(CPP_SPEC): add %(subtarget_cpp_spec).
[official-gcc.git] / gcc / config / arm / arm.h
blob0cdd1e6d2b5fcb0722bc222f179e24d8030cfa5d
1 /* Definitions of target machine for GNU compiler, for Acorn RISC Machine.
2 Copyright (C) 1991, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rwe11@cl.cam.ac.uk)
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* Configuration triples for ARM ports work as follows:
25 (This is a bit of a mess and needs some thought)
26 arm-*-*: little endian
27 armel-*-*: little endian
28 armeb-*-*: big endian
29 If a non-embedded environment (ie: "real" OS) is specified, `arm'
30 should default to that used by the OS.
33 #define TARGET_CPU_arm2 0x0000
34 #define TARGET_CPU_arm250 0x0000
35 #define TARGET_CPU_arm3 0x0000
36 #define TARGET_CPU_arm6 0x0001
37 #define TARGET_CPU_arm600 0x0001
38 #define TARGET_CPU_arm610 0x0002
39 #define TARGET_CPU_arm7 0x0001
40 #define TARGET_CPU_arm7m 0x0004
41 #define TARGET_CPU_arm7dm 0x0004
42 #define TARGET_CPU_arm7dmi 0x0004
43 #define TARGET_CPU_arm700 0x0001
44 #define TARGET_CPU_arm710 0x0002
45 #define TARGET_CPU_arm7100 0x0002
46 #define TARGET_CPU_arm7500 0x0002
47 #define TARGET_CPU_arm7500fe 0x1001
48 #define TARGET_CPU_arm7tdmi 0x0008
49 #define TARGET_CPU_arm8 0x0010
50 #define TARGET_CPU_arm810 0x0020
51 #define TARGET_CPU_strongarm 0x0040
52 #define TARGET_CPU_strongarm110 0x0040
53 /* Configure didn't specify */
54 #define TARGET_CPU_generic 0x8000
56 enum arm_cond_code
58 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
59 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
61 extern enum arm_cond_code arm_current_cc;
62 extern char *arm_condition_codes[];
64 #define ARM_INVERSE_CONDITION_CODE(X) ((enum arm_cond_code) (((int)X) ^ 1))
66 /* This is needed by the tail-calling peepholes */
67 extern int frame_pointer_needed;
70 /* Just in case configure has failed to define anything. */
71 #ifndef TARGET_CPU_DEFAULT
72 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
73 #endif
75 /* If the configuration file doesn't specify the cpu, the subtarget may
76 override it. If it doesn't, then default to an ARM6. */
77 #if TARGET_CPU_DEFAULT == TARGET_CPU_generic
78 #undef TARGET_CPU_DEFAULT
79 #ifdef SUBTARGET_CPU_DEFAULT
80 #define TARGET_CPU_DEFAULT SUBTARGET_CPU_DEFAULT
81 #else
82 #define TARGET_CPU_DEFAULT TARGET_CPU_arm6
83 #endif
84 #endif
86 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm2
87 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_2__"
88 #else
89 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm6 || TARGET_CPU_DEFUALT == TARGET_CPU_arm610 || TARGET_CPU_DEFAULT == TARGET_CPU_arm7500fe
90 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3__"
91 #else
92 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm7m
93 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3M__"
94 #else
95 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm7tdmi
96 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4T__"
97 #else
98 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm8 || TARGET_CPU_DEFAULT == TARGET_CPU_arm810 || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm
99 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4__"
100 #else
101 Unrecognized value in TARGET_CPU_DEFAULT.
102 #endif
103 #endif
104 #endif
105 #endif
106 #endif
108 #ifndef CPP_PREDEFINES
109 #define CPP_PREDEFINES "-Darm -Acpu(arm) -Amachine(arm)"
110 #endif
112 #define CPP_SPEC "\
113 %(cpp_cpu_arch) %(cpp_apcs_pc) %(cpp_float) \
114 %(cpp_endian) %(subtarget_cpp_spec)"
116 /* Set the architecture define -- if -march= is set, then it overrides
117 the -mcpu= setting. */
118 #define CPP_CPU_ARCH_SPEC "\
119 %{m2:-D__arm2__ -D__ARM_ARCH_2__} \
120 %{m3:-D__arm2__ -D__ARM_ARCH_2__} \
121 %{m6:-D__arm6__ -D__ARM_ARCH_3__} \
122 %{march=arm2:-D__ARM_ARCH_2__} \
123 %{march=arm250:-D__ARM_ARCH_2__} \
124 %{march=arm3:-D__ARM_ARCH_2__} \
125 %{march=arm6:-D__ARM_ARCH_3__} \
126 %{march=arm600:-D__ARM_ARCH_3__} \
127 %{march=arm610:-D__ARM_ARCH_3__} \
128 %{march=arm7:-D__ARM_ARCH_3__} \
129 %{march=arm700:-D__ARM_ARCH_3__} \
130 %{march=arm710:-D__ARM_ARCH_3__} \
131 %{march=arm7100:-D__ARM_ARCH_3__} \
132 %{march=arm7500:-D__ARM_ARCH_3__} \
133 %{march=arm7500fe:-D__ARM_ARCH_3__} \
134 %{march=arm7m:-D__ARM_ARCH_3M__} \
135 %{march=arm7dm:-D__ARM_ARCH_3M__} \
136 %{march=arm7dmi:-D__ARM_ARCH_3M__} \
137 %{march=arm7tdmi:-D__ARM_ARCH_4T__} \
138 %{march=arm8:-D__ARM_ARCH_4__} \
139 %{march=arm810:-D__ARM_ARCH_4__} \
140 %{march=strongarm:-D__ARM_ARCH_4__} \
141 %{march=strongarm110:-D__ARM_ARCH_4__} \
142 %{march=armv2:-D__ARM_ARCH_2__} \
143 %{march=armv2a:-D__ARM_ARCH_2__} \
144 %{march=armv3:-D__ARM_ARCH_3__} \
145 %{march=armv3m:-D__ARM_ARCH_3M__} \
146 %{march=armv4:-D__ARM_ARCH_4__} \
147 %{march=armv4t:-D__ARM_ARCH_4T__} \
148 %{!march=*: \
149 %{mcpu=arm2:-D__ARM_ARCH_2__} \
150 %{mcpu=arm250:-D__ARM_ARCH_2__} \
151 %{mcpu=arm3:-D__ARM_ARCH_2__} \
152 %{mcpu=arm6:-D__ARM_ARCH_3__} \
153 %{mcpu=arm600:-D__ARM_ARCH_3__} \
154 %{mcpu=arm610:-D__ARM_ARCH_3__} \
155 %{mcpu=arm7:-D__ARM_ARCH_3__} \
156 %{mcpu=arm700:-D__ARM_ARCH_3__} \
157 %{mcpu=arm710:-D__ARM_ARCH_3__} \
158 %{mcpu=arm7100:-D__ARM_ARCH_3__} \
159 %{mcpu=arm7500:-D__ARM_ARCH_3__} \
160 %{mcpu=arm7500fe:-D__ARM_ARCH_3__} \
161 %{mcpu=arm7m:-D__ARM_ARCH_3M__} \
162 %{mcpu=arm7dm:-D__ARM_ARCH_3M__} \
163 %{mcpu=arm7dmi:-D__ARM_ARCH_3M__} \
164 %{mcpu=arm7tdmi:-D__ARM_ARCH_4T__} \
165 %{mcpu=arm8:-D__ARM_ARCH_4__} \
166 %{mcpu=arm810:-D__ARM_ARCH_4__} \
167 %{mcpu=strongarm:-D__ARM_ARCH_4__} \
168 %{mcpu=strongarm110:-D__ARM_ARCH_4__} \
169 %{!mcpu*:%{!m6:%{!m2:%{!m3:%(cpp_cpu_arch_default)}}}}} \
172 /* Define __APCS_26__ if the PC also contains the PSR */
173 /* This also examines deprecated -m[236] if neither of -mapcs-{26,32} is set,
174 ??? Delete this for 2.9. */
175 #define CPP_APCS_PC_SPEC "\
176 %{mapcs-32:%{mapcs-26:%e-mapcs-26 and -mapcs-32 may not be used together} \
177 -D__APCS_32__} \
178 %{mapcs-26:-D__APCS_26__} \
179 %{!mapcs-32: %{!mapcs-26:%{m6:-D__APCS_32__} %{m2:-D__APCS_26__} \
180 %{m3:-D__APCS_26__} %{!m6:%{!m3:%{!m2:%(cpp_apcs_pc_default)}}}}} \
183 #define CPP_APCS_PC_DEFAULT_SPEC "-D__APCS_26__"
185 #define CPP_FLOAT_SPEC "\
186 %{msoft-float:\
187 %{mhard-float:%e-msoft-float and -mhard_float may not be used together} \
188 -D__SOFTFP__} \
189 %{!mhard-float:%{!msoft-float:%(cpp_float_default)}} \
192 /* Default is hard float, which doesn't define anything */
193 #define CPP_FLOAT_DEFAULT_SPEC ""
195 #define CPP_ENDIAN_SPEC "\
196 %{mbig-endian: \
197 %{mlittle-endian: \
198 %e-mbig-endian and -mlittle-endian may not be used together} \
199 -D__ARMEB__ %{mwords-little-endian:-D__ARMWEL__}} \
200 %{!mlittle-endian:%{!mbig-endian:%(cpp_endian_default)}} \
203 /* Default is little endian, which doesn't define anything. */
204 #define CPP_ENDIAN_DEFAULT_SPEC ""
206 /* Translate (for now) the old -m[236] option into the appropriate -mcpu=...
207 and -mapcs-xx equivalents.
208 ??? Remove support for this style in 2.9.*/
209 #define CC1_SPEC "\
210 %{m2:-mcpu=arm2 -mapcs-26} \
211 %{m3:-mcpu=arm3 -mapcs-26} \
212 %{m6:-mcpu=arm6 -mapcs-32} \
215 /* This macro defines names of additional specifications to put in the specs
216 that can be used in various specifications like CC1_SPEC. Its definition
217 is an initializer with a subgrouping for each command option.
219 Each subgrouping contains a string constant, that defines the
220 specification name, and a string constant that used by the GNU CC driver
221 program.
223 Do not define this macro if it does not need to do anything. */
224 #define EXTRA_SPECS \
225 { "cpp_cpu_arch", CPP_CPU_ARCH_SPEC }, \
226 { "cpp_cpu_arch_default", CPP_ARCH_DEFAULT_SPEC }, \
227 { "cpp_apcs_pc", CPP_APCS_PC_SPEC }, \
228 { "cpp_apcs_pc_default", CPP_APCS_PC_DEFAULT_SPEC }, \
229 { "cpp_float", CPP_FLOAT_SPEC }, \
230 { "cpp_float_default", CPP_FLOAT_DEFAULT_SPEC }, \
231 { "cpp_endian", CPP_ENDIAN_SPEC }, \
232 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
233 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
234 SUBTARGET_EXTRA_SPECS
236 #define SUBTARGET_EXTRA_SPECS
237 #define SUBTARGET_CPP_SPEC ""
240 /* Run-time Target Specification. */
241 #ifndef TARGET_VERSION
242 #define TARGET_VERSION \
243 fputs (" (ARM/generic)", stderr);
244 #endif
246 /* Run-time compilation parameters selecting different hardware subsets. */
247 extern int target_flags;
249 /* The floating point instruction architecture, can be 2 or 3 */
250 extern char *target_fp_name;
252 /* Nonzero if the function prologue (and epilogue) should obey
253 the ARM Procedure Call Standard. */
254 #define ARM_FLAG_APCS_FRAME (0x0001)
256 /* Nonzero if the function prologue should output the function name to enable
257 the post mortem debugger to print a backtrace (very useful on RISCOS,
258 unused on RISCiX). Specifying this flag also enables
259 -fno-omit-frame-pointer.
260 XXX Must still be implemented in the prologue. */
261 #define ARM_FLAG_POKE (0x0002)
263 /* Nonzero if floating point instructions are emulated by the FPE, in which
264 case instruction scheduling becomes very uninteresting. */
265 #define ARM_FLAG_FPE (0x0004)
267 /* Nonzero if destined for an ARM6xx. Takes out bits that assume restoration
268 of condition flags when returning from a branch & link (ie. a function) */
269 /* ********* DEPRECATED ******** */
270 #define ARM_FLAG_ARM6 (0x0008)
272 /* ********* DEPRECATED ******** */
273 #define ARM_FLAG_ARM3 (0x0010)
275 /* Nonzero if destined for a processor in 32-bit program mode. Takes out bit
276 that assume restoration of the condition flags when returning from a
277 branch and link (ie a function). */
278 #define ARM_FLAG_APCS_32 (0x0020)
280 /* Nonzero if stack checking should be performed on entry to each function
281 which allocates temporary variables on the stack. */
282 #define ARM_FLAG_APCS_STACK (0x0040)
284 /* Nonzero if floating point parameters should be passed to functions in
285 floating point registers. */
286 #define ARM_FLAG_APCS_FLOAT (0x0080)
288 /* Nonzero if re-entrant, position independent code should be generated.
289 This is equivalent to -fpic. */
290 #define ARM_FLAG_APCS_REENT (0x0100)
292 /* Nonzero if the MMU will trap unaligned word accesses, so shorts must be
293 loaded byte-at-a-time. */
294 #define ARM_FLAG_SHORT_BYTE (0x0200)
296 /* Nonzero if all floating point instructions are missing (and there is no
297 emulator either). Generate function calls for all ops in this case. */
298 #define ARM_FLAG_SOFT_FLOAT (0x0400)
300 /* Nonzero if we should compile with BYTES_BIG_ENDIAN set to 1. */
301 #define ARM_FLAG_BIG_END (0x0800)
303 /* Nonzero if we should compile for Thumb interworking. */
304 #define ARM_FLAG_THUMB (0x1000)
306 /* Nonzero if we should have little-endian words even when compiling for
307 big-endian (for backwards compatibility with older versions of GCC). */
308 #define ARM_FLAG_LITTLE_WORDS (0x2000)
310 #define TARGET_APCS (target_flags & ARM_FLAG_APCS_FRAME)
311 #define TARGET_POKE_FUNCTION_NAME (target_flags & ARM_FLAG_POKE)
312 #define TARGET_FPE (target_flags & ARM_FLAG_FPE)
313 #define TARGET_6 (target_flags & ARM_FLAG_ARM6)
314 #define TARGET_3 (target_flags & ARM_FLAG_ARM3)
315 #define TARGET_APCS_32 (target_flags & ARM_FLAG_APCS_32)
316 #define TARGET_APCS_STACK (target_flags & ARM_FLAG_APCS_STACK)
317 #define TARGET_APCS_FLOAT (target_flags & ARM_FLAG_APCS_FLOAT)
318 #define TARGET_APCS_REENT (target_flags & ARM_FLAG_APCS_REENT)
319 #define TARGET_SHORT_BY_BYTES (target_flags & ARM_FLAG_SHORT_BYTE)
320 #define TARGET_SOFT_FLOAT (target_flags & ARM_FLAG_SOFT_FLOAT)
321 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
322 #define TARGET_BIG_END (target_flags & ARM_FLAG_BIG_END)
323 #define TARGET_THUMB_INTERWORK (target_flags & ARM_FLAG_THUMB)
324 #define TARGET_LITTLE_WORDS (target_flags & ARM_FLAG_LITTLE_WORDS)
326 /* SUBTARGET_SWITCHES is used to add flags on a per-config basis.
327 Bit 31 is reserved. See riscix.h. */
328 #ifndef SUBTARGET_SWITCHES
329 #define SUBTARGET_SWITCHES
330 #endif
332 #define TARGET_SWITCHES \
334 {"apcs", ARM_FLAG_APCS_FRAME}, \
335 {"apcs-frame", ARM_FLAG_APCS_FRAME}, \
336 {"no-apcs-frame", -ARM_FLAG_APCS_FRAME}, \
337 {"poke-function-name", ARM_FLAG_POKE}, \
338 {"fpe", ARM_FLAG_FPE}, \
339 {"6", ARM_FLAG_ARM6}, \
340 {"2", ARM_FLAG_ARM3}, \
341 {"3", ARM_FLAG_ARM3}, \
342 {"apcs-32", ARM_FLAG_APCS_32}, \
343 {"apcs-26", -ARM_FLAG_APCS_32}, \
344 {"apcs-stack-check", ARM_FLAG_APCS_STACK}, \
345 {"no-apcs-stack-check", -ARM_FLAG_APCS_STACK}, \
346 {"apcs-float", ARM_FLAG_APCS_FLOAT}, \
347 {"no-apcs-float", -ARM_FLAG_APCS_FLOAT}, \
348 {"apcs-reentrant", ARM_FLAG_APCS_REENT}, \
349 {"no-apcs-rentrant", -ARM_FLAG_APCS_REENT}, \
350 {"short-load-bytes", ARM_FLAG_SHORT_BYTE}, \
351 {"no-short-load-bytes", -ARM_FLAG_SHORT_BYTE}, \
352 {"short-load-words", -ARM_FLAG_SHORT_BYTE}, \
353 {"no-short-load-words", ARM_FLAG_SHORT_BYTE}, \
354 {"soft-float", ARM_FLAG_SOFT_FLOAT}, \
355 {"hard-float", -ARM_FLAG_SOFT_FLOAT}, \
356 {"big-endian", ARM_FLAG_BIG_END}, \
357 {"little-endian", -ARM_FLAG_BIG_END}, \
358 {"thumb-interwork", ARM_FLAG_THUMB}, \
359 {"no-thumb-interwork", -ARM_FLAG_THUMB}, \
360 {"words-little-endian", ARM_FLAG_LITTLE_WORDS}, \
361 SUBTARGET_SWITCHES \
362 {"", TARGET_DEFAULT } \
365 #define TARGET_OPTIONS \
367 {"cpu=", &arm_select[1].string}, \
368 {"arch=", &arm_select[2].string}, \
369 {"tune=", &arm_select[3].string}, \
370 {"fp=", &target_fp_name} \
373 /* arm_select[0] is reserved for the default cpu. */
374 struct arm_cpu_select
376 char *string;
377 char *name;
378 int set_tune_p;
379 int set_arch_p;
382 extern struct arm_cpu_select arm_select[];
384 #ifndef PROCESSOR_DEFAULT
385 #define PROCESSOR_DEFAULT PROCESSOR_ARM2
386 #endif
388 #ifndef TARGET_CPU_DEFAULT
389 #define TARGET_CPU_DEFAULT ((char *) 0)
390 #endif
392 /* Which processor we are running on, for instruction scheduling
393 purposes. */
394 enum processor_type
396 PROCESSOR_ARM2,
397 PROCESSOR_ARM3,
398 PROCESSOR_ARM6,
399 PROCESSOR_ARM7,
400 PROCESSOR_ARM8,
401 PROCESSOR_STARM,
402 PROCESSOR_NONE /* NOTE: This must be last, since it doesn't
403 appear in the attr_cpu list */
406 /* Recast the cpu class to be the cpu attribute. */
407 #define arm_cpu_attr ((enum attr_cpu)arm_cpu)
409 extern enum processor_type arm_cpu;
411 enum prog_mode_type
413 prog_mode26,
414 prog_mode32
417 /* Recast the program mode class to be the prog_mode attribute */
418 #define arm_prog_mode ((enum attr_prog_mode) arm_prgmode)
420 extern enum prog_mode_type arm_prgmode;
422 /* What sort of floating point unit do we have? Hardware or software.
423 If software, is it issue 2 or issue 3? */
424 enum floating_point_type
426 FP_HARD,
427 FP_SOFT2,
428 FP_SOFT3
431 /* Recast the floating point class to be the floating point attribute. */
432 #define arm_fpu_attr ((enum attr_fpu) arm_fpu)
434 /* What type of floating point to tune for */
435 extern enum floating_point_type arm_fpu;
437 /* What type of floating point instructions are available */
438 extern enum floating_point_type arm_fpu_arch;
440 /* Default floating point archtitecture. Override in sub-target if
441 necessary. */
442 #define FP_DEFAULT FP_SOFT2
444 /* Nonzero if the processor has a fast multiply insn, and one that does
445 a 64-bit multiply of two 32-bit values. */
446 extern int arm_fast_multiply;
448 /* Nonzero if this chip supports the ARM Architecture 4 extensions */
449 extern int arm_arch4;
451 #ifndef TARGET_DEFAULT
452 #define TARGET_DEFAULT 0
453 #endif
455 /* The frame pointer register used in gcc has nothing to do with debugging;
456 that is controlled by the APCS-FRAME option. */
457 /* Not fully implemented yet */
458 /* #define CAN_DEBUG_WITHOUT_FP 1 */
460 #define TARGET_MEM_FUNCTIONS 1
462 #define OVERRIDE_OPTIONS arm_override_options ()
464 /* Target machine storage Layout. */
467 /* Define this macro if it is advisable to hold scalars in registers
468 in a wider mode than that declared by the program. In such cases,
469 the value is constrained to be within the bounds of the declared
470 type, but kept valid in the wider mode. The signedness of the
471 extension may differ from that of the type. */
473 /* It is far faster to zero extend chars than to sign extend them */
475 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
476 if (GET_MODE_CLASS (MODE) == MODE_INT \
477 && GET_MODE_SIZE (MODE) < 4) \
479 if (MODE == QImode) \
480 UNSIGNEDP = 1; \
481 else if (MODE == HImode) \
482 UNSIGNEDP = TARGET_SHORT_BY_BYTES != 0; \
483 (MODE) = SImode; \
486 /* Define for XFmode extended real floating point support.
487 This will automatically cause REAL_ARITHMETIC to be defined. */
488 /* For the ARM:
489 I think I have added all the code to make this work. Unfortunately,
490 early releases of the floating point emulation code on RISCiX used a
491 different format for extended precision numbers. On my RISCiX box there
492 is a bug somewhere which causes the machine to lock up when running enquire
493 with long doubles. There is the additional aspect that Norcroft C
494 treats long doubles as doubles and we ought to remain compatible.
495 Perhaps someone with an FPA coprocessor and not running RISCiX would like
496 to try this someday. */
497 /* #define LONG_DOUBLE_TYPE_SIZE 96 */
499 /* Disable XFmode patterns in md file */
500 #define ENABLE_XF_PATTERNS 0
502 /* Define if you don't want extended real, but do want to use the
503 software floating point emulator for REAL_ARITHMETIC and
504 decimal <-> binary conversion. */
505 /* See comment above */
506 #define REAL_ARITHMETIC
508 /* Define this if most significant bit is lowest numbered
509 in instructions that operate on numbered bit-fields. */
510 #define BITS_BIG_ENDIAN 0
512 /* Define this if most significant byte of a word is the lowest numbered.
513 Most ARM processors are run in little endian mode, so that is the default.
514 If you want to have it run-time selectable, change the definition in a
515 cover file to be TARGET_BIG_ENDIAN. */
516 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
518 /* Define this if most significant word of a multiword number is the lowest
519 numbered.
520 This is always false, even when in big-endian mode. */
521 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
523 /* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
524 on processor pre-defineds when compiling libgcc2.c. */
525 #if defined(__ARMEB__) && !defined(__ARMWEL__)
526 #define LIBGCC2_WORDS_BIG_ENDIAN 1
527 #else
528 #define LIBGCC2_WORDS_BIG_ENDIAN 0
529 #endif
531 /* Define this if most significant word of doubles is the lowest numbered.
532 This is always true, even when in little-endian mode. */
533 #define FLOAT_WORDS_BIG_ENDIAN 1
535 /* Number of bits in an addressable storage unit */
536 #define BITS_PER_UNIT 8
538 #define BITS_PER_WORD 32
540 #define UNITS_PER_WORD 4
542 #define POINTER_SIZE 32
544 #define PARM_BOUNDARY 32
546 #define STACK_BOUNDARY 32
548 #define FUNCTION_BOUNDARY 32
550 #define EMPTY_FIELD_BOUNDARY 32
552 #define BIGGEST_ALIGNMENT 32
554 /* Make strings word-aligned so strcpy from constants will be faster. */
555 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
556 (TREE_CODE (EXP) == STRING_CST \
557 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
559 /* Every structures size must be a multiple of 32 bits. */
560 /* This is for compatibility with ARMCC. ARM SDT Reference Manual
561 (ARM DUI 0020D) page 2-20 says "Structures are aligned on word
562 boundaries". */
563 #define STRUCTURE_SIZE_BOUNDARY 32
565 /* Non-zero if move instructions will actually fail to work
566 when given unaligned data. */
567 #define STRICT_ALIGNMENT 1
569 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
572 /* Standard register usage. */
574 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
575 (S - saved over call).
577 r0 * argument word/integer result
578 r1-r3 argument word
580 r4-r8 S register variable
581 r9 S (rfp) register variable (real frame pointer)
583 r10 F S (sl) stack limit (not currently used)
584 r11 F S (fp) argument pointer
585 r12 (ip) temp workspace
586 r13 F S (sp) lower end of current stack frame
587 r14 (lr) link address/workspace
588 r15 F (pc) program counter
590 f0 floating point result
591 f1-f3 floating point scratch
593 f4-f7 S floating point variable
595 cc This is NOT a real register, but is used internally
596 to represent things that use or set the condition
597 codes.
598 sfp This isn't either. It is used during rtl generation
599 since the offset between the frame pointer and the
600 auto's isn't known until after register allocation.
601 afp Nor this, we only need this because of non-local
602 goto. Without it fp appears to be used and the
603 elimination code won't get rid of sfp. It tracks
604 fp exactly at all times.
606 *: See CONDITIONAL_REGISTER_USAGE */
608 /* The stack backtrace structure is as follows:
609 fp points to here: | save code pointer | [fp]
610 | return link value | [fp, #-4]
611 | return sp value | [fp, #-8]
612 | return fp value | [fp, #-12]
613 [| saved r10 value |]
614 [| saved r9 value |]
615 [| saved r8 value |]
616 [| saved r7 value |]
617 [| saved r6 value |]
618 [| saved r5 value |]
619 [| saved r4 value |]
620 [| saved r3 value |]
621 [| saved r2 value |]
622 [| saved r1 value |]
623 [| saved r0 value |]
624 [| saved f7 value |] three words
625 [| saved f6 value |] three words
626 [| saved f5 value |] three words
627 [| saved f4 value |] three words
628 r0-r3 are not normally saved in a C function. */
630 /* The number of hard registers is 16 ARM + 8 FPU + 1 CC + 1 SFP. */
631 #define FIRST_PSEUDO_REGISTER 27
633 /* 1 for registers that have pervasive standard uses
634 and are not available for the register allocator. */
635 #define FIXED_REGISTERS \
637 0,0,0,0,0,0,0,0, \
638 0,0,1,1,0,1,0,1, \
639 0,0,0,0,0,0,0,0, \
640 1,1,1 \
643 /* 1 for registers not available across function calls.
644 These must include the FIXED_REGISTERS and also any
645 registers that can be used without being saved.
646 The latter must include the registers where values are returned
647 and the register where structure-value addresses are passed.
648 Aside from that, you can include as many other registers as you like.
649 The CC is not preserved over function calls on the ARM 6, so it is
650 easier to assume this for all. SFP is preserved, since FP is. */
651 #define CALL_USED_REGISTERS \
653 1,1,1,1,0,0,0,0, \
654 0,0,1,1,1,1,1,1, \
655 1,1,1,1,0,0,0,0, \
656 1,1,1 \
659 /* If doing stupid life analysis, avoid a bug causing a return value r0 to be
660 trampled. This effectively reduces the number of available registers by 1.
661 XXX It is a hack, I know.
662 XXX Is this still needed? */
663 #define CONDITIONAL_REGISTER_USAGE \
665 if (obey_regdecls) \
666 fixed_regs[0] = 1; \
667 if (TARGET_SOFT_FLOAT) \
669 int regno; \
670 for (regno = 16; regno < 24; ++regno) \
671 fixed_regs[regno] = call_used_regs[regno] = 1; \
673 if (flag_pic) \
675 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
676 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 0; \
680 /* Return number of consecutive hard regs needed starting at reg REGNO
681 to hold something of mode MODE.
682 This is ordinarily the length in words of a value of mode MODE
683 but can be less for certain modes in special long registers.
685 On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
686 mode. */
687 #define HARD_REGNO_NREGS(REGNO, MODE) \
688 (((REGNO) >= 16 && REGNO != FRAME_POINTER_REGNUM \
689 && (REGNO) != ARG_POINTER_REGNUM) ? 1 \
690 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
692 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
693 This is TRUE for ARM regs since they can hold anything, and TRUE for FPU
694 regs holding FP. */
695 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
696 ((GET_MODE_CLASS (MODE) == MODE_CC) ? (REGNO == CC_REGNUM) : \
697 ((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
698 || REGNO == ARG_POINTER_REGNUM \
699 || GET_MODE_CLASS (MODE) == MODE_FLOAT))
701 /* Value is 1 if it is a good idea to tie two pseudo registers
702 when one has mode MODE1 and one has mode MODE2.
703 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
704 for any hard reg, then this must be 0 for correct output. */
705 #define MODES_TIEABLE_P(MODE1, MODE2) \
706 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
708 /* Specify the registers used for certain standard purposes.
709 The values of these macros are register numbers. */
711 /* Define this if the program counter is overloaded on a register. */
712 #define PC_REGNUM 15
714 /* Register to use for pushing function arguments. */
715 #define STACK_POINTER_REGNUM 13
717 /* Base register for access to local variables of the function. */
718 #define FRAME_POINTER_REGNUM 25
720 /* Define this to be where the real frame pointer is if it is not possible to
721 work out the offset between the frame pointer and the automatic variables
722 until after register allocation has taken place. FRAME_POINTER_REGNUM
723 should point to a special register that we will make sure is eliminated. */
724 #define HARD_FRAME_POINTER_REGNUM 11
726 /* Value should be nonzero if functions must have frame pointers.
727 Zero means the frame pointer need not be set up (and parms may be accessed
728 via the stack pointer) in functions that seem suitable.
729 If we have to have a frame pointer we might as well make use of it.
730 APCS says that the frame pointer does not need to be pushed in leaf
731 functions. */
732 #define FRAME_POINTER_REQUIRED \
733 (current_function_has_nonlocal_label || (TARGET_APCS && !leaf_function_p ()))
735 /* Base register for access to arguments of the function. */
736 #define ARG_POINTER_REGNUM 26
738 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
739 as an invisible last argument (possible since varargs don't exist in
740 Pascal), so the following is not true. */
741 #define STATIC_CHAIN_REGNUM 8
743 /* Register in which address to store a structure value
744 is passed to a function. */
745 #define STRUCT_VALUE_REGNUM 0
747 /* Internal, so that we don't need to refer to a raw number */
748 #define CC_REGNUM 24
750 /* The order in which register should be allocated. It is good to use ip
751 since no saving is required (though calls clobber it) and it never contains
752 function parameters. It is quite good to use lr since other calls may
753 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
754 least likely to contain a function parameter; in addition results are
755 returned in r0.
757 #define REG_ALLOC_ORDER \
759 3, 2, 1, 0, 12, 14, 4, 5, \
760 6, 7, 8, 10, 9, 11, 13, 15, \
761 16, 17, 18, 19, 20, 21, 22, 23, \
762 24, 25 \
765 /* Register and constant classes. */
767 /* Register classes: all ARM regs or all FPU regs---simple! */
768 enum reg_class
770 NO_REGS,
771 FPU_REGS,
772 GENERAL_REGS,
773 ALL_REGS,
774 LIM_REG_CLASSES
777 #define N_REG_CLASSES (int) LIM_REG_CLASSES
779 /* Give names of register classes as strings for dump file. */
780 #define REG_CLASS_NAMES \
782 "NO_REGS", \
783 "FPU_REGS", \
784 "GENERAL_REGS", \
785 "ALL_REGS", \
788 /* Define which registers fit in which classes.
789 This is an initializer for a vector of HARD_REG_SET
790 of length N_REG_CLASSES. */
791 #define REG_CLASS_CONTENTS \
793 0x0000000, /* NO_REGS */ \
794 0x0FF0000, /* FPU_REGS */ \
795 0x200FFFF, /* GENERAL_REGS */ \
796 0x2FFFFFF /* ALL_REGS */ \
799 /* The same information, inverted:
800 Return the class number of the smallest class containing
801 reg number REGNO. This could be a conditional expression
802 or could index an array. */
803 #define REGNO_REG_CLASS(REGNO) \
804 (((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
805 || REGNO == ARG_POINTER_REGNUM) \
806 ? GENERAL_REGS : (REGNO) == CC_REGNUM \
807 ? NO_REGS : FPU_REGS)
809 /* The class value for index registers, and the one for base regs. */
810 #define INDEX_REG_CLASS GENERAL_REGS
811 #define BASE_REG_CLASS GENERAL_REGS
813 /* Get reg_class from a letter such as appears in the machine description.
814 We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS). */
815 #define REG_CLASS_FROM_LETTER(C) \
816 ((C)=='f' ? FPU_REGS : NO_REGS)
818 /* The letters I, J, K, L and M in a register constraint string
819 can be used to stand for particular ranges of immediate operands.
820 This macro defines what the ranges are.
821 C is the letter, and VALUE is a constant value.
822 Return 1 if VALUE is in the range specified by C.
823 I: immediate arithmetic operand (i.e. 8 bits shifted as required).
824 J: valid indexing constants.
825 K: ~value ok in rhs argument of data operand.
826 L: -value ok in rhs argument of data operand.
827 M: 0..32, or a power of 2 (for shifts, or mult done by shift). */
828 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
829 ((C) == 'I' ? const_ok_for_arm (VALUE) : \
830 (C) == 'J' ? ((VALUE) < 4096 && (VALUE) > -4096) : \
831 (C) == 'K' ? (const_ok_for_arm (~(VALUE))) : \
832 (C) == 'L' ? (const_ok_for_arm (-(VALUE))) : \
833 (C) == 'M' ? (((VALUE >= 0 && VALUE <= 32)) \
834 || (((VALUE) & ((VALUE) - 1)) == 0)) \
835 : 0)
837 /* For the ARM, `Q' means that this is a memory operand that is just
838 an offset from a register.
839 `S' means any symbol that has the SYMBOL_REF_FLAG set or a CONSTANT_POOL
840 address. This means that the symbol is in the text segment and can be
841 accessed without using a load. */
843 #define EXTRA_CONSTRAINT(OP, C) \
844 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
845 : (C) == 'R' ? (GET_CODE (OP) == MEM \
846 && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
847 && CONSTANT_POOL_ADDRESS_P (XEXP (OP, 0))) \
848 : (C) == 'S' ? (optimize > 0 && CONSTANT_ADDRESS_P (OP)) \
849 : 0)
851 /* Constant letter 'G' for the FPU immediate constants.
852 'H' means the same constant negated. */
853 #define CONST_DOUBLE_OK_FOR_LETTER_P(X,C) \
854 ((C) == 'G' ? const_double_rtx_ok_for_fpu (X) \
855 : (C) == 'H' ? neg_const_double_rtx_ok_for_fpu (X) : 0)
857 /* Given an rtx X being reloaded into a reg required to be
858 in class CLASS, return the class of reg to actually use.
859 In general this is just CLASS; but on some machines
860 in some cases it is preferable to use a more restrictive class. */
861 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
863 /* Return the register class of a scratch register needed to copy IN into
864 or out of a register in CLASS in MODE. If it can be done directly,
865 NO_REGS is returned. */
866 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
867 (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
868 ? GENERAL_REGS : NO_REGS)
870 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
871 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
872 (((MODE) == HImode && TARGET_SHORT_BY_BYTES && true_regnum (X) == -1) \
873 ? GENERAL_REGS : NO_REGS)
875 /* Return the maximum number of consecutive registers
876 needed to represent mode MODE in a register of class CLASS.
877 ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
878 #define CLASS_MAX_NREGS(CLASS, MODE) \
879 ((CLASS) == FPU_REGS ? 1 \
880 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
882 /* Moves between FPU_REGS and GENERAL_REGS are two memory insns. */
883 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
884 ((((CLASS1) == FPU_REGS && (CLASS2) != FPU_REGS) \
885 || ((CLASS2) == FPU_REGS && (CLASS1) != FPU_REGS)) \
886 ? 20 : 2)
888 /* Stack layout; function entry, exit and calling. */
890 /* Define this if pushing a word on the stack
891 makes the stack pointer a smaller address. */
892 #define STACK_GROWS_DOWNWARD 1
894 /* Define this if the nominal address of the stack frame
895 is at the high-address end of the local variables;
896 that is, each additional local variable allocated
897 goes at a more negative offset in the frame. */
898 #define FRAME_GROWS_DOWNWARD 1
900 /* Offset within stack frame to start allocating local variables at.
901 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
902 first local allocated. Otherwise, it is the offset to the BEGINNING
903 of the first local allocated. */
904 #define STARTING_FRAME_OFFSET 0
906 /* If we generate an insn to push BYTES bytes,
907 this says how many the stack pointer really advances by. */
908 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
910 /* Offset of first parameter from the argument pointer register value. */
911 #define FIRST_PARM_OFFSET(FNDECL) 4
913 /* Value is the number of byte of arguments automatically
914 popped when returning from a subroutine call.
915 FUNDECL is the declaration node of the function (as a tree),
916 FUNTYPE is the data type of the function (as a tree),
917 or for a library call it is an identifier node for the subroutine name.
918 SIZE is the number of bytes of arguments passed on the stack.
920 On the ARM, the caller does not pop any of its arguments that were passed
921 on the stack. */
922 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
924 /* Define how to find the value returned by a function.
925 VALTYPE is the data type of the value (as a tree).
926 If the precise function being called is known, FUNC is its FUNCTION_DECL;
927 otherwise, FUNC is 0. */
928 #define FUNCTION_VALUE(VALTYPE, FUNC) \
929 (GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT && TARGET_HARD_FLOAT \
930 ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
931 : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
933 /* Define how to find the value returned by a library function
934 assuming the value has mode MODE. */
935 #define LIBCALL_VALUE(MODE) \
936 (GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT \
937 ? gen_rtx (REG, MODE, 16) \
938 : gen_rtx (REG, MODE, 0))
940 /* 1 if N is a possible register number for a function value.
941 On the ARM, only r0 and f0 can return results. */
942 #define FUNCTION_VALUE_REGNO_P(REGNO) \
943 ((REGNO) == 0 || ((REGNO) == 16) && TARGET_HARD_FLOAT)
945 /* How large values are returned */
946 /* A C expression which can inhibit the returning of certain function values
947 in registers, based on the type of value. */
948 #define RETURN_IN_MEMORY(TYPE) \
949 (TYPE_MODE ((TYPE)) == BLKmode || \
950 (AGGREGATE_TYPE_P ((TYPE)) && arm_return_in_memory ((TYPE))))
952 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
953 values must be in memory. On the ARM, they need only do so if larger
954 than a word, or if they contain elements offset from zero in the struct. */
955 #define DEFAULT_PCC_STRUCT_RETURN 0
957 /* Define where to put the arguments to a function.
958 Value is zero to push the argument on the stack,
959 or a hard register in which to store the argument.
961 MODE is the argument's machine mode.
962 TYPE is the data type of the argument (as a tree).
963 This is null for libcalls where that information may
964 not be available.
965 CUM is a variable of type CUMULATIVE_ARGS which gives info about
966 the preceding args and about the function being called.
967 NAMED is nonzero if this argument is a named parameter
968 (otherwise it is an extra parameter matching an ellipsis).
970 On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
971 other arguments are passed on the stack. If (NAMED == 0) (which happens
972 only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
973 passed in the stack (function_prologue will indeed make it pass in the
974 stack if necessary). */
975 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
976 ((NAMED) \
977 ? ((CUM) >= 16 ? 0 : gen_rtx (REG, MODE, (CUM) / 4)) \
978 : 0)
980 /* For an arg passed partly in registers and partly in memory,
981 this is the number of registers used.
982 For args passed entirely in registers or entirely in memory, zero. */
983 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
984 ((CUM) < 16 && 16 < (CUM) + ((MODE) != BLKmode \
985 ? GET_MODE_SIZE (MODE) \
986 : int_size_in_bytes (TYPE)) \
987 ? 4 - (CUM) / 4 : 0)
989 /* A C type for declaring a variable that is used as the first argument of
990 `FUNCTION_ARG' and other related values. For some target machines, the
991 type `int' suffices and can hold the number of bytes of argument so far.
993 On the ARM, this is the number of bytes of arguments scanned so far. */
994 #define CUMULATIVE_ARGS int
996 /* Initialize a variable CUM of type CUMULATIVE_ARGS
997 for a call to a function whose data type is FNTYPE.
998 For a library call, FNTYPE is 0.
999 On the ARM, the offset starts at 0. */
1000 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1001 ((CUM) = (((FNTYPE) && aggregate_value_p (TREE_TYPE ((FNTYPE)))) ? 4 : 0))
1003 /* Update the data in CUM to advance over an argument
1004 of mode MODE and data type TYPE.
1005 (TYPE is null for libcalls where that information may not be available.) */
1006 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1007 (CUM) += ((MODE) != BLKmode \
1008 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
1009 : (int_size_in_bytes (TYPE) + 3) & ~3) \
1011 /* 1 if N is a possible register number for function argument passing.
1012 On the ARM, r0-r3 are used to pass args. */
1013 #define FUNCTION_ARG_REGNO_P(REGNO) \
1014 ((REGNO) >= 0 && (REGNO) <= 3)
1016 /* Perform any actions needed for a function that is receiving a variable
1017 number of arguments. CUM is as above. MODE and TYPE are the mode and type
1018 of the current parameter. PRETEND_SIZE is a variable that should be set to
1019 the amount of stack that must be pushed by the prolog to pretend that our
1020 caller pushed it.
1022 Normally, this macro will push all remaining incoming registers on the
1023 stack and set PRETEND_SIZE to the length of the registers pushed.
1025 On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
1026 named arg and all anonymous args onto the stack.
1027 XXX I know the prologue shouldn't be pushing registers, but it is faster
1028 that way. */
1029 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1031 extern int current_function_anonymous_args; \
1032 current_function_anonymous_args = 1; \
1033 if ((CUM) < 16) \
1034 (PRETEND_SIZE) = 16 - (CUM); \
1037 /* Generate assembly output for the start of a function. */
1038 #define FUNCTION_PROLOGUE(STREAM, SIZE) \
1039 output_func_prologue ((STREAM), (SIZE))
1041 /* Call the function profiler with a given profile label. The Acorn compiler
1042 puts this BEFORE the prolog but gcc puts it afterwards. The ``mov ip,lr''
1043 seems like a good idea to stick with cc convention. ``prof'' doesn't seem
1044 to mind about this! */
1045 #define FUNCTION_PROFILER(STREAM,LABELNO) \
1047 fprintf(STREAM, "\tmov\t%sip, %slr\n", REGISTER_PREFIX, REGISTER_PREFIX); \
1048 fprintf(STREAM, "\tbl\tmcount\n"); \
1049 fprintf(STREAM, "\t.word\tLP%d\n", (LABELNO)); \
1052 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1053 the stack pointer does not matter. The value is tested only in
1054 functions that have frame pointers.
1055 No definition is equivalent to always zero.
1057 On the ARM, the function epilogue recovers the stack pointer from the
1058 frame. */
1059 #define EXIT_IGNORE_STACK 1
1061 /* Generate the assembly code for function exit. */
1062 #define FUNCTION_EPILOGUE(STREAM, SIZE) \
1063 output_func_epilogue ((STREAM), (SIZE))
1065 /* Determine if the epilogue should be output as RTL.
1066 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1067 #define USE_RETURN_INSN use_return_insn ()
1069 /* Definitions for register eliminations.
1071 This is an array of structures. Each structure initializes one pair
1072 of eliminable registers. The "from" register number is given first,
1073 followed by "to". Eliminations of the same "from" register are listed
1074 in order of preference.
1076 We have two registers that can be eliminated on the ARM. First, the
1077 arg pointer register can often be eliminated in favor of the stack
1078 pointer register. Secondly, the pseudo frame pointer register can always
1079 be eliminated; it is replaced with either the stack or the real frame
1080 pointer. */
1082 #define ELIMINABLE_REGS \
1083 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1084 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1085 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1086 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1088 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1089 Frame pointer elimination is automatically handled.
1091 All eliminations are permissible. Note that ARG_POINTER_REGNUM and
1092 HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame
1093 pointer, we must eliminate FRAME_POINTER_REGNUM into
1094 HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM. */
1095 #define CAN_ELIMINATE(FROM, TO) \
1096 (((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : 1)
1098 /* Define the offset between two registers, one to be eliminated, and the other
1099 its replacement, at the start of a routine. */
1100 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1102 int volatile_func = arm_volatile_func (); \
1103 if ((FROM) == ARG_POINTER_REGNUM && (TO) == HARD_FRAME_POINTER_REGNUM)\
1104 (OFFSET) = 0; \
1105 else if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)\
1106 (OFFSET) = (get_frame_size () + 3 & ~3); \
1107 else \
1109 int regno; \
1110 int offset = 12; \
1111 int saved_hard_reg = 0; \
1113 if (! volatile_func) \
1115 for (regno = 0; regno <= 10; regno++) \
1116 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1117 saved_hard_reg = 1, offset += 4; \
1118 for (regno = 16; regno <=23; regno++) \
1119 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1120 offset += 12; \
1122 if ((FROM) == FRAME_POINTER_REGNUM) \
1123 (OFFSET) = -offset; \
1124 else \
1126 if (! frame_pointer_needed) \
1127 offset -= 16; \
1128 if (! volatile_func && (regs_ever_live[14] || saved_hard_reg)) \
1129 offset += 4; \
1130 (OFFSET) = (get_frame_size () + 3 & ~3) + offset; \
1135 /* Output assembler code for a block containing the constant parts
1136 of a trampoline, leaving space for the variable parts.
1138 On the ARM, (if r8 is the static chain regnum, and remembering that
1139 referencing pc adds an offset of 8) the trampoline looks like:
1140 ldr r8, [pc, #0]
1141 ldr pc, [pc]
1142 .word static chain value
1143 .word function's address
1144 ??? FIXME: When the trampoline returns, r8 will be clobbered. */
1145 #define TRAMPOLINE_TEMPLATE(FILE) \
1147 fprintf ((FILE), "\tldr\t%sr8, [%spc, #0]\n", \
1148 REGISTER_PREFIX, REGISTER_PREFIX); \
1149 fprintf ((FILE), "\tldr\t%spc, [%spc, #0]\n", \
1150 REGISTER_PREFIX, REGISTER_PREFIX); \
1151 fprintf ((FILE), "\t.word\t0\n"); \
1152 fprintf ((FILE), "\t.word\t0\n"); \
1155 /* Length in units of the trampoline for entering a nested function. */
1156 #define TRAMPOLINE_SIZE 16
1158 /* Alignment required for a trampoline in units. */
1159 #define TRAMPOLINE_ALIGN 4
1161 /* Emit RTL insns to initialize the variable parts of a trampoline.
1162 FNADDR is an RTX for the address of the function's pure code.
1163 CXT is an RTX for the static chain value for the function. */
1164 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1166 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
1167 (CXT)); \
1168 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
1169 (FNADDR)); \
1173 /* Addressing modes, and classification of registers for them. */
1175 #define HAVE_POST_INCREMENT 1
1176 #define HAVE_PRE_INCREMENT 1
1177 #define HAVE_POST_DECREMENT 1
1178 #define HAVE_PRE_DECREMENT 1
1180 /* Macros to check register numbers against specific register classes. */
1182 /* These assume that REGNO is a hard or pseudo reg number.
1183 They give nonzero only if REGNO is a hard reg of the suitable class
1184 or a pseudo reg currently allocated to a suitable hard reg.
1185 Since they use reg_renumber, they are safe only once reg_renumber
1186 has been allocated, which happens in local-alloc.c.
1188 On the ARM, don't allow the pc to be used. */
1189 #define REGNO_OK_FOR_BASE_P(REGNO) \
1190 ((REGNO) < 15 || (REGNO) == FRAME_POINTER_REGNUM \
1191 || (REGNO) == ARG_POINTER_REGNUM \
1192 || (unsigned) reg_renumber[(REGNO)] < 15 \
1193 || (unsigned) reg_renumber[(REGNO)] == FRAME_POINTER_REGNUM \
1194 || (unsigned) reg_renumber[(REGNO)] == ARG_POINTER_REGNUM)
1195 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1196 REGNO_OK_FOR_BASE_P(REGNO)
1198 /* Maximum number of registers that can appear in a valid memory address.
1199 Shifts in addresses can't be by a register. */
1201 #define MAX_REGS_PER_ADDRESS 2
1203 /* Recognize any constant value that is a valid address. */
1204 /* XXX We can address any constant, eventually... */
1206 #ifdef AOF_ASSEMBLER
1208 #define CONSTANT_ADDRESS_P(X) \
1209 (GET_CODE (X) == SYMBOL_REF \
1210 && CONSTANT_POOL_ADDRESS_P (X))
1212 #else
1214 #define CONSTANT_ADDRESS_P(X) \
1215 (GET_CODE (X) == SYMBOL_REF \
1216 && (CONSTANT_POOL_ADDRESS_P (X) \
1217 || (optimize > 0 && SYMBOL_REF_FLAG (X))))
1219 #endif /* AOF_ASSEMBLER */
1221 /* Nonzero if the constant value X is a legitimate general operand.
1222 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1224 On the ARM, allow any integer (invalid ones are removed later by insn
1225 patterns), nice doubles and symbol_refs which refer to the function's
1226 constant pool XXX. */
1227 #define LEGITIMATE_CONSTANT_P(X) (! label_mentioned_p (X))
1229 /* Symbols in the text segment can be accessed without indirecting via the
1230 constant pool; it may take an extra binary operation, but this is still
1231 faster than indirecting via memory. Don't do this when not optimizing,
1232 since we won't be calculating al of the offsets necessary to do this
1233 simplification. */
1234 /* This doesn't work with AOF syntax, since the string table may be in
1235 a different AREA. */
1236 #ifndef AOF_ASSEMBLER
1237 #define ENCODE_SECTION_INFO(decl) \
1239 if (optimize > 0 && TREE_CONSTANT (decl) \
1240 && (!flag_writable_strings || TREE_CODE (decl) != STRING_CST)) \
1242 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd' \
1243 ? TREE_CST_RTL (decl) : DECL_RTL (decl)); \
1244 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; \
1247 #endif
1249 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1250 and check its validity for a certain class.
1251 We have two alternate definitions for each of them.
1252 The usual definition accepts all pseudo regs; the other rejects
1253 them unless they have been allocated suitable hard regs.
1254 The symbol REG_OK_STRICT causes the latter definition to be used. */
1255 #ifndef REG_OK_STRICT
1257 /* Nonzero if X is a hard reg that can be used as a base reg
1258 or if it is a pseudo reg. */
1259 #define REG_OK_FOR_BASE_P(X) \
1260 (REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1261 || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
1263 /* Nonzero if X is a hard reg that can be used as an index
1264 or if it is a pseudo reg. */
1265 #define REG_OK_FOR_INDEX_P(X) \
1266 REG_OK_FOR_BASE_P(X)
1268 #define REG_OK_FOR_PRE_POST_P(X) \
1269 (REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1270 || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
1272 #else
1274 /* Nonzero if X is a hard reg that can be used as a base reg. */
1275 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1277 /* Nonzero if X is a hard reg that can be used as an index. */
1278 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1280 #define REG_OK_FOR_PRE_POST_P(X) \
1281 (REGNO (X) < 16 || (unsigned) reg_renumber[REGNO (X)] < 16 \
1282 || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM \
1283 || (unsigned) reg_renumber[REGNO (X)] == FRAME_POINTER_REGNUM \
1284 || (unsigned) reg_renumber[REGNO (X)] == ARG_POINTER_REGNUM)
1286 #endif
1288 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1289 that is a valid memory address for an instruction.
1290 The MODE argument is the machine mode for the MEM expression
1291 that wants to use this address.
1293 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1294 #define BASE_REGISTER_RTX_P(X) \
1295 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1297 #define INDEX_REGISTER_RTX_P(X) \
1298 (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
1300 /* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
1301 used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
1302 only be small constants. */
1303 #define GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
1304 do \
1306 HOST_WIDE_INT range; \
1307 enum rtx_code code = GET_CODE (INDEX); \
1309 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1311 if (code == CONST_INT && INTVAL (INDEX) < 1024 \
1312 && INTVAL (INDEX) > -1024 \
1313 && (INTVAL (INDEX) & 3) == 0) \
1314 goto LABEL; \
1316 else \
1318 if (INDEX_REGISTER_RTX_P (INDEX) && GET_MODE_SIZE (MODE) <= 4) \
1319 goto LABEL; \
1320 if (GET_MODE_SIZE (MODE) <= 4 && code == MULT \
1321 && (! arm_arch4 || (MODE) != HImode)) \
1323 rtx xiop0 = XEXP (INDEX, 0); \
1324 rtx xiop1 = XEXP (INDEX, 1); \
1325 if (INDEX_REGISTER_RTX_P (xiop0) \
1326 && power_of_two_operand (xiop1, SImode)) \
1327 goto LABEL; \
1328 if (INDEX_REGISTER_RTX_P (xiop1) \
1329 && power_of_two_operand (xiop0, SImode)) \
1330 goto LABEL; \
1332 if (GET_MODE_SIZE (MODE) <= 4 \
1333 && (code == LSHIFTRT || code == ASHIFTRT \
1334 || code == ASHIFT || code == ROTATERT) \
1335 && (! arm_arch4 || (MODE) != HImode)) \
1337 rtx op = XEXP (INDEX, 1); \
1338 if (INDEX_REGISTER_RTX_P (XEXP (INDEX, 0)) \
1339 && GET_CODE (op) == CONST_INT && INTVAL (op) > 0 \
1340 && INTVAL (op) <= 31) \
1341 goto LABEL; \
1343 range = (MODE) == HImode ? (arm_arch4 ? 256 : 4095) : 4096; \
1344 if (code == CONST_INT && INTVAL (INDEX) < range \
1345 && INTVAL (INDEX) > -range) \
1346 goto LABEL; \
1348 } while (0)
1350 /* Jump to LABEL if X is a valid address RTX. This must also take
1351 REG_OK_STRICT into account when deciding about valid registers, but it uses
1352 the above macros so we are in luck. Allow REG, REG+REG, REG+INDEX,
1353 INDEX+REG, REG-INDEX, and non floating SYMBOL_REF to the constant pool.
1354 Allow REG-only and AUTINC-REG if handling TImode or HImode. Other symbol
1355 refs must be forced though a static cell to ensure addressability. */
1356 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1358 if (BASE_REGISTER_RTX_P (X)) \
1359 goto LABEL; \
1360 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
1361 && GET_CODE (XEXP (X, 0)) == REG \
1362 && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
1363 goto LABEL; \
1364 else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
1365 && (GET_CODE (X) == LABEL_REF \
1366 || (GET_CODE (X) == CONST \
1367 && GET_CODE (XEXP ((X), 0)) == PLUS \
1368 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == LABEL_REF \
1369 && GET_CODE (XEXP (XEXP ((X), 0), 1)) == CONST_INT)))\
1370 goto LABEL; \
1371 else if ((MODE) == TImode) \
1373 else if ((MODE) == DImode || (TARGET_SOFT_FLOAT && (MODE) == DFmode)) \
1375 if (GET_CODE (X) == PLUS && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
1376 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1378 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1379 if (val == 4 || val == -4 || val == -8) \
1380 goto LABEL; \
1383 else if (GET_CODE (X) == PLUS) \
1385 rtx xop0 = XEXP(X,0); \
1386 rtx xop1 = XEXP(X,1); \
1388 if (BASE_REGISTER_RTX_P (xop0)) \
1389 GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
1390 else if (BASE_REGISTER_RTX_P (xop1)) \
1391 GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
1393 else if (GET_CODE (X) == MINUS) \
1395 rtx xop0 = XEXP (X,0); \
1396 rtx xop1 = XEXP (X,1); \
1398 if (BASE_REGISTER_RTX_P (xop0)) \
1399 GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
1401 else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
1402 && GET_CODE (X) == SYMBOL_REF \
1403 && CONSTANT_POOL_ADDRESS_P (X)) \
1404 goto LABEL; \
1405 else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
1406 && (GET_MODE_SIZE (MODE) <= 4) \
1407 && GET_CODE (XEXP (X, 0)) == REG \
1408 && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
1409 goto LABEL; \
1412 /* Try machine-dependent ways of modifying an illegitimate address
1413 to be legitimate. If we find one, return the new, valid address.
1414 This macro is used in only one place: `memory_address' in explow.c.
1416 OLDX is the address as it was before break_out_memory_refs was called.
1417 In some cases it is useful to look at this to decide what needs to be done.
1419 MODE and WIN are passed so that this macro can use
1420 GO_IF_LEGITIMATE_ADDRESS.
1422 It is always safe for this macro to do nothing. It exists to recognize
1423 opportunities to optimize the output.
1425 On the ARM, try to convert [REG, #BIGCONST]
1426 into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
1427 where VALIDCONST == 0 in case of TImode. */
1428 extern struct rtx_def *legitimize_pic_address ();
1429 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1431 if (GET_CODE (X) == PLUS) \
1433 rtx xop0 = XEXP (X, 0); \
1434 rtx xop1 = XEXP (X, 1); \
1436 if (CONSTANT_P (xop0) && ! symbol_mentioned_p (xop0)) \
1437 xop0 = force_reg (SImode, xop0); \
1438 if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
1439 xop1 = force_reg (SImode, xop1); \
1440 if (BASE_REGISTER_RTX_P (xop0) && GET_CODE (xop1) == CONST_INT) \
1442 HOST_WIDE_INT n, low_n; \
1443 rtx base_reg, val; \
1444 n = INTVAL (xop1); \
1446 if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
1448 low_n = n & 0x0f; \
1449 n &= ~0x0f; \
1450 if (low_n > 4) \
1452 n += 16; \
1453 low_n -= 16; \
1456 else \
1458 low_n = ((MODE) == TImode ? 0 \
1459 : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff)); \
1460 n -= low_n; \
1462 base_reg = gen_reg_rtx (SImode); \
1463 val = force_operand (gen_rtx (PLUS, SImode, xop0, \
1464 GEN_INT (n)), NULL_RTX); \
1465 emit_move_insn (base_reg, val); \
1466 (X) = (low_n == 0 ? base_reg \
1467 : gen_rtx (PLUS, SImode, base_reg, GEN_INT (low_n))); \
1469 else if (xop0 != XEXP (X, 0) || xop1 != XEXP (x, 1)) \
1470 (X) = gen_rtx (PLUS, SImode, xop0, xop1); \
1472 else if (GET_CODE (X) == MINUS) \
1474 rtx xop0 = XEXP (X, 0); \
1475 rtx xop1 = XEXP (X, 1); \
1477 if (CONSTANT_P (xop0)) \
1478 xop0 = force_reg (SImode, xop0); \
1479 if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
1480 xop1 = force_reg (SImode, xop1); \
1481 if (xop0 != XEXP (X, 0) || xop1 != XEXP (X, 1)) \
1482 (X) = gen_rtx (MINUS, SImode, xop0, xop1); \
1484 if (flag_pic) \
1485 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
1486 if (memory_address_p (MODE, X)) \
1487 goto WIN; \
1490 /* Go to LABEL if ADDR (a legitimate address expression)
1491 has an effect that depends on the machine mode it is used for. */
1492 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1494 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
1495 || GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
1496 goto LABEL; \
1499 /* Specify the machine mode that this machine uses
1500 for the index in the tablejump instruction. */
1501 #define CASE_VECTOR_MODE SImode
1503 /* Define this if the tablejump instruction expects the table
1504 to contain offsets from the address of the table.
1505 Do not define this if the table should contain absolute addresses. */
1506 /* #define CASE_VECTOR_PC_RELATIVE */
1508 /* Specify the tree operation to be used to convert reals to integers. */
1509 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1511 /* This is the kind of divide that is easiest to do in the general case. */
1512 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1514 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1515 unsigned is probably best, but may break some code. */
1516 #ifndef DEFAULT_SIGNED_CHAR
1517 #define DEFAULT_SIGNED_CHAR 0
1518 #endif
1520 /* Don't cse the address of the function being compiled. */
1521 #define NO_RECURSIVE_FUNCTION_CSE 1
1523 /* Max number of bytes we can move from memory to memory
1524 in one reasonably fast instruction. */
1525 #define MOVE_MAX 4
1527 /* Define if operations between registers always perform the operation
1528 on the full register even if a narrower mode is specified. */
1529 #define WORD_REGISTER_OPERATIONS
1531 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1532 will either zero-extend or sign-extend. The value of this macro should
1533 be the code that says which one of the two operations is implicitly
1534 done, NIL if none. */
1535 #define LOAD_EXTEND_OP(MODE) \
1536 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1537 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : NIL))
1539 /* Define this if zero-extension is slow (more than one real instruction).
1540 On the ARM, it is more than one instruction only if not fetching from
1541 memory. */
1542 /* #define SLOW_ZERO_EXTEND */
1544 /* Nonzero if access to memory by bytes is slow and undesirable. */
1545 #define SLOW_BYTE_ACCESS 0
1547 /* Immediate shift counts are truncated by the output routines (or was it
1548 the assembler?). Shift counts in a register are truncated by ARM. Note
1549 that the native compiler puts too large (> 32) immediate shift counts
1550 into a register and shifts by the register, letting the ARM decide what
1551 to do instead of doing that itself. */
1552 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1553 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1554 On the arm, Y in a register is used modulo 256 for the shift. Only for
1555 rotates is modulo 32 used. */
1556 /* #define SHIFT_COUNT_TRUNCATED 1 */
1558 /* All integers have the same format so truncation is easy. */
1559 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
1561 /* Calling from registers is a massive pain. */
1562 #define NO_FUNCTION_CSE 1
1564 /* Chars and shorts should be passed as ints. */
1565 #define PROMOTE_PROTOTYPES 1
1567 /* The machine modes of pointers and functions */
1568 #define Pmode SImode
1569 #define FUNCTION_MODE Pmode
1571 /* The structure type of the machine dependent info field of insns
1572 No uses for this yet. */
1573 /* #define INSN_MACHINE_INFO struct machine_info */
1575 /* The relative costs of various types of constants. Note that cse.c defines
1576 REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
1577 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1578 case CONST_INT: \
1579 if (const_ok_for_arm (INTVAL (RTX))) \
1580 return (OUTER_CODE) == SET ? 2 : -1; \
1581 else if (OUTER_CODE == AND \
1582 && const_ok_for_arm (~INTVAL (RTX))) \
1583 return -1; \
1584 else if ((OUTER_CODE == COMPARE \
1585 || OUTER_CODE == PLUS || OUTER_CODE == MINUS) \
1586 && const_ok_for_arm (-INTVAL (RTX))) \
1587 return -1; \
1588 else \
1589 return 5; \
1590 case CONST: \
1591 case LABEL_REF: \
1592 case SYMBOL_REF: \
1593 return 6; \
1594 case CONST_DOUBLE: \
1595 if (const_double_rtx_ok_for_fpu (RTX)) \
1596 return (OUTER_CODE) == SET ? 2 : -1; \
1597 else if (((OUTER_CODE) == COMPARE || (OUTER_CODE) == PLUS) \
1598 && neg_const_double_rtx_ok_for_fpu (RTX)) \
1599 return -1; \
1600 return(7);
1602 #define ARM_FRAME_RTX(X) \
1603 ((X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1604 || (X) == arg_pointer_rtx)
1606 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1607 default: \
1608 return arm_rtx_costs (X, CODE, OUTER_CODE);
1610 /* Moves to and from memory are quite expensive */
1611 #define MEMORY_MOVE_COST(MODE) 10
1613 /* All address computations that can be done are free, but rtx cost returns
1614 the same for practically all of them. So we weight the different types
1615 of address here in the order (most pref first):
1616 PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
1617 #define ADDRESS_COST(X) \
1618 (10 - ((GET_CODE (X) == MEM || GET_CODE (X) == LABEL_REF \
1619 || GET_CODE (X) == SYMBOL_REF) \
1620 ? 0 \
1621 : ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC \
1622 || GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1623 ? 10 \
1624 : (((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS) \
1625 ? 6 + (GET_CODE (XEXP (X, 1)) == CONST_INT ? 2 \
1626 : ((GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == '2' \
1627 || GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == 'c' \
1628 || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == '2' \
1629 || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == 'c') \
1630 ? 1 : 0)) \
1631 : 4)))))
1635 /* Try to generate sequences that don't involve branches, we can then use
1636 conditional instructions */
1637 #define BRANCH_COST 4
1639 /* A C statement to update the variable COST based on the relationship
1640 between INSN that is dependent on DEP through dependence LINK. */
1641 #define ADJUST_COST(INSN,LINK,DEP,COST) \
1642 (COST) = arm_adjust_cost ((INSN), (LINK), (DEP), (COST))
1644 /* Position Independent Code. */
1645 /* We decide which register to use based on the compilation options and
1646 the assembler in use; this is more general than the APCS restriction of
1647 using sb (r9) all the time. */
1648 extern int arm_pic_register;
1650 /* The register number of the register used to address a table of static
1651 data addresses in memory. */
1652 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1654 #define FINALIZE_PIC arm_finalize_pic ()
1656 #define LEGITIMATE_PIC_OPERAND_P(X) (! symbol_mentioned_p (X))
1660 /* Condition code information. */
1661 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1662 return the mode to be used for the comparison.
1663 CCFPEmode should be used with floating inequalities,
1664 CCFPmode should be used with floating equalities.
1665 CC_NOOVmode should be used with SImode integer equalities.
1666 CC_Zmode should be used if only the Z flag is set correctly
1667 CCmode should be used otherwise. */
1669 #define EXTRA_CC_MODES CC_NOOVmode, CC_Zmode, CC_SWPmode, \
1670 CCFPmode, CCFPEmode, CC_DNEmode, CC_DEQmode, CC_DLEmode, \
1671 CC_DLTmode, CC_DGEmode, CC_DGTmode, CC_DLEUmode, CC_DLTUmode, \
1672 CC_DGEUmode, CC_DGTUmode, CC_Cmode
1674 #define EXTRA_CC_NAMES "CC_NOOV", "CC_Z", "CC_SWP", "CCFP", "CCFPE", \
1675 "CC_DNE", "CC_DEQ", "CC_DLE", "CC_DLT", "CC_DGE", "CC_DGT", "CC_DLEU", \
1676 "CC_DLTU", "CC_DGEU", "CC_DGTU", "CC_C"
1678 enum machine_mode arm_select_cc_mode ();
1679 #define SELECT_CC_MODE(OP,X,Y) arm_select_cc_mode ((OP), (X), (Y))
1681 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
1683 enum rtx_code arm_canonicalize_comparison ();
1684 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1685 do \
1687 if (GET_CODE (OP1) == CONST_INT \
1688 && ! (const_ok_for_arm (INTVAL (OP1)) \
1689 || (const_ok_for_arm (- INTVAL (OP1))))) \
1691 rtx const_op = OP1; \
1692 CODE = arm_canonicalize_comparison ((CODE), &const_op); \
1694 } while (0)
1696 #define STORE_FLAG_VALUE 1
1698 /* Define the information needed to generate branch insns. This is
1699 stored from the compare operation. Note that we can't use "rtx" here
1700 since it hasn't been defined! */
1702 extern struct rtx_def *arm_compare_op0, *arm_compare_op1;
1703 extern int arm_compare_fp;
1705 /* Define the codes that are matched by predicates in arm.c */
1706 #define PREDICATE_CODES \
1707 {"s_register_operand", {SUBREG, REG}}, \
1708 {"f_register_operand", {SUBREG, REG}}, \
1709 {"arm_add_operand", {SUBREG, REG, CONST_INT}}, \
1710 {"fpu_add_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1711 {"arm_rhs_operand", {SUBREG, REG, CONST_INT}}, \
1712 {"fpu_rhs_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1713 {"arm_not_operand", {SUBREG, REG, CONST_INT}}, \
1714 {"offsettable_memory_operand", {MEM}}, \
1715 {"alignable_memory_operand", {MEM}}, \
1716 {"shiftable_operator", {PLUS, MINUS, AND, IOR, XOR}}, \
1717 {"minmax_operator", {SMIN, SMAX, UMIN, UMAX}}, \
1718 {"shift_operator", {ASHIFT, ASHIFTRT, LSHIFTRT, ROTATERT, MULT}}, \
1719 {"di_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
1720 {"soft_df_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
1721 {"load_multiple_operation", {PARALLEL}}, \
1722 {"store_multiple_operation", {PARALLEL}}, \
1723 {"equality_operator", {EQ, NE}}, \
1724 {"arm_rhsm_operand", {SUBREG, REG, CONST_INT, MEM}}, \
1725 {"const_shift_operand", {CONST_INT}}, \
1726 {"index_operand", {SUBREG, REG, CONST_INT}}, \
1727 {"reg_or_int_operand", {SUBREG, REG, CONST_INT}}, \
1728 {"multi_register_push", {PARALLEL}}, \
1729 {"cc_register", {REG}}, \
1730 {"dominant_cc_register", {REG}},
1734 /* Gcc puts the pool in the wrong place for ARM, since we can only
1735 load addresses a limited distance around the pc. We do some
1736 special munging to move the constant pool values to the correct
1737 point in the code. */
1738 #define MACHINE_DEPENDENT_REORG(INSN) arm_reorg ((INSN))
1740 /* The pool is empty, since we have moved everything into the code. */
1741 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE,X,MODE,ALIGN,LABELNO,JUMPTO) \
1742 goto JUMPTO
1744 /* Output an internal label definition. */
1745 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
1746 do \
1748 char *s = (char *) alloca (40 + strlen (PREFIX)); \
1749 extern int arm_target_label, arm_ccfsm_state; \
1750 extern rtx arm_target_insn; \
1752 if (arm_ccfsm_state == 3 && arm_target_label == (NUM) \
1753 && !strcmp (PREFIX, "L")) \
1755 arm_ccfsm_state = 0; \
1756 arm_target_insn = NULL; \
1758 ASM_GENERATE_INTERNAL_LABEL (s, (PREFIX), (NUM)); \
1759 arm_asm_output_label (STREAM, s); \
1760 } while (0)
1762 /* Output a label definition. */
1763 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
1764 arm_asm_output_label ((STREAM), (NAME))
1766 /* Output a push or a pop instruction (only used when profiling). */
1767 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
1768 fprintf(STREAM,"\tstmfd\t%ssp!,{%s%s}\n", \
1769 REGISTER_PREFIX, REGISTER_PREFIX, reg_names[REGNO])
1771 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
1772 fprintf(STREAM,"\tldmfd\t%ssp!,{%s%s}\n", \
1773 REGISTER_PREFIX, REGISTER_PREFIX, reg_names[REGNO])
1775 /* Target characters. */
1776 #define TARGET_BELL 007
1777 #define TARGET_BS 010
1778 #define TARGET_TAB 011
1779 #define TARGET_NEWLINE 012
1780 #define TARGET_VT 013
1781 #define TARGET_FF 014
1782 #define TARGET_CR 015
1784 /* Only perform branch elimination (by making instructions conditional) if
1785 we're optimising. Otherwise it's of no use anyway. */
1786 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1787 if (optimize) \
1788 final_prescan_insn (INSN, OPVEC, NOPERANDS)
1790 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1791 ((CODE) == '?' || (CODE) == '|' || (CODE) == '@')
1792 /* Output an operand of an instruction. */
1793 #define PRINT_OPERAND(STREAM, X, CODE) \
1794 arm_print_operand (STREAM, X, CODE)
1796 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
1797 (HOST_BITS_PER_WIDE_INT <= 32 ? (x) \
1798 : (((x) & (unsigned HOST_WIDE_INT) 0xffffffff) | \
1799 (((x) & (unsigned HOST_WIDE_INT) 0x80000000) \
1800 ? ((~ (HOST_WIDE_INT) 0) \
1801 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
1802 : 0))))
1804 /* Output the address of an operand. */
1805 #define PRINT_OPERAND_ADDRESS(STREAM,X) \
1807 int is_minus = GET_CODE (X) == MINUS; \
1809 if (GET_CODE (X) == REG) \
1810 fprintf (STREAM, "[%s%s, #0]", REGISTER_PREFIX, \
1811 reg_names[REGNO (X)]); \
1812 else if (GET_CODE (X) == PLUS || is_minus) \
1814 rtx base = XEXP (X, 0); \
1815 rtx index = XEXP (X, 1); \
1816 char *base_reg_name; \
1817 HOST_WIDE_INT offset = 0; \
1818 if (GET_CODE (base) != REG) \
1820 /* Ensure that BASE is a register (one of them must be). */ \
1821 rtx temp = base; \
1822 base = index; \
1823 index = temp; \
1825 base_reg_name = reg_names[REGNO (base)]; \
1826 switch (GET_CODE (index)) \
1828 case CONST_INT: \
1829 offset = INTVAL (index); \
1830 if (is_minus) \
1831 offset = -offset; \
1832 fprintf (STREAM, "[%s%s, #%d]", REGISTER_PREFIX, \
1833 base_reg_name, offset); \
1834 break; \
1836 case REG: \
1837 fprintf (STREAM, "[%s%s, %s%s%s]", REGISTER_PREFIX, \
1838 base_reg_name, is_minus ? "-" : "", \
1839 REGISTER_PREFIX, reg_names[REGNO (index)] ); \
1840 break; \
1842 case MULT: \
1843 case ASHIFTRT: \
1844 case LSHIFTRT: \
1845 case ASHIFT: \
1846 case ROTATERT: \
1848 fprintf (STREAM, "[%s%s, %s%s%s", REGISTER_PREFIX, \
1849 base_reg_name, is_minus ? "-" : "", REGISTER_PREFIX,\
1850 reg_names[REGNO (XEXP (index, 0))]); \
1851 arm_print_operand (STREAM, index, 'S'); \
1852 fputs ("]", STREAM); \
1853 break; \
1856 default: \
1857 abort(); \
1860 else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
1861 || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
1863 extern int output_memory_reference_mode; \
1865 if (GET_CODE (XEXP (X, 0)) != REG) \
1866 abort (); \
1868 if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
1869 fprintf (STREAM, "[%s%s, #%s%d]!", REGISTER_PREFIX, \
1870 reg_names[REGNO (XEXP (X, 0))], \
1871 GET_CODE (X) == PRE_DEC ? "-" : "", \
1872 GET_MODE_SIZE (output_memory_reference_mode)); \
1873 else \
1874 fprintf (STREAM, "[%s%s], #%s%d", REGISTER_PREFIX, \
1875 reg_names[REGNO (XEXP (X, 0))], \
1876 GET_CODE (X) == POST_DEC ? "-" : "", \
1877 GET_MODE_SIZE (output_memory_reference_mode)); \
1879 else output_addr_const(STREAM, X); \
1882 /* Handles PIC addr specially */
1883 #define OUTPUT_INT_ADDR_CONST(STREAM,X) \
1885 if (flag_pic && GET_CODE(X) == CONST && is_pic(X)) \
1887 output_addr_const(STREAM, XEXP (XEXP (XEXP (X, 0), 0), 0)); \
1888 fputs(" - (", STREAM); \
1889 output_addr_const(STREAM, XEXP (XEXP (XEXP (X, 0), 1), 0)); \
1890 fputs(")", STREAM); \
1892 else output_addr_const(STREAM, X); \
1895 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1896 Used for C++ multiple inheritance. */
1897 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1898 do { \
1899 int mi_delta = (DELTA); \
1900 char *mi_op = mi_delta < 0 ? "sub" : "add"; \
1901 int shift = 0; \
1902 int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) \
1903 ? 1 : 0); \
1904 if (mi_delta < 0) mi_delta = -mi_delta; \
1905 while (mi_delta != 0) \
1907 if (mi_delta & (3 << shift) == 0) \
1908 shift += 2; \
1909 else \
1911 fprintf (FILE, "\t%s\t%s%s, %s%s, #%d\n", \
1912 mi_op, REGISTER_PREFIX, reg_names[this_regno], \
1913 REGISTER_PREFIX, reg_names[this_regno], \
1914 mi_delta & (0xff << shift)); \
1915 mi_delta &= ~(0xff << shift); \
1916 shift += 8; \
1919 fprintf (FILE, "\tldr\t%spc, [%spc, #-4]\n", REGISTER_PREFIX, \
1920 REGISTER_PREFIX); \
1921 ASM_OUTPUT_INT (FILE, XEXP (DECL_RTL (FUNCTION), 0)); \
1922 } while (0)
1924 /* A C expression whose value is RTL representing the value of the return
1925 address for the frame COUNT steps up from the current frame. */
1927 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1928 ((COUNT == 0) \
1929 ? gen_rtx (MEM, Pmode, plus_constant (FRAME, -4)) \
1930 : (rtx) 0)
1932 /* Used to mask out junk bits from the return address, such as
1933 processor state, interrupt status, condition codes and the like. */
1934 #define MASK_RETURN_ADDR \
1935 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
1936 in 26 bit mode, the condition codes must be masked out of the \
1937 return address. This does not apply to ARM6 and later processors \
1938 when running in 32 bit mode. */ \
1939 ((!TARGET_APCS_32) ? (GEN_INT (0x03fffffc)) : (GEN_INT (0xffffffff)))
1941 /* Prototypes for arm.c -- actually, they aren't since the types aren't
1942 fully defined yet. */
1944 void arm_override_options (/* void */);
1945 int use_return_insn (/* void */);
1946 int const_ok_for_arm (/* HOST_WIDE_INT */);
1947 int const_ok_for_op (/* HOST_WIDE_INT, enum rtx_code,
1948 enum machine_mode */);
1949 int arm_split_constant (/* enum rtx_code, enum machine_mode,
1950 HOST_WIDE_INT, struct rtx_def *,
1951 struct rtx_def *, int */);
1952 enum rtx_code arm_canonicalize_comparison (/* enum rtx_code,
1953 struct rtx_def ** */);
1954 int arm_return_in_memory (/* union tree_node * */);
1955 int legitimate_pic_operand_p (/* struct rtx_def * */);
1956 struct rtx_def *legitimize_pic_address (/* struct rtx_def *,
1957 enum machine_mode,
1958 struct rtx_def * */);
1959 int is_pic (/* struct rtx_def * */);
1960 void arm_finalize_pic (/* void */);
1961 int arm_rtx_costs (/* struct rtx_def *, enum rtx_code, enum rtx_code */);
1962 int arm_adjust_code (/* struct rtx_def *, struct rtx_def *,
1963 struct rtx_def *, int */);
1964 int const_double_rtx_ok_for_fpu (/* struct rtx_def * */);
1965 int neg_const_double_rtx_ok_for_fpu (/* struct rtx_def * */);
1966 int s_register_operand (/* struct rtx_def *, enum machine_mode */);
1967 int f_register_operand (/* struct rtx_def *, enum machine_mode */);
1968 int reg_or_int_operand (/* struct rtx_def *, enum machine_mode */);
1969 int reload_memory_operand (/* struct rtx_def *, enum machine_mode */);
1970 int arm_rhs_operand (/* struct rtx_def *, enum machine_mode */);
1971 int arm_rhsm_operand (/* struct rtx_def *, enum machine_mode */);
1972 int arm_add_operand (/* struct rtx_def *, enum machine_mode */);
1973 int arm_not_operand (/* struct rtx_def *, enum machine_mode */);
1974 int offsettable_memory_operand (/* struct rtx_def *, enum machine_mode */);
1975 int alignable_memory_operand (/* struct rtx_def *, enum machine_mode */);
1976 int fpu_rhs_operand (/* struct rtx_def *, enum machine_mode */);
1977 int fpu_add_operand (/* struct rtx_def *, enum machine_mode */);
1978 int power_of_two_operand (/* struct rtx_def *, enum machine_mode */);
1979 int di_operand (/* struct rtx_def *, enum machine_mode */);
1980 int soft_df_operand (/* struct rtx_def *, enum machine_mode */);
1981 int index_operand (/* struct rtx_def *, enum machine_mode */);
1982 int const_shift_operand (/* struct rtx_def *, enum machine_mode */);
1983 int shiftable_operator (/* struct rtx_def *, enum machine_mode */);
1984 int shift_operator (/* struct rtx_def *, enum machine_mode */);
1985 int equality_operator (/* struct rtx_def *, enum machine_mode */);
1986 int minmax_operator (/* struct rtx_def *, enum machine_mode */);
1987 int cc_register (/* struct rtx_def *, enum machine_mode */);
1988 int dominant_cc_register (/* struct rtx_def *, enum machine_mode */);
1989 int symbol_mentioned_p (/* struct rtx_def * */);
1990 int label_mentioned_p (/* struct rtx_def * */);
1991 enum rtx_code minmax_code (/* struct rtx_def * */);
1992 int adjacent_mem_locations (/* struct rtx_def *, struct rtx_def * */);
1993 int load_multiple_operation (/* struct rtx_def *, enum machine_mode */);
1994 int store_multiple_operation (/* struct rtx_def *, enum machine_mode */);
1995 int load_multiple_sequence (/* struct rtx_def **, int, int *, int *,
1996 HOST_WIDE_INT * */);
1997 char *emit_ldm_seq (/* struct rtx_def **, int */);
1998 int store_multiple_sequence (/* struct rtx_def **, int, int *, int *,
1999 HOST_WIDE_INT * */);
2000 char *emit_stm_seq (/* struct rtx_def **, int */);
2001 int multi_register_push (/* struct rtx_def *, enum machine_mode */);
2002 int arm_valid_machine_decl_attribute (/* union tree_node *, union tree_node *,
2003 union tree_node *,
2004 union tree_node * */);
2005 struct rtx_def *arm_gen_load_multiple (/* int, int, struct rtx_def *,
2006 int, int */);
2007 struct rtx_def *arm_gen_store_multiple (/* int, int, struct rtx_def *,
2008 int, int */);
2009 int arm_gen_movstrqi (/* struct rtx_def ** */);
2010 struct rtx_def *gen_rotated_half_load (/* struct rtx_def * */);
2011 enum machine_mode arm_select_cc_mode (/* enum rtx_code, struct rtx_def *,
2012 struct rtx_def * */);
2013 struct rtx_def *gen_compare_reg (/* enum rtx_code, struct rtx_def *,
2014 struct rtx_def * */);
2015 void arm_reload_in_hi (/* struct rtx_def ** */);
2016 void arm_reload_out_hi (/* struct rtx_def ** */);
2017 void arm_reorg (/* struct rtx_def * */);
2018 char *fp_immediate_constant (/* struct rtx_def * */);
2019 void print_multi_reg (/* FILE *, char *, int, int */);
2020 char *output_call (/* struct rtx_def ** */);
2021 char *output_call_mem (/* struct rtx_def ** */);
2022 char *output_mov_long_double_fpu_from_arm (/* struct rtx_def ** */);
2023 char *output_mov_long_double_arm_from_fpu (/* struct rtx_def ** */);
2024 char *output_mov_long_double_arm_from_arm (/* struct rtx_def ** */);
2025 char *output_mov_double_fpu_from_arm (/* struct rtx_def ** */);
2026 char *output_mov_double_arm_from_fpu (/* struct rtx_def ** */);
2027 char *output_mov_double (/* struct rtx_def ** */);
2028 char *output_mov_immediate (/* struct rtx_def ** */);
2029 char *output_add_immediate (/* struct rtx_def ** */);
2030 char *arithmetic_instr (/* struct rtx_def *, int */);
2031 void output_ascii_pseudo_op (/* FILE *, unsigned char *, int */);
2032 char *output_return_instruction (/* struct rtx_def *, int, int */);
2033 int arm_volatile_func (/* void */);
2034 void output_func_prologue (/* FILE *, int */);
2035 void output_func_epilogue (/* FILE *, int */);
2036 void arm_expand_prologue (/* void */);
2037 void arm_print_operand (/* FILE *, struct rtx_def *, int */);
2038 void arm_asm_output_label (/* FILE *, char * */);
2039 void output_lcomm_directive (/* FILE *, char *, int, int */);
2040 void final_prescan_insn (/* struct rtx_def *, struct rtx_def **, int */);
2041 #ifdef AOF_ASSEMBLER
2042 struct rtx_def *aof_pic_entry (/* struct rtx_def * */);
2043 void aof_dump_pic_table (/* FILE * */);
2044 char *aof_text_section (/* void */);
2045 char *aof_data_section (/* void */);
2046 void aof_add_import (/* char * */);
2047 void aof_delete_import (/* char * */);
2048 void aof_dump_imports (/* FILE * */);
2049 #endif