* flags.h: New variables align_loops, align_loops_log,
[official-gcc.git] / gcc / config / sparc / sparc.h
blob9d78988ed48a7c7a0aa3b82f57146f171d277f2f
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 88, 89, 92, 94-98, 1999 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* Note that some other tm.h files include this one and then override
25 whatever definitions are necessary. */
27 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
28 /* #define SPARC_BI_ARCH */
30 /* Macro used later in this file to determine default architecture. */
31 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
33 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
34 architectures to compile for. We allow targets to choose compile time or
35 runtime selection. */
36 #ifdef SPARC_BI_ARCH
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__sparcv_v9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* V9 sparc */
43 #else
44 #define TARGET_ARCH32 (! TARGET_64BIT)
45 #endif /* IN_LIBGCC2 */
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #define TARGET_ARCH64 (! TARGET_ARCH32)
51 /* Code model selection.
52 -mcmodel is used to select the v9 code model.
53 Different code models aren't supported for v7/8 code.
55 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
56 pointers are 32 bits. Note that this isn't intended
57 to imply a v7/8 abi.
59 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
60 avoid generating %uhi and %ulo terms,
61 pointers are 64 bits.
63 TARGET_CM_MEDMID: 64 bit address space.
64 The executable must be in the low 16 TB of memory.
65 This corresponds to the low 44 bits, and the %[hml]44
66 relocs are used. The text segment has a maximum size
67 of 31 bits.
69 TARGET_CM_MEDANY: 64 bit address space.
70 The text and data segments have a maximum size of 31
71 bits and may be located anywhere. The maximum offset
72 from any instruction to the label _GLOBAL_OFFSET_TABLE_
73 is 31 bits.
75 TARGET_CM_EMBMEDANY: 64 bit address space.
76 The text and data segments have a maximum size of 31 bits
77 and may be located anywhere. Register %g4 contains
78 the start address of the data segment.
81 enum cmodel {
82 CM_32,
83 CM_MEDLOW,
84 CM_MEDMID,
85 CM_MEDANY,
86 CM_EMBMEDANY
89 /* Value of -mcmodel specified by user. */
90 extern const char *sparc_cmodel_string;
91 /* One of CM_FOO. */
92 extern enum cmodel sparc_cmodel;
94 /* V9 code model selection. */
95 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
96 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
97 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
98 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
100 #define SPARC_DEFAULT_CMODEL CM_MEDLOW
102 /* This is call-clobbered in the normal ABI, but is reserved in the
103 home grown (aka upward compatible) embedded ABI. */
104 #define EMBMEDANY_BASE_REG "%g4"
106 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
107 and specified by the user via --with-cpu=foo.
108 This specifies the cpu implementation, not the architecture size. */
109 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
110 capable cpu's. */
111 #define TARGET_CPU_sparc 0
112 #define TARGET_CPU_v7 0 /* alias for previous */
113 #define TARGET_CPU_sparclet 1
114 #define TARGET_CPU_sparclite 2
115 #define TARGET_CPU_v8 3 /* generic v8 implementation */
116 #define TARGET_CPU_supersparc 4
117 #define TARGET_CPU_hypersparc 5
118 #define TARGET_CPU_sparc86x 6
119 #define TARGET_CPU_sparclite86x 6
120 #define TARGET_CPU_v9 7 /* generic v9 implementation */
121 #define TARGET_CPU_sparcv9 7 /* alias */
122 #define TARGET_CPU_sparc64 7 /* alias */
123 #define TARGET_CPU_ultrasparc 8
125 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
126 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
128 #define CPP_CPU32_DEFAULT_SPEC ""
129 #define ASM_CPU32_DEFAULT_SPEC ""
131 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
132 /* ??? What does Sun's CC pass? */
133 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
134 /* ??? It's not clear how other assemblers will handle this, so by default
135 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
136 is handled in sol2.h. */
137 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
138 #endif
139 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
140 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
141 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
142 #endif
144 #else
146 #define CPP_CPU64_DEFAULT_SPEC ""
147 #define ASM_CPU64_DEFAULT_SPEC ""
149 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
150 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
151 #define CPP_CPU32_DEFAULT_SPEC ""
152 #define ASM_CPU32_DEFAULT_SPEC ""
153 #endif
155 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
156 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
157 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
158 #endif
160 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
161 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
162 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
163 #endif
165 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
166 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
167 #define ASM_CPU32_DEFAULT_SPEC ""
168 #endif
170 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
171 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
172 #define ASM_CPU32_DEFAULT_SPEC ""
173 #endif
175 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
176 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
177 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
178 #endif
180 #endif
182 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
183 Unrecognized value in TARGET_CPU_DEFAULT.
184 #endif
186 #ifdef SPARC_BI_ARCH
188 #define CPP_CPU_DEFAULT_SPEC \
189 (DEFAULT_ARCH32_P ? "\
190 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
191 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
192 " : "\
193 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
194 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
196 #define ASM_CPU_DEFAULT_SPEC \
197 (DEFAULT_ARCH32_P ? "\
198 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
199 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
200 " : "\
201 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
202 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
205 #else /* !SPARC_BI_ARCH */
207 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
208 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
210 #endif /* !SPARC_BI_ARCH */
212 /* Names to predefine in the preprocessor for this target machine.
213 ??? It would be nice to not include any subtarget specific values here,
214 however there's no way to portably provide subtarget values to
215 CPP_PREFINES. Also, -D values in CPP_SUBTARGET_SPEC don't get turned into
216 foo, __foo and __foo__. */
218 #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -Asystem(unix) -Asystem(bsd)"
220 /* Define macros to distinguish architectures. */
222 /* Common CPP definitions used by CPP_SPEC amongst the various targets
223 for handling -mcpu=xxx switches. */
224 #define CPP_CPU_SPEC "\
225 %{mcypress:} \
226 %{msparclite:-D__sparclite__} \
227 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
228 %{mv8:-D__sparc_v8__} \
229 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
231 %{mcpu=sparclite:-D__sparclite__} \
232 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
233 %{mcpu=v8:-D__sparc_v8__} \
234 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
235 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
236 %{mcpu=sparclite86x:-D__sparclite86x__} \
237 %{mcpu=v9:-D__sparc_v9__} \
238 %{mcpu=ultrasparc:-D__sparc_v9__} \
239 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
242 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
243 the right varags.h file when bootstrapping. */
244 /* ??? It's not clear what value we want to use for -Acpu/machine for
245 sparc64 in 32 bit environments, so for now we only use `sparc64' in
246 64 bit environments. */
248 #ifdef SPARC_BI_ARCH
250 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
251 -D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc)"
252 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
253 -D__arch64__ -Acpu(sparc64) -Amachine(sparc64)"
255 #else
257 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc)"
258 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu(sparc64) -Amachine(sparc64)"
260 #endif
262 #define CPP_ARCH_DEFAULT_SPEC \
263 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
265 #define CPP_ARCH_SPEC "\
266 %{m32:%(cpp_arch32)} \
267 %{m64:%(cpp_arch64)} \
268 %{!m32:%{!m64:%(cpp_arch_default)}} \
271 /* Macros to distinguish endianness. */
272 #define CPP_ENDIAN_SPEC "\
273 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
274 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
276 /* Macros to distinguish the particular subtarget. */
277 #define CPP_SUBTARGET_SPEC ""
279 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
281 /* Prevent error on `-sun4' and `-target sun4' options. */
282 /* This used to translate -dalign to -malign, but that is no good
283 because it can't turn off the usual meaning of making debugging dumps. */
284 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
285 ??? Delete support for -m<cpu> for 2.9. */
287 #define CC1_SPEC "\
288 %{sun4:} %{target:} \
289 %{mcypress:-mcpu=cypress} \
290 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
291 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
294 /* Override in target specific files. */
295 #define ASM_CPU_SPEC "\
296 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
297 %{msparclite:-Asparclite} \
298 %{mf930:-Asparclite} %{mf934:-Asparclite} \
299 %{mcpu=sparclite:-Asparclite} \
300 %{mcpu=sparclite86x:-Asparclite} \
301 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
302 %{mv8plus:-Av8plus} \
303 %{mcpu=v9:-Av9} \
304 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
305 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
308 /* Word size selection, among other things.
309 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
311 #define ASM_ARCH32_SPEC "-32"
312 #define ASM_ARCH64_SPEC "-64"
313 #define ASM_ARCH_DEFAULT_SPEC \
314 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
316 #define ASM_ARCH_SPEC "\
317 %{m32:%(asm_arch32)} \
318 %{m64:%(asm_arch64)} \
319 %{!m32:%{!m64:%(asm_arch_default)}} \
322 /* Special flags to the Sun-4 assembler when using pipe for input. */
324 #define ASM_SPEC "\
325 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
326 %(asm_cpu) \
329 #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
331 /* Provide required defaults for linker -e and -d switches. */
333 #define LINK_SPEC \
334 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
335 %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}"
337 /* This macro defines names of additional specifications to put in the specs
338 that can be used in various specifications like CC1_SPEC. Its definition
339 is an initializer with a subgrouping for each command option.
341 Each subgrouping contains a string constant, that defines the
342 specification name, and a string constant that used by the GNU CC driver
343 program.
345 Do not define this macro if it does not need to do anything. */
347 #define EXTRA_SPECS \
348 { "cpp_cpu", CPP_CPU_SPEC }, \
349 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
350 { "cpp_arch32", CPP_ARCH32_SPEC }, \
351 { "cpp_arch64", CPP_ARCH64_SPEC }, \
352 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
353 { "cpp_arch", CPP_ARCH_SPEC }, \
354 { "cpp_endian", CPP_ENDIAN_SPEC }, \
355 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
356 { "asm_cpu", ASM_CPU_SPEC }, \
357 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
358 { "asm_arch32", ASM_ARCH32_SPEC }, \
359 { "asm_arch64", ASM_ARCH64_SPEC }, \
360 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
361 { "asm_arch", ASM_ARCH_SPEC }, \
362 SUBTARGET_EXTRA_SPECS
364 #define SUBTARGET_EXTRA_SPECS
366 #ifdef SPARC_BI_ARCH
367 #define NO_BUILTIN_PTRDIFF_TYPE
368 #define NO_BUILTIN_SIZE_TYPE
369 #endif
370 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
371 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
373 /* ??? This should be 32 bits for v9 but what can we do? */
374 #define WCHAR_TYPE "short unsigned int"
375 #define WCHAR_TYPE_SIZE 16
376 #define MAX_WCHAR_TYPE_SIZE 16
378 /* Show we can debug even without a frame pointer. */
379 #define CAN_DEBUG_WITHOUT_FP
381 /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
382 code into the rtl. Also, if we are profiling, we cannot eliminate
383 the frame pointer (because the return address will get smashed). */
385 void sparc_override_options ();
387 #define OVERRIDE_OPTIONS \
388 do { \
389 if (profile_flag || profile_block_flag || profile_arc_flag) \
391 if (flag_pic) \
393 const char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\
394 warning ("%s and profiling conflict: disabling %s", \
395 pic_string, pic_string); \
396 flag_pic = 0; \
398 flag_omit_frame_pointer = 0; \
400 sparc_override_options (); \
401 SUBTARGET_OVERRIDE_OPTIONS; \
402 } while (0)
404 /* This is meant to be redefined in the host dependent files. */
405 #define SUBTARGET_OVERRIDE_OPTIONS
407 /* These compiler options take an argument. We ignore -target for now. */
409 #define WORD_SWITCH_TAKES_ARG(STR) \
410 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
411 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
413 /* Print subsidiary information on the compiler version in use. */
415 #define TARGET_VERSION fprintf (stderr, " (sparc)");
417 /* Generate DBX debugging information. */
419 #define DBX_DEBUGGING_INFO
421 /* Run-time compilation parameters selecting different hardware subsets. */
423 extern int target_flags;
425 /* Nonzero if we should generate code to use the fpu. */
426 #define MASK_FPU 1
427 #define TARGET_FPU (target_flags & MASK_FPU)
429 /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
430 use fast return insns, but lose some generality. */
431 #define MASK_EPILOGUE 2
432 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
434 /* Nonzero if we should assume that double pointers might be unaligned.
435 This can happen when linking gcc compiled code with other compilers,
436 because the ABI only guarantees 4 byte alignment. */
437 #define MASK_UNALIGNED_DOUBLES 4
438 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
440 /* Nonzero means that we should generate code for a v8 sparc. */
441 #define MASK_V8 0x8
442 #define TARGET_V8 (target_flags & MASK_V8)
444 /* Nonzero means that we should generate code for a sparclite.
445 This enables the sparclite specific instructions, but does not affect
446 whether FPU instructions are emitted. */
447 #define MASK_SPARCLITE 0x10
448 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
450 /* Nonzero if we're compiling for the sparclet. */
451 #define MASK_SPARCLET 0x20
452 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
454 /* Nonzero if we're compiling for v9 sparc.
455 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
456 the word size is 64. */
457 #define MASK_V9 0x40
458 #define TARGET_V9 (target_flags & MASK_V9)
460 /* Non-zero to generate code that uses the instructions deprecated in
461 the v9 architecture. This option only applies to v9 systems. */
462 /* ??? This isn't user selectable yet. It's used to enable such insns
463 on 32 bit v9 systems and for the moment they're permanently disabled
464 on 64 bit v9 systems. */
465 #define MASK_DEPRECATED_V8_INSNS 0x80
466 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
468 /* Mask of all CPU selection flags. */
469 #define MASK_ISA \
470 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
472 /* Non-zero means don't pass `-assert pure-text' to the linker. */
473 #define MASK_IMPURE_TEXT 0x100
474 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
476 /* Nonzero means that we should generate code using a flat register window
477 model, i.e. no save/restore instructions are generated, which is
478 compatible with normal sparc code.
479 The frame pointer is %i7 instead of %fp. */
480 #define MASK_FLAT 0x200
481 #define TARGET_FLAT (target_flags & MASK_FLAT)
483 /* Nonzero means use the registers that the Sparc ABI reserves for
484 application software. This must be the default to coincide with the
485 setting in FIXED_REGISTERS. */
486 #define MASK_APP_REGS 0x400
487 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
489 /* Option to select how quad word floating point is implemented.
490 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
491 Otherwise, we use the SPARC ABI quad library functions. */
492 #define MASK_HARD_QUAD 0x800
493 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
495 /* Non-zero on little-endian machines. */
496 /* ??? Little endian support currently only exists for sparclet-aout and
497 sparc64-elf configurations. May eventually want to expand the support
498 to all targets, but for now it's kept local to only those two. */
499 #define MASK_LITTLE_ENDIAN 0x1000
500 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
502 /* 0x2000, 0x4000 are unused */
504 /* Nonzero if pointers are 64 bits.
505 At the moment it must follow architecture size flag. */
506 #define MASK_PTR64 0x8000
507 #define TARGET_PTR64 (target_flags & MASK_PTR64)
509 /* Nonzero if generating code to run in a 64 bit environment.
510 This is intended to only be used by TARGET_ARCH{32,64} as they are the
511 mechanism used to control compile time or run time selection. */
512 #define MASK_64BIT 0x10000
513 #define TARGET_64BIT (target_flags & MASK_64BIT)
515 /* 0x20000,0x40000 unused */
517 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
518 adding 2047 to %sp. This option is for v9 only and is the default. */
519 #define MASK_STACK_BIAS 0x80000
520 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
522 /* Non-zero means %g0 is a normal register.
523 We still clobber it as necessary, but we can't rely on it always having
524 a zero value.
525 We don't bother to support this in true 64 bit mode. */
526 #define MASK_LIVE_G0 0x100000
527 #define TARGET_LIVE_G0 (target_flags & MASK_LIVE_G0)
529 /* Non-zero means the cpu has broken `save' and `restore' insns, only
530 the trivial versions work (save %g0,%g0,%g0; restore %g0,%g0,%g0).
531 We assume the environment will properly handle or otherwise avoid
532 trouble associated with an interrupt occurring after the `save' or trap
533 occurring during it. */
534 #define MASK_BROKEN_SAVERESTORE 0x200000
535 #define TARGET_BROKEN_SAVERESTORE (target_flags & MASK_BROKEN_SAVERESTORE)
537 /* Non-zero means -m{,no-}fpu was passed on the command line. */
538 #define MASK_FPU_SET 0x400000
539 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
541 /* Use the UltraSPARC Visual Instruction Set extensions. */
542 #define MASK_VIS 0x1000000
543 #define TARGET_VIS (target_flags & MASK_VIS)
545 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
546 the current out and global registers and Linux 2.2+ as well. */
547 #define MASK_V8PLUS 0x2000000
548 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
550 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
551 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
552 to get high 32 bits. False in V8+ or V9 because multiply stores
553 a 64 bit result in a register. */
555 #define TARGET_HARD_MUL32 \
556 ((TARGET_V8 || TARGET_SPARCLITE \
557 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
558 && ! TARGET_V8PLUS && TARGET_ARCH32)
560 #define TARGET_HARD_MUL \
561 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
562 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
565 /* Macro to define tables used to set the flags.
566 This is a list in braces of pairs in braces,
567 each pair being { "NAME", VALUE }
568 where VALUE is the bits to set or minus the bits to clear.
569 An empty string NAME is used to identify the default VALUE. */
571 #define TARGET_SWITCHES \
572 { {"fpu", MASK_FPU | MASK_FPU_SET, "Use hardware fp" }, \
573 {"no-fpu", -MASK_FPU, "Do not use hardware fp" }, \
574 {"no-fpu", MASK_FPU_SET, "Do not use hardware fp" }, \
575 {"hard-float", MASK_FPU | MASK_FPU_SET, "Use hardware fp" }, \
576 {"soft-float", -MASK_FPU, "Do not use hardware fp" }, \
577 {"soft-float", MASK_FPU_SET, "Do not use hardware fp" }, \
578 {"epilogue", MASK_EPILOGUE, "Use FUNCTION_EPILOGUE" }, \
579 {"no-epilogue", -MASK_EPILOGUE, "Do not use FUNCTION_EPILOGUE" }, \
580 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, "Assume possible double misalignment" },\
581 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, "Assume all doubles are aligned" }, \
582 {"impure-text", MASK_IMPURE_TEXT, "Pass -assert pure-text to linker" }, \
583 {"no-impure-text", -MASK_IMPURE_TEXT, "Do not pass -assert pure-text to linker" }, \
584 {"flat", MASK_FLAT, "Use flat register window model" }, \
585 {"no-flat", -MASK_FLAT, "Do not use flat register window model" }, \
586 {"app-regs", MASK_APP_REGS, "Use ABI reserved registers" }, \
587 {"no-app-regs", -MASK_APP_REGS, "Do not use ABI reserved registers" }, \
588 {"hard-quad-float", MASK_HARD_QUAD, "Use hardware quad fp instructions" }, \
589 {"soft-quad-float", -MASK_HARD_QUAD, "Do not use hardware quad fp instructions" }, \
590 {"v8plus", MASK_V8PLUS, "Compile for v8plus ABI" }, \
591 {"no-v8plus", -MASK_V8PLUS, "Do not compile for v8plus ABI" }, \
592 {"vis", MASK_VIS, "Utilize Visual Instruction Set" }, \
593 {"no-vis", -MASK_VIS, "Do not utilize Visual Instruction Set" }, \
594 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
595 {"cypress", 0, "Optimize for Cypress processors" }, \
596 {"sparclite", 0, "Optimize for SparcLite processors" }, \
597 {"f930", 0, "Optimize for F930 processors" }, \
598 {"f934", 0, "Optimize for F934 processors" }, \
599 {"v8", 0, "Use V8 Sparc ISA" }, \
600 {"supersparc", 0, "Optimize for SuperSparc processors" }, \
601 /* End of deprecated options. */ \
602 {"ptr64", MASK_PTR64, "Pointers are 64-bit" }, \
603 {"ptr32", -MASK_PTR64, "Pointers are 32-bit" }, \
604 {"32", -MASK_64BIT, "Use 32-bit ABI" }, \
605 {"64", MASK_64BIT, "Use 64-bit ABI" }, \
606 {"stack-bias", MASK_STACK_BIAS, "Use stack bias" }, \
607 {"no-stack-bias", -MASK_STACK_BIAS, "Do not use stack bias" }, \
608 SUBTARGET_SWITCHES \
609 { "", TARGET_DEFAULT, ""}}
611 /* MASK_APP_REGS must always be the default because that's what
612 FIXED_REGISTERS is set to and -ffixed- is processed before
613 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
614 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
616 /* This is meant to be redefined in target specific files. */
617 #define SUBTARGET_SWITCHES
619 /* Processor type.
620 These must match the values for the cpu attribute in sparc.md. */
621 enum processor_type {
622 PROCESSOR_V7,
623 PROCESSOR_CYPRESS,
624 PROCESSOR_V8,
625 PROCESSOR_SUPERSPARC,
626 PROCESSOR_SPARCLITE,
627 PROCESSOR_F930,
628 PROCESSOR_F934,
629 PROCESSOR_HYPERSPARC,
630 PROCESSOR_SPARCLITE86X,
631 PROCESSOR_SPARCLET,
632 PROCESSOR_TSC701,
633 PROCESSOR_V9,
634 PROCESSOR_ULTRASPARC
637 /* This is set from -m{cpu,tune}=xxx. */
638 extern enum processor_type sparc_cpu;
640 /* Recast the cpu class to be the cpu attribute.
641 Every file includes us, but not every file includes insn-attr.h. */
642 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
644 /* This macro is similar to `TARGET_SWITCHES' but defines names of
645 command options that have values. Its definition is an
646 initializer with a subgrouping for each command option.
648 Each subgrouping contains a string constant, that defines the
649 fixed part of the option name, and the address of a variable.
650 The variable, type `char *', is set to the variable part of the
651 given option if the fixed part matches. The actual option name
652 is made by appending `-m' to the specified name.
654 Here is an example which defines `-mshort-data-NUMBER'. If the
655 given option is `-mshort-data-512', the variable `m88k_short_data'
656 will be set to the string `"512"'.
658 extern char *m88k_short_data;
659 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
661 #define TARGET_OPTIONS \
663 { "cpu=", &sparc_select[1].string, "Use features of and schedule code for given CPU" }, \
664 { "tune=", &sparc_select[2].string, "Schedule code for given CPU" }, \
665 { "cmodel=", &sparc_cmodel_string, "Use given Sparc code model" }, \
666 SUBTARGET_OPTIONS \
669 /* This is meant to be redefined in target specific files. */
670 #define SUBTARGET_OPTIONS
672 /* sparc_select[0] is reserved for the default cpu. */
673 struct sparc_cpu_select
675 const char *string;
676 const char *name;
677 int set_tune_p;
678 int set_arch_p;
681 extern struct sparc_cpu_select sparc_select[];
683 /* target machine storage layout */
685 /* Define for cross-compilation to a sparc target with no TFmode from a host
686 with a different float format (e.g. VAX). */
687 #define REAL_ARITHMETIC
689 /* Define this if most significant bit is lowest numbered
690 in instructions that operate on numbered bit-fields. */
691 #define BITS_BIG_ENDIAN 1
693 /* Define this if most significant byte of a word is the lowest numbered. */
694 #define BYTES_BIG_ENDIAN 1
696 /* Define this if most significant word of a multiword number is the lowest
697 numbered. */
698 #define WORDS_BIG_ENDIAN 1
700 /* Define this to set the endianness to use in libgcc2.c, which can
701 not depend on target_flags. */
702 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
703 #define LIBGCC2_WORDS_BIG_ENDIAN 0
704 #else
705 #define LIBGCC2_WORDS_BIG_ENDIAN 1
706 #endif
708 /* number of bits in an addressable storage unit */
709 #define BITS_PER_UNIT 8
711 /* Width in bits of a "word", which is the contents of a machine register.
712 Note that this is not necessarily the width of data type `int';
713 if using 16-bit ints on a 68000, this would still be 32.
714 But on a machine with 16-bit registers, this would be 16. */
715 #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
716 #define MAX_BITS_PER_WORD 64
718 /* Width of a word, in units (bytes). */
719 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
720 #define MIN_UNITS_PER_WORD 4
722 /* Now define the sizes of the C data types. */
724 #define SHORT_TYPE_SIZE 16
725 #define INT_TYPE_SIZE 32
726 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
727 #define LONG_LONG_TYPE_SIZE 64
728 #define FLOAT_TYPE_SIZE 32
729 #define DOUBLE_TYPE_SIZE 64
731 #if defined (SPARC_BI_ARCH)
732 #define MAX_LONG_TYPE_SIZE 64
733 #endif
735 #if 0
736 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
737 Instead, it is enabled in sol2.h, because it does work under Solaris. */
738 /* Define for support of TFmode long double and REAL_ARITHMETIC.
739 Sparc ABI says that long double is 4 words. */
740 #define LONG_DOUBLE_TYPE_SIZE 128
741 #endif
743 /* Width in bits of a pointer.
744 See also the macro `Pmode' defined below. */
745 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
747 /* A macro to update MODE and UNSIGNEDP when an object whose type
748 is TYPE and which has the specified mode and signedness is to be
749 stored in a register. This macro is only called when TYPE is a
750 scalar type. */
751 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
752 if (TARGET_ARCH64 \
753 && GET_MODE_CLASS (MODE) == MODE_INT \
754 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
756 (MODE) = DImode; \
759 /* Define this macro if the promotion described by PROMOTE_MODE
760 should also be done for outgoing function arguments. */
761 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
762 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
763 for this value. */
764 #define PROMOTE_FUNCTION_ARGS
766 /* Define this macro if the promotion described by PROMOTE_MODE
767 should also be done for the return value of functions.
768 If this macro is defined, FUNCTION_VALUE must perform the same
769 promotions done by PROMOTE_MODE. */
770 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
771 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
772 for this value. */
773 #define PROMOTE_FUNCTION_RETURN
775 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
776 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
778 /* Boundary (in *bits*) on which stack pointer should be aligned. */
779 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
781 /* ALIGN FRAMES on double word boundaries */
783 #define SPARC_STACK_ALIGN(LOC) \
784 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
786 /* Allocation boundary (in *bits*) for the code of a function. */
787 #define FUNCTION_BOUNDARY 32
789 /* Alignment of field after `int : 0' in a structure. */
790 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
792 /* Every structure's size must be a multiple of this. */
793 #define STRUCTURE_SIZE_BOUNDARY 8
795 /* A bitfield declared as `int' forces `int' alignment for the struct. */
796 #define PCC_BITFIELD_TYPE_MATTERS 1
798 /* No data type wants to be aligned rounder than this. */
799 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
801 /* The best alignment to use in cases where we have a choice. */
802 #define FASTEST_ALIGNMENT 64
804 /* Make strings word-aligned so strcpy from constants will be faster. */
805 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
806 ((TREE_CODE (EXP) == STRING_CST \
807 && (ALIGN) < FASTEST_ALIGNMENT) \
808 ? FASTEST_ALIGNMENT : (ALIGN))
810 /* Make arrays of chars word-aligned for the same reasons. */
811 #define DATA_ALIGNMENT(TYPE, ALIGN) \
812 (TREE_CODE (TYPE) == ARRAY_TYPE \
813 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
814 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
816 /* Set this nonzero if move instructions will actually fail to work
817 when given unaligned data. */
818 #define STRICT_ALIGNMENT 1
820 /* Things that must be doubleword aligned cannot go in the text section,
821 because the linker fails to align the text section enough!
822 Put them in the data section. This macro is only used in this file. */
823 #define MAX_TEXT_ALIGN 32
825 /* This forces all variables and constants to the data section when PIC.
826 This is because the SunOS 4 shared library scheme thinks everything in
827 text is a function, and patches the address to point to a loader stub. */
828 /* This is defined to zero for every system which doesn't use the a.out object
829 file format. */
830 #ifndef SUNOS4_SHARED_LIBRARIES
831 #define SUNOS4_SHARED_LIBRARIES 0
832 #endif
834 /* This is defined differently for v9 in a cover file. */
835 #define SELECT_SECTION(T,RELOC) \
837 if (TREE_CODE (T) == VAR_DECL) \
839 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
840 && DECL_INITIAL (T) \
841 && (DECL_INITIAL (T) == error_mark_node \
842 || TREE_CONSTANT (DECL_INITIAL (T))) \
843 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
844 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
845 text_section (); \
846 else \
847 data_section (); \
849 else if (TREE_CODE (T) == CONSTRUCTOR) \
851 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
852 data_section (); \
854 else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \
856 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
857 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
858 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
859 data_section (); \
860 else \
861 text_section (); \
865 /* Use text section for a constant
866 unless we need more alignment than that offers. */
867 /* This is defined differently for v9 in a cover file. */
868 #define SELECT_RTX_SECTION(MODE, X) \
870 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
871 && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES))) \
872 text_section (); \
873 else \
874 data_section (); \
877 /* Standard register usage. */
879 /* Number of actual hardware registers.
880 The hardware registers are assigned numbers for the compiler
881 from 0 to just below FIRST_PSEUDO_REGISTER.
882 All registers that the compiler knows about must be given numbers,
883 even those that are not normally considered general registers.
885 SPARC has 32 integer registers and 32 floating point registers.
886 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
887 accessible. We still account for them to simplify register computations
888 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
889 32+32+32+4 == 100.
890 Register 100 is used as the integer condition code register. */
892 #define FIRST_PSEUDO_REGISTER 101
894 #define SPARC_FIRST_FP_REG 32
895 /* Additional V9 fp regs. */
896 #define SPARC_FIRST_V9_FP_REG 64
897 #define SPARC_LAST_V9_FP_REG 95
898 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
899 #define SPARC_FIRST_V9_FCC_REG 96
900 #define SPARC_LAST_V9_FCC_REG 99
901 /* V8 fcc reg. */
902 #define SPARC_FCC_REG 96
903 /* Integer CC reg. We don't distinguish %icc from %xcc. */
904 #define SPARC_ICC_REG 100
906 /* Nonzero if REGNO is an fp reg. */
907 #define SPARC_FP_REG_P(REGNO) \
908 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
910 /* Argument passing regs. */
911 #define SPARC_OUTGOING_INT_ARG_FIRST 8
912 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
913 #define SPARC_FP_ARG_FIRST 32
915 /* 1 for registers that have pervasive standard uses
916 and are not available for the register allocator.
918 On non-v9 systems:
919 g1 is free to use as temporary.
920 g2-g4 are reserved for applications. Gcc normally uses them as
921 temporaries, but this can be disabled via the -mno-app-regs option.
922 g5 through g7 are reserved for the operating system.
924 On v9 systems:
925 g1,g5 are free to use as temporaries, and are free to use between calls
926 if the call is to an external function via the PLT.
927 g4 is free to use as a temporary in the non-embedded case.
928 g4 is reserved in the embedded case.
929 g2-g3 are reserved for applications. Gcc normally uses them as
930 temporaries, but this can be disabled via the -mno-app-regs option.
931 g6-g7 are reserved for the operating system (or application in
932 embedded case).
933 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
934 currently be a fixed register until this pattern is rewritten.
935 Register 1 is also used when restoring call-preserved registers in large
936 stack frames.
938 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
939 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
942 #define FIXED_REGISTERS \
943 {1, 0, 0, 0, 0, 0, 1, 1, \
944 0, 0, 0, 0, 0, 0, 1, 0, \
945 0, 0, 0, 0, 0, 0, 0, 0, \
946 0, 0, 0, 0, 0, 0, 1, 1, \
948 0, 0, 0, 0, 0, 0, 0, 0, \
949 0, 0, 0, 0, 0, 0, 0, 0, \
950 0, 0, 0, 0, 0, 0, 0, 0, \
951 0, 0, 0, 0, 0, 0, 0, 0, \
953 0, 0, 0, 0, 0, 0, 0, 0, \
954 0, 0, 0, 0, 0, 0, 0, 0, \
955 0, 0, 0, 0, 0, 0, 0, 0, \
956 0, 0, 0, 0, 0, 0, 0, 0, \
958 0, 0, 0, 0, 0}
960 /* 1 for registers not available across function calls.
961 These must include the FIXED_REGISTERS and also any
962 registers that can be used without being saved.
963 The latter must include the registers where values are returned
964 and the register where structure-value addresses are passed.
965 Aside from that, you can include as many other registers as you like. */
967 #define CALL_USED_REGISTERS \
968 {1, 1, 1, 1, 1, 1, 1, 1, \
969 1, 1, 1, 1, 1, 1, 1, 1, \
970 0, 0, 0, 0, 0, 0, 0, 0, \
971 0, 0, 0, 0, 0, 0, 1, 1, \
973 1, 1, 1, 1, 1, 1, 1, 1, \
974 1, 1, 1, 1, 1, 1, 1, 1, \
975 1, 1, 1, 1, 1, 1, 1, 1, \
976 1, 1, 1, 1, 1, 1, 1, 1, \
978 1, 1, 1, 1, 1, 1, 1, 1, \
979 1, 1, 1, 1, 1, 1, 1, 1, \
980 1, 1, 1, 1, 1, 1, 1, 1, \
981 1, 1, 1, 1, 1, 1, 1, 1, \
983 1, 1, 1, 1, 1}
985 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
986 they won't be allocated. */
988 #define CONDITIONAL_REGISTER_USAGE \
989 do \
991 if (flag_pic) \
993 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
994 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
996 if (TARGET_ARCH32) \
998 fixed_regs[5] = 1; \
1000 if (TARGET_LIVE_G0) \
1001 fixed_regs[0] = 0; \
1002 if (! TARGET_V9) \
1004 int regno; \
1005 for (regno = SPARC_FIRST_V9_FP_REG; \
1006 regno <= SPARC_LAST_V9_FP_REG; \
1007 regno++) \
1008 fixed_regs[regno] = 1; \
1009 /* %fcc0 is used by v8 and v9. */ \
1010 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1011 regno <= SPARC_LAST_V9_FCC_REG; \
1012 regno++) \
1013 fixed_regs[regno] = 1; \
1015 if (! TARGET_FPU) \
1017 int regno; \
1018 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1019 fixed_regs[regno] = 1; \
1021 /* Don't unfix g2-g4 if they were fixed with -ffixed-. */ \
1022 fixed_regs[2] |= ! TARGET_APP_REGS; \
1023 fixed_regs[3] |= ! TARGET_APP_REGS; \
1024 fixed_regs[4] |= ! TARGET_APP_REGS || TARGET_CM_EMBMEDANY; \
1025 if (TARGET_FLAT) \
1027 /* Let the compiler believe the frame pointer is still \
1028 %fp, but output it as %i7. */ \
1029 fixed_regs[31] = 1; \
1030 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
1031 /* ??? This is a hack to disable leaf functions. */ \
1032 global_regs[7] = 1; \
1034 if (profile_block_flag) \
1036 /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \
1037 uses them. */ \
1038 fixed_regs[1] = 1; \
1039 fixed_regs[2] = 1; \
1042 while (0)
1044 /* Return number of consecutive hard regs needed starting at reg REGNO
1045 to hold something of mode MODE.
1046 This is ordinarily the length in words of a value of mode MODE
1047 but can be less for certain modes in special long registers.
1049 On SPARC, ordinary registers hold 32 bits worth;
1050 this means both integer and floating point registers.
1051 On v9, integer regs hold 64 bits worth; floating point regs hold
1052 32 bits worth (this includes the new fp regs as even the odd ones are
1053 included in the hard register count). */
1055 #define HARD_REGNO_NREGS(REGNO, MODE) \
1056 (TARGET_ARCH64 \
1057 ? ((REGNO) < 32 \
1058 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1059 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1060 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1062 /* A subreg in 64 bit mode will have the wrong offset for a floating point
1063 register. The least significant part is at offset 1, compared to 0 for
1064 integer registers. This only applies when FMODE is a larger mode.
1065 We also need to handle a special case of TF-->DF conversions. */
1066 #define ALTER_HARD_SUBREG(TMODE, WORD, FMODE, REGNO) \
1067 (TARGET_ARCH64 \
1068 && (REGNO) >= SPARC_FIRST_FP_REG \
1069 && (REGNO) <= SPARC_LAST_V9_FP_REG \
1070 && (TMODE) == SImode \
1071 && !((FMODE) == QImode || (FMODE) == HImode) \
1072 ? ((REGNO) + 1) \
1073 : ((TMODE) == DFmode && (FMODE) == TFmode) \
1074 ? ((REGNO) + ((WORD) * 2)) \
1075 : ((REGNO) + (WORD)))
1077 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1078 See sparc.c for how we initialize this. */
1079 extern int *hard_regno_mode_classes;
1080 extern int sparc_mode_class[];
1081 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1082 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1084 /* Value is 1 if it is a good idea to tie two pseudo registers
1085 when one has mode MODE1 and one has mode MODE2.
1086 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1087 for any hard reg, then this must be 0 for correct output.
1089 For V9: SFmode can't be combined with other float modes, because they can't
1090 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1091 registers, but SFmode will. */
1092 #define MODES_TIEABLE_P(MODE1, MODE2) \
1093 ((MODE1) == (MODE2) \
1094 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1095 && (! TARGET_V9 \
1096 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1097 || (MODE1 != SFmode && MODE2 != SFmode)))))
1099 /* Specify the registers used for certain standard purposes.
1100 The values of these macros are register numbers. */
1102 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1103 /* #define PC_REGNUM */
1105 /* Register to use for pushing function arguments. */
1106 #define STACK_POINTER_REGNUM 14
1108 /* Actual top-of-stack address is 92/176 greater than the contents of the
1109 stack pointer register for !v9/v9. That is:
1110 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1111 address, and 6*4 bytes for the 6 register parameters.
1112 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1113 parameter regs. */
1114 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
1116 /* The stack bias (amount by which the hardware register is offset by). */
1117 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1119 /* Is stack biased? */
1120 #define STACK_BIAS SPARC_STACK_BIAS
1122 /* Base register for access to local variables of the function. */
1123 #define FRAME_POINTER_REGNUM 30
1125 #if 0
1126 /* Register that is used for the return address for the flat model. */
1127 #define RETURN_ADDR_REGNUM 15
1128 #endif
1130 /* Value should be nonzero if functions must have frame pointers.
1131 Zero means the frame pointer need not be set up (and parms
1132 may be accessed via the stack pointer) in functions that seem suitable.
1133 This is computed in `reload', in reload1.c.
1134 Used in flow.c, global.c, and reload1.c.
1136 Being a non-leaf function does not mean a frame pointer is needed in the
1137 flat window model. However, the debugger won't be able to backtrace through
1138 us with out it. */
1139 #define FRAME_POINTER_REQUIRED \
1140 (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
1141 || !leaf_function_p ()) \
1142 : ! (leaf_function_p () && only_leaf_regs_used ()))
1144 /* C statement to store the difference between the frame pointer
1145 and the stack pointer values immediately after the function prologue.
1147 Note, we always pretend that this is a leaf function because if
1148 it's not, there's no point in trying to eliminate the
1149 frame pointer. If it is a leaf function, we guessed right! */
1150 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1151 ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
1152 : compute_frame_size (get_frame_size (), 1)))
1154 /* Base register for access to arguments of the function. */
1155 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1157 /* Register in which static-chain is passed to a function. This must
1158 not be a register used by the prologue. */
1159 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1161 /* Register which holds offset table for position-independent
1162 data references. */
1164 #define PIC_OFFSET_TABLE_REGNUM 23
1166 #define FINALIZE_PIC finalize_pic ()
1168 /* Pick a default value we can notice from override_options:
1169 !v9: Default is on.
1170 v9: Default is off. */
1172 #define DEFAULT_PCC_STRUCT_RETURN -1
1174 /* Sparc ABI says that quad-precision floats and all structures are returned
1175 in memory.
1176 For v9: unions <= 32 bytes in size are returned in int regs,
1177 structures up to 32 bytes are returned in int and fp regs. */
1179 #define RETURN_IN_MEMORY(TYPE) \
1180 (TARGET_ARCH32 \
1181 ? (TYPE_MODE (TYPE) == BLKmode \
1182 || TYPE_MODE (TYPE) == TFmode \
1183 || TYPE_MODE (TYPE) == TCmode) \
1184 : (TYPE_MODE (TYPE) == BLKmode \
1185 && int_size_in_bytes (TYPE) > 32))
1187 /* Functions which return large structures get the address
1188 to place the wanted value at offset 64 from the frame.
1189 Must reserve 64 bytes for the in and local registers.
1190 v9: Functions which return large structures get the address to place the
1191 wanted value from an invisible first argument. */
1192 /* Used only in other #defines in this file. */
1193 #define STRUCT_VALUE_OFFSET 64
1195 #define STRUCT_VALUE \
1196 (TARGET_ARCH64 \
1197 ? 0 \
1198 : gen_rtx_MEM (Pmode, \
1199 gen_rtx_PLUS (Pmode, stack_pointer_rtx, \
1200 GEN_INT (STRUCT_VALUE_OFFSET))))
1201 #define STRUCT_VALUE_INCOMING \
1202 (TARGET_ARCH64 \
1203 ? 0 \
1204 : gen_rtx_MEM (Pmode, \
1205 gen_rtx_PLUS (Pmode, frame_pointer_rtx, \
1206 GEN_INT (STRUCT_VALUE_OFFSET))))
1208 /* Define the classes of registers for register constraints in the
1209 machine description. Also define ranges of constants.
1211 One of the classes must always be named ALL_REGS and include all hard regs.
1212 If there is more than one class, another class must be named NO_REGS
1213 and contain no registers.
1215 The name GENERAL_REGS must be the name of a class (or an alias for
1216 another name such as ALL_REGS). This is the class of registers
1217 that is allowed by "g" or "r" in a register constraint.
1218 Also, registers outside this class are allocated only when
1219 instructions express preferences for them.
1221 The classes must be numbered in nondecreasing order; that is,
1222 a larger-numbered class must never be contained completely
1223 in a smaller-numbered class.
1225 For any two classes, it is very desirable that there be another
1226 class that represents their union. */
1228 /* The SPARC has various kinds of registers: general, floating point,
1229 and condition codes [well, it has others as well, but none that we
1230 care directly about].
1232 For v9 we must distinguish between the upper and lower floating point
1233 registers because the upper ones can't hold SFmode values.
1234 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1235 satisfying a group need for a class will also satisfy a single need for
1236 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1237 regs.
1239 It is important that one class contains all the general and all the standard
1240 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1241 because reg_class_record() will bias the selection in favor of fp regs,
1242 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1243 because FP_REGS > GENERAL_REGS.
1245 It is also important that one class contain all the general and all the
1246 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1247 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1248 allocate_reload_reg() to bypass it causing an abort because the compiler
1249 thinks it doesn't have a spill reg when in fact it does.
1251 v9 also has 4 floating point condition code registers. Since we don't
1252 have a class that is the union of FPCC_REGS with either of the others,
1253 it is important that it appear first. Otherwise the compiler will die
1254 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1255 constraints.
1257 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1258 may try to use it to hold an SImode value. See register_operand.
1259 ??? Should %fcc[0123] be handled similarly?
1262 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1263 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1264 ALL_REGS, LIM_REG_CLASSES };
1266 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1268 /* Give names of register classes as strings for dump file. */
1270 #define REG_CLASS_NAMES \
1271 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1272 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1273 "ALL_REGS" }
1275 /* Define which registers fit in which classes.
1276 This is an initializer for a vector of HARD_REG_SET
1277 of length N_REG_CLASSES. */
1279 #define REG_CLASS_CONTENTS \
1280 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \
1281 {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
1282 {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}
1284 /* The same information, inverted:
1285 Return the class number of the smallest class containing
1286 reg number REGNO. This could be a conditional expression
1287 or could index an array. */
1289 extern enum reg_class sparc_regno_reg_class[];
1291 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1293 /* This is the order in which to allocate registers normally.
1295 We put %f0/%f1 last among the float registers, so as to make it more
1296 likely that a pseudo-register which dies in the float return register
1297 will get allocated to the float return register, thus saving a move
1298 instruction at the end of the function. */
1300 #define REG_ALLOC_ORDER \
1301 { 8, 9, 10, 11, 12, 13, 2, 3, \
1302 15, 16, 17, 18, 19, 20, 21, 22, \
1303 23, 24, 25, 26, 27, 28, 29, 31, \
1304 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1305 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1306 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1307 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1308 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1309 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1310 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1311 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1312 32, 33, /* %f0,%f1 */ \
1313 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1314 1, 4, 5, 6, 7, 0, 14, 30}
1316 /* This is the order in which to allocate registers for
1317 leaf functions. If all registers can fit in the "i" registers,
1318 then we have the possibility of having a leaf function. */
1320 #define REG_LEAF_ALLOC_ORDER \
1321 { 2, 3, 24, 25, 26, 27, 28, 29, \
1322 15, 8, 9, 10, 11, 12, 13, \
1323 16, 17, 18, 19, 20, 21, 22, 23, \
1324 34, 35, 36, 37, 38, 39, \
1325 40, 41, 42, 43, 44, 45, 46, 47, \
1326 48, 49, 50, 51, 52, 53, 54, 55, \
1327 56, 57, 58, 59, 60, 61, 62, 63, \
1328 64, 65, 66, 67, 68, 69, 70, 71, \
1329 72, 73, 74, 75, 76, 77, 78, 79, \
1330 80, 81, 82, 83, 84, 85, 86, 87, \
1331 88, 89, 90, 91, 92, 93, 94, 95, \
1332 32, 33, \
1333 96, 97, 98, 99, 100, \
1334 1, 4, 5, 6, 7, 0, 14, 30, 31}
1336 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1338 /* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
1339 -mflat is used. Function only_leaf_regs_used will return 0 if a global
1340 register is used and is not permitted in a leaf function. We make %g7
1341 a global reg if -mflat and voila. Since %g7 is a system register and is
1342 fixed it won't be used by gcc anyway. */
1344 #define LEAF_REGISTERS \
1345 { 1, 1, 1, 1, 1, 1, 1, 0, \
1346 0, 0, 0, 0, 0, 0, 1, 0, \
1347 0, 0, 0, 0, 0, 0, 0, 0, \
1348 1, 1, 1, 1, 1, 1, 0, 1, \
1349 1, 1, 1, 1, 1, 1, 1, 1, \
1350 1, 1, 1, 1, 1, 1, 1, 1, \
1351 1, 1, 1, 1, 1, 1, 1, 1, \
1352 1, 1, 1, 1, 1, 1, 1, 1, \
1353 1, 1, 1, 1, 1, 1, 1, 1, \
1354 1, 1, 1, 1, 1, 1, 1, 1, \
1355 1, 1, 1, 1, 1, 1, 1, 1, \
1356 1, 1, 1, 1, 1, 1, 1, 1, \
1357 1, 1, 1, 1, 1}
1359 extern char leaf_reg_remap[];
1360 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1362 /* The class value for index registers, and the one for base regs. */
1363 #define INDEX_REG_CLASS GENERAL_REGS
1364 #define BASE_REG_CLASS GENERAL_REGS
1366 /* Local macro to handle the two v9 classes of FP regs. */
1367 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1369 /* Get reg_class from a letter such as appears in the machine description.
1370 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1371 .md file for v8 and v9.
1372 'd' and 'b' are used for single and double precision VIS operations,
1373 if TARGET_VIS.
1374 'h' is used for V8+ 64 bit global and out registers. */
1376 #define REG_CLASS_FROM_LETTER(C) \
1377 (TARGET_V9 \
1378 ? ((C) == 'f' ? FP_REGS \
1379 : (C) == 'e' ? EXTRA_FP_REGS \
1380 : (C) == 'c' ? FPCC_REGS \
1381 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1382 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1383 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1384 : NO_REGS) \
1385 : ((C) == 'f' ? FP_REGS \
1386 : (C) == 'e' ? FP_REGS \
1387 : (C) == 'c' ? FPCC_REGS \
1388 : NO_REGS))
1390 /* The letters I, J, K, L and M in a register constraint string
1391 can be used to stand for particular ranges of immediate operands.
1392 This macro defines what the ranges are.
1393 C is the letter, and VALUE is a constant value.
1394 Return 1 if VALUE is in the range specified by C.
1396 `I' is used for the range of constants an insn can actually contain.
1397 `J' is used for the range which is just zero (since that is R0).
1398 `K' is used for constants which can be loaded with a single sethi insn.
1399 `L' is used for the range of constants supported by the movcc insns.
1400 `M' is used for the range of constants supported by the movrcc insns. */
1402 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1403 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1404 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1405 /* 10 and 11 bit immediates are only used for a few specific insns.
1406 SMALL_INT is used throughout the port so we continue to use it. */
1407 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1408 /* 13 bit immediate, considering only the low 32 bits */
1409 #define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff))
1410 #define SPARC_SETHI_P(X) \
1411 (((unsigned HOST_WIDE_INT) (X) & ~(unsigned HOST_WIDE_INT) 0xfffffc00) == 0)
1413 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1414 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1415 : (C) == 'J' ? (VALUE) == 0 \
1416 : (C) == 'K' ? SPARC_SETHI_P (VALUE) \
1417 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1418 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1419 : 0)
1421 /* Similar, but for floating constants, and defining letters G and H.
1422 Here VALUE is the CONST_DOUBLE rtx itself. */
1424 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1425 ((C) == 'G' ? fp_zero_operand (VALUE) \
1426 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1427 : 0)
1429 /* Given an rtx X being reloaded into a reg required to be
1430 in class CLASS, return the class of reg to actually use.
1431 In general this is just CLASS; but on some machines
1432 in some cases it is preferable to use a more restrictive class. */
1433 /* - We can't load constants into FP registers. We can't load any FP
1434 constant if an 'E' constraint fails to match it.
1435 - Try and reload integer constants (symbolic or otherwise) back into
1436 registers directly, rather than having them dumped to memory. */
1438 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1439 (CONSTANT_P (X) \
1440 ? ((FP_REG_CLASS_P (CLASS) \
1441 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1442 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
1443 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
1444 ? NO_REGS \
1445 : (!FP_REG_CLASS_P (CLASS) \
1446 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1447 ? GENERAL_REGS \
1448 : (CLASS)) \
1449 : (CLASS))
1451 /* Return the register class of a scratch register needed to load IN into
1452 a register of class CLASS in MODE.
1454 We need a temporary when loading/storing a HImode/QImode value
1455 between memory and the FPU registers. This can happen when combine puts
1456 a paradoxical subreg in a float/fix conversion insn. */
1458 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1459 ((FP_REG_CLASS_P (CLASS) \
1460 && ((MODE) == HImode || (MODE) == QImode) \
1461 && (GET_CODE (IN) == MEM \
1462 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1463 && true_regnum (IN) == -1))) \
1464 ? GENERAL_REGS \
1465 : (((TARGET_CM_MEDANY \
1466 && symbolic_operand ((IN), (MODE))) \
1467 || (TARGET_CM_EMBMEDANY \
1468 && text_segment_operand ((IN), (MODE)))) \
1469 && !flag_pic) \
1470 ? GENERAL_REGS \
1471 : NO_REGS)
1473 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1474 ((FP_REG_CLASS_P (CLASS) \
1475 && ((MODE) == HImode || (MODE) == QImode) \
1476 && (GET_CODE (IN) == MEM \
1477 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1478 && true_regnum (IN) == -1))) \
1479 ? GENERAL_REGS \
1480 : (((TARGET_CM_MEDANY \
1481 && symbolic_operand ((IN), (MODE))) \
1482 || (TARGET_CM_EMBMEDANY \
1483 && text_segment_operand ((IN), (MODE)))) \
1484 && !flag_pic) \
1485 ? GENERAL_REGS \
1486 : NO_REGS)
1488 /* On SPARC it is not possible to directly move data between
1489 GENERAL_REGS and FP_REGS. */
1490 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1491 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1493 /* Return the stack location to use for secondary memory needed reloads.
1494 We want to use the reserved location just below the frame pointer.
1495 However, we must ensure that there is a frame, so use assign_stack_local
1496 if the frame size is zero. */
1497 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1498 (get_frame_size () == 0 \
1499 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1500 : gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, frame_pointer_rtx, \
1501 GEN_INT (STARTING_FRAME_OFFSET))))
1503 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1504 because the movsi and movsf patterns don't handle r/f moves.
1505 For v8 we copy the default definition. */
1506 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1507 (TARGET_ARCH64 \
1508 ? (GET_MODE_BITSIZE (MODE) < 32 \
1509 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1510 : MODE) \
1511 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1512 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1513 : MODE))
1515 /* Return the maximum number of consecutive registers
1516 needed to represent mode MODE in a register of class CLASS. */
1517 /* On SPARC, this is the size of MODE in words. */
1518 #define CLASS_MAX_NREGS(CLASS, MODE) \
1519 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1520 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1522 /* Stack layout; function entry, exit and calling. */
1524 /* Define the number of register that can hold parameters.
1525 This macro is only used in other macro definitions below and in sparc.c.
1526 MODE is the mode of the argument.
1527 !v9: All args are passed in %o0-%o5.
1528 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1529 See the description in sparc.c. */
1530 #define NPARM_REGS(MODE) \
1531 (TARGET_ARCH64 \
1532 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1533 : 6)
1535 /* Define this if pushing a word on the stack
1536 makes the stack pointer a smaller address. */
1537 #define STACK_GROWS_DOWNWARD
1539 /* Define this if the nominal address of the stack frame
1540 is at the high-address end of the local variables;
1541 that is, each additional local variable allocated
1542 goes at a more negative offset in the frame. */
1543 #define FRAME_GROWS_DOWNWARD
1545 /* Offset within stack frame to start allocating local variables at.
1546 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1547 first local allocated. Otherwise, it is the offset to the BEGINNING
1548 of the first local allocated. */
1549 /* This allows space for one TFmode floating point value. */
1550 #define STARTING_FRAME_OFFSET \
1551 (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
1552 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1554 /* If we generate an insn to push BYTES bytes,
1555 this says how many the stack pointer really advances by.
1556 On SPARC, don't define this because there are no push insns. */
1557 /* #define PUSH_ROUNDING(BYTES) */
1559 /* Offset of first parameter from the argument pointer register value.
1560 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1561 even if this function isn't going to use it.
1562 v9: This is 128 for the ins and locals. */
1563 #define FIRST_PARM_OFFSET(FNDECL) \
1564 (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \
1565 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1567 /* Offset from the argument pointer register value to the CFA. */
1569 #define ARG_POINTER_CFA_OFFSET SPARC_STACK_BIAS
1571 /* When a parameter is passed in a register, stack space is still
1572 allocated for it.
1573 !v9: All 6 possible integer registers have backing store allocated.
1574 v9: Only space for the arguments passed is allocated. */
1575 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1576 meaning to the backend. Further, we need to be able to detect if a
1577 varargs/unprototyped function is called, as they may want to spill more
1578 registers than we've provided space. Ugly, ugly. So for now we retain
1579 all 6 slots even for v9. */
1580 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1582 /* Keep the stack pointer constant throughout the function.
1583 This is both an optimization and a necessity: longjmp
1584 doesn't behave itself when the stack pointer moves within
1585 the function! */
1586 #define ACCUMULATE_OUTGOING_ARGS
1588 /* Value is the number of bytes of arguments automatically
1589 popped when returning from a subroutine call.
1590 FUNDECL is the declaration node of the function (as a tree),
1591 FUNTYPE is the data type of the function (as a tree),
1592 or for a library call it is an identifier node for the subroutine name.
1593 SIZE is the number of bytes of arguments passed on the stack. */
1595 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1597 /* Some subroutine macros specific to this machine.
1598 When !TARGET_FPU, put float return values in the general registers,
1599 since we don't have any fp registers. */
1600 #define BASE_RETURN_VALUE_REG(MODE) \
1601 (TARGET_ARCH64 \
1602 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1603 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1605 #define BASE_OUTGOING_VALUE_REG(MODE) \
1606 (TARGET_ARCH64 \
1607 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1608 : TARGET_FLAT ? 8 : 24) \
1609 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1610 : (TARGET_FLAT ? 8 : 24)))
1612 #define BASE_PASSING_ARG_REG(MODE) \
1613 (TARGET_ARCH64 \
1614 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1615 : 8)
1617 /* ??? FIXME -- seems wrong for v9 structure passing... */
1618 #define BASE_INCOMING_ARG_REG(MODE) \
1619 (TARGET_ARCH64 \
1620 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1621 : TARGET_FLAT ? 8 : 24) \
1622 : (TARGET_FLAT ? 8 : 24))
1624 /* Define this macro if the target machine has "register windows". This
1625 C expression returns the register number as seen by the called function
1626 corresponding to register number OUT as seen by the calling function.
1627 Return OUT if register number OUT is not an outbound register. */
1629 #define INCOMING_REGNO(OUT) \
1630 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1632 /* Define this macro if the target machine has "register windows". This
1633 C expression returns the register number as seen by the calling function
1634 corresponding to register number IN as seen by the called function.
1635 Return IN if register number IN is not an inbound register. */
1637 #define OUTGOING_REGNO(IN) \
1638 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1640 /* Define how to find the value returned by a function.
1641 VALTYPE is the data type of the value (as a tree).
1642 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1643 otherwise, FUNC is 0. */
1645 /* On SPARC the value is found in the first "output" register. */
1647 extern struct rtx_def *function_value ();
1648 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1649 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1651 /* But the called function leaves it in the first "input" register. */
1653 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1654 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1656 /* Define how to find the value returned by a library function
1657 assuming the value has mode MODE. */
1659 #define LIBCALL_VALUE(MODE) \
1660 function_value (NULL_TREE, (MODE), 1)
1662 /* 1 if N is a possible register number for a function value
1663 as seen by the caller.
1664 On SPARC, the first "output" reg is used for integer values,
1665 and the first floating point register is used for floating point values. */
1667 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1669 /* Define the size of space to allocate for the return value of an
1670 untyped_call. */
1672 #define APPLY_RESULT_SIZE 16
1674 /* 1 if N is a possible register number for function argument passing.
1675 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1677 #define FUNCTION_ARG_REGNO_P(N) \
1678 (TARGET_ARCH64 \
1679 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1680 : ((N) >= 8 && (N) <= 13))
1682 /* Define a data type for recording info about an argument list
1683 during the scan of that argument list. This data type should
1684 hold all necessary information about the function itself
1685 and about the args processed so far, enough to enable macros
1686 such as FUNCTION_ARG to determine where the next arg should go.
1688 On SPARC (!v9), this is a single integer, which is a number of words
1689 of arguments scanned so far (including the invisible argument,
1690 if any, which holds the structure-value-address).
1691 Thus 7 or more means all following args should go on the stack.
1693 For v9, we also need to know whether a prototype is present. */
1695 struct sparc_args {
1696 int words; /* number of words passed so far */
1697 int prototype_p; /* non-zero if a prototype is present */
1698 int libcall_p; /* non-zero if a library call */
1700 #define CUMULATIVE_ARGS struct sparc_args
1702 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1703 for a call to a function whose data type is FNTYPE.
1704 For a library call, FNTYPE is 0. */
1706 extern void init_cumulative_args ();
1707 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1708 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1710 /* Update the data in CUM to advance over an argument
1711 of mode MODE and data type TYPE.
1712 TYPE is null for libcalls where that information may not be available. */
1714 extern void function_arg_advance ();
1715 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1716 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1718 /* Determine where to put an argument to a function.
1719 Value is zero to push the argument on the stack,
1720 or a hard register in which to store the argument.
1722 MODE is the argument's machine mode.
1723 TYPE is the data type of the argument (as a tree).
1724 This is null for libcalls where that information may
1725 not be available.
1726 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1727 the preceding args and about the function being called.
1728 NAMED is nonzero if this argument is a named parameter
1729 (otherwise it is an extra parameter matching an ellipsis). */
1731 extern struct rtx_def *function_arg ();
1732 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1733 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1735 /* Define where a function finds its arguments.
1736 This is different from FUNCTION_ARG because of register windows. */
1738 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1739 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1741 /* For an arg passed partly in registers and partly in memory,
1742 this is the number of registers used.
1743 For args passed entirely in registers or entirely in memory, zero. */
1745 extern int function_arg_partial_nregs ();
1746 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1747 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1749 /* A C expression that indicates when an argument must be passed by reference.
1750 If nonzero for an argument, a copy of that argument is made in memory and a
1751 pointer to the argument is passed instead of the argument itself.
1752 The pointer is passed in whatever way is appropriate for passing a pointer
1753 to that type. */
1755 extern int function_arg_pass_by_reference ();
1756 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1757 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1759 /* If defined, a C expression which determines whether, and in which direction,
1760 to pad out an argument with extra space. The value should be of type
1761 `enum direction': either `upward' to pad above the argument,
1762 `downward' to pad below, or `none' to inhibit padding. */
1764 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1765 function_arg_padding ((MODE), (TYPE))
1767 /* If defined, a C expression that gives the alignment boundary, in bits,
1768 of an argument with the specified mode and type. If it is not defined,
1769 PARM_BOUNDARY is used for all arguments.
1770 For sparc64, objects requiring 16 byte alignment are passed that way. */
1772 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1773 ((TARGET_ARCH64 \
1774 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1775 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1776 ? 128 : PARM_BOUNDARY)
1778 /* Define the information needed to generate branch and scc insns. This is
1779 stored from the compare operation. Note that we can't use "rtx" here
1780 since it hasn't been defined! */
1782 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1784 /* Define the function that build the compare insn for scc and bcc. */
1786 extern struct rtx_def *gen_compare_reg ();
1788 /* This function handles all v9 scc insns */
1790 extern int gen_v9_scc ();
1792 /* Generate the special assembly code needed to tell the assembler whatever
1793 it might need to know about the return value of a function.
1795 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1796 information to the assembler relating to peephole optimization (done in
1797 the assembler). */
1799 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1800 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1802 /* Output the label for a function definition. */
1804 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1805 do { \
1806 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1807 ASM_OUTPUT_LABEL (FILE, NAME); \
1808 } while (0)
1810 /* Output the special assembly code needed to tell the assembler some
1811 register is used as global register variable. */
1813 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1814 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1815 do { \
1816 if (TARGET_ARCH64) \
1818 int __end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1819 int __reg; \
1820 extern char sparc_hard_reg_printed[8]; \
1821 for (__reg = (REGNO); __reg < 8 && __reg < __end; __reg++) \
1822 if ((__reg & ~1) == 2 || (__reg & ~1) == 6) \
1824 if (__reg == (REGNO)) \
1825 fprintf ((FILE), "\t.register\t%%g%d, %s\n", __reg, (NAME)); \
1826 else \
1827 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1828 __reg, __reg - (REGNO), (NAME)); \
1829 sparc_hard_reg_printed[__reg] = 1; \
1832 } while (0)
1833 #endif
1835 /* This macro generates the assembly code for function entry.
1836 FILE is a stdio stream to output the code to.
1837 SIZE is an int: how many units of temporary storage to allocate.
1838 Refer to the array `regs_ever_live' to determine which registers
1839 to save; `regs_ever_live[I]' is nonzero if register number I
1840 is ever used in the function. This macro is responsible for
1841 knowing which registers should not be saved even if used. */
1843 /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
1844 of memory. If any fpu reg is used in the function, we allocate
1845 such a block here, at the bottom of the frame, just in case it's needed.
1847 If this function is a leaf procedure, then we may choose not
1848 to do a "save" insn. The decision about whether or not
1849 to do this is made in regclass.c. */
1851 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1852 (TARGET_FLAT ? sparc_flat_output_function_prologue (FILE, (int)SIZE) \
1853 : output_function_prologue (FILE, (int)SIZE, \
1854 current_function_uses_only_leaf_regs))
1856 /* Output assembler code to FILE to increment profiler label # LABELNO
1857 for profiling a function entry. */
1859 #define FUNCTION_PROFILER(FILE, LABELNO) \
1860 sparc_function_profiler(FILE, LABELNO)
1862 /* Set the name of the mcount function for the system. */
1864 #define MCOUNT_FUNCTION "*mcount"
1866 /* The following macro shall output assembler code to FILE
1867 to initialize basic-block profiling. */
1869 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1870 sparc_function_block_profiler(FILE, BLOCK_OR_LABEL)
1872 /* The following macro shall output assembler code to FILE
1873 to increment a counter associated with basic block number BLOCKNO. */
1875 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1876 sparc_block_profiler (FILE, BLOCKNO)
1878 /* The following macro shall output assembler code to FILE
1879 to indicate a return from function during basic-block profiling. */
1881 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1882 sparc_function_block_profiler_exit(FILE)
1884 /* The function `__bb_trace_func' is called in every basic block
1885 and is not allowed to change the machine state. Saving (restoring)
1886 the state can either be done in the BLOCK_PROFILER macro,
1887 before calling function (rsp. after returning from function)
1888 `__bb_trace_func', or it can be done inside the function by
1889 defining the macros:
1891 MACHINE_STATE_SAVE(ID)
1892 MACHINE_STATE_RESTORE(ID)
1894 In the latter case care must be taken, that the prologue code
1895 of function `__bb_trace_func' does not already change the
1896 state prior to saving it with MACHINE_STATE_SAVE.
1898 The parameter `ID' is a string identifying a unique macro use.
1900 On sparc it is sufficient to save the psw register to memory.
1901 Unfortunately the psw register can be read in supervisor mode only,
1902 so we read only the condition codes by using branch instructions
1903 and hope that this is enough. */
1905 #define MACHINE_STATE_SAVE(ID) \
1906 int ms_flags, ms_saveret; \
1907 asm volatile( \
1908 "mov %%g0,%0\n\
1909 be,a LFLGNZ"ID"\n\
1910 or %0,4,%0\n\
1911 LFLGNZ"ID":\n\
1912 bcs,a LFLGNC"ID"\n\
1913 or %0,1,%0\n\
1914 LFLGNC"ID":\n\
1915 bvs,a LFLGNV"ID"\n\
1916 or %0,2,%0\n\
1917 LFLGNV"ID":\n\
1918 bneg,a LFLGNN"ID"\n\
1919 or %0,8,%0\n\
1920 LFLGNN"ID":\n\
1921 mov %%g2,%1" \
1922 : "=r"(ms_flags), "=r"(ms_saveret));
1924 /* On sparc MACHINE_STATE_RESTORE restores the psw register from memory.
1925 The psw register can be written in supervisor mode only,
1926 which is true even for simple condition codes.
1927 We use some combination of instructions to produce the
1928 proper condition codes, but some flag combinations can not
1929 be generated in this way. If this happens an unimplemented
1930 instruction will be executed to abort the program. */
1932 #define MACHINE_STATE_RESTORE(ID) \
1933 { extern char flgtab[] __asm__("LFLGTAB"ID); \
1934 int scratch; \
1935 asm volatile ( \
1936 "jmpl %2+%1,%%g0\n\
1937 ! Do part of VC in the delay slot here, as it needs 3 insns.\n\
1938 addcc 2,%3,%%g0\n\
1939 LFLGTAB" ID ":\n\
1940 ! 0\n\
1941 ba LFLGRET"ID"\n\
1942 orcc 1,%%g0,%%g0\n\
1943 ! C\n\
1944 ba LFLGRET"ID"\n\
1945 addcc 2,%3,%%g0\n\
1946 ! V\n\
1947 unimp\n\
1948 nop\n\
1949 ! VC\n\
1950 ba LFLGRET"ID"\n\
1951 addxcc %4,%4,%0\n\
1952 ! Z\n\
1953 ba LFLGRET"ID"\n\
1954 subcc %%g0,%%g0,%%g0\n\
1955 ! ZC\n\
1956 ba LFLGRET"ID"\n\
1957 addcc 1,%3,%0\n\
1958 ! ZVC\n\
1959 ba LFLGRET"ID"\n\
1960 addcc %4,%4,%0\n\
1961 ! N\n\
1962 ba LFLGRET"ID"\n\
1963 orcc %%g0,-1,%%g0\n\
1964 ! NC\n\
1965 ba LFLGRET"ID"\n\
1966 addcc %%g0,%3,%%g0\n\
1967 ! NV\n\
1968 unimp\n\
1969 nop\n\
1970 ! NVC\n\
1971 unimp\n\
1972 nop\n\
1973 ! NZ\n\
1974 unimp\n\
1975 nop\n\
1976 ! NZC\n\
1977 unimp\n\
1978 nop\n\
1979 ! NZV\n\
1980 unimp\n\
1981 nop\n\
1982 ! NZVC\n\
1983 unimp\n\
1984 nop\n\
1985 LFLGRET"ID":\n\
1986 mov %5,%%g2" \
1987 : "=r"(scratch) \
1988 : "r"(ms_flags*8), "r"(flgtab), "r"(-1), \
1989 "r"(0x80000000), "r"(ms_saveret) \
1990 : "cc", "%g2"); }
1992 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1993 the stack pointer does not matter. The value is tested only in
1994 functions that have frame pointers.
1995 No definition is equivalent to always zero. */
1997 #define EXIT_IGNORE_STACK \
1998 (get_frame_size () != 0 \
1999 || current_function_calls_alloca || current_function_outgoing_args_size)
2001 /* This macro generates the assembly code for function exit,
2002 on machines that need it. If FUNCTION_EPILOGUE is not defined
2003 then individual return instructions are generated for each
2004 return statement. Args are same as for FUNCTION_PROLOGUE.
2006 The function epilogue should not depend on the current stack pointer!
2007 It should use the frame pointer only. This is mandatory because
2008 of alloca; we also take advantage of it to omit stack adjustments
2009 before returning. */
2011 #define FUNCTION_EPILOGUE(FILE, SIZE) \
2012 (TARGET_FLAT ? sparc_flat_output_function_epilogue (FILE, (int)SIZE) \
2013 : output_function_epilogue (FILE, (int)SIZE, \
2014 current_function_uses_only_leaf_regs))
2016 #define DELAY_SLOTS_FOR_EPILOGUE \
2017 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
2018 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
2019 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
2020 : eligible_for_epilogue_delay (trial, slots_filled))
2022 /* Define registers used by the epilogue and return instruction. */
2023 #define EPILOGUE_USES(REGNO) \
2024 (!TARGET_FLAT && REGNO == 31)
2026 /* Length in units of the trampoline for entering a nested function. */
2028 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
2030 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
2032 /* Emit RTL insns to initialize the variable parts of a trampoline.
2033 FNADDR is an RTX for the address of the function's pure code.
2034 CXT is an RTX for the static chain value for the function. */
2036 void sparc_initialize_trampoline ();
2037 void sparc64_initialize_trampoline ();
2038 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2039 if (TARGET_ARCH64) \
2040 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
2041 else \
2042 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
2044 /* Generate necessary RTL for __builtin_saveregs(). */
2046 extern struct rtx_def *sparc_builtin_saveregs ();
2047 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
2049 /* Define this macro if the location where a function argument is passed
2050 depends on whether or not it is a named argument.
2052 This macro controls how the NAMED argument to FUNCTION_ARG
2053 is set for varargs and stdarg functions. With this macro defined,
2054 the NAMED argument is always true for named arguments, and false for
2055 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
2056 is defined, then all arguments are treated as named. Otherwise, all named
2057 arguments except the last are treated as named.
2058 For the v9 we want NAMED to mean what it says it means. */
2060 #define STRICT_ARGUMENT_NAMING TARGET_V9
2062 /* Generate RTL to flush the register windows so as to make arbitrary frames
2063 available. */
2064 #define SETUP_FRAME_ADDRESSES() \
2065 emit_insn (gen_flush_register_windows ())
2067 /* Given an rtx for the address of a frame,
2068 return an rtx for the address of the word in the frame
2069 that holds the dynamic chain--the previous frame's address.
2070 ??? -mflat support? */
2071 #define DYNAMIC_CHAIN_ADDRESS(frame) \
2072 gen_rtx_PLUS (Pmode, frame, GEN_INT (14 * UNITS_PER_WORD))
2074 /* The return address isn't on the stack, it is in a register, so we can't
2075 access it from the current frame pointer. We can access it from the
2076 previous frame pointer though by reading a value from the register window
2077 save area. */
2078 #define RETURN_ADDR_IN_PREVIOUS_FRAME
2080 /* This is the offset of the return address to the true next instruction to be
2081 executed for the current function. */
2082 #define RETURN_ADDR_OFFSET \
2083 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
2085 /* The current return address is in %i7. The return address of anything
2086 farther back is in the register window save area at [%fp+60]. */
2087 /* ??? This ignores the fact that the actual return address is +8 for normal
2088 returns, and +12 for structure returns. */
2089 #define RETURN_ADDR_RTX(count, frame) \
2090 ((count == -1) \
2091 ? gen_rtx_REG (Pmode, 31) \
2092 : gen_rtx_MEM (Pmode, \
2093 memory_address (Pmode, plus_constant (frame, 15 * UNITS_PER_WORD))))
2095 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
2096 +12, but always using +8 is close enough for frame unwind purposes.
2097 Actually, just using %o7 is close enough for unwinding, but %o7+8
2098 is something you can return to. */
2099 #define INCOMING_RETURN_ADDR_RTX \
2100 gen_rtx_PLUS (word_mode, gen_rtx_REG (word_mode, 15), GEN_INT (8))
2102 /* The offset from the incoming value of %sp to the top of the stack frame
2103 for the current function. On sparc64, we have to account for the stack
2104 bias if present. */
2105 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2107 #define DOESNT_NEED_UNWINDER (! TARGET_FLAT)
2109 /* Addressing modes, and classification of registers for them. */
2111 /* #define HAVE_POST_INCREMENT 0 */
2112 /* #define HAVE_POST_DECREMENT 0 */
2114 /* #define HAVE_PRE_DECREMENT 0 */
2115 /* #define HAVE_PRE_INCREMENT 0 */
2117 /* Macros to check register numbers against specific register classes. */
2119 /* These assume that REGNO is a hard or pseudo reg number.
2120 They give nonzero only if REGNO is a hard reg of the suitable class
2121 or a pseudo reg currently allocated to a suitable hard reg.
2122 Since they use reg_renumber, they are safe only once reg_renumber
2123 has been allocated, which happens in local-alloc.c. */
2125 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2126 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2127 #define REGNO_OK_FOR_BASE_P(REGNO) \
2128 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2129 #define REGNO_OK_FOR_FP_P(REGNO) \
2130 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2131 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2132 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2133 (TARGET_V9 \
2134 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2135 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2137 /* Now macros that check whether X is a register and also,
2138 strictly, whether it is in a specified class.
2140 These macros are specific to the SPARC, and may be used only
2141 in code for printing assembler insns and in conditions for
2142 define_optimization. */
2144 /* 1 if X is an fp register. */
2146 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2148 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2149 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2151 /* Maximum number of registers that can appear in a valid memory address. */
2153 #define MAX_REGS_PER_ADDRESS 2
2155 /* Recognize any constant value that is a valid address.
2156 When PIC, we do not accept an address that would require a scratch reg
2157 to load into a register. */
2159 #define CONSTANT_ADDRESS_P(X) \
2160 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2161 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2162 || (GET_CODE (X) == CONST \
2163 && ! (flag_pic && pic_address_needs_scratch (X))))
2165 /* Define this, so that when PIC, reload won't try to reload invalid
2166 addresses which require two reload registers. */
2168 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2170 /* Nonzero if the constant value X is a legitimate general operand.
2171 Anything can be made to work except floating point constants.
2172 If TARGET_VIS, 0.0 can be made to work as well. */
2174 #define LEGITIMATE_CONSTANT_P(X) \
2175 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2176 (TARGET_VIS && (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode) && \
2177 fp_zero_operand (X)))
2179 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2180 and check its validity for a certain class.
2181 We have two alternate definitions for each of them.
2182 The usual definition accepts all pseudo regs; the other rejects
2183 them unless they have been allocated suitable hard regs.
2184 The symbol REG_OK_STRICT causes the latter definition to be used.
2186 Most source files want to accept pseudo regs in the hope that
2187 they will get allocated to the class that the insn wants them to be in.
2188 Source files for reload pass need to be strict.
2189 After reload, it makes no difference, since pseudo regs have
2190 been eliminated by then. */
2192 /* Optional extra constraints for this machine.
2194 'T' handles memory addresses where the alignment is known to
2195 be at least 8 bytes.
2197 `U' handles all pseudo registers or a hard even numbered
2198 integer register, needed for ldd/std instructions. */
2200 #ifndef REG_OK_STRICT
2202 /* Nonzero if X is a hard reg that can be used as an index
2203 or if it is a pseudo reg. */
2204 #define REG_OK_FOR_INDEX_P(X) \
2205 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2206 /* Nonzero if X is a hard reg that can be used as a base reg
2207 or if it is a pseudo reg. */
2208 #define REG_OK_FOR_BASE_P(X) \
2209 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2211 /* 'T', 'U' are for aligned memory loads which aren't needed for v9. */
2213 #define EXTRA_CONSTRAINT(OP, C) \
2214 ((! TARGET_ARCH64 && (C) == 'T') \
2215 ? (mem_min_alignment (OP, 8)) \
2216 : ((! TARGET_ARCH64 && (C) == 'U') \
2217 ? (register_ok_for_ldd (OP)) \
2218 : 0))
2220 #else
2222 /* Nonzero if X is a hard reg that can be used as an index. */
2223 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2224 /* Nonzero if X is a hard reg that can be used as a base reg. */
2225 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2227 #define EXTRA_CONSTRAINT(OP, C) \
2228 ((! TARGET_ARCH64 && (C) == 'T') \
2229 ? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
2230 : ((! TARGET_ARCH64 && (C) == 'U') \
2231 ? (GET_CODE (OP) == REG \
2232 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
2233 || reg_renumber[REGNO (OP)] >= 0) \
2234 && register_ok_for_ldd (OP)) \
2235 : 0))
2236 #endif
2238 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2240 #ifdef HAVE_AS_OFFSETABLE_LO10
2241 #define USE_AS_OFFSETABLE_LO10 1
2242 #else
2243 #define USE_AS_OFFSETABLE_LO10 0
2244 #endif
2246 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2247 that is a valid memory address for an instruction.
2248 The MODE argument is the machine mode for the MEM expression
2249 that wants to use this address.
2251 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2252 ordinarily. This changes a bit when generating PIC.
2254 If you change this, execute "rm explow.o recog.o reload.o". */
2256 #define RTX_OK_FOR_BASE_P(X) \
2257 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2258 || (GET_CODE (X) == SUBREG \
2259 && GET_CODE (SUBREG_REG (X)) == REG \
2260 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2262 #define RTX_OK_FOR_INDEX_P(X) \
2263 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2264 || (GET_CODE (X) == SUBREG \
2265 && GET_CODE (SUBREG_REG (X)) == REG \
2266 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2268 #define RTX_OK_FOR_OFFSET_P(X) \
2269 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
2271 #define RTX_OK_FOR_OLO10_P(X) \
2272 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2274 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2275 { if (RTX_OK_FOR_BASE_P (X)) \
2276 goto ADDR; \
2277 else if (GET_CODE (X) == PLUS) \
2279 register rtx op0 = XEXP (X, 0); \
2280 register rtx op1 = XEXP (X, 1); \
2281 if (flag_pic && op0 == pic_offset_table_rtx) \
2283 if (RTX_OK_FOR_BASE_P (op1)) \
2284 goto ADDR; \
2285 else if (flag_pic == 1 \
2286 && GET_CODE (op1) != REG \
2287 && GET_CODE (op1) != LO_SUM \
2288 && GET_CODE (op1) != MEM \
2289 && (GET_CODE (op1) != CONST_INT \
2290 || SMALL_INT (op1))) \
2291 goto ADDR; \
2293 else if (RTX_OK_FOR_BASE_P (op0)) \
2295 if ((RTX_OK_FOR_INDEX_P (op1) \
2296 /* We prohibit REG + REG for TFmode when \
2297 there are no instructions which accept \
2298 REG+REG instructions. We do this \
2299 because REG+REG is not an offsetable \
2300 address. If we get the situation \
2301 in reload where source and destination \
2302 of a movtf pattern are both MEMs with \
2303 REG+REG address, then only one of them \
2304 gets converted to an offsetable \
2305 address. */ \
2306 && (MODE != TFmode \
2307 || (TARGET_FPU && TARGET_ARCH64 \
2308 && TARGET_V9 \
2309 && TARGET_HARD_QUAD))) \
2310 || RTX_OK_FOR_OFFSET_P (op1)) \
2311 goto ADDR; \
2313 else if (RTX_OK_FOR_BASE_P (op1)) \
2315 if ((RTX_OK_FOR_INDEX_P (op0) \
2316 /* See the previous comment. */ \
2317 && (MODE != TFmode \
2318 || (TARGET_FPU && TARGET_ARCH64 \
2319 && TARGET_V9 \
2320 && TARGET_HARD_QUAD))) \
2321 || RTX_OK_FOR_OFFSET_P (op0)) \
2322 goto ADDR; \
2324 else if (USE_AS_OFFSETABLE_LO10 \
2325 && GET_CODE (op0) == LO_SUM \
2326 && TARGET_ARCH64 \
2327 && ! TARGET_CM_MEDMID \
2328 && RTX_OK_FOR_OLO10_P (op1)) \
2330 register rtx op00 = XEXP (op0, 0); \
2331 register rtx op01 = XEXP (op0, 1); \
2332 if (RTX_OK_FOR_BASE_P (op00) \
2333 && CONSTANT_P (op01)) \
2334 goto ADDR; \
2336 else if (USE_AS_OFFSETABLE_LO10 \
2337 && GET_CODE (op1) == LO_SUM \
2338 && TARGET_ARCH64 \
2339 && ! TARGET_CM_MEDMID \
2340 && RTX_OK_FOR_OLO10_P (op0)) \
2342 register rtx op10 = XEXP (op1, 0); \
2343 register rtx op11 = XEXP (op1, 1); \
2344 if (RTX_OK_FOR_BASE_P (op10) \
2345 && CONSTANT_P (op11)) \
2346 goto ADDR; \
2349 else if (GET_CODE (X) == LO_SUM) \
2351 register rtx op0 = XEXP (X, 0); \
2352 register rtx op1 = XEXP (X, 1); \
2353 if (RTX_OK_FOR_BASE_P (op0) \
2354 && CONSTANT_P (op1) \
2355 /* We can't allow TFmode, because an offset \
2356 greater than or equal to the alignment (8) \
2357 may cause the LO_SUM to overflow if !v9. */\
2358 && (MODE != TFmode || TARGET_V9)) \
2359 goto ADDR; \
2361 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2362 goto ADDR; \
2365 /* Try machine-dependent ways of modifying an illegitimate address
2366 to be legitimate. If we find one, return the new, valid address.
2367 This macro is used in only one place: `memory_address' in explow.c.
2369 OLDX is the address as it was before break_out_memory_refs was called.
2370 In some cases it is useful to look at this to decide what needs to be done.
2372 MODE and WIN are passed so that this macro can use
2373 GO_IF_LEGITIMATE_ADDRESS.
2375 It is always safe for this macro to do nothing. It exists to recognize
2376 opportunities to optimize the output. */
2378 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2379 extern struct rtx_def *legitimize_pic_address ();
2380 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2381 { rtx sparc_x = (X); \
2382 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2383 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2384 force_operand (XEXP (X, 0), NULL_RTX)); \
2385 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2386 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2387 force_operand (XEXP (X, 1), NULL_RTX)); \
2388 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2389 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2390 XEXP (X, 1)); \
2391 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2392 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2393 force_operand (XEXP (X, 1), NULL_RTX)); \
2394 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2395 goto WIN; \
2396 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2397 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2398 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2399 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2400 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2401 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2402 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2403 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2404 || GET_CODE (X) == LABEL_REF) \
2405 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2406 if (memory_address_p (MODE, X)) \
2407 goto WIN; }
2409 /* Try a machine-dependent way of reloading an illegitimate address
2410 operand. If we find one, push the reload and jump to WIN. This
2411 macro is used in only one place: `find_reloads_address' in reload.c.
2413 For Sparc 32, we wish to handle addresses by splitting them into
2414 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2415 This cuts the number of extra insns by one.
2417 Do nothing when generating PIC code and the address is a
2418 symbolic operand or requires a scratch register. */
2420 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2421 do { \
2422 /* Decompose SImode constants into hi+lo_sum. We do have to \
2423 rerecognize what we produce, so be careful. */ \
2424 if (CONSTANT_P (X) \
2425 && (MODE != TFmode || TARGET_V9) \
2426 && GET_MODE (X) == SImode \
2427 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2428 && ! (flag_pic \
2429 && (symbolic_operand (X, Pmode) \
2430 || pic_address_needs_scratch (X)))) \
2432 X = gen_rtx_LO_SUM (GET_MODE (X), \
2433 gen_rtx_HIGH (GET_MODE (X), X), X); \
2434 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2435 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2436 OPNUM, TYPE); \
2437 goto WIN; \
2439 /* ??? 64-bit reloads. */ \
2440 } while (0)
2442 /* Go to LABEL if ADDR (a legitimate address expression)
2443 has an effect that depends on the machine mode it is used for.
2444 On the SPARC this is never true. */
2446 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2448 /* If we are referencing a function make the SYMBOL_REF special.
2449 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2450 so we must not add it to function addresses. */
2452 #define ENCODE_SECTION_INFO(DECL) \
2453 do { \
2454 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2455 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2456 } while (0)
2458 /* Specify the machine mode that this machine uses
2459 for the index in the tablejump instruction. */
2460 /* If we ever implement any of the full models (such as CM_FULLANY),
2461 this has to be DImode in that case */
2462 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2463 #define CASE_VECTOR_MODE \
2464 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2465 #else
2466 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2467 we have to sign extend which slows things down. */
2468 #define CASE_VECTOR_MODE \
2469 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2470 #endif
2472 /* Define as C expression which evaluates to nonzero if the tablejump
2473 instruction expects the table to contain offsets from the address of the
2474 table.
2475 Do not define this if the table should contain absolute addresses. */
2476 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2478 /* Specify the tree operation to be used to convert reals to integers. */
2479 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2481 /* This is the kind of divide that is easiest to do in the general case. */
2482 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2484 /* Define this as 1 if `char' should by default be signed; else as 0. */
2485 #define DEFAULT_SIGNED_CHAR 1
2487 /* Max number of bytes we can move from memory to memory
2488 in one reasonably fast instruction. */
2489 #define MOVE_MAX 8
2491 #if 0 /* Sun 4 has matherr, so this is no good. */
2492 /* This is the value of the error code EDOM for this machine,
2493 used by the sqrt instruction. */
2494 #define TARGET_EDOM 33
2496 /* This is how to refer to the variable errno. */
2497 #define GEN_ERRNO_RTX \
2498 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2499 #endif /* 0 */
2501 /* Define if operations between registers always perform the operation
2502 on the full register even if a narrower mode is specified. */
2503 #define WORD_REGISTER_OPERATIONS
2505 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2506 will either zero-extend or sign-extend. The value of this macro should
2507 be the code that says which one of the two operations is implicitly
2508 done, NIL if none. */
2509 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2511 /* Nonzero if access to memory by bytes is slow and undesirable.
2512 For RISC chips, it means that access to memory by bytes is no
2513 better than access by words when possible, so grab a whole word
2514 and maybe make use of that. */
2515 #define SLOW_BYTE_ACCESS 1
2517 /* We assume that the store-condition-codes instructions store 0 for false
2518 and some other value for true. This is the value stored for true. */
2520 #define STORE_FLAG_VALUE 1
2522 /* When a prototype says `char' or `short', really pass an `int'. */
2523 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2525 /* Define this to be nonzero if shift instructions ignore all but the low-order
2526 few bits. */
2527 #define SHIFT_COUNT_TRUNCATED 1
2529 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2530 is done just by pretending it is already truncated. */
2531 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2533 /* Specify the machine mode that pointers have.
2534 After generation of rtl, the compiler makes no further distinction
2535 between pointers and any other objects of this machine mode. */
2536 #define Pmode (TARGET_PTR64 ? DImode : SImode)
2538 /* Generate calls to memcpy, memcmp and memset. */
2539 #define TARGET_MEM_FUNCTIONS
2541 /* Add any extra modes needed to represent the condition code.
2543 On the Sparc, we have a "no-overflow" mode which is used when an add or
2544 subtract insn is used to set the condition code. Different branches are
2545 used in this case for some operations.
2547 We also have two modes to indicate that the relevant condition code is
2548 in the floating-point condition code register. One for comparisons which
2549 will generate an exception if the result is unordered (CCFPEmode) and
2550 one for comparisons which will never trap (CCFPmode).
2552 CCXmode and CCX_NOOVmode are only used by v9. */
2554 #define EXTRA_CC_MODES \
2555 CC(CCXmode, "CCX") \
2556 CC(CC_NOOVmode, "CC_NOOV") \
2557 CC(CCX_NOOVmode, "CCX_NOOV") \
2558 CC(CCFPmode, "CCFP") \
2559 CC(CCFPEmode, "CCFPE")
2561 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2562 return the mode to be used for the comparison. For floating-point,
2563 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
2564 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2565 processing is needed. */
2566 #define SELECT_CC_MODE(OP,X,Y) \
2567 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2568 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2569 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2570 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
2571 ? (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \
2572 : ((TARGET_ARCH64 || TARGET_V8PLUS) && GET_MODE (X) == DImode ? CCXmode : CCmode)))
2574 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
2575 floating point inequality comparison. */
2577 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
2579 /* A function address in a call instruction
2580 is a byte address (for indexing purposes)
2581 so give the MEM rtx a byte's mode. */
2582 #define FUNCTION_MODE SImode
2584 /* Define this if addresses of constant functions
2585 shouldn't be put through pseudo regs where they can be cse'd.
2586 Desirable on machines where ordinary constants are expensive
2587 but a CALL with constant address is cheap. */
2588 #define NO_FUNCTION_CSE
2590 /* alloca should avoid clobbering the old register save area. */
2591 #define SETJMP_VIA_SAVE_AREA
2593 /* Define subroutines to call to handle multiply and divide.
2594 Use the subroutines that Sun's library provides.
2595 The `*' prevents an underscore from being prepended by the compiler. */
2597 #define DIVSI3_LIBCALL "*.div"
2598 #define UDIVSI3_LIBCALL "*.udiv"
2599 #define MODSI3_LIBCALL "*.rem"
2600 #define UMODSI3_LIBCALL "*.urem"
2601 /* .umul is a little faster than .mul. */
2602 #define MULSI3_LIBCALL "*.umul"
2604 /* Define library calls for quad FP operations. These are all part of the
2605 SPARC ABI.
2606 ??? ARCH64 still does not work as the _Qp_* routines take pointers. */
2607 #define ADDTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_add" : "_Q_add")
2608 #define SUBTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_sub" : "_Q_sub")
2609 #define NEGTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_neg" : "_Q_neg")
2610 #define MULTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_mul" : "_Q_mul")
2611 #define DIVTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_div" : "_Q_div")
2612 #define FLOATSITF2_LIBCALL (TARGET_ARCH64 ? "_Qp_itoq" : "_Q_itoq")
2613 #define FIX_TRUNCTFSI2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtoi" : "_Q_qtoi")
2614 #define FIXUNS_TRUNCTFSI2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtoui" : "_Q_qtou")
2615 #define EXTENDSFTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_stoq" : "_Q_stoq")
2616 #define TRUNCTFSF2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtos" : "_Q_qtos")
2617 #define EXTENDDFTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_dtoq" : "_Q_dtoq")
2618 #define TRUNCTFDF2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtod" : "_Q_qtod")
2619 #define EQTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_feq" : "_Q_feq")
2620 #define NETF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fne" : "_Q_fne")
2621 #define GTTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fgt" : "_Q_fgt")
2622 #define GETF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fge" : "_Q_fge")
2623 #define LTTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_flt" : "_Q_flt")
2624 #define LETF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fle" : "_Q_fle")
2626 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2627 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2628 and the compiler will notice and try to use the TFmode sqrt instruction
2629 for calls to the builtin function sqrt, but this fails. */
2630 #define INIT_TARGET_OPTABS \
2631 do { \
2632 add_optab->handlers[(int) TFmode].libfunc \
2633 = gen_rtx_SYMBOL_REF (Pmode, ADDTF3_LIBCALL); \
2634 sub_optab->handlers[(int) TFmode].libfunc \
2635 = gen_rtx_SYMBOL_REF (Pmode, SUBTF3_LIBCALL); \
2636 neg_optab->handlers[(int) TFmode].libfunc \
2637 = gen_rtx_SYMBOL_REF (Pmode, NEGTF2_LIBCALL); \
2638 smul_optab->handlers[(int) TFmode].libfunc \
2639 = gen_rtx_SYMBOL_REF (Pmode, MULTF3_LIBCALL); \
2640 flodiv_optab->handlers[(int) TFmode].libfunc \
2641 = gen_rtx_SYMBOL_REF (Pmode, DIVTF3_LIBCALL); \
2642 eqtf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EQTF2_LIBCALL); \
2643 netf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, NETF2_LIBCALL); \
2644 gttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, GTTF2_LIBCALL); \
2645 getf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, GETF2_LIBCALL); \
2646 lttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, LTTF2_LIBCALL); \
2647 letf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, LETF2_LIBCALL); \
2648 trunctfsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, TRUNCTFSF2_LIBCALL); \
2649 trunctfdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, TRUNCTFDF2_LIBCALL); \
2650 extendsftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EXTENDSFTF2_LIBCALL); \
2651 extenddftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EXTENDDFTF2_LIBCALL); \
2652 floatsitf_libfunc = gen_rtx_SYMBOL_REF (Pmode, FLOATSITF2_LIBCALL); \
2653 fixtfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, FIX_TRUNCTFSI2_LIBCALL); \
2654 fixunstfsi_libfunc \
2655 = gen_rtx_SYMBOL_REF (Pmode, FIXUNS_TRUNCTFSI2_LIBCALL); \
2656 if (TARGET_FPU) \
2657 sqrt_optab->handlers[(int) TFmode].libfunc \
2658 = gen_rtx_SYMBOL_REF (Pmode, "_Q_sqrt"); \
2659 INIT_SUBTARGET_OPTABS; \
2660 } while (0)
2662 /* This is meant to be redefined in the host dependent files */
2663 #define INIT_SUBTARGET_OPTABS
2665 /* Nonzero if a floating point comparison library call for
2666 mode MODE that will return a boolean value. Zero if one
2667 of the libgcc2 functions is used. */
2668 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2670 /* Compute the cost of computing a constant rtl expression RTX
2671 whose rtx-code is CODE. The body of this macro is a portion
2672 of a switch statement. If the code is computed here,
2673 return it with a return statement. Otherwise, break from the switch. */
2675 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2676 case CONST_INT: \
2677 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2678 return 0; \
2679 case HIGH: \
2680 return 2; \
2681 case CONST: \
2682 case LABEL_REF: \
2683 case SYMBOL_REF: \
2684 return 4; \
2685 case CONST_DOUBLE: \
2686 if (GET_MODE (RTX) == DImode) \
2687 if ((XINT (RTX, 3) == 0 \
2688 && (unsigned) XINT (RTX, 2) < 0x1000) \
2689 || (XINT (RTX, 3) == -1 \
2690 && XINT (RTX, 2) < 0 \
2691 && XINT (RTX, 2) >= -0x1000)) \
2692 return 0; \
2693 return 8;
2695 #define ADDRESS_COST(RTX) 1
2697 /* Compute extra cost of moving data between one register class
2698 and another. */
2699 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2700 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2701 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2702 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2703 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2704 ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
2706 /* Provide the costs of a rtl expression. This is in the body of a
2707 switch on CODE. The purpose for the cost of MULT is to encourage
2708 `synth_mult' to find a synthetic multiply when reasonable.
2710 If we need more than 12 insns to do a multiply, then go out-of-line,
2711 since the call overhead will be < 10% of the cost of the multiply. */
2713 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2714 case MULT: \
2715 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2716 return (GET_MODE (X) == DImode ? \
2717 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2718 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2719 case DIV: \
2720 case UDIV: \
2721 case MOD: \
2722 case UMOD: \
2723 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2724 return (GET_MODE (X) == DImode ? \
2725 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2726 return COSTS_N_INSNS (25); \
2727 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2728 so that cse will favor the latter. */ \
2729 case FLOAT: \
2730 case FIX: \
2731 return 19;
2733 #define ISSUE_RATE sparc_issue_rate()
2735 /* Adjust the cost of dependencies. */
2736 #define ADJUST_COST(INSN,LINK,DEP,COST) \
2737 sparc_adjust_cost(INSN, LINK, DEP, COST)
2739 extern void ultrasparc_sched_reorder ();
2740 extern void ultrasparc_sched_init ();
2741 extern int ultrasparc_variable_issue ();
2743 #define MD_SCHED_INIT(DUMP, SCHED_VERBOSE) \
2744 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2745 ultrasparc_sched_init (DUMP, SCHED_VERBOSE)
2747 #define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
2748 do { \
2749 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2750 ultrasparc_sched_reorder (DUMP, SCHED_VERBOSE, READY, N_READY); \
2751 CIM = issue_rate; \
2752 } while (0)
2754 #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2755 do { \
2756 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2757 (CAN_ISSUE_MORE) = ultrasparc_variable_issue (INSN); \
2758 else \
2759 (CAN_ISSUE_MORE)--; \
2760 } while (0)
2762 /* Conditional branches with empty delay slots have a length of two. */
2763 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2764 do { \
2765 if (GET_CODE (INSN) == CALL_INSN \
2766 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2767 LENGTH += 1; \
2768 } while (0)
2770 /* Control the assembler format that we output. */
2772 /* Output at beginning of assembler file. */
2774 #define ASM_FILE_START(file)
2776 /* A C string constant describing how to begin a comment in the target
2777 assembler language. The compiler assumes that the comment will end at
2778 the end of the line. */
2780 #define ASM_COMMENT_START "!"
2782 /* Output to assembler file text saying following lines
2783 may contain character constants, extra white space, comments, etc. */
2785 #define ASM_APP_ON ""
2787 /* Output to assembler file text saying following lines
2788 no longer contain unusual constructs. */
2790 #define ASM_APP_OFF ""
2792 /* ??? Try to make the style consistent here (_OP?). */
2794 #define ASM_LONGLONG ".xword"
2795 #define ASM_LONG ".word"
2796 #define ASM_SHORT ".half"
2797 #define ASM_BYTE_OP ".byte"
2798 #define ASM_FLOAT ".single"
2799 #define ASM_DOUBLE ".double"
2800 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2802 /* Output before read-only data. */
2804 #define TEXT_SECTION_ASM_OP ".text"
2806 /* Output before writable data. */
2808 #define DATA_SECTION_ASM_OP ".data"
2810 /* How to refer to registers in assembler output.
2811 This sequence is indexed by compiler's hard-register-number (see above). */
2813 #define REGISTER_NAMES \
2814 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2815 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2816 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2817 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2818 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2819 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2820 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2821 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2822 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2823 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2824 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2825 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2826 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}
2828 /* Define additional names for use in asm clobbers and asm declarations. */
2830 #define ADDITIONAL_REGISTER_NAMES \
2831 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2833 /* How to renumber registers for dbx and gdb. In the flat model, the frame
2834 pointer is really %i7. */
2836 #define DBX_REGISTER_NUMBER(REGNO) \
2837 (TARGET_FLAT && REGNO == FRAME_POINTER_REGNUM ? 31 : REGNO)
2839 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2840 can run past this up to a continuation point. Once we used 1500, but
2841 a single entry in C++ can run more than 500 bytes, due to the length of
2842 mangled symbol names. dbxout.c should really be fixed to do
2843 continuations when they are actually needed instead of trying to
2844 guess... */
2845 #define DBX_CONTIN_LENGTH 1000
2847 /* This is how to output a note to DBX telling it the line number
2848 to which the following sequence of instructions corresponds.
2850 This is needed for SunOS 4.0, and should not hurt for 3.2
2851 versions either. */
2852 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
2853 { static int sym_lineno = 1; \
2854 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2855 line, sym_lineno, sym_lineno); \
2856 sym_lineno += 1; }
2858 /* This is how to output the definition of a user-level label named NAME,
2859 such as the label on a static function or variable NAME. */
2861 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2862 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2864 /* This is how to output a command to make the user-level label named NAME
2865 defined for reference from other files. */
2867 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2868 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2870 /* The prefix to add to user-visible assembler symbols. */
2872 #define USER_LABEL_PREFIX "_"
2874 /* This is how to output a definition of an internal numbered label where
2875 PREFIX is the class of label and NUM is the number within the class. */
2877 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2878 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2880 /* This is how to store into the string LABEL
2881 the symbol_ref name of an internal numbered label where
2882 PREFIX is the class of label and NUM is the number within the class.
2883 This is suitable for output with `assemble_name'. */
2885 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2886 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2888 /* This is how to output an assembler line defining a `float' constant.
2889 We always have to use a .long pseudo-op to do this because the native
2890 SVR4 ELF assembler is buggy and it generates incorrect values when we
2891 try to use the .float pseudo-op instead. */
2893 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2895 long t; \
2896 char str[30]; \
2897 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2898 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2899 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t, \
2900 ASM_COMMENT_START, str); \
2903 /* This is how to output an assembler line defining a `double' constant.
2904 We always have to use a .long pseudo-op to do this because the native
2905 SVR4 ELF assembler is buggy and it generates incorrect values when we
2906 try to use the .float pseudo-op instead. */
2908 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2910 long t[2]; \
2911 char str[30]; \
2912 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2913 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2914 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
2915 ASM_COMMENT_START, str); \
2916 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
2919 /* This is how to output an assembler line defining a `long double'
2920 constant. */
2922 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2924 long t[4]; \
2925 char str[30]; \
2926 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2927 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2928 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
2929 ASM_COMMENT_START, str); \
2930 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
2931 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[2]); \
2932 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[3]); \
2935 /* This is how to output an assembler line defining an `int' constant. */
2937 #define ASM_OUTPUT_INT(FILE,VALUE) \
2938 ( fprintf (FILE, "\t%s\t", ASM_LONG), \
2939 output_addr_const (FILE, (VALUE)), \
2940 fprintf (FILE, "\n"))
2942 /* This is how to output an assembler line defining a DImode constant. */
2943 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2944 output_double_int (FILE, VALUE)
2946 /* Likewise for `char' and `short' constants. */
2948 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2949 ( fprintf (FILE, "\t%s\t", ASM_SHORT), \
2950 output_addr_const (FILE, (VALUE)), \
2951 fprintf (FILE, "\n"))
2953 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2954 ( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
2955 output_addr_const (FILE, (VALUE)), \
2956 fprintf (FILE, "\n"))
2958 /* This is how to output an assembler line for a numeric constant byte. */
2960 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2961 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
2963 /* This is how we hook in and defer the case-vector until the end of
2964 the function. */
2965 extern void sparc_defer_case_vector ();
2967 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2968 sparc_defer_case_vector ((LAB),(VEC), 0)
2970 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2971 sparc_defer_case_vector ((LAB),(VEC), 1)
2973 /* This is how to output an element of a case-vector that is absolute. */
2975 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2976 do { \
2977 char label[30]; \
2978 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2979 if (CASE_VECTOR_MODE == SImode) \
2980 fprintf (FILE, "\t.word\t"); \
2981 else \
2982 fprintf (FILE, "\t.xword\t"); \
2983 assemble_name (FILE, label); \
2984 fputc ('\n', FILE); \
2985 } while (0)
2987 /* This is how to output an element of a case-vector that is relative.
2988 (SPARC uses such vectors only when generating PIC.) */
2990 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2991 do { \
2992 char label[30]; \
2993 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2994 if (CASE_VECTOR_MODE == SImode) \
2995 fprintf (FILE, "\t.word\t"); \
2996 else \
2997 fprintf (FILE, "\t.xword\t"); \
2998 assemble_name (FILE, label); \
2999 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
3000 fputc ('-', FILE); \
3001 assemble_name (FILE, label); \
3002 fputc ('\n', FILE); \
3003 } while (0)
3005 /* This is what to output before and after case-vector (both
3006 relative and absolute). If .subsection -1 works, we put case-vectors
3007 at the beginning of the current section. */
3009 #ifdef HAVE_GAS_SUBSECTION_ORDERING
3011 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
3012 fprintf(FILE, "\t.subsection\t-1\n")
3014 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
3015 fprintf(FILE, "\t.previous\n")
3017 #endif
3019 /* This is how to output an assembler line
3020 that says to advance the location counter
3021 to a multiple of 2**LOG bytes. */
3023 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3024 if ((LOG) != 0) \
3025 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
3027 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3028 fprintf (FILE, "\t.skip %u\n", (SIZE))
3030 /* This says how to output an assembler line
3031 to define a global common symbol. */
3033 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
3034 ( fputs ("\t.common ", (FILE)), \
3035 assemble_name ((FILE), (NAME)), \
3036 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
3038 /* This says how to output an assembler line to define a local common
3039 symbol. */
3041 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
3042 ( fputs ("\t.reserve ", (FILE)), \
3043 assemble_name ((FILE), (NAME)), \
3044 fprintf ((FILE), ",%u,\"bss\",%u\n", \
3045 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
3047 /* A C statement (sans semicolon) to output to the stdio stream
3048 FILE the assembler definition of uninitialized global DECL named
3049 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
3050 Try to use asm_output_aligned_bss to implement this macro. */
3052 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
3053 do { \
3054 fputs (".globl ", (FILE)); \
3055 assemble_name ((FILE), (NAME)); \
3056 fputs ("\n", (FILE)); \
3057 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
3058 } while (0)
3060 /* Store in OUTPUT a string (made with alloca) containing
3061 an assembler-name for a local static variable named NAME.
3062 LABELNO is an integer which is different for each call. */
3064 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3065 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3066 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3068 #define IDENT_ASM_OP ".ident"
3070 /* Output #ident as a .ident. */
3072 #define ASM_OUTPUT_IDENT(FILE, NAME) \
3073 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
3075 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
3076 Used for C++ multiple inheritance. */
3077 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
3078 do { \
3079 int big_delta = (DELTA) >= 4096 || (DELTA) < -4096; \
3080 if (big_delta) \
3081 fprintf (FILE, "\tset %d,%%g1\n\tadd %%o0,%%g1,%%o0\n", (DELTA)); \
3082 /* Don't use the jmp solution unless we know the target is local to \
3083 the application or shared object. \
3084 XXX: Wimp out and don't actually check anything except if this is \
3085 an embedded target where we assume there are no shared libs. */ \
3086 if (!TARGET_CM_EMBMEDANY || flag_pic) \
3088 if (! big_delta) \
3089 fprintf (FILE, "\tadd %%o0,%d,%%o0\n", DELTA); \
3090 fprintf (FILE, "\tmov %%o7,%%g1\n"); \
3091 fprintf (FILE, "\tcall "); \
3092 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3093 fprintf (FILE, ",0\n"); \
3095 else if (TARGET_CM_EMBMEDANY) \
3097 fprintf (FILE, "\tsetx "); \
3098 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3099 fprintf (FILE, ",%%g5,%%g1\n\tjmp %%g1\n"); \
3101 else \
3103 fprintf (FILE, "\tsethi %%hi("); \
3104 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3105 fprintf (FILE, "),%%g1\n\tjmp %%g1+%%lo("); \
3106 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3107 fprintf (FILE, ")\n"); \
3109 if (!TARGET_CM_EMBMEDANY || flag_pic) \
3110 fprintf (FILE, "\tmov %%g1,%%o7\n"); \
3111 else if (big_delta) \
3112 fprintf (FILE, "\tnop\n"); \
3113 else \
3114 fprintf (FILE, "\tadd %%o0,%d,%%o0\n", DELTA); \
3115 } while (0)
3117 /* Define the parentheses used to group arithmetic operations
3118 in assembler code. */
3120 #define ASM_OPEN_PAREN "("
3121 #define ASM_CLOSE_PAREN ")"
3123 /* Define results of standard character escape sequences. */
3124 #define TARGET_BELL 007
3125 #define TARGET_BS 010
3126 #define TARGET_TAB 011
3127 #define TARGET_NEWLINE 012
3128 #define TARGET_VT 013
3129 #define TARGET_FF 014
3130 #define TARGET_CR 015
3132 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3133 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
3135 /* Print operand X (an rtx) in assembler syntax to file FILE.
3136 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3137 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3139 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3141 /* Print a memory address as an operand to reference that memory location. */
3143 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3144 { register rtx base, index = 0; \
3145 int offset = 0; \
3146 register rtx addr = ADDR; \
3147 if (GET_CODE (addr) == REG) \
3148 fputs (reg_names[REGNO (addr)], FILE); \
3149 else if (GET_CODE (addr) == PLUS) \
3151 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
3152 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
3153 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
3154 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
3155 else \
3156 base = XEXP (addr, 0), index = XEXP (addr, 1); \
3157 if (GET_CODE (base) == LO_SUM) \
3159 if (! USE_AS_OFFSETABLE_LO10 \
3160 || TARGET_ARCH32 \
3161 || TARGET_CM_MEDMID) \
3162 abort (); \
3163 output_operand (XEXP (base, 0), 0); \
3164 fputs ("+%lo(", FILE); \
3165 output_address (XEXP (base, 1)); \
3166 fprintf (FILE, ")+%d", offset); \
3168 else \
3170 fputs (reg_names[REGNO (base)], FILE); \
3171 if (index == 0) \
3172 fprintf (FILE, "%+d", offset); \
3173 else if (GET_CODE (index) == REG) \
3174 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
3175 else if (GET_CODE (index) == SYMBOL_REF \
3176 || GET_CODE (index) == CONST) \
3177 fputc ('+', FILE), output_addr_const (FILE, index); \
3178 else abort (); \
3181 else if (GET_CODE (addr) == MINUS \
3182 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
3184 output_addr_const (FILE, XEXP (addr, 0)); \
3185 fputs ("-(", FILE); \
3186 output_addr_const (FILE, XEXP (addr, 1)); \
3187 fputs ("-.)", FILE); \
3189 else if (GET_CODE (addr) == LO_SUM) \
3191 output_operand (XEXP (addr, 0), 0); \
3192 if (TARGET_CM_MEDMID) \
3193 fputs ("+%l44(", FILE); \
3194 else \
3195 fputs ("+%lo(", FILE); \
3196 output_address (XEXP (addr, 1)); \
3197 fputc (')', FILE); \
3199 else if (flag_pic && GET_CODE (addr) == CONST \
3200 && GET_CODE (XEXP (addr, 0)) == MINUS \
3201 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
3202 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
3203 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
3205 addr = XEXP (addr, 0); \
3206 output_addr_const (FILE, XEXP (addr, 0)); \
3207 /* Group the args of the second CONST in parenthesis. */ \
3208 fputs ("-(", FILE); \
3209 /* Skip past the second CONST--it does nothing for us. */\
3210 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3211 /* Close the parenthesis. */ \
3212 fputc (')', FILE); \
3214 else \
3216 output_addr_const (FILE, addr); \
3220 /* Define the codes that are matched by predicates in sparc.c. */
3222 #define PREDICATE_CODES \
3223 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3224 {"fp_zero_operand", {CONST_DOUBLE}}, \
3225 {"intreg_operand", {SUBREG, REG}}, \
3226 {"fcc_reg_operand", {REG}}, \
3227 {"icc_or_fcc_reg_operand", {REG}}, \
3228 {"restore_operand", {REG}}, \
3229 {"call_operand", {MEM}}, \
3230 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
3231 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
3232 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE}}, \
3233 {"symbolic_memory_operand", {SUBREG, MEM}}, \
3234 {"label_ref_operand", {LABEL_REF}}, \
3235 {"sp64_medium_pic_operand", {CONST}}, \
3236 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
3237 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
3238 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3239 {"splittable_symbolic_memory_operand", {MEM}}, \
3240 {"splittable_immediate_memory_operand", {MEM}}, \
3241 {"eq_or_neq", {EQ, NE}}, \
3242 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3243 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3244 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3245 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3246 {"cc_arithop", {AND, IOR, XOR}}, \
3247 {"cc_arithopn", {AND, IOR}}, \
3248 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3249 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3250 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3251 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3252 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3253 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3254 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3255 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3256 {"small_int", {CONST_INT}}, \
3257 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3258 {"uns_small_int", {CONST_INT}}, \
3259 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3260 {"clobbered_register", {REG}}, \
3261 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3262 {"zero_operand", {CONST_INT}}, \
3263 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3264 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3266 /* The number of Pmode words for the setjmp buffer. */
3267 #define JMP_BUF_SIZE 12
3269 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3271 /* Declare functions defined in sparc.c and used in templates. */
3273 extern void sparc_emit_set_const32 ();
3274 extern void sparc_emit_set_const64 ();
3275 extern void sparc_emit_set_symbolic_const64 ();
3276 extern int sparc_splitdi_legitimate ();
3277 extern int sparc_absnegfloat_split_legitimate ();
3279 extern char *output_cbranch ();
3280 extern const char *output_return ();
3281 extern char *output_v9branch ();
3283 extern void emit_v9_brxx_insn ();
3284 extern void finalize_pic ();
3285 extern void order_regs_for_local_alloc ();
3286 extern void output_double_int ();
3287 extern void output_function_epilogue ();
3288 extern void output_function_prologue ();
3289 extern void print_operand ();
3290 extern void sparc_flat_output_function_epilogue ();
3291 extern void sparc_flat_output_function_prologue ();
3293 extern int addrs_ok_for_ldd_peep ();
3294 extern int arith10_double_operand ();
3295 extern int arith10_operand ();
3296 extern int arith11_double_operand ();
3297 extern int arith11_operand ();
3298 extern int arith_double_operand ();
3299 extern int arith_double_4096_operand ();
3300 extern int arith_double_add_operand ();
3301 extern int arith_operand ();
3302 extern int arith_4096_operand ();
3303 extern int arith_add_operand ();
3304 extern int call_operand_address ();
3305 extern int input_operand ();
3306 extern int zero_operand ();
3307 extern int const64_operand ();
3308 extern int const64_high_operand ();
3309 extern int cc_arithop ();
3310 extern int cc_arithopn ();
3311 extern int check_pic ();
3312 extern int compute_frame_size ();
3313 extern int data_segment_operand ();
3314 extern int eligible_for_epilogue_delay ();
3315 extern int eligible_for_return_delay ();
3316 extern int emit_move_sequence ();
3317 extern int extend_op ();
3318 extern int fcc_reg_operand ();
3319 extern int fp_zero_operand ();
3320 extern int icc_or_fcc_reg_operand ();
3321 extern int label_ref_operand ();
3322 extern int mem_min_alignment ();
3323 extern int noov_compare_op ();
3324 extern int pic_address_needs_scratch ();
3325 extern int reg_or_0_operand ();
3326 extern int reg_or_nonsymb_mem_operand ();
3327 extern int reg_unused_after ();
3328 extern int register_ok_for_ldd ();
3329 extern int registers_ok_for_ldd_peep ();
3330 extern int restore_operand ();
3331 extern int short_branch ();
3332 extern int small_int ();
3333 extern int small_int_or_double ();
3334 extern int sp64_medium_pic_operand ();
3335 extern int sparc_flat_eligible_for_epilogue_delay ();
3336 extern int sparc_flat_epilogue_delay_slots ();
3337 extern int sparc_issue_rate ();
3338 extern int splittable_immediate_memory_operand ();
3339 extern int splittable_symbolic_memory_operand ();
3340 extern int sparc_adjust_cost ();
3341 extern int symbolic_memory_operand ();
3342 extern int symbolic_operand ();
3343 extern int text_segment_operand ();
3344 extern int uns_small_int ();
3345 extern int v9_regcmp_op ();
3346 extern int v9_regcmp_p ();
3348 extern unsigned long sparc_flat_compute_frame_size ();
3349 extern unsigned long sparc_type_code ();
3351 extern void sparc_function_profiler ();
3352 extern void sparc_function_block_profiler ();
3353 extern void sparc_block_profiler ();
3354 extern void sparc_function_block_profiler_exit ();
3356 extern char *sparc_v8plus_shift ();
3358 #ifdef __STDC__
3359 /* Function used for V8+ code generation. Returns 1 if the high
3360 32 bits of REG are 0 before INSN. */
3361 extern int sparc_check_64 (struct rtx_def *, struct rtx_def *);
3362 extern int sparc_return_peephole_ok (struct rtx_def *, struct rtx_def *);
3363 extern int compute_frame_size (int, int);
3364 #endif
3366 /* Defined in flags.h, but insn-emit.c does not include flags.h. */
3368 extern int flag_pic;