* flags.h: New variables align_loops, align_loops_log,
[official-gcc.git] / gcc / final.c
blob1562dcb05d6edffeceec79908fcf7b613c8f8773
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
50 #include "tree.h"
51 #include "rtl.h"
52 #include "regs.h"
53 #include "insn-config.h"
54 #include "insn-flags.h"
55 #include "insn-attr.h"
56 #include "insn-codes.h"
57 #include "recog.h"
58 #include "conditions.h"
59 #include "flags.h"
60 #include "real.h"
61 #include "hard-reg-set.h"
62 #include "defaults.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
70 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
71 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
72 #include "dbxout.h"
73 #if defined (USG) || !defined (HAVE_STAB_H)
74 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
75 #else
76 #include <stab.h>
77 #endif
79 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
81 #ifdef XCOFF_DEBUGGING_INFO
82 #include "xcoffout.h"
83 #endif
85 #ifdef DWARF_DEBUGGING_INFO
86 #include "dwarfout.h"
87 #endif
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
91 #endif
93 #ifdef SDB_DEBUGGING_INFO
94 #include "sdbout.h"
95 #endif
97 /* .stabd code for line number. */
98 #ifndef N_SLINE
99 #define N_SLINE 0x44
100 #endif
102 /* .stabs code for included file name. */
103 #ifndef N_SOL
104 #define N_SOL 0x84
105 #endif
107 #ifndef INT_TYPE_SIZE
108 #define INT_TYPE_SIZE BITS_PER_WORD
109 #endif
111 #ifndef LONG_TYPE_SIZE
112 #define LONG_TYPE_SIZE BITS_PER_WORD
113 #endif
115 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
116 null default for it to save conditionalization later. */
117 #ifndef CC_STATUS_INIT
118 #define CC_STATUS_INIT
119 #endif
121 /* How to start an assembler comment. */
122 #ifndef ASM_COMMENT_START
123 #define ASM_COMMENT_START ";#"
124 #endif
126 /* Is the given character a logical line separator for the assembler? */
127 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
128 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
129 #endif
131 #ifndef JUMP_TABLES_IN_TEXT_SECTION
132 #define JUMP_TABLES_IN_TEXT_SECTION 0
133 #endif
135 /* Last insn processed by final_scan_insn. */
136 static rtx debug_insn = 0;
138 /* Line number of last NOTE. */
139 static int last_linenum;
141 /* Highest line number in current block. */
142 static int high_block_linenum;
144 /* Likewise for function. */
145 static int high_function_linenum;
147 /* Filename of last NOTE. */
148 static char *last_filename;
150 /* Number of basic blocks seen so far;
151 used if profile_block_flag is set. */
152 static int count_basic_blocks;
154 /* Number of instrumented arcs when profile_arc_flag is set. */
155 extern int count_instrumented_arcs;
157 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
159 /* Nonzero while outputting an `asm' with operands.
160 This means that inconsistencies are the user's fault, so don't abort.
161 The precise value is the insn being output, to pass to error_for_asm. */
162 static rtx this_is_asm_operands;
164 /* Number of operands of this insn, for an `asm' with operands. */
165 static unsigned int insn_noperands;
167 /* Compare optimization flag. */
169 static rtx last_ignored_compare = 0;
171 /* Flag indicating this insn is the start of a new basic block. */
173 static int new_block = 1;
175 /* All the symbol-blocks (levels of scoping) in the compilation
176 are assigned sequence numbers in order of appearance of the
177 beginnings of the symbol-blocks. Both final and dbxout do this,
178 and assume that they will both give the same number to each block.
179 Final uses these sequence numbers to generate assembler label names
180 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
181 Dbxout uses the sequence numbers to generate references to the same labels
182 from the dbx debugging information.
184 Sdb records this level at the beginning of each function,
185 in order to find the current level when recursing down declarations.
186 It outputs the block beginning and endings
187 at the point in the asm file where the blocks would begin and end. */
189 int next_block_index;
191 /* Assign a unique number to each insn that is output.
192 This can be used to generate unique local labels. */
194 static int insn_counter = 0;
196 #ifdef HAVE_cc0
197 /* This variable contains machine-dependent flags (defined in tm.h)
198 set and examined by output routines
199 that describe how to interpret the condition codes properly. */
201 CC_STATUS cc_status;
203 /* During output of an insn, this contains a copy of cc_status
204 from before the insn. */
206 CC_STATUS cc_prev_status;
207 #endif
209 /* Indexed by hardware reg number, is 1 if that register is ever
210 used in the current function.
212 In life_analysis, or in stupid_life_analysis, this is set
213 up to record the hard regs used explicitly. Reload adds
214 in the hard regs used for holding pseudo regs. Final uses
215 it to generate the code in the function prologue and epilogue
216 to save and restore registers as needed. */
218 char regs_ever_live[FIRST_PSEUDO_REGISTER];
220 /* Nonzero means current function must be given a frame pointer.
221 Set in stmt.c if anything is allocated on the stack there.
222 Set in reload1.c if anything is allocated on the stack there. */
224 int frame_pointer_needed;
226 /* Assign unique numbers to labels generated for profiling. */
228 int profile_label_no;
230 /* Length so far allocated in PENDING_BLOCKS. */
232 static int max_block_depth;
234 /* Stack of sequence numbers of symbol-blocks of which we have seen the
235 beginning but not yet the end. Sequence numbers are assigned at
236 the beginning; this stack allows us to find the sequence number
237 of a block that is ending. */
239 static int *pending_blocks;
241 /* Number of elements currently in use in PENDING_BLOCKS. */
243 static int block_depth;
245 /* Nonzero if have enabled APP processing of our assembler output. */
247 static int app_on;
249 /* If we are outputting an insn sequence, this contains the sequence rtx.
250 Zero otherwise. */
252 rtx final_sequence;
254 #ifdef ASSEMBLER_DIALECT
256 /* Number of the assembler dialect to use, starting at 0. */
257 static int dialect_number;
258 #endif
260 /* Indexed by line number, nonzero if there is a note for that line. */
262 static char *line_note_exists;
264 /* Linked list to hold line numbers for each basic block. */
266 struct bb_list {
267 struct bb_list *next; /* pointer to next basic block */
268 int line_num; /* line number */
269 int file_label_num; /* LPBC<n> label # for stored filename */
270 int func_label_num; /* LPBC<n> label # for stored function name */
273 static struct bb_list *bb_head = 0; /* Head of basic block list */
274 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
275 static int bb_file_label_num = -1; /* Current label # for file */
276 static int bb_func_label_num = -1; /* Current label # for func */
278 /* Linked list to hold the strings for each file and function name output. */
280 struct bb_str {
281 struct bb_str *next; /* pointer to next string */
282 const char *string; /* string */
283 int label_num; /* label number */
284 int length; /* string length */
287 #ifdef HAVE_peephole
288 extern rtx peephole PROTO((rtx));
289 #endif
291 static struct bb_str *sbb_head = 0; /* Head of string list. */
292 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
293 static int sbb_label_num = 0; /* Last label used */
295 #ifdef HAVE_ATTR_length
296 static int asm_insn_count PROTO((rtx));
297 #endif
298 static void profile_function PROTO((FILE *));
299 static void profile_after_prologue PROTO((FILE *));
300 static void add_bb PROTO((FILE *));
301 static int add_bb_string PROTO((const char *, int));
302 static void output_source_line PROTO((FILE *, rtx));
303 static rtx walk_alter_subreg PROTO((rtx));
304 static void output_asm_name PROTO((void));
305 static void output_operand PROTO((rtx, int));
306 #ifdef LEAF_REGISTERS
307 static void leaf_renumber_regs PROTO((rtx));
308 #endif
309 #ifdef HAVE_cc0
310 static int alter_cond PROTO((rtx));
311 #endif
313 /* Initialize data in final at the beginning of a compilation. */
315 void
316 init_final (filename)
317 const char *filename ATTRIBUTE_UNUSED;
319 next_block_index = 2;
320 app_on = 0;
321 max_block_depth = 20;
322 pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
323 final_sequence = 0;
325 #ifdef ASSEMBLER_DIALECT
326 dialect_number = ASSEMBLER_DIALECT;
327 #endif
330 /* Called at end of source file,
331 to output the block-profiling table for this entire compilation. */
333 void
334 end_final (filename)
335 const char *filename;
337 int i;
339 if (profile_block_flag || profile_arc_flag)
341 char name[20];
342 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
343 int size, rounded;
344 struct bb_list *ptr;
345 struct bb_str *sptr;
346 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
347 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
349 if (profile_block_flag)
350 size = long_bytes * count_basic_blocks;
351 else
352 size = long_bytes * count_instrumented_arcs;
353 rounded = size;
355 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
356 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
357 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
359 data_section ();
361 /* Output the main header, of 11 words:
362 0: 1 if this file is initialized, else 0.
363 1: address of file name (LPBX1).
364 2: address of table of counts (LPBX2).
365 3: number of counts in the table.
366 4: always 0, for compatibility with Sun.
368 The following are GNU extensions:
370 5: address of table of start addrs of basic blocks (LPBX3).
371 6: Number of bytes in this header.
372 7: address of table of function names (LPBX4).
373 8: address of table of line numbers (LPBX5) or 0.
374 9: address of table of file names (LPBX6) or 0.
375 10: space reserved for basic block profiling. */
377 ASM_OUTPUT_ALIGN (asm_out_file, align);
379 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
380 /* zero word */
381 assemble_integer (const0_rtx, long_bytes, 1);
383 /* address of filename */
384 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
385 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
387 /* address of count table */
388 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
389 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
391 /* count of the # of basic blocks or # of instrumented arcs */
392 if (profile_block_flag)
393 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
394 else
395 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
398 /* zero word (link field) */
399 assemble_integer (const0_rtx, pointer_bytes, 1);
401 /* address of basic block start address table */
402 if (profile_block_flag)
404 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
405 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
408 else
409 assemble_integer (const0_rtx, pointer_bytes, 1);
411 /* byte count for extended structure. */
412 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
414 /* address of function name table */
415 if (profile_block_flag)
417 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
418 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
421 else
422 assemble_integer (const0_rtx, pointer_bytes, 1);
424 /* address of line number and filename tables if debugging. */
425 if (write_symbols != NO_DEBUG && profile_block_flag)
427 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
428 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
429 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
430 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
432 else
434 assemble_integer (const0_rtx, pointer_bytes, 1);
435 assemble_integer (const0_rtx, pointer_bytes, 1);
438 /* space for extension ptr (link field) */
439 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
441 /* Output the file name changing the suffix to .d for Sun tcov
442 compatibility. */
443 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
445 char *cwd = getpwd ();
446 int len = strlen (filename) + strlen (cwd) + 1;
447 char *data_file = (char *) alloca (len + 4);
449 strcpy (data_file, cwd);
450 strcat (data_file, "/");
451 strcat (data_file, filename);
452 strip_off_ending (data_file, len);
453 if (profile_block_flag)
454 strcat (data_file, ".d");
455 else
456 strcat (data_file, ".da");
457 assemble_string (data_file, strlen (data_file) + 1);
460 /* Make space for the table of counts. */
461 if (size == 0)
463 /* Realign data section. */
464 ASM_OUTPUT_ALIGN (asm_out_file, align);
465 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
466 if (size != 0)
467 assemble_zeros (size);
469 else
471 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
472 #ifdef ASM_OUTPUT_SHARED_LOCAL
473 if (flag_shared_data)
474 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
475 else
476 #endif
477 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
478 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
479 BIGGEST_ALIGNMENT);
480 #else
481 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
482 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
483 BIGGEST_ALIGNMENT);
484 #else
485 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
486 #endif
487 #endif
490 /* Output any basic block strings */
491 if (profile_block_flag)
493 readonly_data_section ();
494 if (sbb_head)
496 ASM_OUTPUT_ALIGN (asm_out_file, align);
497 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
499 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
500 sptr->label_num);
501 assemble_string (sptr->string, sptr->length);
506 /* Output the table of addresses. */
507 if (profile_block_flag)
509 /* Realign in new section */
510 ASM_OUTPUT_ALIGN (asm_out_file, align);
511 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
512 for (i = 0; i < count_basic_blocks; i++)
514 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
515 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
516 pointer_bytes, 1);
520 /* Output the table of function names. */
521 if (profile_block_flag)
523 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
524 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
526 if (ptr->func_label_num >= 0)
528 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
529 ptr->func_label_num);
530 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
531 pointer_bytes, 1);
533 else
534 assemble_integer (const0_rtx, pointer_bytes, 1);
537 for ( ; i < count_basic_blocks; i++)
538 assemble_integer (const0_rtx, pointer_bytes, 1);
541 if (write_symbols != NO_DEBUG && profile_block_flag)
543 /* Output the table of line numbers. */
544 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
545 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
546 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
548 for ( ; i < count_basic_blocks; i++)
549 assemble_integer (const0_rtx, long_bytes, 1);
551 /* Output the table of file names. */
552 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
553 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
555 if (ptr->file_label_num >= 0)
557 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
558 ptr->file_label_num);
559 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
560 pointer_bytes, 1);
562 else
563 assemble_integer (const0_rtx, pointer_bytes, 1);
566 for ( ; i < count_basic_blocks; i++)
567 assemble_integer (const0_rtx, pointer_bytes, 1);
570 /* End with the address of the table of addresses,
571 so we can find it easily, as the last word in the file's text. */
572 if (profile_block_flag)
574 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
575 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
581 /* Enable APP processing of subsequent output.
582 Used before the output from an `asm' statement. */
584 void
585 app_enable ()
587 if (! app_on)
589 fputs (ASM_APP_ON, asm_out_file);
590 app_on = 1;
594 /* Disable APP processing of subsequent output.
595 Called from varasm.c before most kinds of output. */
597 void
598 app_disable ()
600 if (app_on)
602 fputs (ASM_APP_OFF, asm_out_file);
603 app_on = 0;
607 /* Return the number of slots filled in the current
608 delayed branch sequence (we don't count the insn needing the
609 delay slot). Zero if not in a delayed branch sequence. */
611 #ifdef DELAY_SLOTS
613 dbr_sequence_length ()
615 if (final_sequence != 0)
616 return XVECLEN (final_sequence, 0) - 1;
617 else
618 return 0;
620 #endif
622 /* The next two pages contain routines used to compute the length of an insn
623 and to shorten branches. */
625 /* Arrays for insn lengths, and addresses. The latter is referenced by
626 `insn_current_length'. */
628 static short *insn_lengths;
629 int *insn_addresses;
631 /* Max uid for which the above arrays are valid. */
632 static int insn_lengths_max_uid;
634 /* Address of insn being processed. Used by `insn_current_length'. */
635 int insn_current_address;
637 /* Address of insn being processed in previous iteration. */
638 int insn_last_address;
640 /* konwn invariant alignment of insn being processed. */
641 int insn_current_align;
643 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
644 gives the next following alignment insn that increases the known
645 alignment, or NULL_RTX if there is no such insn.
646 For any alignment obtained this way, we can again index uid_align with
647 its uid to obtain the next following align that in turn increases the
648 alignment, till we reach NULL_RTX; the sequence obtained this way
649 for each insn we'll call the alignment chain of this insn in the following
650 comments. */
652 struct label_alignment {
653 short alignment;
654 short max_skip;
657 static rtx *uid_align;
658 static int *uid_shuid;
659 static struct label_alignment *label_align;
661 /* Indicate that branch shortening hasn't yet been done. */
663 void
664 init_insn_lengths ()
666 if (label_align)
668 free (label_align);
669 label_align = 0;
671 if (uid_shuid)
673 free (uid_shuid);
674 uid_shuid = 0;
676 if (insn_lengths)
678 free (insn_lengths);
679 insn_lengths = 0;
680 insn_lengths_max_uid = 0;
682 if (insn_addresses)
684 free (insn_addresses);
685 insn_addresses = 0;
687 if (uid_align)
689 free (uid_align);
690 uid_align = 0;
694 /* Obtain the current length of an insn. If branch shortening has been done,
695 get its actual length. Otherwise, get its maximum length. */
698 get_attr_length (insn)
699 rtx insn;
701 #ifdef HAVE_ATTR_length
702 rtx body;
703 int i;
704 int length = 0;
706 if (insn_lengths_max_uid > INSN_UID (insn))
707 return insn_lengths[INSN_UID (insn)];
708 else
709 switch (GET_CODE (insn))
711 case NOTE:
712 case BARRIER:
713 case CODE_LABEL:
714 return 0;
716 case CALL_INSN:
717 length = insn_default_length (insn);
718 break;
720 case JUMP_INSN:
721 body = PATTERN (insn);
722 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
724 /* Alignment is machine-dependent and should be handled by
725 ADDR_VEC_ALIGN. */
727 else
728 length = insn_default_length (insn);
729 break;
731 case INSN:
732 body = PATTERN (insn);
733 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
734 return 0;
736 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
737 length = asm_insn_count (body) * insn_default_length (insn);
738 else if (GET_CODE (body) == SEQUENCE)
739 for (i = 0; i < XVECLEN (body, 0); i++)
740 length += get_attr_length (XVECEXP (body, 0, i));
741 else
742 length = insn_default_length (insn);
743 break;
745 default:
746 break;
749 #ifdef ADJUST_INSN_LENGTH
750 ADJUST_INSN_LENGTH (insn, length);
751 #endif
752 return length;
753 #else /* not HAVE_ATTR_length */
754 return 0;
755 #endif /* not HAVE_ATTR_length */
758 /* Code to handle alignment inside shorten_branches. */
760 /* Here is an explanation how the algorithm in align_fuzz can give
761 proper results:
763 Call a sequence of instructions beginning with alignment point X
764 and continuing until the next alignment point `block X'. When `X'
765 is used in an expression, it means the alignment value of the
766 alignment point.
768 Call the distance between the start of the first insn of block X, and
769 the end of the last insn of block X `IX', for the `inner size of X'.
770 This is clearly the sum of the instruction lengths.
772 Likewise with the next alignment-delimited block following X, which we
773 shall call block Y.
775 Call the distance between the start of the first insn of block X, and
776 the start of the first insn of block Y `OX', for the `outer size of X'.
778 The estimated padding is then OX - IX.
780 OX can be safely estimated as
782 if (X >= Y)
783 OX = round_up(IX, Y)
784 else
785 OX = round_up(IX, X) + Y - X
787 Clearly est(IX) >= real(IX), because that only depends on the
788 instruction lengths, and those being overestimated is a given.
790 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
791 we needn't worry about that when thinking about OX.
793 When X >= Y, the alignment provided by Y adds no uncertainty factor
794 for branch ranges starting before X, so we can just round what we have.
795 But when X < Y, we don't know anything about the, so to speak,
796 `middle bits', so we have to assume the worst when aligning up from an
797 address mod X to one mod Y, which is Y - X. */
799 #ifndef LABEL_ALIGN
800 #define LABEL_ALIGN(LABEL) align_labels_log
801 #endif
803 #ifndef LABEL_ALIGN_MAX_SKIP
804 #define LABEL_ALIGN_MAX_SKIP (align_labels-1)
805 #endif
807 #ifndef LOOP_ALIGN
808 #define LOOP_ALIGN(LABEL) align_loops_log
809 #endif
811 #ifndef LOOP_ALIGN_MAX_SKIP
812 #define LOOP_ALIGN_MAX_SKIP (align_loops-1)
813 #endif
815 #ifndef LABEL_ALIGN_AFTER_BARRIER
816 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
817 #endif
819 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
820 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
821 #endif
823 #ifndef ADDR_VEC_ALIGN
825 final_addr_vec_align (addr_vec)
826 rtx addr_vec;
828 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
830 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
831 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
832 return align;
835 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
836 #endif
838 #ifndef INSN_LENGTH_ALIGNMENT
839 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
840 #endif
842 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
844 static int min_labelno, max_labelno;
846 #define LABEL_TO_ALIGNMENT(LABEL) \
847 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
849 #define LABEL_TO_MAX_SKIP(LABEL) \
850 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
852 /* For the benefit of port specific code do this also as a function. */
854 label_to_alignment (label)
855 rtx label;
857 return LABEL_TO_ALIGNMENT (label);
860 #ifdef HAVE_ATTR_length
861 /* The differences in addresses
862 between a branch and its target might grow or shrink depending on
863 the alignment the start insn of the range (the branch for a forward
864 branch or the label for a backward branch) starts out on; if these
865 differences are used naively, they can even oscillate infinitely.
866 We therefore want to compute a 'worst case' address difference that
867 is independent of the alignment the start insn of the range end
868 up on, and that is at least as large as the actual difference.
869 The function align_fuzz calculates the amount we have to add to the
870 naively computed difference, by traversing the part of the alignment
871 chain of the start insn of the range that is in front of the end insn
872 of the range, and considering for each alignment the maximum amount
873 that it might contribute to a size increase.
875 For casesi tables, we also want to know worst case minimum amounts of
876 address difference, in case a machine description wants to introduce
877 some common offset that is added to all offsets in a table.
878 For this purpose, align_fuzz with a growth argument of 0 comuptes the
879 appropriate adjustment. */
882 /* Compute the maximum delta by which the difference of the addresses of
883 START and END might grow / shrink due to a different address for start
884 which changes the size of alignment insns between START and END.
885 KNOWN_ALIGN_LOG is the alignment known for START.
886 GROWTH should be ~0 if the objective is to compute potential code size
887 increase, and 0 if the objective is to compute potential shrink.
888 The return value is undefined for any other value of GROWTH. */
890 align_fuzz (start, end, known_align_log, growth)
891 rtx start, end;
892 int known_align_log;
893 unsigned growth;
895 int uid = INSN_UID (start);
896 rtx align_label;
897 int known_align = 1 << known_align_log;
898 int end_shuid = INSN_SHUID (end);
899 int fuzz = 0;
901 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
903 int align_addr, new_align;
905 uid = INSN_UID (align_label);
906 align_addr = insn_addresses[uid] - insn_lengths[uid];
907 if (uid_shuid[uid] > end_shuid)
908 break;
909 known_align_log = LABEL_TO_ALIGNMENT (align_label);
910 new_align = 1 << known_align_log;
911 if (new_align < known_align)
912 continue;
913 fuzz += (-align_addr ^ growth) & (new_align - known_align);
914 known_align = new_align;
916 return fuzz;
919 /* Compute a worst-case reference address of a branch so that it
920 can be safely used in the presence of aligned labels. Since the
921 size of the branch itself is unknown, the size of the branch is
922 not included in the range. I.e. for a forward branch, the reference
923 address is the end address of the branch as known from the previous
924 branch shortening pass, minus a value to account for possible size
925 increase due to alignment. For a backward branch, it is the start
926 address of the branch as known from the current pass, plus a value
927 to account for possible size increase due to alignment.
928 NB.: Therefore, the maximum offset allowed for backward branches needs
929 to exclude the branch size. */
931 insn_current_reference_address (branch)
932 rtx branch;
934 rtx dest;
935 rtx seq = NEXT_INSN (PREV_INSN (branch));
936 int seq_uid = INSN_UID (seq);
937 if (GET_CODE (branch) != JUMP_INSN)
938 /* This can happen for example on the PA; the objective is to know the
939 offset to address something in front of the start of the function.
940 Thus, we can treat it like a backward branch.
941 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
942 any alignment we'd encounter, so we skip the call to align_fuzz. */
943 return insn_current_address;
944 dest = JUMP_LABEL (branch);
945 /* BRANCH has no proper alignment chain set, so use SEQ. */
946 if (INSN_SHUID (branch) < INSN_SHUID (dest))
948 /* Forward branch. */
949 return (insn_last_address + insn_lengths[seq_uid]
950 - align_fuzz (seq, dest, length_unit_log, ~0));
952 else
954 /* Backward branch. */
955 return (insn_current_address
956 + align_fuzz (dest, seq, length_unit_log, ~0));
959 #endif /* HAVE_ATTR_length */
961 /* Make a pass over all insns and compute their actual lengths by shortening
962 any branches of variable length if possible. */
964 /* Give a default value for the lowest address in a function. */
966 #ifndef FIRST_INSN_ADDRESS
967 #define FIRST_INSN_ADDRESS 0
968 #endif
970 /* shorten_branches might be called multiple times: for example, the SH
971 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
972 In order to do this, it needs proper length information, which it obtains
973 by calling shorten_branches. This cannot be collapsed with
974 shorten_branches itself into a single pass unless we also want to intergate
975 reorg.c, since the branch splitting exposes new instructions with delay
976 slots. */
978 void
979 shorten_branches (first)
980 rtx first;
982 rtx insn;
983 int max_uid;
984 int i;
985 int max_log;
986 int max_skip;
987 #ifdef HAVE_ATTR_length
988 #define MAX_CODE_ALIGN 16
989 rtx seq;
990 int something_changed = 1;
991 char *varying_length;
992 rtx body;
993 int uid;
994 rtx align_tab[MAX_CODE_ALIGN];
996 /* In order to make sure that all instructions have valid length info,
997 we must split them before we compute the address/length info. */
999 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
1000 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1002 rtx old = insn;
1003 /* Don't split the insn if it has been deleted. */
1004 if (! INSN_DELETED_P (old))
1005 insn = try_split (PATTERN (old), old, 1);
1006 /* When not optimizing, the old insn will be still left around
1007 with only the 'deleted' bit set. Transform it into a note
1008 to avoid confusion of subsequent processing. */
1009 if (INSN_DELETED_P (old))
1011 PUT_CODE (old , NOTE);
1012 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1013 NOTE_SOURCE_FILE (old) = 0;
1016 #endif
1018 /* We must do some computations even when not actually shortening, in
1019 order to get the alignment information for the labels. */
1021 init_insn_lengths ();
1023 /* Compute maximum UID and allocate label_align / uid_shuid. */
1024 max_uid = get_max_uid ();
1026 max_labelno = max_label_num ();
1027 min_labelno = get_first_label_num ();
1028 label_align = (struct label_alignment *) xmalloc (
1029 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1030 bzero ((char *) label_align,
1031 (max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
1033 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1035 /* Initialize label_align and set up uid_shuid to be strictly
1036 monotonically rising with insn order. */
1037 /* We use max_log here to keep track of the maximum alignment we want to
1038 impose on the next CODE_LABEL (or the current one if we are processing
1039 the CODE_LABEL itself). */
1041 max_log = 0;
1042 max_skip = 0;
1044 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1046 int log;
1048 INSN_SHUID (insn) = i++;
1049 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1051 /* reorg might make the first insn of a loop being run once only,
1052 and delete the label in front of it. Then we want to apply
1053 the loop alignment to the new label created by reorg, which
1054 is separated by the former loop start insn from the
1055 NOTE_INSN_LOOP_BEG. */
1057 else if (GET_CODE (insn) == CODE_LABEL)
1059 rtx next;
1061 log = LABEL_ALIGN (insn);
1062 if (max_log < log)
1064 max_log = log;
1065 max_skip = LABEL_ALIGN_MAX_SKIP;
1067 next = NEXT_INSN (insn);
1068 /* ADDR_VECs only take room if read-only data goes into the text
1069 section. */
1070 if (JUMP_TABLES_IN_TEXT_SECTION
1071 #if !defined(READONLY_DATA_SECTION)
1072 || 1
1073 #endif
1075 if (next && GET_CODE (next) == JUMP_INSN)
1077 rtx nextbody = PATTERN (next);
1078 if (GET_CODE (nextbody) == ADDR_VEC
1079 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1081 log = ADDR_VEC_ALIGN (next);
1082 if (max_log < log)
1084 max_log = log;
1085 max_skip = LABEL_ALIGN_MAX_SKIP;
1089 LABEL_TO_ALIGNMENT (insn) = max_log;
1090 LABEL_TO_MAX_SKIP (insn) = max_skip;
1091 max_log = 0;
1092 max_skip = 0;
1094 else if (GET_CODE (insn) == BARRIER)
1096 rtx label;
1098 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1099 label = NEXT_INSN (label))
1100 if (GET_CODE (label) == CODE_LABEL)
1102 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1103 if (max_log < log)
1105 max_log = log;
1106 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1108 break;
1111 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1112 sequences in order to handle reorg output efficiently. */
1113 else if (GET_CODE (insn) == NOTE
1114 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1116 rtx label;
1117 int nest = 0;
1119 /* Search for the label that starts the loop.
1120 Don't skip past the end of the loop, since that could
1121 lead to putting an alignment where it does not belong.
1122 However, a label after a nested (non-)loop would be OK. */
1123 for (label = insn; label; label = NEXT_INSN (label))
1125 if (GET_CODE (label) == NOTE
1126 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1127 nest++;
1128 else if (GET_CODE (label) == NOTE
1129 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1130 && --nest == 0)
1131 break;
1132 else if (GET_CODE (label) == CODE_LABEL)
1134 log = LOOP_ALIGN (insn);
1135 if (max_log < log)
1137 max_log = log;
1138 max_skip = LOOP_ALIGN_MAX_SKIP;
1140 break;
1144 else
1145 continue;
1147 #ifdef HAVE_ATTR_length
1149 /* Allocate the rest of the arrays. */
1150 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1151 insn_addresses = (int *) xmalloc (max_uid * sizeof (int));
1152 insn_lengths_max_uid = max_uid;
1153 /* Syntax errors can lead to labels being outside of the main insn stream.
1154 Initialize insn_addresses, so that we get reproducible results. */
1155 bzero ((char *)insn_addresses, max_uid * sizeof *insn_addresses);
1156 uid_align = (rtx *) xmalloc (max_uid * sizeof *uid_align);
1158 varying_length = (char *) xmalloc (max_uid * sizeof (char));
1160 bzero (varying_length, max_uid);
1162 /* Initialize uid_align. We scan instructions
1163 from end to start, and keep in align_tab[n] the last seen insn
1164 that does an alignment of at least n+1, i.e. the successor
1165 in the alignment chain for an insn that does / has a known
1166 alignment of n. */
1168 bzero ((char *) uid_align, max_uid * sizeof *uid_align);
1170 for (i = MAX_CODE_ALIGN; --i >= 0; )
1171 align_tab[i] = NULL_RTX;
1172 seq = get_last_insn ();
1173 for (; seq; seq = PREV_INSN (seq))
1175 int uid = INSN_UID (seq);
1176 int log;
1177 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1178 uid_align[uid] = align_tab[0];
1179 if (log)
1181 /* Found an alignment label. */
1182 uid_align[uid] = align_tab[log];
1183 for (i = log - 1; i >= 0; i--)
1184 align_tab[i] = seq;
1187 #ifdef CASE_VECTOR_SHORTEN_MODE
1188 if (optimize)
1190 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1191 label fields. */
1193 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1194 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1195 int rel;
1197 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1199 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1200 int len, i, min, max, insn_shuid;
1201 int min_align;
1202 addr_diff_vec_flags flags;
1204 if (GET_CODE (insn) != JUMP_INSN
1205 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1206 continue;
1207 pat = PATTERN (insn);
1208 len = XVECLEN (pat, 1);
1209 if (len <= 0)
1210 abort ();
1211 min_align = MAX_CODE_ALIGN;
1212 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1214 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1215 int shuid = INSN_SHUID (lab);
1216 if (shuid < min)
1218 min = shuid;
1219 min_lab = lab;
1221 if (shuid > max)
1223 max = shuid;
1224 max_lab = lab;
1226 if (min_align > LABEL_TO_ALIGNMENT (lab))
1227 min_align = LABEL_TO_ALIGNMENT (lab);
1229 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1230 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1231 insn_shuid = INSN_SHUID (insn);
1232 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1233 flags.min_align = min_align;
1234 flags.base_after_vec = rel > insn_shuid;
1235 flags.min_after_vec = min > insn_shuid;
1236 flags.max_after_vec = max > insn_shuid;
1237 flags.min_after_base = min > rel;
1238 flags.max_after_base = max > rel;
1239 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1242 #endif /* CASE_VECTOR_SHORTEN_MODE */
1245 /* Compute initial lengths, addresses, and varying flags for each insn. */
1246 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1247 insn != 0;
1248 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1250 uid = INSN_UID (insn);
1252 insn_lengths[uid] = 0;
1254 if (GET_CODE (insn) == CODE_LABEL)
1256 int log = LABEL_TO_ALIGNMENT (insn);
1257 if (log)
1259 int align = 1 << log;
1260 int new_address = (insn_current_address + align - 1) & -align;
1261 insn_lengths[uid] = new_address - insn_current_address;
1262 insn_current_address = new_address;
1266 insn_addresses[uid] = insn_current_address;
1268 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1269 || GET_CODE (insn) == CODE_LABEL)
1270 continue;
1271 if (INSN_DELETED_P (insn))
1272 continue;
1274 body = PATTERN (insn);
1275 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1277 /* This only takes room if read-only data goes into the text
1278 section. */
1279 if (JUMP_TABLES_IN_TEXT_SECTION
1280 #if !defined(READONLY_DATA_SECTION)
1281 || 1
1282 #endif
1284 insn_lengths[uid] = (XVECLEN (body,
1285 GET_CODE (body) == ADDR_DIFF_VEC)
1286 * GET_MODE_SIZE (GET_MODE (body)));
1287 /* Alignment is handled by ADDR_VEC_ALIGN. */
1289 else if (asm_noperands (body) >= 0)
1290 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1291 else if (GET_CODE (body) == SEQUENCE)
1293 int i;
1294 int const_delay_slots;
1295 #ifdef DELAY_SLOTS
1296 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1297 #else
1298 const_delay_slots = 0;
1299 #endif
1300 /* Inside a delay slot sequence, we do not do any branch shortening
1301 if the shortening could change the number of delay slots
1302 of the branch. */
1303 for (i = 0; i < XVECLEN (body, 0); i++)
1305 rtx inner_insn = XVECEXP (body, 0, i);
1306 int inner_uid = INSN_UID (inner_insn);
1307 int inner_length;
1309 if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1310 inner_length = (asm_insn_count (PATTERN (inner_insn))
1311 * insn_default_length (inner_insn));
1312 else
1313 inner_length = insn_default_length (inner_insn);
1315 insn_lengths[inner_uid] = inner_length;
1316 if (const_delay_slots)
1318 if ((varying_length[inner_uid]
1319 = insn_variable_length_p (inner_insn)) != 0)
1320 varying_length[uid] = 1;
1321 insn_addresses[inner_uid] = (insn_current_address +
1322 insn_lengths[uid]);
1324 else
1325 varying_length[inner_uid] = 0;
1326 insn_lengths[uid] += inner_length;
1329 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1331 insn_lengths[uid] = insn_default_length (insn);
1332 varying_length[uid] = insn_variable_length_p (insn);
1335 /* If needed, do any adjustment. */
1336 #ifdef ADJUST_INSN_LENGTH
1337 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1338 if (insn_lengths[uid] < 0)
1339 fatal_insn ("Negative insn length", insn);
1340 #endif
1343 /* Now loop over all the insns finding varying length insns. For each,
1344 get the current insn length. If it has changed, reflect the change.
1345 When nothing changes for a full pass, we are done. */
1347 while (something_changed)
1349 something_changed = 0;
1350 insn_current_align = MAX_CODE_ALIGN - 1;
1351 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1352 insn != 0;
1353 insn = NEXT_INSN (insn))
1355 int new_length;
1356 #ifdef ADJUST_INSN_LENGTH
1357 int tmp_length;
1358 #endif
1359 int length_align;
1361 uid = INSN_UID (insn);
1363 if (GET_CODE (insn) == CODE_LABEL)
1365 int log = LABEL_TO_ALIGNMENT (insn);
1366 if (log > insn_current_align)
1368 int align = 1 << log;
1369 int new_address= (insn_current_address + align - 1) & -align;
1370 insn_lengths[uid] = new_address - insn_current_address;
1371 insn_current_align = log;
1372 insn_current_address = new_address;
1374 else
1375 insn_lengths[uid] = 0;
1376 insn_addresses[uid] = insn_current_address;
1377 continue;
1380 length_align = INSN_LENGTH_ALIGNMENT (insn);
1381 if (length_align < insn_current_align)
1382 insn_current_align = length_align;
1384 insn_last_address = insn_addresses[uid];
1385 insn_addresses[uid] = insn_current_address;
1387 #ifdef CASE_VECTOR_SHORTEN_MODE
1388 if (optimize && GET_CODE (insn) == JUMP_INSN
1389 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1391 rtx body = PATTERN (insn);
1392 int old_length = insn_lengths[uid];
1393 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1394 rtx min_lab = XEXP (XEXP (body, 2), 0);
1395 rtx max_lab = XEXP (XEXP (body, 3), 0);
1396 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1397 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1398 int min_addr = insn_addresses[INSN_UID (min_lab)];
1399 int max_addr = insn_addresses[INSN_UID (max_lab)];
1400 rtx prev;
1401 int rel_align = 0;
1403 /* Try to find a known alignment for rel_lab. */
1404 for (prev = rel_lab;
1405 prev
1406 && ! insn_lengths[INSN_UID (prev)]
1407 && ! (varying_length[INSN_UID (prev)] & 1);
1408 prev = PREV_INSN (prev))
1409 if (varying_length[INSN_UID (prev)] & 2)
1411 rel_align = LABEL_TO_ALIGNMENT (prev);
1412 break;
1415 /* See the comment on addr_diff_vec_flags in rtl.h for the
1416 meaning of the flags values. base: REL_LAB vec: INSN */
1417 /* Anything after INSN has still addresses from the last
1418 pass; adjust these so that they reflect our current
1419 estimate for this pass. */
1420 if (flags.base_after_vec)
1421 rel_addr += insn_current_address - insn_last_address;
1422 if (flags.min_after_vec)
1423 min_addr += insn_current_address - insn_last_address;
1424 if (flags.max_after_vec)
1425 max_addr += insn_current_address - insn_last_address;
1426 /* We want to know the worst case, i.e. lowest possible value
1427 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1428 its offset is positive, and we have to be wary of code shrink;
1429 otherwise, it is negative, and we have to be vary of code
1430 size increase. */
1431 if (flags.min_after_base)
1433 /* If INSN is between REL_LAB and MIN_LAB, the size
1434 changes we are about to make can change the alignment
1435 within the observed offset, therefore we have to break
1436 it up into two parts that are independent. */
1437 if (! flags.base_after_vec && flags.min_after_vec)
1439 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1440 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1442 else
1443 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1445 else
1447 if (flags.base_after_vec && ! flags.min_after_vec)
1449 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1450 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1452 else
1453 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1455 /* Likewise, determine the highest lowest possible value
1456 for the offset of MAX_LAB. */
1457 if (flags.max_after_base)
1459 if (! flags.base_after_vec && flags.max_after_vec)
1461 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1462 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1464 else
1465 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1467 else
1469 if (flags.base_after_vec && ! flags.max_after_vec)
1471 max_addr += align_fuzz (max_lab, insn, 0, 0);
1472 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1474 else
1475 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1477 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1478 max_addr - rel_addr,
1479 body));
1480 if (JUMP_TABLES_IN_TEXT_SECTION
1481 #if !defined(READONLY_DATA_SECTION)
1482 || 1
1483 #endif
1486 insn_lengths[uid]
1487 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1488 insn_current_address += insn_lengths[uid];
1489 if (insn_lengths[uid] != old_length)
1490 something_changed = 1;
1493 continue;
1495 #endif /* CASE_VECTOR_SHORTEN_MODE */
1497 if (! (varying_length[uid]))
1499 insn_current_address += insn_lengths[uid];
1500 continue;
1502 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1504 int i;
1506 body = PATTERN (insn);
1507 new_length = 0;
1508 for (i = 0; i < XVECLEN (body, 0); i++)
1510 rtx inner_insn = XVECEXP (body, 0, i);
1511 int inner_uid = INSN_UID (inner_insn);
1512 int inner_length;
1514 insn_addresses[inner_uid] = insn_current_address;
1516 /* insn_current_length returns 0 for insns with a
1517 non-varying length. */
1518 if (! varying_length[inner_uid])
1519 inner_length = insn_lengths[inner_uid];
1520 else
1521 inner_length = insn_current_length (inner_insn);
1523 if (inner_length != insn_lengths[inner_uid])
1525 insn_lengths[inner_uid] = inner_length;
1526 something_changed = 1;
1528 insn_current_address += insn_lengths[inner_uid];
1529 new_length += inner_length;
1532 else
1534 new_length = insn_current_length (insn);
1535 insn_current_address += new_length;
1538 #ifdef ADJUST_INSN_LENGTH
1539 /* If needed, do any adjustment. */
1540 tmp_length = new_length;
1541 ADJUST_INSN_LENGTH (insn, new_length);
1542 insn_current_address += (new_length - tmp_length);
1543 #endif
1545 if (new_length != insn_lengths[uid])
1547 insn_lengths[uid] = new_length;
1548 something_changed = 1;
1551 /* For a non-optimizing compile, do only a single pass. */
1552 if (!optimize)
1553 break;
1556 free (varying_length);
1558 #endif /* HAVE_ATTR_length */
1561 #ifdef HAVE_ATTR_length
1562 /* Given the body of an INSN known to be generated by an ASM statement, return
1563 the number of machine instructions likely to be generated for this insn.
1564 This is used to compute its length. */
1566 static int
1567 asm_insn_count (body)
1568 rtx body;
1570 char *template;
1571 int count = 1;
1573 if (GET_CODE (body) == ASM_INPUT)
1574 template = XSTR (body, 0);
1575 else
1576 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1577 NULL_PTR, NULL_PTR);
1579 for ( ; *template; template++)
1580 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1581 count++;
1583 return count;
1585 #endif
1587 /* Output assembler code for the start of a function,
1588 and initialize some of the variables in this file
1589 for the new function. The label for the function and associated
1590 assembler pseudo-ops have already been output in `assemble_start_function'.
1592 FIRST is the first insn of the rtl for the function being compiled.
1593 FILE is the file to write assembler code to.
1594 OPTIMIZE is nonzero if we should eliminate redundant
1595 test and compare insns. */
1597 void
1598 final_start_function (first, file, optimize)
1599 rtx first;
1600 FILE *file;
1601 int optimize ATTRIBUTE_UNUSED;
1603 block_depth = 0;
1605 this_is_asm_operands = 0;
1607 #ifdef NON_SAVING_SETJMP
1608 /* A function that calls setjmp should save and restore all the
1609 call-saved registers on a system where longjmp clobbers them. */
1610 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1612 int i;
1614 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1615 if (!call_used_regs[i])
1616 regs_ever_live[i] = 1;
1618 #endif
1620 /* Initial line number is supposed to be output
1621 before the function's prologue and label
1622 so that the function's address will not appear to be
1623 in the last statement of the preceding function. */
1624 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1625 last_linenum = high_block_linenum = high_function_linenum
1626 = NOTE_LINE_NUMBER (first);
1628 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1629 /* Output DWARF definition of the function. */
1630 if (dwarf2out_do_frame ())
1631 dwarf2out_begin_prologue ();
1632 #endif
1634 /* For SDB and XCOFF, the function beginning must be marked between
1635 the function label and the prologue. We always need this, even when
1636 -g1 was used. Defer on MIPS systems so that parameter descriptions
1637 follow function entry. */
1638 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1639 if (write_symbols == SDB_DEBUG)
1640 sdbout_begin_function (last_linenum);
1641 else
1642 #endif
1643 #ifdef XCOFF_DEBUGGING_INFO
1644 if (write_symbols == XCOFF_DEBUG)
1645 xcoffout_begin_function (file, last_linenum);
1646 else
1647 #endif
1648 /* But only output line number for other debug info types if -g2
1649 or better. */
1650 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1651 output_source_line (file, first);
1653 #ifdef LEAF_REG_REMAP
1654 if (current_function_uses_only_leaf_regs)
1655 leaf_renumber_regs (first);
1656 #endif
1658 /* The Sun386i and perhaps other machines don't work right
1659 if the profiling code comes after the prologue. */
1660 #ifdef PROFILE_BEFORE_PROLOGUE
1661 if (profile_flag)
1662 profile_function (file);
1663 #endif /* PROFILE_BEFORE_PROLOGUE */
1665 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1666 if (dwarf2out_do_frame ())
1667 dwarf2out_frame_debug (NULL_RTX);
1668 #endif
1670 #ifdef FUNCTION_PROLOGUE
1671 /* First output the function prologue: code to set up the stack frame. */
1672 FUNCTION_PROLOGUE (file, get_frame_size ());
1673 #endif
1675 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1676 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
1677 next_block_index = 1;
1678 #endif
1680 /* If the machine represents the prologue as RTL, the profiling code must
1681 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1682 #ifdef HAVE_prologue
1683 if (! HAVE_prologue)
1684 #endif
1685 profile_after_prologue (file);
1687 profile_label_no++;
1689 /* If we are doing basic block profiling, remember a printable version
1690 of the function name. */
1691 if (profile_block_flag)
1693 bb_func_label_num
1694 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1698 static void
1699 profile_after_prologue (file)
1700 FILE *file;
1702 #ifdef FUNCTION_BLOCK_PROFILER
1703 if (profile_block_flag)
1705 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1707 #endif /* FUNCTION_BLOCK_PROFILER */
1709 #ifndef PROFILE_BEFORE_PROLOGUE
1710 if (profile_flag)
1711 profile_function (file);
1712 #endif /* not PROFILE_BEFORE_PROLOGUE */
1715 static void
1716 profile_function (file)
1717 FILE *file;
1719 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1720 #if defined(ASM_OUTPUT_REG_PUSH)
1721 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1722 int sval = current_function_returns_struct;
1723 #endif
1724 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1725 int cxt = current_function_needs_context;
1726 #endif
1727 #endif /* ASM_OUTPUT_REG_PUSH */
1729 data_section ();
1730 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1731 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1732 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1734 function_section (current_function_decl);
1736 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1737 if (sval)
1738 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1739 #else
1740 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1741 if (sval)
1743 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1745 #endif
1746 #endif
1748 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1749 if (cxt)
1750 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1751 #else
1752 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1753 if (cxt)
1755 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1757 #endif
1758 #endif
1760 FUNCTION_PROFILER (file, profile_label_no);
1762 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1763 if (cxt)
1764 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1765 #else
1766 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1767 if (cxt)
1769 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1771 #endif
1772 #endif
1774 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1775 if (sval)
1776 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1777 #else
1778 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1779 if (sval)
1781 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1783 #endif
1784 #endif
1787 /* Output assembler code for the end of a function.
1788 For clarity, args are same as those of `final_start_function'
1789 even though not all of them are needed. */
1791 void
1792 final_end_function (first, file, optimize)
1793 rtx first ATTRIBUTE_UNUSED;
1794 FILE *file;
1795 int optimize ATTRIBUTE_UNUSED;
1797 if (app_on)
1799 fputs (ASM_APP_OFF, file);
1800 app_on = 0;
1803 #ifdef SDB_DEBUGGING_INFO
1804 if (write_symbols == SDB_DEBUG)
1805 sdbout_end_function (high_function_linenum);
1806 #endif
1808 #ifdef DWARF_DEBUGGING_INFO
1809 if (write_symbols == DWARF_DEBUG)
1810 dwarfout_end_function ();
1811 #endif
1813 #ifdef XCOFF_DEBUGGING_INFO
1814 if (write_symbols == XCOFF_DEBUG)
1815 xcoffout_end_function (file, high_function_linenum);
1816 #endif
1818 #ifdef FUNCTION_EPILOGUE
1819 /* Finally, output the function epilogue:
1820 code to restore the stack frame and return to the caller. */
1821 FUNCTION_EPILOGUE (file, get_frame_size ());
1822 #endif
1824 #ifdef SDB_DEBUGGING_INFO
1825 if (write_symbols == SDB_DEBUG)
1826 sdbout_end_epilogue ();
1827 #endif
1829 #ifdef DWARF_DEBUGGING_INFO
1830 if (write_symbols == DWARF_DEBUG)
1831 dwarfout_end_epilogue ();
1832 #endif
1834 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1835 if (dwarf2out_do_frame ())
1836 dwarf2out_end_epilogue ();
1837 #endif
1839 #ifdef XCOFF_DEBUGGING_INFO
1840 if (write_symbols == XCOFF_DEBUG)
1841 xcoffout_end_epilogue (file);
1842 #endif
1844 bb_func_label_num = -1; /* not in function, nuke label # */
1846 /* If FUNCTION_EPILOGUE is not defined, then the function body
1847 itself contains return instructions wherever needed. */
1850 /* Add a block to the linked list that remembers the current line/file/function
1851 for basic block profiling. Emit the label in front of the basic block and
1852 the instructions that increment the count field. */
1854 static void
1855 add_bb (file)
1856 FILE *file;
1858 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1860 /* Add basic block to linked list. */
1861 ptr->next = 0;
1862 ptr->line_num = last_linenum;
1863 ptr->file_label_num = bb_file_label_num;
1864 ptr->func_label_num = bb_func_label_num;
1865 *bb_tail = ptr;
1866 bb_tail = &ptr->next;
1868 /* Enable the table of basic-block use counts
1869 to point at the code it applies to. */
1870 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1872 /* Before first insn of this basic block, increment the
1873 count of times it was entered. */
1874 #ifdef BLOCK_PROFILER
1875 BLOCK_PROFILER (file, count_basic_blocks);
1876 #endif
1877 #ifdef HAVE_cc0
1878 CC_STATUS_INIT;
1879 #endif
1881 new_block = 0;
1882 count_basic_blocks++;
1885 /* Add a string to be used for basic block profiling. */
1887 static int
1888 add_bb_string (string, perm_p)
1889 const char *string;
1890 int perm_p;
1892 int len;
1893 struct bb_str *ptr = 0;
1895 if (!string)
1897 string = "<unknown>";
1898 perm_p = TRUE;
1901 /* Allocate a new string if the current string isn't permanent. If
1902 the string is permanent search for the same string in other
1903 allocations. */
1905 len = strlen (string) + 1;
1906 if (!perm_p)
1908 char *p = (char *) permalloc (len);
1909 bcopy (string, p, len);
1910 string = p;
1912 else
1913 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1914 if (ptr->string == string)
1915 break;
1917 /* Allocate a new string block if we need to. */
1918 if (!ptr)
1920 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1921 ptr->next = 0;
1922 ptr->length = len;
1923 ptr->label_num = sbb_label_num++;
1924 ptr->string = string;
1925 *sbb_tail = ptr;
1926 sbb_tail = &ptr->next;
1929 return ptr->label_num;
1933 /* Output assembler code for some insns: all or part of a function.
1934 For description of args, see `final_start_function', above.
1936 PRESCAN is 1 if we are not really outputting,
1937 just scanning as if we were outputting.
1938 Prescanning deletes and rearranges insns just like ordinary output.
1939 PRESCAN is -2 if we are outputting after having prescanned.
1940 In this case, don't try to delete or rearrange insns
1941 because that has already been done.
1942 Prescanning is done only on certain machines. */
1944 void
1945 final (first, file, optimize, prescan)
1946 rtx first;
1947 FILE *file;
1948 int optimize;
1949 int prescan;
1951 register rtx insn;
1952 int max_line = 0;
1953 int max_uid = 0;
1955 last_ignored_compare = 0;
1956 new_block = 1;
1958 check_exception_handler_labels ();
1960 /* Make a map indicating which line numbers appear in this function.
1961 When producing SDB debugging info, delete troublesome line number
1962 notes from inlined functions in other files as well as duplicate
1963 line number notes. */
1964 #ifdef SDB_DEBUGGING_INFO
1965 if (write_symbols == SDB_DEBUG)
1967 rtx last = 0;
1968 for (insn = first; insn; insn = NEXT_INSN (insn))
1969 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1971 if ((RTX_INTEGRATED_P (insn)
1972 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1973 || (last != 0
1974 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1975 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1977 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1978 NOTE_SOURCE_FILE (insn) = 0;
1979 continue;
1981 last = insn;
1982 if (NOTE_LINE_NUMBER (insn) > max_line)
1983 max_line = NOTE_LINE_NUMBER (insn);
1986 else
1987 #endif
1989 for (insn = first; insn; insn = NEXT_INSN (insn))
1990 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1991 max_line = NOTE_LINE_NUMBER (insn);
1994 line_note_exists = (char *) oballoc (max_line + 1);
1995 bzero (line_note_exists, max_line + 1);
1997 for (insn = first; insn; insn = NEXT_INSN (insn))
1999 if (INSN_UID (insn) > max_uid) /* find largest UID */
2000 max_uid = INSN_UID (insn);
2001 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
2002 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
2003 #ifdef HAVE_cc0
2004 /* If CC tracking across branches is enabled, record the insn which
2005 jumps to each branch only reached from one place. */
2006 if (optimize && GET_CODE (insn) == JUMP_INSN)
2008 rtx lab = JUMP_LABEL (insn);
2009 if (lab && LABEL_NUSES (lab) == 1)
2011 LABEL_REFS (lab) = insn;
2014 #endif
2017 /* Initialize insn_eh_region table if eh is being used. */
2019 init_insn_eh_region (first, max_uid);
2021 init_recog ();
2023 CC_STATUS_INIT;
2025 /* Output the insns. */
2026 for (insn = NEXT_INSN (first); insn;)
2028 #ifdef HAVE_ATTR_length
2029 insn_current_address = insn_addresses[INSN_UID (insn)];
2030 #endif
2031 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2034 /* Do basic-block profiling here
2035 if the last insn was a conditional branch. */
2036 if (profile_block_flag && new_block)
2037 add_bb (file);
2039 free_insn_eh_region ();
2042 /* The final scan for one insn, INSN.
2043 Args are same as in `final', except that INSN
2044 is the insn being scanned.
2045 Value returned is the next insn to be scanned.
2047 NOPEEPHOLES is the flag to disallow peephole processing (currently
2048 used for within delayed branch sequence output). */
2051 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2052 rtx insn;
2053 FILE *file;
2054 int optimize;
2055 int prescan;
2056 int nopeepholes;
2058 #ifdef HAVE_cc0
2059 rtx set;
2060 #endif
2062 insn_counter++;
2064 /* Ignore deleted insns. These can occur when we split insns (due to a
2065 template of "#") while not optimizing. */
2066 if (INSN_DELETED_P (insn))
2067 return NEXT_INSN (insn);
2069 switch (GET_CODE (insn))
2071 case NOTE:
2072 if (prescan > 0)
2073 break;
2075 /* Align the beginning of a loop, for higher speed
2076 on certain machines. */
2078 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2079 break; /* This used to depend on optimize, but that was bogus. */
2080 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2081 break;
2083 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2084 && ! exceptions_via_longjmp)
2086 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_BLOCK_NUMBER (insn));
2087 if (! flag_new_exceptions)
2088 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2089 #ifdef ASM_OUTPUT_EH_REGION_BEG
2090 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_BLOCK_NUMBER (insn));
2091 #endif
2092 break;
2095 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2096 && ! exceptions_via_longjmp)
2098 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_BLOCK_NUMBER (insn));
2099 if (flag_new_exceptions)
2100 add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
2101 #ifdef ASM_OUTPUT_EH_REGION_END
2102 ASM_OUTPUT_EH_REGION_END (file, NOTE_BLOCK_NUMBER (insn));
2103 #endif
2104 break;
2107 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2109 #ifdef FUNCTION_END_PROLOGUE
2110 FUNCTION_END_PROLOGUE (file);
2111 #endif
2112 profile_after_prologue (file);
2113 break;
2116 #ifdef FUNCTION_BEGIN_EPILOGUE
2117 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2119 FUNCTION_BEGIN_EPILOGUE (file);
2120 break;
2122 #endif
2124 if (write_symbols == NO_DEBUG)
2125 break;
2126 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2128 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2129 /* MIPS stabs require the parameter descriptions to be after the
2130 function entry point rather than before. */
2131 if (write_symbols == SDB_DEBUG)
2132 sdbout_begin_function (last_linenum);
2133 else
2134 #endif
2135 #ifdef DWARF_DEBUGGING_INFO
2136 /* This outputs a marker where the function body starts, so it
2137 must be after the prologue. */
2138 if (write_symbols == DWARF_DEBUG)
2139 dwarfout_begin_function ();
2140 #endif
2141 break;
2143 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2144 break; /* An insn that was "deleted" */
2145 if (app_on)
2147 fputs (ASM_APP_OFF, file);
2148 app_on = 0;
2150 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2151 && (debug_info_level == DINFO_LEVEL_NORMAL
2152 || debug_info_level == DINFO_LEVEL_VERBOSE
2153 || write_symbols == DWARF_DEBUG
2154 || write_symbols == DWARF2_DEBUG))
2156 /* Beginning of a symbol-block. Assign it a sequence number
2157 and push the number onto the stack PENDING_BLOCKS. */
2159 if (block_depth == max_block_depth)
2161 /* PENDING_BLOCKS is full; make it longer. */
2162 max_block_depth *= 2;
2163 pending_blocks
2164 = (int *) xrealloc (pending_blocks,
2165 max_block_depth * sizeof (int));
2167 pending_blocks[block_depth++] = next_block_index;
2169 high_block_linenum = last_linenum;
2171 /* Output debugging info about the symbol-block beginning. */
2173 #ifdef SDB_DEBUGGING_INFO
2174 if (write_symbols == SDB_DEBUG)
2175 sdbout_begin_block (file, last_linenum, next_block_index);
2176 #endif
2177 #ifdef XCOFF_DEBUGGING_INFO
2178 if (write_symbols == XCOFF_DEBUG)
2179 xcoffout_begin_block (file, last_linenum, next_block_index);
2180 #endif
2181 #ifdef DBX_DEBUGGING_INFO
2182 if (write_symbols == DBX_DEBUG)
2183 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
2184 #endif
2185 #ifdef DWARF_DEBUGGING_INFO
2186 if (write_symbols == DWARF_DEBUG)
2187 dwarfout_begin_block (next_block_index);
2188 #endif
2189 #ifdef DWARF2_DEBUGGING_INFO
2190 if (write_symbols == DWARF2_DEBUG)
2191 dwarf2out_begin_block (next_block_index);
2192 #endif
2194 next_block_index++;
2196 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2197 && (debug_info_level == DINFO_LEVEL_NORMAL
2198 || debug_info_level == DINFO_LEVEL_VERBOSE
2199 || write_symbols == DWARF_DEBUG
2200 || write_symbols == DWARF2_DEBUG))
2202 /* End of a symbol-block. Pop its sequence number off
2203 PENDING_BLOCKS and output debugging info based on that. */
2205 --block_depth;
2206 if (block_depth < 0)
2207 abort ();
2209 #ifdef XCOFF_DEBUGGING_INFO
2210 if (write_symbols == XCOFF_DEBUG)
2211 xcoffout_end_block (file, high_block_linenum,
2212 pending_blocks[block_depth]);
2213 #endif
2214 #ifdef DBX_DEBUGGING_INFO
2215 if (write_symbols == DBX_DEBUG)
2216 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
2217 pending_blocks[block_depth]);
2218 #endif
2219 #ifdef SDB_DEBUGGING_INFO
2220 if (write_symbols == SDB_DEBUG)
2221 sdbout_end_block (file, high_block_linenum,
2222 pending_blocks[block_depth]);
2223 #endif
2224 #ifdef DWARF_DEBUGGING_INFO
2225 if (write_symbols == DWARF_DEBUG)
2226 dwarfout_end_block (pending_blocks[block_depth]);
2227 #endif
2228 #ifdef DWARF2_DEBUGGING_INFO
2229 if (write_symbols == DWARF2_DEBUG)
2230 dwarf2out_end_block (pending_blocks[block_depth]);
2231 #endif
2233 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2234 && (debug_info_level == DINFO_LEVEL_NORMAL
2235 || debug_info_level == DINFO_LEVEL_VERBOSE))
2237 #ifdef DWARF_DEBUGGING_INFO
2238 if (write_symbols == DWARF_DEBUG)
2239 dwarfout_label (insn);
2240 #endif
2241 #ifdef DWARF2_DEBUGGING_INFO
2242 if (write_symbols == DWARF2_DEBUG)
2243 dwarf2out_label (insn);
2244 #endif
2246 else if (NOTE_LINE_NUMBER (insn) > 0)
2247 /* This note is a line-number. */
2249 register rtx note;
2251 #if 0 /* This is what we used to do. */
2252 output_source_line (file, insn);
2253 #endif
2254 int note_after = 0;
2256 /* If there is anything real after this note,
2257 output it. If another line note follows, omit this one. */
2258 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2260 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2261 break;
2262 /* These types of notes can be significant
2263 so make sure the preceding line number stays. */
2264 else if (GET_CODE (note) == NOTE
2265 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2266 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2267 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2268 break;
2269 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2271 /* Another line note follows; we can delete this note
2272 if no intervening line numbers have notes elsewhere. */
2273 int num;
2274 for (num = NOTE_LINE_NUMBER (insn) + 1;
2275 num < NOTE_LINE_NUMBER (note);
2276 num++)
2277 if (line_note_exists[num])
2278 break;
2280 if (num >= NOTE_LINE_NUMBER (note))
2281 note_after = 1;
2282 break;
2286 /* Output this line note
2287 if it is the first or the last line note in a row. */
2288 if (!note_after)
2289 output_source_line (file, insn);
2291 break;
2293 case BARRIER:
2294 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2295 /* If we push arguments, we need to check all insns for stack
2296 adjustments. */
2297 if (dwarf2out_do_frame ())
2298 dwarf2out_frame_debug (insn);
2299 #endif
2300 break;
2302 case CODE_LABEL:
2303 /* The target port might emit labels in the output function for
2304 some insn, e.g. sh.c output_branchy_insn. */
2305 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2307 int align = LABEL_TO_ALIGNMENT (insn);
2308 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2309 int max_skip = LABEL_TO_MAX_SKIP (insn);
2310 #endif
2312 if (align && NEXT_INSN (insn))
2313 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2314 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2315 #else
2316 ASM_OUTPUT_ALIGN (file, align);
2317 #endif
2319 #ifdef HAVE_cc0
2320 CC_STATUS_INIT;
2321 /* If this label is reached from only one place, set the condition
2322 codes from the instruction just before the branch. */
2324 /* Disabled because some insns set cc_status in the C output code
2325 and NOTICE_UPDATE_CC alone can set incorrect status. */
2326 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2328 rtx jump = LABEL_REFS (insn);
2329 rtx barrier = prev_nonnote_insn (insn);
2330 rtx prev;
2331 /* If the LABEL_REFS field of this label has been set to point
2332 at a branch, the predecessor of the branch is a regular
2333 insn, and that branch is the only way to reach this label,
2334 set the condition codes based on the branch and its
2335 predecessor. */
2336 if (barrier && GET_CODE (barrier) == BARRIER
2337 && jump && GET_CODE (jump) == JUMP_INSN
2338 && (prev = prev_nonnote_insn (jump))
2339 && GET_CODE (prev) == INSN)
2341 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2342 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2345 #endif
2346 if (prescan > 0)
2347 break;
2348 new_block = 1;
2350 #ifdef FINAL_PRESCAN_LABEL
2351 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2352 #endif
2354 #ifdef SDB_DEBUGGING_INFO
2355 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2356 sdbout_label (insn);
2357 #endif
2358 #ifdef DWARF_DEBUGGING_INFO
2359 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2360 dwarfout_label (insn);
2361 #endif
2362 #ifdef DWARF2_DEBUGGING_INFO
2363 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2364 dwarf2out_label (insn);
2365 #endif
2366 if (app_on)
2368 fputs (ASM_APP_OFF, file);
2369 app_on = 0;
2371 if (NEXT_INSN (insn) != 0
2372 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2374 rtx nextbody = PATTERN (NEXT_INSN (insn));
2376 /* If this label is followed by a jump-table,
2377 make sure we put the label in the read-only section. Also
2378 possibly write the label and jump table together. */
2380 if (GET_CODE (nextbody) == ADDR_VEC
2381 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2383 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2384 /* In this case, the case vector is being moved by the
2385 target, so don't output the label at all. Leave that
2386 to the back end macros. */
2387 #else
2388 if (! JUMP_TABLES_IN_TEXT_SECTION)
2390 readonly_data_section ();
2391 #ifdef READONLY_DATA_SECTION
2392 ASM_OUTPUT_ALIGN (file,
2393 exact_log2 (BIGGEST_ALIGNMENT
2394 / BITS_PER_UNIT));
2395 #endif /* READONLY_DATA_SECTION */
2397 else
2398 function_section (current_function_decl);
2400 #ifdef ASM_OUTPUT_CASE_LABEL
2401 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2402 NEXT_INSN (insn));
2403 #else
2404 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2405 #endif
2406 #endif
2407 break;
2411 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2412 break;
2414 default:
2416 register rtx body = PATTERN (insn);
2417 int insn_code_number;
2418 const char *template;
2419 #ifdef HAVE_cc0
2420 rtx note;
2421 #endif
2423 /* An INSN, JUMP_INSN or CALL_INSN.
2424 First check for special kinds that recog doesn't recognize. */
2426 if (GET_CODE (body) == USE /* These are just declarations */
2427 || GET_CODE (body) == CLOBBER)
2428 break;
2430 #ifdef HAVE_cc0
2431 /* If there is a REG_CC_SETTER note on this insn, it means that
2432 the setting of the condition code was done in the delay slot
2433 of the insn that branched here. So recover the cc status
2434 from the insn that set it. */
2436 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2437 if (note)
2439 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2440 cc_prev_status = cc_status;
2442 #endif
2444 /* Detect insns that are really jump-tables
2445 and output them as such. */
2447 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2449 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2450 register int vlen, idx;
2451 #endif
2453 if (prescan > 0)
2454 break;
2456 if (app_on)
2458 fputs (ASM_APP_OFF, file);
2459 app_on = 0;
2462 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2463 if (GET_CODE (body) == ADDR_VEC)
2465 #ifdef ASM_OUTPUT_ADDR_VEC
2466 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2467 #else
2468 abort();
2469 #endif
2471 else
2473 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2474 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2475 #else
2476 abort();
2477 #endif
2479 #else
2480 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2481 for (idx = 0; idx < vlen; idx++)
2483 if (GET_CODE (body) == ADDR_VEC)
2485 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2486 ASM_OUTPUT_ADDR_VEC_ELT
2487 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2488 #else
2489 abort ();
2490 #endif
2492 else
2494 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2495 ASM_OUTPUT_ADDR_DIFF_ELT
2496 (file,
2497 body,
2498 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2499 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2500 #else
2501 abort ();
2502 #endif
2505 #ifdef ASM_OUTPUT_CASE_END
2506 ASM_OUTPUT_CASE_END (file,
2507 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2508 insn);
2509 #endif
2510 #endif
2512 function_section (current_function_decl);
2514 break;
2517 /* Do basic-block profiling when we reach a new block.
2518 Done here to avoid jump tables. */
2519 if (profile_block_flag && new_block)
2520 add_bb (file);
2522 if (GET_CODE (body) == ASM_INPUT)
2524 /* There's no telling what that did to the condition codes. */
2525 CC_STATUS_INIT;
2526 if (prescan > 0)
2527 break;
2528 if (! app_on)
2530 fputs (ASM_APP_ON, file);
2531 app_on = 1;
2533 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2534 break;
2537 /* Detect `asm' construct with operands. */
2538 if (asm_noperands (body) >= 0)
2540 unsigned int noperands = asm_noperands (body);
2541 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2542 char *string;
2544 /* There's no telling what that did to the condition codes. */
2545 CC_STATUS_INIT;
2546 if (prescan > 0)
2547 break;
2549 if (! app_on)
2551 fputs (ASM_APP_ON, file);
2552 app_on = 1;
2555 /* Get out the operand values. */
2556 string = decode_asm_operands (body, ops, NULL_PTR,
2557 NULL_PTR, NULL_PTR);
2558 /* Inhibit aborts on what would otherwise be compiler bugs. */
2559 insn_noperands = noperands;
2560 this_is_asm_operands = insn;
2562 /* Output the insn using them. */
2563 output_asm_insn (string, ops);
2564 this_is_asm_operands = 0;
2565 break;
2568 if (prescan <= 0 && app_on)
2570 fputs (ASM_APP_OFF, file);
2571 app_on = 0;
2574 if (GET_CODE (body) == SEQUENCE)
2576 /* A delayed-branch sequence */
2577 register int i;
2578 rtx next;
2580 if (prescan > 0)
2581 break;
2582 final_sequence = body;
2584 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2585 force the restoration of a comparison that was previously
2586 thought unnecessary. If that happens, cancel this sequence
2587 and cause that insn to be restored. */
2589 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2590 if (next != XVECEXP (body, 0, 1))
2592 final_sequence = 0;
2593 return next;
2596 for (i = 1; i < XVECLEN (body, 0); i++)
2598 rtx insn = XVECEXP (body, 0, i);
2599 rtx next = NEXT_INSN (insn);
2600 /* We loop in case any instruction in a delay slot gets
2601 split. */
2603 insn = final_scan_insn (insn, file, 0, prescan, 1);
2604 while (insn != next);
2606 #ifdef DBR_OUTPUT_SEQEND
2607 DBR_OUTPUT_SEQEND (file);
2608 #endif
2609 final_sequence = 0;
2611 /* If the insn requiring the delay slot was a CALL_INSN, the
2612 insns in the delay slot are actually executed before the
2613 called function. Hence we don't preserve any CC-setting
2614 actions in these insns and the CC must be marked as being
2615 clobbered by the function. */
2616 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2618 CC_STATUS_INIT;
2621 /* Following a conditional branch sequence, we have a new basic
2622 block. */
2623 if (profile_block_flag)
2625 rtx insn = XVECEXP (body, 0, 0);
2626 rtx body = PATTERN (insn);
2628 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2629 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2630 || (GET_CODE (insn) == JUMP_INSN
2631 && GET_CODE (body) == PARALLEL
2632 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2633 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2634 new_block = 1;
2636 break;
2639 /* We have a real machine instruction as rtl. */
2641 body = PATTERN (insn);
2643 #ifdef HAVE_cc0
2644 set = single_set(insn);
2646 /* Check for redundant test and compare instructions
2647 (when the condition codes are already set up as desired).
2648 This is done only when optimizing; if not optimizing,
2649 it should be possible for the user to alter a variable
2650 with the debugger in between statements
2651 and the next statement should reexamine the variable
2652 to compute the condition codes. */
2654 if (optimize)
2656 #if 0
2657 rtx set = single_set(insn);
2658 #endif
2660 if (set
2661 && GET_CODE (SET_DEST (set)) == CC0
2662 && insn != last_ignored_compare)
2664 if (GET_CODE (SET_SRC (set)) == SUBREG)
2665 SET_SRC (set) = alter_subreg (SET_SRC (set));
2666 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2668 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2669 XEXP (SET_SRC (set), 0)
2670 = alter_subreg (XEXP (SET_SRC (set), 0));
2671 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2672 XEXP (SET_SRC (set), 1)
2673 = alter_subreg (XEXP (SET_SRC (set), 1));
2675 if ((cc_status.value1 != 0
2676 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2677 || (cc_status.value2 != 0
2678 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2680 /* Don't delete insn if it has an addressing side-effect. */
2681 if (! FIND_REG_INC_NOTE (insn, 0)
2682 /* or if anything in it is volatile. */
2683 && ! volatile_refs_p (PATTERN (insn)))
2685 /* We don't really delete the insn; just ignore it. */
2686 last_ignored_compare = insn;
2687 break;
2692 #endif
2694 /* Following a conditional branch, we have a new basic block.
2695 But if we are inside a sequence, the new block starts after the
2696 last insn of the sequence. */
2697 if (profile_block_flag && final_sequence == 0
2698 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2699 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2700 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2701 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2702 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2703 new_block = 1;
2705 #ifndef STACK_REGS
2706 /* Don't bother outputting obvious no-ops, even without -O.
2707 This optimization is fast and doesn't interfere with debugging.
2708 Don't do this if the insn is in a delay slot, since this
2709 will cause an improper number of delay insns to be written. */
2710 if (final_sequence == 0
2711 && prescan >= 0
2712 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2713 && GET_CODE (SET_SRC (body)) == REG
2714 && GET_CODE (SET_DEST (body)) == REG
2715 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2716 break;
2717 #endif
2719 #ifdef HAVE_cc0
2720 /* If this is a conditional branch, maybe modify it
2721 if the cc's are in a nonstandard state
2722 so that it accomplishes the same thing that it would
2723 do straightforwardly if the cc's were set up normally. */
2725 if (cc_status.flags != 0
2726 && GET_CODE (insn) == JUMP_INSN
2727 && GET_CODE (body) == SET
2728 && SET_DEST (body) == pc_rtx
2729 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2730 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2731 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2732 /* This is done during prescan; it is not done again
2733 in final scan when prescan has been done. */
2734 && prescan >= 0)
2736 /* This function may alter the contents of its argument
2737 and clear some of the cc_status.flags bits.
2738 It may also return 1 meaning condition now always true
2739 or -1 meaning condition now always false
2740 or 2 meaning condition nontrivial but altered. */
2741 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2742 /* If condition now has fixed value, replace the IF_THEN_ELSE
2743 with its then-operand or its else-operand. */
2744 if (result == 1)
2745 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2746 if (result == -1)
2747 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2749 /* The jump is now either unconditional or a no-op.
2750 If it has become a no-op, don't try to output it.
2751 (It would not be recognized.) */
2752 if (SET_SRC (body) == pc_rtx)
2754 PUT_CODE (insn, NOTE);
2755 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2756 NOTE_SOURCE_FILE (insn) = 0;
2757 break;
2759 else if (GET_CODE (SET_SRC (body)) == RETURN)
2760 /* Replace (set (pc) (return)) with (return). */
2761 PATTERN (insn) = body = SET_SRC (body);
2763 /* Rerecognize the instruction if it has changed. */
2764 if (result != 0)
2765 INSN_CODE (insn) = -1;
2768 /* Make same adjustments to instructions that examine the
2769 condition codes without jumping and instructions that
2770 handle conditional moves (if this machine has either one). */
2772 if (cc_status.flags != 0
2773 && set != 0)
2775 rtx cond_rtx, then_rtx, else_rtx;
2777 if (GET_CODE (insn) != JUMP_INSN
2778 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2780 cond_rtx = XEXP (SET_SRC (set), 0);
2781 then_rtx = XEXP (SET_SRC (set), 1);
2782 else_rtx = XEXP (SET_SRC (set), 2);
2784 else
2786 cond_rtx = SET_SRC (set);
2787 then_rtx = const_true_rtx;
2788 else_rtx = const0_rtx;
2791 switch (GET_CODE (cond_rtx))
2793 case GTU:
2794 case GT:
2795 case LTU:
2796 case LT:
2797 case GEU:
2798 case GE:
2799 case LEU:
2800 case LE:
2801 case EQ:
2802 case NE:
2804 register int result;
2805 if (XEXP (cond_rtx, 0) != cc0_rtx)
2806 break;
2807 result = alter_cond (cond_rtx);
2808 if (result == 1)
2809 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2810 else if (result == -1)
2811 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2812 else if (result == 2)
2813 INSN_CODE (insn) = -1;
2814 if (SET_DEST (set) == SET_SRC (set))
2816 PUT_CODE (insn, NOTE);
2817 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2818 NOTE_SOURCE_FILE (insn) = 0;
2821 break;
2823 default:
2824 break;
2828 #endif
2830 #ifdef HAVE_peephole
2831 /* Do machine-specific peephole optimizations if desired. */
2833 if (optimize && !flag_no_peephole && !nopeepholes)
2835 rtx next = peephole (insn);
2836 /* When peepholing, if there were notes within the peephole,
2837 emit them before the peephole. */
2838 if (next != 0 && next != NEXT_INSN (insn))
2840 rtx prev = PREV_INSN (insn);
2841 rtx note;
2843 for (note = NEXT_INSN (insn); note != next;
2844 note = NEXT_INSN (note))
2845 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2847 /* In case this is prescan, put the notes
2848 in proper position for later rescan. */
2849 note = NEXT_INSN (insn);
2850 PREV_INSN (note) = prev;
2851 NEXT_INSN (prev) = note;
2852 NEXT_INSN (PREV_INSN (next)) = insn;
2853 PREV_INSN (insn) = PREV_INSN (next);
2854 NEXT_INSN (insn) = next;
2855 PREV_INSN (next) = insn;
2858 /* PEEPHOLE might have changed this. */
2859 body = PATTERN (insn);
2861 #endif
2863 /* Try to recognize the instruction.
2864 If successful, verify that the operands satisfy the
2865 constraints for the instruction. Crash if they don't,
2866 since `reload' should have changed them so that they do. */
2868 insn_code_number = recog_memoized (insn);
2869 extract_insn (insn);
2870 cleanup_subreg_operands (insn);
2872 #ifdef REGISTER_CONSTRAINTS
2873 if (! constrain_operands (1))
2874 fatal_insn_not_found (insn);
2875 #endif
2877 /* Some target machines need to prescan each insn before
2878 it is output. */
2880 #ifdef FINAL_PRESCAN_INSN
2881 FINAL_PRESCAN_INSN (insn, recog_operand, recog_n_operands);
2882 #endif
2884 #ifdef HAVE_cc0
2885 cc_prev_status = cc_status;
2887 /* Update `cc_status' for this instruction.
2888 The instruction's output routine may change it further.
2889 If the output routine for a jump insn needs to depend
2890 on the cc status, it should look at cc_prev_status. */
2892 NOTICE_UPDATE_CC (body, insn);
2893 #endif
2895 debug_insn = insn;
2897 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2898 /* If we push arguments, we want to know where the calls are. */
2899 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2900 dwarf2out_frame_debug (insn);
2901 #endif
2903 /* If the proper template needs to be chosen by some C code,
2904 run that code and get the real template. */
2906 template = insn_template[insn_code_number];
2907 if (template == 0)
2909 template = (*insn_outfun[insn_code_number]) (recog_operand, insn);
2911 /* If the C code returns 0, it means that it is a jump insn
2912 which follows a deleted test insn, and that test insn
2913 needs to be reinserted. */
2914 if (template == 0)
2916 if (prev_nonnote_insn (insn) != last_ignored_compare)
2917 abort ();
2918 new_block = 0;
2919 return prev_nonnote_insn (insn);
2923 /* If the template is the string "#", it means that this insn must
2924 be split. */
2925 if (template[0] == '#' && template[1] == '\0')
2927 rtx new = try_split (body, insn, 0);
2929 /* If we didn't split the insn, go away. */
2930 if (new == insn && PATTERN (new) == body)
2931 fatal_insn ("Could not split insn", insn);
2933 #ifdef HAVE_ATTR_length
2934 /* This instruction should have been split in shorten_branches,
2935 to ensure that we would have valid length info for the
2936 splitees. */
2937 abort ();
2938 #endif
2940 new_block = 0;
2941 return new;
2944 if (prescan > 0)
2945 break;
2947 /* Output assembler code from the template. */
2949 output_asm_insn (template, recog_operand);
2951 #if defined (DWARF2_UNWIND_INFO)
2952 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2953 /* If we push arguments, we need to check all insns for stack
2954 adjustments. */
2955 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2956 dwarf2out_frame_debug (insn);
2957 #else
2958 #if defined (HAVE_prologue)
2959 /* If this insn is part of the prologue, emit DWARF v2
2960 call frame info. */
2961 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2962 dwarf2out_frame_debug (insn);
2963 #endif
2964 #endif
2965 #endif
2967 #if 0
2968 /* It's not at all clear why we did this and doing so interferes
2969 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2970 with this out. */
2972 /* Mark this insn as having been output. */
2973 INSN_DELETED_P (insn) = 1;
2974 #endif
2976 debug_insn = 0;
2979 return NEXT_INSN (insn);
2982 /* Output debugging info to the assembler file FILE
2983 based on the NOTE-insn INSN, assumed to be a line number. */
2985 static void
2986 output_source_line (file, insn)
2987 FILE *file ATTRIBUTE_UNUSED;
2988 rtx insn;
2990 register char *filename = NOTE_SOURCE_FILE (insn);
2992 /* Remember filename for basic block profiling.
2993 Filenames are allocated on the permanent obstack
2994 or are passed in ARGV, so we don't have to save
2995 the string. */
2997 if (profile_block_flag && last_filename != filename)
2998 bb_file_label_num = add_bb_string (filename, TRUE);
3000 last_filename = filename;
3001 last_linenum = NOTE_LINE_NUMBER (insn);
3002 high_block_linenum = MAX (last_linenum, high_block_linenum);
3003 high_function_linenum = MAX (last_linenum, high_function_linenum);
3005 if (write_symbols != NO_DEBUG)
3007 #ifdef SDB_DEBUGGING_INFO
3008 if (write_symbols == SDB_DEBUG
3009 #if 0 /* People like having line numbers even in wrong file! */
3010 /* COFF can't handle multiple source files--lose, lose. */
3011 && !strcmp (filename, main_input_filename)
3012 #endif
3013 /* COFF relative line numbers must be positive. */
3014 && last_linenum > sdb_begin_function_line)
3016 #ifdef ASM_OUTPUT_SOURCE_LINE
3017 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
3018 #else
3019 fprintf (file, "\t.ln\t%d\n",
3020 ((sdb_begin_function_line > -1)
3021 ? last_linenum - sdb_begin_function_line : 1));
3022 #endif
3024 #endif
3026 #if defined (DBX_DEBUGGING_INFO)
3027 if (write_symbols == DBX_DEBUG)
3028 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
3029 #endif
3031 #if defined (XCOFF_DEBUGGING_INFO)
3032 if (write_symbols == XCOFF_DEBUG)
3033 xcoffout_source_line (file, filename, insn);
3034 #endif
3036 #ifdef DWARF_DEBUGGING_INFO
3037 if (write_symbols == DWARF_DEBUG)
3038 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
3039 #endif
3041 #ifdef DWARF2_DEBUGGING_INFO
3042 if (write_symbols == DWARF2_DEBUG)
3043 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3044 #endif
3049 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3050 directly to the desired hard register. */
3051 void
3052 cleanup_subreg_operands (insn)
3053 rtx insn;
3055 int i;
3057 extract_insn (insn);
3058 for (i = 0; i < recog_n_operands; i++)
3060 if (GET_CODE (recog_operand[i]) == SUBREG)
3061 recog_operand[i] = alter_subreg (recog_operand[i]);
3062 else if (GET_CODE (recog_operand[i]) == PLUS
3063 || GET_CODE (recog_operand[i]) == MULT)
3064 recog_operand[i] = walk_alter_subreg (recog_operand[i]);
3067 for (i = 0; i < recog_n_dups; i++)
3069 if (GET_CODE (*recog_dup_loc[i]) == SUBREG)
3070 *recog_dup_loc[i] = alter_subreg (*recog_dup_loc[i]);
3071 else if (GET_CODE (*recog_dup_loc[i]) == PLUS
3072 || GET_CODE (*recog_dup_loc[i]) == MULT)
3073 *recog_dup_loc[i] = walk_alter_subreg (*recog_dup_loc[i]);
3077 /* If X is a SUBREG, replace it with a REG or a MEM,
3078 based on the thing it is a subreg of. */
3081 alter_subreg (x)
3082 register rtx x;
3084 register rtx y = SUBREG_REG (x);
3086 if (GET_CODE (y) == SUBREG)
3087 y = alter_subreg (y);
3089 /* If reload is operating, we may be replacing inside this SUBREG.
3090 Check for that and make a new one if so. */
3091 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3092 x = copy_rtx (x);
3094 if (GET_CODE (y) == REG)
3096 int regno;
3097 /* If the word size is larger than the size of this register,
3098 adjust the register number to compensate. */
3099 /* ??? Note that this just catches stragglers created by/for
3100 integrate. It would be better if we either caught these
3101 earlier, or kept _all_ subregs until now and eliminate
3102 gen_lowpart and friends. */
3104 #ifdef ALTER_HARD_SUBREG
3105 regno = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3106 GET_MODE (y), REGNO (y));
3107 #else
3108 regno = REGNO (y) + SUBREG_WORD (x);
3109 #endif
3110 PUT_CODE (x, REG);
3111 REGNO (x) = regno;
3112 /* This field has a different meaning for REGs and SUBREGs. Make sure
3113 to clear it! */
3114 x->used = 0;
3116 else if (GET_CODE (y) == MEM)
3118 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3119 if (BYTES_BIG_ENDIAN)
3120 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3121 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3122 PUT_CODE (x, MEM);
3123 MEM_COPY_ATTRIBUTES (x, y);
3124 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
3125 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3128 return x;
3131 /* Do alter_subreg on all the SUBREGs contained in X. */
3133 static rtx
3134 walk_alter_subreg (x)
3135 rtx x;
3137 switch (GET_CODE (x))
3139 case PLUS:
3140 case MULT:
3141 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3142 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3143 break;
3145 case MEM:
3146 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3147 break;
3149 case SUBREG:
3150 return alter_subreg (x);
3152 default:
3153 break;
3156 return x;
3159 #ifdef HAVE_cc0
3161 /* Given BODY, the body of a jump instruction, alter the jump condition
3162 as required by the bits that are set in cc_status.flags.
3163 Not all of the bits there can be handled at this level in all cases.
3165 The value is normally 0.
3166 1 means that the condition has become always true.
3167 -1 means that the condition has become always false.
3168 2 means that COND has been altered. */
3170 static int
3171 alter_cond (cond)
3172 register rtx cond;
3174 int value = 0;
3176 if (cc_status.flags & CC_REVERSED)
3178 value = 2;
3179 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3182 if (cc_status.flags & CC_INVERTED)
3184 value = 2;
3185 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3188 if (cc_status.flags & CC_NOT_POSITIVE)
3189 switch (GET_CODE (cond))
3191 case LE:
3192 case LEU:
3193 case GEU:
3194 /* Jump becomes unconditional. */
3195 return 1;
3197 case GT:
3198 case GTU:
3199 case LTU:
3200 /* Jump becomes no-op. */
3201 return -1;
3203 case GE:
3204 PUT_CODE (cond, EQ);
3205 value = 2;
3206 break;
3208 case LT:
3209 PUT_CODE (cond, NE);
3210 value = 2;
3211 break;
3213 default:
3214 break;
3217 if (cc_status.flags & CC_NOT_NEGATIVE)
3218 switch (GET_CODE (cond))
3220 case GE:
3221 case GEU:
3222 /* Jump becomes unconditional. */
3223 return 1;
3225 case LT:
3226 case LTU:
3227 /* Jump becomes no-op. */
3228 return -1;
3230 case LE:
3231 case LEU:
3232 PUT_CODE (cond, EQ);
3233 value = 2;
3234 break;
3236 case GT:
3237 case GTU:
3238 PUT_CODE (cond, NE);
3239 value = 2;
3240 break;
3242 default:
3243 break;
3246 if (cc_status.flags & CC_NO_OVERFLOW)
3247 switch (GET_CODE (cond))
3249 case GEU:
3250 /* Jump becomes unconditional. */
3251 return 1;
3253 case LEU:
3254 PUT_CODE (cond, EQ);
3255 value = 2;
3256 break;
3258 case GTU:
3259 PUT_CODE (cond, NE);
3260 value = 2;
3261 break;
3263 case LTU:
3264 /* Jump becomes no-op. */
3265 return -1;
3267 default:
3268 break;
3271 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3272 switch (GET_CODE (cond))
3274 default:
3275 abort ();
3277 case NE:
3278 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3279 value = 2;
3280 break;
3282 case EQ:
3283 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3284 value = 2;
3285 break;
3288 if (cc_status.flags & CC_NOT_SIGNED)
3289 /* The flags are valid if signed condition operators are converted
3290 to unsigned. */
3291 switch (GET_CODE (cond))
3293 case LE:
3294 PUT_CODE (cond, LEU);
3295 value = 2;
3296 break;
3298 case LT:
3299 PUT_CODE (cond, LTU);
3300 value = 2;
3301 break;
3303 case GT:
3304 PUT_CODE (cond, GTU);
3305 value = 2;
3306 break;
3308 case GE:
3309 PUT_CODE (cond, GEU);
3310 value = 2;
3311 break;
3313 default:
3314 break;
3317 return value;
3319 #endif
3321 /* Report inconsistency between the assembler template and the operands.
3322 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3324 void
3325 output_operand_lossage (msgid)
3326 const char *msgid;
3328 if (this_is_asm_operands)
3329 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3330 else
3332 error ("output_operand: %s", _(msgid));
3333 abort ();
3337 /* Output of assembler code from a template, and its subroutines. */
3339 /* Output text from TEMPLATE to the assembler output file,
3340 obeying %-directions to substitute operands taken from
3341 the vector OPERANDS.
3343 %N (for N a digit) means print operand N in usual manner.
3344 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3345 and print the label name with no punctuation.
3346 %cN means require operand N to be a constant
3347 and print the constant expression with no punctuation.
3348 %aN means expect operand N to be a memory address
3349 (not a memory reference!) and print a reference
3350 to that address.
3351 %nN means expect operand N to be a constant
3352 and print a constant expression for minus the value
3353 of the operand, with no other punctuation. */
3355 static void
3356 output_asm_name ()
3358 if (flag_print_asm_name)
3360 /* Annotate the assembly with a comment describing the pattern and
3361 alternative used. */
3362 if (debug_insn)
3364 register int num = INSN_CODE (debug_insn);
3365 fprintf (asm_out_file, "\t%s %d\t%s",
3366 ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]);
3367 if (insn_n_alternatives[num] > 1)
3368 fprintf (asm_out_file, "/%d", which_alternative + 1);
3369 #ifdef HAVE_ATTR_length
3370 fprintf (asm_out_file, "\t[length = %d]", get_attr_length (debug_insn));
3371 #endif
3372 /* Clear this so only the first assembler insn
3373 of any rtl insn will get the special comment for -dp. */
3374 debug_insn = 0;
3379 void
3380 output_asm_insn (template, operands)
3381 const char *template;
3382 rtx *operands;
3384 register const char *p;
3385 register int c;
3387 /* An insn may return a null string template
3388 in a case where no assembler code is needed. */
3389 if (*template == 0)
3390 return;
3392 p = template;
3393 putc ('\t', asm_out_file);
3395 #ifdef ASM_OUTPUT_OPCODE
3396 ASM_OUTPUT_OPCODE (asm_out_file, p);
3397 #endif
3399 while ((c = *p++))
3400 switch (c)
3402 case '\n':
3403 output_asm_name ();
3404 putc (c, asm_out_file);
3405 #ifdef ASM_OUTPUT_OPCODE
3406 while ((c = *p) == '\t')
3408 putc (c, asm_out_file);
3409 p++;
3411 ASM_OUTPUT_OPCODE (asm_out_file, p);
3412 #endif
3413 break;
3415 #ifdef ASSEMBLER_DIALECT
3416 case '{':
3418 register int i;
3420 /* If we want the first dialect, do nothing. Otherwise, skip
3421 DIALECT_NUMBER of strings ending with '|'. */
3422 for (i = 0; i < dialect_number; i++)
3424 while (*p && *p != '}' && *p++ != '|')
3426 if (*p == '}')
3427 break;
3428 if (*p == '|')
3429 p++;
3432 break;
3434 case '|':
3435 /* Skip to close brace. */
3436 while (*p && *p++ != '}')
3438 break;
3440 case '}':
3441 break;
3442 #endif
3444 case '%':
3445 /* %% outputs a single %. */
3446 if (*p == '%')
3448 p++;
3449 putc (c, asm_out_file);
3451 /* %= outputs a number which is unique to each insn in the entire
3452 compilation. This is useful for making local labels that are
3453 referred to more than once in a given insn. */
3454 else if (*p == '=')
3456 p++;
3457 fprintf (asm_out_file, "%d", insn_counter);
3459 /* % followed by a letter and some digits
3460 outputs an operand in a special way depending on the letter.
3461 Letters `acln' are implemented directly.
3462 Other letters are passed to `output_operand' so that
3463 the PRINT_OPERAND macro can define them. */
3464 else if ((*p >= 'a' && *p <= 'z')
3465 || (*p >= 'A' && *p <= 'Z'))
3467 int letter = *p++;
3468 c = atoi (p);
3470 if (! (*p >= '0' && *p <= '9'))
3471 output_operand_lossage ("operand number missing after %-letter");
3472 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3473 output_operand_lossage ("operand number out of range");
3474 else if (letter == 'l')
3475 output_asm_label (operands[c]);
3476 else if (letter == 'a')
3477 output_address (operands[c]);
3478 else if (letter == 'c')
3480 if (CONSTANT_ADDRESS_P (operands[c]))
3481 output_addr_const (asm_out_file, operands[c]);
3482 else
3483 output_operand (operands[c], 'c');
3485 else if (letter == 'n')
3487 if (GET_CODE (operands[c]) == CONST_INT)
3488 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3489 - INTVAL (operands[c]));
3490 else
3492 putc ('-', asm_out_file);
3493 output_addr_const (asm_out_file, operands[c]);
3496 else
3497 output_operand (operands[c], letter);
3499 while ((c = *p) >= '0' && c <= '9') p++;
3501 /* % followed by a digit outputs an operand the default way. */
3502 else if (*p >= '0' && *p <= '9')
3504 c = atoi (p);
3505 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3506 output_operand_lossage ("operand number out of range");
3507 else
3508 output_operand (operands[c], 0);
3509 while ((c = *p) >= '0' && c <= '9') p++;
3511 /* % followed by punctuation: output something for that
3512 punctuation character alone, with no operand.
3513 The PRINT_OPERAND macro decides what is actually done. */
3514 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3515 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
3516 output_operand (NULL_RTX, *p++);
3517 #endif
3518 else
3519 output_operand_lossage ("invalid %%-code");
3520 break;
3522 default:
3523 putc (c, asm_out_file);
3526 output_asm_name ();
3528 putc ('\n', asm_out_file);
3531 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3533 void
3534 output_asm_label (x)
3535 rtx x;
3537 char buf[256];
3539 if (GET_CODE (x) == LABEL_REF)
3540 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3541 else if (GET_CODE (x) == CODE_LABEL)
3542 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3543 else
3544 output_operand_lossage ("`%l' operand isn't a label");
3546 assemble_name (asm_out_file, buf);
3549 /* Print operand X using machine-dependent assembler syntax.
3550 The macro PRINT_OPERAND is defined just to control this function.
3551 CODE is a non-digit that preceded the operand-number in the % spec,
3552 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3553 between the % and the digits.
3554 When CODE is a non-letter, X is 0.
3556 The meanings of the letters are machine-dependent and controlled
3557 by PRINT_OPERAND. */
3559 static void
3560 output_operand (x, code)
3561 rtx x;
3562 int code;
3564 if (x && GET_CODE (x) == SUBREG)
3565 x = alter_subreg (x);
3567 /* If X is a pseudo-register, abort now rather than writing trash to the
3568 assembler file. */
3570 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3571 abort ();
3573 PRINT_OPERAND (asm_out_file, x, code);
3576 /* Print a memory reference operand for address X
3577 using machine-dependent assembler syntax.
3578 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3580 void
3581 output_address (x)
3582 rtx x;
3584 walk_alter_subreg (x);
3585 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3588 /* Print an integer constant expression in assembler syntax.
3589 Addition and subtraction are the only arithmetic
3590 that may appear in these expressions. */
3592 void
3593 output_addr_const (file, x)
3594 FILE *file;
3595 rtx x;
3597 char buf[256];
3599 restart:
3600 switch (GET_CODE (x))
3602 case PC:
3603 if (flag_pic)
3604 putc ('.', file);
3605 else
3606 abort ();
3607 break;
3609 case SYMBOL_REF:
3610 assemble_name (file, XSTR (x, 0));
3611 break;
3613 case LABEL_REF:
3614 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3615 assemble_name (file, buf);
3616 break;
3618 case CODE_LABEL:
3619 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3620 assemble_name (file, buf);
3621 break;
3623 case CONST_INT:
3624 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3625 break;
3627 case CONST:
3628 /* This used to output parentheses around the expression,
3629 but that does not work on the 386 (either ATT or BSD assembler). */
3630 output_addr_const (file, XEXP (x, 0));
3631 break;
3633 case CONST_DOUBLE:
3634 if (GET_MODE (x) == VOIDmode)
3636 /* We can use %d if the number is one word and positive. */
3637 if (CONST_DOUBLE_HIGH (x))
3638 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3639 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3640 else if (CONST_DOUBLE_LOW (x) < 0)
3641 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3642 else
3643 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3645 else
3646 /* We can't handle floating point constants;
3647 PRINT_OPERAND must handle them. */
3648 output_operand_lossage ("floating constant misused");
3649 break;
3651 case PLUS:
3652 /* Some assemblers need integer constants to appear last (eg masm). */
3653 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3655 output_addr_const (file, XEXP (x, 1));
3656 if (INTVAL (XEXP (x, 0)) >= 0)
3657 fprintf (file, "+");
3658 output_addr_const (file, XEXP (x, 0));
3660 else
3662 output_addr_const (file, XEXP (x, 0));
3663 if (INTVAL (XEXP (x, 1)) >= 0)
3664 fprintf (file, "+");
3665 output_addr_const (file, XEXP (x, 1));
3667 break;
3669 case MINUS:
3670 /* Avoid outputting things like x-x or x+5-x,
3671 since some assemblers can't handle that. */
3672 x = simplify_subtraction (x);
3673 if (GET_CODE (x) != MINUS)
3674 goto restart;
3676 output_addr_const (file, XEXP (x, 0));
3677 fprintf (file, "-");
3678 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3679 && INTVAL (XEXP (x, 1)) < 0)
3681 fprintf (file, "%s", ASM_OPEN_PAREN);
3682 output_addr_const (file, XEXP (x, 1));
3683 fprintf (file, "%s", ASM_CLOSE_PAREN);
3685 else
3686 output_addr_const (file, XEXP (x, 1));
3687 break;
3689 case ZERO_EXTEND:
3690 case SIGN_EXTEND:
3691 output_addr_const (file, XEXP (x, 0));
3692 break;
3694 default:
3695 output_operand_lossage ("invalid expression as operand");
3699 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3700 %R prints the value of REGISTER_PREFIX.
3701 %L prints the value of LOCAL_LABEL_PREFIX.
3702 %U prints the value of USER_LABEL_PREFIX.
3703 %I prints the value of IMMEDIATE_PREFIX.
3704 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3705 Also supported are %d, %x, %s, %e, %f, %g and %%.
3707 We handle alternate assembler dialects here, just like output_asm_insn. */
3709 void
3710 asm_fprintf VPROTO((FILE *file, const char *p, ...))
3712 #ifndef ANSI_PROTOTYPES
3713 FILE *file;
3714 const char *p;
3715 #endif
3716 va_list argptr;
3717 char buf[10];
3718 char *q, c;
3720 VA_START (argptr, p);
3722 #ifndef ANSI_PROTOTYPES
3723 file = va_arg (argptr, FILE *);
3724 p = va_arg (argptr, const char *);
3725 #endif
3727 buf[0] = '%';
3729 while ((c = *p++))
3730 switch (c)
3732 #ifdef ASSEMBLER_DIALECT
3733 case '{':
3735 int i;
3737 /* If we want the first dialect, do nothing. Otherwise, skip
3738 DIALECT_NUMBER of strings ending with '|'. */
3739 for (i = 0; i < dialect_number; i++)
3741 while (*p && *p++ != '|')
3744 if (*p == '|')
3745 p++;
3748 break;
3750 case '|':
3751 /* Skip to close brace. */
3752 while (*p && *p++ != '}')
3754 break;
3756 case '}':
3757 break;
3758 #endif
3760 case '%':
3761 c = *p++;
3762 q = &buf[1];
3763 while ((c >= '0' && c <= '9') || c == '.')
3765 *q++ = c;
3766 c = *p++;
3768 switch (c)
3770 case '%':
3771 fprintf (file, "%%");
3772 break;
3774 case 'd': case 'i': case 'u':
3775 case 'x': case 'p': case 'X':
3776 case 'o':
3777 *q++ = c;
3778 *q = 0;
3779 fprintf (file, buf, va_arg (argptr, int));
3780 break;
3782 case 'w':
3783 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3784 but we do not check for those cases. It means that the value
3785 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3787 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3788 #else
3789 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3790 *q++ = 'l';
3791 #else
3792 *q++ = 'l';
3793 *q++ = 'l';
3794 #endif
3795 #endif
3797 *q++ = *p++;
3798 *q = 0;
3799 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3800 break;
3802 case 'l':
3803 *q++ = c;
3804 *q++ = *p++;
3805 *q = 0;
3806 fprintf (file, buf, va_arg (argptr, long));
3807 break;
3809 case 'e':
3810 case 'f':
3811 case 'g':
3812 *q++ = c;
3813 *q = 0;
3814 fprintf (file, buf, va_arg (argptr, double));
3815 break;
3817 case 's':
3818 *q++ = c;
3819 *q = 0;
3820 fprintf (file, buf, va_arg (argptr, char *));
3821 break;
3823 case 'O':
3824 #ifdef ASM_OUTPUT_OPCODE
3825 ASM_OUTPUT_OPCODE (asm_out_file, p);
3826 #endif
3827 break;
3829 case 'R':
3830 #ifdef REGISTER_PREFIX
3831 fprintf (file, "%s", REGISTER_PREFIX);
3832 #endif
3833 break;
3835 case 'I':
3836 #ifdef IMMEDIATE_PREFIX
3837 fprintf (file, "%s", IMMEDIATE_PREFIX);
3838 #endif
3839 break;
3841 case 'L':
3842 #ifdef LOCAL_LABEL_PREFIX
3843 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3844 #endif
3845 break;
3847 case 'U':
3848 fputs (user_label_prefix, file);
3849 break;
3851 #ifdef ASM_FPRINTF_EXTENSIONS
3852 /* Upper case letters are reserved for general use by asm_fprintf
3853 and so are not available to target specific code. In order to
3854 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3855 they are defined here. As they get turned into real extensions
3856 to asm_fprintf they should be removed from this list. */
3857 case 'A': case 'B': case 'C': case 'D': case 'E':
3858 case 'F': case 'G': case 'H': case 'J': case 'K':
3859 case 'M': case 'N': case 'P': case 'Q': case 'S':
3860 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3861 break;
3863 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3864 #endif
3865 default:
3866 abort ();
3868 break;
3870 default:
3871 fputc (c, file);
3875 /* Split up a CONST_DOUBLE or integer constant rtx
3876 into two rtx's for single words,
3877 storing in *FIRST the word that comes first in memory in the target
3878 and in *SECOND the other. */
3880 void
3881 split_double (value, first, second)
3882 rtx value;
3883 rtx *first, *second;
3885 if (GET_CODE (value) == CONST_INT)
3887 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3889 /* In this case the CONST_INT holds both target words.
3890 Extract the bits from it into two word-sized pieces.
3891 Sign extend each half to HOST_WIDE_INT. */
3892 rtx low, high;
3893 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3894 the shift below will cause a compiler warning, even though
3895 this code won't be executed. So put the shift amounts in
3896 variables to avoid the warning. */
3897 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3898 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3900 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3901 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3902 if (WORDS_BIG_ENDIAN)
3904 *first = high;
3905 *second = low;
3907 else
3909 *first = low;
3910 *second = high;
3913 else
3915 /* The rule for using CONST_INT for a wider mode
3916 is that we regard the value as signed.
3917 So sign-extend it. */
3918 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3919 if (WORDS_BIG_ENDIAN)
3921 *first = high;
3922 *second = value;
3924 else
3926 *first = value;
3927 *second = high;
3931 else if (GET_CODE (value) != CONST_DOUBLE)
3933 if (WORDS_BIG_ENDIAN)
3935 *first = const0_rtx;
3936 *second = value;
3938 else
3940 *first = value;
3941 *second = const0_rtx;
3944 else if (GET_MODE (value) == VOIDmode
3945 /* This is the old way we did CONST_DOUBLE integers. */
3946 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3948 /* In an integer, the words are defined as most and least significant.
3949 So order them by the target's convention. */
3950 if (WORDS_BIG_ENDIAN)
3952 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3953 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3955 else
3957 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3958 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3961 else
3963 #ifdef REAL_ARITHMETIC
3964 REAL_VALUE_TYPE r; long l[2];
3965 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3967 /* Note, this converts the REAL_VALUE_TYPE to the target's
3968 format, splits up the floating point double and outputs
3969 exactly 32 bits of it into each of l[0] and l[1] --
3970 not necessarily BITS_PER_WORD bits. */
3971 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3973 /* If 32 bits is an entire word for the target, but not for the host,
3974 then sign-extend on the host so that the number will look the same
3975 way on the host that it would on the target. See for instance
3976 simplify_unary_operation. The #if is needed to avoid compiler
3977 warnings. */
3979 #if HOST_BITS_PER_LONG > 32
3980 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3982 if (l[0] & ((long) 1 << 31))
3983 l[0] |= ((long) (-1) << 32);
3984 if (l[1] & ((long) 1 << 31))
3985 l[1] |= ((long) (-1) << 32);
3987 #endif
3989 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3990 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3991 #else
3992 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3993 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3994 && ! flag_pretend_float)
3995 abort ();
3997 if (
3998 #ifdef HOST_WORDS_BIG_ENDIAN
3999 WORDS_BIG_ENDIAN
4000 #else
4001 ! WORDS_BIG_ENDIAN
4002 #endif
4005 /* Host and target agree => no need to swap. */
4006 *first = GEN_INT (CONST_DOUBLE_LOW (value));
4007 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
4009 else
4011 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4012 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4014 #endif /* no REAL_ARITHMETIC */
4018 /* Return nonzero if this function has no function calls. */
4021 leaf_function_p ()
4023 rtx insn;
4025 if (profile_flag || profile_block_flag || profile_arc_flag)
4026 return 0;
4028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4030 if (GET_CODE (insn) == CALL_INSN)
4031 return 0;
4032 if (GET_CODE (insn) == INSN
4033 && GET_CODE (PATTERN (insn)) == SEQUENCE
4034 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
4035 return 0;
4037 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4039 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
4040 return 0;
4041 if (GET_CODE (XEXP (insn, 0)) == INSN
4042 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
4043 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
4044 return 0;
4047 return 1;
4050 /* On some machines, a function with no call insns
4051 can run faster if it doesn't create its own register window.
4052 When output, the leaf function should use only the "output"
4053 registers. Ordinarily, the function would be compiled to use
4054 the "input" registers to find its arguments; it is a candidate
4055 for leaf treatment if it uses only the "input" registers.
4056 Leaf function treatment means renumbering so the function
4057 uses the "output" registers instead. */
4059 #ifdef LEAF_REGISTERS
4061 static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
4063 /* Return 1 if this function uses only the registers that can be
4064 safely renumbered. */
4067 only_leaf_regs_used ()
4069 int i;
4071 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4072 if ((regs_ever_live[i] || global_regs[i])
4073 && ! permitted_reg_in_leaf_functions[i])
4074 return 0;
4076 if (current_function_uses_pic_offset_table
4077 && pic_offset_table_rtx != 0
4078 && GET_CODE (pic_offset_table_rtx) == REG
4079 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4080 return 0;
4082 return 1;
4085 /* Scan all instructions and renumber all registers into those
4086 available in leaf functions. */
4088 static void
4089 leaf_renumber_regs (first)
4090 rtx first;
4092 rtx insn;
4094 /* Renumber only the actual patterns.
4095 The reg-notes can contain frame pointer refs,
4096 and renumbering them could crash, and should not be needed. */
4097 for (insn = first; insn; insn = NEXT_INSN (insn))
4098 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4099 leaf_renumber_regs_insn (PATTERN (insn));
4100 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4101 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
4102 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4105 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4106 available in leaf functions. */
4108 void
4109 leaf_renumber_regs_insn (in_rtx)
4110 register rtx in_rtx;
4112 register int i, j;
4113 register const char *format_ptr;
4115 if (in_rtx == 0)
4116 return;
4118 /* Renumber all input-registers into output-registers.
4119 renumbered_regs would be 1 for an output-register;
4120 they */
4122 if (GET_CODE (in_rtx) == REG)
4124 int newreg;
4126 /* Don't renumber the same reg twice. */
4127 if (in_rtx->used)
4128 return;
4130 newreg = REGNO (in_rtx);
4131 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4132 to reach here as part of a REG_NOTE. */
4133 if (newreg >= FIRST_PSEUDO_REGISTER)
4135 in_rtx->used = 1;
4136 return;
4138 newreg = LEAF_REG_REMAP (newreg);
4139 if (newreg < 0)
4140 abort ();
4141 regs_ever_live[REGNO (in_rtx)] = 0;
4142 regs_ever_live[newreg] = 1;
4143 REGNO (in_rtx) = newreg;
4144 in_rtx->used = 1;
4147 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4149 /* Inside a SEQUENCE, we find insns.
4150 Renumber just the patterns of these insns,
4151 just as we do for the top-level insns. */
4152 leaf_renumber_regs_insn (PATTERN (in_rtx));
4153 return;
4156 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4158 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4159 switch (*format_ptr++)
4161 case 'e':
4162 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4163 break;
4165 case 'E':
4166 if (NULL != XVEC (in_rtx, i))
4168 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4169 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4171 break;
4173 case 'S':
4174 case 's':
4175 case '0':
4176 case 'i':
4177 case 'w':
4178 case 'n':
4179 case 'u':
4180 break;
4182 default:
4183 abort ();
4186 #endif