2008-07-06 Kai Tietz <kai.tietz@onevision.com>
[official-gcc.git] / gcc / config / i386 / i386.h
blobd17e414eb5ffe8e53cd0d5e2896de9ac24b1591b
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
37 /* Redefines for option macros. */
39 #define TARGET_64BIT OPTION_ISA_64BIT
40 #define TARGET_MMX OPTION_ISA_MMX
41 #define TARGET_3DNOW OPTION_ISA_3DNOW
42 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43 #define TARGET_SSE OPTION_ISA_SSE
44 #define TARGET_SSE2 OPTION_ISA_SSE2
45 #define TARGET_SSE3 OPTION_ISA_SSE3
46 #define TARGET_SSSE3 OPTION_ISA_SSSE3
47 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
48 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
49 #define TARGET_SSE4A OPTION_ISA_SSE4A
50 #define TARGET_SSE5 OPTION_ISA_SSE5
51 #define TARGET_ROUND OPTION_ISA_ROUND
53 /* SSE5 and SSE4.1 define the same round instructions */
54 #define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
55 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
57 #include "config/vxworks-dummy.h"
59 /* Algorithm to expand string function with. */
60 enum stringop_alg
62 no_stringop,
63 libcall,
64 rep_prefix_1_byte,
65 rep_prefix_4_byte,
66 rep_prefix_8_byte,
67 loop_1_byte,
68 loop,
69 unrolled_loop
72 #define NAX_STRINGOP_ALGS 4
74 /* Specify what algorithm to use for stringops on known size.
75 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
76 known at compile time or estimated via feedback, the SIZE array
77 is walked in order until MAX is greater then the estimate (or -1
78 means infinity). Corresponding ALG is used then.
79 For example initializer:
80 {{256, loop}, {-1, rep_prefix_4_byte}}
81 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
82 be used otherwise. */
83 struct stringop_algs
85 const enum stringop_alg unknown_size;
86 const struct stringop_strategy {
87 const int max;
88 const enum stringop_alg alg;
89 } size [NAX_STRINGOP_ALGS];
92 /* Define the specific costs for a given cpu */
94 struct processor_costs {
95 const int add; /* cost of an add instruction */
96 const int lea; /* cost of a lea instruction */
97 const int shift_var; /* variable shift costs */
98 const int shift_const; /* constant shift costs */
99 const int mult_init[5]; /* cost of starting a multiply
100 in QImode, HImode, SImode, DImode, TImode*/
101 const int mult_bit; /* cost of multiply per each bit set */
102 const int divide[5]; /* cost of a divide/mod
103 in QImode, HImode, SImode, DImode, TImode*/
104 int movsx; /* The cost of movsx operation. */
105 int movzx; /* The cost of movzx operation. */
106 const int large_insn; /* insns larger than this cost more */
107 const int move_ratio; /* The threshold of number of scalar
108 memory-to-memory move insns. */
109 const int movzbl_load; /* cost of loading using movzbl */
110 const int int_load[3]; /* cost of loading integer registers
111 in QImode, HImode and SImode relative
112 to reg-reg move (2). */
113 const int int_store[3]; /* cost of storing integer register
114 in QImode, HImode and SImode */
115 const int fp_move; /* cost of reg,reg fld/fst */
116 const int fp_load[3]; /* cost of loading FP register
117 in SFmode, DFmode and XFmode */
118 const int fp_store[3]; /* cost of storing FP register
119 in SFmode, DFmode and XFmode */
120 const int mmx_move; /* cost of moving MMX register. */
121 const int mmx_load[2]; /* cost of loading MMX register
122 in SImode and DImode */
123 const int mmx_store[2]; /* cost of storing MMX register
124 in SImode and DImode */
125 const int sse_move; /* cost of moving SSE register. */
126 const int sse_load[3]; /* cost of loading SSE register
127 in SImode, DImode and TImode*/
128 const int sse_store[3]; /* cost of storing SSE register
129 in SImode, DImode and TImode*/
130 const int mmxsse_to_integer; /* cost of moving mmxsse register to
131 integer and vice versa. */
132 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
133 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
134 const int prefetch_block; /* bytes moved to cache for prefetch. */
135 const int simultaneous_prefetches; /* number of parallel prefetch
136 operations. */
137 const int branch_cost; /* Default value for BRANCH_COST. */
138 const int fadd; /* cost of FADD and FSUB instructions. */
139 const int fmul; /* cost of FMUL instruction. */
140 const int fdiv; /* cost of FDIV instruction. */
141 const int fabs; /* cost of FABS instruction. */
142 const int fchs; /* cost of FCHS instruction. */
143 const int fsqrt; /* cost of FSQRT instruction. */
144 /* Specify what algorithm
145 to use for stringops on unknown size. */
146 struct stringop_algs memcpy[2], memset[2];
147 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
148 load and store. */
149 const int scalar_load_cost; /* Cost of scalar load. */
150 const int scalar_store_cost; /* Cost of scalar store. */
151 const int vec_stmt_cost; /* Cost of any vector operation, excluding
152 load, store, vector-to-scalar and
153 scalar-to-vector operation. */
154 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
155 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
156 const int vec_align_load_cost; /* Cost of aligned vector load. */
157 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
158 const int vec_store_cost; /* Cost of vector store. */
159 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
160 cost model. */
161 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
162 vectorizer cost model. */
165 extern const struct processor_costs *ix86_cost;
167 /* Macros used in the machine description to test the flags. */
169 /* configure can arrange to make this 2, to force a 486. */
171 #ifndef TARGET_CPU_DEFAULT
172 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
173 #endif
175 #ifndef TARGET_FPMATH_DEFAULT
176 #define TARGET_FPMATH_DEFAULT \
177 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
178 #endif
180 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
182 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
183 compile-time constant. */
184 #ifdef IN_LIBGCC2
185 #undef TARGET_64BIT
186 #ifdef __x86_64__
187 #define TARGET_64BIT 1
188 #else
189 #define TARGET_64BIT 0
190 #endif
191 #else
192 #ifndef TARGET_BI_ARCH
193 #undef TARGET_64BIT
194 #if TARGET_64BIT_DEFAULT
195 #define TARGET_64BIT 1
196 #else
197 #define TARGET_64BIT 0
198 #endif
199 #endif
200 #endif
202 #define HAS_LONG_COND_BRANCH 1
203 #define HAS_LONG_UNCOND_BRANCH 1
205 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
206 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
207 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
208 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
209 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
210 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
211 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
212 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
213 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
214 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
215 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
216 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
217 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
218 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
219 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
220 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
222 /* Feature tests against the various tunings. */
223 enum ix86_tune_indices {
224 X86_TUNE_USE_LEAVE,
225 X86_TUNE_PUSH_MEMORY,
226 X86_TUNE_ZERO_EXTEND_WITH_AND,
227 X86_TUNE_USE_BIT_TEST,
228 X86_TUNE_UNROLL_STRLEN,
229 X86_TUNE_DEEP_BRANCH_PREDICTION,
230 X86_TUNE_BRANCH_PREDICTION_HINTS,
231 X86_TUNE_DOUBLE_WITH_ADD,
232 X86_TUNE_USE_SAHF,
233 X86_TUNE_MOVX,
234 X86_TUNE_PARTIAL_REG_STALL,
235 X86_TUNE_PARTIAL_FLAG_REG_STALL,
236 X86_TUNE_USE_HIMODE_FIOP,
237 X86_TUNE_USE_SIMODE_FIOP,
238 X86_TUNE_USE_MOV0,
239 X86_TUNE_USE_CLTD,
240 X86_TUNE_USE_XCHGB,
241 X86_TUNE_SPLIT_LONG_MOVES,
242 X86_TUNE_READ_MODIFY_WRITE,
243 X86_TUNE_READ_MODIFY,
244 X86_TUNE_PROMOTE_QIMODE,
245 X86_TUNE_FAST_PREFIX,
246 X86_TUNE_SINGLE_STRINGOP,
247 X86_TUNE_QIMODE_MATH,
248 X86_TUNE_HIMODE_MATH,
249 X86_TUNE_PROMOTE_QI_REGS,
250 X86_TUNE_PROMOTE_HI_REGS,
251 X86_TUNE_ADD_ESP_4,
252 X86_TUNE_ADD_ESP_8,
253 X86_TUNE_SUB_ESP_4,
254 X86_TUNE_SUB_ESP_8,
255 X86_TUNE_INTEGER_DFMODE_MOVES,
256 X86_TUNE_PARTIAL_REG_DEPENDENCY,
257 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
258 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
259 X86_TUNE_SSE_SPLIT_REGS,
260 X86_TUNE_SSE_TYPELESS_STORES,
261 X86_TUNE_SSE_LOAD0_BY_PXOR,
262 X86_TUNE_MEMORY_MISMATCH_STALL,
263 X86_TUNE_PROLOGUE_USING_MOVE,
264 X86_TUNE_EPILOGUE_USING_MOVE,
265 X86_TUNE_SHIFT1,
266 X86_TUNE_USE_FFREEP,
267 X86_TUNE_INTER_UNIT_MOVES,
268 X86_TUNE_INTER_UNIT_CONVERSIONS,
269 X86_TUNE_FOUR_JUMP_LIMIT,
270 X86_TUNE_SCHEDULE,
271 X86_TUNE_USE_BT,
272 X86_TUNE_USE_INCDEC,
273 X86_TUNE_PAD_RETURNS,
274 X86_TUNE_EXT_80387_CONSTANTS,
275 X86_TUNE_SHORTEN_X87_SSE,
276 X86_TUNE_AVOID_VECTOR_DECODE,
277 X86_TUNE_PROMOTE_HIMODE_IMUL,
278 X86_TUNE_SLOW_IMUL_IMM32_MEM,
279 X86_TUNE_SLOW_IMUL_IMM8,
280 X86_TUNE_MOVE_M1_VIA_OR,
281 X86_TUNE_NOT_UNPAIRABLE,
282 X86_TUNE_NOT_VECTORMODE,
283 X86_TUNE_USE_VECTOR_CONVERTS,
284 X86_TUNE_FUSE_CMP_AND_BRANCH,
286 X86_TUNE_LAST
289 extern unsigned int ix86_tune_features[X86_TUNE_LAST];
291 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
292 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
293 #define TARGET_ZERO_EXTEND_WITH_AND \
294 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
295 #define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
296 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
297 #define TARGET_DEEP_BRANCH_PREDICTION \
298 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
299 #define TARGET_BRANCH_PREDICTION_HINTS \
300 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
301 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
302 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
303 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
304 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
305 #define TARGET_PARTIAL_FLAG_REG_STALL \
306 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
307 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
308 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
309 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
310 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
311 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
312 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
313 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
314 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
315 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
316 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
317 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
318 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
319 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
320 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
321 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
322 #define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
323 #define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
324 #define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
325 #define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
326 #define TARGET_INTEGER_DFMODE_MOVES \
327 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
328 #define TARGET_PARTIAL_REG_DEPENDENCY \
329 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
330 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
331 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
332 #define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
333 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
334 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
335 #define TARGET_SSE_TYPELESS_STORES \
336 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
337 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
338 #define TARGET_MEMORY_MISMATCH_STALL \
339 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
340 #define TARGET_PROLOGUE_USING_MOVE \
341 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
342 #define TARGET_EPILOGUE_USING_MOVE \
343 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
344 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
345 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
346 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
347 #define TARGET_INTER_UNIT_CONVERSIONS\
348 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
349 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
350 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
351 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
352 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
353 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
354 #define TARGET_EXT_80387_CONSTANTS \
355 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
356 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
357 #define TARGET_AVOID_VECTOR_DECODE \
358 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
359 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
360 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
361 #define TARGET_SLOW_IMUL_IMM32_MEM \
362 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
363 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
364 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
365 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
366 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
367 #define TARGET_USE_VECTOR_CONVERTS \
368 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
369 #define TARGET_FUSE_CMP_AND_BRANCH \
370 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
372 /* Feature tests against the various architecture variations. */
373 enum ix86_arch_indices {
374 X86_ARCH_CMOVE, /* || TARGET_SSE */
375 X86_ARCH_CMPXCHG,
376 X86_ARCH_CMPXCHG8B,
377 X86_ARCH_XADD,
378 X86_ARCH_BSWAP,
380 X86_ARCH_LAST
383 extern unsigned int ix86_arch_features[X86_ARCH_LAST];
385 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
386 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
387 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
388 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
389 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
391 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
393 extern int x86_prefetch_sse;
395 #define TARGET_ABM x86_abm
396 #define TARGET_CMPXCHG16B x86_cmpxchg16b
397 #define TARGET_POPCNT x86_popcnt
398 #define TARGET_PREFETCH_SSE x86_prefetch_sse
399 #define TARGET_SAHF x86_sahf
400 #define TARGET_RECIP x86_recip
401 #define TARGET_FUSED_MADD x86_fused_muladd
402 #define TARGET_AES (TARGET_SSE2 && x86_aes)
403 #define TARGET_PCLMUL (TARGET_SSE2 && x86_pclmul)
405 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
407 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
408 #define TARGET_MIX_SSE_I387 \
409 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
411 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
412 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
413 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
414 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
416 extern int ix86_isa_flags;
418 #ifndef TARGET_64BIT_DEFAULT
419 #define TARGET_64BIT_DEFAULT 0
420 #endif
421 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
422 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
423 #endif
425 /* Fence to use after loop using storent. */
427 extern tree x86_mfence;
428 #define FENCE_FOLLOWING_MOVNT x86_mfence
430 /* Once GDB has been enhanced to deal with functions without frame
431 pointers, we can change this to allow for elimination of
432 the frame pointer in leaf functions. */
433 #define TARGET_DEFAULT 0
435 /* Extra bits to force. */
436 #define TARGET_SUBTARGET_DEFAULT 0
437 #define TARGET_SUBTARGET_ISA_DEFAULT 0
439 /* Extra bits to force on w/ 32-bit mode. */
440 #define TARGET_SUBTARGET32_DEFAULT 0
441 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
443 /* Extra bits to force on w/ 64-bit mode. */
444 #define TARGET_SUBTARGET64_DEFAULT 0
445 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
447 /* This is not really a target flag, but is done this way so that
448 it's analogous to similar code for Mach-O on PowerPC. darwin.h
449 redefines this to 1. */
450 #define TARGET_MACHO 0
452 /* Likewise, for the Windows 64-bit ABI. */
453 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
455 /* Available call abi. */
456 enum calling_abi
458 SYSV_ABI = 0,
459 MS_ABI = 1
462 /* The default abi form used by target. */
463 #define DEFAULT_ABI SYSV_ABI
465 /* Subtargets may reset this to 1 in order to enable 96-bit long double
466 with the rounding mode forced to 53 bits. */
467 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
469 /* Sometimes certain combinations of command options do not make
470 sense on a particular target machine. You can define a macro
471 `OVERRIDE_OPTIONS' to take account of this. This macro, if
472 defined, is executed once just after all the command options have
473 been parsed.
475 Don't use this macro to turn on various extra optimizations for
476 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
478 #define OVERRIDE_OPTIONS override_options ()
480 /* Define this to change the optimizations performed by default. */
481 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
482 optimization_options ((LEVEL), (SIZE))
484 /* -march=native handling only makes sense with compiler running on
485 an x86 or x86_64 chip. If changing this condition, also change
486 the condition in driver-i386.c. */
487 #if defined(__i386__) || defined(__x86_64__)
488 /* In driver-i386.c. */
489 extern const char *host_detect_local_cpu (int argc, const char **argv);
490 #define EXTRA_SPEC_FUNCTIONS \
491 { "local_cpu_detect", host_detect_local_cpu },
492 #define HAVE_LOCAL_CPU_DETECT
493 #endif
495 #if TARGET_64BIT_DEFAULT
496 #define OPT_ARCH64 "!m32"
497 #define OPT_ARCH32 "m32"
498 #else
499 #define OPT_ARCH64 "m64"
500 #define OPT_ARCH32 "!m64"
501 #endif
503 /* Support for configure-time defaults of some command line options.
504 The order here is important so that -march doesn't squash the
505 tune or cpu values. */
506 #define OPTION_DEFAULT_SPECS \
507 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
508 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
509 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
510 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
511 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
512 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
513 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
514 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
515 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
517 /* Specs for the compiler proper */
519 #ifndef CC1_CPU_SPEC
520 #define CC1_CPU_SPEC_1 "\
521 %{mcpu=*:-mtune=%* \
522 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
523 %<mcpu=* \
524 %{mintel-syntax:-masm=intel \
525 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
526 %{mno-intel-syntax:-masm=att \
527 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
529 #ifndef HAVE_LOCAL_CPU_DETECT
530 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
531 #else
532 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
533 "%{march=native:%<march=native %:local_cpu_detect(arch) \
534 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
535 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
536 #endif
537 #endif
539 /* Target CPU builtins. */
540 #define TARGET_CPU_CPP_BUILTINS() \
541 do \
543 size_t arch_len = strlen (ix86_arch_string); \
544 size_t tune_len = strlen (ix86_tune_string); \
545 int last_arch_char = ix86_arch_string[arch_len - 1]; \
546 int last_tune_char = ix86_tune_string[tune_len - 1]; \
548 if (TARGET_64BIT) \
550 builtin_assert ("cpu=x86_64"); \
551 builtin_assert ("machine=x86_64"); \
552 builtin_define ("__amd64"); \
553 builtin_define ("__amd64__"); \
554 builtin_define ("__x86_64"); \
555 builtin_define ("__x86_64__"); \
557 else \
559 builtin_assert ("cpu=i386"); \
560 builtin_assert ("machine=i386"); \
561 builtin_define_std ("i386"); \
564 /* Built-ins based on -march=. */ \
565 switch (ix86_arch) \
567 case PROCESSOR_I386: \
568 break; \
569 case PROCESSOR_I486: \
570 builtin_define ("__i486"); \
571 builtin_define ("__i486__"); \
572 break; \
573 case PROCESSOR_PENTIUM: \
574 builtin_define ("__i586"); \
575 builtin_define ("__i586__"); \
576 builtin_define ("__pentium"); \
577 builtin_define ("__pentium__"); \
578 if (last_arch_char == 'x') \
579 builtin_define ("__pentium_mmx__"); \
580 break; \
581 case PROCESSOR_PENTIUMPRO: \
582 builtin_define ("__i686"); \
583 builtin_define ("__i686__"); \
584 builtin_define ("__pentiumpro"); \
585 builtin_define ("__pentiumpro__"); \
586 break; \
587 case PROCESSOR_GEODE: \
588 builtin_define ("__geode"); \
589 builtin_define ("__geode__"); \
590 break; \
591 case PROCESSOR_K6: \
592 builtin_define ("__k6"); \
593 builtin_define ("__k6__"); \
594 if (last_arch_char == '2') \
595 builtin_define ("__k6_2__"); \
596 else if (last_arch_char == '3') \
597 builtin_define ("__k6_3__"); \
598 break; \
599 case PROCESSOR_ATHLON: \
600 builtin_define ("__athlon"); \
601 builtin_define ("__athlon__"); \
602 /* Only plain "athlon" lacks SSE. */ \
603 if (last_arch_char != 'n') \
604 builtin_define ("__athlon_sse__"); \
605 break; \
606 case PROCESSOR_K8: \
607 builtin_define ("__k8"); \
608 builtin_define ("__k8__"); \
609 break; \
610 case PROCESSOR_AMDFAM10: \
611 builtin_define ("__amdfam10"); \
612 builtin_define ("__amdfam10__"); \
613 break; \
614 case PROCESSOR_PENTIUM4: \
615 builtin_define ("__pentium4"); \
616 builtin_define ("__pentium4__"); \
617 break; \
618 case PROCESSOR_NOCONA: \
619 builtin_define ("__nocona"); \
620 builtin_define ("__nocona__"); \
621 break; \
622 case PROCESSOR_CORE2: \
623 builtin_define ("__core2"); \
624 builtin_define ("__core2__"); \
625 break; \
626 case PROCESSOR_GENERIC32: \
627 case PROCESSOR_GENERIC64: \
628 case PROCESSOR_max: \
629 gcc_unreachable (); \
632 /* Built-ins based on -mtune=. */ \
633 switch (ix86_tune) \
635 case PROCESSOR_I386: \
636 builtin_define ("__tune_i386__"); \
637 break; \
638 case PROCESSOR_I486: \
639 builtin_define ("__tune_i486__"); \
640 break; \
641 case PROCESSOR_PENTIUM: \
642 builtin_define ("__tune_i586__"); \
643 builtin_define ("__tune_pentium__"); \
644 if (last_tune_char == 'x') \
645 builtin_define ("__tune_pentium_mmx__"); \
646 break; \
647 case PROCESSOR_PENTIUMPRO: \
648 builtin_define ("__tune_i686__"); \
649 builtin_define ("__tune_pentiumpro__"); \
650 switch (last_tune_char) \
652 case '3': \
653 builtin_define ("__tune_pentium3__"); \
654 /* FALLTHRU */ \
655 case '2': \
656 builtin_define ("__tune_pentium2__"); \
657 break; \
659 break; \
660 case PROCESSOR_GEODE: \
661 builtin_define ("__tune_geode__"); \
662 break; \
663 case PROCESSOR_K6: \
664 builtin_define ("__tune_k6__"); \
665 if (last_tune_char == '2') \
666 builtin_define ("__tune_k6_2__"); \
667 else if (last_tune_char == '3') \
668 builtin_define ("__tune_k6_3__"); \
669 break; \
670 case PROCESSOR_ATHLON: \
671 builtin_define ("__tune_athlon__"); \
672 /* Only plain "athlon" lacks SSE. */ \
673 if (last_tune_char != 'n') \
674 builtin_define ("__tune_athlon_sse__"); \
675 break; \
676 case PROCESSOR_K8: \
677 builtin_define ("__tune_k8__"); \
678 break; \
679 case PROCESSOR_AMDFAM10: \
680 builtin_define ("__tune_amdfam10__"); \
681 break; \
682 case PROCESSOR_PENTIUM4: \
683 builtin_define ("__tune_pentium4__"); \
684 break; \
685 case PROCESSOR_NOCONA: \
686 builtin_define ("__tune_nocona__"); \
687 break; \
688 case PROCESSOR_CORE2: \
689 builtin_define ("__tune_core2__"); \
690 break; \
691 case PROCESSOR_GENERIC32: \
692 case PROCESSOR_GENERIC64: \
693 break; \
694 case PROCESSOR_max: \
695 gcc_unreachable (); \
698 if (TARGET_MMX) \
699 builtin_define ("__MMX__"); \
700 if (TARGET_3DNOW) \
701 builtin_define ("__3dNOW__"); \
702 if (TARGET_3DNOW_A) \
703 builtin_define ("__3dNOW_A__"); \
704 if (TARGET_SSE) \
705 builtin_define ("__SSE__"); \
706 if (TARGET_SSE2) \
707 builtin_define ("__SSE2__"); \
708 if (TARGET_SSE3) \
709 builtin_define ("__SSE3__"); \
710 if (TARGET_SSSE3) \
711 builtin_define ("__SSSE3__"); \
712 if (TARGET_SSE4_1) \
713 builtin_define ("__SSE4_1__"); \
714 if (TARGET_SSE4_2) \
715 builtin_define ("__SSE4_2__"); \
716 if (TARGET_AES) \
717 builtin_define ("__AES__"); \
718 if (TARGET_PCLMUL) \
719 builtin_define ("__PCLMUL__"); \
720 if (TARGET_SSE4A) \
721 builtin_define ("__SSE4A__"); \
722 if (TARGET_SSE5) \
723 builtin_define ("__SSE5__"); \
724 if (TARGET_SSE_MATH && TARGET_SSE) \
725 builtin_define ("__SSE_MATH__"); \
726 if (TARGET_SSE_MATH && TARGET_SSE2) \
727 builtin_define ("__SSE2_MATH__"); \
729 while (0)
731 enum target_cpu_default
733 TARGET_CPU_DEFAULT_generic = 0,
735 TARGET_CPU_DEFAULT_i386,
736 TARGET_CPU_DEFAULT_i486,
737 TARGET_CPU_DEFAULT_pentium,
738 TARGET_CPU_DEFAULT_pentium_mmx,
739 TARGET_CPU_DEFAULT_pentiumpro,
740 TARGET_CPU_DEFAULT_pentium2,
741 TARGET_CPU_DEFAULT_pentium3,
742 TARGET_CPU_DEFAULT_pentium4,
743 TARGET_CPU_DEFAULT_pentium_m,
744 TARGET_CPU_DEFAULT_prescott,
745 TARGET_CPU_DEFAULT_nocona,
746 TARGET_CPU_DEFAULT_core2,
748 TARGET_CPU_DEFAULT_geode,
749 TARGET_CPU_DEFAULT_k6,
750 TARGET_CPU_DEFAULT_k6_2,
751 TARGET_CPU_DEFAULT_k6_3,
752 TARGET_CPU_DEFAULT_athlon,
753 TARGET_CPU_DEFAULT_athlon_sse,
754 TARGET_CPU_DEFAULT_k8,
755 TARGET_CPU_DEFAULT_amdfam10,
757 TARGET_CPU_DEFAULT_max
760 #ifndef CC1_SPEC
761 #define CC1_SPEC "%(cc1_cpu) "
762 #endif
764 /* This macro defines names of additional specifications to put in the
765 specs that can be used in various specifications like CC1_SPEC. Its
766 definition is an initializer with a subgrouping for each command option.
768 Each subgrouping contains a string constant, that defines the
769 specification name, and a string constant that used by the GCC driver
770 program.
772 Do not define this macro if it does not need to do anything. */
774 #ifndef SUBTARGET_EXTRA_SPECS
775 #define SUBTARGET_EXTRA_SPECS
776 #endif
778 #define EXTRA_SPECS \
779 { "cc1_cpu", CC1_CPU_SPEC }, \
780 SUBTARGET_EXTRA_SPECS
783 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
784 FPU, assume that the fpcw is set to extended precision; when using
785 only SSE, rounding is correct; when using both SSE and the FPU,
786 the rounding precision is indeterminate, since either may be chosen
787 apparently at random. */
788 #define TARGET_FLT_EVAL_METHOD \
789 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
791 /* target machine storage layout */
793 #define SHORT_TYPE_SIZE 16
794 #define INT_TYPE_SIZE 32
795 #define FLOAT_TYPE_SIZE 32
796 #define LONG_TYPE_SIZE BITS_PER_WORD
797 #define DOUBLE_TYPE_SIZE 64
798 #define LONG_LONG_TYPE_SIZE 64
799 #define LONG_DOUBLE_TYPE_SIZE 80
801 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
803 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
804 #define MAX_BITS_PER_WORD 64
805 #else
806 #define MAX_BITS_PER_WORD 32
807 #endif
809 /* Define this if most significant byte of a word is the lowest numbered. */
810 /* That is true on the 80386. */
812 #define BITS_BIG_ENDIAN 0
814 /* Define this if most significant byte of a word is the lowest numbered. */
815 /* That is not true on the 80386. */
816 #define BYTES_BIG_ENDIAN 0
818 /* Define this if most significant word of a multiword number is the lowest
819 numbered. */
820 /* Not true for 80386 */
821 #define WORDS_BIG_ENDIAN 0
823 /* Width of a word, in units (bytes). */
824 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
825 #ifdef IN_LIBGCC2
826 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
827 #else
828 #define MIN_UNITS_PER_WORD 4
829 #endif
831 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
832 #define PARM_BOUNDARY BITS_PER_WORD
834 /* Boundary (in *bits*) on which stack pointer should be aligned. */
835 #define STACK_BOUNDARY (TARGET_64BIT && DEFAULT_ABI == MS_ABI ? 128 \
836 : BITS_PER_WORD)
838 /* Boundary (in *bits*) on which the stack pointer prefers to be
839 aligned; the compiler cannot rely on having this alignment. */
840 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
842 /* As of July 2001, many runtimes do not align the stack properly when
843 entering main. This causes expand_main_function to forcibly align
844 the stack, which results in aligned frames for functions called from
845 main, though it does nothing for the alignment of main itself. */
846 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
847 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
849 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
850 mandatory for the 64-bit ABI, and may or may not be true for other
851 operating systems. */
852 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
854 /* Minimum allocation boundary for the code of a function. */
855 #define FUNCTION_BOUNDARY 8
857 /* C++ stores the virtual bit in the lowest bit of function pointers. */
858 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
860 /* Alignment of field after `int : 0' in a structure. */
862 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
864 /* Minimum size in bits of the largest boundary to which any
865 and all fundamental data types supported by the hardware
866 might need to be aligned. No data type wants to be aligned
867 rounder than this.
869 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
870 and Pentium Pro XFmode values at 128 bit boundaries. */
872 #define BIGGEST_ALIGNMENT 128
874 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
875 #define ALIGN_MODE_128(MODE) \
876 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
878 /* The published ABIs say that doubles should be aligned on word
879 boundaries, so lower the alignment for structure fields unless
880 -malign-double is set. */
882 /* ??? Blah -- this macro is used directly by libobjc. Since it
883 supports no vector modes, cut out the complexity and fall back
884 on BIGGEST_FIELD_ALIGNMENT. */
885 #ifdef IN_TARGET_LIBS
886 #ifdef __x86_64__
887 #define BIGGEST_FIELD_ALIGNMENT 128
888 #else
889 #define BIGGEST_FIELD_ALIGNMENT 32
890 #endif
891 #else
892 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
893 x86_field_alignment (FIELD, COMPUTED)
894 #endif
896 /* If defined, a C expression to compute the alignment given to a
897 constant that is being placed in memory. EXP is the constant
898 and ALIGN is the alignment that the object would ordinarily have.
899 The value of this macro is used instead of that alignment to align
900 the object.
902 If this macro is not defined, then ALIGN is used.
904 The typical use of this macro is to increase alignment for string
905 constants to be word aligned so that `strcpy' calls that copy
906 constants can be done inline. */
908 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
910 /* If defined, a C expression to compute the alignment for a static
911 variable. TYPE is the data type, and ALIGN is the alignment that
912 the object would ordinarily have. The value of this macro is used
913 instead of that alignment to align the object.
915 If this macro is not defined, then ALIGN is used.
917 One use of this macro is to increase alignment of medium-size
918 data to make it all fit in fewer cache lines. Another is to
919 cause character arrays to be word-aligned so that `strcpy' calls
920 that copy constants to character arrays can be done inline. */
922 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
924 /* If defined, a C expression to compute the alignment for a local
925 variable. TYPE is the data type, and ALIGN is the alignment that
926 the object would ordinarily have. The value of this macro is used
927 instead of that alignment to align the object.
929 If this macro is not defined, then ALIGN is used.
931 One use of this macro is to increase alignment of medium-size
932 data to make it all fit in fewer cache lines. */
934 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
935 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
937 /* If defined, a C expression to compute the alignment for stack slot.
938 TYPE is the data type, MODE is the widest mode available, and ALIGN
939 is the alignment that the slot would ordinarily have. The value of
940 this macro is used instead of that alignment to align the slot.
942 If this macro is not defined, then ALIGN is used when TYPE is NULL,
943 Otherwise, LOCAL_ALIGNMENT will be used.
945 One use of this macro is to set alignment of stack slot to the
946 maximum alignment of all possible modes which the slot may have. */
948 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
949 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
951 /* If defined, a C expression that gives the alignment boundary, in
952 bits, of an argument with the specified mode and type. If it is
953 not defined, `PARM_BOUNDARY' is used for all arguments. */
955 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
956 ix86_function_arg_boundary ((MODE), (TYPE))
958 /* Set this nonzero if move instructions will actually fail to work
959 when given unaligned data. */
960 #define STRICT_ALIGNMENT 0
962 /* If bit field type is int, don't let it cross an int,
963 and give entire struct the alignment of an int. */
964 /* Required on the 386 since it doesn't have bit-field insns. */
965 #define PCC_BITFIELD_TYPE_MATTERS 1
967 /* Standard register usage. */
969 /* This processor has special stack-like registers. See reg-stack.c
970 for details. */
972 #define STACK_REGS
974 #define IS_STACK_MODE(MODE) \
975 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
976 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
977 || (MODE) == XFmode)
979 /* Number of actual hardware registers.
980 The hardware registers are assigned numbers for the compiler
981 from 0 to just below FIRST_PSEUDO_REGISTER.
982 All registers that the compiler knows about must be given numbers,
983 even those that are not normally considered general registers.
985 In the 80386 we give the 8 general purpose registers the numbers 0-7.
986 We number the floating point registers 8-15.
987 Note that registers 0-7 can be accessed as a short or int,
988 while only 0-3 may be used with byte `mov' instructions.
990 Reg 16 does not correspond to any hardware register, but instead
991 appears in the RTL as an argument pointer prior to reload, and is
992 eliminated during reloading in favor of either the stack or frame
993 pointer. */
995 #define FIRST_PSEUDO_REGISTER 53
997 /* Number of hardware registers that go into the DWARF-2 unwind info.
998 If not defined, equals FIRST_PSEUDO_REGISTER. */
1000 #define DWARF_FRAME_REGISTERS 17
1002 /* 1 for registers that have pervasive standard uses
1003 and are not available for the register allocator.
1004 On the 80386, the stack pointer is such, as is the arg pointer.
1006 The value is zero if the register is not fixed on either 32 or
1007 64 bit targets, one if the register if fixed on both 32 and 64
1008 bit targets, two if it is only fixed on 32bit targets and three
1009 if its only fixed on 64bit targets.
1010 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
1012 #define FIXED_REGISTERS \
1013 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1014 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
1015 /*arg,flags,fpsr,fpcr,frame*/ \
1016 1, 1, 1, 1, 1, \
1017 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1018 0, 0, 0, 0, 0, 0, 0, 0, \
1019 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
1020 0, 0, 0, 0, 0, 0, 0, 0, \
1021 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1022 2, 2, 2, 2, 2, 2, 2, 2, \
1023 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1024 2, 2, 2, 2, 2, 2, 2, 2 }
1027 /* 1 for registers not available across function calls.
1028 These must include the FIXED_REGISTERS and also any
1029 registers that can be used without being saved.
1030 The latter must include the registers where values are returned
1031 and the register where structure-value addresses are passed.
1032 Aside from that, you can include as many other registers as you like.
1034 The value is zero if the register is not call used on either 32 or
1035 64 bit targets, one if the register if call used on both 32 and 64
1036 bit targets, two if it is only call used on 32bit targets and three
1037 if its only call used on 64bit targets.
1038 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
1040 #define CALL_USED_REGISTERS \
1041 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1042 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1043 /*arg,flags,fpsr,fpcr,frame*/ \
1044 1, 1, 1, 1, 1, \
1045 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1046 1, 1, 1, 1, 1, 1, 1, 1, \
1047 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
1048 1, 1, 1, 1, 1, 1, 1, 1, \
1049 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1050 1, 1, 1, 1, 2, 2, 2, 2, \
1051 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1052 1, 1, 1, 1, 1, 1, 1, 1 }
1054 /* Order in which to allocate registers. Each register must be
1055 listed once, even those in FIXED_REGISTERS. List frame pointer
1056 late and fixed registers last. Note that, in general, we prefer
1057 registers listed in CALL_USED_REGISTERS, keeping the others
1058 available for storage of persistent values.
1060 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
1061 so this is just empty initializer for array. */
1063 #define REG_ALLOC_ORDER \
1064 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1065 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1066 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1067 48, 49, 50, 51, 52 }
1069 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1070 to be rearranged based on a particular function. When using sse math,
1071 we want to allocate SSE before x87 registers and vice versa. */
1073 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
1076 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1078 /* Macro to conditionally modify fixed_regs/call_used_regs. */
1079 #define CONDITIONAL_REGISTER_USAGE \
1080 do { \
1081 int i; \
1082 unsigned int j; \
1083 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1085 if (fixed_regs[i] > 1) \
1086 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
1087 if (call_used_regs[i] > 1) \
1088 call_used_regs[i] = (call_used_regs[i] \
1089 == (TARGET_64BIT ? 3 : 2)); \
1091 j = PIC_OFFSET_TABLE_REGNUM; \
1092 if (j != INVALID_REGNUM) \
1094 fixed_regs[j] = 1; \
1095 call_used_regs[j] = 1; \
1097 if (! TARGET_MMX) \
1099 int i; \
1100 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1101 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1102 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1104 if (! TARGET_SSE) \
1106 int i; \
1107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1108 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1109 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1111 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1113 int i; \
1114 HARD_REG_SET x; \
1115 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1116 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1117 if (TEST_HARD_REG_BIT (x, i)) \
1118 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1120 if (! TARGET_64BIT) \
1122 int i; \
1123 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1124 reg_names[i] = ""; \
1125 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1126 reg_names[i] = ""; \
1128 if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) \
1130 call_used_regs[4 /*RSI*/] = 0; \
1131 call_used_regs[5 /*RDI*/] = 0; \
1133 } while (0)
1135 /* Return number of consecutive hard regs needed starting at reg REGNO
1136 to hold something of mode MODE.
1137 This is ordinarily the length in words of a value of mode MODE
1138 but can be less for certain modes in special long registers.
1140 Actually there are no two word move instructions for consecutive
1141 registers. And only registers 0-3 may have mov byte instructions
1142 applied to them.
1145 #define HARD_REGNO_NREGS(REGNO, MODE) \
1146 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1147 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1148 : ((MODE) == XFmode \
1149 ? (TARGET_64BIT ? 2 : 3) \
1150 : (MODE) == XCmode \
1151 ? (TARGET_64BIT ? 4 : 6) \
1152 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1154 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1155 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1156 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1157 ? 0 \
1158 : ((MODE) == XFmode || (MODE) == XCmode)) \
1159 : 0)
1161 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1163 #define VALID_SSE2_REG_MODE(MODE) \
1164 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1165 || (MODE) == V2DImode || (MODE) == DFmode)
1167 #define VALID_SSE_REG_MODE(MODE) \
1168 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1169 || (MODE) == SFmode || (MODE) == TFmode)
1171 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1172 ((MODE) == V2SFmode || (MODE) == SFmode)
1174 #define VALID_MMX_REG_MODE(MODE) \
1175 ((MODE == V1DImode) || (MODE) == DImode \
1176 || (MODE) == V2SImode || (MODE) == SImode \
1177 || (MODE) == V4HImode || (MODE) == V8QImode)
1179 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
1180 place emms and femms instructions. */
1181 #define UNITS_PER_SIMD_WORD(MODE) (TARGET_SSE ? 16 : UNITS_PER_WORD)
1183 #define VALID_DFP_MODE_P(MODE) \
1184 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1186 #define VALID_FP_MODE_P(MODE) \
1187 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1188 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1190 #define VALID_INT_MODE_P(MODE) \
1191 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1192 || (MODE) == DImode \
1193 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1194 || (MODE) == CDImode \
1195 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1196 || (MODE) == TFmode || (MODE) == TCmode)))
1198 /* Return true for modes passed in SSE registers. */
1199 #define SSE_REG_MODE_P(MODE) \
1200 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1201 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1202 || (MODE) == V4SFmode || (MODE) == V4SImode)
1204 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1206 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1207 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1209 /* Value is 1 if it is a good idea to tie two pseudo registers
1210 when one has mode MODE1 and one has mode MODE2.
1211 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1212 for any hard reg, then this must be 0 for correct output. */
1214 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1216 /* It is possible to write patterns to move flags; but until someone
1217 does it, */
1218 #define AVOID_CCMODE_COPIES
1220 /* Specify the modes required to caller save a given hard regno.
1221 We do this on i386 to prevent flags from being saved at all.
1223 Kill any attempts to combine saving of modes. */
1225 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1226 (CC_REGNO_P (REGNO) ? VOIDmode \
1227 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1228 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1229 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1230 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1231 : (MODE))
1233 /* Specify the registers used for certain standard purposes.
1234 The values of these macros are register numbers. */
1236 /* on the 386 the pc register is %eip, and is not usable as a general
1237 register. The ordinary mov instructions won't work */
1238 /* #define PC_REGNUM */
1240 /* Register to use for pushing function arguments. */
1241 #define STACK_POINTER_REGNUM 7
1243 /* Base register for access to local variables of the function. */
1244 #define HARD_FRAME_POINTER_REGNUM 6
1246 /* Base register for access to local variables of the function. */
1247 #define FRAME_POINTER_REGNUM 20
1249 /* First floating point reg */
1250 #define FIRST_FLOAT_REG 8
1252 /* First & last stack-like regs */
1253 #define FIRST_STACK_REG FIRST_FLOAT_REG
1254 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1256 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1257 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1259 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1260 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1262 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1263 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1265 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1266 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1268 /* Value should be nonzero if functions must have frame pointers.
1269 Zero means the frame pointer need not be set up (and parms
1270 may be accessed via the stack pointer) in functions that seem suitable.
1271 This is computed in `reload', in reload1.c. */
1272 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1274 /* Override this in other tm.h files to cope with various OS lossage
1275 requiring a frame pointer. */
1276 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1277 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1278 #endif
1280 /* Make sure we can access arbitrary call frames. */
1281 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1283 /* Base register for access to arguments of the function. */
1284 #define ARG_POINTER_REGNUM 16
1286 /* Register in which static-chain is passed to a function.
1287 We do use ECX as static chain register for 32 bit ABI. On the
1288 64bit ABI, ECX is an argument register, so we use R10 instead. */
1289 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
1291 /* Register to hold the addressing base for position independent
1292 code access to data items. We don't use PIC pointer for 64bit
1293 mode. Define the regnum to dummy value to prevent gcc from
1294 pessimizing code dealing with EBX.
1296 To avoid clobbering a call-saved register unnecessarily, we renumber
1297 the pic register when possible. The change is visible after the
1298 prologue has been emitted. */
1300 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1302 #define PIC_OFFSET_TABLE_REGNUM \
1303 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1304 || !flag_pic ? INVALID_REGNUM \
1305 : reload_completed ? REGNO (pic_offset_table_rtx) \
1306 : REAL_PIC_OFFSET_TABLE_REGNUM)
1308 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1310 /* This is overridden by <cygwin.h>. */
1311 #define MS_AGGREGATE_RETURN 0
1313 /* This is overridden by <netware.h>. */
1314 #define KEEP_AGGREGATE_RETURN_POINTER 0
1316 /* Define the classes of registers for register constraints in the
1317 machine description. Also define ranges of constants.
1319 One of the classes must always be named ALL_REGS and include all hard regs.
1320 If there is more than one class, another class must be named NO_REGS
1321 and contain no registers.
1323 The name GENERAL_REGS must be the name of a class (or an alias for
1324 another name such as ALL_REGS). This is the class of registers
1325 that is allowed by "g" or "r" in a register constraint.
1326 Also, registers outside this class are allocated only when
1327 instructions express preferences for them.
1329 The classes must be numbered in nondecreasing order; that is,
1330 a larger-numbered class must never be contained completely
1331 in a smaller-numbered class.
1333 For any two classes, it is very desirable that there be another
1334 class that represents their union.
1336 It might seem that class BREG is unnecessary, since no useful 386
1337 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1338 and the "b" register constraint is useful in asms for syscalls.
1340 The flags, fpsr and fpcr registers are in no class. */
1342 enum reg_class
1344 NO_REGS,
1345 AREG, DREG, CREG, BREG, SIREG, DIREG,
1346 AD_REGS, /* %eax/%edx for DImode */
1347 Q_REGS, /* %eax %ebx %ecx %edx */
1348 NON_Q_REGS, /* %esi %edi %ebp %esp */
1349 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1350 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1351 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1352 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1353 FLOAT_REGS,
1354 SSE_FIRST_REG,
1355 SSE_REGS,
1356 MMX_REGS,
1357 FP_TOP_SSE_REGS,
1358 FP_SECOND_SSE_REGS,
1359 FLOAT_SSE_REGS,
1360 FLOAT_INT_REGS,
1361 INT_SSE_REGS,
1362 FLOAT_INT_SSE_REGS,
1363 ALL_REGS, LIM_REG_CLASSES
1366 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1368 #define INTEGER_CLASS_P(CLASS) \
1369 reg_class_subset_p ((CLASS), GENERAL_REGS)
1370 #define FLOAT_CLASS_P(CLASS) \
1371 reg_class_subset_p ((CLASS), FLOAT_REGS)
1372 #define SSE_CLASS_P(CLASS) \
1373 reg_class_subset_p ((CLASS), SSE_REGS)
1374 #define MMX_CLASS_P(CLASS) \
1375 ((CLASS) == MMX_REGS)
1376 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1377 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1378 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1379 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1380 #define MAYBE_SSE_CLASS_P(CLASS) \
1381 reg_classes_intersect_p (SSE_REGS, (CLASS))
1382 #define MAYBE_MMX_CLASS_P(CLASS) \
1383 reg_classes_intersect_p (MMX_REGS, (CLASS))
1385 #define Q_CLASS_P(CLASS) \
1386 reg_class_subset_p ((CLASS), Q_REGS)
1388 /* Give names of register classes as strings for dump file. */
1390 #define REG_CLASS_NAMES \
1391 { "NO_REGS", \
1392 "AREG", "DREG", "CREG", "BREG", \
1393 "SIREG", "DIREG", \
1394 "AD_REGS", \
1395 "Q_REGS", "NON_Q_REGS", \
1396 "INDEX_REGS", \
1397 "LEGACY_REGS", \
1398 "GENERAL_REGS", \
1399 "FP_TOP_REG", "FP_SECOND_REG", \
1400 "FLOAT_REGS", \
1401 "SSE_FIRST_REG", \
1402 "SSE_REGS", \
1403 "MMX_REGS", \
1404 "FP_TOP_SSE_REGS", \
1405 "FP_SECOND_SSE_REGS", \
1406 "FLOAT_SSE_REGS", \
1407 "FLOAT_INT_REGS", \
1408 "INT_SSE_REGS", \
1409 "FLOAT_INT_SSE_REGS", \
1410 "ALL_REGS" }
1412 /* Define which registers fit in which classes.
1413 This is an initializer for a vector of HARD_REG_SET
1414 of length N_REG_CLASSES. */
1416 #define REG_CLASS_CONTENTS \
1417 { { 0x00, 0x0 }, \
1418 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1419 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1420 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1421 { 0x03, 0x0 }, /* AD_REGS */ \
1422 { 0x0f, 0x0 }, /* Q_REGS */ \
1423 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1424 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1425 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1426 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1427 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1428 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1429 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1430 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1431 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1432 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1433 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1434 { 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1435 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1436 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1437 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1438 { 0xffffffff,0x1fffff } \
1441 /* The same information, inverted:
1442 Return the class number of the smallest class containing
1443 reg number REGNO. This could be a conditional expression
1444 or could index an array. */
1446 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1448 /* When defined, the compiler allows registers explicitly used in the
1449 rtl to be used as spill registers but prevents the compiler from
1450 extending the lifetime of these registers. */
1452 #define SMALL_REGISTER_CLASSES 1
1454 #define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
1456 #define GENERAL_REGNO_P(N) \
1457 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1459 #define GENERAL_REG_P(X) \
1460 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1462 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1464 #define REX_INT_REGNO_P(N) \
1465 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1466 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1468 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1469 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1470 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1471 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1473 #define X87_FLOAT_MODE_P(MODE) \
1474 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1476 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1477 #define SSE_REGNO_P(N) \
1478 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1479 || REX_SSE_REGNO_P (N))
1481 #define REX_SSE_REGNO_P(N) \
1482 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1484 #define SSE_REGNO(N) \
1485 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1487 #define SSE_FLOAT_MODE_P(MODE) \
1488 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1490 #define SSE_VEC_FLOAT_MODE_P(MODE) \
1491 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1493 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1494 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1496 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1497 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1499 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1501 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1502 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1504 /* The class value for index registers, and the one for base regs. */
1506 #define INDEX_REG_CLASS INDEX_REGS
1507 #define BASE_REG_CLASS GENERAL_REGS
1509 /* Place additional restrictions on the register class to use when it
1510 is necessary to be able to hold a value of mode MODE in a reload
1511 register for which class CLASS would ordinarily be used. */
1513 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1514 ((MODE) == QImode && !TARGET_64BIT \
1515 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1516 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1517 ? Q_REGS : (CLASS))
1519 /* Given an rtx X being reloaded into a reg required to be
1520 in class CLASS, return the class of reg to actually use.
1521 In general this is just CLASS; but on some machines
1522 in some cases it is preferable to use a more restrictive class.
1523 On the 80386 series, we prevent floating constants from being
1524 reloaded into floating registers (since no move-insn can do that)
1525 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1527 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1528 QImode must go into class Q_REGS.
1529 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1530 movdf to do mem-to-mem moves through integer regs. */
1532 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1533 ix86_preferred_reload_class ((X), (CLASS))
1535 /* Discourage putting floating-point values in SSE registers unless
1536 SSE math is being used, and likewise for the 387 registers. */
1538 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1539 ix86_preferred_output_reload_class ((X), (CLASS))
1541 /* If we are copying between general and FP registers, we need a memory
1542 location. The same is true for SSE and MMX registers. */
1543 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1544 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1546 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1547 There is no need to emit full 64 bit move on 64 bit targets
1548 for integral modes that can be moved using 32 bit move. */
1549 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1550 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1551 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1552 : MODE)
1554 /* Return the maximum number of consecutive registers
1555 needed to represent mode MODE in a register of class CLASS. */
1556 /* On the 80386, this is the size of MODE in words,
1557 except in the FP regs, where a single reg is always enough. */
1558 #define CLASS_MAX_NREGS(CLASS, MODE) \
1559 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1560 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1561 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1562 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1564 /* A C expression whose value is nonzero if pseudos that have been
1565 assigned to registers of class CLASS would likely be spilled
1566 because registers of CLASS are needed for spill registers.
1568 The default value of this macro returns 1 if CLASS has exactly one
1569 register and zero otherwise. On most machines, this default
1570 should be used. Only define this macro to some other expression
1571 if pseudo allocated by `local-alloc.c' end up in memory because
1572 their hard registers were needed for spill registers. If this
1573 macro returns nonzero for those classes, those pseudos will only
1574 be allocated by `global.c', which knows how to reallocate the
1575 pseudo to another register. If there would not be another
1576 register available for reallocation, you should not change the
1577 definition of this macro since the only effect of such a
1578 definition would be to slow down register allocation. */
1580 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1581 (((CLASS) == AREG) \
1582 || ((CLASS) == DREG) \
1583 || ((CLASS) == CREG) \
1584 || ((CLASS) == BREG) \
1585 || ((CLASS) == AD_REGS) \
1586 || ((CLASS) == SIREG) \
1587 || ((CLASS) == DIREG) \
1588 || ((CLASS) == FP_TOP_REG) \
1589 || ((CLASS) == FP_SECOND_REG))
1591 /* Return a class of registers that cannot change FROM mode to TO mode. */
1593 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1594 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1596 /* Stack layout; function entry, exit and calling. */
1598 /* Define this if pushing a word on the stack
1599 makes the stack pointer a smaller address. */
1600 #define STACK_GROWS_DOWNWARD
1602 /* Define this to nonzero if the nominal address of the stack frame
1603 is at the high-address end of the local variables;
1604 that is, each additional local variable allocated
1605 goes at a more negative offset in the frame. */
1606 #define FRAME_GROWS_DOWNWARD 1
1608 /* Offset within stack frame to start allocating local variables at.
1609 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1610 first local allocated. Otherwise, it is the offset to the BEGINNING
1611 of the first local allocated. */
1612 #define STARTING_FRAME_OFFSET 0
1614 /* If we generate an insn to push BYTES bytes,
1615 this says how many the stack pointer really advances by.
1616 On 386, we have pushw instruction that decrements by exactly 2 no
1617 matter what the position was, there is no pushb.
1618 But as CIE data alignment factor on this arch is -4, we need to make
1619 sure all stack pointer adjustments are in multiple of 4.
1621 For 64bit ABI we round up to 8 bytes.
1624 #define PUSH_ROUNDING(BYTES) \
1625 (TARGET_64BIT \
1626 ? (((BYTES) + 7) & (-8)) \
1627 : (((BYTES) + 3) & (-4)))
1629 /* If defined, the maximum amount of space required for outgoing arguments will
1630 be computed and placed into the variable
1631 `crtl->outgoing_args_size'. No space will be pushed onto the
1632 stack for each call; instead, the function prologue should increase the stack
1633 frame size by this amount. */
1635 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1637 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1638 instructions to pass outgoing arguments. */
1640 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1642 /* We want the stack and args grow in opposite directions, even if
1643 PUSH_ARGS is 0. */
1644 #define PUSH_ARGS_REVERSED 1
1646 /* Offset of first parameter from the argument pointer register value. */
1647 #define FIRST_PARM_OFFSET(FNDECL) 0
1649 /* Define this macro if functions should assume that stack space has been
1650 allocated for arguments even when their values are passed in registers.
1652 The value of this macro is the size, in bytes, of the area reserved for
1653 arguments passed in registers for the function represented by FNDECL.
1655 This space can be allocated by the caller, or be a part of the
1656 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1657 which. */
1658 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1660 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) (ix86_function_type_abi (FNTYPE) == MS_ABI ? 1 : 0)
1662 /* Value is the number of bytes of arguments automatically
1663 popped when returning from a subroutine call.
1664 FUNDECL is the declaration node of the function (as a tree),
1665 FUNTYPE is the data type of the function (as a tree),
1666 or for a library call it is an identifier node for the subroutine name.
1667 SIZE is the number of bytes of arguments passed on the stack.
1669 On the 80386, the RTD insn may be used to pop them if the number
1670 of args is fixed, but if the number is variable then the caller
1671 must pop them all. RTD can't be used for library calls now
1672 because the library is compiled with the Unix compiler.
1673 Use of RTD is a selectable option, since it is incompatible with
1674 standard Unix calling sequences. If the option is not selected,
1675 the caller must always pop the args.
1677 The attribute stdcall is equivalent to RTD on a per module basis. */
1679 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1680 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1682 #define FUNCTION_VALUE_REGNO_P(N) \
1683 ix86_function_value_regno_p (N)
1685 /* Define how to find the value returned by a library function
1686 assuming the value has mode MODE. */
1688 #define LIBCALL_VALUE(MODE) \
1689 ix86_libcall_value (MODE)
1691 /* Define the size of the result block used for communication between
1692 untyped_call and untyped_return. The block contains a DImode value
1693 followed by the block used by fnsave and frstor. */
1695 #define APPLY_RESULT_SIZE (8+108)
1697 /* 1 if N is a possible register number for function argument passing. */
1698 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1700 /* Define a data type for recording info about an argument list
1701 during the scan of that argument list. This data type should
1702 hold all necessary information about the function itself
1703 and about the args processed so far, enough to enable macros
1704 such as FUNCTION_ARG to determine where the next arg should go. */
1706 typedef struct ix86_args {
1707 int words; /* # words passed so far */
1708 int nregs; /* # registers available for passing */
1709 int regno; /* next available register number */
1710 int fastcall; /* fastcall calling convention is used */
1711 int sse_words; /* # sse words passed so far */
1712 int sse_nregs; /* # sse registers available for passing */
1713 int warn_sse; /* True when we want to warn about SSE ABI. */
1714 int warn_mmx; /* True when we want to warn about MMX ABI. */
1715 int sse_regno; /* next available sse register number */
1716 int mmx_words; /* # mmx words passed so far */
1717 int mmx_nregs; /* # mmx registers available for passing */
1718 int mmx_regno; /* next available mmx register number */
1719 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1720 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1721 be passed in SSE registers. Otherwise 0. */
1722 int call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1723 MS_ABI for ms abi. */
1724 } CUMULATIVE_ARGS;
1726 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1727 for a call to a function whose data type is FNTYPE.
1728 For a library call, FNTYPE is 0. */
1730 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1731 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1733 /* Update the data in CUM to advance over an argument
1734 of mode MODE and data type TYPE.
1735 (TYPE is null for libcalls where that information may not be available.) */
1737 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1738 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1740 /* Define where to put the arguments to a function.
1741 Value is zero to push the argument on the stack,
1742 or a hard register in which to store the argument.
1744 MODE is the argument's machine mode.
1745 TYPE is the data type of the argument (as a tree).
1746 This is null for libcalls where that information may
1747 not be available.
1748 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1749 the preceding args and about the function being called.
1750 NAMED is nonzero if this argument is a named parameter
1751 (otherwise it is an extra parameter matching an ellipsis). */
1753 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1754 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1756 #define TARGET_ASM_FILE_END ix86_file_end
1757 #define NEED_INDICATE_EXEC_STACK 0
1759 /* Output assembler code to FILE to increment profiler label # LABELNO
1760 for profiling a function entry. */
1762 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1764 #define MCOUNT_NAME "_mcount"
1766 #define PROFILE_COUNT_REGISTER "edx"
1768 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1769 the stack pointer does not matter. The value is tested only in
1770 functions that have frame pointers.
1771 No definition is equivalent to always zero. */
1772 /* Note on the 386 it might be more efficient not to define this since
1773 we have to restore it ourselves from the frame pointer, in order to
1774 use pop */
1776 #define EXIT_IGNORE_STACK 1
1778 /* Output assembler code for a block containing the constant parts
1779 of a trampoline, leaving space for the variable parts. */
1781 /* On the 386, the trampoline contains two instructions:
1782 mov #STATIC,ecx
1783 jmp FUNCTION
1784 The trampoline is generated entirely at runtime. The operand of JMP
1785 is the address of FUNCTION relative to the instruction following the
1786 JMP (which is 5 bytes long). */
1788 /* Length in units of the trampoline for entering a nested function. */
1790 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1792 /* Emit RTL insns to initialize the variable parts of a trampoline.
1793 FNADDR is an RTX for the address of the function's pure code.
1794 CXT is an RTX for the static chain value for the function. */
1796 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1797 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1799 /* Definitions for register eliminations.
1801 This is an array of structures. Each structure initializes one pair
1802 of eliminable registers. The "from" register number is given first,
1803 followed by "to". Eliminations of the same "from" register are listed
1804 in order of preference.
1806 There are two registers that can always be eliminated on the i386.
1807 The frame pointer and the arg pointer can be replaced by either the
1808 hard frame pointer or to the stack pointer, depending upon the
1809 circumstances. The hard frame pointer is not used before reload and
1810 so it is not eligible for elimination. */
1812 #define ELIMINABLE_REGS \
1813 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1814 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1815 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1816 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1818 /* Given FROM and TO register numbers, say whether this elimination is
1819 allowed. Frame pointer elimination is automatically handled.
1821 All other eliminations are valid. */
1823 #define CAN_ELIMINATE(FROM, TO) \
1824 ((TO) == STACK_POINTER_REGNUM ? !frame_pointer_needed : 1)
1826 /* Define the offset between two registers, one to be eliminated, and the other
1827 its replacement, at the start of a routine. */
1829 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1830 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1832 /* Addressing modes, and classification of registers for them. */
1834 /* Macros to check register numbers against specific register classes. */
1836 /* These assume that REGNO is a hard or pseudo reg number.
1837 They give nonzero only if REGNO is a hard reg of the suitable class
1838 or a pseudo reg currently allocated to a suitable hard reg.
1839 Since they use reg_renumber, they are safe only once reg_renumber
1840 has been allocated, which happens in local-alloc.c. */
1842 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1843 ((REGNO) < STACK_POINTER_REGNUM \
1844 || REX_INT_REGNO_P (REGNO) \
1845 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1846 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1848 #define REGNO_OK_FOR_BASE_P(REGNO) \
1849 (GENERAL_REGNO_P (REGNO) \
1850 || (REGNO) == ARG_POINTER_REGNUM \
1851 || (REGNO) == FRAME_POINTER_REGNUM \
1852 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1854 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1855 and check its validity for a certain class.
1856 We have two alternate definitions for each of them.
1857 The usual definition accepts all pseudo regs; the other rejects
1858 them unless they have been allocated suitable hard regs.
1859 The symbol REG_OK_STRICT causes the latter definition to be used.
1861 Most source files want to accept pseudo regs in the hope that
1862 they will get allocated to the class that the insn wants them to be in.
1863 Source files for reload pass need to be strict.
1864 After reload, it makes no difference, since pseudo regs have
1865 been eliminated by then. */
1868 /* Non strict versions, pseudos are ok. */
1869 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1870 (REGNO (X) < STACK_POINTER_REGNUM \
1871 || REX_INT_REGNO_P (REGNO (X)) \
1872 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1874 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1875 (GENERAL_REGNO_P (REGNO (X)) \
1876 || REGNO (X) == ARG_POINTER_REGNUM \
1877 || REGNO (X) == FRAME_POINTER_REGNUM \
1878 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1880 /* Strict versions, hard registers only */
1881 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1882 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1884 #ifndef REG_OK_STRICT
1885 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1886 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1888 #else
1889 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1890 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1891 #endif
1893 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1894 that is a valid memory address for an instruction.
1895 The MODE argument is the machine mode for the MEM expression
1896 that wants to use this address.
1898 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1899 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1901 See legitimize_pic_address in i386.c for details as to what
1902 constitutes a legitimate address when -fpic is used. */
1904 #define MAX_REGS_PER_ADDRESS 2
1906 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1908 /* Nonzero if the constant value X is a legitimate general operand.
1909 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1911 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1913 #ifdef REG_OK_STRICT
1914 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1915 do { \
1916 if (legitimate_address_p ((MODE), (X), 1)) \
1917 goto ADDR; \
1918 } while (0)
1920 #else
1921 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1922 do { \
1923 if (legitimate_address_p ((MODE), (X), 0)) \
1924 goto ADDR; \
1925 } while (0)
1927 #endif
1929 /* If defined, a C expression to determine the base term of address X.
1930 This macro is used in only one place: `find_base_term' in alias.c.
1932 It is always safe for this macro to not be defined. It exists so
1933 that alias analysis can understand machine-dependent addresses.
1935 The typical use of this macro is to handle addresses containing
1936 a label_ref or symbol_ref within an UNSPEC. */
1938 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1940 /* Try machine-dependent ways of modifying an illegitimate address
1941 to be legitimate. If we find one, return the new, valid address.
1942 This macro is used in only one place: `memory_address' in explow.c.
1944 OLDX is the address as it was before break_out_memory_refs was called.
1945 In some cases it is useful to look at this to decide what needs to be done.
1947 MODE and WIN are passed so that this macro can use
1948 GO_IF_LEGITIMATE_ADDRESS.
1950 It is always safe for this macro to do nothing. It exists to recognize
1951 opportunities to optimize the output.
1953 For the 80386, we handle X+REG by loading X into a register R and
1954 using R+REG. R will go in a general reg and indexing will be used.
1955 However, if REG is a broken-out memory address or multiplication,
1956 nothing needs to be done because REG can certainly go in a general reg.
1958 When -fpic is used, special handling is needed for symbolic references.
1959 See comments by legitimize_pic_address in i386.c for details. */
1961 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1962 do { \
1963 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1964 if (memory_address_p ((MODE), (X))) \
1965 goto WIN; \
1966 } while (0)
1968 /* Nonzero if the constant value X is a legitimate general operand
1969 when generating PIC code. It is given that flag_pic is on and
1970 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1972 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1974 #define SYMBOLIC_CONST(X) \
1975 (GET_CODE (X) == SYMBOL_REF \
1976 || GET_CODE (X) == LABEL_REF \
1977 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1979 /* Go to LABEL if ADDR (a legitimate address expression)
1980 has an effect that depends on the machine mode it is used for.
1981 On the 80386, only postdecrement and postincrement address depend thus
1982 (the amount of decrement or increment being the length of the operand).
1983 These are now caught in recog.c. */
1984 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1986 /* Max number of args passed in registers. If this is more than 3, we will
1987 have problems with ebx (register #4), since it is a caller save register and
1988 is also used as the pic register in ELF. So for now, don't allow more than
1989 3 registers to be passed in registers. */
1991 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1992 #define X86_64_REGPARM_MAX 6
1993 #define X64_REGPARM_MAX 4
1994 #define X86_32_REGPARM_MAX 3
1996 #define X86_64_SSE_REGPARM_MAX 8
1997 #define X64_SSE_REGPARM_MAX 4
1998 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
2000 #define REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
2001 : X86_64_REGPARM_MAX) \
2002 : X86_32_REGPARM_MAX)
2004 #define SSE_REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
2005 : X86_64_SSE_REGPARM_MAX) \
2006 : X86_32_SSE_REGPARM_MAX)
2008 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2011 /* Specify the machine mode that this machine uses
2012 for the index in the tablejump instruction. */
2013 #define CASE_VECTOR_MODE \
2014 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
2016 /* Define this as 1 if `char' should by default be signed; else as 0. */
2017 #define DEFAULT_SIGNED_CHAR 1
2019 /* Max number of bytes we can move from memory to memory
2020 in one reasonably fast instruction. */
2021 #define MOVE_MAX 16
2023 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2024 move efficiently, as opposed to MOVE_MAX which is the maximum
2025 number of bytes we can move with a single instruction. */
2026 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2028 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2029 move-instruction pairs, we will do a movmem or libcall instead.
2030 Increasing the value will always make code faster, but eventually
2031 incurs high cost in increased code size.
2033 If you don't define this, a reasonable default is used. */
2035 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2037 /* If a clear memory operation would take CLEAR_RATIO or more simple
2038 move-instruction sequences, we will do a clrmem or libcall instead. */
2040 #define CLEAR_RATIO (optimize_size ? 2 : MIN (6, ix86_cost->move_ratio))
2042 /* Define if shifts truncate the shift count
2043 which implies one can omit a sign-extension or zero-extension
2044 of a shift count. */
2045 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2047 /* #define SHIFT_COUNT_TRUNCATED */
2049 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2050 is done just by pretending it is already truncated. */
2051 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2053 /* A macro to update M and UNSIGNEDP when an object whose type is
2054 TYPE and which has the specified mode and signedness is to be
2055 stored in a register. This macro is only called when TYPE is a
2056 scalar type.
2058 On i386 it is sometimes useful to promote HImode and QImode
2059 quantities to SImode. The choice depends on target type. */
2061 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2062 do { \
2063 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2064 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2065 (MODE) = SImode; \
2066 } while (0)
2068 /* Specify the machine mode that pointers have.
2069 After generation of rtl, the compiler makes no further distinction
2070 between pointers and any other objects of this machine mode. */
2071 #define Pmode (TARGET_64BIT ? DImode : SImode)
2073 /* A function address in a call instruction
2074 is a byte address (for indexing purposes)
2075 so give the MEM rtx a byte's mode. */
2076 #define FUNCTION_MODE QImode
2078 /* A C expression for the cost of moving data from a register in class FROM to
2079 one in class TO. The classes are expressed using the enumeration values
2080 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2081 interpreted relative to that.
2083 It is not required that the cost always equal 2 when FROM is the same as TO;
2084 on some machines it is expensive to move between registers if they are not
2085 general registers. */
2087 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2088 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2090 /* A C expression for the cost of moving data of mode M between a
2091 register and memory. A value of 2 is the default; this cost is
2092 relative to those in `REGISTER_MOVE_COST'.
2094 If moving between registers and memory is more expensive than
2095 between two registers, you should define this macro to express the
2096 relative cost. */
2098 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2099 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2101 /* A C expression for the cost of a branch instruction. A value of 1
2102 is the default; other values are interpreted relative to that. */
2104 #define BRANCH_COST ix86_branch_cost
2106 /* Define this macro as a C expression which is nonzero if accessing
2107 less than a word of memory (i.e. a `char' or a `short') is no
2108 faster than accessing a word of memory, i.e., if such access
2109 require more than one instruction or if there is no difference in
2110 cost between byte and (aligned) word loads.
2112 When this macro is not defined, the compiler will access a field by
2113 finding the smallest containing object; when it is defined, a
2114 fullword load will be used if alignment permits. Unless bytes
2115 accesses are faster than word accesses, using word accesses is
2116 preferable since it may eliminate subsequent memory access if
2117 subsequent accesses occur to other fields in the same word of the
2118 structure, but to different bytes. */
2120 #define SLOW_BYTE_ACCESS 0
2122 /* Nonzero if access to memory by shorts is slow and undesirable. */
2123 #define SLOW_SHORT_ACCESS 0
2125 /* Define this macro to be the value 1 if unaligned accesses have a
2126 cost many times greater than aligned accesses, for example if they
2127 are emulated in a trap handler.
2129 When this macro is nonzero, the compiler will act as if
2130 `STRICT_ALIGNMENT' were nonzero when generating code for block
2131 moves. This can cause significantly more instructions to be
2132 produced. Therefore, do not set this macro nonzero if unaligned
2133 accesses only add a cycle or two to the time for a memory access.
2135 If the value of this macro is always zero, it need not be defined. */
2137 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2139 /* Define this macro if it is as good or better to call a constant
2140 function address than to call an address kept in a register.
2142 Desirable on the 386 because a CALL with a constant address is
2143 faster than one with a register address. */
2145 #define NO_FUNCTION_CSE
2147 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2148 return the mode to be used for the comparison.
2150 For floating-point equality comparisons, CCFPEQmode should be used.
2151 VOIDmode should be used in all other cases.
2153 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2154 possible, to allow for more combinations. */
2156 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2158 /* Return nonzero if MODE implies a floating point inequality can be
2159 reversed. */
2161 #define REVERSIBLE_CC_MODE(MODE) 1
2163 /* A C expression whose value is reversed condition code of the CODE for
2164 comparison done in CC_MODE mode. */
2165 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2168 /* Control the assembler format that we output, to the extent
2169 this does not vary between assemblers. */
2171 /* How to refer to registers in assembler output.
2172 This sequence is indexed by compiler's hard-register-number (see above). */
2174 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2175 For non floating point regs, the following are the HImode names.
2177 For float regs, the stack top is sometimes referred to as "%st(0)"
2178 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2180 #define HI_REGISTER_NAMES \
2181 {"ax","dx","cx","bx","si","di","bp","sp", \
2182 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2183 "argp", "flags", "fpsr", "fpcr", "frame", \
2184 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2185 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2186 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2187 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2189 #define REGISTER_NAMES HI_REGISTER_NAMES
2191 /* Table of additional register names to use in user input. */
2193 #define ADDITIONAL_REGISTER_NAMES \
2194 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2195 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2196 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2197 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2198 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2199 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2201 /* Note we are omitting these since currently I don't know how
2202 to get gcc to use these, since they want the same but different
2203 number as al, and ax.
2206 #define QI_REGISTER_NAMES \
2207 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2209 /* These parallel the array above, and can be used to access bits 8:15
2210 of regs 0 through 3. */
2212 #define QI_HIGH_REGISTER_NAMES \
2213 {"ah", "dh", "ch", "bh", }
2215 /* How to renumber registers for dbx and gdb. */
2217 #define DBX_REGISTER_NUMBER(N) \
2218 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2220 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2221 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2222 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2224 /* Before the prologue, RA is at 0(%esp). */
2225 #define INCOMING_RETURN_ADDR_RTX \
2226 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2228 /* After the prologue, RA is at -4(AP) in the current frame. */
2229 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2230 ((COUNT) == 0 \
2231 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2232 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2234 /* PC is dbx register 8; let's use that column for RA. */
2235 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2237 /* Before the prologue, the top of the frame is at 4(%esp). */
2238 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2240 /* Describe how we implement __builtin_eh_return. */
2241 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2242 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2245 /* Select a format to encode pointers in exception handling data. CODE
2246 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2247 true if the symbol may be affected by dynamic relocations.
2249 ??? All x86 object file formats are capable of representing this.
2250 After all, the relocation needed is the same as for the call insn.
2251 Whether or not a particular assembler allows us to enter such, I
2252 guess we'll have to see. */
2253 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2254 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2256 /* This is how to output an insn to push a register on the stack.
2257 It need not be very fast code. */
2259 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2260 do { \
2261 if (TARGET_64BIT) \
2262 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2263 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2264 else \
2265 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2266 } while (0)
2268 /* This is how to output an insn to pop a register from the stack.
2269 It need not be very fast code. */
2271 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2272 do { \
2273 if (TARGET_64BIT) \
2274 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2275 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2276 else \
2277 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2278 } while (0)
2280 /* This is how to output an element of a case-vector that is absolute. */
2282 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2283 ix86_output_addr_vec_elt ((FILE), (VALUE))
2285 /* This is how to output an element of a case-vector that is relative. */
2287 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2288 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2290 /* Under some conditions we need jump tables in the text section,
2291 because the assembler cannot handle label differences between
2292 sections. This is the case for x86_64 on Mach-O for example. */
2294 #define JUMP_TABLES_IN_TEXT_SECTION \
2295 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2296 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2298 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2299 and switch back. For x86 we do this only to save a few bytes that
2300 would otherwise be unused in the text section. */
2301 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2302 asm (SECTION_OP "\n\t" \
2303 "call " USER_LABEL_PREFIX #FUNC "\n" \
2304 TEXT_SECTION_ASM_OP);
2306 /* Print operand X (an rtx) in assembler syntax to file FILE.
2307 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2308 Effect of various CODE letters is described in i386.c near
2309 print_operand function. */
2311 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2312 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
2314 #define PRINT_OPERAND(FILE, X, CODE) \
2315 print_operand ((FILE), (X), (CODE))
2317 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2318 print_operand_address ((FILE), (ADDR))
2320 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2321 do { \
2322 if (! output_addr_const_extra (FILE, (X))) \
2323 goto FAIL; \
2324 } while (0);
2326 /* Which processor to schedule for. The cpu attribute defines a list that
2327 mirrors this list, so changes to i386.md must be made at the same time. */
2329 enum processor_type
2331 PROCESSOR_I386 = 0, /* 80386 */
2332 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2333 PROCESSOR_PENTIUM,
2334 PROCESSOR_PENTIUMPRO,
2335 PROCESSOR_GEODE,
2336 PROCESSOR_K6,
2337 PROCESSOR_ATHLON,
2338 PROCESSOR_PENTIUM4,
2339 PROCESSOR_K8,
2340 PROCESSOR_NOCONA,
2341 PROCESSOR_CORE2,
2342 PROCESSOR_GENERIC32,
2343 PROCESSOR_GENERIC64,
2344 PROCESSOR_AMDFAM10,
2345 PROCESSOR_max
2348 extern enum processor_type ix86_tune;
2349 extern enum processor_type ix86_arch;
2351 enum fpmath_unit
2353 FPMATH_387 = 1,
2354 FPMATH_SSE = 2
2357 extern enum fpmath_unit ix86_fpmath;
2359 enum tls_dialect
2361 TLS_DIALECT_GNU,
2362 TLS_DIALECT_GNU2,
2363 TLS_DIALECT_SUN
2366 extern enum tls_dialect ix86_tls_dialect;
2368 enum cmodel {
2369 CM_32, /* The traditional 32-bit ABI. */
2370 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2371 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2372 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2373 CM_LARGE, /* No assumptions. */
2374 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2375 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2376 CM_LARGE_PIC /* No assumptions. */
2379 extern enum cmodel ix86_cmodel;
2381 /* Size of the RED_ZONE area. */
2382 #define RED_ZONE_SIZE 128
2383 /* Reserved area of the red zone for temporaries. */
2384 #define RED_ZONE_RESERVE 8
2386 enum asm_dialect {
2387 ASM_ATT,
2388 ASM_INTEL
2391 extern enum asm_dialect ix86_asm_dialect;
2392 extern unsigned int ix86_preferred_stack_boundary;
2393 extern int ix86_branch_cost, ix86_section_threshold;
2395 /* Smallest class containing REGNO. */
2396 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2398 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2399 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2400 extern rtx ix86_compare_emitted;
2402 /* To properly truncate FP values into integers, we need to set i387 control
2403 word. We can't emit proper mode switching code before reload, as spills
2404 generated by reload may truncate values incorrectly, but we still can avoid
2405 redundant computation of new control word by the mode switching pass.
2406 The fldcw instructions are still emitted redundantly, but this is probably
2407 not going to be noticeable problem, as most CPUs do have fast path for
2408 the sequence.
2410 The machinery is to emit simple truncation instructions and split them
2411 before reload to instructions having USEs of two memory locations that
2412 are filled by this code to old and new control word.
2414 Post-reload pass may be later used to eliminate the redundant fildcw if
2415 needed. */
2417 enum ix86_entity
2419 I387_TRUNC = 0,
2420 I387_FLOOR,
2421 I387_CEIL,
2422 I387_MASK_PM,
2423 MAX_386_ENTITIES
2426 enum ix86_stack_slot
2428 SLOT_VIRTUAL = 0,
2429 SLOT_TEMP,
2430 SLOT_CW_STORED,
2431 SLOT_CW_TRUNC,
2432 SLOT_CW_FLOOR,
2433 SLOT_CW_CEIL,
2434 SLOT_CW_MASK_PM,
2435 MAX_386_STACK_LOCALS
2438 /* Define this macro if the port needs extra instructions inserted
2439 for mode switching in an optimizing compilation. */
2441 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2442 ix86_optimize_mode_switching[(ENTITY)]
2444 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2445 initializer for an array of integers. Each initializer element N
2446 refers to an entity that needs mode switching, and specifies the
2447 number of different modes that might need to be set for this
2448 entity. The position of the initializer in the initializer -
2449 starting counting at zero - determines the integer that is used to
2450 refer to the mode-switched entity in question. */
2452 #define NUM_MODES_FOR_MODE_SWITCHING \
2453 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2455 /* ENTITY is an integer specifying a mode-switched entity. If
2456 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2457 return an integer value not larger than the corresponding element
2458 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2459 must be switched into prior to the execution of INSN. */
2461 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2463 /* This macro specifies the order in which modes for ENTITY are
2464 processed. 0 is the highest priority. */
2466 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2468 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2469 is the set of hard registers live at the point where the insn(s)
2470 are to be inserted. */
2472 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2473 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2474 ? emit_i387_cw_initialization (MODE), 0 \
2475 : 0)
2478 /* Avoid renaming of stack registers, as doing so in combination with
2479 scheduling just increases amount of live registers at time and in
2480 the turn amount of fxch instructions needed.
2482 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2484 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2485 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2488 #define FASTCALL_PREFIX '@'
2490 struct machine_function GTY(())
2492 struct stack_local_entry *stack_locals;
2493 const char *some_ld_name;
2494 rtx force_align_arg_pointer;
2495 int save_varrargs_registers;
2496 int accesses_prev_frame;
2497 int optimize_mode_switching[MAX_386_ENTITIES];
2498 int needs_cld;
2499 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2500 expander to determine the style used. */
2501 int use_fast_prologue_epilogue;
2502 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2503 for. */
2504 int use_fast_prologue_epilogue_nregs;
2505 /* If true, the current function needs the default PIC register, not
2506 an alternate register (on x86) and must not use the red zone (on
2507 x86_64), even if it's a leaf function. We don't want the
2508 function to be regarded as non-leaf because TLS calls need not
2509 affect register allocation. This flag is set when a TLS call
2510 instruction is expanded within a function, and never reset, even
2511 if all such instructions are optimized away. Use the
2512 ix86_current_function_calls_tls_descriptor macro for a better
2513 approximation. */
2514 int tls_descriptor_call_expanded_p;
2515 /* This value is used for amd64 targets and specifies the current abi
2516 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2517 int call_abi;
2520 #define ix86_stack_locals (cfun->machine->stack_locals)
2521 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2522 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2523 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2524 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2525 (cfun->machine->tls_descriptor_call_expanded_p)
2526 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2527 calls are optimized away, we try to detect cases in which it was
2528 optimized away. Since such instructions (use (reg REG_SP)), we can
2529 verify whether there's any such instruction live by testing that
2530 REG_SP is live. */
2531 #define ix86_current_function_calls_tls_descriptor \
2532 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2534 /* Control behavior of x86_file_start. */
2535 #define X86_FILE_START_VERSION_DIRECTIVE false
2536 #define X86_FILE_START_FLTUSED false
2538 /* Flag to mark data that is in the large address area. */
2539 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2540 #define SYMBOL_REF_FAR_ADDR_P(X) \
2541 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2543 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2544 have defined always, to avoid ifdefing. */
2545 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2546 #define SYMBOL_REF_DLLIMPORT_P(X) \
2547 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2549 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2550 #define SYMBOL_REF_DLLEXPORT_P(X) \
2551 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2553 /* Model costs for vectorizer. */
2555 /* Cost of conditional branch. */
2556 #undef TARG_COND_BRANCH_COST
2557 #define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2559 /* Enum through the target specific extra va_list types. Please, do not
2560 iterate the base va_list type name. */
2561 #define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
2562 (!TARGET_64BIT ? 0 : ix86_enum_va_list (IDX, PNAME, PTYPE))
2564 /* Cost of any scalar operation, excluding load and store. */
2565 #undef TARG_SCALAR_STMT_COST
2566 #define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2568 /* Cost of scalar load. */
2569 #undef TARG_SCALAR_LOAD_COST
2570 #define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2572 /* Cost of scalar store. */
2573 #undef TARG_SCALAR_STORE_COST
2574 #define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2576 /* Cost of any vector operation, excluding load, store or vector to scalar
2577 operation. */
2578 #undef TARG_VEC_STMT_COST
2579 #define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2581 /* Cost of vector to scalar operation. */
2582 #undef TARG_VEC_TO_SCALAR_COST
2583 #define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2585 /* Cost of scalar to vector operation. */
2586 #undef TARG_SCALAR_TO_VEC_COST
2587 #define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2589 /* Cost of aligned vector load. */
2590 #undef TARG_VEC_LOAD_COST
2591 #define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2593 /* Cost of misaligned vector load. */
2594 #undef TARG_VEC_UNALIGNED_LOAD_COST
2595 #define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2597 /* Cost of vector store. */
2598 #undef TARG_VEC_STORE_COST
2599 #define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2601 /* Cost of conditional taken branch for vectorizer cost model. */
2602 #undef TARG_COND_TAKEN_BRANCH_COST
2603 #define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2605 /* Cost of conditional not taken branch for vectorizer cost model. */
2606 #undef TARG_COND_NOT_TAKEN_BRANCH_COST
2607 #define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2610 Local variables:
2611 version-control: t
2612 End: