2016-10-21 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / libsanitizer / tsan / tsan_rtl.h
blob12587dd203ef4ffff9b2ccdd11fd74d4f2484e68
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main internal TSan header file.
12 // Ground rules:
13 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
14 // function-scope locals)
15 // - All functions/classes/etc reside in namespace __tsan, except for those
16 // declared in tsan_interface.h.
17 // - Platform-specific files should be used instead of ifdefs (*).
18 // - No system headers included in header files (*).
19 // - Platform specific headres included only into platform-specific files (*).
21 // (*) Except when inlining is critical for performance.
22 //===----------------------------------------------------------------------===//
24 #ifndef TSAN_RTL_H
25 #define TSAN_RTL_H
27 #include "sanitizer_common/sanitizer_allocator.h"
28 #include "sanitizer_common/sanitizer_allocator_internal.h"
29 #include "sanitizer_common/sanitizer_asm.h"
30 #include "sanitizer_common/sanitizer_common.h"
31 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
32 #include "sanitizer_common/sanitizer_libignore.h"
33 #include "sanitizer_common/sanitizer_suppressions.h"
34 #include "sanitizer_common/sanitizer_thread_registry.h"
35 #include "tsan_clock.h"
36 #include "tsan_defs.h"
37 #include "tsan_flags.h"
38 #include "tsan_sync.h"
39 #include "tsan_trace.h"
40 #include "tsan_vector.h"
41 #include "tsan_report.h"
42 #include "tsan_platform.h"
43 #include "tsan_mutexset.h"
44 #include "tsan_ignoreset.h"
45 #include "tsan_stack_trace.h"
47 #if SANITIZER_WORDSIZE != 64
48 # error "ThreadSanitizer is supported only on 64-bit platforms"
49 #endif
51 namespace __tsan {
53 #ifndef SANITIZER_GO
54 struct MapUnmapCallback;
55 #if defined(__mips64) || defined(__aarch64__)
56 static const uptr kAllocatorSpace = 0;
57 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE;
58 static const uptr kAllocatorRegionSizeLog = 20;
59 static const uptr kAllocatorNumRegions =
60 kAllocatorSize >> kAllocatorRegionSizeLog;
61 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
62 MapUnmapCallback> ByteMap;
63 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0,
64 CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap,
65 MapUnmapCallback> PrimaryAllocator;
66 #else
67 typedef SizeClassAllocator64<kHeapMemBeg, kHeapMemEnd - kHeapMemBeg, 0,
68 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
69 #endif
70 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
71 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
72 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
73 SecondaryAllocator> Allocator;
74 Allocator *allocator();
75 #endif
77 void TsanCheckFailed(const char *file, int line, const char *cond,
78 u64 v1, u64 v2);
80 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
82 // FastState (from most significant bit):
83 // ignore : 1
84 // tid : kTidBits
85 // unused : -
86 // history_size : 3
87 // epoch : kClkBits
88 class FastState {
89 public:
90 FastState(u64 tid, u64 epoch) {
91 x_ = tid << kTidShift;
92 x_ |= epoch;
93 DCHECK_EQ(tid, this->tid());
94 DCHECK_EQ(epoch, this->epoch());
95 DCHECK_EQ(GetIgnoreBit(), false);
98 explicit FastState(u64 x)
99 : x_(x) {
102 u64 raw() const {
103 return x_;
106 u64 tid() const {
107 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
108 return res;
111 u64 TidWithIgnore() const {
112 u64 res = x_ >> kTidShift;
113 return res;
116 u64 epoch() const {
117 u64 res = x_ & ((1ull << kClkBits) - 1);
118 return res;
121 void IncrementEpoch() {
122 u64 old_epoch = epoch();
123 x_ += 1;
124 DCHECK_EQ(old_epoch + 1, epoch());
125 (void)old_epoch;
128 void SetIgnoreBit() { x_ |= kIgnoreBit; }
129 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
130 bool GetIgnoreBit() const { return (s64)x_ < 0; }
132 void SetHistorySize(int hs) {
133 CHECK_GE(hs, 0);
134 CHECK_LE(hs, 7);
135 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
138 ALWAYS_INLINE
139 int GetHistorySize() const {
140 return (int)((x_ >> kHistoryShift) & kHistoryMask);
143 void ClearHistorySize() {
144 SetHistorySize(0);
147 ALWAYS_INLINE
148 u64 GetTracePos() const {
149 const int hs = GetHistorySize();
150 // When hs == 0, the trace consists of 2 parts.
151 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
152 return epoch() & mask;
155 private:
156 friend class Shadow;
157 static const int kTidShift = 64 - kTidBits - 1;
158 static const u64 kIgnoreBit = 1ull << 63;
159 static const u64 kFreedBit = 1ull << 63;
160 static const u64 kHistoryShift = kClkBits;
161 static const u64 kHistoryMask = 7;
162 u64 x_;
165 // Shadow (from most significant bit):
166 // freed : 1
167 // tid : kTidBits
168 // is_atomic : 1
169 // is_read : 1
170 // size_log : 2
171 // addr0 : 3
172 // epoch : kClkBits
173 class Shadow : public FastState {
174 public:
175 explicit Shadow(u64 x)
176 : FastState(x) {
179 explicit Shadow(const FastState &s)
180 : FastState(s.x_) {
181 ClearHistorySize();
184 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
185 DCHECK_EQ((x_ >> kClkBits) & 31, 0);
186 DCHECK_LE(addr0, 7);
187 DCHECK_LE(kAccessSizeLog, 3);
188 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
189 DCHECK_EQ(kAccessSizeLog, size_log());
190 DCHECK_EQ(addr0, this->addr0());
193 void SetWrite(unsigned kAccessIsWrite) {
194 DCHECK_EQ(x_ & kReadBit, 0);
195 if (!kAccessIsWrite)
196 x_ |= kReadBit;
197 DCHECK_EQ(kAccessIsWrite, IsWrite());
200 void SetAtomic(bool kIsAtomic) {
201 DCHECK(!IsAtomic());
202 if (kIsAtomic)
203 x_ |= kAtomicBit;
204 DCHECK_EQ(IsAtomic(), kIsAtomic);
207 bool IsAtomic() const {
208 return x_ & kAtomicBit;
211 bool IsZero() const {
212 return x_ == 0;
215 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
216 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
217 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
218 return shifted_xor == 0;
221 static ALWAYS_INLINE
222 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
223 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
224 return masked_xor == 0;
227 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
228 unsigned kS2AccessSize) {
229 bool res = false;
230 u64 diff = s1.addr0() - s2.addr0();
231 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
232 // if (s1.addr0() + size1) > s2.addr0()) return true;
233 if (s1.size() > -diff)
234 res = true;
235 } else {
236 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
237 if (kS2AccessSize > diff)
238 res = true;
240 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
241 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
242 return res;
245 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
246 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
247 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
248 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
250 // The idea behind the freed bit is as follows.
251 // When the memory is freed (or otherwise unaccessible) we write to the shadow
252 // values with tid/epoch related to the free and the freed bit set.
253 // During memory accesses processing the freed bit is considered
254 // as msb of tid. So any access races with shadow with freed bit set
255 // (it is as if write from a thread with which we never synchronized before).
256 // This allows us to detect accesses to freed memory w/o additional
257 // overheads in memory access processing and at the same time restore
258 // tid/epoch of free.
259 void MarkAsFreed() {
260 x_ |= kFreedBit;
263 bool IsFreed() const {
264 return x_ & kFreedBit;
267 bool GetFreedAndReset() {
268 bool res = x_ & kFreedBit;
269 x_ &= ~kFreedBit;
270 return res;
273 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
274 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
275 | (u64(kIsAtomic) << kAtomicShift));
276 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
277 return v;
280 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
281 bool v = ((x_ >> kReadShift) & 3)
282 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
283 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
284 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
285 return v;
288 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
289 bool v = ((x_ >> kReadShift) & 3)
290 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
291 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
292 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
293 return v;
296 private:
297 static const u64 kReadShift = 5 + kClkBits;
298 static const u64 kReadBit = 1ull << kReadShift;
299 static const u64 kAtomicShift = 6 + kClkBits;
300 static const u64 kAtomicBit = 1ull << kAtomicShift;
302 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
304 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
305 if (s1.addr0() == s2.addr0()) return true;
306 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
307 return true;
308 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
309 return true;
310 return false;
314 struct ThreadSignalContext;
316 struct JmpBuf {
317 uptr sp;
318 uptr mangled_sp;
319 int int_signal_send;
320 bool in_blocking_func;
321 uptr in_signal_handler;
322 uptr *shadow_stack_pos;
325 // This struct is stored in TLS.
326 struct ThreadState {
327 FastState fast_state;
328 // Synch epoch represents the threads's epoch before the last synchronization
329 // action. It allows to reduce number of shadow state updates.
330 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
331 // if we are processing write to X from the same thread at epoch=200,
332 // we do nothing, because both writes happen in the same 'synch epoch'.
333 // That is, if another memory access does not race with the former write,
334 // it does not race with the latter as well.
335 // QUESTION: can we can squeeze this into ThreadState::Fast?
336 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
337 // taken by epoch between synchs.
338 // This way we can save one load from tls.
339 u64 fast_synch_epoch;
340 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
341 // We do not distinguish beteween ignoring reads and writes
342 // for better performance.
343 int ignore_reads_and_writes;
344 int ignore_sync;
345 // Go does not support ignores.
346 #ifndef SANITIZER_GO
347 IgnoreSet mop_ignore_set;
348 IgnoreSet sync_ignore_set;
349 #endif
350 // C/C++ uses fixed size shadow stack embed into Trace.
351 // Go uses malloc-allocated shadow stack with dynamic size.
352 uptr *shadow_stack;
353 uptr *shadow_stack_end;
354 uptr *shadow_stack_pos;
355 u64 *racy_shadow_addr;
356 u64 racy_state[2];
357 MutexSet mset;
358 ThreadClock clock;
359 #ifndef SANITIZER_GO
360 AllocatorCache alloc_cache;
361 InternalAllocatorCache internal_alloc_cache;
362 Vector<JmpBuf> jmp_bufs;
363 int ignore_interceptors;
364 #endif
365 #if TSAN_COLLECT_STATS
366 u64 stat[StatCnt];
367 #endif
368 const int tid;
369 const int unique_id;
370 bool in_symbolizer;
371 bool in_ignored_lib;
372 bool is_inited;
373 bool is_dead;
374 bool is_freeing;
375 bool is_vptr_access;
376 const uptr stk_addr;
377 const uptr stk_size;
378 const uptr tls_addr;
379 const uptr tls_size;
380 ThreadContext *tctx;
382 #if SANITIZER_DEBUG && !SANITIZER_GO
383 InternalDeadlockDetector internal_deadlock_detector;
384 #endif
385 DDPhysicalThread *dd_pt;
386 DDLogicalThread *dd_lt;
388 atomic_uintptr_t in_signal_handler;
389 ThreadSignalContext *signal_ctx;
391 DenseSlabAllocCache block_cache;
392 DenseSlabAllocCache sync_cache;
393 DenseSlabAllocCache clock_cache;
395 #ifndef SANITIZER_GO
396 u32 last_sleep_stack_id;
397 ThreadClock last_sleep_clock;
398 #endif
400 // Set in regions of runtime that must be signal-safe and fork-safe.
401 // If set, malloc must not be called.
402 int nomalloc;
404 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
405 unsigned reuse_count,
406 uptr stk_addr, uptr stk_size,
407 uptr tls_addr, uptr tls_size);
410 #ifndef SANITIZER_GO
411 #if SANITIZER_MAC
412 ThreadState *cur_thread();
413 void cur_thread_finalize();
414 #else
415 __attribute__((tls_model("initial-exec")))
416 extern THREADLOCAL char cur_thread_placeholder[];
417 INLINE ThreadState *cur_thread() {
418 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
420 INLINE void cur_thread_finalize() { }
421 #endif // SANITIZER_MAC
422 #endif // SANITIZER_GO
424 class ThreadContext : public ThreadContextBase {
425 public:
426 explicit ThreadContext(int tid);
427 ~ThreadContext();
428 ThreadState *thr;
429 u32 creation_stack_id;
430 SyncClock sync;
431 // Epoch at which the thread had started.
432 // If we see an event from the thread stamped by an older epoch,
433 // the event is from a dead thread that shared tid with this thread.
434 u64 epoch0;
435 u64 epoch1;
437 // Override superclass callbacks.
438 void OnDead() override;
439 void OnJoined(void *arg) override;
440 void OnFinished() override;
441 void OnStarted(void *arg) override;
442 void OnCreated(void *arg) override;
443 void OnReset() override;
444 void OnDetached(void *arg) override;
447 struct RacyStacks {
448 MD5Hash hash[2];
449 bool operator==(const RacyStacks &other) const {
450 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
451 return true;
452 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
453 return true;
454 return false;
458 struct RacyAddress {
459 uptr addr_min;
460 uptr addr_max;
463 struct FiredSuppression {
464 ReportType type;
465 uptr pc_or_addr;
466 Suppression *supp;
469 struct Context {
470 Context();
472 bool initialized;
473 bool after_multithreaded_fork;
475 MetaMap metamap;
477 Mutex report_mtx;
478 int nreported;
479 int nmissed_expected;
480 atomic_uint64_t last_symbolize_time_ns;
482 void *background_thread;
483 atomic_uint32_t stop_background_thread;
485 ThreadRegistry *thread_registry;
487 Mutex racy_mtx;
488 Vector<RacyStacks> racy_stacks;
489 Vector<RacyAddress> racy_addresses;
490 // Number of fired suppressions may be large enough.
491 Mutex fired_suppressions_mtx;
492 InternalMmapVector<FiredSuppression> fired_suppressions;
493 DDetector *dd;
495 ClockAlloc clock_alloc;
497 Flags flags;
499 u64 stat[StatCnt];
500 u64 int_alloc_cnt[MBlockTypeCount];
501 u64 int_alloc_siz[MBlockTypeCount];
504 extern Context *ctx; // The one and the only global runtime context.
506 struct ScopedIgnoreInterceptors {
507 ScopedIgnoreInterceptors() {
508 #ifndef SANITIZER_GO
509 cur_thread()->ignore_interceptors++;
510 #endif
513 ~ScopedIgnoreInterceptors() {
514 #ifndef SANITIZER_GO
515 cur_thread()->ignore_interceptors--;
516 #endif
520 class ScopedReport {
521 public:
522 explicit ScopedReport(ReportType typ);
523 ~ScopedReport();
525 void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack,
526 const MutexSet *mset);
527 void AddStack(StackTrace stack, bool suppressable = false);
528 void AddThread(const ThreadContext *tctx, bool suppressable = false);
529 void AddThread(int unique_tid, bool suppressable = false);
530 void AddUniqueTid(int unique_tid);
531 void AddMutex(const SyncVar *s);
532 u64 AddMutex(u64 id);
533 void AddLocation(uptr addr, uptr size);
534 void AddSleep(u32 stack_id);
535 void SetCount(int count);
537 const ReportDesc *GetReport() const;
539 private:
540 ReportDesc *rep_;
541 // Symbolizer makes lots of intercepted calls. If we try to process them,
542 // at best it will cause deadlocks on internal mutexes.
543 ScopedIgnoreInterceptors ignore_interceptors_;
545 void AddDeadMutex(u64 id);
547 ScopedReport(const ScopedReport&);
548 void operator = (const ScopedReport&);
551 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
552 MutexSet *mset);
554 template<typename StackTraceTy>
555 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) {
556 uptr size = thr->shadow_stack_pos - thr->shadow_stack;
557 uptr start = 0;
558 if (size + !!toppc > kStackTraceMax) {
559 start = size + !!toppc - kStackTraceMax;
560 size = kStackTraceMax - !!toppc;
562 stack->Init(&thr->shadow_stack[start], size, toppc);
566 #if TSAN_COLLECT_STATS
567 void StatAggregate(u64 *dst, u64 *src);
568 void StatOutput(u64 *stat);
569 #endif
571 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
572 #if TSAN_COLLECT_STATS
573 thr->stat[typ] += n;
574 #endif
576 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
577 #if TSAN_COLLECT_STATS
578 thr->stat[typ] = n;
579 #endif
582 void MapShadow(uptr addr, uptr size);
583 void MapThreadTrace(uptr addr, uptr size, const char *name);
584 void DontNeedShadowFor(uptr addr, uptr size);
585 void InitializeShadowMemory();
586 void InitializeInterceptors();
587 void InitializeLibIgnore();
588 void InitializeDynamicAnnotations();
590 void ForkBefore(ThreadState *thr, uptr pc);
591 void ForkParentAfter(ThreadState *thr, uptr pc);
592 void ForkChildAfter(ThreadState *thr, uptr pc);
594 void ReportRace(ThreadState *thr);
595 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
596 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
597 bool IsExpectedReport(uptr addr, uptr size);
598 void PrintMatchedBenignRaces();
600 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
601 # define DPrintf Printf
602 #else
603 # define DPrintf(...)
604 #endif
606 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
607 # define DPrintf2 Printf
608 #else
609 # define DPrintf2(...)
610 #endif
612 u32 CurrentStackId(ThreadState *thr, uptr pc);
613 ReportStack *SymbolizeStackId(u32 stack_id);
614 void PrintCurrentStack(ThreadState *thr, uptr pc);
615 void PrintCurrentStackSlow(uptr pc); // uses libunwind
617 void Initialize(ThreadState *thr);
618 int Finalize(ThreadState *thr);
620 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
621 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
623 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
624 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
625 void MemoryAccessImpl(ThreadState *thr, uptr addr,
626 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
627 u64 *shadow_mem, Shadow cur);
628 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
629 uptr size, bool is_write);
630 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
631 uptr size, uptr step, bool is_write);
632 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
633 int size, bool kAccessIsWrite, bool kIsAtomic);
635 const int kSizeLog1 = 0;
636 const int kSizeLog2 = 1;
637 const int kSizeLog4 = 2;
638 const int kSizeLog8 = 3;
640 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
641 uptr addr, int kAccessSizeLog) {
642 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
645 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
646 uptr addr, int kAccessSizeLog) {
647 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
650 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
651 uptr addr, int kAccessSizeLog) {
652 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
655 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
656 uptr addr, int kAccessSizeLog) {
657 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
660 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
661 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
662 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
664 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
665 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
666 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
667 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
669 void FuncEntry(ThreadState *thr, uptr pc);
670 void FuncExit(ThreadState *thr);
672 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
673 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
674 void ThreadFinish(ThreadState *thr);
675 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
676 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
677 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
678 void ThreadFinalize(ThreadState *thr);
679 void ThreadSetName(ThreadState *thr, const char *name);
680 int ThreadCount(ThreadState *thr);
681 void ProcessPendingSignals(ThreadState *thr);
683 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
684 bool rw, bool recursive, bool linker_init);
685 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
686 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
687 bool try_lock = false);
688 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
689 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
690 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
691 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
692 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
694 void Acquire(ThreadState *thr, uptr pc, uptr addr);
695 // AcquireGlobal synchronizes the current thread with all other threads.
696 // In terms of happens-before relation, it draws a HB edge from all threads
697 // (where they happen to execute right now) to the current thread. We use it to
698 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
699 // right before executing finalizers. This provides a coarse, but simple
700 // approximation of the actual required synchronization.
701 void AcquireGlobal(ThreadState *thr, uptr pc);
702 void Release(ThreadState *thr, uptr pc, uptr addr);
703 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
704 void AfterSleep(ThreadState *thr, uptr pc);
705 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
706 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
707 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
708 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
710 // The hacky call uses custom calling convention and an assembly thunk.
711 // It is considerably faster that a normal call for the caller
712 // if it is not executed (it is intended for slow paths from hot functions).
713 // The trick is that the call preserves all registers and the compiler
714 // does not treat it as a call.
715 // If it does not work for you, use normal call.
716 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
717 // The caller may not create the stack frame for itself at all,
718 // so we create a reserve stack frame for it (1024b must be enough).
719 #define HACKY_CALL(f) \
720 __asm__ __volatile__("sub $1024, %%rsp;" \
721 CFI_INL_ADJUST_CFA_OFFSET(1024) \
722 ".hidden " #f "_thunk;" \
723 "call " #f "_thunk;" \
724 "add $1024, %%rsp;" \
725 CFI_INL_ADJUST_CFA_OFFSET(-1024) \
726 ::: "memory", "cc");
727 #else
728 #define HACKY_CALL(f) f()
729 #endif
731 void TraceSwitch(ThreadState *thr);
732 uptr TraceTopPC(ThreadState *thr);
733 uptr TraceSize();
734 uptr TraceParts();
735 Trace *ThreadTrace(int tid);
737 extern "C" void __tsan_trace_switch();
738 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
739 EventType typ, u64 addr) {
740 if (!kCollectHistory)
741 return;
742 DCHECK_GE((int)typ, 0);
743 DCHECK_LE((int)typ, 7);
744 DCHECK_EQ(GetLsb(addr, 61), addr);
745 StatInc(thr, StatEvents);
746 u64 pos = fs.GetTracePos();
747 if (UNLIKELY((pos % kTracePartSize) == 0)) {
748 #ifndef SANITIZER_GO
749 HACKY_CALL(__tsan_trace_switch);
750 #else
751 TraceSwitch(thr);
752 #endif
754 Event *trace = (Event*)GetThreadTrace(fs.tid());
755 Event *evp = &trace[pos];
756 Event ev = (u64)addr | ((u64)typ << 61);
757 *evp = ev;
760 #ifndef SANITIZER_GO
761 uptr ALWAYS_INLINE HeapEnd() {
762 return kHeapMemEnd + PrimaryAllocator::AdditionalSize();
764 #endif
766 } // namespace __tsan
768 #endif // TSAN_RTL_H