 original inner_mode. */
9657 new_rtx = simplify_subreg (GET_MODE (x), r,
9658 inner_mode, SUBREG_BYTE (x));
9659 if (new_rtx)
9660 return new_rtx;
9661 else
9662 SUBST (SUBREG_REG (x), r);
9665 return x;
9667 /* We don't have to handle SIGN_EXTEND here, because even in the
9668 case of replacing something with a modeless CONST_INT, a
9669 CONST_INT is already (supposed to be) a valid sign extension for
9670 its narrower mode, which implies it's already properly
9671 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9672 story is different. */
9673 else if (code == ZERO_EXTEND)
9675 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9676 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9678 if (XEXP (x, 0) != r)
9680 /* We must simplify the zero_extend here, before we lose
9681 track of the original inner_mode. */
9682 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9683 r, inner_mode);
9684 if (new_rtx)
9685 return new_rtx;
9686 else
9687 SUBST (XEXP (x, 0), r);
9690 return x;
9693 fmt = GET_RTX_FORMAT (code);
9694 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9696 if (fmt[i] == 'e')
9697 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9698 else if (fmt[i] == 'E')
9699 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9700 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9701 cond, reg, val));
9704 return x;
9707 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9708 assignment as a field assignment. */
9710 static int
9711 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9713 if (widen_x && GET_MODE (x) != GET_MODE (y))
9715 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9716 return 0;
9717 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9718 return 0;
9719 x = adjust_address_nv (x, GET_MODE (y),
9720 byte_lowpart_offset (GET_MODE (y),
9721 GET_MODE (x)));
9724 if (x == y || rtx_equal_p (x, y))
9725 return 1;
9727 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9728 return 0;
9730 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9731 Note that all SUBREGs of MEM are paradoxical; otherwise they
9732 would have been rewritten. */
9733 if (MEM_P (x) && GET_CODE (y) == SUBREG
9734 && MEM_P (SUBREG_REG (y))
9735 && rtx_equal_p (SUBREG_REG (y),
9736 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9737 return 1;
9739 if (MEM_P (y) && GET_CODE (x) == SUBREG
9740 && MEM_P (SUBREG_REG (x))
9741 && rtx_equal_p (SUBREG_REG (x),
9742 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9743 return 1;
9745 /* We used to see if get_last_value of X and Y were the same but that's
9746 not correct. In one direction, we'll cause the assignment to have
9747 the wrong destination and in the case, we'll import a register into this
9748 insn that might have already have been dead. So fail if none of the
9749 above cases are true. */
9750 return 0;
9753 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9754 Return that assignment if so.
9756 We only handle the most common cases. */
9758 static rtx
9759 make_field_assignment (rtx x)
9761 rtx dest = SET_DEST (x);
9762 rtx src = SET_SRC (x);
9763 rtx assign;
9764 rtx rhs, lhs;
9765 HOST_WIDE_INT c1;
9766 HOST_WIDE_INT pos;
9767 unsigned HOST_WIDE_INT len;
9768 rtx other;
9770 /* All the rules in this function are specific to scalar integers. */
9771 scalar_int_mode mode;
9772 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9773 return x;
9775 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9776 a clear of a one-bit field. We will have changed it to
9777 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9778 for a SUBREG. */
9780 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9781 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9782 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9783 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9785 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9786 1, 1, 1, 0);
9787 if (assign != 0)
9788 return gen_rtx_SET (assign, const0_rtx);
9789 return x;
9792 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9793 && subreg_lowpart_p (XEXP (src, 0))
9794 && partial_subreg_p (XEXP (src, 0))
9795 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9796 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9797 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9798 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9800 assign = make_extraction (VOIDmode, dest, 0,
9801 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9802 1, 1, 1, 0);
9803 if (assign != 0)
9804 return gen_rtx_SET (assign, const0_rtx);
9805 return x;
9808 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9809 one-bit field. */
9810 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9811 && XEXP (XEXP (src, 0), 0) == const1_rtx
9812 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9814 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9815 1, 1, 1, 0);
9816 if (assign != 0)
9817 return gen_rtx_SET (assign, const1_rtx);
9818 return x;
9821 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9822 SRC is an AND with all bits of that field set, then we can discard
9823 the AND. */
9824 if (GET_CODE (dest) == ZERO_EXTRACT
9825 && CONST_INT_P (XEXP (dest, 1))
9826 && GET_CODE (src) == AND
9827 && CONST_INT_P (XEXP (src, 1)))
9829 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9830 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9831 unsigned HOST_WIDE_INT ze_mask;
9833 if (width >= HOST_BITS_PER_WIDE_INT)
9834 ze_mask = -1;
9835 else
9836 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9838 /* Complete overlap. We can remove the source AND. */
9839 if ((and_mask & ze_mask) == ze_mask)
9840 return gen_rtx_SET (dest, XEXP (src, 0));
9842 /* Partial overlap. We can reduce the source AND. */
9843 if ((and_mask & ze_mask) != and_mask)
9845 src = gen_rtx_AND (mode, XEXP (src, 0),
9846 gen_int_mode (and_mask & ze_mask, mode));
9847 return gen_rtx_SET (dest, src);
9851 /* The other case we handle is assignments into a constant-position
9852 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9853 a mask that has all one bits except for a group of zero bits and
9854 OTHER is known to have zeros where C1 has ones, this is such an
9855 assignment. Compute the position and length from C1. Shift OTHER
9856 to the appropriate position, force it to the required mode, and
9857 make the extraction. Check for the AND in both operands. */
9859 /* One or more SUBREGs might obscure the constant-position field
9860 assignment. The first one we are likely to encounter is an outer
9861 narrowing SUBREG, which we can just strip for the purposes of
9862 identifying the constant-field assignment. */
9863 scalar_int_mode src_mode = mode;
9864 if (GET_CODE (src) == SUBREG
9865 && subreg_lowpart_p (src)
9866 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9867 src = SUBREG_REG (src);
9869 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9870 return x;
9872 rhs = expand_compound_operation (XEXP (src, 0));
9873 lhs = expand_compound_operation (XEXP (src, 1));
9875 if (GET_CODE (rhs) == AND
9876 && CONST_INT_P (XEXP (rhs, 1))
9877 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9878 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9879 /* The second SUBREG that might get in the way is a paradoxical
9880 SUBREG around the first operand of the AND. We want to
9881 pretend the operand is as wide as the destination here. We
9882 do this by adjusting the MEM to wider mode for the sole
9883 purpose of the call to rtx_equal_for_field_assignment_p. Also
9884 note this trick only works for MEMs. */
9885 else if (GET_CODE (rhs) == AND
9886 && paradoxical_subreg_p (XEXP (rhs, 0))
9887 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9888 && CONST_INT_P (XEXP (rhs, 1))
9889 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9890 dest, true))
9891 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9892 else if (GET_CODE (lhs) == AND
9893 && CONST_INT_P (XEXP (lhs, 1))
9894 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9895 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9896 /* The second SUBREG that might get in the way is a paradoxical
9897 SUBREG around the first operand of the AND. We want to
9898 pretend the operand is as wide as the destination here. We
9899 do this by adjusting the MEM to wider mode for the sole
9900 purpose of the call to rtx_equal_for_field_assignment_p. Also
9901 note this trick only works for MEMs. */
9902 else if (GET_CODE (lhs) == AND
9903 && paradoxical_subreg_p (XEXP (lhs, 0))
9904 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9905 && CONST_INT_P (XEXP (lhs, 1))
9906 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9907 dest, true))
9908 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9909 else
9910 return x;
9912 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9913 if (pos < 0
9914 || pos + len > GET_MODE_PRECISION (mode)
9915 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9916 || (c1 & nonzero_bits (other, mode)) != 0)
9917 return x;
9919 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9920 if (assign == 0)
9921 return x;
9923 /* The mode to use for the source is the mode of the assignment, or of
9924 what is inside a possible STRICT_LOW_PART. */
9925 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9926 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9928 /* Shift OTHER right POS places and make it the source, restricting it
9929 to the proper length and mode. */
9931 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9932 src_mode, other, pos),
9933 dest);
9934 src = force_to_mode (src, new_mode,
9935 len >= HOST_BITS_PER_WIDE_INT
9936 ? HOST_WIDE_INT_M1U
9937 : (HOST_WIDE_INT_1U << len) - 1,
9940 /* If SRC is masked by an AND that does not make a difference in
9941 the value being stored, strip it. */
9942 if (GET_CODE (assign) == ZERO_EXTRACT
9943 && CONST_INT_P (XEXP (assign, 1))
9944 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9945 && GET_CODE (src) == AND
9946 && CONST_INT_P (XEXP (src, 1))
9947 && UINTVAL (XEXP (src, 1))
9948 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9949 src = XEXP (src, 0);
9951 return gen_rtx_SET (assign, src);
9954 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9955 if so. */
9957 static rtx
9958 apply_distributive_law (rtx x)
9960 enum rtx_code code = GET_CODE (x);
9961 enum rtx_code inner_code;
9962 rtx lhs, rhs, other;
9963 rtx tem;
9965 /* Distributivity is not true for floating point as it can change the
9966 value. So we don't do it unless -funsafe-math-optimizations. */
9967 if (FLOAT_MODE_P (GET_MODE (x))
9968 && ! flag_unsafe_math_optimizations)
9969 return x;
9971 /* The outer operation can only be one of the following: */
9972 if (code != IOR && code != AND && code != XOR
9973 && code != PLUS && code != MINUS)
9974 return x;
9976 lhs = XEXP (x, 0);
9977 rhs = XEXP (x, 1);
9979 /* If either operand is a primitive we can't do anything, so get out
9980 fast. */
9981 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9982 return x;
9984 lhs = expand_compound_operation (lhs);
9985 rhs = expand_compound_operation (rhs);
9986 inner_code = GET_CODE (lhs);
9987 if (inner_code != GET_CODE (rhs))
9988 return x;
9990 /* See if the inner and outer operations distribute. */
9991 switch (inner_code)
9993 case LSHIFTRT:
9994 case ASHIFTRT:
9995 case AND:
9996 case IOR:
9997 /* These all distribute except over PLUS. */
9998 if (code == PLUS || code == MINUS)
9999 return x;
10000 break;
10002 case MULT:
10003 if (code != PLUS && code != MINUS)
10004 return x;
10005 break;
10007 case ASHIFT:
10008 /* This is also a multiply, so it distributes over everything. */
10009 break;
10011 /* This used to handle SUBREG, but this turned out to be counter-
10012 productive, since (subreg (op ...)) usually is not handled by
10013 insn patterns, and this "optimization" therefore transformed
10014 recognizable patterns into unrecognizable ones. Therefore the
10015 SUBREG case was removed from here.
10017 It is possible that distributing SUBREG over arithmetic operations
10018 leads to an intermediate result than can then be optimized further,
10019 e.g. by moving the outer SUBREG to the other side of a SET as done
10020 in simplify_set. This seems to have been the original intent of
10021 handling SUBREGs here.
10023 However, with current GCC this does not appear to actually happen,
10024 at least on major platforms. If some case is found where removing
10025 the SUBREG case here prevents follow-on optimizations, distributing
10026 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10028 default:
10029 return x;
10032 /* Set LHS and RHS to the inner operands (A and B in the example
10033 above) and set OTHER to the common operand (C in the example).
10034 There is only one way to do this unless the inner operation is
10035 commutative. */
10036 if (COMMUTATIVE_ARITH_P (lhs)
10037 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10038 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10039 else if (COMMUTATIVE_ARITH_P (lhs)
10040 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10041 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10042 else if (COMMUTATIVE_ARITH_P (lhs)
10043 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10044 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10045 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10046 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10047 else
10048 return x;
10050 /* Form the new inner operation, seeing if it simplifies first. */
10051 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10053 /* There is one exception to the general way of distributing:
10054 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10055 if (code == XOR && inner_code == IOR)
10057 inner_code = AND;
10058 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10061 /* We may be able to continuing distributing the result, so call
10062 ourselves recursively on the inner operation before forming the
10063 outer operation, which we return. */
10064 return simplify_gen_binary (inner_code, GET_MODE (x),
10065 apply_distributive_law (tem), other);
10068 /* See if X is of the form (* (+ A B) C), and if so convert to
10069 (+ (* A C) (* B C)) and try to simplify.
10071 Most of the time, this results in no change. However, if some of
10072 the operands are the same or inverses of each other, simplifications
10073 will result.
10075 For example, (and (ior A B) (not B)) can occur as the result of
10076 expanding a bit field assignment. When we apply the distributive
10077 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10078 which then simplifies to (and (A (not B))).
10080 Note that no checks happen on the validity of applying the inverse
10081 distributive law. This is pointless since we can do it in the
10082 few places where this routine is called.
10084 N is the index of the term that is decomposed (the arithmetic operation,
10085 i.e. (+ A B) in the first example above). !N is the index of the term that
10086 is distributed, i.e. of C in the first example above. */
10087 static rtx
10088 distribute_and_simplify_rtx (rtx x, int n)
10090 machine_mode mode;
10091 enum rtx_code outer_code, inner_code;
10092 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10094 /* Distributivity is not true for floating point as it can change the
10095 value. So we don't do it unless -funsafe-math-optimizations. */
10096 if (FLOAT_MODE_P (GET_MODE (x))
10097 && ! flag_unsafe_math_optimizations)
10098 return NULL_RTX;
10100 decomposed = XEXP (x, n);
10101 if (!ARITHMETIC_P (decomposed))
10102 return NULL_RTX;
10104 mode = GET_MODE (x);
10105 outer_code = GET_CODE (x);
10106 distributed = XEXP (x, !n);
10108 inner_code = GET_CODE (decomposed);
10109 inner_op0 = XEXP (decomposed, 0);
10110 inner_op1 = XEXP (decomposed, 1);
10112 /* Special case (and (xor B C) (not A)), which is equivalent to
10113 (xor (ior A B) (ior A C)) */
10114 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10116 distributed = XEXP (distributed, 0);
10117 outer_code = IOR;
10120 if (n == 0)
10122 /* Distribute the second term. */
10123 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10124 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10126 else
10128 /* Distribute the first term. */
10129 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10130 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10133 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10134 new_op0, new_op1));
10135 if (GET_CODE (tmp) != outer_code
10136 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10137 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10138 return tmp;
10140 return NULL_RTX;
10143 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10144 in MODE. Return an equivalent form, if different from (and VAROP
10145 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10147 static rtx
10148 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10149 unsigned HOST_WIDE_INT constop)
10151 unsigned HOST_WIDE_INT nonzero;
10152 unsigned HOST_WIDE_INT orig_constop;
10153 rtx orig_varop;
10154 int i;
10156 orig_varop = varop;
10157 orig_constop = constop;
10158 if (GET_CODE (varop) == CLOBBER)
10159 return NULL_RTX;
10161 /* Simplify VAROP knowing that we will be only looking at some of the
10162 bits in it.
10164 Note by passing in CONSTOP, we guarantee that the bits not set in
10165 CONSTOP are not significant and will never be examined. We must
10166 ensure that is the case by explicitly masking out those bits
10167 before returning. */
10168 varop = force_to_mode (varop, mode, constop, 0);
10170 /* If VAROP is a CLOBBER, we will fail so return it. */
10171 if (GET_CODE (varop) == CLOBBER)
10172 return varop;
10174 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10175 to VAROP and return the new constant. */
10176 if (CONST_INT_P (varop))
10177 return gen_int_mode (INTVAL (varop) & constop, mode);
10179 /* See what bits may be nonzero in VAROP. Unlike the general case of
10180 a call to nonzero_bits, here we don't care about bits outside
10181 MODE. */
10183 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10185 /* Turn off all bits in the constant that are known to already be zero.
10186 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10187 which is tested below. */
10189 constop &= nonzero;
10191 /* If we don't have any bits left, return zero. */
10192 if (constop == 0)
10193 return const0_rtx;
10195 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10196 a power of two, we can replace this with an ASHIFT. */
10197 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10198 && (i = exact_log2 (constop)) >= 0)
10199 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10201 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10202 or XOR, then try to apply the distributive law. This may eliminate
10203 operations if either branch can be simplified because of the AND.
10204 It may also make some cases more complex, but those cases probably
10205 won't match a pattern either with or without this. */
10207 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10209 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10210 return
10211 gen_lowpart
10212 (mode,
10213 apply_distributive_law
10214 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10215 simplify_and_const_int (NULL_RTX, varop_mode,
10216 XEXP (varop, 0),
10217 constop),
10218 simplify_and_const_int (NULL_RTX, varop_mode,
10219 XEXP (varop, 1),
10220 constop))));
10223 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10224 the AND and see if one of the operands simplifies to zero. If so, we
10225 may eliminate it. */
10227 if (GET_CODE (varop) == PLUS
10228 && pow2p_hwi (constop + 1))
10230 rtx o0, o1;
10232 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10233 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10234 if (o0 == const0_rtx)
10235 return o1;
10236 if (o1 == const0_rtx)
10237 return o0;
10240 /* Make a SUBREG if necessary. If we can't make it, fail. */
10241 varop = gen_lowpart (mode, varop);
10242 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10243 return NULL_RTX;
10245 /* If we are only masking insignificant bits, return VAROP. */
10246 if (constop == nonzero)
10247 return varop;
10249 if (varop == orig_varop && constop == orig_constop)
10250 return NULL_RTX;
10252 /* Otherwise, return an AND. */
10253 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10257 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10258 in MODE.
10260 Return an equivalent form, if different from X. Otherwise, return X. If
10261 X is zero, we are to always construct the equivalent form. */
10263 static rtx
10264 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10265 unsigned HOST_WIDE_INT constop)
10267 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10268 if (tem)
10269 return tem;
10271 if (!x)
10272 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10273 gen_int_mode (constop, mode));
10274 if (GET_MODE (x) != mode)
10275 x = gen_lowpart (mode, x);
10276 return x;
10279 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10280 We don't care about bits outside of those defined in MODE.
10281 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10283 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10284 a shift, AND, or zero_extract, we can do better. */
10286 static rtx
10287 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10288 scalar_int_mode mode,
10289 unsigned HOST_WIDE_INT *nonzero)
10291 rtx tem;
10292 reg_stat_type *rsp;
10294 /* If X is a register whose nonzero bits value is current, use it.
10295 Otherwise, if X is a register whose value we can find, use that
10296 value. Otherwise, use the previously-computed global nonzero bits
10297 for this register. */
10299 rsp = &reg_stat[REGNO (x)];
10300 if (rsp->last_set_value != 0
10301 && (rsp->last_set_mode == mode
10302 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10303 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10304 && GET_MODE_CLASS (mode) == MODE_INT))
10305 && ((rsp->last_set_label >= label_tick_ebb_start
10306 && rsp->last_set_label < label_tick)
10307 || (rsp->last_set_label == label_tick
10308 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10309 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10310 && REGNO (x) < reg_n_sets_max
10311 && REG_N_SETS (REGNO (x)) == 1
10312 && !REGNO_REG_SET_P
10313 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10314 REGNO (x)))))
10316 /* Note that, even if the precision of last_set_mode is lower than that
10317 of mode, record_value_for_reg invoked nonzero_bits on the register
10318 with nonzero_bits_mode (because last_set_mode is necessarily integral
10319 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10320 are all valid, hence in mode too since nonzero_bits_mode is defined
10321 to the largest HWI_COMPUTABLE_MODE_P mode. */
10322 *nonzero &= rsp->last_set_nonzero_bits;
10323 return NULL;
10326 tem = get_last_value (x);
10327 if (tem)
10329 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10330 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10332 return tem;
10335 if (nonzero_sign_valid && rsp->nonzero_bits)
10337 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10339 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10340 /* We don't know anything about the upper bits. */
10341 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10343 *nonzero &= mask;
10346 return NULL;
10349 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10350 end of X that are known to be equal to the sign bit. X will be used
10351 in mode MODE; the returned value will always be between 1 and the
10352 number of bits in MODE. */
10354 static rtx
10355 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10356 scalar_int_mode mode,
10357 unsigned int *result)
10359 rtx tem;
10360 reg_stat_type *rsp;
10362 rsp = &reg_stat[REGNO (x)];
10363 if (rsp->last_set_value != 0
10364 && rsp->last_set_mode == mode
10365 && ((rsp->last_set_label >= label_tick_ebb_start
10366 && rsp->last_set_label < label_tick)
10367 || (rsp->last_set_label == label_tick
10368 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10369 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10370 && REGNO (x) < reg_n_sets_max
10371 && REG_N_SETS (REGNO (x)) == 1
10372 && !REGNO_REG_SET_P
10373 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10374 REGNO (x)))))
10376 *result = rsp->last_set_sign_bit_copies;
10377 return NULL;
10380 tem = get_last_value (x);
10381 if (tem != 0)
10382 return tem;
10384 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10385 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10386 *result = rsp->sign_bit_copies;
10388 return NULL;
10391 /* Return the number of "extended" bits there are in X, when interpreted
10392 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10393 unsigned quantities, this is the number of high-order zero bits.
10394 For signed quantities, this is the number of copies of the sign bit
10395 minus 1. In both case, this function returns the number of "spare"
10396 bits. For example, if two quantities for which this function returns
10397 at least 1 are added, the addition is known not to overflow.
10399 This function will always return 0 unless called during combine, which
10400 implies that it must be called from a define_split. */
10402 unsigned int
10403 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10405 if (nonzero_sign_valid == 0)
10406 return 0;
10408 scalar_int_mode int_mode;
10409 return (unsignedp
10410 ? (is_a <scalar_int_mode> (mode, &int_mode)
10411 && HWI_COMPUTABLE_MODE_P (int_mode)
10412 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10413 - floor_log2 (nonzero_bits (x, int_mode)))
10414 : 0)
10415 : num_sign_bit_copies (x, mode) - 1);
10418 /* This function is called from `simplify_shift_const' to merge two
10419 outer operations. Specifically, we have already found that we need
10420 to perform operation *POP0 with constant *PCONST0 at the outermost
10421 position. We would now like to also perform OP1 with constant CONST1
10422 (with *POP0 being done last).
10424 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10425 the resulting operation. *PCOMP_P is set to 1 if we would need to
10426 complement the innermost operand, otherwise it is unchanged.
10428 MODE is the mode in which the operation will be done. No bits outside
10429 the width of this mode matter. It is assumed that the width of this mode
10430 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10432 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10433 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10434 result is simply *PCONST0.
10436 If the resulting operation cannot be expressed as one operation, we
10437 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10439 static int
10440 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10442 enum rtx_code op0 = *pop0;
10443 HOST_WIDE_INT const0 = *pconst0;
10445 const0 &= GET_MODE_MASK (mode);
10446 const1 &= GET_MODE_MASK (mode);
10448 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10449 if (op0 == AND)
10450 const1 &= const0;
10452 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10453 if OP0 is SET. */
10455 if (op1 == UNKNOWN || op0 == SET)
10456 return 1;
10458 else if (op0 == UNKNOWN)
10459 op0 = op1, const0 = const1;
10461 else if (op0 == op1)
10463 switch (op0)
10465 case AND:
10466 const0 &= const1;
10467 break;
10468 case IOR:
10469 const0 |= const1;
10470 break;
10471 case XOR:
10472 const0 ^= const1;
10473 break;
10474 case PLUS:
10475 const0 += const1;
10476 break;
10477 case NEG:
10478 op0 = UNKNOWN;
10479 break;
10480 default:
10481 break;
10485 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10486 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10487 return 0;
10489 /* If the two constants aren't the same, we can't do anything. The
10490 remaining six cases can all be done. */
10491 else if (const0 != const1)
10492 return 0;
10494 else
10495 switch (op0)
10497 case IOR:
10498 if (op1 == AND)
10499 /* (a & b) | b == b */
10500 op0 = SET;
10501 else /* op1 == XOR */
10502 /* (a ^ b) | b == a | b */
10504 break;
10506 case XOR:
10507 if (op1 == AND)
10508 /* (a & b) ^ b == (~a) & b */
10509 op0 = AND, *pcomp_p = 1;
10510 else /* op1 == IOR */
10511 /* (a | b) ^ b == a & ~b */
10512 op0 = AND, const0 = ~const0;
10513 break;
10515 case AND:
10516 if (op1 == IOR)
10517 /* (a | b) & b == b */
10518 op0 = SET;
10519 else /* op1 == XOR */
10520 /* (a ^ b) & b) == (~a) & b */
10521 *pcomp_p = 1;
10522 break;
10523 default:
10524 break;
10527 /* Check for NO-OP cases. */
10528 const0 &= GET_MODE_MASK (mode);
10529 if (const0 == 0
10530 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10531 op0 = UNKNOWN;
10532 else if (const0 == 0 && op0 == AND)
10533 op0 = SET;
10534 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10535 && op0 == AND)
10536 op0 = UNKNOWN;
10538 *pop0 = op0;
10540 /* ??? Slightly redundant with the above mask, but not entirely.
10541 Moving this above means we'd have to sign-extend the mode mask
10542 for the final test. */
10543 if (op0 != UNKNOWN && op0 != NEG)
10544 *pconst0 = trunc_int_for_mode (const0, mode);
10546 return 1;
10549 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10550 the shift in. The original shift operation CODE is performed on OP in
10551 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10552 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10553 result of the shift is subject to operation OUTER_CODE with operand
10554 OUTER_CONST. */
10556 static scalar_int_mode
10557 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10558 scalar_int_mode orig_mode, scalar_int_mode mode,
10559 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10561 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10563 /* In general we can't perform in wider mode for right shift and rotate. */
10564 switch (code)
10566 case ASHIFTRT:
10567 /* We can still widen if the bits brought in from the left are identical
10568 to the sign bit of ORIG_MODE. */
10569 if (num_sign_bit_copies (op, mode)
10570 > (unsigned) (GET_MODE_PRECISION (mode)
10571 - GET_MODE_PRECISION (orig_mode)))
10572 return mode;
10573 return orig_mode;
10575 case LSHIFTRT:
10576 /* Similarly here but with zero bits. */
10577 if (HWI_COMPUTABLE_MODE_P (mode)
10578 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10579 return mode;
10581 /* We can also widen if the bits brought in will be masked off. This
10582 operation is performed in ORIG_MODE. */
10583 if (outer_code == AND)
10585 int care_bits = low_bitmask_len (orig_mode, outer_const);
10587 if (care_bits >= 0
10588 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10589 return mode;
10591 /* fall through */
10593 case ROTATE:
10594 return orig_mode;
10596 case ROTATERT:
10597 gcc_unreachable ();
10599 default:
10600 return mode;
10604 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10605 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10606 if we cannot simplify it. Otherwise, return a simplified value.
10608 The shift is normally computed in the widest mode we find in VAROP, as
10609 long as it isn't a different number of words than RESULT_MODE. Exceptions
10610 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10612 static rtx
10613 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10614 rtx varop, int orig_count)
10616 enum rtx_code orig_code = code;
10617 rtx orig_varop = varop;
10618 int count, log2;
10619 machine_mode mode = result_mode;
10620 machine_mode shift_mode;
10621 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10622 /* We form (outer_op (code varop count) (outer_const)). */
10623 enum rtx_code outer_op = UNKNOWN;
10624 HOST_WIDE_INT outer_const = 0;
10625 int complement_p = 0;
10626 rtx new_rtx, x;
10628 /* Make sure and truncate the "natural" shift on the way in. We don't
10629 want to do this inside the loop as it makes it more difficult to
10630 combine shifts. */
10631 if (SHIFT_COUNT_TRUNCATED)
10632 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10634 /* If we were given an invalid count, don't do anything except exactly
10635 what was requested. */
10637 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10638 return NULL_RTX;
10640 count = orig_count;
10642 /* Unless one of the branches of the `if' in this loop does a `continue',
10643 we will `break' the loop after the `if'. */
10645 while (count != 0)
10647 /* If we have an operand of (clobber (const_int 0)), fail. */
10648 if (GET_CODE (varop) == CLOBBER)
10649 return NULL_RTX;
10651 /* Convert ROTATERT to ROTATE. */
10652 if (code == ROTATERT)
10654 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10655 code = ROTATE;
10656 count = bitsize - count;
10659 shift_mode = result_mode;
10660 if (shift_mode != mode)
10662 /* We only change the modes of scalar shifts. */
10663 int_mode = as_a <scalar_int_mode> (mode);
10664 int_result_mode = as_a <scalar_int_mode> (result_mode);
10665 shift_mode = try_widen_shift_mode (code, varop, count,
10666 int_result_mode, int_mode,
10667 outer_op, outer_const);
10670 scalar_int_mode shift_unit_mode
10671 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10673 /* Handle cases where the count is greater than the size of the mode
10674 minus 1. For ASHIFT, use the size minus one as the count (this can
10675 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10676 take the count modulo the size. For other shifts, the result is
10677 zero.
10679 Since these shifts are being produced by the compiler by combining
10680 multiple operations, each of which are defined, we know what the
10681 result is supposed to be. */
10683 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10685 if (code == ASHIFTRT)
10686 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10687 else if (code == ROTATE || code == ROTATERT)
10688 count %= GET_MODE_PRECISION (shift_unit_mode);
10689 else
10691 /* We can't simply return zero because there may be an
10692 outer op. */
10693 varop = const0_rtx;
10694 count = 0;
10695 break;
10699 /* If we discovered we had to complement VAROP, leave. Making a NOT
10700 here would cause an infinite loop. */
10701 if (complement_p)
10702 break;
10704 if (shift_mode == shift_unit_mode)
10706 /* An arithmetic right shift of a quantity known to be -1 or 0
10707 is a no-op. */
10708 if (code == ASHIFTRT
10709 && (num_sign_bit_copies (varop, shift_unit_mode)
10710 == GET_MODE_PRECISION (shift_unit_mode)))
10712 count = 0;
10713 break;
10716 /* If we are doing an arithmetic right shift and discarding all but
10717 the sign bit copies, this is equivalent to doing a shift by the
10718 bitsize minus one. Convert it into that shift because it will
10719 often allow other simplifications. */
10721 if (code == ASHIFTRT
10722 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10723 >= GET_MODE_PRECISION (shift_unit_mode)))
10724 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10726 /* We simplify the tests below and elsewhere by converting
10727 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10728 `make_compound_operation' will convert it to an ASHIFTRT for
10729 those machines (such as VAX) that don't have an LSHIFTRT. */
10730 if (code == ASHIFTRT
10731 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10732 && val_signbit_known_clear_p (shift_unit_mode,
10733 nonzero_bits (varop,
10734 shift_unit_mode)))
10735 code = LSHIFTRT;
10737 if (((code == LSHIFTRT
10738 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10739 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10740 || (code == ASHIFT
10741 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10742 && !((nonzero_bits (varop, shift_unit_mode) << count)
10743 & GET_MODE_MASK (shift_unit_mode))))
10744 && !side_effects_p (varop))
10745 varop = const0_rtx;
10748 switch (GET_CODE (varop))
10750 case SIGN_EXTEND:
10751 case ZERO_EXTEND:
10752 case SIGN_EXTRACT:
10753 case ZERO_EXTRACT:
10754 new_rtx = expand_compound_operation (varop);
10755 if (new_rtx != varop)
10757 varop = new_rtx;
10758 continue;
10760 break;
10762 case MEM:
10763 /* The following rules apply only to scalars. */
10764 if (shift_mode != shift_unit_mode)
10765 break;
10766 int_mode = as_a <scalar_int_mode> (mode);
10768 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10769 minus the width of a smaller mode, we can do this with a
10770 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10771 if ((code == ASHIFTRT || code == LSHIFTRT)
10772 && ! mode_dependent_address_p (XEXP (varop, 0),
10773 MEM_ADDR_SPACE (varop))
10774 && ! MEM_VOLATILE_P (varop)
10775 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10776 .exists (&tmode)))
10778 new_rtx = adjust_address_nv (varop, tmode,
10779 BYTES_BIG_ENDIAN ? 0
10780 : count / BITS_PER_UNIT);
10782 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10783 : ZERO_EXTEND, int_mode, new_rtx);
10784 count = 0;
10785 continue;
10787 break;
10789 case SUBREG:
10790 /* The following rules apply only to scalars. */
10791 if (shift_mode != shift_unit_mode)
10792 break;
10793 int_mode = as_a <scalar_int_mode> (mode);
10794 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10796 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10797 the same number of words as what we've seen so far. Then store
10798 the widest mode in MODE. */
10799 if (subreg_lowpart_p (varop)
10800 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10801 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10802 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10803 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10804 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10806 varop = SUBREG_REG (varop);
10807 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10808 mode = inner_mode;
10809 continue;
10811 break;
10813 case MULT:
10814 /* Some machines use MULT instead of ASHIFT because MULT
10815 is cheaper. But it is still better on those machines to
10816 merge two shifts into one. */
10817 if (CONST_INT_P (XEXP (varop, 1))
10818 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10820 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10821 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10822 XEXP (varop, 0), log2_rtx);
10823 continue;
10825 break;
10827 case UDIV:
10828 /* Similar, for when divides are cheaper. */
10829 if (CONST_INT_P (XEXP (varop, 1))
10830 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10832 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10833 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10834 XEXP (varop, 0), log2_rtx);
10835 continue;
10837 break;
10839 case ASHIFTRT:
10840 /* If we are extracting just the sign bit of an arithmetic
10841 right shift, that shift is not needed. However, the sign
10842 bit of a wider mode may be different from what would be
10843 interpreted as the sign bit in a narrower mode, so, if
10844 the result is narrower, don't discard the shift. */
10845 if (code == LSHIFTRT
10846 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10847 && (GET_MODE_UNIT_BITSIZE (result_mode)
10848 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10850 varop = XEXP (varop, 0);
10851 continue;
10854 /* fall through */
10856 case LSHIFTRT:
10857 case ASHIFT:
10858 case ROTATE:
10859 /* The following rules apply only to scalars. */
10860 if (shift_mode != shift_unit_mode)
10861 break;
10862 int_mode = as_a <scalar_int_mode> (mode);
10863 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10864 int_result_mode = as_a <scalar_int_mode> (result_mode);
10866 /* Here we have two nested shifts. The result is usually the
10867 AND of a new shift with a mask. We compute the result below. */
10868 if (CONST_INT_P (XEXP (varop, 1))
10869 && INTVAL (XEXP (varop, 1)) >= 0
10870 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10871 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10872 && HWI_COMPUTABLE_MODE_P (int_mode))
10874 enum rtx_code first_code = GET_CODE (varop);
10875 unsigned int first_count = INTVAL (XEXP (varop, 1));
10876 unsigned HOST_WIDE_INT mask;
10877 rtx mask_rtx;
10879 /* We have one common special case. We can't do any merging if
10880 the inner code is an ASHIFTRT of a smaller mode. However, if
10881 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10882 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10883 we can convert it to
10884 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10885 This simplifies certain SIGN_EXTEND operations. */
10886 if (code == ASHIFT && first_code == ASHIFTRT
10887 && count == (GET_MODE_PRECISION (int_result_mode)
10888 - GET_MODE_PRECISION (int_varop_mode)))
10890 /* C3 has the low-order C1 bits zero. */
10892 mask = GET_MODE_MASK (int_mode)
10893 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10895 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10896 XEXP (varop, 0), mask);
10897 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10898 int_result_mode, varop, count);
10899 count = first_count;
10900 code = ASHIFTRT;
10901 continue;
10904 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10905 than C1 high-order bits equal to the sign bit, we can convert
10906 this to either an ASHIFT or an ASHIFTRT depending on the
10907 two counts.
10909 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10911 if (code == ASHIFTRT && first_code == ASHIFT
10912 && int_varop_mode == shift_unit_mode
10913 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10914 > first_count))
10916 varop = XEXP (varop, 0);
10917 count -= first_count;
10918 if (count < 0)
10920 count = -count;
10921 code = ASHIFT;
10924 continue;
10927 /* There are some cases we can't do. If CODE is ASHIFTRT,
10928 we can only do this if FIRST_CODE is also ASHIFTRT.
10930 We can't do the case when CODE is ROTATE and FIRST_CODE is
10931 ASHIFTRT.
10933 If the mode of this shift is not the mode of the outer shift,
10934 we can't do this if either shift is a right shift or ROTATE.
10936 Finally, we can't do any of these if the mode is too wide
10937 unless the codes are the same.
10939 Handle the case where the shift codes are the same
10940 first. */
10942 if (code == first_code)
10944 if (int_varop_mode != int_result_mode
10945 && (code == ASHIFTRT || code == LSHIFTRT
10946 || code == ROTATE))
10947 break;
10949 count += first_count;
10950 varop = XEXP (varop, 0);
10951 continue;
10954 if (code == ASHIFTRT
10955 || (code == ROTATE && first_code == ASHIFTRT)
10956 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10957 || (int_varop_mode != int_result_mode
10958 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10959 || first_code == ROTATE
10960 || code == ROTATE)))
10961 break;
10963 /* To compute the mask to apply after the shift, shift the
10964 nonzero bits of the inner shift the same way the
10965 outer shift will. */
10967 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10968 int_result_mode);
10969 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10970 mask_rtx
10971 = simplify_const_binary_operation (code, int_result_mode,
10972 mask_rtx, count_rtx);
10974 /* Give up if we can't compute an outer operation to use. */
10975 if (mask_rtx == 0
10976 || !CONST_INT_P (mask_rtx)
10977 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10978 INTVAL (mask_rtx),
10979 int_result_mode, &complement_p))
10980 break;
10982 /* If the shifts are in the same direction, we add the
10983 counts. Otherwise, we subtract them. */
10984 if ((code == ASHIFTRT || code == LSHIFTRT)
10985 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10986 count += first_count;
10987 else
10988 count -= first_count;
10990 /* If COUNT is positive, the new shift is usually CODE,
10991 except for the two exceptions below, in which case it is
10992 FIRST_CODE. If the count is negative, FIRST_CODE should
10993 always be used */
10994 if (count > 0
10995 && ((first_code == ROTATE && code == ASHIFT)
10996 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10997 code = first_code;
10998 else if (count < 0)
10999 code = first_code, count = -count;
11001 varop = XEXP (varop, 0);
11002 continue;
11005 /* If we have (A << B << C) for any shift, we can convert this to
11006 (A << C << B). This wins if A is a constant. Only try this if
11007 B is not a constant. */
11009 else if (GET_CODE (varop) == code
11010 && CONST_INT_P (XEXP (varop, 0))
11011 && !CONST_INT_P (XEXP (varop, 1)))
11013 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
11014 sure the result will be masked. See PR70222. */
11015 if (code == LSHIFTRT
11016 && int_mode != int_result_mode
11017 && !merge_outer_ops (&outer_op, &outer_const, AND,
11018 GET_MODE_MASK (int_result_mode)
11019 >> orig_count, int_result_mode,
11020 &complement_p))
11021 break;
11022 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
11023 up outer sign extension (often left and right shift) is
11024 hardly more efficient than the original. See PR70429.
11025 Similarly punt for rotates with different modes.
11026 See PR97386. */
11027 if ((code == ASHIFTRT || code == ROTATE)
11028 && int_mode != int_result_mode)
11029 break;
11031 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11032 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11033 XEXP (varop, 0),
11034 count_rtx);
11035 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11036 count = 0;
11037 continue;
11039 break;
11041 case NOT:
11042 /* The following rules apply only to scalars. */
11043 if (shift_mode != shift_unit_mode)
11044 break;
11046 /* Make this fit the case below. */
11047 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11048 continue;
11050 case IOR:
11051 case AND:
11052 case XOR:
11053 /* The following rules apply only to scalars. */
11054 if (shift_mode != shift_unit_mode)
11055 break;
11056 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11057 int_result_mode = as_a <scalar_int_mode> (result_mode);
11059 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11060 with C the size of VAROP - 1 and the shift is logical if
11061 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11062 we have an (le X 0) operation. If we have an arithmetic shift
11063 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11064 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11066 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11067 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11068 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11069 && (code == LSHIFTRT || code == ASHIFTRT)
11070 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11071 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11073 count = 0;
11074 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11075 const0_rtx);
11077 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11078 varop = gen_rtx_NEG (int_varop_mode, varop);
11080 continue;
11083 /* If we have (shift (logical)), move the logical to the outside
11084 to allow it to possibly combine with another logical and the
11085 shift to combine with another shift. This also canonicalizes to
11086 what a ZERO_EXTRACT looks like. Also, some machines have
11087 (and (shift)) insns. */
11089 if (CONST_INT_P (XEXP (varop, 1))
11090 /* We can't do this if we have (ashiftrt (xor)) and the
11091 constant has its sign bit set in shift_unit_mode with
11092 shift_unit_mode wider than result_mode. */
11093 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11094 && int_result_mode != shift_unit_mode
11095 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11096 shift_unit_mode) < 0)
11097 && (new_rtx = simplify_const_binary_operation
11098 (code, int_result_mode,
11099 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11100 gen_int_shift_amount (int_result_mode, count))) != 0
11101 && CONST_INT_P (new_rtx)
11102 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11103 INTVAL (new_rtx), int_result_mode,
11104 &complement_p))
11106 varop = XEXP (varop, 0);
11107 continue;
11110 /* If we can't do that, try to simplify the shift in each arm of the
11111 logical expression, make a new logical expression, and apply
11112 the inverse distributive law. This also can't be done for
11113 (ashiftrt (xor)) where we've widened the shift and the constant
11114 changes the sign bit. */
11115 if (CONST_INT_P (XEXP (varop, 1))
11116 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11117 && int_result_mode != shift_unit_mode
11118 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11119 shift_unit_mode) < 0))
11121 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11122 XEXP (varop, 0), count);
11123 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11124 XEXP (varop, 1), count);
11126 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11127 lhs, rhs);
11128 varop = apply_distributive_law (varop);
11130 count = 0;
11131 continue;
11133 break;
11135 case EQ:
11136 /* The following rules apply only to scalars. */
11137 if (shift_mode != shift_unit_mode)
11138 break;
11139 int_result_mode = as_a <scalar_int_mode> (result_mode);
11141 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11142 says that the sign bit can be tested, FOO has mode MODE, C is
11143 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11144 that may be nonzero. */
11145 if (code == LSHIFTRT
11146 && XEXP (varop, 1) == const0_rtx
11147 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11148 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11149 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11150 && STORE_FLAG_VALUE == -1
11151 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11152 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11153 int_result_mode, &complement_p))
11155 varop = XEXP (varop, 0);
11156 count = 0;
11157 continue;
11159 break;
11161 case NEG:
11162 /* The following rules apply only to scalars. */
11163 if (shift_mode != shift_unit_mode)
11164 break;
11165 int_result_mode = as_a <scalar_int_mode> (result_mode);
11167 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11168 than the number of bits in the mode is equivalent to A. */
11169 if (code == LSHIFTRT
11170 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11171 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11173 varop = XEXP (varop, 0);
11174 count = 0;
11175 continue;
11178 /* NEG commutes with ASHIFT since it is multiplication. Move the
11179 NEG outside to allow shifts to combine. */
11180 if (code == ASHIFT
11181 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11182 int_result_mode, &complement_p))
11184 varop = XEXP (varop, 0);
11185 continue;
11187 break;
11189 case PLUS:
11190 /* The following rules apply only to scalars. */
11191 if (shift_mode != shift_unit_mode)
11192 break;
11193 int_result_mode = as_a <scalar_int_mode> (result_mode);
11195 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11196 is one less than the number of bits in the mode is
11197 equivalent to (xor A 1). */
11198 if (code == LSHIFTRT
11199 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11200 && XEXP (varop, 1) == constm1_rtx
11201 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11202 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11203 int_result_mode, &complement_p))
11205 count = 0;
11206 varop = XEXP (varop, 0);
11207 continue;
11210 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11211 that might be nonzero in BAR are those being shifted out and those
11212 bits are known zero in FOO, we can replace the PLUS with FOO.
11213 Similarly in the other operand order. This code occurs when
11214 we are computing the size of a variable-size array. */
11216 if ((code == ASHIFTRT || code == LSHIFTRT)
11217 && count < HOST_BITS_PER_WIDE_INT
11218 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11219 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11220 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11222 varop = XEXP (varop, 0);
11223 continue;
11225 else if ((code == ASHIFTRT || code == LSHIFTRT)
11226 && count < HOST_BITS_PER_WIDE_INT
11227 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11228 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11229 >> count) == 0
11230 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11231 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11233 varop = XEXP (varop, 1);
11234 continue;
11237 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11238 if (code == ASHIFT
11239 && CONST_INT_P (XEXP (varop, 1))
11240 && (new_rtx = simplify_const_binary_operation
11241 (ASHIFT, int_result_mode,
11242 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11243 gen_int_shift_amount (int_result_mode, count))) != 0
11244 && CONST_INT_P (new_rtx)
11245 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11246 INTVAL (new_rtx), int_result_mode,
11247 &complement_p))
11249 varop = XEXP (varop, 0);
11250 continue;
11253 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11254 signbit', and attempt to change the PLUS to an XOR and move it to
11255 the outer operation as is done above in the AND/IOR/XOR case
11256 leg for shift(logical). See details in logical handling above
11257 for reasoning in doing so. */
11258 if (code == LSHIFTRT
11259 && CONST_INT_P (XEXP (varop, 1))
11260 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11261 && (new_rtx = simplify_const_binary_operation
11262 (code, int_result_mode,
11263 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11264 gen_int_shift_amount (int_result_mode, count))) != 0
11265 && CONST_INT_P (new_rtx)
11266 && merge_outer_ops (&outer_op, &outer_const, XOR,
11267 INTVAL (new_rtx), int_result_mode,
11268 &complement_p))
11270 varop = XEXP (varop, 0);
11271 continue;
11274 break;
11276 case MINUS:
11277 /* The following rules apply only to scalars. */
11278 if (shift_mode != shift_unit_mode)
11279 break;
11280 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11282 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11283 with C the size of VAROP - 1 and the shift is logical if
11284 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11285 we have a (gt X 0) operation. If the shift is arithmetic with
11286 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11287 we have a (neg (gt X 0)) operation. */
11289 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11290 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11291 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11292 && (code == LSHIFTRT || code == ASHIFTRT)
11293 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11294 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11295 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11297 count = 0;
11298 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11299 const0_rtx);
11301 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11302 varop = gen_rtx_NEG (int_varop_mode, varop);
11304 continue;
11306 break;
11308 case TRUNCATE:
11309 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11310 if the truncate does not affect the value. */
11311 if (code == LSHIFTRT
11312 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11313 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11314 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11315 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11316 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11318 rtx varop_inner = XEXP (varop, 0);
11319 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11320 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11321 new_count);
11322 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11323 XEXP (varop_inner, 0),
11324 new_count_rtx);
11325 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11326 count = 0;
11327 continue;
11329 break;
11331 default:
11332 break;
11335 break;
11338 shift_mode = result_mode;
11339 if (shift_mode != mode)
11341 /* We only change the modes of scalar shifts. */
11342 int_mode = as_a <scalar_int_mode> (mode);
11343 int_result_mode = as_a <scalar_int_mode> (result_mode);
11344 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11345 int_mode, outer_op, outer_const);
11348 /* We have now finished analyzing the shift. The result should be
11349 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11350 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11351 to the result of the shift. OUTER_CONST is the relevant constant,
11352 but we must turn off all bits turned off in the shift. */
11354 if (outer_op == UNKNOWN
11355 && orig_code == code && orig_count == count
11356 && varop == orig_varop
11357 && shift_mode == GET_MODE (varop))
11358 return NULL_RTX;
11360 /* Make a SUBREG if necessary. If we can't make it, fail. */
11361 varop = gen_lowpart (shift_mode, varop);
11362 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11363 return NULL_RTX;
11365 /* If we have an outer operation and we just made a shift, it is
11366 possible that we could have simplified the shift were it not
11367 for the outer operation. So try to do the simplification
11368 recursively. */
11370 if (outer_op != UNKNOWN)
11371 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11372 else
11373 x = NULL_RTX;
11375 if (x == NULL_RTX)
11376 x = simplify_gen_binary (code, shift_mode, varop,
11377 gen_int_shift_amount (shift_mode, count));
11379 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11380 turn off all the bits that the shift would have turned off. */
11381 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11382 /* We only change the modes of scalar shifts. */
11383 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11384 x, GET_MODE_MASK (result_mode) >> orig_count);
11386 /* Do the remainder of the processing in RESULT_MODE. */
11387 x = gen_lowpart_or_truncate (result_mode, x);
11389 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11390 operation. */
11391 if (complement_p)
11392 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11394 if (outer_op != UNKNOWN)
11396 int_result_mode = as_a <scalar_int_mode> (result_mode);
11398 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11399 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11400 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11402 if (outer_op == AND)
11403 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11404 else if (outer_op == SET)
11406 /* This means that we have determined that the result is
11407 equivalent to a constant. This should be rare. */
11408 if (!side_effects_p (x))
11409 x = GEN_INT (outer_const);
11411 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11412 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11413 else
11414 x = simplify_gen_binary (outer_op, int_result_mode, x,
11415 GEN_INT (outer_const));
11418 return x;
11421 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11422 The result of the shift is RESULT_MODE. If we cannot simplify it,
11423 return X or, if it is NULL, synthesize the expression with
11424 simplify_gen_binary. Otherwise, return a simplified value.
11426 The shift is normally computed in the widest mode we find in VAROP, as
11427 long as it isn't a different number of words than RESULT_MODE. Exceptions
11428 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11430 static rtx
11431 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11432 rtx varop, int count)
11434 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11435 if (tem)
11436 return tem;
11438 if (!x)
11439 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11440 gen_int_shift_amount (GET_MODE (varop), count));
11441 if (GET_MODE (x) != result_mode)
11442 x = gen_lowpart (result_mode, x);
11443 return x;
11447 /* A subroutine of recog_for_combine. See there for arguments and
11448 return value. */
11450 static int
11451 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11453 rtx pat = *pnewpat;
11454 rtx pat_without_clobbers;
11455 int insn_code_number;
11456 int num_clobbers_to_add = 0;
11457 int i;
11458 rtx notes = NULL_RTX;
11459 rtx old_notes, old_pat;
11460 int old_icode;
11462 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11463 we use to indicate that something didn't match. If we find such a
11464 thing, force rejection. */
11465 if (GET_CODE (pat) == PARALLEL)
11466 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11467 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11468 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11469 return -1;
11471 old_pat = PATTERN (insn);
11472 old_notes = REG_NOTES (insn);
11473 PATTERN (insn) = pat;
11474 REG_NOTES (insn) = NULL_RTX;
11476 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11477 if (dump_file && (dump_flags & TDF_DETAILS))
11479 if (insn_code_number < 0)
11480 fputs ("Failed to match this instruction:\n", dump_file);
11481 else
11482 fputs ("Successfully matched this instruction:\n", dump_file);
11483 print_rtl_single (dump_file, pat);
11486 /* If it isn't, there is the possibility that we previously had an insn
11487 that clobbered some register as a side effect, but the combined
11488 insn doesn't need to do that. So try once more without the clobbers
11489 unless this represents an ASM insn. */
11491 if (insn_code_number < 0 && ! check_asm_operands (pat)
11492 && GET_CODE (pat) == PARALLEL)
11494 int pos;
11496 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11497 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11499 if (i != pos)
11500 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11501 pos++;
11504 SUBST_INT (XVECLEN (pat, 0), pos);
11506 if (pos == 1)
11507 pat = XVECEXP (pat, 0, 0);
11509 PATTERN (insn) = pat;
11510 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11511 if (dump_file && (dump_flags & TDF_DETAILS))
11513 if (insn_code_number < 0)
11514 fputs ("Failed to match this instruction:\n", dump_file);
11515 else
11516 fputs ("Successfully matched this instruction:\n", dump_file);
11517 print_rtl_single (dump_file, pat);
11521 pat_without_clobbers = pat;
11523 PATTERN (insn) = old_pat;
11524 REG_NOTES (insn) = old_notes;
11526 /* Recognize all noop sets, these will be killed by followup pass. */
11527 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11528 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11530 /* If we had any clobbers to add, make a new pattern than contains
11531 them. Then check to make sure that all of them are dead. */
11532 if (num_clobbers_to_add)
11534 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11535 rtvec_alloc (GET_CODE (pat) == PARALLEL
11536 ? (XVECLEN (pat, 0)
11537 + num_clobbers_to_add)
11538 : num_clobbers_to_add + 1));
11540 if (GET_CODE (pat) == PARALLEL)
11541 for (i = 0; i < XVECLEN (pat, 0); i++)
11542 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11543 else
11544 XVECEXP (newpat, 0, 0) = pat;
11546 add_clobbers (newpat, insn_code_number);
11548 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11549 i < XVECLEN (newpat, 0); i++)
11551 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11552 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11553 return -1;
11554 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11556 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11557 notes = alloc_reg_note (REG_UNUSED,
11558 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11561 pat = newpat;
11564 if (insn_code_number >= 0
11565 && insn_code_number != NOOP_MOVE_INSN_CODE)
11567 old_pat = PATTERN (insn);
11568 old_notes = REG_NOTES (insn);
11569 old_icode = INSN_CODE (insn);
11570 PATTERN (insn) = pat;
11571 REG_NOTES (insn) = notes;
11572 INSN_CODE (insn) = insn_code_number;
11574 /* Allow targets to reject combined insn. */
11575 if (!targetm.legitimate_combined_insn (insn))
11577 if (dump_file && (dump_flags & TDF_DETAILS))
11578 fputs ("Instruction not appropriate for target.",
11579 dump_file);
11581 /* Callers expect recog_for_combine to strip
11582 clobbers from the pattern on failure. */
11583 pat = pat_without_clobbers;
11584 notes = NULL_RTX;
11586 insn_code_number = -1;
11589 PATTERN (insn) = old_pat;
11590 REG_NOTES (insn) = old_notes;
11591 INSN_CODE (insn) = old_icode;
11594 *pnewpat = pat;
11595 *pnotes = notes;
11597 return insn_code_number;
11600 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11601 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11602 Return whether anything was so changed. */
11604 static bool
11605 change_zero_ext (rtx pat)
11607 bool changed = false;
11608 rtx *src = &SET_SRC (pat);
11610 subrtx_ptr_iterator::array_type array;
11611 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11613 rtx x = **iter;
11614 scalar_int_mode mode, inner_mode;
11615 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11616 continue;
11617 int size;
11619 if (GET_CODE (x) == ZERO_EXTRACT
11620 && CONST_INT_P (XEXP (x, 1))
11621 && CONST_INT_P (XEXP (x, 2))
11622 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11623 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11625 size = INTVAL (XEXP (x, 1));
11627 int start = INTVAL (XEXP (x, 2));
11628 if (BITS_BIG_ENDIAN)
11629 start = GET_MODE_PRECISION (inner_mode) - size - start;
11631 if (start != 0)
11632 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11633 gen_int_shift_amount (inner_mode, start));
11634 else
11635 x = XEXP (x, 0);
11637 if (mode != inner_mode)
11639 if (REG_P (x) && HARD_REGISTER_P (x)
11640 && !can_change_dest_mode (x, 0, mode))
11641 continue;
11643 x = gen_lowpart_SUBREG (mode, x);
11646 else if (GET_CODE (x) == ZERO_EXTEND
11647 && GET_CODE (XEXP (x, 0)) == SUBREG
11648 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11649 && !paradoxical_subreg_p (XEXP (x, 0))
11650 && subreg_lowpart_p (XEXP (x, 0)))
11652 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11653 size = GET_MODE_PRECISION (inner_mode);
11654 x = SUBREG_REG (XEXP (x, 0));
11655 if (GET_MODE (x) != mode)
11657 if (REG_P (x) && HARD_REGISTER_P (x)
11658 && !can_change_dest_mode (x, 0, mode))
11659 continue;
11661 x = gen_lowpart_SUBREG (mode, x);
11664 else if (GET_CODE (x) == ZERO_EXTEND
11665 && REG_P (XEXP (x, 0))
11666 && HARD_REGISTER_P (XEXP (x, 0))
11667 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11669 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11670 size = GET_MODE_PRECISION (inner_mode);
11671 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11673 else
11674 continue;
11676 if (!(GET_CODE (x) == LSHIFTRT
11677 && CONST_INT_P (XEXP (x, 1))
11678 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11680 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11681 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11684 SUBST (**iter, x);
11685 changed = true;
11688 if (changed)
11689 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11690 maybe_swap_commutative_operands (**iter);
11692 rtx *dst = &SET_DEST (pat);
11693 scalar_int_mode mode;
11694 if (GET_CODE (*dst) == ZERO_EXTRACT
11695 && REG_P (XEXP (*dst, 0))
11696 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11697 && CONST_INT_P (XEXP (*dst, 1))
11698 && CONST_INT_P (XEXP (*dst, 2)))
11700 rtx reg = XEXP (*dst, 0);
11701 int width = INTVAL (XEXP (*dst, 1));
11702 int offset = INTVAL (XEXP (*dst, 2));
11703 int reg_width = GET_MODE_PRECISION (mode);
11704 if (BITS_BIG_ENDIAN)
11705 offset = reg_width - width - offset;
11707 rtx x, y, z, w;
11708 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11709 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11710 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11711 if (offset)
11712 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11713 else
11714 y = SET_SRC (pat);
11715 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11716 w = gen_rtx_IOR (mode, x, z);
11717 SUBST (SET_DEST (pat), reg);
11718 SUBST (SET_SRC (pat), w);
11720 changed = true;
11723 return changed;
11726 /* Like recog, but we receive the address of a pointer to a new pattern.
11727 We try to match the rtx that the pointer points to.
11728 If that fails, we may try to modify or replace the pattern,
11729 storing the replacement into the same pointer object.
11731 Modifications include deletion or addition of CLOBBERs. If the
11732 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11733 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11734 (and undo if that fails).
11736 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11737 the CLOBBERs are placed.
11739 The value is the final insn code from the pattern ultimately matched,
11740 or -1. */
11742 static int
11743 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11745 rtx pat = *pnewpat;
11746 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11747 if (insn_code_number >= 0 || check_asm_operands (pat))
11748 return insn_code_number;
11750 void *marker = get_undo_marker ();
11751 bool changed = false;
11753 if (GET_CODE (pat) == SET)
11754 changed = change_zero_ext (pat);
11755 else if (GET_CODE (pat) == PARALLEL)
11757 int i;
11758 for (i = 0; i < XVECLEN (pat, 0); i++)
11760 rtx set = XVECEXP (pat, 0, i);
11761 if (GET_CODE (set) == SET)
11762 changed |= change_zero_ext (set);
11766 if (changed)
11768 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11770 if (insn_code_number < 0)
11771 undo_to_marker (marker);
11774 return insn_code_number;
11777 /* Like gen_lowpart_general but for use by combine. In combine it
11778 is not possible to create any new pseudoregs. However, it is
11779 safe to create invalid memory addresses, because combine will
11780 try to recognize them and all they will do is make the combine
11781 attempt fail.
11783 If for some reason this cannot do its job, an rtx
11784 (clobber (const_int 0)) is returned.
11785 An insn containing that will not be recognized. */
11787 static rtx
11788 gen_lowpart_for_combine (machine_mode omode, rtx x)
11790 machine_mode imode = GET_MODE (x);
11791 rtx result;
11793 if (omode == imode)
11794 return x;
11796 /* We can only support MODE being wider than a word if X is a
11797 constant integer or has a mode the same size. */
11798 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11799 && ! (CONST_SCALAR_INT_P (x)
11800 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11801 goto fail;
11803 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11804 won't know what to do. So we will strip off the SUBREG here and
11805 process normally. */
11806 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11808 x = SUBREG_REG (x);
11810 /* For use in case we fall down into the address adjustments
11811 further below, we need to adjust the known mode and size of
11812 x; imode and isize, since we just adjusted x. */
11813 imode = GET_MODE (x);
11815 if (imode == omode)
11816 return x;
11819 result = gen_lowpart_common (omode, x);
11821 if (result)
11822 return result;
11824 if (MEM_P (x))
11826 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11827 address. */
11828 if (MEM_VOLATILE_P (x)
11829 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11830 goto fail;
11832 /* If we want to refer to something bigger than the original memref,
11833 generate a paradoxical subreg instead. That will force a reload
11834 of the original memref X. */
11835 if (paradoxical_subreg_p (omode, imode))
11836 return gen_rtx_SUBREG (omode, x, 0);
11838 poly_int64 offset = byte_lowpart_offset (omode, imode);
11839 return adjust_address_nv (x, omode, offset);
11842 /* If X is a comparison operator, rewrite it in a new mode. This
11843 probably won't match, but may allow further simplifications. */
11844 else if (COMPARISON_P (x)
11845 && SCALAR_INT_MODE_P (imode)
11846 && SCALAR_INT_MODE_P (omode))
11847 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11849 /* If we couldn't simplify X any other way, just enclose it in a
11850 SUBREG. Normally, this SUBREG won't match, but some patterns may
11851 include an explicit SUBREG or we may simplify it further in combine. */
11852 else
11854 rtx res;
11856 if (imode == VOIDmode)
11858 imode = int_mode_for_mode (omode).require ();
11859 x = gen_lowpart_common (imode, x);
11860 if (x == NULL)
11861 goto fail;
11863 res = lowpart_subreg (omode, x, imode);
11864 if (res)
11865 return res;
11868 fail:
11869 return gen_rtx_CLOBBER (omode, const0_rtx);
11872 /* Try to simplify a comparison between OP0 and a constant OP1,
11873 where CODE is the comparison code that will be tested, into a
11874 (CODE OP0 const0_rtx) form.
11876 The result is a possibly different comparison code to use.
11877 *POP1 may be updated. */
11879 static enum rtx_code
11880 simplify_compare_const (enum rtx_code code, machine_mode mode,
11881 rtx op0, rtx *pop1)
11883 scalar_int_mode int_mode;
11884 HOST_WIDE_INT const_op = INTVAL (*pop1);
11886 /* Get the constant we are comparing against and turn off all bits
11887 not on in our mode. */
11888 if (mode != VOIDmode)
11889 const_op = trunc_int_for_mode (const_op, mode);
11891 /* If we are comparing against a constant power of two and the value
11892 being compared can only have that single bit nonzero (e.g., it was
11893 `and'ed with that bit), we can replace this with a comparison
11894 with zero. */
11895 if (const_op
11896 && (code == EQ || code == NE || code == GE || code == GEU
11897 || code == LT || code == LTU)
11898 && is_a <scalar_int_mode> (mode, &int_mode)
11899 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11900 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11901 && (nonzero_bits (op0, int_mode)
11902 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11904 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11905 const_op = 0;
11908 /* Similarly, if we are comparing a value known to be either -1 or
11909 0 with -1, change it to the opposite comparison against zero. */
11910 if (const_op == -1
11911 && (code == EQ || code == NE || code == GT || code == LE
11912 || code == GEU || code == LTU)
11913 && is_a <scalar_int_mode> (mode, &int_mode)
11914 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11916 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11917 const_op = 0;
11920 /* Do some canonicalizations based on the comparison code. We prefer
11921 comparisons against zero and then prefer equality comparisons.
11922 If we can reduce the size of a constant, we will do that too. */
11923 switch (code)
11925 case LT:
11926 /* < C is equivalent to <= (C - 1) */
11927 if (const_op > 0)
11929 const_op -= 1;
11930 code = LE;
11931 /* ... fall through to LE case below. */
11932 gcc_fallthrough ();
11934 else
11935 break;
11937 case LE:
11938 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11939 if (const_op < 0)
11941 const_op += 1;
11942 code = LT;
11945 /* If we are doing a <= 0 comparison on a value known to have
11946 a zero sign bit, we can replace this with == 0. */
11947 else if (const_op == 0
11948 && is_a <scalar_int_mode> (mode, &int_mode)
11949 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11950 && (nonzero_bits (op0, int_mode)
11951 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11952 == 0)
11953 code = EQ;
11954 break;
11956 case GE:
11957 /* >= C is equivalent to > (C - 1). */
11958 if (const_op > 0)
11960 const_op -= 1;
11961 code = GT;
11962 /* ... fall through to GT below. */
11963 gcc_fallthrough ();
11965 else
11966 break;
11968 case GT:
11969 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11970 if (const_op < 0)
11972 const_op += 1;
11973 code = GE;
11976 /* If we are doing a > 0 comparison on a value known to have
11977 a zero sign bit, we can replace this with != 0. */
11978 else if (const_op == 0
11979 && is_a <scalar_int_mode> (mode, &int_mode)
11980 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11981 && (nonzero_bits (op0, int_mode)
11982 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11983 == 0)
11984 code = NE;
11985 break;
11987 case LTU:
11988 /* < C is equivalent to <= (C - 1). */
11989 if (const_op > 0)
11991 const_op -= 1;
11992 code = LEU;
11993 /* ... fall through ... */
11994 gcc_fallthrough ();
11996 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11997 else if (is_a <scalar_int_mode> (mode, &int_mode)
11998 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11999 && ((unsigned HOST_WIDE_INT) const_op
12000 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12002 const_op = 0;
12003 code = GE;
12004 break;
12006 else
12007 break;
12009 case LEU:
12010 /* unsigned <= 0 is equivalent to == 0 */
12011 if (const_op == 0)
12012 code = EQ;
12013 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
12014 else if (is_a <scalar_int_mode> (mode, &int_mode)
12015 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12016 && ((unsigned HOST_WIDE_INT) const_op
12017 == ((HOST_WIDE_INT_1U
12018 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
12020 const_op = 0;
12021 code = GE;
12023 break;
12025 case GEU:
12026 /* >= C is equivalent to > (C - 1). */
12027 if (const_op > 1)
12029 const_op -= 1;
12030 code = GTU;
12031 /* ... fall through ... */
12032 gcc_fallthrough ();
12035 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12036 else if (is_a <scalar_int_mode> (mode, &int_mode)
12037 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12038 && ((unsigned HOST_WIDE_INT) const_op
12039 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12041 const_op = 0;
12042 code = LT;
12043 break;
12045 else
12046 break;
12048 case GTU:
12049 /* unsigned > 0 is equivalent to != 0 */
12050 if (const_op == 0)
12051 code = NE;
12052 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12053 else if (is_a <scalar_int_mode> (mode, &int_mode)
12054 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12055 && ((unsigned HOST_WIDE_INT) const_op
12056 == (HOST_WIDE_INT_1U
12057 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12059 const_op = 0;
12060 code = LT;
12062 break;
12064 default:
12065 break;
12068 *pop1 = GEN_INT (const_op);
12069 return code;
12072 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12073 comparison code that will be tested.
12075 The result is a possibly different comparison code to use. *POP0 and
12076 *POP1 may be updated.
12078 It is possible that we might detect that a comparison is either always
12079 true or always false. However, we do not perform general constant
12080 folding in combine, so this knowledge isn't useful. Such tautologies
12081 should have been detected earlier. Hence we ignore all such cases. */
12083 static enum rtx_code
12084 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12086 rtx op0 = *pop0;
12087 rtx op1 = *pop1;
12088 rtx tem, tem1;
12089 int i;
12090 scalar_int_mode mode, inner_mode, tmode;
12091 opt_scalar_int_mode tmode_iter;
12093 /* Try a few ways of applying the same transformation to both operands. */
12094 while (1)
12096 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12097 so check specially. */
12098 if (!WORD_REGISTER_OPERATIONS
12099 && code != GTU && code != GEU && code != LTU && code != LEU
12100 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12101 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12102 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12103 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12104 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12105 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12106 && (is_a <scalar_int_mode>
12107 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12108 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12109 && CONST_INT_P (XEXP (op0, 1))
12110 && XEXP (op0, 1) == XEXP (op1, 1)
12111 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12112 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12113 && (INTVAL (XEXP (op0, 1))
12114 == (GET_MODE_PRECISION (mode)
12115 - GET_MODE_PRECISION (inner_mode))))
12117 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12118 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12121 /* If both operands are the same constant shift, see if we can ignore the
12122 shift. We can if the shift is a rotate or if the bits shifted out of
12123 this shift are known to be zero for both inputs and if the type of
12124 comparison is compatible with the shift. */
12125 if (GET_CODE (op0) == GET_CODE (op1)
12126 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12127 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12128 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12129 && (code != GT && code != LT && code != GE && code != LE))
12130 || (GET_CODE (op0) == ASHIFTRT
12131 && (code != GTU && code != LTU
12132 && code != GEU && code != LEU)))
12133 && CONST_INT_P (XEXP (op0, 1))
12134 && INTVAL (XEXP (op0, 1)) >= 0
12135 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12136 && XEXP (op0, 1) == XEXP (op1, 1))
12138 machine_mode mode = GET_MODE (op0);
12139 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12140 int shift_count = INTVAL (XEXP (op0, 1));
12142 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12143 mask &= (mask >> shift_count) << shift_count;
12144 else if (GET_CODE (op0) == ASHIFT)
12145 mask = (mask & (mask << shift_count)) >> shift_count;
12147 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12148 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12149 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12150 else
12151 break;
12154 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12155 SUBREGs are of the same mode, and, in both cases, the AND would
12156 be redundant if the comparison was done in the narrower mode,
12157 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12158 and the operand's possibly nonzero bits are 0xffffff01; in that case
12159 if we only care about QImode, we don't need the AND). This case
12160 occurs if the output mode of an scc insn is not SImode and
12161 STORE_FLAG_VALUE == 1 (e.g., the 386).
12163 Similarly, check for a case where the AND's are ZERO_EXTEND
12164 operations from some narrower mode even though a SUBREG is not
12165 present. */
12167 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12168 && CONST_INT_P (XEXP (op0, 1))
12169 && CONST_INT_P (XEXP (op1, 1)))
12171 rtx inner_op0 = XEXP (op0, 0);
12172 rtx inner_op1 = XEXP (op1, 0);
12173 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12174 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12175 int changed = 0;
12177 if (paradoxical_subreg_p (inner_op0)
12178 && GET_CODE (inner_op1) == SUBREG
12179 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12180 && (GET_MODE (SUBREG_REG (inner_op0))
12181 == GET_MODE (SUBREG_REG (inner_op1)))
12182 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12183 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12184 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12185 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12187 op0 = SUBREG_REG (inner_op0);
12188 op1 = SUBREG_REG (inner_op1);
12190 /* The resulting comparison is always unsigned since we masked
12191 off the original sign bit. */
12192 code = unsigned_condition (code);
12194 changed = 1;
12197 else if (c0 == c1)
12198 FOR_EACH_MODE_UNTIL (tmode,
12199 as_a <scalar_int_mode> (GET_MODE (op0)))
12200 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12202 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12203 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12204 code = unsigned_condition (code);
12205 changed = 1;
12206 break;
12209 if (! changed)
12210 break;
12213 /* If both operands are NOT, we can strip off the outer operation
12214 and adjust the comparison code for swapped operands; similarly for
12215 NEG, except that this must be an equality comparison. */
12216 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12217 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12218 && (code == EQ || code == NE)))
12219 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12221 else
12222 break;
12225 /* If the first operand is a constant, swap the operands and adjust the
12226 comparison code appropriately, but don't do this if the second operand
12227 is already a constant integer. */
12228 if (swap_commutative_operands_p (op0, op1))
12230 std::swap (op0, op1);
12231 code = swap_condition (code);
12234 /* We now enter a loop during which we will try to simplify the comparison.
12235 For the most part, we only are concerned with comparisons with zero,
12236 but some things may really be comparisons with zero but not start
12237 out looking that way. */
12239 while (CONST_INT_P (op1))
12241 machine_mode raw_mode = GET_MODE (op0);
12242 scalar_int_mode int_mode;
12243 int equality_comparison_p;
12244 int sign_bit_comparison_p;
12245 int unsigned_comparison_p;
12246 HOST_WIDE_INT const_op;
12248 /* We only want to handle integral modes. This catches VOIDmode,
12249 CCmode, and the floating-point modes. An exception is that we
12250 can handle VOIDmode if OP0 is a COMPARE or a comparison
12251 operation. */
12253 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12254 && ! (raw_mode == VOIDmode
12255 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12256 break;
12258 /* Try to simplify the compare to constant, possibly changing the
12259 comparison op, and/or changing op1 to zero. */
12260 code = simplify_compare_const (code, raw_mode, op0, &op1);
12261 const_op = INTVAL (op1);
12263 /* Compute some predicates to simplify code below. */
12265 equality_comparison_p = (code == EQ || code == NE);
12266 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12267 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12268 || code == GEU);
12270 /* If this is a sign bit comparison and we can do arithmetic in
12271 MODE, say that we will only be needing the sign bit of OP0. */
12272 if (sign_bit_comparison_p
12273 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12274 && HWI_COMPUTABLE_MODE_P (int_mode))
12275 op0 = force_to_mode (op0, int_mode,
12276 HOST_WIDE_INT_1U
12277 << (GET_MODE_PRECISION (int_mode) - 1),
12280 if (COMPARISON_P (op0))
12282 /* We can't do anything if OP0 is a condition code value, rather
12283 than an actual data value. */
12284 if (const_op != 0
12285 || CC0_P (XEXP (op0, 0))
12286 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12287 break;
12289 /* Get the two operands being compared. */
12290 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12291 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12292 else
12293 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12295 /* Check for the cases where we simply want the result of the
12296 earlier test or the opposite of that result. */
12297 if (code == NE || code == EQ
12298 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12299 && (code == LT || code == GE)))
12301 enum rtx_code new_code;
12302 if (code == LT || code == NE)
12303 new_code = GET_CODE (op0);
12304 else
12305 new_code = reversed_comparison_code (op0, NULL);
12307 if (new_code != UNKNOWN)
12309 code = new_code;
12310 op0 = tem;
12311 op1 = tem1;
12312 continue;
12315 break;
12318 if (raw_mode == VOIDmode)
12319 break;
12320 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12322 /* Now try cases based on the opcode of OP0. If none of the cases
12323 does a "continue", we exit this loop immediately after the
12324 switch. */
12326 unsigned int mode_width = GET_MODE_PRECISION (mode);
12327 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12328 switch (GET_CODE (op0))
12330 case ZERO_EXTRACT:
12331 /* If we are extracting a single bit from a variable position in
12332 a constant that has only a single bit set and are comparing it
12333 with zero, we can convert this into an equality comparison
12334 between the position and the location of the single bit. */
12335 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12336 have already reduced the shift count modulo the word size. */
12337 if (!SHIFT_COUNT_TRUNCATED
12338 && CONST_INT_P (XEXP (op0, 0))
12339 && XEXP (op0, 1) == const1_rtx
12340 && equality_comparison_p && const_op == 0
12341 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12343 if (BITS_BIG_ENDIAN)
12344 i = BITS_PER_WORD - 1 - i;
12346 op0 = XEXP (op0, 2);
12347 op1 = GEN_INT (i);
12348 const_op = i;
12350 /* Result is nonzero iff shift count is equal to I. */
12351 code = reverse_condition (code);
12352 continue;
12355 /* fall through */
12357 case SIGN_EXTRACT:
12358 tem = expand_compound_operation (op0);
12359 if (tem != op0)
12361 op0 = tem;
12362 continue;
12364 break;
12366 case NOT:
12367 /* If testing for equality, we can take the NOT of the constant. */
12368 if (equality_comparison_p
12369 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12371 op0 = XEXP (op0, 0);
12372 op1 = tem;
12373 continue;
12376 /* If just looking at the sign bit, reverse the sense of the
12377 comparison. */
12378 if (sign_bit_comparison_p)
12380 op0 = XEXP (op0, 0);
12381 code = (code == GE ? LT : GE);
12382 continue;
12384 break;
12386 case NEG:
12387 /* If testing for equality, we can take the NEG of the constant. */
12388 if (equality_comparison_p
12389 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12391 op0 = XEXP (op0, 0);
12392 op1 = tem;
12393 continue;
12396 /* The remaining cases only apply to comparisons with zero. */
12397 if (const_op != 0)
12398 break;
12400 /* When X is ABS or is known positive,
12401 (neg X) is < 0 if and only if X != 0. */
12403 if (sign_bit_comparison_p
12404 && (GET_CODE (XEXP (op0, 0)) == ABS
12405 || (mode_width <= HOST_BITS_PER_WIDE_INT
12406 && (nonzero_bits (XEXP (op0, 0), mode)
12407 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12408 == 0)))
12410 op0 = XEXP (op0, 0);
12411 code = (code == LT ? NE : EQ);
12412 continue;
12415 /* If we have NEG of something whose two high-order bits are the
12416 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12417 if (num_sign_bit_copies (op0, mode) >= 2)
12419 op0 = XEXP (op0, 0);
12420 code = swap_condition (code);
12421 continue;
12423 break;
12425 case ROTATE:
12426 /* If we are testing equality and our count is a constant, we
12427 can perform the inverse operation on our RHS. */
12428 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12429 && (tem = simplify_binary_operation (ROTATERT, mode,
12430 op1, XEXP (op0, 1))) != 0)
12432 op0 = XEXP (op0, 0);
12433 op1 = tem;
12434 continue;
12437 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12438 a particular bit. Convert it to an AND of a constant of that
12439 bit. This will be converted into a ZERO_EXTRACT. */
12440 if (const_op == 0 && sign_bit_comparison_p
12441 && CONST_INT_P (XEXP (op0, 1))
12442 && mode_width <= HOST_BITS_PER_WIDE_INT
12443 && UINTVAL (XEXP (op0, 1)) < mode_width)
12445 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12446 (HOST_WIDE_INT_1U
12447 << (mode_width - 1
12448 - INTVAL (XEXP (op0, 1)))));
12449 code = (code == LT ? NE : EQ);
12450 continue;
12453 /* Fall through. */
12455 case ABS:
12456 /* ABS is ignorable inside an equality comparison with zero. */
12457 if (const_op == 0 && equality_comparison_p)
12459 op0 = XEXP (op0, 0);
12460 continue;
12462 break;
12464 case SIGN_EXTEND:
12465 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12466 (compare FOO CONST) if CONST fits in FOO's mode and we
12467 are either testing inequality or have an unsigned
12468 comparison with ZERO_EXTEND or a signed comparison with
12469 SIGN_EXTEND. But don't do it if we don't have a compare
12470 insn of the given mode, since we'd have to revert it
12471 later on, and then we wouldn't know whether to sign- or
12472 zero-extend. */
12473 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12474 && ! unsigned_comparison_p
12475 && HWI_COMPUTABLE_MODE_P (mode)
12476 && trunc_int_for_mode (const_op, mode) == const_op
12477 && have_insn_for (COMPARE, mode))
12479 op0 = XEXP (op0, 0);
12480 continue;
12482 break;
12484 case SUBREG:
12485 /* Check for the case where we are comparing A - C1 with C2, that is
12487 (subreg:MODE (plus (A) (-C1))) op (C2)
12489 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12490 comparison in the wider mode. One of the following two conditions
12491 must be true in order for this to be valid:
12493 1. The mode extension results in the same bit pattern being added
12494 on both sides and the comparison is equality or unsigned. As
12495 C2 has been truncated to fit in MODE, the pattern can only be
12496 all 0s or all 1s.
12498 2. The mode extension results in the sign bit being copied on
12499 each side.
12501 The difficulty here is that we have predicates for A but not for
12502 (A - C1) so we need to check that C1 is within proper bounds so
12503 as to perturbate A as little as possible. */
12505 if (mode_width <= HOST_BITS_PER_WIDE_INT
12506 && subreg_lowpart_p (op0)
12507 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12508 &inner_mode)
12509 && GET_MODE_PRECISION (inner_mode) > mode_width
12510 && GET_CODE (SUBREG_REG (op0)) == PLUS
12511 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12513 rtx a = XEXP (SUBREG_REG (op0), 0);
12514 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12516 if ((c1 > 0
12517 && (unsigned HOST_WIDE_INT) c1
12518 < HOST_WIDE_INT_1U << (mode_width - 1)
12519 && (equality_comparison_p || unsigned_comparison_p)
12520 /* (A - C1) zero-extends if it is positive and sign-extends
12521 if it is negative, C2 both zero- and sign-extends. */
12522 && (((nonzero_bits (a, inner_mode)
12523 & ~GET_MODE_MASK (mode)) == 0
12524 && const_op >= 0)
12525 /* (A - C1) sign-extends if it is positive and 1-extends
12526 if it is negative, C2 both sign- and 1-extends. */
12527 || (num_sign_bit_copies (a, inner_mode)
12528 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12529 - mode_width)
12530 && const_op < 0)))
12531 || ((unsigned HOST_WIDE_INT) c1
12532 < HOST_WIDE_INT_1U << (mode_width - 2)
12533 /* (A - C1) always sign-extends, like C2. */
12534 && num_sign_bit_copies (a, inner_mode)
12535 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12536 - (mode_width - 1))))
12538 op0 = SUBREG_REG (op0);
12539 continue;
12543 /* If the inner mode is narrower and we are extracting the low part,
12544 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12545 if (paradoxical_subreg_p (op0))
12547 else if (subreg_lowpart_p (op0)
12548 && GET_MODE_CLASS (mode) == MODE_INT
12549 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12550 && (code == NE || code == EQ)
12551 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12552 && !paradoxical_subreg_p (op0)
12553 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12554 & ~GET_MODE_MASK (mode)) == 0)
12556 /* Remove outer subregs that don't do anything. */
12557 tem = gen_lowpart (inner_mode, op1);
12559 if ((nonzero_bits (tem, inner_mode)
12560 & ~GET_MODE_MASK (mode)) == 0)
12562 op0 = SUBREG_REG (op0);
12563 op1 = tem;
12564 continue;
12566 break;
12568 else
12569 break;
12571 /* FALLTHROUGH */
12573 case ZERO_EXTEND:
12574 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12575 && (unsigned_comparison_p || equality_comparison_p)
12576 && HWI_COMPUTABLE_MODE_P (mode)
12577 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12578 && const_op >= 0
12579 && have_insn_for (COMPARE, mode))
12581 op0 = XEXP (op0, 0);
12582 continue;
12584 break;
12586 case PLUS:
12587 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12588 this for equality comparisons due to pathological cases involving
12589 overflows. */
12590 if (equality_comparison_p
12591 && (tem = simplify_binary_operation (MINUS, mode,
12592 op1, XEXP (op0, 1))) != 0)
12594 op0 = XEXP (op0, 0);
12595 op1 = tem;
12596 continue;
12599 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12600 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12601 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12603 op0 = XEXP (XEXP (op0, 0), 0);
12604 code = (code == LT ? EQ : NE);
12605 continue;
12607 break;
12609 case MINUS:
12610 /* We used to optimize signed comparisons against zero, but that
12611 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12612 arrive here as equality comparisons, or (GEU, LTU) are
12613 optimized away. No need to special-case them. */
12615 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12616 (eq B (minus A C)), whichever simplifies. We can only do
12617 this for equality comparisons due to pathological cases involving
12618 overflows. */
12619 if (equality_comparison_p
12620 && (tem = simplify_binary_operation (PLUS, mode,
12621 XEXP (op0, 1), op1)) != 0)
12623 op0 = XEXP (op0, 0);
12624 op1 = tem;
12625 continue;
12628 if (equality_comparison_p
12629 && (tem = simplify_binary_operation (MINUS, mode,
12630 XEXP (op0, 0), op1)) != 0)
12632 op0 = XEXP (op0, 1);
12633 op1 = tem;
12634 continue;
12637 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12638 of bits in X minus 1, is one iff X > 0. */
12639 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12640 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12641 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12642 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12644 op0 = XEXP (op0, 1);
12645 code = (code == GE ? LE : GT);
12646 continue;
12648 break;
12650 case XOR:
12651 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12652 if C is zero or B is a constant. */
12653 if (equality_comparison_p
12654 && (tem = simplify_binary_operation (XOR, mode,
12655 XEXP (op0, 1), op1)) != 0)
12657 op0 = XEXP (op0, 0);
12658 op1 = tem;
12659 continue;
12661 break;
12664 case IOR:
12665 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12666 iff X <= 0. */
12667 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12668 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12669 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12671 op0 = XEXP (op0, 1);
12672 code = (code == GE ? GT : LE);
12673 continue;
12675 break;
12677 case AND:
12678 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12679 will be converted to a ZERO_EXTRACT later. */
12680 if (const_op == 0 && equality_comparison_p
12681 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12682 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12684 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12685 XEXP (XEXP (op0, 0), 1));
12686 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12687 continue;
12690 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12691 zero and X is a comparison and C1 and C2 describe only bits set
12692 in STORE_FLAG_VALUE, we can compare with X. */
12693 if (const_op == 0 && equality_comparison_p
12694 && mode_width <= HOST_BITS_PER_WIDE_INT
12695 && CONST_INT_P (XEXP (op0, 1))
12696 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12697 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12698 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12699 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12701 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12702 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12703 if ((~STORE_FLAG_VALUE & mask) == 0
12704 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12705 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12706 && COMPARISON_P (tem))))
12708 op0 = XEXP (XEXP (op0, 0), 0);
12709 continue;
12713 /* If we are doing an equality comparison of an AND of a bit equal
12714 to the sign bit, replace this with a LT or GE comparison of
12715 the underlying value. */
12716 if (equality_comparison_p
12717 && const_op == 0
12718 && CONST_INT_P (XEXP (op0, 1))
12719 && mode_width <= HOST_BITS_PER_WIDE_INT
12720 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12721 == HOST_WIDE_INT_1U << (mode_width - 1)))
12723 op0 = XEXP (op0, 0);
12724 code = (code == EQ ? GE : LT);
12725 continue;
12728 /* If this AND operation is really a ZERO_EXTEND from a narrower
12729 mode, the constant fits within that mode, and this is either an
12730 equality or unsigned comparison, try to do this comparison in
12731 the narrower mode.
12733 Note that in:
12735 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12736 -> (ne:DI (reg:SI 4) (const_int 0))
12738 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12739 known to hold a value of the required mode the
12740 transformation is invalid. */
12741 if ((equality_comparison_p || unsigned_comparison_p)
12742 && CONST_INT_P (XEXP (op0, 1))
12743 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12744 & GET_MODE_MASK (mode))
12745 + 1)) >= 0
12746 && const_op >> i == 0
12747 && int_mode_for_size (i, 1).exists (&tmode))
12749 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12750 continue;
12753 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12754 fits in both M1 and M2 and the SUBREG is either paradoxical
12755 or represents the low part, permute the SUBREG and the AND
12756 and try again. */
12757 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12758 && CONST_INT_P (XEXP (op0, 1)))
12760 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12761 /* Require an integral mode, to avoid creating something like
12762 (AND:SF ...). */
12763 if ((is_a <scalar_int_mode>
12764 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12765 /* It is unsafe to commute the AND into the SUBREG if the
12766 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12767 not defined. As originally written the upper bits
12768 have a defined value due to the AND operation.
12769 However, if we commute the AND inside the SUBREG then
12770 they no longer have defined values and the meaning of
12771 the code has been changed.
12772 Also C1 should not change value in the smaller mode,
12773 see PR67028 (a positive C1 can become negative in the
12774 smaller mode, so that the AND does no longer mask the
12775 upper bits). */
12776 && ((WORD_REGISTER_OPERATIONS
12777 && mode_width > GET_MODE_PRECISION (tmode)
12778 && mode_width <= BITS_PER_WORD
12779 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12780 || (mode_width <= GET_MODE_PRECISION (tmode)
12781 && subreg_lowpart_p (XEXP (op0, 0))))
12782 && mode_width <= HOST_BITS_PER_WIDE_INT
12783 && HWI_COMPUTABLE_MODE_P (tmode)
12784 && (c1 & ~mask) == 0
12785 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12786 && c1 != mask
12787 && c1 != GET_MODE_MASK (tmode))
12789 op0 = simplify_gen_binary (AND, tmode,
12790 SUBREG_REG (XEXP (op0, 0)),
12791 gen_int_mode (c1, tmode));
12792 op0 = gen_lowpart (mode, op0);
12793 continue;
12797 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12798 if (const_op == 0 && equality_comparison_p
12799 && XEXP (op0, 1) == const1_rtx
12800 && GET_CODE (XEXP (op0, 0)) == NOT)
12802 op0 = simplify_and_const_int (NULL_RTX, mode,
12803 XEXP (XEXP (op0, 0), 0), 1);
12804 code = (code == NE ? EQ : NE);
12805 continue;
12808 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12809 (eq (and (lshiftrt X) 1) 0).
12810 Also handle the case where (not X) is expressed using xor. */
12811 if (const_op == 0 && equality_comparison_p
12812 && XEXP (op0, 1) == const1_rtx
12813 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12815 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12816 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12818 if (GET_CODE (shift_op) == NOT
12819 || (GET_CODE (shift_op) == XOR
12820 && CONST_INT_P (XEXP (shift_op, 1))
12821 && CONST_INT_P (shift_count)
12822 && HWI_COMPUTABLE_MODE_P (mode)
12823 && (UINTVAL (XEXP (shift_op, 1))
12824 == HOST_WIDE_INT_1U
12825 << INTVAL (shift_count))))
12828 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12829 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12830 code = (code == NE ? EQ : NE);
12831 continue;
12834 break;
12836 case ASHIFT:
12837 /* If we have (compare (ashift FOO N) (const_int C)) and
12838 the high order N bits of FOO (N+1 if an inequality comparison)
12839 are known to be zero, we can do this by comparing FOO with C
12840 shifted right N bits so long as the low-order N bits of C are
12841 zero. */
12842 if (CONST_INT_P (XEXP (op0, 1))
12843 && INTVAL (XEXP (op0, 1)) >= 0
12844 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12845 < HOST_BITS_PER_WIDE_INT)
12846 && (((unsigned HOST_WIDE_INT) const_op
12847 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12848 - 1)) == 0)
12849 && mode_width <= HOST_BITS_PER_WIDE_INT
12850 && (nonzero_bits (XEXP (op0, 0), mode)
12851 & ~(mask >> (INTVAL (XEXP (op0, 1))
12852 + ! equality_comparison_p))) == 0)
12854 /* We must perform a logical shift, not an arithmetic one,
12855 as we want the top N bits of C to be zero. */
12856 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12858 temp >>= INTVAL (XEXP (op0, 1));
12859 op1 = gen_int_mode (temp, mode);
12860 op0 = XEXP (op0, 0);
12861 continue;
12864 /* If we are doing a sign bit comparison, it means we are testing
12865 a particular bit. Convert it to the appropriate AND. */
12866 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12867 && mode_width <= HOST_BITS_PER_WIDE_INT)
12869 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12870 (HOST_WIDE_INT_1U
12871 << (mode_width - 1
12872 - INTVAL (XEXP (op0, 1)))));
12873 code = (code == LT ? NE : EQ);
12874 continue;
12877 /* If this an equality comparison with zero and we are shifting
12878 the low bit to the sign bit, we can convert this to an AND of the
12879 low-order bit. */
12880 if (const_op == 0 && equality_comparison_p
12881 && CONST_INT_P (XEXP (op0, 1))
12882 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12884 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12885 continue;
12887 break;
12889 case ASHIFTRT:
12890 /* If this is an equality comparison with zero, we can do this
12891 as a logical shift, which might be much simpler. */
12892 if (equality_comparison_p && const_op == 0
12893 && CONST_INT_P (XEXP (op0, 1)))
12895 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12896 XEXP (op0, 0),
12897 INTVAL (XEXP (op0, 1)));
12898 continue;
12901 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12902 do the comparison in a narrower mode. */
12903 if (! unsigned_comparison_p
12904 && CONST_INT_P (XEXP (op0, 1))
12905 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12906 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12907 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12908 .exists (&tmode))
12909 && (((unsigned HOST_WIDE_INT) const_op
12910 + (GET_MODE_MASK (tmode) >> 1) + 1)
12911 <= GET_MODE_MASK (tmode)))
12913 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12914 continue;
12917 /* Likewise if OP0 is a PLUS of a sign extension with a
12918 constant, which is usually represented with the PLUS
12919 between the shifts. */
12920 if (! unsigned_comparison_p
12921 && CONST_INT_P (XEXP (op0, 1))
12922 && GET_CODE (XEXP (op0, 0)) == PLUS
12923 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12924 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12925 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12926 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12927 .exists (&tmode))
12928 && (((unsigned HOST_WIDE_INT) const_op
12929 + (GET_MODE_MASK (tmode) >> 1) + 1)
12930 <= GET_MODE_MASK (tmode)))
12932 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12933 rtx add_const = XEXP (XEXP (op0, 0), 1);
12934 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12935 add_const, XEXP (op0, 1));
12937 op0 = simplify_gen_binary (PLUS, tmode,
12938 gen_lowpart (tmode, inner),
12939 new_const);
12940 continue;
12943 /* FALLTHROUGH */
12944 case LSHIFTRT:
12945 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12946 the low order N bits of FOO are known to be zero, we can do this
12947 by comparing FOO with C shifted left N bits so long as no
12948 overflow occurs. Even if the low order N bits of FOO aren't known
12949 to be zero, if the comparison is >= or < we can use the same
12950 optimization and for > or <= by setting all the low
12951 order N bits in the comparison constant. */
12952 if (CONST_INT_P (XEXP (op0, 1))
12953 && INTVAL (XEXP (op0, 1)) > 0
12954 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12955 && mode_width <= HOST_BITS_PER_WIDE_INT
12956 && (((unsigned HOST_WIDE_INT) const_op
12957 + (GET_CODE (op0) != LSHIFTRT
12958 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12959 + 1)
12960 : 0))
12961 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12963 unsigned HOST_WIDE_INT low_bits
12964 = (nonzero_bits (XEXP (op0, 0), mode)
12965 & ((HOST_WIDE_INT_1U
12966 << INTVAL (XEXP (op0, 1))) - 1));
12967 if (low_bits == 0 || !equality_comparison_p)
12969 /* If the shift was logical, then we must make the condition
12970 unsigned. */
12971 if (GET_CODE (op0) == LSHIFTRT)
12972 code = unsigned_condition (code);
12974 const_op = (unsigned HOST_WIDE_INT) const_op
12975 << INTVAL (XEXP (op0, 1));
12976 if (low_bits != 0
12977 && (code == GT || code == GTU
12978 || code == LE || code == LEU))
12979 const_op
12980 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12981 op1 = GEN_INT (const_op);
12982 op0 = XEXP (op0, 0);
12983 continue;
12987 /* If we are using this shift to extract just the sign bit, we
12988 can replace this with an LT or GE comparison. */
12989 if (const_op == 0
12990 && (equality_comparison_p || sign_bit_comparison_p)
12991 && CONST_INT_P (XEXP (op0, 1))
12992 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12994 op0 = XEXP (op0, 0);
12995 code = (code == NE || code == GT ? LT : GE);
12996 continue;
12998 break;
13000 default:
13001 break;
13004 break;
13007 /* Now make any compound operations involved in this comparison. Then,
13008 check for an outmost SUBREG on OP0 that is not doing anything or is
13009 paradoxical. The latter transformation must only be performed when
13010 it is known that the "extra" bits will be the same in op0 and op1 or
13011 that they don't matter. There are three cases to consider:
13013 1. SUBREG_REG (op0) is a register. In this case the bits are don't
13014 care bits and we can assume they have any convenient value. So
13015 making the transformation is safe.
13017 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
13018 In this case the upper bits of op0 are undefined. We should not make
13019 the simplification in that case as we do not know the contents of
13020 those bits.
13022 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13023 In that case we know those bits are zeros or ones. We must also be
13024 sure that they are the same as the upper bits of op1.
13026 We can never remove a SUBREG for a non-equality comparison because
13027 the sign bit is in a different place in the underlying object. */
13029 rtx_code op0_mco_code = SET;
13030 if (op1 == const0_rtx)
13031 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13033 op0 = make_compound_operation (op0, op0_mco_code);
13034 op1 = make_compound_operation (op1, SET);
13036 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13037 && is_int_mode (GET_MODE (op0), &mode)
13038 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13039 && (code == NE || code == EQ))
13041 if (paradoxical_subreg_p (op0))
13043 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13044 implemented. */
13045 if (REG_P (SUBREG_REG (op0)))
13047 op0 = SUBREG_REG (op0);
13048 op1 = gen_lowpart (inner_mode, op1);
13051 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13052 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13053 & ~GET_MODE_MASK (mode)) == 0)
13055 tem = gen_lowpart (inner_mode, op1);
13057 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13058 op0 = SUBREG_REG (op0), op1 = tem;
13062 /* We now do the opposite procedure: Some machines don't have compare
13063 insns in all modes. If OP0's mode is an integer mode smaller than a
13064 word and we can't do a compare in that mode, see if there is a larger
13065 mode for which we can do the compare. There are a number of cases in
13066 which we can use the wider mode. */
13068 if (is_int_mode (GET_MODE (op0), &mode)
13069 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13070 && ! have_insn_for (COMPARE, mode))
13071 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13073 tmode = tmode_iter.require ();
13074 if (!HWI_COMPUTABLE_MODE_P (tmode))
13075 break;
13076 if (have_insn_for (COMPARE, tmode))
13078 int zero_extended;
13080 /* If this is a test for negative, we can make an explicit
13081 test of the sign bit. Test this first so we can use
13082 a paradoxical subreg to extend OP0. */
13084 if (op1 == const0_rtx && (code == LT || code == GE)
13085 && HWI_COMPUTABLE_MODE_P (mode))
13087 unsigned HOST_WIDE_INT sign
13088 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13089 op0 = simplify_gen_binary (AND, tmode,
13090 gen_lowpart (tmode, op0),
13091 gen_int_mode (sign, tmode));
13092 code = (code == LT) ? NE : EQ;
13093 break;
13096 /* If the only nonzero bits in OP0 and OP1 are those in the
13097 narrower mode and this is an equality or unsigned comparison,
13098 we can use the wider mode. Similarly for sign-extended
13099 values, in which case it is true for all comparisons. */
13100 zero_extended = ((code == EQ || code == NE
13101 || code == GEU || code == GTU
13102 || code == LEU || code == LTU)
13103 && (nonzero_bits (op0, tmode)
13104 & ~GET_MODE_MASK (mode)) == 0
13105 && ((CONST_INT_P (op1)
13106 || (nonzero_bits (op1, tmode)
13107 & ~GET_MODE_MASK (mode)) == 0)));
13109 if (zero_extended
13110 || ((num_sign_bit_copies (op0, tmode)
13111 > (unsigned int) (GET_MODE_PRECISION (tmode)
13112 - GET_MODE_PRECISION (mode)))
13113 && (num_sign_bit_copies (op1, tmode)
13114 > (unsigned int) (GET_MODE_PRECISION (tmode)
13115 - GET_MODE_PRECISION (mode)))))
13117 /* If OP0 is an AND and we don't have an AND in MODE either,
13118 make a new AND in the proper mode. */
13119 if (GET_CODE (op0) == AND
13120 && !have_insn_for (AND, mode))
13121 op0 = simplify_gen_binary (AND, tmode,
13122 gen_lowpart (tmode,
13123 XEXP (op0, 0)),
13124 gen_lowpart (tmode,
13125 XEXP (op0, 1)));
13126 else
13128 if (zero_extended)
13130 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13131 op0, mode);
13132 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13133 op1, mode);
13135 else
13137 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13138 op0, mode);
13139 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13140 op1, mode);
13142 break;
13148 /* We may have changed the comparison operands. Re-canonicalize. */
13149 if (swap_commutative_operands_p (op0, op1))
13151 std::swap (op0, op1);
13152 code = swap_condition (code);
13155 /* If this machine only supports a subset of valid comparisons, see if we
13156 can convert an unsupported one into a supported one. */
13157 target_canonicalize_comparison (&code, &op0, &op1, 0);
13159 *pop0 = op0;
13160 *pop1 = op1;
13162 return code;
13165 /* Utility function for record_value_for_reg. Count number of
13166 rtxs in X. */
13167 static int
13168 count_rtxs (rtx x)
13170 enum rtx_code code = GET_CODE (x);
13171 const char *fmt;
13172 int i, j, ret = 1;
13174 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13175 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13177 rtx x0 = XEXP (x, 0);
13178 rtx x1 = XEXP (x, 1);
13180 if (x0 == x1)
13181 return 1 + 2 * count_rtxs (x0);
13183 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13184 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13185 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13186 return 2 + 2 * count_rtxs (x0)
13187 + count_rtxs (x == XEXP (x1, 0)
13188 ? XEXP (x1, 1) : XEXP (x1, 0));
13190 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13191 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13192 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13193 return 2 + 2 * count_rtxs (x1)
13194 + count_rtxs (x == XEXP (x0, 0)
13195 ? XEXP (x0, 1) : XEXP (x0, 0));
13198 fmt = GET_RTX_FORMAT (code);
13199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13200 if (fmt[i] == 'e')
13201 ret += count_rtxs (XEXP (x, i));
13202 else if (fmt[i] == 'E')
13203 for (j = 0; j < XVECLEN (x, i); j++)
13204 ret += count_rtxs (XVECEXP (x, i, j));
13206 return ret;
13209 /* Utility function for following routine. Called when X is part of a value
13210 being stored into last_set_value. Sets last_set_table_tick
13211 for each register mentioned. Similar to mention_regs in cse.c */
13213 static void
13214 update_table_tick (rtx x)
13216 enum rtx_code code = GET_CODE (x);
13217 const char *fmt = GET_RTX_FORMAT (code);
13218 int i, j;
13220 if (code == REG)
13222 unsigned int regno = REGNO (x);
13223 unsigned int endregno = END_REGNO (x);
13224 unsigned int r;
13226 for (r = regno; r < endregno; r++)
13228 reg_stat_type *rsp = &reg_stat[r];
13229 rsp->last_set_table_tick = label_tick;
13232 return;
13235 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13236 if (fmt[i] == 'e')
13238 /* Check for identical subexpressions. If x contains
13239 identical subexpression we only have to traverse one of
13240 them. */
13241 if (i == 0 && ARITHMETIC_P (x))
13243 /* Note that at this point x1 has already been
13244 processed. */
13245 rtx x0 = XEXP (x, 0);
13246 rtx x1 = XEXP (x, 1);
13248 /* If x0 and x1 are identical then there is no need to
13249 process x0. */
13250 if (x0 == x1)
13251 break;
13253 /* If x0 is identical to a subexpression of x1 then while
13254 processing x1, x0 has already been processed. Thus we
13255 are done with x. */
13256 if (ARITHMETIC_P (x1)
13257 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13258 break;
13260 /* If x1 is identical to a subexpression of x0 then we
13261 still have to process the rest of x0. */
13262 if (ARITHMETIC_P (x0)
13263 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13265 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13266 break;
13270 update_table_tick (XEXP (x, i));
13272 else if (fmt[i] == 'E')
13273 for (j = 0; j < XVECLEN (x, i); j++)
13274 update_table_tick (XVECEXP (x, i, j));
13277 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13278 are saying that the register is clobbered and we no longer know its
13279 value. If INSN is zero, don't update reg_stat[].last_set; this is
13280 only permitted with VALUE also zero and is used to invalidate the
13281 register. */
13283 static void
13284 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13286 unsigned int regno = REGNO (reg);
13287 unsigned int endregno = END_REGNO (reg);
13288 unsigned int i;
13289 reg_stat_type *rsp;
13291 /* If VALUE contains REG and we have a previous value for REG, substitute
13292 the previous value. */
13293 if (value && insn && reg_overlap_mentioned_p (reg, value))
13295 rtx tem;
13297 /* Set things up so get_last_value is allowed to see anything set up to
13298 our insn. */
13299 subst_low_luid = DF_INSN_LUID (insn);
13300 tem = get_last_value (reg);
13302 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13303 it isn't going to be useful and will take a lot of time to process,
13304 so just use the CLOBBER. */
13306 if (tem)
13308 if (ARITHMETIC_P (tem)
13309 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13310 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13311 tem = XEXP (tem, 0);
13312 else if (count_occurrences (value, reg, 1) >= 2)
13314 /* If there are two or more occurrences of REG in VALUE,
13315 prevent the value from growing too much. */
13316 if (count_rtxs (tem) > param_max_last_value_rtl)
13317 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13320 value = replace_rtx (copy_rtx (value), reg, tem);
13324 /* For each register modified, show we don't know its value, that
13325 we don't know about its bitwise content, that its value has been
13326 updated, and that we don't know the location of the death of the
13327 register. */
13328 for (i = regno; i < endregno; i++)
13330 rsp = &reg_stat[i];
13332 if (insn)
13333 rsp->last_set = insn;
13335 rsp->last_set_value = 0;
13336 rsp->last_set_mode = VOIDmode;
13337 rsp->last_set_nonzero_bits = 0;
13338 rsp->last_set_sign_bit_copies = 0;
13339 rsp->last_death = 0;
13340 rsp->truncated_to_mode = VOIDmode;
13343 /* Mark registers that are being referenced in this value. */
13344 if (value)
13345 update_table_tick (value);
13347 /* Now update the status of each register being set.
13348 If someone is using this register in this block, set this register
13349 to invalid since we will get confused between the two lives in this
13350 basic block. This makes using this register always invalid. In cse, we
13351 scan the table to invalidate all entries using this register, but this
13352 is too much work for us. */
13354 for (i = regno; i < endregno; i++)
13356 rsp = &reg_stat[i];
13357 rsp->last_set_label = label_tick;
13358 if (!insn
13359 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13360 rsp->last_set_invalid = 1;
13361 else
13362 rsp->last_set_invalid = 0;
13365 /* The value being assigned might refer to X (like in "x++;"). In that
13366 case, we must replace it with (clobber (const_int 0)) to prevent
13367 infinite loops. */
13368 rsp = &reg_stat[regno];
13369 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13371 value = copy_rtx (value);
13372 if (!get_last_value_validate (&value, insn, label_tick, 1))
13373 value = 0;
13376 /* For the main register being modified, update the value, the mode, the
13377 nonzero bits, and the number of sign bit copies. */
13379 rsp->last_set_value = value;
13381 if (value)
13383 machine_mode mode = GET_MODE (reg);
13384 subst_low_luid = DF_INSN_LUID (insn);
13385 rsp->last_set_mode = mode;
13386 if (GET_MODE_CLASS (mode) == MODE_INT
13387 && HWI_COMPUTABLE_MODE_P (mode))
13388 mode = nonzero_bits_mode;
13389 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13390 rsp->last_set_sign_bit_copies
13391 = num_sign_bit_copies (value, GET_MODE (reg));
13395 /* Called via note_stores from record_dead_and_set_regs to handle one
13396 SET or CLOBBER in an insn. DATA is the instruction in which the
13397 set is occurring. */
13399 static void
13400 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13402 rtx_insn *record_dead_insn = (rtx_insn *) data;
13404 if (GET_CODE (dest) == SUBREG)
13405 dest = SUBREG_REG (dest);
13407 if (!record_dead_insn)
13409 if (REG_P (dest))
13410 record_value_for_reg (dest, NULL, NULL_RTX);
13411 return;
13414 if (REG_P (dest))
13416 /* If we are setting the whole register, we know its value. Otherwise
13417 show that we don't know the value. We can handle a SUBREG if it's
13418 the low part, but we must be careful with paradoxical SUBREGs on
13419 RISC architectures because we cannot strip e.g. an extension around
13420 a load and record the naked load since the RTL middle-end considers
13421 that the upper bits are defined according to LOAD_EXTEND_OP. */
13422 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13423 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13424 else if (GET_CODE (setter) == SET
13425 && GET_CODE (SET_DEST (setter)) == SUBREG
13426 && SUBREG_REG (SET_DEST (setter)) == dest
13427 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13428 BITS_PER_WORD)
13429 && subreg_lowpart_p (SET_DEST (setter)))
13430 record_value_for_reg (dest, record_dead_insn,
13431 WORD_REGISTER_OPERATIONS
13432 && word_register_operation_p (SET_SRC (setter))
13433 && paradoxical_subreg_p (SET_DEST (setter))
13434 ? SET_SRC (setter)
13435 : gen_lowpart (GET_MODE (dest),
13436 SET_SRC (setter)));
13437 else
13438 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13440 else if (MEM_P (dest)
13441 /* Ignore pushes, they clobber nothing. */
13442 && ! push_operand (dest, GET_MODE (dest)))
13443 mem_last_set = DF_INSN_LUID (record_dead_insn);
13446 /* Update the records of when each REG was most recently set or killed
13447 for the things done by INSN. This is the last thing done in processing
13448 INSN in the combiner loop.
13450 We update reg_stat[], in particular fields last_set, last_set_value,
13451 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13452 last_death, and also the similar information mem_last_set (which insn
13453 most recently modified memory) and last_call_luid (which insn was the
13454 most recent subroutine call). */
13456 static void
13457 record_dead_and_set_regs (rtx_insn *insn)
13459 rtx link;
13460 unsigned int i;
13462 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13464 if (REG_NOTE_KIND (link) == REG_DEAD
13465 && REG_P (XEXP (link, 0)))
13467 unsigned int regno = REGNO (XEXP (link, 0));
13468 unsigned int endregno = END_REGNO (XEXP (link, 0));
13470 for (i = regno; i < endregno; i++)
13472 reg_stat_type *rsp;
13474 rsp = &reg_stat[i];
13475 rsp->last_death = insn;
13478 else if (REG_NOTE_KIND (link) == REG_INC)
13479 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13482 if (CALL_P (insn))
13484 HARD_REG_SET callee_clobbers
13485 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13486 hard_reg_set_iterator hrsi;
13487 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13489 reg_stat_type *rsp;
13491 /* ??? We could try to preserve some information from the last
13492 set of register I if the call doesn't actually clobber
13493 (reg:last_set_mode I), which might be true for ABIs with
13494 partial clobbers. However, it would be difficult to
13495 update last_set_nonzero_bits and last_sign_bit_copies
13496 to account for the part of I that actually was clobbered.
13497 It wouldn't help much anyway, since we rarely see this
13498 situation before RA. */
13499 rsp = &reg_stat[i];
13500 rsp->last_set_invalid = 1;
13501 rsp->last_set = insn;
13502 rsp->last_set_value = 0;
13503 rsp->last_set_mode = VOIDmode;
13504 rsp->last_set_nonzero_bits = 0;
13505 rsp->last_set_sign_bit_copies = 0;
13506 rsp->last_death = 0;
13507 rsp->truncated_to_mode = VOIDmode;
13510 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13512 /* We can't combine into a call pattern. Remember, though, that
13513 the return value register is set at this LUID. We could
13514 still replace a register with the return value from the
13515 wrong subroutine call! */
13516 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13518 else
13519 note_stores (insn, record_dead_and_set_regs_1, insn);
13522 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13523 register present in the SUBREG, so for each such SUBREG go back and
13524 adjust nonzero and sign bit information of the registers that are
13525 known to have some zero/sign bits set.
13527 This is needed because when combine blows the SUBREGs away, the
13528 information on zero/sign bits is lost and further combines can be
13529 missed because of that. */
13531 static void
13532 record_promoted_value (rtx_insn *insn, rtx subreg)
13534 struct insn_link *links;
13535 rtx set;
13536 unsigned int regno = REGNO (SUBREG_REG (subreg));
13537 machine_mode mode = GET_MODE (subreg);
13539 if (!HWI_COMPUTABLE_MODE_P (mode))
13540 return;
13542 for (links = LOG_LINKS (insn); links;)
13544 reg_stat_type *rsp;
13546 insn = links->insn;
13547 set = single_set (insn);
13549 if (! set || !REG_P (SET_DEST (set))
13550 || REGNO (SET_DEST (set)) != regno
13551 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13553 links = links->next;
13554 continue;
13557 rsp = &reg_stat[regno];
13558 if (rsp->last_set == insn)
13560 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13561 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13564 if (REG_P (SET_SRC (set)))
13566 regno = REGNO (SET_SRC (set));
13567 links = LOG_LINKS (insn);
13569 else
13570 break;
13574 /* Check if X, a register, is known to contain a value already
13575 truncated to MODE. In this case we can use a subreg to refer to
13576 the truncated value even though in the generic case we would need
13577 an explicit truncation. */
13579 static bool
13580 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13582 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13583 machine_mode truncated = rsp->truncated_to_mode;
13585 if (truncated == 0
13586 || rsp->truncation_label < label_tick_ebb_start)
13587 return false;
13588 if (!partial_subreg_p (mode, truncated))
13589 return true;
13590 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13591 return true;
13592 return false;
13595 /* If X is a hard reg or a subreg record the mode that the register is
13596 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13597 able to turn a truncate into a subreg using this information. Return true
13598 if traversing X is complete. */
13600 static bool
13601 record_truncated_value (rtx x)
13603 machine_mode truncated_mode;
13604 reg_stat_type *rsp;
13606 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13608 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13609 truncated_mode = GET_MODE (x);
13611 if (!partial_subreg_p (truncated_mode, original_mode))
13612 return true;
13614 truncated_mode = GET_MODE (x);
13615 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13616 return true;
13618 x = SUBREG_REG (x);
13620 /* ??? For hard-regs we now record everything. We might be able to
13621 optimize this using last_set_mode. */
13622 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13623 truncated_mode = GET_MODE (x);
13624 else
13625 return false;
13627 rsp = &reg_stat[REGNO (x)];
13628 if (rsp->truncated_to_mode == 0
13629 || rsp->truncation_label < label_tick_ebb_start
13630 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13632 rsp->truncated_to_mode = truncated_mode;
13633 rsp->truncation_label = label_tick;
13636 return true;
13639 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13640 the modes they are used in. This can help truning TRUNCATEs into
13641 SUBREGs. */
13643 static void
13644 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13646 subrtx_var_iterator::array_type array;
13647 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13648 if (record_truncated_value (*iter))
13649 iter.skip_subrtxes ();
13652 /* Scan X for promoted SUBREGs. For each one found,
13653 note what it implies to the registers used in it. */
13655 static void
13656 check_promoted_subreg (rtx_insn *insn, rtx x)
13658 if (GET_CODE (x) == SUBREG
13659 && SUBREG_PROMOTED_VAR_P (x)
13660 && REG_P (SUBREG_REG (x)))
13661 record_promoted_value (insn, x);
13662 else
13664 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13665 int i, j;
13667 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13668 switch (format[i])
13670 case 'e':
13671 check_promoted_subreg (insn, XEXP (x, i));
13672 break;
13673 case 'V':
13674 case 'E':
13675 if (XVEC (x, i) != 0)
13676 for (j = 0; j < XVECLEN (x, i); j++)
13677 check_promoted_subreg (insn, XVECEXP (x, i, j));
13678 break;
13683 /* Verify that all the registers and memory references mentioned in *LOC are
13684 still valid. *LOC was part of a value set in INSN when label_tick was
13685 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13686 the invalid references with (clobber (const_int 0)) and return 1. This
13687 replacement is useful because we often can get useful information about
13688 the form of a value (e.g., if it was produced by a shift that always
13689 produces -1 or 0) even though we don't know exactly what registers it
13690 was produced from. */
13692 static int
13693 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13695 rtx x = *loc;
13696 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13697 int len = GET_RTX_LENGTH (GET_CODE (x));
13698 int i, j;
13700 if (REG_P (x))
13702 unsigned int regno = REGNO (x);
13703 unsigned int endregno = END_REGNO (x);
13704 unsigned int j;
13706 for (j = regno; j < endregno; j++)
13708 reg_stat_type *rsp = &reg_stat[j];
13709 if (rsp->last_set_invalid
13710 /* If this is a pseudo-register that was only set once and not
13711 live at the beginning of the function, it is always valid. */
13712 || (! (regno >= FIRST_PSEUDO_REGISTER
13713 && regno < reg_n_sets_max
13714 && REG_N_SETS (regno) == 1
13715 && (!REGNO_REG_SET_P
13716 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13717 regno)))
13718 && rsp->last_set_label > tick))
13720 if (replace)
13721 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13722 return replace;
13726 return 1;
13728 /* If this is a memory reference, make sure that there were no stores after
13729 it that might have clobbered the value. We don't have alias info, so we
13730 assume any store invalidates it. Moreover, we only have local UIDs, so
13731 we also assume that there were stores in the intervening basic blocks. */
13732 else if (MEM_P (x) && !MEM_READONLY_P (x)
13733 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13735 if (replace)
13736 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13737 return replace;
13740 for (i = 0; i < len; i++)
13742 if (fmt[i] == 'e')
13744 /* Check for identical subexpressions. If x contains
13745 identical subexpression we only have to traverse one of
13746 them. */
13747 if (i == 1 && ARITHMETIC_P (x))
13749 /* Note that at this point x0 has already been checked
13750 and found valid. */
13751 rtx x0 = XEXP (x, 0);
13752 rtx x1 = XEXP (x, 1);
13754 /* If x0 and x1 are identical then x is also valid. */
13755 if (x0 == x1)
13756 return 1;
13758 /* If x1 is identical to a subexpression of x0 then
13759 while checking x0, x1 has already been checked. Thus
13760 it is valid and so as x. */
13761 if (ARITHMETIC_P (x0)
13762 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13763 return 1;
13765 /* If x0 is identical to a subexpression of x1 then x is
13766 valid iff the rest of x1 is valid. */
13767 if (ARITHMETIC_P (x1)
13768 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13769 return
13770 get_last_value_validate (&XEXP (x1,
13771 x0 == XEXP (x1, 0) ? 1 : 0),
13772 insn, tick, replace);
13775 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13776 replace) == 0)
13777 return 0;
13779 else if (fmt[i] == 'E')
13780 for (j = 0; j < XVECLEN (x, i); j++)
13781 if (get_last_value_validate (&XVECEXP (x, i, j),
13782 insn, tick, replace) == 0)
13783 return 0;
13786 /* If we haven't found a reason for it to be invalid, it is valid. */
13787 return 1;
13790 /* Get the last value assigned to X, if known. Some registers
13791 in the value may be replaced with (clobber (const_int 0)) if their value
13792 is known longer known reliably. */
13794 static rtx
13795 get_last_value (const_rtx x)
13797 unsigned int regno;
13798 rtx value;
13799 reg_stat_type *rsp;
13801 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13802 then convert it to the desired mode. If this is a paradoxical SUBREG,
13803 we cannot predict what values the "extra" bits might have. */
13804 if (GET_CODE (x) == SUBREG
13805 && subreg_lowpart_p (x)
13806 && !paradoxical_subreg_p (x)
13807 && (value = get_last_value (SUBREG_REG (x))) != 0)
13808 return gen_lowpart (GET_MODE (x), value);
13810 if (!REG_P (x))
13811 return 0;
13813 regno = REGNO (x);
13814 rsp = &reg_stat[regno];
13815 value = rsp->last_set_value;
13817 /* If we don't have a value, or if it isn't for this basic block and
13818 it's either a hard register, set more than once, or it's a live
13819 at the beginning of the function, return 0.
13821 Because if it's not live at the beginning of the function then the reg
13822 is always set before being used (is never used without being set).
13823 And, if it's set only once, and it's always set before use, then all
13824 uses must have the same last value, even if it's not from this basic
13825 block. */
13827 if (value == 0
13828 || (rsp->last_set_label < label_tick_ebb_start
13829 && (regno < FIRST_PSEUDO_REGISTER
13830 || regno >= reg_n_sets_max
13831 || REG_N_SETS (regno) != 1
13832 || REGNO_REG_SET_P
13833 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13834 return 0;
13836 /* If the value was set in a later insn than the ones we are processing,
13837 we can't use it even if the register was only set once. */
13838 if (rsp->last_set_label == label_tick
13839 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13840 return 0;
13842 /* If fewer bits were set than what we are asked for now, we cannot use
13843 the value. */
13844 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13845 GET_MODE_PRECISION (GET_MODE (x))))
13846 return 0;
13848 /* If the value has all its registers valid, return it. */
13849 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13850 return value;
13852 /* Otherwise, make a copy and replace any invalid register with
13853 (clobber (const_int 0)). If that fails for some reason, return 0. */
13855 value = copy_rtx (value);
13856 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13857 return value;
13859 return 0;
13862 /* Define three variables used for communication between the following
13863 routines. */
13865 static unsigned int reg_dead_regno, reg_dead_endregno;
13866 static int reg_dead_flag;
13867 rtx reg_dead_reg;
13869 /* Function called via note_stores from reg_dead_at_p.
13871 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13872 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13874 static void
13875 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13877 unsigned int regno, endregno;
13879 if (!REG_P (dest))
13880 return;
13882 regno = REGNO (dest);
13883 endregno = END_REGNO (dest);
13884 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13885 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13888 /* Return nonzero if REG is known to be dead at INSN.
13890 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13891 referencing REG, it is dead. If we hit a SET referencing REG, it is
13892 live. Otherwise, see if it is live or dead at the start of the basic
13893 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13894 must be assumed to be always live. */
13896 static int
13897 reg_dead_at_p (rtx reg, rtx_insn *insn)
13899 basic_block block;
13900 unsigned int i;
13902 /* Set variables for reg_dead_at_p_1. */
13903 reg_dead_regno = REGNO (reg);
13904 reg_dead_endregno = END_REGNO (reg);
13905 reg_dead_reg = reg;
13907 reg_dead_flag = 0;
13909 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13910 we allow the machine description to decide whether use-and-clobber
13911 patterns are OK. */
13912 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13914 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13915 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13916 return 0;
13919 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13920 beginning of basic block. */
13921 block = BLOCK_FOR_INSN (insn);
13922 for (;;)
13924 if (INSN_P (insn))
13926 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13927 return 1;
13929 note_stores (insn, reg_dead_at_p_1, NULL);
13930 if (reg_dead_flag)
13931 return reg_dead_flag == 1 ? 1 : 0;
13933 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13934 return 1;
13937 if (insn == BB_HEAD (block))
13938 break;
13940 insn = PREV_INSN (insn);
13943 /* Look at live-in sets for the basic block that we were in. */
13944 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13945 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13946 return 0;
13948 return 1;
13951 /* Note hard registers in X that are used. */
13953 static void
13954 mark_used_regs_combine (rtx x)
13956 RTX_CODE code = GET_CODE (x);
13957 unsigned int regno;
13958 int i;
13960 switch (code)
13962 case LABEL_REF:
13963 case SYMBOL_REF:
13964 case CONST:
13965 CASE_CONST_ANY:
13966 case PC:
13967 case ADDR_VEC:
13968 case ADDR_DIFF_VEC:
13969 case ASM_INPUT:
13970 /* CC0 must die in the insn after it is set, so we don't need to take
13971 special note of it here. */
13972 case CC0:
13973 return;
13975 case CLOBBER:
13976 /* If we are clobbering a MEM, mark any hard registers inside the
13977 address as used. */
13978 if (MEM_P (XEXP (x, 0)))
13979 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13980 return;
13982 case REG:
13983 regno = REGNO (x);
13984 /* A hard reg in a wide mode may really be multiple registers.
13985 If so, mark all of them just like the first. */
13986 if (regno < FIRST_PSEUDO_REGISTER)
13988 /* None of this applies to the stack, frame or arg pointers. */
13989 if (regno == STACK_POINTER_REGNUM
13990 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13991 && regno == HARD_FRAME_POINTER_REGNUM)
13992 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13993 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13994 || regno == FRAME_POINTER_REGNUM)
13995 return;
13997 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13999 return;
14001 case SET:
14003 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
14004 the address. */
14005 rtx testreg = SET_DEST (x);
14007 while (GET_CODE (testreg) == SUBREG
14008 || GET_CODE (testreg) == ZERO_EXTRACT
14009 || GET_CODE (testreg) == STRICT_LOW_PART)
14010 testreg = XEXP (testreg, 0);
14012 if (MEM_P (testreg))
14013 mark_used_regs_combine (XEXP (testreg, 0));
14015 mark_used_regs_combine (SET_SRC (x));
14017 return;
14019 default:
14020 break;
14023 /* Recursively scan the operands of this expression. */
14026 const char *fmt = GET_RTX_FORMAT (code);
14028 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14030 if (fmt[i] == 'e')
14031 mark_used_regs_combine (XEXP (x, i));
14032 else if (fmt[i] == 'E')
14034 int j;
14036 for (j = 0; j < XVECLEN (x, i); j++)
14037 mark_used_regs_combine (XVECEXP (x, i, j));
14043 /* Remove register number REGNO from the dead registers list of INSN.
14045 Return the note used to record the death, if there was one. */
14048 remove_death (unsigned int regno, rtx_insn *insn)
14050 rtx note = find_regno_note (insn, REG_DEAD, regno);
14052 if (note)
14053 remove_note (insn, note);
14055 return note;
14058 /* For each register (hardware or pseudo) used within expression X, if its
14059 death is in an instruction with luid between FROM_LUID (inclusive) and
14060 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14061 list headed by PNOTES.
14063 That said, don't move registers killed by maybe_kill_insn.
14065 This is done when X is being merged by combination into TO_INSN. These
14066 notes will then be distributed as needed. */
14068 static void
14069 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14070 rtx *pnotes)
14072 const char *fmt;
14073 int len, i;
14074 enum rtx_code code = GET_CODE (x);
14076 if (code == REG)
14078 unsigned int regno = REGNO (x);
14079 rtx_insn *where_dead = reg_stat[regno].last_death;
14081 /* If we do not know where the register died, it may still die between
14082 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14083 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14085 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14086 while (insn
14087 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14088 && DF_INSN_LUID (insn) >= from_luid)
14090 if (dead_or_set_regno_p (insn, regno))
14092 if (find_regno_note (insn, REG_DEAD, regno))
14093 where_dead = insn;
14094 break;
14097 insn = prev_real_nondebug_insn (insn);
14101 /* Don't move the register if it gets killed in between from and to. */
14102 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14103 && ! reg_referenced_p (x, maybe_kill_insn))
14104 return;
14106 if (where_dead
14107 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14108 && DF_INSN_LUID (where_dead) >= from_luid
14109 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14111 rtx note = remove_death (regno, where_dead);
14113 /* It is possible for the call above to return 0. This can occur
14114 when last_death points to I2 or I1 that we combined with.
14115 In that case make a new note.
14117 We must also check for the case where X is a hard register
14118 and NOTE is a death note for a range of hard registers
14119 including X. In that case, we must put REG_DEAD notes for
14120 the remaining registers in place of NOTE. */
14122 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14123 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14125 unsigned int deadregno = REGNO (XEXP (note, 0));
14126 unsigned int deadend = END_REGNO (XEXP (note, 0));
14127 unsigned int ourend = END_REGNO (x);
14128 unsigned int i;
14130 for (i = deadregno; i < deadend; i++)
14131 if (i < regno || i >= ourend)
14132 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14135 /* If we didn't find any note, or if we found a REG_DEAD note that
14136 covers only part of the given reg, and we have a multi-reg hard
14137 register, then to be safe we must check for REG_DEAD notes
14138 for each register other than the first. They could have
14139 their own REG_DEAD notes lying around. */
14140 else if ((note == 0
14141 || (note != 0
14142 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14143 GET_MODE (x))))
14144 && regno < FIRST_PSEUDO_REGISTER
14145 && REG_NREGS (x) > 1)
14147 unsigned int ourend = END_REGNO (x);
14148 unsigned int i, offset;
14149 rtx oldnotes = 0;
14151 if (note)
14152 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14153 else
14154 offset = 1;
14156 for (i = regno + offset; i < ourend; i++)
14157 move_deaths (regno_reg_rtx[i],
14158 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14161 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14163 XEXP (note, 1) = *pnotes;
14164 *pnotes = note;
14166 else
14167 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14170 return;
14173 else if (GET_CODE (x) == SET)
14175 rtx dest = SET_DEST (x);
14177 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14179 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14180 that accesses one word of a multi-word item, some
14181 piece of everything register in the expression is used by
14182 this insn, so remove any old death. */
14183 /* ??? So why do we test for equality of the sizes? */
14185 if (GET_CODE (dest) == ZERO_EXTRACT
14186 || GET_CODE (dest) == STRICT_LOW_PART
14187 || (GET_CODE (dest) == SUBREG
14188 && !read_modify_subreg_p (dest)))
14190 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14191 return;
14194 /* If this is some other SUBREG, we know it replaces the entire
14195 value, so use that as the destination. */
14196 if (GET_CODE (dest) == SUBREG)
14197 dest = SUBREG_REG (dest);
14199 /* If this is a MEM, adjust deaths of anything used in the address.
14200 For a REG (the only other possibility), the entire value is
14201 being replaced so the old value is not used in this insn. */
14203 if (MEM_P (dest))
14204 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14205 to_insn, pnotes);
14206 return;
14209 else if (GET_CODE (x) == CLOBBER)
14210 return;
14212 len = GET_RTX_LENGTH (code);
14213 fmt = GET_RTX_FORMAT (code);
14215 for (i = 0; i < len; i++)
14217 if (fmt[i] == 'E')
14219 int j;
14220 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14221 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14222 to_insn, pnotes);
14224 else if (fmt[i] == 'e')
14225 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14229 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14230 pattern of an insn. X must be a REG. */
14232 static int
14233 reg_bitfield_target_p (rtx x, rtx body)
14235 int i;
14237 if (GET_CODE (body) == SET)
14239 rtx dest = SET_DEST (body);
14240 rtx target;
14241 unsigned int regno, tregno, endregno, endtregno;
14243 if (GET_CODE (dest) == ZERO_EXTRACT)
14244 target = XEXP (dest, 0);
14245 else if (GET_CODE (dest) == STRICT_LOW_PART)
14246 target = SUBREG_REG (XEXP (dest, 0));
14247 else
14248 return 0;
14250 if (GET_CODE (target) == SUBREG)
14251 target = SUBREG_REG (target);
14253 if (!REG_P (target))
14254 return 0;
14256 tregno = REGNO (target), regno = REGNO (x);
14257 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14258 return target == x;
14260 endtregno = end_hard_regno (GET_MODE (target), tregno);
14261 endregno = end_hard_regno (GET_MODE (x), regno);
14263 return endregno > tregno && regno < endtregno;
14266 else if (GET_CODE (body) == PARALLEL)
14267 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14268 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14269 return 1;
14271 return 0;
14274 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14275 as appropriate. I3 and I2 are the insns resulting from the combination
14276 insns including FROM (I2 may be zero).
14278 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14279 not need REG_DEAD notes because they are being substituted for. This
14280 saves searching in the most common cases.
14282 Each note in the list is either ignored or placed on some insns, depending
14283 on the type of note. */
14285 static void
14286 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14287 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14289 rtx note, next_note;
14290 rtx tem_note;
14291 rtx_insn *tem_insn;
14293 for (note = notes; note; note = next_note)
14295 rtx_insn *place = 0, *place2 = 0;
14297 next_note = XEXP (note, 1);
14298 switch (REG_NOTE_KIND (note))
14300 case REG_BR_PROB:
14301 case REG_BR_PRED:
14302 /* Doesn't matter much where we put this, as long as it's somewhere.
14303 It is preferable to keep these notes on branches, which is most
14304 likely to be i3. */
14305 place = i3;
14306 break;
14308 case REG_NON_LOCAL_GOTO:
14309 if (JUMP_P (i3))
14310 place = i3;
14311 else
14313 gcc_assert (i2 && JUMP_P (i2));
14314 place = i2;
14316 break;
14318 case REG_EH_REGION:
14319 /* These notes must remain with the call or trapping instruction. */
14320 if (CALL_P (i3))
14321 place = i3;
14322 else if (i2 && CALL_P (i2))
14323 place = i2;
14324 else
14326 gcc_assert (cfun->can_throw_non_call_exceptions);
14327 if (may_trap_p (i3))
14328 place = i3;
14329 else if (i2 && may_trap_p (i2))
14330 place = i2;
14331 /* ??? Otherwise assume we've combined things such that we
14332 can now prove that the instructions can't trap. Drop the
14333 note in this case. */
14335 break;
14337 case REG_ARGS_SIZE:
14338 /* ??? How to distribute between i3-i1. Assume i3 contains the
14339 entire adjustment. Assert i3 contains at least some adjust. */
14340 if (!noop_move_p (i3))
14342 poly_int64 old_size, args_size = get_args_size (note);
14343 /* fixup_args_size_notes looks at REG_NORETURN note,
14344 so ensure the note is placed there first. */
14345 if (CALL_P (i3))
14347 rtx *np;
14348 for (np = &next_note; *np; np = &XEXP (*np, 1))
14349 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14351 rtx n = *np;
14352 *np = XEXP (n, 1);
14353 XEXP (n, 1) = REG_NOTES (i3);
14354 REG_NOTES (i3) = n;
14355 break;
14358 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14359 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14360 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14361 gcc_assert (maybe_ne (old_size, args_size)
14362 || (CALL_P (i3)
14363 && !ACCUMULATE_OUTGOING_ARGS
14364 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14366 break;
14368 case REG_NORETURN:
14369 case REG_SETJMP:
14370 case REG_TM:
14371 case REG_CALL_DECL:
14372 case REG_CALL_NOCF_CHECK:
14373 /* These notes must remain with the call. It should not be
14374 possible for both I2 and I3 to be a call. */
14375 if (CALL_P (i3))
14376 place = i3;
14377 else
14379 gcc_assert (i2 && CALL_P (i2));
14380 place = i2;
14382 break;
14384 case REG_UNUSED:
14385 /* Any clobbers for i3 may still exist, and so we must process
14386 REG_UNUSED notes from that insn.
14388 Any clobbers from i2 or i1 can only exist if they were added by
14389 recog_for_combine. In that case, recog_for_combine created the
14390 necessary REG_UNUSED notes. Trying to keep any original
14391 REG_UNUSED notes from these insns can cause incorrect output
14392 if it is for the same register as the original i3 dest.
14393 In that case, we will notice that the register is set in i3,
14394 and then add a REG_UNUSED note for the destination of i3, which
14395 is wrong. However, it is possible to have REG_UNUSED notes from
14396 i2 or i1 for register which were both used and clobbered, so
14397 we keep notes from i2 or i1 if they will turn into REG_DEAD
14398 notes. */
14400 /* If this register is set or clobbered in I3, put the note there
14401 unless there is one already. */
14402 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14404 if (from_insn != i3)
14405 break;
14407 if (! (REG_P (XEXP (note, 0))
14408 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14409 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14410 place = i3;
14412 /* Otherwise, if this register is used by I3, then this register
14413 now dies here, so we must put a REG_DEAD note here unless there
14414 is one already. */
14415 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14416 && ! (REG_P (XEXP (note, 0))
14417 ? find_regno_note (i3, REG_DEAD,
14418 REGNO (XEXP (note, 0)))
14419 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14421 PUT_REG_NOTE_KIND (note, REG_DEAD);
14422 place = i3;
14425 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14426 but we can't tell which at this point. We must reset any
14427 expectations we had about the value that was previously
14428 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14429 and, if appropriate, restore its previous value, but we
14430 don't have enough information for that at this point. */
14431 else
14433 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14435 /* Otherwise, if this register is now referenced in i2
14436 then the register used to be modified in one of the
14437 original insns. If it was i3 (say, in an unused
14438 parallel), it's now completely gone, so the note can
14439 be discarded. But if it was modified in i2, i1 or i0
14440 and we still reference it in i2, then we're
14441 referencing the previous value, and since the
14442 register was modified and REG_UNUSED, we know that
14443 the previous value is now dead. So, if we only
14444 reference the register in i2, we change the note to
14445 REG_DEAD, to reflect the previous value. However, if
14446 we're also setting or clobbering the register as
14447 scratch, we know (because the register was not
14448 referenced in i3) that it's unused, just as it was
14449 unused before, and we place the note in i2. */
14450 if (from_insn != i3 && i2 && INSN_P (i2)
14451 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14453 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14454 PUT_REG_NOTE_KIND (note, REG_DEAD);
14455 if (! (REG_P (XEXP (note, 0))
14456 ? find_regno_note (i2, REG_NOTE_KIND (note),
14457 REGNO (XEXP (note, 0)))
14458 : find_reg_note (i2, REG_NOTE_KIND (note),
14459 XEXP (note, 0))))
14460 place = i2;
14464 break;
14466 case REG_EQUAL:
14467 case REG_EQUIV:
14468 case REG_NOALIAS:
14469 /* These notes say something about results of an insn. We can
14470 only support them if they used to be on I3 in which case they
14471 remain on I3. Otherwise they are ignored.
14473 If the note refers to an expression that is not a constant, we
14474 must also ignore the note since we cannot tell whether the
14475 equivalence is still true. It might be possible to do
14476 slightly better than this (we only have a problem if I2DEST
14477 or I1DEST is present in the expression), but it doesn't
14478 seem worth the trouble. */
14480 if (from_insn == i3
14481 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14482 place = i3;
14483 break;
14485 case REG_INC:
14486 /* These notes say something about how a register is used. They must
14487 be present on any use of the register in I2 or I3. */
14488 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14489 place = i3;
14491 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14493 if (place)
14494 place2 = i2;
14495 else
14496 place = i2;
14498 break;
14500 case REG_LABEL_TARGET:
14501 case REG_LABEL_OPERAND:
14502 /* This can show up in several ways -- either directly in the
14503 pattern, or hidden off in the constant pool with (or without?)
14504 a REG_EQUAL note. */
14505 /* ??? Ignore the without-reg_equal-note problem for now. */
14506 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14507 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14508 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14509 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14510 place = i3;
14512 if (i2
14513 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14514 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14515 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14516 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14518 if (place)
14519 place2 = i2;
14520 else
14521 place = i2;
14524 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14525 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14526 there. */
14527 if (place && JUMP_P (place)
14528 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14529 && (JUMP_LABEL (place) == NULL
14530 || JUMP_LABEL (place) == XEXP (note, 0)))
14532 rtx label = JUMP_LABEL (place);
14534 if (!label)
14535 JUMP_LABEL (place) = XEXP (note, 0);
14536 else if (LABEL_P (label))
14537 LABEL_NUSES (label)--;
14540 if (place2 && JUMP_P (place2)
14541 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14542 && (JUMP_LABEL (place2) == NULL
14543 || JUMP_LABEL (place2) == XEXP (note, 0)))
14545 rtx label = JUMP_LABEL (place2);
14547 if (!label)
14548 JUMP_LABEL (place2) = XEXP (note, 0);
14549 else if (LABEL_P (label))
14550 LABEL_NUSES (label)--;
14551 place2 = 0;
14553 break;
14555 case REG_NONNEG:
14556 /* This note says something about the value of a register prior
14557 to the execution of an insn. It is too much trouble to see
14558 if the note is still correct in all situations. It is better
14559 to simply delete it. */
14560 break;
14562 case REG_DEAD:
14563 /* If we replaced the right hand side of FROM_INSN with a
14564 REG_EQUAL note, the original use of the dying register
14565 will not have been combined into I3 and I2. In such cases,
14566 FROM_INSN is guaranteed to be the first of the combined
14567 instructions, so we simply need to search back before
14568 FROM_INSN for the previous use or set of this register,
14569 then alter the notes there appropriately.
14571 If the register is used as an input in I3, it dies there.
14572 Similarly for I2, if it is nonzero and adjacent to I3.
14574 If the register is not used as an input in either I3 or I2
14575 and it is not one of the registers we were supposed to eliminate,
14576 there are two possibilities. We might have a non-adjacent I2
14577 or we might have somehow eliminated an additional register
14578 from a computation. For example, we might have had A & B where
14579 we discover that B will always be zero. In this case we will
14580 eliminate the reference to A.
14582 In both cases, we must search to see if we can find a previous
14583 use of A and put the death note there. */
14585 if (from_insn
14586 && from_insn == i2mod
14587 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14588 tem_insn = from_insn;
14589 else
14591 if (from_insn
14592 && CALL_P (from_insn)
14593 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14594 place = from_insn;
14595 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14597 /* If the new I2 sets the same register that is marked
14598 dead in the note, we do not in general know where to
14599 put the note. One important case we _can_ handle is
14600 when the note comes from I3. */
14601 if (from_insn == i3)
14602 place = i3;
14603 else
14604 break;
14606 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14607 place = i3;
14608 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14609 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14610 place = i2;
14611 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14612 && !(i2mod
14613 && reg_overlap_mentioned_p (XEXP (note, 0),
14614 i2mod_old_rhs)))
14615 || rtx_equal_p (XEXP (note, 0), elim_i1)
14616 || rtx_equal_p (XEXP (note, 0), elim_i0))
14617 break;
14618 tem_insn = i3;
14621 if (place == 0)
14623 basic_block bb = this_basic_block;
14625 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14627 if (!NONDEBUG_INSN_P (tem_insn))
14629 if (tem_insn == BB_HEAD (bb))
14630 break;
14631 continue;
14634 /* If the register is being set at TEM_INSN, see if that is all
14635 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14636 into a REG_UNUSED note instead. Don't delete sets to
14637 global register vars. */
14638 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14639 || !global_regs[REGNO (XEXP (note, 0))])
14640 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14642 rtx set = single_set (tem_insn);
14643 rtx inner_dest = 0;
14644 rtx_insn *cc0_setter = NULL;
14646 if (set != 0)
14647 for (inner_dest = SET_DEST (set);
14648 (GET_CODE (inner_dest) == STRICT_LOW_PART
14649 || GET_CODE (inner_dest) == SUBREG
14650 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14651 inner_dest = XEXP (inner_dest, 0))
14654 /* Verify that it was the set, and not a clobber that
14655 modified the register.
14657 CC0 targets must be careful to maintain setter/user
14658 pairs. If we cannot delete the setter due to side
14659 effects, mark the user with an UNUSED note instead
14660 of deleting it. */
14662 if (set != 0 && ! side_effects_p (SET_SRC (set))
14663 && rtx_equal_p (XEXP (note, 0), inner_dest)
14664 && (!HAVE_cc0
14665 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14666 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14667 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14669 /* Move the notes and links of TEM_INSN elsewhere.
14670 This might delete other dead insns recursively.
14671 First set the pattern to something that won't use
14672 any register. */
14673 rtx old_notes = REG_NOTES (tem_insn);
14675 PATTERN (tem_insn) = pc_rtx;
14676 REG_NOTES (tem_insn) = NULL;
14678 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14679 NULL_RTX, NULL_RTX, NULL_RTX);
14680 distribute_links (LOG_LINKS (tem_insn));
14682 unsigned int regno = REGNO (XEXP (note, 0));
14683 reg_stat_type *rsp = &reg_stat[regno];
14684 if (rsp->last_set == tem_insn)
14685 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14687 SET_INSN_DELETED (tem_insn);
14688 if (tem_insn == i2)
14689 i2 = NULL;
14691 /* Delete the setter too. */
14692 if (cc0_setter)
14694 PATTERN (cc0_setter) = pc_rtx;
14695 old_notes = REG_NOTES (cc0_setter);
14696 REG_NOTES (cc0_setter) = NULL;
14698 distribute_notes (old_notes, cc0_setter,
14699 cc0_setter, NULL,
14700 NULL_RTX, NULL_RTX, NULL_RTX);
14701 distribute_links (LOG_LINKS (cc0_setter));
14703 SET_INSN_DELETED (cc0_setter);
14704 if (cc0_setter == i2)
14705 i2 = NULL;
14708 else
14710 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14712 /* If there isn't already a REG_UNUSED note, put one
14713 here. Do not place a REG_DEAD note, even if
14714 the register is also used here; that would not
14715 match the algorithm used in lifetime analysis
14716 and can cause the consistency check in the
14717 scheduler to fail. */
14718 if (! find_regno_note (tem_insn, REG_UNUSED,
14719 REGNO (XEXP (note, 0))))
14720 place = tem_insn;
14721 break;
14724 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14725 || (CALL_P (tem_insn)
14726 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14728 place = tem_insn;
14730 /* If we are doing a 3->2 combination, and we have a
14731 register which formerly died in i3 and was not used
14732 by i2, which now no longer dies in i3 and is used in
14733 i2 but does not die in i2, and place is between i2
14734 and i3, then we may need to move a link from place to
14735 i2. */
14736 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14737 && from_insn
14738 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14739 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14741 struct insn_link *links = LOG_LINKS (place);
14742 LOG_LINKS (place) = NULL;
14743 distribute_links (links);
14745 break;
14748 if (tem_insn == BB_HEAD (bb))
14749 break;
14754 /* If the register is set or already dead at PLACE, we needn't do
14755 anything with this note if it is still a REG_DEAD note.
14756 We check here if it is set at all, not if is it totally replaced,
14757 which is what `dead_or_set_p' checks, so also check for it being
14758 set partially. */
14760 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14762 unsigned int regno = REGNO (XEXP (note, 0));
14763 reg_stat_type *rsp = &reg_stat[regno];
14765 if (dead_or_set_p (place, XEXP (note, 0))
14766 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14768 /* Unless the register previously died in PLACE, clear
14769 last_death. [I no longer understand why this is
14770 being done.] */
14771 if (rsp->last_death != place)
14772 rsp->last_death = 0;
14773 place = 0;
14775 else
14776 rsp->last_death = place;
14778 /* If this is a death note for a hard reg that is occupying
14779 multiple registers, ensure that we are still using all
14780 parts of the object. If we find a piece of the object
14781 that is unused, we must arrange for an appropriate REG_DEAD
14782 note to be added for it. However, we can't just emit a USE
14783 and tag the note to it, since the register might actually
14784 be dead; so we recourse, and the recursive call then finds
14785 the previous insn that used this register. */
14787 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14789 unsigned int endregno = END_REGNO (XEXP (note, 0));
14790 bool all_used = true;
14791 unsigned int i;
14793 for (i = regno; i < endregno; i++)
14794 if ((! refers_to_regno_p (i, PATTERN (place))
14795 && ! find_regno_fusage (place, USE, i))
14796 || dead_or_set_regno_p (place, i))
14798 all_used = false;
14799 break;
14802 if (! all_used)
14804 /* Put only REG_DEAD notes for pieces that are
14805 not already dead or set. */
14807 for (i = regno; i < endregno;
14808 i += hard_regno_nregs (i, reg_raw_mode[i]))
14810 rtx piece = regno_reg_rtx[i];
14811 basic_block bb = this_basic_block;
14813 if (! dead_or_set_p (place, piece)
14814 && ! reg_bitfield_target_p (piece,
14815 PATTERN (place)))
14817 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14818 NULL_RTX);
14820 distribute_notes (new_note, place, place,
14821 NULL, NULL_RTX, NULL_RTX,
14822 NULL_RTX);
14824 else if (! refers_to_regno_p (i, PATTERN (place))
14825 && ! find_regno_fusage (place, USE, i))
14826 for (tem_insn = PREV_INSN (place); ;
14827 tem_insn = PREV_INSN (tem_insn))
14829 if (!NONDEBUG_INSN_P (tem_insn))
14831 if (tem_insn == BB_HEAD (bb))
14832 break;
14833 continue;
14835 if (dead_or_set_p (tem_insn, piece)
14836 || reg_bitfield_target_p (piece,
14837 PATTERN (tem_insn)))
14839 add_reg_note (tem_insn, REG_UNUSED, piece);
14840 break;
14845 place = 0;
14849 break;
14851 default:
14852 /* Any other notes should not be present at this point in the
14853 compilation. */
14854 gcc_unreachable ();
14857 if (place)
14859 XEXP (note, 1) = REG_NOTES (place);
14860 REG_NOTES (place) = note;
14862 /* Set added_notes_insn to the earliest insn we added a note to. */
14863 if (added_notes_insn == 0
14864 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14865 added_notes_insn = place;
14868 if (place2)
14870 add_shallow_copy_of_reg_note (place2, note);
14872 /* Set added_notes_insn to the earliest insn we added a note to. */
14873 if (added_notes_insn == 0
14874 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14875 added_notes_insn = place2;
14880 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14881 I3, I2, and I1 to new locations. This is also called to add a link
14882 pointing at I3 when I3's destination is changed. */
14884 static void
14885 distribute_links (struct insn_link *links)
14887 struct insn_link *link, *next_link;
14889 for (link = links; link; link = next_link)
14891 rtx_insn *place = 0;
14892 rtx_insn *insn;
14893 rtx set, reg;
14895 next_link = link->next;
14897 /* If the insn that this link points to is a NOTE, ignore it. */
14898 if (NOTE_P (link->insn))
14899 continue;
14901 set = 0;
14902 rtx pat = PATTERN (link->insn);
14903 if (GET_CODE (pat) == SET)
14904 set = pat;
14905 else if (GET_CODE (pat) == PARALLEL)
14907 int i;
14908 for (i = 0; i < XVECLEN (pat, 0); i++)
14910 set = XVECEXP (pat, 0, i);
14911 if (GET_CODE (set) != SET)
14912 continue;
14914 reg = SET_DEST (set);
14915 while (GET_CODE (reg) == ZERO_EXTRACT
14916 || GET_CODE (reg) == STRICT_LOW_PART
14917 || GET_CODE (reg) == SUBREG)
14918 reg = XEXP (reg, 0);
14920 if (!REG_P (reg))
14921 continue;
14923 if (REGNO (reg) == link->regno)
14924 break;
14926 if (i == XVECLEN (pat, 0))
14927 continue;
14929 else
14930 continue;
14932 reg = SET_DEST (set);
14934 while (GET_CODE (reg) == ZERO_EXTRACT
14935 || GET_CODE (reg) == STRICT_LOW_PART
14936 || GET_CODE (reg) == SUBREG)
14937 reg = XEXP (reg, 0);
14939 if (reg == pc_rtx)
14940 continue;
14942 /* A LOG_LINK is defined as being placed on the first insn that uses
14943 a register and points to the insn that sets the register. Start
14944 searching at the next insn after the target of the link and stop
14945 when we reach a set of the register or the end of the basic block.
14947 Note that this correctly handles the link that used to point from
14948 I3 to I2. Also note that not much searching is typically done here
14949 since most links don't point very far away. */
14951 for (insn = NEXT_INSN (link->insn);
14952 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14953 || BB_HEAD (this_basic_block->next_bb) != insn));
14954 insn = NEXT_INSN (insn))
14955 if (DEBUG_INSN_P (insn))
14956 continue;
14957 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14959 if (reg_referenced_p (reg, PATTERN (insn)))
14960 place = insn;
14961 break;
14963 else if (CALL_P (insn)
14964 && find_reg_fusage (insn, USE, reg))
14966 place = insn;
14967 break;
14969 else if (INSN_P (insn) && reg_set_p (reg, insn))
14970 break;
14972 /* If we found a place to put the link, place it there unless there
14973 is already a link to the same insn as LINK at that point. */
14975 if (place)
14977 struct insn_link *link2;
14979 FOR_EACH_LOG_LINK (link2, place)
14980 if (link2->insn == link->insn && link2->regno == link->regno)
14981 break;
14983 if (link2 == NULL)
14985 link->next = LOG_LINKS (place);
14986 LOG_LINKS (place) = link;
14988 /* Set added_links_insn to the earliest insn we added a
14989 link to. */
14990 if (added_links_insn == 0
14991 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14992 added_links_insn = place;
14998 /* Check for any register or memory mentioned in EQUIV that is not
14999 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
15000 of EXPR where some registers may have been replaced by constants. */
15002 static bool
15003 unmentioned_reg_p (rtx equiv, rtx expr)
15005 subrtx_iterator::array_type array;
15006 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
15008 const_rtx x = *iter;
15009 if ((REG_P (x) || MEM_P (x))
15010 && !reg_mentioned_p (x, expr))
15011 return true;
15013 return false;
15016 DEBUG_FUNCTION void
15017 dump_combine_stats (FILE *file)
15019 fprintf
15020 (file,
15021 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
15022 combine_attempts, combine_merges, combine_extras, combine_successes);
15025 void
15026 dump_combine_total_stats (FILE *file)
15028 fprintf
15029 (file,
15030 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15031 total_attempts, total_merges, total_extras, total_successes);
15034 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15035 the reg-to-reg copy can usefully combine with later instructions, but we
15036 do not want to combine the hard reg into later instructions, for that
15037 restricts register allocation. */
15038 static void
15039 make_more_copies (void)
15041 basic_block bb;
15043 FOR_EACH_BB_FN (bb, cfun)
15045 rtx_insn *insn;
15047 FOR_BB_INSNS (bb, insn)
15049 if (!NONDEBUG_INSN_P (insn))
15050 continue;
15052 rtx set = single_set (insn);
15053 if (!set)
15054 continue;
15056 rtx dest = SET_DEST (set);
15057 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15058 continue;
15060 rtx src = SET_SRC (set);
15061 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15062 continue;
15063 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15064 continue;
15066 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15067 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15068 SET_SRC (set) = new_reg;
15069 emit_insn_before (new_insn, insn);
15070 df_insn_rescan (insn);
15075 /* Try combining insns through substitution. */
15076 static unsigned int
15077 rest_of_handle_combine (void)
15079 make_more_copies ();
15081 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15082 df_note_add_problem ();
15083 df_analyze ();
15085 regstat_init_n_sets_and_refs ();
15086 reg_n_sets_max = max_reg_num ();
15088 int rebuild_jump_labels_after_combine
15089 = combine_instructions (get_insns (), max_reg_num ());
15091 /* Combining insns may have turned an indirect jump into a
15092 direct jump. Rebuild the JUMP_LABEL fields of jumping
15093 instructions. */
15094 if (rebuild_jump_labels_after_combine)
15096 if (dom_info_available_p (CDI_DOMINATORS))
15097 free_dominance_info (CDI_DOMINATORS);
15098 timevar_push (TV_JUMP);
15099 rebuild_jump_labels (get_insns ());
15100 cleanup_cfg (0);
15101 timevar_pop (TV_JUMP);
15104 regstat_free_n_sets_and_refs ();
15105 return 0;
15108 namespace {
15110 const pass_data pass_data_combine =
15112 RTL_PASS, /* type */
15113 "combine", /* name */
15114 OPTGROUP_NONE, /* optinfo_flags */
15115 TV_COMBINE, /* tv_id */
15116 PROP_cfglayout, /* properties_required */
15117 0, /* properties_provided */
15118 0, /* properties_destroyed */
15119 0, /* todo_flags_start */
15120 TODO_df_finish, /* todo_flags_finish */
15123 class pass_combine : public rtl_opt_pass
15125 public:
15126 pass_combine (gcc::context *ctxt)
15127 : rtl_opt_pass (pass_data_combine, ctxt)
15130 /* opt_pass methods: */
15131 virtual bool gate (function *) { return (optimize > 0); }
15132 virtual unsigned int execute (function *)
15134 return rest_of_handle_combine ();
15137 }; // class pass_combine
15139 } // anon namespace
15141 rtl_opt_pass *
15142 make_pass_combine (gcc::context *ctxt)
15144 return new pass_combine (ctxt);