2005-03-29 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-operands.c
blob1ef06db602f1851f66b5b4803a29e35f083228d9
1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "diagnostic.h"
29 #include "errors.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "ggc.h"
34 #include "timevar.h"
36 #include "langhooks.h"
38 /* This file contains the code required to manage the operands cache of the
39 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
40 annotation. This cache contains operands that will be of interest to
41 optimizers and other passes wishing to manipulate the IL.
43 The operand type are broken up into REAL and VIRTUAL operands. The real
44 operands are represented as pointers into the stmt's operand tree. Thus
45 any manipulation of the real operands will be reflected in the actual tree.
46 Virtual operands are represented solely in the cache, although the base
47 variable for the SSA_NAME may, or may not occur in the stmt's tree.
48 Manipulation of the virtual operands will not be reflected in the stmt tree.
50 The routines in this file are concerned with creating this operand cache
51 from a stmt tree.
53 get_stmt_operands() in the primary entry point.
55 The operand tree is the parsed by the various get_* routines which look
56 through the stmt tree for the occurrence of operands which may be of
57 interest, and calls are made to the append_* routines whenever one is
58 found. There are 5 of these routines, each representing one of the
59 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
60 Virtual Must Defs.
62 The append_* routines check for duplication, and simply keep a list of
63 unique objects for each operand type in the build_* extendable vectors.
65 Once the stmt tree is completely parsed, the finalize_ssa_operands()
66 routine is called, which proceeds to perform the finalization routine
67 on each of the 5 operand vectors which have been built up.
69 If the stmt had a previous operand cache, the finalization routines
70 attempt to match up the new operands with the old ones. If its a perfect
71 match, the old vector is simply reused. If it isn't a perfect match, then
72 a new vector is created and the new operands are placed there. For
73 virtual operands, if the previous cache had SSA_NAME version of a
74 variable, and that same variable occurs in the same operands cache, then
75 the new cache vector will also get the same SSA_NAME.
77 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
78 vector for VUSE, then the new vector will also be modified such that
79 it contains 'a_5' rather than 'a'.
84 /* Flags to describe operand properties in get_stmt_operands and helpers. */
86 /* By default, operands are loaded. */
87 #define opf_none 0
89 /* Operand is the target of an assignment expression or a
90 call-clobbered variable */
91 #define opf_is_def (1 << 0)
93 /* Operand is the target of an assignment expression. */
94 #define opf_kill_def (1 << 1)
96 /* No virtual operands should be created in the expression. This is used
97 when traversing ADDR_EXPR nodes which have different semantics than
98 other expressions. Inside an ADDR_EXPR node, the only operands that we
99 need to consider are indices into arrays. For instance, &a.b[i] should
100 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
101 VUSE for 'b'. */
102 #define opf_no_vops (1 << 2)
104 /* Array for building all the def operands. */
105 static GTY (()) varray_type build_defs;
107 /* Array for building all the use operands. */
108 static GTY (()) varray_type build_uses;
110 /* Array for building all the v_may_def operands. */
111 static GTY (()) varray_type build_v_may_defs;
113 /* Array for building all the vuse operands. */
114 static GTY (()) varray_type build_vuses;
116 /* Array for building all the v_must_def operands. */
117 static GTY (()) varray_type build_v_must_defs;
119 /* True if the operands for call clobbered vars are cached and valid. */
120 bool ssa_call_clobbered_cache_valid;
121 bool ssa_ro_call_cache_valid;
123 /* These arrays are the cached operand vectors for call clobbered calls. */
124 static GTY (()) varray_type clobbered_v_may_defs;
125 static GTY (()) varray_type clobbered_vuses;
126 static GTY (()) varray_type ro_call_vuses;
127 static bool clobbered_aliased_loads;
128 static bool clobbered_aliased_stores;
129 static bool ro_call_aliased_loads;
131 def_operand_p NULL_DEF_OPERAND_P = { NULL };
132 use_operand_p NULL_USE_OPERAND_P = { NULL };
134 static void note_addressable (tree, stmt_ann_t);
135 static void get_expr_operands (tree, tree *, int);
136 static void get_asm_expr_operands (tree);
137 static void get_indirect_ref_operands (tree, tree, int);
138 static void get_call_expr_operands (tree, tree);
139 static inline void append_def (tree *);
140 static inline void append_use (tree *);
141 static void append_v_may_def (tree);
142 static void append_v_must_def (tree);
143 static void add_call_clobber_ops (tree);
144 static void add_call_read_ops (tree);
145 static void add_stmt_operand (tree *, stmt_ann_t, int);
147 /* Return a vector of contiguous memory for NUM def operands. */
149 static inline def_optype
150 allocate_def_optype (unsigned num)
152 def_optype def_ops;
153 unsigned size;
154 size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1);
155 def_ops = ggc_alloc (size);
156 def_ops->num_defs = num;
157 return def_ops;
161 /* Return a vector of contiguous memory for NUM use operands. */
163 static inline use_optype
164 allocate_use_optype (unsigned num)
166 use_optype use_ops;
167 unsigned size;
168 size = sizeof (struct use_optype_d) + sizeof (tree *) * (num - 1);
169 use_ops = ggc_alloc (size);
170 use_ops->num_uses = num;
171 return use_ops;
175 /* Return a vector of contiguous memory for NUM v_may_def operands. */
177 static inline v_may_def_optype
178 allocate_v_may_def_optype (unsigned num)
180 v_may_def_optype v_may_def_ops;
181 unsigned size;
182 size = sizeof (struct v_may_def_optype_d)
183 + sizeof (v_def_use_operand_type_t) * (num - 1);
184 v_may_def_ops = ggc_alloc (size);
185 v_may_def_ops->num_v_may_defs = num;
186 return v_may_def_ops;
190 /* Return a vector of contiguous memory for NUM v_use operands. */
192 static inline vuse_optype
193 allocate_vuse_optype (unsigned num)
195 vuse_optype vuse_ops;
196 unsigned size;
197 size = sizeof (struct vuse_optype_d) + sizeof (tree) * (num - 1);
198 vuse_ops = ggc_alloc (size);
199 vuse_ops->num_vuses = num;
200 return vuse_ops;
204 /* Return a vector of contiguous memory for NUM v_must_def operands. */
206 static inline v_must_def_optype
207 allocate_v_must_def_optype (unsigned num)
209 v_must_def_optype v_must_def_ops;
210 unsigned size;
211 size = sizeof (struct v_must_def_optype_d) + sizeof (v_def_use_operand_type_t) * (num - 1);
212 v_must_def_ops = ggc_alloc (size);
213 v_must_def_ops->num_v_must_defs = num;
214 return v_must_def_ops;
218 /* Free memory for USES. */
220 static inline void
221 free_uses (use_optype *uses)
223 if (*uses)
225 ggc_free (*uses);
226 *uses = NULL;
231 /* Free memory for DEFS. */
233 static inline void
234 free_defs (def_optype *defs)
236 if (*defs)
238 ggc_free (*defs);
239 *defs = NULL;
244 /* Free memory for VUSES. */
246 static inline void
247 free_vuses (vuse_optype *vuses)
249 if (*vuses)
251 ggc_free (*vuses);
252 *vuses = NULL;
257 /* Free memory for V_MAY_DEFS. */
259 static inline void
260 free_v_may_defs (v_may_def_optype *v_may_defs)
262 if (*v_may_defs)
264 ggc_free (*v_may_defs);
265 *v_may_defs = NULL;
270 /* Free memory for V_MUST_DEFS. */
272 static inline void
273 free_v_must_defs (v_must_def_optype *v_must_defs)
275 if (*v_must_defs)
277 ggc_free (*v_must_defs);
278 *v_must_defs = NULL;
283 /* Initialize the operand cache routines. */
285 void
286 init_ssa_operands (void)
288 VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs");
289 VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses");
290 VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs");
291 VARRAY_TREE_INIT (build_vuses, 10, "build vuses");
292 VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs");
296 /* Dispose of anything required by the operand routines. */
298 void
299 fini_ssa_operands (void)
301 ggc_free (build_defs);
302 ggc_free (build_uses);
303 ggc_free (build_v_may_defs);
304 ggc_free (build_vuses);
305 ggc_free (build_v_must_defs);
306 build_defs = NULL;
307 build_uses = NULL;
308 build_v_may_defs = NULL;
309 build_vuses = NULL;
310 build_v_must_defs = NULL;
311 if (clobbered_v_may_defs)
313 ggc_free (clobbered_v_may_defs);
314 ggc_free (clobbered_vuses);
315 clobbered_v_may_defs = NULL;
316 clobbered_vuses = NULL;
318 if (ro_call_vuses)
320 ggc_free (ro_call_vuses);
321 ro_call_vuses = NULL;
326 /* All the finalize_ssa_* routines do the work required to turn the build_
327 VARRAY into an operand_vector of the appropriate type. The original vector,
328 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
329 old vector is reused, the pointer passed in is set to NULL so that
330 the memory is not freed when the old operands are freed. */
332 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
334 static def_optype
335 finalize_ssa_defs (def_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
337 unsigned num, x;
338 def_optype def_ops, old_ops;
339 bool build_diff;
341 num = VARRAY_ACTIVE_SIZE (build_defs);
342 if (num == 0)
343 return NULL;
345 /* There should only be a single real definition per assignment. */
346 gcc_assert (TREE_CODE (stmt) != MODIFY_EXPR || num <= 1);
348 old_ops = *old_ops_p;
350 /* Compare old vector and new array. */
351 build_diff = true;
352 if (old_ops && old_ops->num_defs == num)
354 build_diff = false;
355 for (x = 0; x < num; x++)
356 if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x))
358 build_diff = true;
359 break;
363 if (!build_diff)
365 def_ops = old_ops;
366 *old_ops_p = NULL;
368 else
370 def_ops = allocate_def_optype (num);
371 for (x = 0; x < num ; x++)
372 def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x);
375 VARRAY_POP_ALL (build_defs);
377 return def_ops;
381 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
383 static use_optype
384 finalize_ssa_uses (use_optype *old_ops_p, tree stmt ATTRIBUTE_UNUSED)
386 unsigned num, x;
387 use_optype use_ops, old_ops;
388 bool build_diff;
390 num = VARRAY_ACTIVE_SIZE (build_uses);
391 if (num == 0)
392 return NULL;
394 #ifdef ENABLE_CHECKING
396 unsigned x;
397 /* If the pointer to the operand is the statement itself, something is
398 wrong. It means that we are pointing to a local variable (the
399 initial call to get_stmt_operands does not pass a pointer to a
400 statement). */
401 for (x = 0; x < num; x++)
402 gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt);
404 #endif
405 old_ops = *old_ops_p;
407 /* Check if the old vector and the new array are the same. */
408 build_diff = true;
409 if (old_ops && old_ops->num_uses == num)
411 build_diff = false;
412 for (x = 0; x < num; x++)
413 if (old_ops->uses[x].use != VARRAY_TREE_PTR (build_uses, x))
415 build_diff = true;
416 break;
420 if (!build_diff)
422 use_ops = old_ops;
423 *old_ops_p = NULL;
425 else
427 use_ops = allocate_use_optype (num);
428 for (x = 0; x < num ; x++)
429 use_ops->uses[x].use = VARRAY_TREE_PTR (build_uses, x);
431 VARRAY_POP_ALL (build_uses);
433 return use_ops;
437 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
439 static v_may_def_optype
440 finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p)
442 unsigned num, x, i, old_num;
443 v_may_def_optype v_may_def_ops, old_ops;
444 tree result, var;
445 bool build_diff;
447 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
448 if (num == 0)
449 return NULL;
451 old_ops = *old_ops_p;
453 /* Check if the old vector and the new array are the same. */
454 build_diff = true;
455 if (old_ops && old_ops->num_v_may_defs == num)
457 old_num = num;
458 build_diff = false;
459 for (x = 0; x < num; x++)
461 var = old_ops->v_may_defs[x].def;
462 if (TREE_CODE (var) == SSA_NAME)
463 var = SSA_NAME_VAR (var);
464 if (var != VARRAY_TREE (build_v_may_defs, x))
466 build_diff = true;
467 break;
471 else
472 old_num = (old_ops ? old_ops->num_v_may_defs : 0);
474 if (!build_diff)
476 v_may_def_ops = old_ops;
477 *old_ops_p = NULL;
479 else
481 v_may_def_ops = allocate_v_may_def_optype (num);
482 for (x = 0; x < num; x++)
484 var = VARRAY_TREE (build_v_may_defs, x);
485 /* Look for VAR in the old operands vector. */
486 for (i = 0; i < old_num; i++)
488 result = old_ops->v_may_defs[i].def;
489 if (TREE_CODE (result) == SSA_NAME)
490 result = SSA_NAME_VAR (result);
491 if (result == var)
493 v_may_def_ops->v_may_defs[x] = old_ops->v_may_defs[i];
494 break;
497 if (i == old_num)
499 v_may_def_ops->v_may_defs[x].def = var;
500 v_may_def_ops->v_may_defs[x].use = var;
505 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
507 return v_may_def_ops;
511 /* Clear the in_list bits and empty the build array for v_may_defs. */
513 static inline void
514 cleanup_v_may_defs (void)
516 unsigned x, num;
517 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
519 for (x = 0; x < num; x++)
521 tree t = VARRAY_TREE (build_v_may_defs, x);
522 var_ann_t ann = var_ann (t);
523 ann->in_v_may_def_list = 0;
525 VARRAY_POP_ALL (build_v_may_defs);
528 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
530 static vuse_optype
531 finalize_ssa_vuses (vuse_optype *old_ops_p)
533 unsigned num, x, i, num_v_may_defs, old_num;
534 vuse_optype vuse_ops, old_ops;
535 bool build_diff;
537 num = VARRAY_ACTIVE_SIZE (build_vuses);
538 if (num == 0)
540 cleanup_v_may_defs ();
541 return NULL;
544 /* Remove superfluous VUSE operands. If the statement already has a
545 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
546 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
547 suppose that variable 'a' is aliased:
549 # VUSE <a_2>
550 # a_3 = V_MAY_DEF <a_2>
551 a = a + 1;
553 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
554 operation. */
556 num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs);
558 if (num_v_may_defs > 0)
560 size_t i;
561 tree vuse;
562 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
564 vuse = VARRAY_TREE (build_vuses, i);
565 if (TREE_CODE (vuse) != SSA_NAME)
567 var_ann_t ann = var_ann (vuse);
568 ann->in_vuse_list = 0;
569 if (ann->in_v_may_def_list)
571 /* If we found a useless VUSE operand, remove it from the
572 operand array by replacing it with the last active element
573 in the operand array (unless the useless VUSE was the
574 last operand, in which case we simply remove it. */
575 if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1)
577 VARRAY_TREE (build_vuses, i)
578 = VARRAY_TREE (build_vuses,
579 VARRAY_ACTIVE_SIZE (build_vuses) - 1);
581 VARRAY_POP (build_vuses);
583 /* We want to rescan the element at this index, unless
584 this was the last element, in which case the loop
585 terminates. */
586 i--;
591 else
592 /* Clear out the in_list bits. */
593 for (x = 0; x < num; x++)
595 tree t = VARRAY_TREE (build_vuses, x);
596 if (TREE_CODE (t) != SSA_NAME)
598 var_ann_t ann = var_ann (t);
599 ann->in_vuse_list = 0;
604 num = VARRAY_ACTIVE_SIZE (build_vuses);
605 /* We could have reduced the size to zero now, however. */
606 if (num == 0)
608 cleanup_v_may_defs ();
609 return NULL;
612 old_ops = *old_ops_p;
614 /* Determine whether vuses is the same as the old vector. */
615 build_diff = true;
616 if (old_ops && old_ops->num_vuses == num)
618 old_num = num;
619 build_diff = false;
620 for (x = 0; x < num ; x++)
622 tree v;
623 v = old_ops->vuses[x];
624 if (TREE_CODE (v) == SSA_NAME)
625 v = SSA_NAME_VAR (v);
626 if (v != VARRAY_TREE (build_vuses, x))
628 build_diff = true;
629 break;
633 else
634 old_num = (old_ops ? old_ops->num_vuses : 0);
636 if (!build_diff)
638 vuse_ops = old_ops;
639 *old_ops_p = NULL;
641 else
643 vuse_ops = allocate_vuse_optype (num);
644 for (x = 0; x < num; x++)
646 tree result, var = VARRAY_TREE (build_vuses, x);
647 /* Look for VAR in the old vector, and use that SSA_NAME. */
648 for (i = 0; i < old_num; i++)
650 result = old_ops->vuses[i];
651 if (TREE_CODE (result) == SSA_NAME)
652 result = SSA_NAME_VAR (result);
653 if (result == var)
655 vuse_ops->vuses[x] = old_ops->vuses[i];
656 break;
659 if (i == old_num)
660 vuse_ops->vuses[x] = var;
664 /* The v_may_def build vector wasn't freed because we needed it here.
665 Free it now with the vuses build vector. */
666 VARRAY_POP_ALL (build_vuses);
667 cleanup_v_may_defs ();
669 return vuse_ops;
672 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
674 static v_must_def_optype
675 finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p,
676 tree stmt ATTRIBUTE_UNUSED)
678 unsigned num, x, i, old_num = 0;
679 v_must_def_optype v_must_def_ops, old_ops;
680 bool build_diff;
682 num = VARRAY_ACTIVE_SIZE (build_v_must_defs);
683 if (num == 0)
684 return NULL;
686 /* In the presence of subvars, there may be more than one V_MUST_DEF per
687 statement (one for each subvar). It is a bit expensive to verify that
688 all must-defs in a statement belong to subvars if there is more than one
689 MUST-def, so we don't do it. Suffice to say, if you reach here without
690 having subvars, and have num >1, you have hit a bug. */
693 old_ops = *old_ops_p;
695 /* Check if the old vector and the new array are the same. */
696 build_diff = true;
697 if (old_ops && old_ops->num_v_must_defs == num)
699 old_num = num;
700 build_diff = false;
701 for (x = 0; x < num; x++)
703 tree var = old_ops->v_must_defs[x].def;
704 if (TREE_CODE (var) == SSA_NAME)
705 var = SSA_NAME_VAR (var);
706 if (var != VARRAY_TREE (build_v_must_defs, x))
708 build_diff = true;
709 break;
713 else
714 old_num = (old_ops ? old_ops->num_v_must_defs : 0);
716 if (!build_diff)
718 v_must_def_ops = old_ops;
719 *old_ops_p = NULL;
721 else
723 v_must_def_ops = allocate_v_must_def_optype (num);
724 for (x = 0; x < num ; x++)
726 tree result, var = VARRAY_TREE (build_v_must_defs, x);
727 /* Look for VAR in the original vector. */
728 for (i = 0; i < old_num; i++)
730 result = old_ops->v_must_defs[i].def;
731 if (TREE_CODE (result) == SSA_NAME)
732 result = SSA_NAME_VAR (result);
733 if (result == var)
735 v_must_def_ops->v_must_defs[x].def = old_ops->v_must_defs[i].def;
736 v_must_def_ops->v_must_defs[x].use = old_ops->v_must_defs[i].use;
737 break;
740 if (i == old_num)
742 v_must_def_ops->v_must_defs[x].def = var;
743 v_must_def_ops->v_must_defs[x].use = var;
747 VARRAY_POP_ALL (build_v_must_defs);
749 return v_must_def_ops;
753 /* Finalize all the build vectors, fill the new ones into INFO. */
755 static inline void
756 finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops,
757 stmt_operands_p new_ops)
759 new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt);
760 new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt);
761 new_ops->v_must_def_ops
762 = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt);
763 new_ops->v_may_def_ops = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops));
764 new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops));
768 /* Start the process of building up operands vectors in INFO. */
770 static inline void
771 start_ssa_stmt_operands (void)
773 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0);
774 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0);
775 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0);
776 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0);
777 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0);
781 /* Add DEF_P to the list of pointers to operands. */
783 static inline void
784 append_def (tree *def_p)
786 VARRAY_PUSH_TREE_PTR (build_defs, def_p);
790 /* Add USE_P to the list of pointers to operands. */
792 static inline void
793 append_use (tree *use_p)
795 VARRAY_PUSH_TREE_PTR (build_uses, use_p);
799 /* Add a new virtual may def for variable VAR to the build array. */
801 static inline void
802 append_v_may_def (tree var)
804 var_ann_t ann = get_var_ann (var);
806 /* Don't allow duplicate entries. */
807 if (ann->in_v_may_def_list)
808 return;
809 ann->in_v_may_def_list = 1;
811 VARRAY_PUSH_TREE (build_v_may_defs, var);
815 /* Add VAR to the list of virtual uses. */
817 static inline void
818 append_vuse (tree var)
821 /* Don't allow duplicate entries. */
822 if (TREE_CODE (var) != SSA_NAME)
824 var_ann_t ann = get_var_ann (var);
826 if (ann->in_vuse_list || ann->in_v_may_def_list)
827 return;
828 ann->in_vuse_list = 1;
831 VARRAY_PUSH_TREE (build_vuses, var);
835 /* Add VAR to the list of virtual must definitions for INFO. */
837 static inline void
838 append_v_must_def (tree var)
840 unsigned i;
842 /* Don't allow duplicate entries. */
843 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++)
844 if (var == VARRAY_TREE (build_v_must_defs, i))
845 return;
847 VARRAY_PUSH_TREE (build_v_must_defs, var);
850 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
851 original operands, and if ANN is non-null, appropriate stmt flags are set
852 in the stmt's annotation. Note that some fields in old_ops may
853 change to NULL, although none of the memory they originally pointed to
854 will be destroyed. It is appropriate to call free_stmt_operands() on
855 the value returned in old_ops.
857 The rationale for this: Certain optimizations wish to examine the difference
858 between new_ops and old_ops after processing. If a set of operands don't
859 change, new_ops will simply assume the pointer in old_ops, and the old_ops
860 pointer will be set to NULL, indicating no memory needs to be cleared.
861 Usage might appear something like:
863 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
864 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
865 <* compare old_ops_copy and new_ops *>
866 free_ssa_operands (old_ops); */
868 static void
869 build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops,
870 stmt_operands_p new_ops)
872 enum tree_code code;
873 tree_ann_t saved_ann = stmt->common.ann;
875 /* Replace stmt's annotation with the one passed in for the duration
876 of the operand building process. This allows "fake" stmts to be built
877 and not be included in other data structures which can be built here. */
878 stmt->common.ann = (tree_ann_t) ann;
880 /* Initially assume that the statement has no volatile operands, nor
881 makes aliased loads or stores. */
882 if (ann)
884 ann->has_volatile_ops = false;
885 ann->makes_aliased_stores = false;
886 ann->makes_aliased_loads = false;
889 start_ssa_stmt_operands ();
891 code = TREE_CODE (stmt);
892 switch (code)
894 case MODIFY_EXPR:
895 /* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if
896 either only part of LHS is modified or if the RHS might throw,
897 otherwise, use V_MUST_DEF.
899 ??? If it might throw, we should represent somehow that it is killed
900 on the fallthrough path. */
902 tree lhs = TREE_OPERAND (stmt, 0);
903 int lhs_flags = opf_is_def;
905 get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);
907 /* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
908 or not the entire LHS is modified; that depends on what's
909 inside the VIEW_CONVERT_EXPR. */
910 if (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
911 lhs = TREE_OPERAND (lhs, 0);
913 if (TREE_CODE (lhs) != ARRAY_REF && TREE_CODE (lhs) != ARRAY_RANGE_REF
914 && TREE_CODE (lhs) != BIT_FIELD_REF
915 && TREE_CODE (lhs) != REALPART_EXPR
916 && TREE_CODE (lhs) != IMAGPART_EXPR)
917 lhs_flags |= opf_kill_def;
919 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), lhs_flags);
921 break;
923 case COND_EXPR:
924 get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
925 break;
927 case SWITCH_EXPR:
928 get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
929 break;
931 case ASM_EXPR:
932 get_asm_expr_operands (stmt);
933 break;
935 case RETURN_EXPR:
936 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
937 break;
939 case GOTO_EXPR:
940 get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
941 break;
943 case LABEL_EXPR:
944 get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
945 break;
947 /* These nodes contain no variable references. */
948 case BIND_EXPR:
949 case CASE_LABEL_EXPR:
950 case TRY_CATCH_EXPR:
951 case TRY_FINALLY_EXPR:
952 case EH_FILTER_EXPR:
953 case CATCH_EXPR:
954 case RESX_EXPR:
955 break;
957 default:
958 /* Notice that if get_expr_operands tries to use &STMT as the operand
959 pointer (which may only happen for USE operands), we will abort in
960 append_use. This default will handle statements like empty
961 statements, or CALL_EXPRs that may appear on the RHS of a statement
962 or as statements themselves. */
963 get_expr_operands (stmt, &stmt, opf_none);
964 break;
967 finalize_ssa_stmt_operands (stmt, old_ops, new_ops);
968 stmt->common.ann = saved_ann;
972 /* Free any operands vectors in OPS. */
974 static void
975 free_ssa_operands (stmt_operands_p ops)
977 if (ops->def_ops)
978 free_defs (&(ops->def_ops));
979 if (ops->use_ops)
980 free_uses (&(ops->use_ops));
981 if (ops->vuse_ops)
982 free_vuses (&(ops->vuse_ops));
983 if (ops->v_may_def_ops)
984 free_v_may_defs (&(ops->v_may_def_ops));
985 if (ops->v_must_def_ops)
986 free_v_must_defs (&(ops->v_must_def_ops));
990 /* Get the operands of statement STMT. Note that repeated calls to
991 get_stmt_operands for the same statement will do nothing until the
992 statement is marked modified by a call to modify_stmt(). */
994 void
995 get_stmt_operands (tree stmt)
997 stmt_ann_t ann;
998 stmt_operands_t old_operands;
1000 /* The optimizers cannot handle statements that are nothing but a
1001 _DECL. This indicates a bug in the gimplifier. */
1002 gcc_assert (!SSA_VAR_P (stmt));
1004 ann = get_stmt_ann (stmt);
1006 /* If the statement has not been modified, the operands are still valid. */
1007 if (!ann->modified)
1008 return;
1010 timevar_push (TV_TREE_OPS);
1012 old_operands = ann->operands;
1013 memset (&(ann->operands), 0, sizeof (stmt_operands_t));
1015 build_ssa_operands (stmt, ann, &old_operands, &(ann->operands));
1016 free_ssa_operands (&old_operands);
1018 /* Clear the modified bit for STMT. Subsequent calls to
1019 get_stmt_operands for this statement will do nothing until the
1020 statement is marked modified by a call to modify_stmt(). */
1021 ann->modified = 0;
1023 timevar_pop (TV_TREE_OPS);
1027 /* Recursively scan the expression pointed by EXPR_P in statement referred to
1028 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
1029 operands found. */
1031 static void
1032 get_expr_operands (tree stmt, tree *expr_p, int flags)
1034 enum tree_code code;
1035 enum tree_code_class class;
1036 tree expr = *expr_p;
1037 stmt_ann_t s_ann = stmt_ann (stmt);
1039 if (expr == NULL)
1040 return;
1042 code = TREE_CODE (expr);
1043 class = TREE_CODE_CLASS (code);
1045 switch (code)
1047 case ADDR_EXPR:
1048 /* We could have the address of a component, array member,
1049 etc which has interesting variable references. */
1050 /* Taking the address of a variable does not represent a
1051 reference to it, but the fact that the stmt takes its address will be
1052 of interest to some passes (e.g. alias resolution). */
1053 add_stmt_operand (expr_p, s_ann, 0);
1055 /* If the address is invariant, there may be no interesting variable
1056 references inside. */
1057 if (is_gimple_min_invariant (expr))
1058 return;
1060 /* There should be no VUSEs created, since the referenced objects are
1061 not really accessed. The only operands that we should find here
1062 are ARRAY_REF indices which will always be real operands (GIMPLE
1063 does not allow non-registers as array indices). */
1064 flags |= opf_no_vops;
1066 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1067 return;
1069 case SSA_NAME:
1070 case VAR_DECL:
1071 case PARM_DECL:
1072 case RESULT_DECL:
1073 case CONST_DECL:
1075 subvar_t svars;
1077 /* Add the subvars for a variable if it has subvars, to DEFS or USES.
1078 Otherwise, add the variable itself.
1079 Whether it goes to USES or DEFS depends on the operand flags. */
1080 if (var_can_have_subvars (expr)
1081 && (svars = get_subvars_for_var (expr)))
1083 subvar_t sv;
1084 for (sv = svars; sv; sv = sv->next)
1085 add_stmt_operand (&sv->var, s_ann, flags);
1087 else
1089 add_stmt_operand (expr_p, s_ann, flags);
1091 return;
1093 case MISALIGNED_INDIRECT_REF:
1094 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1095 /* fall through */
1097 case ALIGN_INDIRECT_REF:
1098 case INDIRECT_REF:
1099 get_indirect_ref_operands (stmt, expr, flags);
1100 return;
1102 case ARRAY_REF:
1103 case ARRAY_RANGE_REF:
1104 /* Treat array references as references to the virtual variable
1105 representing the array. The virtual variable for an ARRAY_REF
1106 is the VAR_DECL for the array. */
1108 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1109 according to the value of IS_DEF. Recurse if the LHS of the
1110 ARRAY_REF node is not a regular variable. */
1111 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1112 add_stmt_operand (expr_p, s_ann, flags);
1113 else
1114 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1116 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1117 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1118 get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
1119 return;
1121 case COMPONENT_REF:
1122 case REALPART_EXPR:
1123 case IMAGPART_EXPR:
1125 tree ref;
1126 HOST_WIDE_INT offset, size;
1127 /* This component ref becomes an access to all of the subvariables
1128 it can touch, if we can determine that, but *NOT* the real one.
1129 If we can't determine which fields we could touch, the recursion
1130 will eventually get to a variable and add *all* of its subvars, or
1131 whatever is the minimum correct subset. */
1133 ref = okay_component_ref_for_subvars (expr, &offset, &size);
1134 if (ref)
1136 subvar_t svars = get_subvars_for_var (ref);
1137 subvar_t sv;
1138 for (sv = svars; sv; sv = sv->next)
1140 bool exact;
1141 if (overlap_subvar (offset, size, sv, &exact))
1143 if (exact)
1144 flags &= ~opf_kill_def;
1145 add_stmt_operand (&sv->var, s_ann, flags);
1149 else
1150 get_expr_operands (stmt, &TREE_OPERAND (expr, 0),
1151 flags & ~opf_kill_def);
1153 if (code == COMPONENT_REF)
1154 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1155 return;
1157 case WITH_SIZE_EXPR:
1158 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1159 and an rvalue reference to its second argument. */
1160 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1161 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1162 return;
1164 case CALL_EXPR:
1165 get_call_expr_operands (stmt, expr);
1166 return;
1168 case COND_EXPR:
1169 case VEC_COND_EXPR:
1170 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1171 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1172 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1173 return;
1175 case MODIFY_EXPR:
1177 int subflags;
1178 tree op;
1180 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1182 op = TREE_OPERAND (expr, 0);
1183 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1184 op = TREE_OPERAND (expr, 0);
1185 if (TREE_CODE (op) == ARRAY_REF
1186 || TREE_CODE (op) == ARRAY_RANGE_REF
1187 || TREE_CODE (op) == REALPART_EXPR
1188 || TREE_CODE (op) == IMAGPART_EXPR)
1189 subflags = opf_is_def;
1190 else
1191 subflags = opf_is_def | opf_kill_def;
1193 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
1194 return;
1197 case CONSTRUCTOR:
1199 /* General aggregate CONSTRUCTORs have been decomposed, but they
1200 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1202 tree t;
1203 for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t))
1204 get_expr_operands (stmt, &TREE_VALUE (t), opf_none);
1206 return;
1209 case TRUTH_NOT_EXPR:
1210 case BIT_FIELD_REF:
1211 case VIEW_CONVERT_EXPR:
1212 do_unary:
1213 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1214 return;
1216 case TRUTH_AND_EXPR:
1217 case TRUTH_OR_EXPR:
1218 case TRUTH_XOR_EXPR:
1219 case COMPOUND_EXPR:
1220 case OBJ_TYPE_REF:
1221 do_binary:
1223 tree op0 = TREE_OPERAND (expr, 0);
1224 tree op1 = TREE_OPERAND (expr, 1);
1226 /* If it would be profitable to swap the operands, then do so to
1227 canonicalize the statement, enabling better optimization.
1229 By placing canonicalization of such expressions here we
1230 transparently keep statements in canonical form, even
1231 when the statement is modified. */
1232 if (tree_swap_operands_p (op0, op1, false))
1234 /* For relationals we need to swap the operands
1235 and change the code. */
1236 if (code == LT_EXPR
1237 || code == GT_EXPR
1238 || code == LE_EXPR
1239 || code == GE_EXPR)
1241 TREE_SET_CODE (expr, swap_tree_comparison (code));
1242 TREE_OPERAND (expr, 0) = op1;
1243 TREE_OPERAND (expr, 1) = op0;
1246 /* For a commutative operator we can just swap the operands. */
1247 else if (commutative_tree_code (code))
1249 TREE_OPERAND (expr, 0) = op1;
1250 TREE_OPERAND (expr, 1) = op0;
1254 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1255 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1256 return;
1259 case REALIGN_LOAD_EXPR:
1261 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1262 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1263 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
1264 return;
1267 case BLOCK:
1268 case FUNCTION_DECL:
1269 case EXC_PTR_EXPR:
1270 case FILTER_EXPR:
1271 case LABEL_DECL:
1272 /* Expressions that make no memory references. */
1273 return;
1275 default:
1276 if (class == tcc_unary)
1277 goto do_unary;
1278 if (class == tcc_binary || class == tcc_comparison)
1279 goto do_binary;
1280 if (class == tcc_constant || class == tcc_type)
1281 return;
1284 /* If we get here, something has gone wrong. */
1285 #ifdef ENABLE_CHECKING
1286 fprintf (stderr, "unhandled expression in get_expr_operands():\n");
1287 debug_tree (expr);
1288 fputs ("\n", stderr);
1289 internal_error ("internal error");
1290 #endif
1291 gcc_unreachable ();
1295 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1297 static void
1298 get_asm_expr_operands (tree stmt)
1300 stmt_ann_t s_ann = stmt_ann (stmt);
1301 int noutputs = list_length (ASM_OUTPUTS (stmt));
1302 const char **oconstraints
1303 = (const char **) alloca ((noutputs) * sizeof (const char *));
1304 int i;
1305 tree link;
1306 const char *constraint;
1307 bool allows_mem, allows_reg, is_inout;
1309 for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
1311 oconstraints[i] = constraint
1312 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1313 parse_output_constraint (&constraint, i, 0, 0,
1314 &allows_mem, &allows_reg, &is_inout);
1316 /* This should have been split in gimplify_asm_expr. */
1317 gcc_assert (!allows_reg || !is_inout);
1319 /* Memory operands are addressable. Note that STMT needs the
1320 address of this operand. */
1321 if (!allows_reg && allows_mem)
1323 tree t = get_base_address (TREE_VALUE (link));
1324 if (t && DECL_P (t))
1325 note_addressable (t, s_ann);
1328 get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
1331 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1333 constraint
1334 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1335 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1336 oconstraints, &allows_mem, &allows_reg);
1338 /* Memory operands are addressable. Note that STMT needs the
1339 address of this operand. */
1340 if (!allows_reg && allows_mem)
1342 tree t = get_base_address (TREE_VALUE (link));
1343 if (t && DECL_P (t))
1344 note_addressable (t, s_ann);
1347 get_expr_operands (stmt, &TREE_VALUE (link), 0);
1351 /* Clobber memory for asm ("" : : : "memory"); */
1352 for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
1353 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
1355 unsigned i;
1356 bitmap_iterator bi;
1358 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1359 decided to group them). */
1360 if (global_var)
1361 add_stmt_operand (&global_var, s_ann, opf_is_def);
1362 else
1363 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1365 tree var = referenced_var (i);
1366 add_stmt_operand (&var, s_ann, opf_is_def);
1369 /* Now clobber all addressables. */
1370 EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
1372 tree var = referenced_var (i);
1373 add_stmt_operand (&var, s_ann, opf_is_def);
1376 break;
1380 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1381 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1383 static void
1384 get_indirect_ref_operands (tree stmt, tree expr, int flags)
1386 tree *pptr = &TREE_OPERAND (expr, 0);
1387 tree ptr = *pptr;
1388 stmt_ann_t s_ann = stmt_ann (stmt);
1390 /* Stores into INDIRECT_REF operands are never killing definitions. */
1391 flags &= ~opf_kill_def;
1393 if (SSA_VAR_P (ptr))
1395 struct ptr_info_def *pi = NULL;
1397 /* If PTR has flow-sensitive points-to information, use it. */
1398 if (TREE_CODE (ptr) == SSA_NAME
1399 && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
1400 && pi->name_mem_tag)
1402 /* PTR has its own memory tag. Use it. */
1403 add_stmt_operand (&pi->name_mem_tag, s_ann, flags);
1405 else
1407 /* If PTR is not an SSA_NAME or it doesn't have a name
1408 tag, use its type memory tag. */
1409 var_ann_t v_ann;
1411 /* If we are emitting debugging dumps, display a warning if
1412 PTR is an SSA_NAME with no flow-sensitive alias
1413 information. That means that we may need to compute
1414 aliasing again. */
1415 if (dump_file
1416 && TREE_CODE (ptr) == SSA_NAME
1417 && pi == NULL)
1419 fprintf (dump_file,
1420 "NOTE: no flow-sensitive alias info for ");
1421 print_generic_expr (dump_file, ptr, dump_flags);
1422 fprintf (dump_file, " in ");
1423 print_generic_stmt (dump_file, stmt, dump_flags);
1426 if (TREE_CODE (ptr) == SSA_NAME)
1427 ptr = SSA_NAME_VAR (ptr);
1428 v_ann = var_ann (ptr);
1429 if (v_ann->type_mem_tag)
1430 add_stmt_operand (&v_ann->type_mem_tag, s_ann, flags);
1434 /* If a constant is used as a pointer, we can't generate a real
1435 operand for it but we mark the statement volatile to prevent
1436 optimizations from messing things up. */
1437 else if (TREE_CODE (ptr) == INTEGER_CST)
1439 if (s_ann)
1440 s_ann->has_volatile_ops = true;
1441 return;
1444 /* Everything else *should* have been folded elsewhere, but users
1445 are smarter than we in finding ways to write invalid code. We
1446 cannot just abort here. If we were absolutely certain that we
1447 do handle all valid cases, then we could just do nothing here.
1448 That seems optimistic, so attempt to do something logical... */
1449 else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
1450 && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
1451 && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
1453 /* Make sure we know the object is addressable. */
1454 pptr = &TREE_OPERAND (ptr, 0);
1455 add_stmt_operand (pptr, s_ann, 0);
1457 /* Mark the object itself with a VUSE. */
1458 pptr = &TREE_OPERAND (*pptr, 0);
1459 get_expr_operands (stmt, pptr, flags);
1460 return;
1463 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1464 else
1465 gcc_unreachable ();
1467 /* Add a USE operand for the base pointer. */
1468 get_expr_operands (stmt, pptr, opf_none);
1471 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1473 static void
1474 get_call_expr_operands (tree stmt, tree expr)
1476 tree op;
1477 int call_flags = call_expr_flags (expr);
1479 /* If aliases have been computed already, add V_MAY_DEF or V_USE
1480 operands for all the symbols that have been found to be
1481 call-clobbered.
1483 Note that if aliases have not been computed, the global effects
1484 of calls will not be included in the SSA web. This is fine
1485 because no optimizer should run before aliases have been
1486 computed. By not bothering with virtual operands for CALL_EXPRs
1487 we avoid adding superfluous virtual operands, which can be a
1488 significant compile time sink (See PR 15855). */
1489 if (aliases_computed_p
1490 && !bitmap_empty_p (call_clobbered_vars)
1491 && !(call_flags & ECF_NOVOPS))
1493 /* A 'pure' or a 'const' functions never call clobber anything.
1494 A 'noreturn' function might, but since we don't return anyway
1495 there is no point in recording that. */
1496 if (TREE_SIDE_EFFECTS (expr)
1497 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1498 add_call_clobber_ops (stmt);
1499 else if (!(call_flags & ECF_CONST))
1500 add_call_read_ops (stmt);
1503 /* Find uses in the called function. */
1504 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1506 for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
1507 get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
1509 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1514 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1515 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1516 the statement's real operands, otherwise it is added to virtual
1517 operands. */
1519 static void
1520 add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
1522 bool is_real_op;
1523 tree var, sym;
1524 var_ann_t v_ann;
1526 var = *var_p;
1527 STRIP_NOPS (var);
1529 /* If the operand is an ADDR_EXPR, add its operand to the list of
1530 variables that have had their address taken in this statement. */
1531 if (TREE_CODE (var) == ADDR_EXPR)
1533 note_addressable (TREE_OPERAND (var, 0), s_ann);
1534 return;
1537 /* If the original variable is not a scalar, it will be added to the list
1538 of virtual operands. In that case, use its base symbol as the virtual
1539 variable representing it. */
1540 is_real_op = is_gimple_reg (var);
1541 if (!is_real_op && !DECL_P (var))
1542 var = get_virtual_var (var);
1544 /* If VAR is not a variable that we care to optimize, do nothing. */
1545 if (var == NULL_TREE || !SSA_VAR_P (var))
1546 return;
1548 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1549 v_ann = var_ann (sym);
1551 /* Mark statements with volatile operands. Optimizers should back
1552 off from statements having volatile operands. */
1553 if (TREE_THIS_VOLATILE (sym) && s_ann)
1554 s_ann->has_volatile_ops = true;
1556 if (is_real_op)
1558 /* The variable is a GIMPLE register. Add it to real operands. */
1559 if (flags & opf_is_def)
1560 append_def (var_p);
1561 else
1562 append_use (var_p);
1564 else
1566 varray_type aliases;
1568 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1569 virtual operands, unless the caller has specifically requested
1570 not to add virtual operands (used when adding operands inside an
1571 ADDR_EXPR expression). */
1572 if (flags & opf_no_vops)
1573 return;
1575 aliases = v_ann->may_aliases;
1577 if (aliases == NULL)
1579 /* The variable is not aliased or it is an alias tag. */
1580 if (flags & opf_is_def)
1582 if (flags & opf_kill_def)
1584 /* Only regular variables or struct fields may get a
1585 V_MUST_DEF operand. */
1586 gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG
1587 || v_ann->mem_tag_kind == STRUCT_FIELD);
1588 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1589 variable definitions. */
1590 append_v_must_def (var);
1592 else
1594 /* Add a V_MAY_DEF for call-clobbered variables and
1595 memory tags. */
1596 append_v_may_def (var);
1599 else
1601 append_vuse (var);
1602 if (s_ann && v_ann->is_alias_tag)
1603 s_ann->makes_aliased_loads = 1;
1606 else
1608 size_t i;
1610 /* The variable is aliased. Add its aliases to the virtual
1611 operands. */
1612 gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);
1614 if (flags & opf_is_def)
1616 /* If the variable is also an alias tag, add a virtual
1617 operand for it, otherwise we will miss representing
1618 references to the members of the variable's alias set.
1619 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1620 if (v_ann->is_alias_tag)
1621 append_v_may_def (var);
1623 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1624 append_v_may_def (VARRAY_TREE (aliases, i));
1626 if (s_ann)
1627 s_ann->makes_aliased_stores = 1;
1629 else
1631 /* Similarly, append a virtual uses for VAR itself, when
1632 it is an alias tag. */
1633 if (v_ann->is_alias_tag)
1634 append_vuse (var);
1636 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1637 append_vuse (VARRAY_TREE (aliases, i));
1639 if (s_ann)
1640 s_ann->makes_aliased_loads = 1;
1647 /* Record that VAR had its address taken in the statement with annotations
1648 S_ANN. */
1650 static void
1651 note_addressable (tree var, stmt_ann_t s_ann)
1653 tree ref;
1654 subvar_t svars;
1655 HOST_WIDE_INT offset;
1656 HOST_WIDE_INT size;
1658 if (!s_ann)
1659 return;
1661 /* If this is a COMPONENT_REF, and we know exactly what it touches, we only
1662 take the address of the subvariables it will touch.
1663 Otherwise, we take the address of all the subvariables, plus the real
1664 ones. */
1666 if (var && TREE_CODE (var) == COMPONENT_REF
1667 && (ref = okay_component_ref_for_subvars (var, &offset, &size)))
1669 subvar_t sv;
1670 svars = get_subvars_for_var (ref);
1672 if (s_ann->addresses_taken == NULL)
1673 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1675 for (sv = svars; sv; sv = sv->next)
1677 if (overlap_subvar (offset, size, sv, NULL))
1678 bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
1680 return;
1683 var = get_base_address (var);
1684 if (var && SSA_VAR_P (var))
1686 if (s_ann->addresses_taken == NULL)
1687 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1690 if (var_can_have_subvars (var)
1691 && (svars = get_subvars_for_var (var)))
1693 subvar_t sv;
1694 for (sv = svars; sv; sv = sv->next)
1695 bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
1697 else
1698 bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid);
1702 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1703 clobbered variables in the function. */
1705 static void
1706 add_call_clobber_ops (tree stmt)
1708 unsigned i;
1709 tree t;
1710 bitmap_iterator bi;
1711 stmt_ann_t s_ann = stmt_ann (stmt);
1712 struct stmt_ann_d empty_ann;
1714 /* Functions that are not const, pure or never return may clobber
1715 call-clobbered variables. */
1716 if (s_ann)
1717 s_ann->makes_clobbering_call = true;
1719 /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
1720 for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
1721 if (global_var)
1723 add_stmt_operand (&global_var, s_ann, opf_is_def);
1724 return;
1727 /* If cache is valid, copy the elements into the build vectors. */
1728 if (ssa_call_clobbered_cache_valid)
1730 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_vuses); i++)
1732 t = VARRAY_TREE (clobbered_vuses, i);
1733 gcc_assert (TREE_CODE (t) != SSA_NAME);
1734 var_ann (t)->in_vuse_list = 1;
1735 VARRAY_PUSH_TREE (build_vuses, t);
1737 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_v_may_defs); i++)
1739 t = VARRAY_TREE (clobbered_v_may_defs, i);
1740 gcc_assert (TREE_CODE (t) != SSA_NAME);
1741 var_ann (t)->in_v_may_def_list = 1;
1742 VARRAY_PUSH_TREE (build_v_may_defs, t);
1744 if (s_ann)
1746 s_ann->makes_aliased_loads = clobbered_aliased_loads;
1747 s_ann->makes_aliased_stores = clobbered_aliased_stores;
1749 return;
1752 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
1754 /* Add a V_MAY_DEF operand for every call clobbered variable. */
1755 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1757 tree var = referenced_var (i);
1758 if (TREE_READONLY (var)
1759 && (TREE_STATIC (var) || DECL_EXTERNAL (var)))
1760 add_stmt_operand (&var, &empty_ann, opf_none);
1761 else
1762 add_stmt_operand (&var, &empty_ann, opf_is_def);
1765 clobbered_aliased_loads = empty_ann.makes_aliased_loads;
1766 clobbered_aliased_stores = empty_ann.makes_aliased_stores;
1768 /* Set the flags for a stmt's annotation. */
1769 if (s_ann)
1771 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
1772 s_ann->makes_aliased_stores = empty_ann.makes_aliased_stores;
1775 /* Prepare empty cache vectors. */
1776 if (clobbered_v_may_defs)
1778 VARRAY_POP_ALL (clobbered_vuses);
1779 VARRAY_POP_ALL (clobbered_v_may_defs);
1781 else
1783 VARRAY_TREE_INIT (clobbered_v_may_defs, 10, "clobbered_v_may_defs");
1784 VARRAY_TREE_INIT (clobbered_vuses, 10, "clobbered_vuses");
1787 /* Now fill the clobbered cache with the values that have been found. */
1788 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
1789 VARRAY_PUSH_TREE (clobbered_vuses, VARRAY_TREE (build_vuses, i));
1790 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++)
1791 VARRAY_PUSH_TREE (clobbered_v_may_defs, VARRAY_TREE (build_v_may_defs, i));
1793 ssa_call_clobbered_cache_valid = true;
1797 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
1798 function. */
1800 static void
1801 add_call_read_ops (tree stmt)
1803 unsigned i;
1804 tree t;
1805 bitmap_iterator bi;
1806 stmt_ann_t s_ann = stmt_ann (stmt);
1807 struct stmt_ann_d empty_ann;
1809 /* if the function is not pure, it may reference memory. Add
1810 a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
1811 for the heuristic used to decide whether to create .GLOBAL_VAR. */
1812 if (global_var)
1814 add_stmt_operand (&global_var, s_ann, opf_none);
1815 return;
1818 /* If cache is valid, copy the elements into the build vector. */
1819 if (ssa_ro_call_cache_valid)
1821 for (i = 0; i < VARRAY_ACTIVE_SIZE (ro_call_vuses); i++)
1823 t = VARRAY_TREE (ro_call_vuses, i);
1824 gcc_assert (TREE_CODE (t) != SSA_NAME);
1825 var_ann (t)->in_vuse_list = 1;
1826 VARRAY_PUSH_TREE (build_vuses, t);
1828 if (s_ann)
1829 s_ann->makes_aliased_loads = ro_call_aliased_loads;
1830 return;
1833 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
1835 /* Add a VUSE for each call-clobbered variable. */
1836 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1838 tree var = referenced_var (i);
1839 add_stmt_operand (&var, &empty_ann, opf_none);
1842 ro_call_aliased_loads = empty_ann.makes_aliased_loads;
1843 if (s_ann)
1844 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
1846 /* Prepare empty cache vectors. */
1847 if (ro_call_vuses)
1848 VARRAY_POP_ALL (ro_call_vuses);
1849 else
1850 VARRAY_TREE_INIT (ro_call_vuses, 10, "ro_call_vuses");
1852 /* Now fill the clobbered cache with the values that have been found. */
1853 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
1854 VARRAY_PUSH_TREE (ro_call_vuses, VARRAY_TREE (build_vuses, i));
1856 ssa_ro_call_cache_valid = true;
1859 /* Copies virtual operands from SRC to DST. */
1861 void
1862 copy_virtual_operands (tree dst, tree src)
1864 unsigned i;
1865 vuse_optype vuses = STMT_VUSE_OPS (src);
1866 v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src);
1867 v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src);
1868 vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops;
1869 v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops;
1870 v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops;
1872 if (vuses)
1874 *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses));
1875 for (i = 0; i < NUM_VUSES (vuses); i++)
1876 SET_VUSE_OP (*vuses_new, i, VUSE_OP (vuses, i));
1879 if (v_may_defs)
1881 *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs));
1882 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
1884 SET_V_MAY_DEF_OP (*v_may_defs_new, i, V_MAY_DEF_OP (v_may_defs, i));
1885 SET_V_MAY_DEF_RESULT (*v_may_defs_new, i,
1886 V_MAY_DEF_RESULT (v_may_defs, i));
1890 if (v_must_defs)
1892 *v_must_defs_new = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs));
1893 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
1895 SET_V_MUST_DEF_RESULT (*v_must_defs_new, i, V_MUST_DEF_RESULT (v_must_defs, i));
1896 SET_V_MUST_DEF_KILL (*v_must_defs_new, i, V_MUST_DEF_KILL (v_must_defs, i));
1902 /* Specifically for use in DOM's expression analysis. Given a store, we
1903 create an artificial stmt which looks like a load from the store, this can
1904 be used to eliminate redundant loads. OLD_OPS are the operands from the
1905 store stmt, and NEW_STMT is the new load which represents a load of the
1906 values stored. */
1908 void
1909 create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt)
1911 stmt_ann_t ann;
1912 tree op;
1913 stmt_operands_t tmp;
1914 unsigned j;
1916 memset (&tmp, 0, sizeof (stmt_operands_t));
1917 ann = get_stmt_ann (new_stmt);
1919 /* Free operands just in case is was an existing stmt. */
1920 free_ssa_operands (&(ann->operands));
1922 build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands));
1923 free_vuses (&(ann->operands.vuse_ops));
1924 free_v_may_defs (&(ann->operands.v_may_def_ops));
1925 free_v_must_defs (&(ann->operands.v_must_def_ops));
1927 /* For each VDEF on the original statement, we want to create a
1928 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
1929 statement. */
1930 for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++)
1932 op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j);
1933 append_vuse (op);
1936 for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++)
1938 op = V_MUST_DEF_RESULT (old_ops->v_must_def_ops, j);
1939 append_vuse (op);
1942 /* Now set the vuses for this new stmt. */
1943 ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops));
1946 #include "gt-tree-ssa-operands.h"