Disable tests for strdup/strndup on __hpux__
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blob1d6e5e045c38d36313c726c76109e5f28fc68a72
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
53 #include "langhooks.h"
54 #include "tree-vector-builder.h"
55 #include "optabs-tree.h"
57 /*************************************************************************
58 Simple Loop Peeling Utilities
60 Utilities to support loop peeling for vectorization purposes.
61 *************************************************************************/
64 /* Renames the use *OP_P. */
66 static void
67 rename_use_op (use_operand_p op_p)
69 tree new_name;
71 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
72 return;
74 new_name = get_current_def (USE_FROM_PTR (op_p));
76 /* Something defined outside of the loop. */
77 if (!new_name)
78 return;
80 /* An ordinary ssa name defined in the loop. */
82 SET_USE (op_p, new_name);
86 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
87 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
88 true. */
90 static void
91 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
93 gimple *stmt;
94 use_operand_p use_p;
95 ssa_op_iter iter;
96 edge e;
97 edge_iterator ei;
98 class loop *loop = bb->loop_father;
99 class loop *outer_loop = NULL;
101 if (rename_from_outer_loop)
103 gcc_assert (loop);
104 outer_loop = loop_outer (loop);
107 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
108 gsi_next (&gsi))
110 stmt = gsi_stmt (gsi);
111 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
112 rename_use_op (use_p);
115 FOR_EACH_EDGE (e, ei, bb->preds)
117 if (!flow_bb_inside_loop_p (loop, e->src))
119 if (!rename_from_outer_loop)
120 continue;
121 if (e->src != outer_loop->header)
123 if (outer_loop->inner->next)
125 /* If outer_loop has 2 inner loops, allow there to
126 be an extra basic block which decides which of the
127 two loops to use using LOOP_VECTORIZED. */
128 if (!single_pred_p (e->src)
129 || single_pred (e->src) != outer_loop->header)
130 continue;
134 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
135 gsi_next (&gsi))
136 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
141 struct adjust_info
143 tree from, to;
144 basic_block bb;
147 /* A stack of values to be adjusted in debug stmts. We have to
148 process them LIFO, so that the closest substitution applies. If we
149 processed them FIFO, without the stack, we might substitute uses
150 with a PHI DEF that would soon become non-dominant, and when we got
151 to the suitable one, it wouldn't have anything to substitute any
152 more. */
153 static vec<adjust_info, va_heap> adjust_vec;
155 /* Adjust any debug stmts that referenced AI->from values to use the
156 loop-closed AI->to, if the references are dominated by AI->bb and
157 not by the definition of AI->from. */
159 static void
160 adjust_debug_stmts_now (adjust_info *ai)
162 basic_block bbphi = ai->bb;
163 tree orig_def = ai->from;
164 tree new_def = ai->to;
165 imm_use_iterator imm_iter;
166 gimple *stmt;
167 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
169 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
171 /* Adjust any debug stmts that held onto non-loop-closed
172 references. */
173 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
175 use_operand_p use_p;
176 basic_block bbuse;
178 if (!is_gimple_debug (stmt))
179 continue;
181 gcc_assert (gimple_debug_bind_p (stmt));
183 bbuse = gimple_bb (stmt);
185 if ((bbuse == bbphi
186 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
187 && !(bbuse == bbdef
188 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
190 if (new_def)
191 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
192 SET_USE (use_p, new_def);
193 else
195 gimple_debug_bind_reset_value (stmt);
196 update_stmt (stmt);
202 /* Adjust debug stmts as scheduled before. */
204 static void
205 adjust_vec_debug_stmts (void)
207 if (!MAY_HAVE_DEBUG_BIND_STMTS)
208 return;
210 gcc_assert (adjust_vec.exists ());
212 while (!adjust_vec.is_empty ())
214 adjust_debug_stmts_now (&adjust_vec.last ());
215 adjust_vec.pop ();
219 /* Adjust any debug stmts that referenced FROM values to use the
220 loop-closed TO, if the references are dominated by BB and not by
221 the definition of FROM. If adjust_vec is non-NULL, adjustments
222 will be postponed until adjust_vec_debug_stmts is called. */
224 static void
225 adjust_debug_stmts (tree from, tree to, basic_block bb)
227 adjust_info ai;
229 if (MAY_HAVE_DEBUG_BIND_STMTS
230 && TREE_CODE (from) == SSA_NAME
231 && ! SSA_NAME_IS_DEFAULT_DEF (from)
232 && ! virtual_operand_p (from))
234 ai.from = from;
235 ai.to = to;
236 ai.bb = bb;
238 if (adjust_vec.exists ())
239 adjust_vec.safe_push (ai);
240 else
241 adjust_debug_stmts_now (&ai);
245 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
246 to adjust any debug stmts that referenced the old phi arg,
247 presumably non-loop-closed references left over from other
248 transformations. */
250 static void
251 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
253 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
255 gcc_assert (TREE_CODE (orig_def) != SSA_NAME
256 || orig_def != new_def);
258 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
260 if (MAY_HAVE_DEBUG_BIND_STMTS)
261 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
262 gimple_bb (update_phi));
265 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
266 that the control should have during the first iteration and NEXT_CTRL is the
267 value that it should have on subsequent iterations. */
269 static void
270 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
271 tree next_ctrl)
273 gphi *phi = create_phi_node (ctrl, loop->header);
274 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
275 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
278 /* Add SEQ to the end of LOOP's preheader block. */
280 static void
281 add_preheader_seq (class loop *loop, gimple_seq seq)
283 if (seq)
285 edge pe = loop_preheader_edge (loop);
286 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
287 gcc_assert (!new_bb);
291 /* Add SEQ to the beginning of LOOP's header block. */
293 static void
294 add_header_seq (class loop *loop, gimple_seq seq)
296 if (seq)
298 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
299 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
303 /* Return true if the target can interleave elements of two vectors.
304 OFFSET is 0 if the first half of the vectors should be interleaved
305 or 1 if the second half should. When returning true, store the
306 associated permutation in INDICES. */
308 static bool
309 interleave_supported_p (vec_perm_indices *indices, tree vectype,
310 unsigned int offset)
312 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
313 poly_uint64 base = exact_div (nelts, 2) * offset;
314 vec_perm_builder sel (nelts, 2, 3);
315 for (unsigned int i = 0; i < 3; ++i)
317 sel.quick_push (base + i);
318 sel.quick_push (base + i + nelts);
320 indices->new_vector (sel, 2, nelts);
321 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
322 *indices);
325 /* Try to use permutes to define the masks in DEST_RGM using the masks
326 in SRC_RGM, given that the former has twice as many masks as the
327 latter. Return true on success, adding any new statements to SEQ. */
329 static bool
330 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
331 rgroup_controls *src_rgm)
333 tree src_masktype = src_rgm->type;
334 tree dest_masktype = dest_rgm->type;
335 machine_mode src_mode = TYPE_MODE (src_masktype);
336 insn_code icode1, icode2;
337 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
338 && (icode1 = optab_handler (vec_unpacku_hi_optab,
339 src_mode)) != CODE_FOR_nothing
340 && (icode2 = optab_handler (vec_unpacku_lo_optab,
341 src_mode)) != CODE_FOR_nothing)
343 /* Unpacking the source masks gives at least as many mask bits as
344 we need. We can then VIEW_CONVERT any excess bits away. */
345 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
346 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
347 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
348 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
350 tree src = src_rgm->controls[i / 2];
351 tree dest = dest_rgm->controls[i];
352 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
353 ? VEC_UNPACK_HI_EXPR
354 : VEC_UNPACK_LO_EXPR);
355 gassign *stmt;
356 if (dest_masktype == unpack_masktype)
357 stmt = gimple_build_assign (dest, code, src);
358 else
360 tree temp = make_ssa_name (unpack_masktype);
361 stmt = gimple_build_assign (temp, code, src);
362 gimple_seq_add_stmt (seq, stmt);
363 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
364 build1 (VIEW_CONVERT_EXPR,
365 dest_masktype, temp));
367 gimple_seq_add_stmt (seq, stmt);
369 return true;
371 vec_perm_indices indices[2];
372 if (dest_masktype == src_masktype
373 && interleave_supported_p (&indices[0], src_masktype, 0)
374 && interleave_supported_p (&indices[1], src_masktype, 1))
376 /* The destination requires twice as many mask bits as the source, so
377 we can use interleaving permutes to double up the number of bits. */
378 tree masks[2];
379 for (unsigned int i = 0; i < 2; ++i)
380 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
381 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
383 tree src = src_rgm->controls[i / 2];
384 tree dest = dest_rgm->controls[i];
385 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
386 src, src, masks[i & 1]);
387 gimple_seq_add_stmt (seq, stmt);
389 return true;
391 return false;
394 /* Populate DEST_RGM->controls, given that they should add up to STEP.
396 STEP = MIN_EXPR <ivtmp_34, VF>;
398 First length (MIN (X, VF/N)):
399 loop_len_15 = MIN_EXPR <STEP, VF/N>;
401 Second length:
402 tmp = STEP - loop_len_15;
403 loop_len_16 = MIN (tmp, VF/N);
405 Third length:
406 tmp2 = tmp - loop_len_16;
407 loop_len_17 = MIN (tmp2, VF/N);
409 Last length:
410 loop_len_18 = tmp2 - loop_len_17;
413 static void
414 vect_adjust_loop_lens_control (tree iv_type, gimple_seq *seq,
415 rgroup_controls *dest_rgm, tree step)
417 tree ctrl_type = dest_rgm->type;
418 poly_uint64 nitems_per_ctrl
419 = TYPE_VECTOR_SUBPARTS (ctrl_type) * dest_rgm->factor;
420 tree length_limit = build_int_cst (iv_type, nitems_per_ctrl);
422 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
424 tree ctrl = dest_rgm->controls[i];
425 if (i == 0)
427 /* First iteration: MIN (X, VF/N) capped to the range [0, VF/N]. */
428 gassign *assign
429 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
430 gimple_seq_add_stmt (seq, assign);
432 else if (i == dest_rgm->controls.length () - 1)
434 /* Last iteration: Remain capped to the range [0, VF/N]. */
435 gassign *assign = gimple_build_assign (ctrl, MINUS_EXPR, step,
436 dest_rgm->controls[i - 1]);
437 gimple_seq_add_stmt (seq, assign);
439 else
441 /* (MIN (remain, VF*I/N)) capped to the range [0, VF/N]. */
442 step = gimple_build (seq, MINUS_EXPR, iv_type, step,
443 dest_rgm->controls[i - 1]);
444 gassign *assign
445 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
446 gimple_seq_add_stmt (seq, assign);
451 /* Stores the standard position for induction variable increment in belonging to
452 LOOP_EXIT (just before the exit condition of the given exit to BSI.
453 INSERT_AFTER is set to true if the increment should be inserted after
454 *BSI. */
456 void
457 vect_iv_increment_position (edge loop_exit, gimple_stmt_iterator *bsi,
458 bool *insert_after)
460 basic_block bb = loop_exit->src;
461 *bsi = gsi_last_bb (bb);
462 *insert_after = false;
465 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
466 for all the rgroup controls in RGC and return a control that is nonzero
467 when the loop needs to iterate. Add any new preheader statements to
468 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
470 RGC belongs to loop LOOP. The loop originally iterated NITERS
471 times and has been vectorized according to LOOP_VINFO.
473 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
474 starts with NITERS_SKIP dummy iterations of the scalar loop before
475 the real work starts. The mask elements for these dummy iterations
476 must be 0, to ensure that the extra iterations do not have an effect.
478 It is known that:
480 NITERS * RGC->max_nscalars_per_iter * RGC->factor
482 does not overflow. However, MIGHT_WRAP_P says whether an induction
483 variable that starts at 0 and has step:
485 VF * RGC->max_nscalars_per_iter * RGC->factor
487 might overflow before hitting a value above:
489 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
491 This means that we cannot guarantee that such an induction variable
492 would ever hit a value that produces a set of all-false masks or zero
493 lengths for RGC.
495 Note: the cost of the code generated by this function is modeled
496 by vect_estimate_min_profitable_iters, so changes here may need
497 corresponding changes there. */
499 static tree
500 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
501 gimple_seq *preheader_seq,
502 gimple_seq *header_seq,
503 gimple_stmt_iterator loop_cond_gsi,
504 rgroup_controls *rgc, tree niters,
505 tree niters_skip, bool might_wrap_p,
506 tree *iv_step, tree *compare_step)
508 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
509 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
510 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
512 tree ctrl_type = rgc->type;
513 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
514 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
515 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
516 tree length_limit = NULL_TREE;
517 /* For length, we need length_limit to ensure length in range. */
518 if (!use_masks_p)
519 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
521 /* Calculate the maximum number of item values that the rgroup
522 handles in total, the number that it handles for each iteration
523 of the vector loop, and the number that it should skip during the
524 first iteration of the vector loop. */
525 tree nitems_total = niters;
526 tree nitems_step = build_int_cst (iv_type, vf);
527 tree nitems_skip = niters_skip;
528 if (nitems_per_iter != 1)
530 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
531 these multiplications don't overflow. */
532 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
533 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
534 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
535 nitems_total, compare_factor);
536 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
537 nitems_step, iv_factor);
538 if (nitems_skip)
539 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
540 nitems_skip, compare_factor);
543 /* Create an induction variable that counts the number of items
544 processed. */
545 tree index_before_incr, index_after_incr;
546 gimple_stmt_iterator incr_gsi;
547 bool insert_after;
548 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
549 vect_iv_increment_position (exit_e, &incr_gsi, &insert_after);
550 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo))
552 /* Create an IV that counts down from niters_total and whose step
553 is the (variable) amount processed in the current iteration:
555 _10 = (unsigned long) count_12(D);
557 # ivtmp_9 = PHI <ivtmp_35(6), _10(5)>
558 _36 = (MIN_EXPR | SELECT_VL) <ivtmp_9, POLY_INT_CST [4, 4]>;
560 vect__4.8_28 = .LEN_LOAD (_17, 32B, _36, 0);
562 ivtmp_35 = ivtmp_9 - POLY_INT_CST [4, 4];
564 if (ivtmp_9 > POLY_INT_CST [4, 4])
565 goto <bb 4>; [83.33%]
566 else
567 goto <bb 5>; [16.67%]
569 nitems_total = gimple_convert (preheader_seq, iv_type, nitems_total);
570 tree step = rgc->controls.length () == 1 ? rgc->controls[0]
571 : make_ssa_name (iv_type);
572 /* Create decrement IV. */
573 if (LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
575 create_iv (nitems_total, MINUS_EXPR, step, NULL_TREE, loop, &incr_gsi,
576 insert_after, &index_before_incr, &index_after_incr);
577 tree len = gimple_build (header_seq, IFN_SELECT_VL, iv_type,
578 index_before_incr, nitems_step);
579 gimple_seq_add_stmt (header_seq, gimple_build_assign (step, len));
581 else
583 create_iv (nitems_total, MINUS_EXPR, nitems_step, NULL_TREE, loop,
584 &incr_gsi, insert_after, &index_before_incr,
585 &index_after_incr);
586 gimple_seq_add_stmt (header_seq,
587 gimple_build_assign (step, MIN_EXPR,
588 index_before_incr,
589 nitems_step));
591 *iv_step = step;
592 *compare_step = nitems_step;
593 return LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo) ? index_after_incr
594 : index_before_incr;
597 /* Create increment IV. */
598 create_iv (build_int_cst (iv_type, 0), PLUS_EXPR, nitems_step, NULL_TREE,
599 loop, &incr_gsi, insert_after, &index_before_incr,
600 &index_after_incr);
602 tree zero_index = build_int_cst (compare_type, 0);
603 tree test_index, test_limit, first_limit;
604 gimple_stmt_iterator *test_gsi;
605 if (might_wrap_p)
607 /* In principle the loop should stop iterating once the incremented
608 IV reaches a value greater than or equal to:
610 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
612 However, there's no guarantee that this addition doesn't overflow
613 the comparison type, or that the IV hits a value above it before
614 wrapping around. We therefore adjust the limit down by one
615 IV step:
617 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
618 -[infinite-prec] NITEMS_STEP
620 and compare the IV against this limit _before_ incrementing it.
621 Since the comparison type is unsigned, we actually want the
622 subtraction to saturate at zero:
624 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
625 -[sat] NITEMS_STEP
627 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
629 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
631 where the rightmost subtraction can be done directly in
632 COMPARE_TYPE. */
633 test_index = index_before_incr;
634 tree adjust = gimple_convert (preheader_seq, compare_type,
635 nitems_step);
636 if (nitems_skip)
637 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
638 adjust, nitems_skip);
639 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
640 nitems_total, adjust);
641 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
642 test_limit, adjust);
643 test_gsi = &incr_gsi;
645 /* Get a safe limit for the first iteration. */
646 if (nitems_skip)
648 /* The first vector iteration can handle at most NITEMS_STEP
649 items. NITEMS_STEP <= CONST_LIMIT, and adding
650 NITEMS_SKIP to that cannot overflow. */
651 tree const_limit = build_int_cst (compare_type,
652 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
653 * nitems_per_iter);
654 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
655 nitems_total, const_limit);
656 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
657 first_limit, nitems_skip);
659 else
660 /* For the first iteration it doesn't matter whether the IV hits
661 a value above NITEMS_TOTAL. That only matters for the latch
662 condition. */
663 first_limit = nitems_total;
665 else
667 /* Test the incremented IV, which will always hit a value above
668 the bound before wrapping. */
669 test_index = index_after_incr;
670 test_limit = nitems_total;
671 if (nitems_skip)
672 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
673 test_limit, nitems_skip);
674 test_gsi = &loop_cond_gsi;
676 first_limit = test_limit;
679 /* Convert the IV value to the comparison type (either a no-op or
680 a demotion). */
681 gimple_seq test_seq = NULL;
682 test_index = gimple_convert (&test_seq, compare_type, test_index);
683 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
685 /* Provide a definition of each control in the group. */
686 tree next_ctrl = NULL_TREE;
687 tree ctrl;
688 unsigned int i;
689 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
691 /* Previous controls will cover BIAS items. This control covers the
692 next batch. */
693 poly_uint64 bias = nitems_per_ctrl * i;
694 tree bias_tree = build_int_cst (compare_type, bias);
696 /* See whether the first iteration of the vector loop is known
697 to have a full control. */
698 poly_uint64 const_limit;
699 bool first_iteration_full
700 = (poly_int_tree_p (first_limit, &const_limit)
701 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
703 /* Rather than have a new IV that starts at BIAS and goes up to
704 TEST_LIMIT, prefer to use the same 0-based IV for each control
705 and adjust the bound down by BIAS. */
706 tree this_test_limit = test_limit;
707 if (i != 0)
709 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
710 compare_type, this_test_limit,
711 bias_tree);
712 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
713 compare_type, this_test_limit,
714 bias_tree);
717 /* Create the initial control. First include all items that
718 are within the loop limit. */
719 tree init_ctrl = NULL_TREE;
720 if (!first_iteration_full)
722 tree start, end;
723 if (first_limit == test_limit)
725 /* Use a natural test between zero (the initial IV value)
726 and the loop limit. The "else" block would be valid too,
727 but this choice can avoid the need to load BIAS_TREE into
728 a register. */
729 start = zero_index;
730 end = this_test_limit;
732 else
734 /* FIRST_LIMIT is the maximum number of items handled by the
735 first iteration of the vector loop. Test the portion
736 associated with this control. */
737 start = bias_tree;
738 end = first_limit;
741 if (use_masks_p)
742 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
743 start, end, "max_mask");
744 else
746 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
747 gimple_seq seq = vect_gen_len (init_ctrl, start,
748 end, length_limit);
749 gimple_seq_add_seq (preheader_seq, seq);
753 /* Now AND out the bits that are within the number of skipped
754 items. */
755 poly_uint64 const_skip;
756 if (nitems_skip
757 && !(poly_int_tree_p (nitems_skip, &const_skip)
758 && known_le (const_skip, bias)))
760 gcc_assert (use_masks_p);
761 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
762 bias_tree, nitems_skip);
763 if (init_ctrl)
764 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
765 init_ctrl, unskipped_mask);
766 else
767 init_ctrl = unskipped_mask;
770 if (!init_ctrl)
772 /* First iteration is full. */
773 if (use_masks_p)
774 init_ctrl = build_minus_one_cst (ctrl_type);
775 else
776 init_ctrl = length_limit;
779 /* Get the control value for the next iteration of the loop. */
780 if (use_masks_p)
782 gimple_seq stmts = NULL;
783 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
784 this_test_limit, "next_mask");
785 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
787 else
789 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
790 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
791 length_limit);
792 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
795 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
798 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
799 if (partial_load_bias != 0)
801 tree adjusted_len = rgc->bias_adjusted_ctrl;
802 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
803 rgc->controls[0],
804 build_int_cst
805 (TREE_TYPE (rgc->controls[0]),
806 partial_load_bias));
807 gimple_seq_add_stmt (header_seq, minus);
810 return next_ctrl;
813 /* Set up the iteration condition and rgroup controls for LOOP, given
814 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
815 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
816 the number of iterations of the original scalar loop that should be
817 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
818 for vect_set_loop_condition.
820 Insert the branch-back condition before LOOP_COND_GSI and return the
821 final gcond. */
823 static gcond *
824 vect_set_loop_condition_partial_vectors (class loop *loop, edge exit_edge,
825 loop_vec_info loop_vinfo, tree niters,
826 tree final_iv, bool niters_maybe_zero,
827 gimple_stmt_iterator loop_cond_gsi)
829 gimple_seq preheader_seq = NULL;
830 gimple_seq header_seq = NULL;
832 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
833 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
834 unsigned int compare_precision = TYPE_PRECISION (compare_type);
835 tree orig_niters = niters;
837 /* Type of the initial value of NITERS. */
838 tree ni_actual_type = TREE_TYPE (niters);
839 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
840 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
841 if (niters_skip)
842 niters_skip = gimple_convert (&preheader_seq, compare_type, niters_skip);
844 /* Convert NITERS to the same size as the compare. */
845 if (compare_precision > ni_actual_precision
846 && niters_maybe_zero)
848 /* We know that there is always at least one iteration, so if the
849 count is zero then it must have wrapped. Cope with this by
850 subtracting 1 before the conversion and adding 1 to the result. */
851 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
852 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
853 niters, build_minus_one_cst (ni_actual_type));
854 niters = gimple_convert (&preheader_seq, compare_type, niters);
855 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
856 niters, build_one_cst (compare_type));
858 else
859 niters = gimple_convert (&preheader_seq, compare_type, niters);
861 /* Iterate over all the rgroups and fill in their controls. We could use
862 the first control from any rgroup for the loop condition; here we
863 arbitrarily pick the last. */
864 tree test_ctrl = NULL_TREE;
865 tree iv_step = NULL_TREE;
866 tree compare_step = NULL_TREE;
867 rgroup_controls *rgc;
868 rgroup_controls *iv_rgc = nullptr;
869 unsigned int i;
870 auto_vec<rgroup_controls> *controls = use_masks_p
871 ? &LOOP_VINFO_MASKS (loop_vinfo).rgc_vec
872 : &LOOP_VINFO_LENS (loop_vinfo);
873 FOR_EACH_VEC_ELT (*controls, i, rgc)
874 if (!rgc->controls.is_empty ())
876 /* First try using permutes. This adds a single vector
877 instruction to the loop for each mask, but needs no extra
878 loop invariants or IVs. */
879 unsigned int nmasks = i + 1;
880 if (use_masks_p && (nmasks & 1) == 0)
882 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
883 if (!half_rgc->controls.is_empty ()
884 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
885 continue;
888 if (!LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
889 || !iv_rgc
890 || (iv_rgc->max_nscalars_per_iter * iv_rgc->factor
891 != rgc->max_nscalars_per_iter * rgc->factor))
893 /* See whether zero-based IV would ever generate all-false masks
894 or zero length before wrapping around. */
895 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
897 /* Set up all controls for this group. */
898 test_ctrl
899 = vect_set_loop_controls_directly (loop, loop_vinfo,
900 &preheader_seq, &header_seq,
901 loop_cond_gsi, rgc, niters,
902 niters_skip, might_wrap_p,
903 &iv_step, &compare_step);
905 iv_rgc = rgc;
908 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
909 && rgc->controls.length () > 1)
911 /* vect_set_loop_controls_directly creates an IV whose step
912 is equal to the expected sum of RGC->controls. Use that
913 information to populate RGC->controls. */
914 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
915 gcc_assert (iv_step);
916 vect_adjust_loop_lens_control (iv_type, &header_seq, rgc, iv_step);
920 /* Emit all accumulated statements. */
921 add_preheader_seq (loop, preheader_seq);
922 add_header_seq (loop, header_seq);
924 /* Get a boolean result that tells us whether to iterate. */
925 gcond *cond_stmt;
926 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
927 && !LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
929 gcc_assert (compare_step);
930 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
931 cond_stmt = gimple_build_cond (code, test_ctrl, compare_step, NULL_TREE,
932 NULL_TREE);
934 else
936 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
937 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
938 cond_stmt
939 = gimple_build_cond (code, test_ctrl, zero_ctrl, NULL_TREE, NULL_TREE);
941 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
943 /* The loop iterates (NITERS - 1) / VF + 1 times.
944 Subtract one from this to get the latch count. */
945 tree step = build_int_cst (compare_type,
946 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
947 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
948 build_minus_one_cst (compare_type));
949 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
950 niters_minus_one, step);
952 if (final_iv)
954 gassign *assign;
955 /* If vectorizing an inverted early break loop we have to restart the
956 scalar loop at niters - vf. This matches what we do in
957 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
958 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
960 tree ftype = TREE_TYPE (orig_niters);
961 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
962 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
964 else
965 assign = gimple_build_assign (final_iv, orig_niters);
966 gsi_insert_on_edge_immediate (exit_edge, assign);
969 return cond_stmt;
972 /* Set up the iteration condition and rgroup controls for LOOP in AVX512
973 style, given that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the
974 vectorized loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
975 the number of iterations of the original scalar loop that should be
976 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
977 for vect_set_loop_condition.
979 Insert the branch-back condition before LOOP_COND_GSI and return the
980 final gcond. */
982 static gcond *
983 vect_set_loop_condition_partial_vectors_avx512 (class loop *loop,
984 edge exit_edge,
985 loop_vec_info loop_vinfo, tree niters,
986 tree final_iv,
987 bool niters_maybe_zero,
988 gimple_stmt_iterator loop_cond_gsi)
990 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
991 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
992 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
993 tree orig_niters = niters;
994 gimple_seq preheader_seq = NULL;
996 /* Create an IV that counts down from niters and whose step
997 is the number of iterations processed in the current iteration.
998 Produce the controls with compares like the following.
1000 # iv_2 = PHI <niters, iv_3>
1001 rem_4 = MIN <iv_2, VF>;
1002 remv_6 = { rem_4, rem_4, rem_4, ... }
1003 mask_5 = { 0, 0, 1, 1, 2, 2, ... } < remv6;
1004 iv_3 = iv_2 - VF;
1005 if (iv_2 > VF)
1006 continue;
1008 Where the constant is built with elements at most VF - 1 and
1009 repetitions according to max_nscalars_per_iter which is guarnateed
1010 to be the same within a group. */
1012 /* Convert NITERS to the determined IV type. */
1013 if (TYPE_PRECISION (iv_type) > TYPE_PRECISION (TREE_TYPE (niters))
1014 && niters_maybe_zero)
1016 /* We know that there is always at least one iteration, so if the
1017 count is zero then it must have wrapped. Cope with this by
1018 subtracting 1 before the conversion and adding 1 to the result. */
1019 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (niters)));
1020 niters = gimple_build (&preheader_seq, PLUS_EXPR, TREE_TYPE (niters),
1021 niters, build_minus_one_cst (TREE_TYPE (niters)));
1022 niters = gimple_convert (&preheader_seq, iv_type, niters);
1023 niters = gimple_build (&preheader_seq, PLUS_EXPR, iv_type,
1024 niters, build_one_cst (iv_type));
1026 else
1027 niters = gimple_convert (&preheader_seq, iv_type, niters);
1029 /* Bias the initial value of the IV in case we need to skip iterations
1030 at the beginning. */
1031 tree niters_adj = niters;
1032 if (niters_skip)
1034 tree skip = gimple_convert (&preheader_seq, iv_type, niters_skip);
1035 niters_adj = gimple_build (&preheader_seq, PLUS_EXPR,
1036 iv_type, niters, skip);
1039 /* The iteration step is the vectorization factor. */
1040 tree iv_step = build_int_cst (iv_type, vf);
1042 /* Create the decrement IV. */
1043 tree index_before_incr, index_after_incr;
1044 gimple_stmt_iterator incr_gsi;
1045 bool insert_after;
1046 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1047 create_iv (niters_adj, MINUS_EXPR, iv_step, NULL_TREE, loop,
1048 &incr_gsi, insert_after, &index_before_incr,
1049 &index_after_incr);
1051 /* Iterate over all the rgroups and fill in their controls. */
1052 for (auto &rgc : LOOP_VINFO_MASKS (loop_vinfo).rgc_vec)
1054 if (rgc.controls.is_empty ())
1055 continue;
1057 tree ctrl_type = rgc.type;
1058 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type);
1060 tree vectype = rgc.compare_type;
1062 /* index_after_incr is the IV specifying the remaining iterations in
1063 the next iteration. */
1064 tree rem = index_after_incr;
1065 /* When the data type for the compare to produce the mask is
1066 smaller than the IV type we need to saturate. Saturate to
1067 the smallest possible value (IV_TYPE) so we only have to
1068 saturate once (CSE will catch redundant ones we add). */
1069 if (TYPE_PRECISION (TREE_TYPE (vectype)) < TYPE_PRECISION (iv_type))
1070 rem = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1071 UNKNOWN_LOCATION,
1072 MIN_EXPR, TREE_TYPE (rem), rem, iv_step);
1073 rem = gimple_convert (&incr_gsi, false, GSI_CONTINUE_LINKING,
1074 UNKNOWN_LOCATION, TREE_TYPE (vectype), rem);
1076 /* Build a data vector composed of the remaining iterations. */
1077 rem = gimple_build_vector_from_val (&incr_gsi, false, GSI_CONTINUE_LINKING,
1078 UNKNOWN_LOCATION, vectype, rem);
1080 /* Provide a definition of each vector in the control group. */
1081 tree next_ctrl = NULL_TREE;
1082 tree first_rem = NULL_TREE;
1083 tree ctrl;
1084 unsigned int i;
1085 FOR_EACH_VEC_ELT_REVERSE (rgc.controls, i, ctrl)
1087 /* Previous controls will cover BIAS items. This control covers the
1088 next batch. */
1089 poly_uint64 bias = nitems_per_ctrl * i;
1091 /* Build the constant to compare the remaining iters against,
1092 this is sth like { 0, 0, 1, 1, 2, 2, 3, 3, ... } appropriately
1093 split into pieces. */
1094 unsigned n = TYPE_VECTOR_SUBPARTS (ctrl_type).to_constant ();
1095 tree_vector_builder builder (vectype, n, 1);
1096 for (unsigned i = 0; i < n; ++i)
1098 unsigned HOST_WIDE_INT val
1099 = (i + bias.to_constant ()) / rgc.max_nscalars_per_iter;
1100 gcc_assert (val < vf.to_constant ());
1101 builder.quick_push (build_int_cst (TREE_TYPE (vectype), val));
1103 tree cmp_series = builder.build ();
1105 /* Create the initial control. First include all items that
1106 are within the loop limit. */
1107 tree init_ctrl = NULL_TREE;
1108 poly_uint64 const_limit;
1109 /* See whether the first iteration of the vector loop is known
1110 to have a full control. */
1111 if (poly_int_tree_p (niters, &const_limit)
1112 && known_ge (const_limit, (i + 1) * nitems_per_ctrl))
1113 init_ctrl = build_minus_one_cst (ctrl_type);
1114 else
1116 /* The remaining work items initially are niters. Saturate,
1117 splat and compare. */
1118 if (!first_rem)
1120 first_rem = niters;
1121 if (TYPE_PRECISION (TREE_TYPE (vectype))
1122 < TYPE_PRECISION (iv_type))
1123 first_rem = gimple_build (&preheader_seq,
1124 MIN_EXPR, TREE_TYPE (first_rem),
1125 first_rem, iv_step);
1126 first_rem = gimple_convert (&preheader_seq, TREE_TYPE (vectype),
1127 first_rem);
1128 first_rem = gimple_build_vector_from_val (&preheader_seq,
1129 vectype, first_rem);
1131 init_ctrl = gimple_build (&preheader_seq, LT_EXPR, ctrl_type,
1132 cmp_series, first_rem);
1135 /* Now AND out the bits that are within the number of skipped
1136 items. */
1137 poly_uint64 const_skip;
1138 if (niters_skip
1139 && !(poly_int_tree_p (niters_skip, &const_skip)
1140 && known_le (const_skip, bias)))
1142 /* For integer mode masks it's cheaper to shift out the bits
1143 since that avoids loading a constant. */
1144 gcc_assert (GET_MODE_CLASS (TYPE_MODE (ctrl_type)) == MODE_INT);
1145 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1146 lang_hooks.types.type_for_mode
1147 (TYPE_MODE (ctrl_type), 1),
1148 init_ctrl);
1149 /* ??? But when the shift amount isn't constant this requires
1150 a round-trip to GRPs. We could apply the bias to either
1151 side of the compare instead. */
1152 tree shift = gimple_build (&preheader_seq, MULT_EXPR,
1153 TREE_TYPE (niters_skip), niters_skip,
1154 build_int_cst (TREE_TYPE (niters_skip),
1155 rgc.max_nscalars_per_iter));
1156 init_ctrl = gimple_build (&preheader_seq, LSHIFT_EXPR,
1157 TREE_TYPE (init_ctrl),
1158 init_ctrl, shift);
1159 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1160 ctrl_type, init_ctrl);
1163 /* Get the control value for the next iteration of the loop. */
1164 next_ctrl = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1165 UNKNOWN_LOCATION,
1166 LT_EXPR, ctrl_type, cmp_series, rem);
1168 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
1172 /* Emit all accumulated statements. */
1173 add_preheader_seq (loop, preheader_seq);
1175 /* Adjust the exit test using the decrementing IV. */
1176 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
1177 /* When we peel for alignment with niter_skip != 0 this can
1178 cause niter + niter_skip to wrap and since we are comparing the
1179 value before the decrement here we get a false early exit.
1180 We can't compare the value after decrement either because that
1181 decrement could wrap as well as we're not doing a saturating
1182 decrement. To avoid this situation we force a larger
1183 iv_type. */
1184 gcond *cond_stmt = gimple_build_cond (code, index_before_incr, iv_step,
1185 NULL_TREE, NULL_TREE);
1186 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1188 /* The loop iterates (NITERS - 1 + NITERS_SKIP) / VF + 1 times.
1189 Subtract one from this to get the latch count. */
1190 tree niters_minus_one
1191 = fold_build2 (PLUS_EXPR, TREE_TYPE (orig_niters), orig_niters,
1192 build_minus_one_cst (TREE_TYPE (orig_niters)));
1193 tree niters_adj2 = fold_convert (iv_type, niters_minus_one);
1194 if (niters_skip)
1195 niters_adj2 = fold_build2 (PLUS_EXPR, iv_type, niters_minus_one,
1196 fold_convert (iv_type, niters_skip));
1197 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, iv_type,
1198 niters_adj2, iv_step);
1200 if (final_iv)
1202 gassign *assign;
1203 /* If vectorizing an inverted early break loop we have to restart the
1204 scalar loop at niters - vf. This matches what we do in
1205 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
1206 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
1208 tree ftype = TREE_TYPE (orig_niters);
1209 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1210 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
1212 else
1213 assign = gimple_build_assign (final_iv, orig_niters);
1214 gsi_insert_on_edge_immediate (exit_edge, assign);
1217 return cond_stmt;
1221 /* Like vect_set_loop_condition, but handle the case in which the vector
1222 loop handles exactly VF scalars per iteration. */
1224 static gcond *
1225 vect_set_loop_condition_normal (loop_vec_info /* loop_vinfo */, edge exit_edge,
1226 class loop *loop, tree niters, tree step,
1227 tree final_iv, bool niters_maybe_zero,
1228 gimple_stmt_iterator loop_cond_gsi)
1230 tree indx_before_incr, indx_after_incr;
1231 gcond *cond_stmt;
1232 gcond *orig_cond;
1233 edge pe = loop_preheader_edge (loop);
1234 gimple_stmt_iterator incr_gsi;
1235 bool insert_after;
1236 enum tree_code code;
1237 tree niters_type = TREE_TYPE (niters);
1239 orig_cond = get_loop_exit_condition (exit_edge);
1240 gcc_assert (orig_cond);
1241 loop_cond_gsi = gsi_for_stmt (orig_cond);
1243 tree init, limit;
1244 if (!niters_maybe_zero && integer_onep (step))
1246 /* In this case we can use a simple 0-based IV:
1249 x = 0;
1253 x += 1;
1255 while (x < NITERS); */
1256 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1257 init = build_zero_cst (niters_type);
1258 limit = niters;
1260 else
1262 /* The following works for all values of NITERS except 0:
1265 x = 0;
1269 x += STEP;
1271 while (x <= NITERS - STEP);
1273 so that the loop continues to iterate if x + STEP - 1 < NITERS
1274 but stops if x + STEP - 1 >= NITERS.
1276 However, if NITERS is zero, x never hits a value above NITERS - STEP
1277 before wrapping around. There are two obvious ways of dealing with
1278 this:
1280 - start at STEP - 1 and compare x before incrementing it
1281 - start at -1 and compare x after incrementing it
1283 The latter is simpler and is what we use. The loop in this case
1284 looks like:
1287 x = -1;
1291 x += STEP;
1293 while (x < NITERS - STEP);
1295 In both cases the loop limit is NITERS - STEP. */
1296 gimple_seq seq = NULL;
1297 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
1298 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
1299 if (seq)
1301 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1302 gcc_assert (!new_bb);
1304 if (niters_maybe_zero)
1306 /* Case C. */
1307 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1308 init = build_all_ones_cst (niters_type);
1310 else
1312 /* Case B. */
1313 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
1314 init = build_zero_cst (niters_type);
1318 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1319 create_iv (init, PLUS_EXPR, step, NULL_TREE, loop,
1320 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
1321 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
1322 true, NULL_TREE, true,
1323 GSI_SAME_STMT);
1324 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
1325 true, GSI_SAME_STMT);
1327 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
1328 NULL_TREE);
1330 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1332 /* Record the number of latch iterations. */
1333 if (limit == niters)
1334 /* Case A: the loop iterates NITERS times. Subtract one to get the
1335 latch count. */
1336 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
1337 build_int_cst (niters_type, 1));
1338 else
1339 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
1340 Subtract one from this to get the latch count. */
1341 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
1342 limit, step);
1344 if (final_iv)
1346 gassign *assign;
1347 gcc_assert (single_pred_p (exit_edge->dest));
1348 tree phi_dest
1349 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
1350 /* Make sure to maintain LC SSA form here and elide the subtraction
1351 if the value is zero. */
1352 gphi *phi = create_phi_node (phi_dest, exit_edge->dest);
1353 add_phi_arg (phi, indx_after_incr, exit_edge, UNKNOWN_LOCATION);
1354 if (!integer_zerop (init))
1356 assign = gimple_build_assign (final_iv, MINUS_EXPR,
1357 phi_dest, init);
1358 gimple_stmt_iterator gsi = gsi_after_labels (exit_edge->dest);
1359 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
1363 return cond_stmt;
1366 /* If we're using fully-masked loops, make LOOP iterate:
1368 N == (NITERS - 1) / STEP + 1
1370 times. When NITERS is zero, this is equivalent to making the loop
1371 execute (1 << M) / STEP times, where M is the precision of NITERS.
1372 NITERS_MAYBE_ZERO is true if this last case might occur.
1374 If we're not using fully-masked loops, make LOOP iterate:
1376 N == (NITERS - STEP) / STEP + 1
1378 times, where NITERS is known to be outside the range [1, STEP - 1].
1379 This is equivalent to making the loop execute NITERS / STEP times
1380 when NITERS is nonzero and (1 << M) / STEP times otherwise.
1381 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
1383 If FINAL_IV is nonnull, it is an SSA name that should be set to
1384 N * STEP on exit from the loop.
1386 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
1388 void
1389 vect_set_loop_condition (class loop *loop, edge loop_e, loop_vec_info loop_vinfo,
1390 tree niters, tree step, tree final_iv,
1391 bool niters_maybe_zero)
1393 gcond *cond_stmt;
1394 gcond *orig_cond = get_loop_exit_condition (loop_e);
1395 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
1397 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
1399 if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) == vect_partial_vectors_avx512)
1400 cond_stmt = vect_set_loop_condition_partial_vectors_avx512 (loop, loop_e,
1401 loop_vinfo,
1402 niters, final_iv,
1403 niters_maybe_zero,
1404 loop_cond_gsi);
1405 else
1406 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_e,
1407 loop_vinfo,
1408 niters, final_iv,
1409 niters_maybe_zero,
1410 loop_cond_gsi);
1412 else
1413 cond_stmt = vect_set_loop_condition_normal (loop_vinfo, loop_e, loop,
1414 niters,
1415 step, final_iv,
1416 niters_maybe_zero,
1417 loop_cond_gsi);
1419 /* Remove old loop exit test. */
1420 stmt_vec_info orig_cond_info;
1421 if (loop_vinfo
1422 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
1423 loop_vinfo->remove_stmt (orig_cond_info);
1424 else
1425 gsi_remove (&loop_cond_gsi, true);
1427 if (dump_enabled_p ())
1428 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
1429 (gimple *) cond_stmt);
1432 /* Given LOOP this function generates a new copy of it and puts it
1433 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1434 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1435 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1436 entry or exit of LOOP. If FLOW_LOOPS then connect LOOP to SCALAR_LOOP as a
1437 continuation. This is correct for cases where one loop continues from the
1438 other like in the vectorizer, but not true for uses in e.g. loop distribution
1439 where the contents of the loop body are split but the iteration space of both
1440 copies remains the same.
1442 If UPDATED_DOMS is not NULL it is update with the list of basic blocks whoms
1443 dominators were updated during the peeling. When doing early break vectorization
1444 then LOOP_VINFO needs to be provided and is used to keep track of any newly created
1445 memory references that need to be updated should we decide to vectorize. */
1447 class loop *
1448 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop, edge loop_exit,
1449 class loop *scalar_loop,
1450 edge scalar_exit, edge e, edge *new_e,
1451 bool flow_loops,
1452 vec<basic_block> *updated_doms)
1454 class loop *new_loop;
1455 basic_block *new_bbs, *bbs, *pbbs;
1456 bool at_exit;
1457 bool was_imm_dom;
1458 basic_block exit_dest;
1459 edge exit, new_exit;
1460 bool duplicate_outer_loop = false;
1462 exit = loop_exit;
1463 at_exit = (e == exit);
1464 if (!at_exit && e != loop_preheader_edge (loop))
1465 return NULL;
1467 if (scalar_loop == NULL)
1469 scalar_loop = loop;
1470 scalar_exit = loop_exit;
1472 else if (scalar_loop == loop)
1473 scalar_exit = loop_exit;
1474 else
1476 /* Loop has been version, match exits up using the aux index. */
1477 for (edge exit : get_loop_exit_edges (scalar_loop))
1478 if (exit->aux == loop_exit->aux)
1480 scalar_exit = exit;
1481 break;
1484 gcc_assert (scalar_exit);
1487 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1488 pbbs = bbs + 1;
1489 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1490 /* Allow duplication of outer loops. */
1491 if (scalar_loop->inner)
1492 duplicate_outer_loop = true;
1494 /* Generate new loop structure. */
1495 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1496 duplicate_subloops (scalar_loop, new_loop);
1498 exit_dest = exit->dest;
1499 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1500 exit_dest) == loop->header ?
1501 true : false);
1503 /* Also copy the pre-header, this avoids jumping through hoops to
1504 duplicate the loop entry PHI arguments. Create an empty
1505 pre-header unconditionally for this. */
1506 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1507 edge entry_e = single_pred_edge (preheader);
1508 bbs[0] = preheader;
1509 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1511 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1512 &scalar_exit, 1, &new_exit, NULL,
1513 at_exit ? loop->latch : e->src, true);
1514 exit = loop_exit;
1515 basic_block new_preheader = new_bbs[0];
1517 gcc_assert (new_exit);
1519 /* Record the new loop exit information. new_loop doesn't have SCEV data and
1520 so we must initialize the exit information. */
1521 if (new_e)
1522 *new_e = new_exit;
1524 /* Before installing PHI arguments make sure that the edges
1525 into them match that of the scalar loop we analyzed. This
1526 makes sure the SLP tree matches up between the main vectorized
1527 loop and the epilogue vectorized copies. */
1528 if (single_succ_edge (preheader)->dest_idx
1529 != single_succ_edge (new_bbs[0])->dest_idx)
1531 basic_block swap_bb = new_bbs[1];
1532 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1533 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1534 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1535 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1537 if (duplicate_outer_loop)
1539 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1540 if (loop_preheader_edge (scalar_loop)->dest_idx
1541 != loop_preheader_edge (new_inner_loop)->dest_idx)
1543 basic_block swap_bb = new_inner_loop->header;
1544 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1545 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1546 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1547 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1551 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1553 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1554 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1555 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1557 /* Rename the exit uses. */
1558 for (edge exit : get_loop_exit_edges (new_loop))
1559 for (auto gsi = gsi_start_phis (exit->dest);
1560 !gsi_end_p (gsi); gsi_next (&gsi))
1562 tree orig_def = PHI_ARG_DEF_FROM_EDGE (gsi.phi (), exit);
1563 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), exit));
1564 if (MAY_HAVE_DEBUG_BIND_STMTS)
1565 adjust_debug_stmts (orig_def, PHI_RESULT (gsi.phi ()), exit->dest);
1568 auto loop_exits = get_loop_exit_edges (loop);
1569 bool multiple_exits_p = loop_exits.length () > 1;
1570 auto_vec<basic_block> doms;
1571 class loop *update_loop = NULL;
1573 if (at_exit) /* Add the loop copy at exit. */
1575 if (scalar_loop != loop && new_exit->dest != exit_dest)
1577 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1578 flush_pending_stmts (new_exit);
1581 bool multiple_exits_p = loop_exits.length () > 1;
1582 basic_block main_loop_exit_block = new_preheader;
1583 basic_block alt_loop_exit_block = NULL;
1584 /* Create intermediate edge for main exit. But only useful for early
1585 exits. */
1586 if (multiple_exits_p)
1588 edge loop_e = single_succ_edge (new_preheader);
1589 new_preheader = split_edge (loop_e);
1592 auto_vec <gimple *> new_phis;
1593 hash_map <tree, tree> new_phi_args;
1594 /* First create the empty phi nodes so that when we flush the
1595 statements they can be filled in. However because there is no order
1596 between the PHI nodes in the exits and the loop headers we need to
1597 order them base on the order of the two headers. First record the new
1598 phi nodes. Then redirect the edges and flush the changes. This writes
1599 out the new SSA names. */
1600 for (auto gsi_from = gsi_start_phis (loop_exit->dest);
1601 !gsi_end_p (gsi_from); gsi_next (&gsi_from))
1603 gimple *from_phi = gsi_stmt (gsi_from);
1604 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1605 gphi *res = create_phi_node (new_res, main_loop_exit_block);
1606 new_phis.safe_push (res);
1609 for (auto exit : loop_exits)
1611 basic_block dest = main_loop_exit_block;
1612 if (exit != loop_exit)
1614 if (!alt_loop_exit_block)
1616 alt_loop_exit_block = split_edge (exit);
1617 edge res = redirect_edge_and_branch (
1618 single_succ_edge (alt_loop_exit_block),
1619 new_preheader);
1620 flush_pending_stmts (res);
1621 continue;
1623 dest = alt_loop_exit_block;
1625 edge e = redirect_edge_and_branch (exit, dest);
1626 flush_pending_stmts (e);
1629 bool peeled_iters = single_pred (loop->latch) != loop_exit->src;
1630 /* Record the new SSA names in the cache so that we can skip materializing
1631 them again when we fill in the rest of the LCSSA variables. */
1632 for (auto phi : new_phis)
1634 tree new_arg = gimple_phi_arg_def (phi, loop_exit->dest_idx);
1636 if (!SSA_VAR_P (new_arg))
1637 continue;
1639 /* If the PHI MEM node dominates the loop then we shouldn't create
1640 a new LC-SSSA PHI for it in the intermediate block. */
1641 /* A MEM phi that consitutes a new DEF for the vUSE chain can either
1642 be a .VDEF or a PHI that operates on MEM. And said definition
1643 must not be inside the main loop. Or we must be a parameter.
1644 In the last two cases we may remove a non-MEM PHI node, but since
1645 they dominate both loops the removal is unlikely to cause trouble
1646 as the exits must already be using them. */
1647 if (virtual_operand_p (new_arg)
1648 && (SSA_NAME_IS_DEFAULT_DEF (new_arg)
1649 || !flow_bb_inside_loop_p (loop,
1650 gimple_bb (SSA_NAME_DEF_STMT (new_arg)))))
1652 auto gsi = gsi_for_stmt (phi);
1653 remove_phi_node (&gsi, true);
1654 continue;
1657 /* If we decided not to remove the PHI node we should also not
1658 rematerialize it later on. */
1659 new_phi_args.put (new_arg, gimple_phi_result (phi));
1661 if (TREE_CODE (new_arg) != SSA_NAME)
1662 continue;
1665 /* Copy the current loop LC PHI nodes between the original loop exit
1666 block and the new loop header. This allows us to later split the
1667 preheader block and still find the right LC nodes. */
1668 edge loop_entry = single_succ_edge (new_preheader);
1669 if (flow_loops)
1671 /* Link through the main exit first. */
1672 for (auto gsi_from = gsi_start_phis (loop->header),
1673 gsi_to = gsi_start_phis (new_loop->header);
1674 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1675 gsi_next (&gsi_from), gsi_next (&gsi_to))
1677 gimple *from_phi = gsi_stmt (gsi_from);
1678 gimple *to_phi = gsi_stmt (gsi_to);
1679 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1680 loop_latch_edge (loop));
1682 /* Check if we've already created a new phi node during edge
1683 redirection. If we have, only propagate the value
1684 downwards. */
1685 if (tree *res = new_phi_args.get (new_arg))
1687 if (multiple_exits_p)
1688 new_arg = *res;
1689 else
1691 adjust_phi_and_debug_stmts (to_phi, loop_entry, *res);
1692 continue;
1695 /* If we have multiple exits and the vector loop is peeled then we
1696 need to use the value at start of loop. If we're looking at
1697 virtual operands we have to keep the original link. Virtual
1698 operands don't all become the same because we'll corrupt the
1699 vUSE chains among others. */
1700 if (peeled_iters)
1702 tree tmp_arg = gimple_phi_result (from_phi);
1703 /* Similar to the single exit case, If we have an existing
1704 LCSSA variable thread through the original value otherwise
1705 skip it and directly use the final value. */
1706 if (tree *res = new_phi_args.get (tmp_arg))
1707 new_arg = *res;
1708 else if (!virtual_operand_p (new_arg))
1709 new_arg = tmp_arg;
1712 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1713 gphi *lcssa_phi = create_phi_node (new_res, new_preheader);
1715 /* Otherwise, main loop exit should use the final iter value. */
1716 SET_PHI_ARG_DEF (lcssa_phi, loop_exit->dest_idx, new_arg);
1718 adjust_phi_and_debug_stmts (to_phi, loop_entry, new_res);
1721 set_immediate_dominator (CDI_DOMINATORS, main_loop_exit_block,
1722 loop_exit->src);
1724 /* Now link the alternative exits. */
1725 if (multiple_exits_p)
1727 for (auto gsi_from = gsi_start_phis (loop->header),
1728 gsi_to = gsi_start_phis (new_preheader);
1729 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1730 gsi_next (&gsi_from), gsi_next (&gsi_to))
1732 gimple *from_phi = gsi_stmt (gsi_from);
1733 gimple *to_phi = gsi_stmt (gsi_to);
1735 tree alt_arg = gimple_phi_result (from_phi);
1736 edge main_e = single_succ_edge (alt_loop_exit_block);
1738 /* Now update the virtual PHI nodes with the right value. */
1739 if (peeled_iters
1740 && virtual_operand_p (alt_arg)
1741 && flow_bb_inside_loop_p (loop,
1742 gimple_bb (SSA_NAME_DEF_STMT (alt_arg))))
1744 /* Link the alternative exit one. */
1745 tree def
1746 = gimple_phi_arg_def (to_phi, loop_exit->dest_idx);
1747 gphi *def_phi = as_a <gphi *> (SSA_NAME_DEF_STMT (def));
1748 SET_PHI_ARG_DEF (def_phi, 0, alt_arg);
1750 /* And now the main merge block. */
1751 gphi *iter_phi
1752 = as_a <gphi *> (SSA_NAME_DEF_STMT (alt_arg));
1753 unsigned latch_idx
1754 = single_succ_edge (loop->latch)->dest_idx;
1755 tree exit_val
1756 = gimple_phi_arg_def (iter_phi, latch_idx);
1757 alt_arg = copy_ssa_name (def);
1758 gphi *l_phi = create_phi_node (alt_arg, main_e->src);
1759 SET_PHI_ARG_DEF (l_phi, 0, exit_val);
1761 SET_PHI_ARG_DEF (to_phi, main_e->dest_idx, alt_arg);
1764 set_immediate_dominator (CDI_DOMINATORS, new_preheader,
1765 loop->header);
1769 if (was_imm_dom || duplicate_outer_loop)
1770 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1772 /* And remove the non-necessary forwarder again. Keep the other
1773 one so we have a proper pre-header for the loop at the exit edge. */
1774 redirect_edge_pred (single_succ_edge (preheader),
1775 single_pred (preheader));
1776 delete_basic_block (preheader);
1777 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1778 loop_preheader_edge (scalar_loop)->src);
1780 /* Finally after wiring the new epilogue we need to update its main exit
1781 to the original function exit we recorded. Other exits are already
1782 correct. */
1783 if (multiple_exits_p)
1785 update_loop = new_loop;
1786 doms = get_all_dominated_blocks (CDI_DOMINATORS, loop->header);
1787 for (unsigned i = 0; i < doms.length (); ++i)
1788 if (flow_bb_inside_loop_p (loop, doms[i]))
1789 doms.unordered_remove (i);
1792 else /* Add the copy at entry. */
1794 /* Copy the current loop LC PHI nodes between the original loop exit
1795 block and the new loop header. This allows us to later split the
1796 preheader block and still find the right LC nodes. */
1797 if (flow_loops)
1798 for (auto gsi_from = gsi_start_phis (new_loop->header),
1799 gsi_to = gsi_start_phis (loop->header);
1800 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1801 gsi_next (&gsi_from), gsi_next (&gsi_to))
1803 gimple *from_phi = gsi_stmt (gsi_from);
1804 gimple *to_phi = gsi_stmt (gsi_to);
1805 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1806 loop_latch_edge (new_loop));
1807 adjust_phi_and_debug_stmts (to_phi, loop_preheader_edge (loop),
1808 new_arg);
1811 if (scalar_loop != loop)
1813 /* Remove the non-necessary forwarder of scalar_loop again. */
1814 redirect_edge_pred (single_succ_edge (preheader),
1815 single_pred (preheader));
1816 delete_basic_block (preheader);
1817 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1818 loop_preheader_edge (scalar_loop)->src);
1819 preheader = split_edge (loop_preheader_edge (loop));
1820 entry_e = single_pred_edge (preheader);
1823 redirect_edge_and_branch_force (entry_e, new_preheader);
1824 flush_pending_stmts (entry_e);
1825 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1827 redirect_edge_and_branch_force (new_exit, preheader);
1828 flush_pending_stmts (new_exit);
1829 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1831 /* And remove the non-necessary forwarder again. Keep the other
1832 one so we have a proper pre-header for the loop at the exit edge. */
1833 redirect_edge_pred (single_succ_edge (new_preheader),
1834 single_pred (new_preheader));
1835 delete_basic_block (new_preheader);
1836 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1837 loop_preheader_edge (new_loop)->src);
1839 if (multiple_exits_p)
1840 update_loop = loop;
1843 if (multiple_exits_p)
1845 for (edge e : get_loop_exit_edges (update_loop))
1847 edge ex;
1848 edge_iterator ei;
1849 FOR_EACH_EDGE (ex, ei, e->dest->succs)
1851 /* Find the first non-fallthrough block as fall-throughs can't
1852 dominate other blocks. */
1853 if (single_succ_p (ex->dest))
1855 doms.safe_push (ex->dest);
1856 ex = single_succ_edge (ex->dest);
1858 doms.safe_push (ex->dest);
1860 doms.safe_push (e->dest);
1863 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
1864 if (updated_doms)
1865 updated_doms->safe_splice (doms);
1868 free (new_bbs);
1869 free (bbs);
1871 checking_verify_dominators (CDI_DOMINATORS);
1873 return new_loop;
1877 /* Given the condition expression COND, put it as the last statement of
1878 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1879 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1880 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1881 new edge as irreducible if IRREDUCIBLE_P is true. */
1883 static edge
1884 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1885 basic_block guard_to, basic_block dom_bb,
1886 profile_probability probability, bool irreducible_p)
1888 gimple_stmt_iterator gsi;
1889 edge new_e, enter_e;
1890 gcond *cond_stmt;
1891 gimple_seq gimplify_stmt_list = NULL;
1893 enter_e = EDGE_SUCC (guard_bb, 0);
1894 enter_e->flags &= ~EDGE_FALLTHRU;
1895 enter_e->flags |= EDGE_FALSE_VALUE;
1896 gsi = gsi_last_bb (guard_bb);
1898 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1899 is_gimple_condexpr_for_cond, NULL_TREE);
1900 if (gimplify_stmt_list)
1901 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1903 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1904 gsi = gsi_last_bb (guard_bb);
1905 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1907 /* Add new edge to connect guard block to the merge/loop-exit block. */
1908 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1910 new_e->probability = probability;
1911 if (irreducible_p)
1912 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1914 enter_e->probability = probability.invert ();
1915 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1917 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1918 if (enter_e->dest->loop_father->header == enter_e->dest)
1919 split_edge (enter_e);
1921 return new_e;
1925 /* This function verifies that the following restrictions apply to LOOP:
1926 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1927 for innermost loop and 5 basic blocks for outer-loop.
1928 (2) it is single entry, single exit
1929 (3) its exit condition is the last stmt in the header
1930 (4) E is the entry/exit edge of LOOP.
1933 bool
1934 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge exit_e,
1935 const_edge e)
1937 edge entry_e = loop_preheader_edge (loop);
1938 gcond *orig_cond = get_loop_exit_condition (exit_e);
1939 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1941 /* All loops have an outer scope; the only case loop->outer is NULL is for
1942 the function itself. */
1943 if (!loop_outer (loop)
1944 || !empty_block_p (loop->latch)
1945 || !exit_e
1946 /* Verify that new loop exit condition can be trivially modified. */
1947 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1948 || (e != exit_e && e != entry_e))
1949 return false;
1951 basic_block *bbs = XNEWVEC (basic_block, loop->num_nodes);
1952 get_loop_body_with_size (loop, bbs, loop->num_nodes);
1953 bool ret = can_copy_bbs_p (bbs, loop->num_nodes);
1954 free (bbs);
1955 return ret;
1958 /* Function find_loop_location.
1960 Extract the location of the loop in the source code.
1961 If the loop is not well formed for vectorization, an estimated
1962 location is calculated.
1963 Return the loop location if succeed and NULL if not. */
1965 dump_user_location_t
1966 find_loop_location (class loop *loop)
1968 gimple *stmt = NULL;
1969 basic_block bb;
1970 gimple_stmt_iterator si;
1972 if (!loop)
1973 return dump_user_location_t ();
1975 /* For the root of the loop tree return the function location. */
1976 if (!loop_outer (loop))
1977 return dump_user_location_t::from_function_decl (cfun->decl);
1979 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1981 /* We only care about the loop location, so use any exit with location
1982 information. */
1983 for (edge e : get_loop_exit_edges (loop))
1985 stmt = get_loop_exit_condition (e);
1987 if (stmt
1988 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1989 return stmt;
1993 /* If we got here the loop is probably not "well formed",
1994 try to estimate the loop location */
1996 if (!loop->header)
1997 return dump_user_location_t ();
1999 bb = loop->header;
2001 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2003 stmt = gsi_stmt (si);
2004 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
2005 return stmt;
2008 return dump_user_location_t ();
2011 /* Return true if the phi described by STMT_INFO defines an IV of the
2012 loop to be vectorized. */
2014 static bool
2015 iv_phi_p (stmt_vec_info stmt_info)
2017 gphi *phi = as_a <gphi *> (stmt_info->stmt);
2018 if (virtual_operand_p (PHI_RESULT (phi)))
2019 return false;
2021 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
2022 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
2023 return false;
2025 return true;
2028 /* Return true if vectorizer can peel for nonlinear iv. */
2029 static bool
2030 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo,
2031 stmt_vec_info stmt_info)
2033 enum vect_induction_op_type induction_type
2034 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info);
2035 tree niters_skip;
2036 /* Init_expr will be update by vect_update_ivs_after_vectorizer,
2037 if niters or vf is unkown:
2038 For shift, when shift mount >= precision, there would be UD.
2039 For mult, don't known how to generate
2040 init_expr * pow (step, niters) for variable niters.
2041 For neg, it should be ok, since niters of vectorized main loop
2042 will always be multiple of 2. */
2043 if ((!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2044 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ())
2045 && induction_type != vect_step_op_neg)
2047 if (dump_enabled_p ())
2048 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2049 "Peeling for epilogue is not supported"
2050 " for nonlinear induction except neg"
2051 " when iteration count is unknown.\n");
2052 return false;
2055 /* Avoid compile time hog on vect_peel_nonlinear_iv_init. */
2056 if (induction_type == vect_step_op_mul)
2058 tree step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
2059 tree type = TREE_TYPE (step_expr);
2061 if (wi::exact_log2 (wi::to_wide (step_expr)) == -1
2062 && LOOP_VINFO_INT_NITERS(loop_vinfo) >= TYPE_PRECISION (type))
2064 if (dump_enabled_p ())
2065 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2066 "Avoid compile time hog on"
2067 " vect_peel_nonlinear_iv_init"
2068 " for nonlinear induction vec_step_op_mul"
2069 " when iteration count is too big.\n");
2070 return false;
2074 /* Also doens't support peel for neg when niter is variable.
2075 ??? generate something like niter_expr & 1 ? init_expr : -init_expr? */
2076 niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
2077 if ((niters_skip != NULL_TREE
2078 && (TREE_CODE (niters_skip) != INTEGER_CST
2079 || (HOST_WIDE_INT) TREE_INT_CST_LOW (niters_skip) < 0))
2080 || (!vect_use_loop_mask_for_alignment_p (loop_vinfo)
2081 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0))
2083 if (dump_enabled_p ())
2084 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2085 "Peeling for alignement is not supported"
2086 " for nonlinear induction when niters_skip"
2087 " is not constant.\n");
2088 return false;
2091 /* We can't support partial vectors and early breaks with an induction
2092 type other than add or neg since we require the epilog and can't
2093 perform the peeling. The below condition mirrors that of
2094 vect_gen_vector_loop_niters where niters_vector_mult_vf_var then sets
2095 step_vector to VF rather than 1. This is what creates the nonlinear
2096 IV. PR113163. */
2097 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo)
2098 && LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ()
2099 && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2100 && induction_type != vect_step_op_neg)
2102 if (dump_enabled_p ())
2103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2104 "Peeling for epilogue is not supported"
2105 " for nonlinear induction except neg"
2106 " when VF is known and early breaks.\n");
2107 return false;
2110 return true;
2113 /* Function vect_can_advance_ivs_p
2115 In case the number of iterations that LOOP iterates is unknown at compile
2116 time, an epilog loop will be generated, and the loop induction variables
2117 (IVs) will be "advanced" to the value they are supposed to take just before
2118 the epilog loop. Here we check that the access function of the loop IVs
2119 and the expression that represents the loop bound are simple enough.
2120 These restrictions will be relaxed in the future. */
2122 bool
2123 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
2125 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2126 basic_block bb = loop->header;
2127 gphi_iterator gsi;
2129 /* Analyze phi functions of the loop header. */
2131 if (dump_enabled_p ())
2132 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
2133 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2135 tree evolution_part;
2136 enum vect_induction_op_type induction_type;
2138 gphi *phi = gsi.phi ();
2139 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2140 if (dump_enabled_p ())
2141 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
2142 phi_info->stmt);
2144 /* Skip virtual phi's. The data dependences that are associated with
2145 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
2147 Skip reduction phis. */
2148 if (!iv_phi_p (phi_info))
2150 if (dump_enabled_p ())
2151 dump_printf_loc (MSG_NOTE, vect_location,
2152 "reduc or virtual phi. skip.\n");
2153 continue;
2156 induction_type = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2157 if (induction_type != vect_step_op_add)
2159 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo, phi_info))
2160 return false;
2162 continue;
2165 /* Analyze the evolution function. */
2167 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2168 if (evolution_part == NULL_TREE)
2170 if (dump_enabled_p ())
2171 dump_printf (MSG_MISSED_OPTIMIZATION,
2172 "No access function or evolution.\n");
2173 return false;
2176 /* FORNOW: We do not transform initial conditions of IVs
2177 which evolution functions are not invariants in the loop. */
2179 if (!expr_invariant_in_loop_p (loop, evolution_part))
2181 if (dump_enabled_p ())
2182 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2183 "evolution not invariant in loop.\n");
2184 return false;
2187 /* FORNOW: We do not transform initial conditions of IVs
2188 which evolution functions are a polynomial of degree >= 2. */
2190 if (tree_is_chrec (evolution_part))
2192 if (dump_enabled_p ())
2193 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2194 "evolution is chrec.\n");
2195 return false;
2199 return true;
2203 /* Function vect_update_ivs_after_vectorizer.
2205 "Advance" the induction variables of LOOP to the value they should take
2206 after the execution of LOOP. This is currently necessary because the
2207 vectorizer does not handle induction variables that are used after the
2208 loop. Such a situation occurs when the last iterations of LOOP are
2209 peeled, because:
2210 1. We introduced new uses after LOOP for IVs that were not originally used
2211 after LOOP: the IVs of LOOP are now used by an epilog loop.
2212 2. LOOP is going to be vectorized; this means that it will iterate N/VF
2213 times, whereas the loop IVs should be bumped N times.
2215 Input:
2216 - LOOP - a loop that is going to be vectorized. The last few iterations
2217 of LOOP were peeled.
2218 - NITERS - the number of iterations that LOOP executes (before it is
2219 vectorized). i.e, the number of times the ivs should be bumped.
2220 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
2221 coming out from LOOP on which there are uses of the LOOP ivs
2222 (this is the path from LOOP->exit to epilog_loop->preheader).
2224 The new definitions of the ivs are placed in LOOP->exit.
2225 The phi args associated with the edge UPDATE_E in the bb
2226 UPDATE_E->dest are updated accordingly.
2228 Assumption 1: Like the rest of the vectorizer, this function assumes
2229 a single loop exit that has a single predecessor.
2231 Assumption 2: The phi nodes in the LOOP header and in update_bb are
2232 organized in the same order.
2234 Assumption 3: The access function of the ivs is simple enough (see
2235 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
2237 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
2238 coming out of LOOP on which the ivs of LOOP are used (this is the path
2239 that leads to the epilog loop; other paths skip the epilog loop). This
2240 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
2241 needs to have its phis updated.
2244 static void
2245 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
2246 tree niters, edge update_e)
2248 gphi_iterator gsi, gsi1;
2249 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2250 basic_block update_bb = update_e->dest;
2251 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2252 gimple_stmt_iterator last_gsi = gsi_last_bb (exit_bb);
2254 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
2255 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
2256 gsi_next (&gsi), gsi_next (&gsi1))
2258 tree init_expr;
2259 tree step_expr, off;
2260 tree type;
2261 tree var, ni, ni_name;
2263 gphi *phi = gsi.phi ();
2264 gphi *phi1 = gsi1.phi ();
2265 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2266 if (dump_enabled_p ())
2267 dump_printf_loc (MSG_NOTE, vect_location,
2268 "vect_update_ivs_after_vectorizer: phi: %G",
2269 (gimple *) phi);
2271 /* Skip reduction and virtual phis. */
2272 if (!iv_phi_p (phi_info))
2274 if (dump_enabled_p ())
2275 dump_printf_loc (MSG_NOTE, vect_location,
2276 "reduc or virtual phi. skip.\n");
2277 continue;
2280 type = TREE_TYPE (gimple_phi_result (phi));
2281 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2282 step_expr = unshare_expr (step_expr);
2284 /* FORNOW: We do not support IVs whose evolution function is a polynomial
2285 of degree >= 2 or exponential. */
2286 gcc_assert (!tree_is_chrec (step_expr));
2288 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2289 gimple_seq stmts = NULL;
2290 enum vect_induction_op_type induction_type
2291 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2293 if (induction_type == vect_step_op_add)
2295 tree stype = TREE_TYPE (step_expr);
2296 off = fold_build2 (MULT_EXPR, stype,
2297 fold_convert (stype, niters), step_expr);
2299 if (POINTER_TYPE_P (type))
2300 ni = fold_build_pointer_plus (init_expr, off);
2301 else
2302 ni = fold_convert (type,
2303 fold_build2 (PLUS_EXPR, stype,
2304 fold_convert (stype, init_expr),
2305 off));
2307 /* Don't bother call vect_peel_nonlinear_iv_init. */
2308 else if (induction_type == vect_step_op_neg)
2309 ni = init_expr;
2310 else
2311 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
2312 niters, step_expr,
2313 induction_type);
2315 var = create_tmp_var (type, "tmp");
2317 gimple_seq new_stmts = NULL;
2318 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
2320 /* Exit_bb shouldn't be empty. */
2321 if (!gsi_end_p (last_gsi))
2323 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
2324 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
2326 else
2328 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
2329 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
2332 /* Fix phi expressions in the successor bb. */
2333 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
2337 /* Return a gimple value containing the misalignment (measured in vector
2338 elements) for the loop described by LOOP_VINFO, i.e. how many elements
2339 it is away from a perfectly aligned address. Add any new statements
2340 to SEQ. */
2342 static tree
2343 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
2345 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2346 stmt_vec_info stmt_info = dr_info->stmt;
2347 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2349 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2350 unsigned HOST_WIDE_INT target_align_c;
2351 tree target_align_minus_1;
2353 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2354 size_zero_node) < 0;
2355 tree offset = (negative
2356 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
2357 * TREE_INT_CST_LOW
2358 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
2359 : size_zero_node);
2360 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
2361 stmt_info, seq,
2362 offset);
2363 tree type = unsigned_type_for (TREE_TYPE (start_addr));
2364 if (target_align.is_constant (&target_align_c))
2365 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
2366 else
2368 tree vla = build_int_cst (type, target_align);
2369 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
2370 fold_build2 (MINUS_EXPR, type,
2371 build_int_cst (type, 0), vla));
2372 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
2373 build_int_cst (type, 1));
2376 HOST_WIDE_INT elem_size
2377 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2378 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
2380 /* Create: misalign_in_bytes = addr & (target_align - 1). */
2381 tree int_start_addr = fold_convert (type, start_addr);
2382 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
2383 target_align_minus_1);
2385 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
2386 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
2387 elem_size_log);
2389 return misalign_in_elems;
2392 /* Function vect_gen_prolog_loop_niters
2394 Generate the number of iterations which should be peeled as prolog for the
2395 loop represented by LOOP_VINFO. It is calculated as the misalignment of
2396 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
2397 As a result, after the execution of this loop, the data reference DR will
2398 refer to an aligned location. The following computation is generated:
2400 If the misalignment of DR is known at compile time:
2401 addr_mis = int mis = DR_MISALIGNMENT (dr);
2402 Else, compute address misalignment in bytes:
2403 addr_mis = addr & (target_align - 1)
2405 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
2407 (elem_size = element type size; an element is the scalar element whose type
2408 is the inner type of the vectype)
2410 The computations will be emitted at the end of BB. We also compute and
2411 store upper bound (included) of the result in BOUND.
2413 When the step of the data-ref in the loop is not 1 (as in interleaved data
2414 and SLP), the number of iterations of the prolog must be divided by the step
2415 (which is equal to the size of interleaved group).
2417 The above formulas assume that VF == number of elements in the vector. This
2418 may not hold when there are multiple-types in the loop.
2419 In this case, for some data-references in the loop the VF does not represent
2420 the number of elements that fit in the vector. Therefore, instead of VF we
2421 use TYPE_VECTOR_SUBPARTS. */
2423 static tree
2424 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
2425 basic_block bb, int *bound)
2427 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2428 tree var;
2429 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2430 gimple_seq stmts = NULL, new_stmts = NULL;
2431 tree iters, iters_name;
2432 stmt_vec_info stmt_info = dr_info->stmt;
2433 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2434 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2436 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2438 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2440 if (dump_enabled_p ())
2441 dump_printf_loc (MSG_NOTE, vect_location,
2442 "known peeling = %d.\n", npeel);
2444 iters = build_int_cst (niters_type, npeel);
2445 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2447 else
2449 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
2450 tree type = TREE_TYPE (misalign_in_elems);
2451 HOST_WIDE_INT elem_size
2452 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2453 /* We only do prolog peeling if the target alignment is known at compile
2454 time. */
2455 poly_uint64 align_in_elems =
2456 exact_div (target_align, elem_size);
2457 tree align_in_elems_minus_1 =
2458 build_int_cst (type, align_in_elems - 1);
2459 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
2461 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
2462 & (align_in_elems - 1)). */
2463 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2464 size_zero_node) < 0;
2465 if (negative)
2466 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
2467 align_in_elems_tree);
2468 else
2469 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
2470 misalign_in_elems);
2471 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
2472 iters = fold_convert (niters_type, iters);
2473 unsigned HOST_WIDE_INT align_in_elems_c;
2474 if (align_in_elems.is_constant (&align_in_elems_c))
2475 *bound = align_in_elems_c - 1;
2476 else
2477 *bound = -1;
2480 if (dump_enabled_p ())
2481 dump_printf_loc (MSG_NOTE, vect_location,
2482 "niters for prolog loop: %T\n", iters);
2484 var = create_tmp_var (niters_type, "prolog_loop_niters");
2485 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
2487 if (new_stmts)
2488 gimple_seq_add_seq (&stmts, new_stmts);
2489 if (stmts)
2491 gcc_assert (single_succ_p (bb));
2492 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2493 if (gsi_end_p (gsi))
2494 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2495 else
2496 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
2498 return iters_name;
2502 /* Function vect_update_init_of_dr
2504 If CODE is PLUS, the vector loop starts NITERS iterations after the
2505 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
2506 iterations before the scalar one (using masking to skip inactive
2507 elements). This function updates the information recorded in DR to
2508 account for the difference. Specifically, it updates the OFFSET
2509 field of DR_INFO. */
2511 static void
2512 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
2514 struct data_reference *dr = dr_info->dr;
2515 tree offset = dr_info->offset;
2516 if (!offset)
2517 offset = build_zero_cst (sizetype);
2519 niters = fold_build2 (MULT_EXPR, sizetype,
2520 fold_convert (sizetype, niters),
2521 fold_convert (sizetype, DR_STEP (dr)));
2522 offset = fold_build2 (code, sizetype,
2523 fold_convert (sizetype, offset), niters);
2524 dr_info->offset = offset;
2528 /* Function vect_update_inits_of_drs
2530 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
2531 CODE and NITERS are as for vect_update_inits_of_dr. */
2533 void
2534 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
2535 tree_code code)
2537 unsigned int i;
2538 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2539 struct data_reference *dr;
2541 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
2543 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
2544 here, but since we might use these niters to update the epilogues niters
2545 and data references we can't insert them here as this definition might not
2546 always dominate its uses. */
2547 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
2548 niters = fold_convert (sizetype, niters);
2550 FOR_EACH_VEC_ELT (datarefs, i, dr)
2552 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2553 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
2554 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
2555 vect_update_init_of_dr (dr_info, niters, code);
2559 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
2560 by masking. This involves calculating the number of iterations to
2561 be peeled and then aligning all memory references appropriately. */
2563 void
2564 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
2566 tree misalign_in_elems;
2567 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2569 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
2571 /* From the information recorded in LOOP_VINFO get the number of iterations
2572 that need to be skipped via masking. */
2573 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2575 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2576 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2577 misalign_in_elems = build_int_cst (type, misalign);
2579 else
2581 gimple_seq seq1 = NULL, seq2 = NULL;
2582 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
2583 misalign_in_elems = fold_convert (type, misalign_in_elems);
2584 misalign_in_elems = force_gimple_operand (misalign_in_elems,
2585 &seq2, true, NULL_TREE);
2586 gimple_seq_add_seq (&seq1, seq2);
2587 if (seq1)
2589 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2590 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
2591 gcc_assert (!new_bb);
2595 if (dump_enabled_p ())
2596 dump_printf_loc (MSG_NOTE, vect_location,
2597 "misalignment for fully-masked loop: %T\n",
2598 misalign_in_elems);
2600 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
2602 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
2605 /* This function builds ni_name = number of iterations. Statements
2606 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
2607 it to TRUE if new ssa_var is generated. */
2609 tree
2610 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
2612 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
2613 if (TREE_CODE (ni) == INTEGER_CST)
2614 return ni;
2615 else
2617 tree ni_name, var;
2618 gimple_seq stmts = NULL;
2619 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2621 var = create_tmp_var (TREE_TYPE (ni), "niters");
2622 ni_name = force_gimple_operand (ni, &stmts, false, var);
2623 if (stmts)
2625 gsi_insert_seq_on_edge_immediate (pe, stmts);
2626 if (new_var_p != NULL)
2627 *new_var_p = true;
2630 return ni_name;
2634 /* Calculate the number of iterations above which vectorized loop will be
2635 preferred than scalar loop. NITERS_PROLOG is the number of iterations
2636 of prolog loop. If it's integer const, the integer number is also passed
2637 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
2638 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
2639 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
2640 threshold below which the scalar (rather than vectorized) loop will be
2641 executed. This function stores the upper bound (inclusive) of the result
2642 in BOUND_SCALAR. */
2644 static tree
2645 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
2646 int bound_prolog, poly_int64 bound_epilog, int th,
2647 poly_uint64 *bound_scalar,
2648 bool check_profitability)
2650 tree type = TREE_TYPE (niters_prolog);
2651 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
2652 build_int_cst (type, bound_epilog));
2654 *bound_scalar = bound_prolog + bound_epilog;
2655 if (check_profitability)
2657 /* TH indicates the minimum niters of vectorized loop, while we
2658 compute the maximum niters of scalar loop. */
2659 th--;
2660 /* Peeling for constant times. */
2661 if (int_niters_prolog >= 0)
2663 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
2664 return build_int_cst (type, *bound_scalar);
2666 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
2667 and BOUND_EPILOG are inclusive upper bounds. */
2668 if (known_ge (th, bound_prolog + bound_epilog))
2670 *bound_scalar = th;
2671 return build_int_cst (type, th);
2673 /* Need to do runtime comparison. */
2674 else if (maybe_gt (th, bound_epilog))
2676 *bound_scalar = upper_bound (*bound_scalar, th);
2677 return fold_build2 (MAX_EXPR, type,
2678 build_int_cst (type, th), niters);
2681 return niters;
2684 /* NITERS is the number of times that the original scalar loop executes
2685 after peeling. Work out the maximum number of iterations N that can
2686 be handled by the vectorized form of the loop and then either:
2688 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
2690 niters_vector = N
2692 b) set *STEP_VECTOR_PTR to one and generate:
2694 niters_vector = N / vf
2696 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
2697 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
2698 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
2700 void
2701 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
2702 tree *niters_vector_ptr, tree *step_vector_ptr,
2703 bool niters_no_overflow)
2705 tree ni_minus_gap, var;
2706 tree niters_vector, step_vector, type = TREE_TYPE (niters);
2707 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2708 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2709 tree log_vf = NULL_TREE;
2711 /* If epilogue loop is required because of data accesses with gaps, we
2712 subtract one iteration from the total number of iterations here for
2713 correct calculation of RATIO. */
2714 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2716 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
2717 build_one_cst (type));
2718 if (!is_gimple_val (ni_minus_gap))
2720 var = create_tmp_var (type, "ni_gap");
2721 gimple *stmts = NULL;
2722 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
2723 true, var);
2724 gsi_insert_seq_on_edge_immediate (pe, stmts);
2727 else
2728 ni_minus_gap = niters;
2730 /* To silence some unexpected warnings, simply initialize to 0. */
2731 unsigned HOST_WIDE_INT const_vf = 0;
2732 if (vf.is_constant (&const_vf)
2733 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2735 /* Create: niters >> log2(vf) */
2736 /* If it's known that niters == number of latch executions + 1 doesn't
2737 overflow, we can generate niters >> log2(vf); otherwise we generate
2738 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2739 will be at least one. */
2740 log_vf = build_int_cst (type, exact_log2 (const_vf));
2741 if (niters_no_overflow)
2742 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2743 else
2744 niters_vector
2745 = fold_build2 (PLUS_EXPR, type,
2746 fold_build2 (RSHIFT_EXPR, type,
2747 fold_build2 (MINUS_EXPR, type,
2748 ni_minus_gap,
2749 build_int_cst (type, vf)),
2750 log_vf),
2751 build_int_cst (type, 1));
2752 step_vector = build_one_cst (type);
2754 else
2756 niters_vector = ni_minus_gap;
2757 step_vector = build_int_cst (type, vf);
2760 if (!is_gimple_val (niters_vector))
2762 var = create_tmp_var (type, "bnd");
2763 gimple_seq stmts = NULL;
2764 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2765 gsi_insert_seq_on_edge_immediate (pe, stmts);
2766 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2767 we set range information to make niters analyzer's life easier.
2768 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2769 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2770 if (stmts != NULL && log_vf)
2772 if (niters_no_overflow)
2774 value_range vr (type,
2775 wi::one (TYPE_PRECISION (type)),
2776 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2777 TYPE_SIGN (type)),
2778 exact_log2 (const_vf),
2779 TYPE_SIGN (type)));
2780 set_range_info (niters_vector, vr);
2782 /* For VF == 1 the vector IV might also overflow so we cannot
2783 assert a minimum value of 1. */
2784 else if (const_vf > 1)
2786 value_range vr (type,
2787 wi::one (TYPE_PRECISION (type)),
2788 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2789 TYPE_SIGN (type))
2790 - (const_vf - 1),
2791 exact_log2 (const_vf), TYPE_SIGN (type))
2792 + 1);
2793 set_range_info (niters_vector, vr);
2797 *niters_vector_ptr = niters_vector;
2798 *step_vector_ptr = step_vector;
2800 return;
2803 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2804 loop specified by LOOP_VINFO after vectorization, compute the number
2805 of iterations before vectorization (niters_vector * vf) and store it
2806 to NITERS_VECTOR_MULT_VF_PTR. */
2808 static void
2809 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2810 tree niters_vector,
2811 tree *niters_vector_mult_vf_ptr)
2813 /* We should be using a step_vector of VF if VF is variable. */
2814 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2815 tree type = TREE_TYPE (niters_vector);
2816 tree log_vf = build_int_cst (type, exact_log2 (vf));
2817 tree tree_vf = build_int_cst (type, vf);
2818 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2820 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2821 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2822 niters_vector, log_vf);
2824 /* If we've peeled a vector iteration then subtract one full vector
2825 iteration. */
2826 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
2827 niters_vector_mult_vf = fold_build2 (MINUS_EXPR, type,
2828 niters_vector_mult_vf, tree_vf);
2830 if (!is_gimple_val (niters_vector_mult_vf))
2832 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2833 gimple_seq stmts = NULL;
2834 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2835 &stmts, true, var);
2836 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2837 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2839 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2842 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2843 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2844 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2845 appear like below:
2847 guard_bb:
2848 if (cond)
2849 goto merge_bb;
2850 else
2851 goto skip_loop;
2853 skip_loop:
2854 header_a:
2855 i_1 = PHI<i_0, i_2>;
2857 i_2 = i_1 + 1;
2858 if (cond_a)
2859 goto latch_a;
2860 else
2861 goto exit_a;
2862 latch_a:
2863 goto header_a;
2865 exit_a:
2866 i_5 = PHI<i_2>;
2868 merge_bb:
2869 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2871 update_loop:
2872 header_b:
2873 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2875 i_4 = i_3 + 1;
2876 if (cond_b)
2877 goto latch_b;
2878 else
2879 goto exit_bb;
2880 latch_b:
2881 goto header_b;
2883 exit_bb:
2885 This function creates PHI nodes at merge_bb and replaces the use of i_5
2886 in the update_loop's PHI node with the result of new PHI result. */
2888 static void
2889 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2890 class loop *update_loop,
2891 edge guard_edge, edge merge_edge)
2893 location_t merge_loc, guard_loc;
2894 edge orig_e = loop_preheader_edge (skip_loop);
2895 edge update_e = loop_preheader_edge (update_loop);
2896 gphi_iterator gsi_orig, gsi_update;
2898 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2899 gsi_update = gsi_start_phis (update_loop->header));
2900 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2901 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2903 gphi *orig_phi = gsi_orig.phi ();
2904 gphi *update_phi = gsi_update.phi ();
2906 /* Generate new phi node at merge bb of the guard. */
2907 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2908 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2910 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2911 args in NEW_PHI for these edges. */
2912 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2913 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2914 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2915 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2916 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2917 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2919 /* Update phi in UPDATE_PHI. */
2920 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2924 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2925 Return a value that equals:
2927 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2928 - SKIP_VALUE when the main loop is skipped. */
2930 tree
2931 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2932 tree skip_value)
2934 gcc_assert (loop_vinfo->main_loop_edge);
2936 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2937 basic_block bb = loop_vinfo->main_loop_edge->dest;
2938 gphi *new_phi = create_phi_node (phi_result, bb);
2939 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2940 UNKNOWN_LOCATION);
2941 add_phi_arg (new_phi, skip_value,
2942 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2943 return phi_result;
2946 /* Function vect_do_peeling.
2948 Input:
2949 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2951 preheader:
2952 LOOP:
2953 header_bb:
2954 loop_body
2955 if (exit_loop_cond) goto exit_bb
2956 else goto header_bb
2957 exit_bb:
2959 - NITERS: The number of iterations of the loop.
2960 - NITERSM1: The number of iterations of the loop's latch.
2961 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2962 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2963 CHECK_PROFITABILITY is true.
2964 Output:
2965 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2966 iterate after vectorization; see vect_set_loop_condition for details.
2967 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2968 should be set to the number of scalar iterations handled by the
2969 vector loop. The SSA name is only used on exit from the loop.
2971 This function peels prolog and epilog from the loop, adds guards skipping
2972 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2973 would look like:
2975 guard_bb_1:
2976 if (prefer_scalar_loop) goto merge_bb_1
2977 else goto guard_bb_2
2979 guard_bb_2:
2980 if (skip_prolog) goto merge_bb_2
2981 else goto prolog_preheader
2983 prolog_preheader:
2984 PROLOG:
2985 prolog_header_bb:
2986 prolog_body
2987 if (exit_prolog_cond) goto prolog_exit_bb
2988 else goto prolog_header_bb
2989 prolog_exit_bb:
2991 merge_bb_2:
2993 vector_preheader:
2994 VECTOR LOOP:
2995 vector_header_bb:
2996 vector_body
2997 if (exit_vector_cond) goto vector_exit_bb
2998 else goto vector_header_bb
2999 vector_exit_bb:
3001 guard_bb_3:
3002 if (skip_epilog) goto merge_bb_3
3003 else goto epilog_preheader
3005 merge_bb_1:
3007 epilog_preheader:
3008 EPILOG:
3009 epilog_header_bb:
3010 epilog_body
3011 if (exit_epilog_cond) goto merge_bb_3
3012 else goto epilog_header_bb
3014 merge_bb_3:
3016 Note this function peels prolog and epilog only if it's necessary,
3017 as well as guards.
3018 This function returns the epilogue loop if a decision was made to vectorize
3019 it, otherwise NULL.
3021 The analysis resulting in this epilogue loop's loop_vec_info was performed
3022 in the same vect_analyze_loop call as the main loop's. At that time
3023 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
3024 vectorization factors than the main loop. This list is stored in the main
3025 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
3026 vectorize the epilogue loop for a lower vectorization factor, the
3027 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
3028 updated and linked to the epilogue loop. This is later used to vectorize
3029 the epilogue. The reason the loop_vec_info needs updating is that it was
3030 constructed based on the original main loop, and the epilogue loop is a
3031 copy of this loop, so all links pointing to statements in the original loop
3032 need updating. Furthermore, these loop_vec_infos share the
3033 data_reference's records, which will also need to be updated.
3035 TODO: Guard for prefer_scalar_loop should be emitted along with
3036 versioning conditions if loop versioning is needed. */
3039 class loop *
3040 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
3041 tree *niters_vector, tree *step_vector,
3042 tree *niters_vector_mult_vf_var, int th,
3043 bool check_profitability, bool niters_no_overflow,
3044 tree *advance)
3046 edge e, guard_e;
3047 tree type = TREE_TYPE (niters), guard_cond;
3048 basic_block guard_bb, guard_to;
3049 profile_probability prob_prolog, prob_vector, prob_epilog;
3050 int estimated_vf;
3051 int prolog_peeling = 0;
3052 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
3053 /* We currently do not support prolog peeling if the target alignment is not
3054 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
3055 target alignment being constant. */
3056 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
3057 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
3058 return NULL;
3060 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
3061 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3063 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3064 poly_uint64 bound_epilog = 0;
3065 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
3066 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
3067 bound_epilog += vf - 1;
3068 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
3069 bound_epilog += 1;
3071 /* For early breaks the scalar loop needs to execute at most VF times
3072 to find the element that caused the break. */
3073 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3074 bound_epilog = vf;
3076 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
3077 poly_uint64 bound_scalar = bound_epilog;
3079 if (!prolog_peeling && !epilog_peeling)
3080 return NULL;
3082 /* Before doing any peeling make sure to reset debug binds outside of
3083 the loop refering to defs not in LC SSA. */
3084 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3085 for (unsigned i = 0; i < loop->num_nodes; ++i)
3087 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
3088 imm_use_iterator ui;
3089 gimple *use_stmt;
3090 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
3091 gsi_next (&gsi))
3093 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
3094 if (gimple_debug_bind_p (use_stmt)
3095 && loop != gimple_bb (use_stmt)->loop_father
3096 && !flow_loop_nested_p (loop,
3097 gimple_bb (use_stmt)->loop_father))
3099 gimple_debug_bind_reset_value (use_stmt);
3100 update_stmt (use_stmt);
3103 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3104 gsi_next (&gsi))
3106 ssa_op_iter op_iter;
3107 def_operand_p def_p;
3108 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
3109 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
3110 if (gimple_debug_bind_p (use_stmt)
3111 && loop != gimple_bb (use_stmt)->loop_father
3112 && !flow_loop_nested_p (loop,
3113 gimple_bb (use_stmt)->loop_father))
3115 gimple_debug_bind_reset_value (use_stmt);
3116 update_stmt (use_stmt);
3121 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
3122 estimated_vf = vect_vf_for_cost (loop_vinfo);
3123 if (estimated_vf == 2)
3124 estimated_vf = 3;
3125 prob_prolog = prob_epilog = profile_probability::guessed_always ()
3126 .apply_scale (estimated_vf - 1, estimated_vf);
3128 class loop *prolog, *epilog = NULL;
3129 class loop *first_loop = loop;
3130 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
3132 /* SSA form needs to be up-to-date since we are going to manually
3133 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
3134 update SSA state after that, so we have to make sure to not lose any
3135 pending update needs. */
3136 gcc_assert (!need_ssa_update_p (cfun));
3138 /* If we're vectorizing an epilogue loop, we have ensured that the
3139 virtual operand is in SSA form throughout the vectorized main loop.
3140 Normally it is possible to trace the updated
3141 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
3142 back to scalar-stmt vuses, meaning that the effect of the SSA update
3143 remains local to the main loop. However, there are rare cases in
3144 which the vectorized loop should have vdefs even when the original scalar
3145 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
3146 introduces clobbers of the temporary vector array, which in turn
3147 needs new vdefs. If the scalar loop doesn't write to memory, these
3148 new vdefs will be the only ones in the vector loop.
3149 We are currently defering updating virtual SSA form and creating
3150 of a virtual PHI for this case so we do not have to make sure the
3151 newly introduced virtual def is in LCSSA form. */
3153 if (MAY_HAVE_DEBUG_BIND_STMTS)
3155 gcc_assert (!adjust_vec.exists ());
3156 adjust_vec.create (32);
3158 initialize_original_copy_tables ();
3160 /* Record the anchor bb at which the guard should be placed if the scalar
3161 loop might be preferred. */
3162 basic_block anchor = loop_preheader_edge (loop)->src;
3164 /* Generate the number of iterations for the prolog loop. We do this here
3165 so that we can also get the upper bound on the number of iterations. */
3166 tree niters_prolog;
3167 int bound_prolog = 0;
3168 if (prolog_peeling)
3170 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
3171 &bound_prolog);
3172 /* If algonment peeling is known, we will always execute prolog. */
3173 if (TREE_CODE (niters_prolog) == INTEGER_CST)
3174 prob_prolog = profile_probability::always ();
3176 else
3177 niters_prolog = build_int_cst (type, 0);
3179 loop_vec_info epilogue_vinfo = NULL;
3180 if (vect_epilogues)
3182 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
3183 loop_vinfo->epilogue_vinfos.ordered_remove (0);
3186 tree niters_vector_mult_vf = NULL_TREE;
3187 /* Saving NITERs before the loop, as this may be changed by prologue. */
3188 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
3189 edge update_e = NULL, skip_e = NULL;
3190 unsigned int lowest_vf = constant_lower_bound (vf);
3191 /* Prolog loop may be skipped. */
3192 bool skip_prolog = (prolog_peeling != 0);
3193 /* Skip this loop to epilog when there are not enough iterations to enter this
3194 vectorized loop. If true we should perform runtime checks on the NITERS
3195 to check whether we should skip the current vectorized loop. If we know
3196 the number of scalar iterations we may choose to add a runtime check if
3197 this number "maybe" smaller than the number of iterations required
3198 when we know the number of scalar iterations may potentially
3199 be smaller than the number of iterations required to enter this loop, for
3200 this we use the upper bounds on the prolog and epilog peeling. When we
3201 don't know the number of iterations and don't require versioning it is
3202 because we have asserted that there are enough scalar iterations to enter
3203 the main loop, so this skip is not necessary. When we are versioning then
3204 we only add such a skip if we have chosen to vectorize the epilogue. */
3205 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3206 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
3207 bound_prolog + bound_epilog)
3208 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
3209 || vect_epilogues));
3211 /* Epilog loop must be executed if the number of iterations for epilog
3212 loop is known at compile time, otherwise we need to add a check at
3213 the end of vector loop and skip to the end of epilog loop. */
3214 bool skip_epilog = (prolog_peeling < 0
3215 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3216 || !vf.is_constant ());
3217 /* PEELING_FOR_GAPS and peeling for early breaks are special because epilog
3218 loop must be executed. */
3219 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
3220 || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3221 skip_epilog = false;
3223 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3224 auto_vec<profile_count> original_counts;
3225 basic_block *original_bbs = NULL;
3227 if (skip_vector)
3229 split_edge (loop_preheader_edge (loop));
3231 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
3233 original_bbs = get_loop_body (loop);
3234 for (unsigned int i = 0; i < loop->num_nodes; i++)
3235 original_counts.safe_push(original_bbs[i]->count);
3238 /* Due to the order in which we peel prolog and epilog, we first
3239 propagate probability to the whole loop. The purpose is to
3240 avoid adjusting probabilities of both prolog and vector loops
3241 separately. Note in this case, the probability of epilog loop
3242 needs to be scaled back later. */
3243 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
3244 if (prob_vector.initialized_p ())
3246 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
3247 scale_loop_profile (loop, prob_vector, -1);
3251 if (vect_epilogues)
3253 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
3254 use the original scalar loop as remaining epilogue if necessary. */
3255 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
3256 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3257 LOOP_VINFO_SCALAR_IV_EXIT (epilogue_vinfo)
3258 = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3261 if (prolog_peeling)
3263 e = loop_preheader_edge (loop);
3264 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3265 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, exit_e, e));
3267 /* Peel prolog and put it on preheader edge of loop. */
3268 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3269 edge prolog_e = NULL;
3270 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, exit_e,
3271 scalar_loop, scalar_e,
3272 e, &prolog_e);
3273 gcc_assert (prolog);
3274 prolog->force_vectorize = false;
3276 first_loop = prolog;
3277 reset_original_copy_tables ();
3279 /* Update the number of iterations for prolog loop. */
3280 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
3281 vect_set_loop_condition (prolog, prolog_e, NULL, niters_prolog,
3282 step_prolog, NULL_TREE, false);
3284 /* Skip the prolog loop. */
3285 if (skip_prolog)
3287 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3288 niters_prolog, build_int_cst (type, 0));
3289 guard_bb = loop_preheader_edge (prolog)->src;
3290 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
3291 guard_to = split_edge (loop_preheader_edge (loop));
3292 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3293 guard_to, guard_bb,
3294 prob_prolog.invert (),
3295 irred_flag);
3296 e = EDGE_PRED (guard_to, 0);
3297 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3298 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
3300 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
3301 scale_loop_profile (prolog, prob_prolog, bound_prolog - 1);
3304 /* Update init address of DRs. */
3305 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
3306 /* Update niters for vector loop. */
3307 LOOP_VINFO_NITERS (loop_vinfo)
3308 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
3309 LOOP_VINFO_NITERSM1 (loop_vinfo)
3310 = fold_build2 (MINUS_EXPR, type,
3311 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
3312 bool new_var_p = false;
3313 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
3314 /* It's guaranteed that vector loop bound before vectorization is at
3315 least VF, so set range information for newly generated var. */
3316 if (new_var_p)
3318 value_range vr (type,
3319 wi::to_wide (build_int_cst (type, lowest_vf)),
3320 wi::to_wide (TYPE_MAX_VALUE (type)));
3321 set_range_info (niters, vr);
3324 /* Prolog iterates at most bound_prolog times, latch iterates at
3325 most bound_prolog - 1 times. */
3326 record_niter_bound (prolog, bound_prolog - 1, false, true);
3327 delete_update_ssa ();
3328 adjust_vec_debug_stmts ();
3329 scev_reset ();
3331 basic_block bb_before_epilog = NULL;
3333 if (epilog_peeling)
3335 e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3336 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, e, e));
3338 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
3339 said epilog then we should use a copy of the main loop as a starting
3340 point. This loop may have already had some preliminary transformations
3341 to allow for more optimal vectorization, for example if-conversion.
3342 If we are not vectorizing the epilog then we should use the scalar loop
3343 as the transformations mentioned above make less or no sense when not
3344 vectorizing. */
3345 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3346 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
3347 edge epilog_e = vect_epilogues ? e : scalar_e;
3348 edge new_epilog_e = NULL;
3349 auto_vec<basic_block> doms;
3350 epilog
3351 = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e, epilog, epilog_e, e,
3352 &new_epilog_e, true, &doms);
3354 LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo) = new_epilog_e;
3355 gcc_assert (epilog);
3356 gcc_assert (new_epilog_e);
3357 epilog->force_vectorize = false;
3358 bb_before_epilog = loop_preheader_edge (epilog)->src;
3360 /* Scalar version loop may be preferred. In this case, add guard
3361 and skip to epilog. Note this only happens when the number of
3362 iterations of loop is unknown at compile time, otherwise this
3363 won't be vectorized. */
3364 if (skip_vector)
3366 /* Additional epilogue iteration is peeled if gap exists. */
3367 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
3368 bound_prolog, bound_epilog,
3369 th, &bound_scalar,
3370 check_profitability);
3371 /* Build guard against NITERSM1 since NITERS may overflow. */
3372 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
3373 guard_bb = anchor;
3374 guard_to = split_edge (loop_preheader_edge (epilog));
3375 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3376 guard_to, guard_bb,
3377 prob_vector.invert (),
3378 irred_flag);
3379 skip_e = guard_e;
3380 e = EDGE_PRED (guard_to, 0);
3381 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3382 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
3384 /* Simply propagate profile info from guard_bb to guard_to which is
3385 a merge point of control flow. */
3386 profile_count old_count = guard_to->count;
3387 guard_to->count = guard_bb->count;
3389 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
3390 if (vect_epilogues || scalar_loop == NULL)
3392 gcc_assert(epilog->num_nodes == loop->num_nodes);
3393 basic_block *bbs = get_loop_body (epilog);
3394 for (unsigned int i = 0; i < epilog->num_nodes; i++)
3396 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
3397 bbs[i]->count = original_counts[i];
3399 free (bbs);
3400 free (original_bbs);
3402 else if (old_count.nonzero_p ())
3403 scale_loop_profile (epilog, guard_to->count.probability_in (old_count), -1);
3405 /* Only need to handle basic block before epilog loop if it's not
3406 the guard_bb, which is the case when skip_vector is true. */
3407 if (guard_bb != bb_before_epilog && single_pred_p (bb_before_epilog))
3408 bb_before_epilog->count = single_pred_edge (bb_before_epilog)->count ();
3409 bb_before_epilog = loop_preheader_edge (epilog)->src;
3412 /* If loop is peeled for non-zero constant times, now niters refers to
3413 orig_niters - prolog_peeling, it won't overflow even the orig_niters
3414 overflows. */
3415 niters_no_overflow |= (prolog_peeling > 0);
3416 vect_gen_vector_loop_niters (loop_vinfo, niters,
3417 niters_vector, step_vector,
3418 niters_no_overflow);
3419 if (!integer_onep (*step_vector))
3421 /* On exit from the loop we will have an easy way of calcalating
3422 NITERS_VECTOR / STEP * STEP. Install a dummy definition
3423 until then. */
3424 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
3425 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
3426 *niters_vector_mult_vf_var = niters_vector_mult_vf;
3428 else
3429 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
3430 &niters_vector_mult_vf);
3431 /* Update IVs of original loop as if they were advanced by
3432 niters_vector_mult_vf steps. */
3433 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
3434 update_e = skip_vector ? e : loop_preheader_edge (epilog);
3435 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3436 update_e = single_succ_edge (LOOP_VINFO_IV_EXIT (loop_vinfo)->dest);
3438 /* If we have a peeled vector iteration, all exits are the same, leave it
3439 and so the main exit needs to be treated the same as the alternative
3440 exits in that we leave their updates to vectorizable_live_operations.
3442 if (!LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
3443 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
3444 update_e);
3446 /* If we have a peeled vector iteration we will never skip the epilog loop
3447 and we can simplify the cfg a lot by not doing the edge split. */
3448 if (skip_epilog || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3450 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3451 niters, niters_vector_mult_vf);
3453 guard_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
3454 edge epilog_e = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3455 guard_to = epilog_e->dest;
3456 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
3457 skip_vector ? anchor : guard_bb,
3458 prob_epilog.invert (),
3459 irred_flag);
3460 doms.safe_push (guard_to);
3461 if (vect_epilogues)
3462 epilogue_vinfo->skip_this_loop_edge = guard_e;
3463 edge main_iv = LOOP_VINFO_IV_EXIT (loop_vinfo);
3464 gphi_iterator gsi2 = gsi_start_phis (main_iv->dest);
3465 for (gphi_iterator gsi = gsi_start_phis (guard_to);
3466 !gsi_end_p (gsi); gsi_next (&gsi))
3468 /* We are expecting all of the PHIs we have on epilog_e
3469 to be also on the main loop exit. But sometimes
3470 a stray virtual definition can appear at epilog_e
3471 which we can then take as the same on all exits,
3472 we've removed the LC SSA PHI on the main exit before
3473 so we wouldn't need to create a loop PHI for it. */
3474 if (virtual_operand_p (gimple_phi_result (*gsi))
3475 && (gsi_end_p (gsi2)
3476 || !virtual_operand_p (gimple_phi_result (*gsi2))))
3477 add_phi_arg (*gsi,
3478 gimple_phi_arg_def_from_edge (*gsi, epilog_e),
3479 guard_e, UNKNOWN_LOCATION);
3480 else
3482 add_phi_arg (*gsi, gimple_phi_result (*gsi2), guard_e,
3483 UNKNOWN_LOCATION);
3484 gsi_next (&gsi2);
3488 /* Only need to handle basic block before epilog loop if it's not
3489 the guard_bb, which is the case when skip_vector is true. */
3490 if (guard_bb != bb_before_epilog)
3492 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3494 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3496 scale_loop_profile (epilog, prob_epilog, -1);
3499 /* Recalculate the dominators after adding the guard edge. */
3500 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3501 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
3503 /* When we do not have a loop-around edge to the epilog we know
3504 the vector loop covered at least VF scalar iterations unless
3505 we have early breaks.
3506 Update any known upper bound with this knowledge. */
3507 if (! skip_vector
3508 && ! LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3510 if (epilog->any_upper_bound)
3511 epilog->nb_iterations_upper_bound -= lowest_vf;
3512 if (epilog->any_likely_upper_bound)
3513 epilog->nb_iterations_likely_upper_bound -= lowest_vf;
3514 if (epilog->any_estimate)
3515 epilog->nb_iterations_estimate -= lowest_vf;
3518 unsigned HOST_WIDE_INT bound;
3519 if (bound_scalar.is_constant (&bound))
3521 gcc_assert (bound != 0);
3522 /* Adjust the upper bound by the extra peeled vector iteration if we
3523 are an epilogue of an peeled vect loop and not VLA. For VLA the
3524 loop bounds are unknown. */
3525 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo)
3526 && vf.is_constant ())
3527 bound += vf.to_constant ();
3528 /* -1 to convert loop iterations to latch iterations. */
3529 record_niter_bound (epilog, bound - 1, false, true);
3530 scale_loop_profile (epilog, profile_probability::always (),
3531 bound - 1);
3534 delete_update_ssa ();
3535 adjust_vec_debug_stmts ();
3536 scev_reset ();
3539 if (vect_epilogues)
3541 epilog->aux = epilogue_vinfo;
3542 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3543 LOOP_VINFO_IV_EXIT (epilogue_vinfo)
3544 = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3546 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3548 /* We now must calculate the number of NITERS performed by the previous
3549 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3550 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3551 niters_prolog, niters_vector_mult_vf);
3553 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3554 determine whether we are coming from the previous vectorized loop
3555 using the update_e edge or the skip_vector basic block using the
3556 skip_e edge. */
3557 if (skip_vector)
3559 gcc_assert (update_e != NULL && skip_e != NULL);
3560 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3561 update_e->dest);
3562 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3563 gimple *stmt = gimple_build_assign (new_ssa, niters);
3564 gimple_stmt_iterator gsi;
3565 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3566 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3568 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3569 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3571 else
3573 gsi = gsi_last_bb (update_e->src);
3574 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3577 niters = new_ssa;
3578 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3579 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3580 UNKNOWN_LOCATION);
3581 niters = PHI_RESULT (new_phi);
3582 epilogue_vinfo->main_loop_edge = update_e;
3583 epilogue_vinfo->skip_main_loop_edge = skip_e;
3586 /* Set ADVANCE to the number of iterations performed by the previous
3587 loop and its prologue. */
3588 *advance = niters;
3590 /* Subtract the number of iterations performed by the vectorized loop
3591 from the number of total iterations. */
3592 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3593 before_loop_niters,
3594 niters);
3596 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3597 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3598 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3599 epilogue_niters,
3600 build_one_cst (TREE_TYPE (epilogue_niters)));
3602 /* Decide what to do if the number of epilogue iterations is not
3603 a multiple of the epilogue loop's vectorization factor.
3604 We should have rejected the loop during the analysis phase
3605 if this fails. */
3606 bool res = vect_determine_partial_vectors_and_peeling (epilogue_vinfo);
3607 gcc_assert (res);
3610 adjust_vec.release ();
3611 free_original_copy_tables ();
3613 return vect_epilogues ? epilog : NULL;
3616 /* Function vect_create_cond_for_niters_checks.
3618 Create a conditional expression that represents the run-time checks for
3619 loop's niter. The loop is guaranteed to terminate if the run-time
3620 checks hold.
3622 Input:
3623 COND_EXPR - input conditional expression. New conditions will be chained
3624 with logical AND operation. If it is NULL, then the function
3625 is used to return the number of alias checks.
3626 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3627 to be checked.
3629 Output:
3630 COND_EXPR - conditional expression.
3632 The returned COND_EXPR is the conditional expression to be used in the
3633 if statement that controls which version of the loop gets executed at
3634 runtime. */
3636 static void
3637 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3639 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3641 if (*cond_expr)
3642 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3643 *cond_expr, part_cond_expr);
3644 else
3645 *cond_expr = part_cond_expr;
3648 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3649 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3651 static void
3652 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3654 if (*cond_expr)
3655 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3656 *cond_expr, part_cond_expr);
3657 else
3658 *cond_expr = part_cond_expr;
3661 /* Function vect_create_cond_for_align_checks.
3663 Create a conditional expression that represents the alignment checks for
3664 all of data references (array element references) whose alignment must be
3665 checked at runtime.
3667 Input:
3668 COND_EXPR - input conditional expression. New conditions will be chained
3669 with logical AND operation.
3670 LOOP_VINFO - two fields of the loop information are used.
3671 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3672 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3674 Output:
3675 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3676 expression.
3677 The returned value is the conditional expression to be used in the if
3678 statement that controls which version of the loop gets executed at runtime.
3680 The algorithm makes two assumptions:
3681 1) The number of bytes "n" in a vector is a power of 2.
3682 2) An address "a" is aligned if a%n is zero and that this
3683 test can be done as a&(n-1) == 0. For example, for 16
3684 byte vectors the test is a&0xf == 0. */
3686 static void
3687 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3688 tree *cond_expr,
3689 gimple_seq *cond_expr_stmt_list)
3691 const vec<stmt_vec_info> &may_misalign_stmts
3692 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3693 stmt_vec_info stmt_info;
3694 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3695 tree mask_cst;
3696 unsigned int i;
3697 tree int_ptrsize_type;
3698 char tmp_name[20];
3699 tree or_tmp_name = NULL_TREE;
3700 tree and_tmp_name;
3701 gimple *and_stmt;
3702 tree ptrsize_zero;
3703 tree part_cond_expr;
3705 /* Check that mask is one less than a power of 2, i.e., mask is
3706 all zeros followed by all ones. */
3707 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3709 int_ptrsize_type = signed_type_for (ptr_type_node);
3711 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3712 of the first vector of the i'th data reference. */
3714 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3716 gimple_seq new_stmt_list = NULL;
3717 tree addr_base;
3718 tree addr_tmp_name;
3719 tree new_or_tmp_name;
3720 gimple *addr_stmt, *or_stmt;
3721 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3722 bool negative = tree_int_cst_compare
3723 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3724 tree offset = negative
3725 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3726 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3727 : size_zero_node;
3729 /* create: addr_tmp = (int)(address_of_first_vector) */
3730 addr_base =
3731 vect_create_addr_base_for_vector_ref (loop_vinfo,
3732 stmt_info, &new_stmt_list,
3733 offset);
3734 if (new_stmt_list != NULL)
3735 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3737 sprintf (tmp_name, "addr2int%d", i);
3738 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3739 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3740 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3742 /* The addresses are OR together. */
3744 if (or_tmp_name != NULL_TREE)
3746 /* create: or_tmp = or_tmp | addr_tmp */
3747 sprintf (tmp_name, "orptrs%d", i);
3748 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3749 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3750 or_tmp_name, addr_tmp_name);
3751 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3752 or_tmp_name = new_or_tmp_name;
3754 else
3755 or_tmp_name = addr_tmp_name;
3757 } /* end for i */
3759 mask_cst = build_int_cst (int_ptrsize_type, mask);
3761 /* create: and_tmp = or_tmp & mask */
3762 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3764 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3765 or_tmp_name, mask_cst);
3766 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3768 /* Make and_tmp the left operand of the conditional test against zero.
3769 if and_tmp has a nonzero bit then some address is unaligned. */
3770 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3771 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3772 and_tmp_name, ptrsize_zero);
3773 chain_cond_expr (cond_expr, part_cond_expr);
3776 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3777 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3778 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3779 and this new condition are true. Treat a null *COND_EXPR as "true". */
3781 static void
3782 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3784 const vec<vec_object_pair> &pairs
3785 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3786 unsigned int i;
3787 vec_object_pair *pair;
3788 FOR_EACH_VEC_ELT (pairs, i, pair)
3790 tree addr1 = build_fold_addr_expr (pair->first);
3791 tree addr2 = build_fold_addr_expr (pair->second);
3792 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3793 addr1, addr2);
3794 chain_cond_expr (cond_expr, part_cond_expr);
3798 /* Create an expression that is true when all lower-bound conditions for
3799 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3801 static void
3802 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3804 const vec<vec_lower_bound> &lower_bounds
3805 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3806 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3808 tree expr = lower_bounds[i].expr;
3809 tree type = unsigned_type_for (TREE_TYPE (expr));
3810 expr = fold_convert (type, expr);
3811 poly_uint64 bound = lower_bounds[i].min_value;
3812 if (!lower_bounds[i].unsigned_p)
3814 expr = fold_build2 (PLUS_EXPR, type, expr,
3815 build_int_cstu (type, bound - 1));
3816 bound += bound - 1;
3818 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3819 build_int_cstu (type, bound));
3820 chain_cond_expr (cond_expr, part_cond_expr);
3824 /* Function vect_create_cond_for_alias_checks.
3826 Create a conditional expression that represents the run-time checks for
3827 overlapping of address ranges represented by a list of data references
3828 relations passed as input.
3830 Input:
3831 COND_EXPR - input conditional expression. New conditions will be chained
3832 with logical AND operation. If it is NULL, then the function
3833 is used to return the number of alias checks.
3834 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3835 to be checked.
3837 Output:
3838 COND_EXPR - conditional expression.
3840 The returned COND_EXPR is the conditional expression to be used in the if
3841 statement that controls which version of the loop gets executed at runtime.
3844 void
3845 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3847 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3848 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3850 if (comp_alias_ddrs.is_empty ())
3851 return;
3853 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3854 &comp_alias_ddrs, cond_expr);
3855 if (dump_enabled_p ())
3856 dump_printf_loc (MSG_NOTE, vect_location,
3857 "created %u versioning for alias checks.\n",
3858 comp_alias_ddrs.length ());
3862 /* Function vect_loop_versioning.
3864 If the loop has data references that may or may not be aligned or/and
3865 has data reference relations whose independence was not proven then
3866 two versions of the loop need to be generated, one which is vectorized
3867 and one which isn't. A test is then generated to control which of the
3868 loops is executed. The test checks for the alignment of all of the
3869 data references that may or may not be aligned. An additional
3870 sequence of runtime tests is generated for each pairs of DDRs whose
3871 independence was not proven. The vectorized version of loop is
3872 executed only if both alias and alignment tests are passed.
3874 The test generated to check which version of loop is executed
3875 is modified to also check for profitability as indicated by the
3876 cost model threshold TH.
3878 The versioning precondition(s) are placed in *COND_EXPR and
3879 *COND_EXPR_STMT_LIST. */
3881 class loop *
3882 vect_loop_versioning (loop_vec_info loop_vinfo,
3883 gimple *loop_vectorized_call)
3885 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3886 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3887 basic_block condition_bb;
3888 gphi_iterator gsi;
3889 gimple_stmt_iterator cond_exp_gsi;
3890 basic_block merge_bb;
3891 basic_block new_exit_bb;
3892 edge new_exit_e, e;
3893 gphi *orig_phi, *new_phi;
3894 tree cond_expr = NULL_TREE;
3895 gimple_seq cond_expr_stmt_list = NULL;
3896 tree arg;
3897 profile_probability prob = profile_probability::likely ();
3898 gimple_seq gimplify_stmt_list = NULL;
3899 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3900 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3901 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3902 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3903 poly_uint64 versioning_threshold
3904 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3905 tree version_simd_if_cond
3906 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3907 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3909 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3910 && !ordered_p (th, versioning_threshold))
3911 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3912 build_int_cst (TREE_TYPE (scalar_loop_iters),
3913 th - 1));
3914 if (maybe_ne (versioning_threshold, 0U))
3916 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3917 build_int_cst (TREE_TYPE (scalar_loop_iters),
3918 versioning_threshold - 1));
3919 if (cond_expr)
3920 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3921 expr, cond_expr);
3922 else
3923 cond_expr = expr;
3926 tree cost_name = NULL_TREE;
3927 profile_probability prob2 = profile_probability::always ();
3928 if (cond_expr
3929 && EXPR_P (cond_expr)
3930 && (version_niter
3931 || version_align
3932 || version_alias
3933 || version_simd_if_cond))
3935 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3936 &cond_expr_stmt_list,
3937 is_gimple_val, NULL_TREE);
3938 /* Split prob () into two so that the overall probability of passing
3939 both the cost-model and versioning checks is the orig prob. */
3940 prob2 = prob = prob.sqrt ();
3943 if (version_niter)
3944 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3946 if (cond_expr)
3948 gimple_seq tem = NULL;
3949 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3950 &tem, is_gimple_condexpr_for_cond,
3951 NULL_TREE);
3952 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3955 if (version_align)
3956 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3957 &cond_expr_stmt_list);
3959 if (version_alias)
3961 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3962 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3963 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3966 if (version_simd_if_cond)
3968 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
3969 if (flag_checking)
3970 if (basic_block bb
3971 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
3972 gcc_assert (bb != loop->header
3973 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
3974 && (scalar_loop == NULL
3975 || (bb != scalar_loop->header
3976 && dominated_by_p (CDI_DOMINATORS,
3977 scalar_loop->header, bb))));
3978 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
3979 tree c = fold_build2 (NE_EXPR, boolean_type_node,
3980 version_simd_if_cond, zero);
3981 if (cond_expr)
3982 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3983 c, cond_expr);
3984 else
3985 cond_expr = c;
3986 if (dump_enabled_p ())
3987 dump_printf_loc (MSG_NOTE, vect_location,
3988 "created versioning for simd if condition check.\n");
3991 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3992 &gimplify_stmt_list,
3993 is_gimple_condexpr_for_cond, NULL_TREE);
3994 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3996 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
3997 invariant in. */
3998 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
3999 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
4000 !gsi_end_p (gsi); gsi_next (&gsi))
4002 gimple *stmt = gsi_stmt (gsi);
4003 update_stmt (stmt);
4004 ssa_op_iter iter;
4005 use_operand_p use_p;
4006 basic_block def_bb;
4007 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
4008 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
4009 && flow_bb_inside_loop_p (outermost, def_bb))
4010 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
4013 /* Search for the outermost loop we can version. Avoid versioning of
4014 non-perfect nests but allow if-conversion versioned loops inside. */
4015 class loop *loop_to_version = loop;
4016 if (flow_loop_nested_p (outermost, loop))
4018 if (dump_enabled_p ())
4019 dump_printf_loc (MSG_NOTE, vect_location,
4020 "trying to apply versioning to outer loop %d\n",
4021 outermost->num);
4022 if (outermost->num == 0)
4023 outermost = superloop_at_depth (loop, 1);
4024 /* And avoid applying versioning on non-perfect nests. */
4025 while (loop_to_version != outermost
4026 && (e = single_exit (loop_outer (loop_to_version)))
4027 && !(e->flags & EDGE_COMPLEX)
4028 && (!loop_outer (loop_to_version)->inner->next
4029 || vect_loop_vectorized_call (loop_to_version))
4030 && (!loop_outer (loop_to_version)->inner->next
4031 || !loop_outer (loop_to_version)->inner->next->next))
4032 loop_to_version = loop_outer (loop_to_version);
4035 /* Apply versioning. If there is already a scalar version created by
4036 if-conversion re-use that. Note we cannot re-use the copy of
4037 an if-converted outer-loop when vectorizing the inner loop only. */
4038 gcond *cond;
4039 if ((!loop_to_version->inner || loop == loop_to_version)
4040 && loop_vectorized_call)
4042 gcc_assert (scalar_loop);
4043 condition_bb = gimple_bb (loop_vectorized_call);
4044 cond = as_a <gcond *> (*gsi_last_bb (condition_bb));
4045 gimple_cond_set_condition_from_tree (cond, cond_expr);
4046 update_stmt (cond);
4048 if (cond_expr_stmt_list)
4050 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
4051 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4052 GSI_SAME_STMT);
4055 /* if-conversion uses profile_probability::always () for both paths,
4056 reset the paths probabilities appropriately. */
4057 edge te, fe;
4058 extract_true_false_edges_from_block (condition_bb, &te, &fe);
4059 te->probability = prob;
4060 fe->probability = prob.invert ();
4061 /* We can scale loops counts immediately but have to postpone
4062 scaling the scalar loop because we re-use it during peeling.
4064 Ifcvt duplicates loop preheader, loop body and produces an basic
4065 block after loop exit. We need to scale all that. */
4066 basic_block preheader = loop_preheader_edge (loop_to_version)->src;
4067 preheader->count = preheader->count.apply_probability (prob * prob2);
4068 scale_loop_frequencies (loop_to_version, prob * prob2);
4069 /* When the loop has multiple exits then we can only version itself.
4070 This is denoted by loop_to_version == loop. In this case we can
4071 do the versioning by selecting the exit edge the vectorizer is
4072 currently using. */
4073 edge exit_edge;
4074 if (loop_to_version == loop)
4075 exit_edge = LOOP_VINFO_IV_EXIT (loop_vinfo);
4076 else
4077 exit_edge = single_exit (loop_to_version);
4078 exit_edge->dest->count = preheader->count;
4079 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = (prob * prob2).invert ();
4081 nloop = scalar_loop;
4082 if (dump_enabled_p ())
4083 dump_printf_loc (MSG_NOTE, vect_location,
4084 "reusing %sloop version created by if conversion\n",
4085 loop_to_version != loop ? "outer " : "");
4087 else
4089 if (loop_to_version != loop
4090 && dump_enabled_p ())
4091 dump_printf_loc (MSG_NOTE, vect_location,
4092 "applying loop versioning to outer loop %d\n",
4093 loop_to_version->num);
4095 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
4097 initialize_original_copy_tables ();
4098 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
4099 prob * prob2, (prob * prob2).invert (),
4100 prob * prob2, (prob * prob2).invert (),
4101 true);
4102 /* We will later insert second conditional so overall outcome of
4103 both is prob * prob2. */
4104 edge true_e, false_e;
4105 extract_true_false_edges_from_block (condition_bb, &true_e, &false_e);
4106 true_e->probability = prob;
4107 false_e->probability = prob.invert ();
4108 gcc_assert (nloop);
4109 nloop = get_loop_copy (loop);
4111 /* For cycle vectorization with SLP we rely on the PHI arguments
4112 appearing in the same order as the SLP node operands which for the
4113 loop PHI nodes means the preheader edge dest index needs to remain
4114 the same for the analyzed loop which also becomes the vectorized one.
4115 Make it so in case the state after versioning differs by redirecting
4116 the first edge into the header to the same destination which moves
4117 it last. */
4118 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
4120 edge e = EDGE_PRED (loop->header, 0);
4121 ssa_redirect_edge (e, e->dest);
4122 flush_pending_stmts (e);
4124 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
4126 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
4127 reap those otherwise; they also refer to the original
4128 loops. */
4129 class loop *l = loop;
4130 while (gimple *call = vect_loop_vectorized_call (l))
4132 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
4133 fold_loop_internal_call (call, boolean_false_node);
4134 l = loop_outer (l);
4136 free_original_copy_tables ();
4138 if (cond_expr_stmt_list)
4140 cond_exp_gsi = gsi_last_bb (condition_bb);
4141 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4142 GSI_SAME_STMT);
4145 /* Loop versioning violates an assumption we try to maintain during
4146 vectorization - that the loop exit block has a single predecessor.
4147 After versioning, the exit block of both loop versions is the same
4148 basic block (i.e. it has two predecessors). Just in order to simplify
4149 following transformations in the vectorizer, we fix this situation
4150 here by adding a new (empty) block on the exit-edge of the loop,
4151 with the proper loop-exit phis to maintain loop-closed-form.
4152 If loop versioning wasn't done from loop, but scalar_loop instead,
4153 merge_bb will have already just a single successor. */
4155 /* When the loop has multiple exits then we can only version itself.
4156 This is denoted by loop_to_version == loop. In this case we can
4157 do the versioning by selecting the exit edge the vectorizer is
4158 currently using. */
4159 edge exit_edge;
4160 if (loop_to_version == loop)
4161 exit_edge = LOOP_VINFO_IV_EXIT (loop_vinfo);
4162 else
4163 exit_edge = single_exit (loop_to_version);
4165 gcc_assert (exit_edge);
4166 merge_bb = exit_edge->dest;
4167 if (EDGE_COUNT (merge_bb->preds) >= 2)
4169 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
4170 new_exit_bb = split_edge (exit_edge);
4171 new_exit_e = exit_edge;
4172 e = EDGE_SUCC (new_exit_bb, 0);
4174 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
4175 gsi_next (&gsi))
4177 tree new_res;
4178 orig_phi = gsi.phi ();
4179 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
4180 new_phi = create_phi_node (new_res, new_exit_bb);
4181 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
4182 add_phi_arg (new_phi, arg, new_exit_e,
4183 gimple_phi_arg_location_from_edge (orig_phi, e));
4184 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
4188 update_ssa (TODO_update_ssa_no_phi);
4191 /* Split the cost model check off to a separate BB. Costing assumes
4192 this is the only thing we perform when we enter the scalar loop
4193 from a failed cost decision. */
4194 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
4196 gimple *def = SSA_NAME_DEF_STMT (cost_name);
4197 gcc_assert (gimple_bb (def) == condition_bb);
4198 /* All uses of the cost check are 'true' after the check we
4199 are going to insert. */
4200 replace_uses_by (cost_name, boolean_true_node);
4201 /* And we're going to build the new single use of it. */
4202 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
4203 NULL_TREE, NULL_TREE);
4204 edge e = split_block (gimple_bb (def), def);
4205 gimple_stmt_iterator gsi = gsi_for_stmt (def);
4206 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
4207 edge true_e, false_e;
4208 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
4209 e->flags &= ~EDGE_FALLTHRU;
4210 e->flags |= EDGE_TRUE_VALUE;
4211 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
4212 e->probability = prob2;
4213 e2->probability = prob2.invert ();
4214 e->dest->count = e->count ();
4215 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
4216 auto_vec<basic_block, 3> adj;
4217 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
4218 son;
4219 son = next_dom_son (CDI_DOMINATORS, son))
4220 if (EDGE_COUNT (son->preds) > 1)
4221 adj.safe_push (son);
4222 for (auto son : adj)
4223 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
4224 //debug_bb (condition_bb);
4225 //debug_bb (e->src);
4228 if (version_niter)
4230 /* The versioned loop could be infinite, we need to clear existing
4231 niter information which is copied from the original loop. */
4232 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
4233 vect_free_loop_info_assumptions (nloop);
4236 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
4237 && dump_enabled_p ())
4239 if (version_alias)
4240 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4241 vect_location,
4242 "loop versioned for vectorization because of "
4243 "possible aliasing\n");
4244 if (version_align)
4245 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4246 vect_location,
4247 "loop versioned for vectorization to enhance "
4248 "alignment\n");
4252 return nloop;