* testsuite/26_numerics/headers/cmath/hypot.cc: XFAIL on AIX.
[official-gcc.git] / gcc / stor-layout.c
blob5a4bcf1d6640354451de3fb72e11089f9c703821
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "tree-dump.h"
42 #include "gimplify.h"
43 #include "debug.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
64 tree
65 variable_size (tree size)
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
82 return save_expr (size);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
88 /* Return true if T is a self-referential component reference. */
90 static bool
91 self_referential_component_ref_p (tree t)
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 enum tree_code code = TREE_CODE (*tp);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
116 *walk_subtrees = 0;
117 return NULL_TREE;
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
131 *walk_subtrees = 0;
132 return NULL_TREE;
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
146 return copy_tree_r (tp, walk_subtrees, data);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
152 static tree
153 self_referential_size (tree size)
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 tree subst, param_name, param_type, param_decl;
185 if (DECL_P (ref))
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
207 size = substitute_in_expr (size, subst, param_decl);
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
214 self_refs.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
272 void
273 finalize_size_functions (void)
275 unsigned int i;
276 tree fndecl;
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
291 vec_free (size_functions);
294 /* Return the machine mode to use for a nonscalar of SIZE bits. The
295 mode must be in class MCLASS, and have exactly that many value bits;
296 it may have padding as well. If LIMIT is nonzero, modes of wider
297 than MAX_FIXED_MODE_SIZE will not be used. */
299 machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
302 machine_mode mode;
303 int i;
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return BLKmode;
308 /* Get the first mode which has this size, in the specified class. */
309 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
310 mode = GET_MODE_WIDER_MODE (mode))
311 if (GET_MODE_PRECISION (mode) == size)
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (int_n_data[i].bitsize == size
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return BLKmode;
323 /* Similar, except passed a tree node. */
325 machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return BLKmode;
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return BLKmode;
337 return mode_for_size (ui, mclass, limit);
340 /* Similar, but never return BLKmode; return the narrowest mode that
341 contains at least the requested number of value bits. */
343 machine_mode
344 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
352 mode = GET_MODE_WIDER_MODE (mode))
353 if (GET_MODE_PRECISION (mode) >= size)
354 break;
356 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
357 for (i = 0; i < NUM_INT_N_ENTS; i ++)
358 if (int_n_data[i].bitsize >= size
359 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
360 && int_n_enabled_p[i])
361 mode = int_n_data[i].m;
363 if (mode == VOIDmode)
364 gcc_unreachable ();
366 return mode;
369 /* Find an integer mode of the exact same size, or BLKmode on failure. */
371 machine_mode
372 int_mode_for_mode (machine_mode mode)
374 switch (GET_MODE_CLASS (mode))
376 case MODE_INT:
377 case MODE_PARTIAL_INT:
378 break;
380 case MODE_COMPLEX_INT:
381 case MODE_COMPLEX_FLOAT:
382 case MODE_FLOAT:
383 case MODE_DECIMAL_FLOAT:
384 case MODE_VECTOR_INT:
385 case MODE_VECTOR_FLOAT:
386 case MODE_FRACT:
387 case MODE_ACCUM:
388 case MODE_UFRACT:
389 case MODE_UACCUM:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 case MODE_POINTER_BOUNDS:
395 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
396 break;
398 case MODE_RANDOM:
399 if (mode == BLKmode)
400 break;
402 /* fall through */
404 case MODE_CC:
405 default:
406 gcc_unreachable ();
409 return mode;
412 /* Find a mode that can be used for efficient bitwise operations on MODE.
413 Return BLKmode if no such mode exists. */
415 machine_mode
416 bitwise_mode_for_mode (machine_mode mode)
418 /* Quick exit if we already have a suitable mode. */
419 unsigned int bitsize = GET_MODE_BITSIZE (mode);
420 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
421 return mode;
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
426 /* Try to replace complex modes with complex modes. In general we
427 expect both components to be processed independently, so we only
428 care whether there is a register for the inner mode. */
429 if (COMPLEX_MODE_P (mode))
431 machine_mode trial = mode;
432 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
433 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
434 if (trial != BLKmode
435 && have_regs_of_mode[GET_MODE_INNER (trial)])
436 return trial;
439 /* Try to replace vector modes with vector modes. Also try using vector
440 modes if an integer mode would be too big. */
441 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
443 machine_mode trial = mode;
444 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
445 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
446 if (trial != BLKmode
447 && have_regs_of_mode[trial]
448 && targetm.vector_mode_supported_p (trial))
449 return trial;
452 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
453 return mode_for_size (bitsize, MODE_INT, true);
456 /* Find a type that can be used for efficient bitwise operations on MODE.
457 Return null if no such mode exists. */
459 tree
460 bitwise_type_for_mode (machine_mode mode)
462 mode = bitwise_mode_for_mode (mode);
463 if (mode == BLKmode)
464 return NULL_TREE;
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
479 /* Find a mode that is suitable for representing a vector with
480 NUNITS elements of mode INNERMODE. Returns BLKmode if there
481 is no suitable mode. */
483 machine_mode
484 mode_for_vector (machine_mode innermode, unsigned nunits)
486 machine_mode mode;
488 /* First, look for a supported vector type. */
489 if (SCALAR_FLOAT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_FLOAT;
491 else if (SCALAR_FRACT_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_FRACT;
493 else if (SCALAR_UFRACT_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UFRACT;
495 else if (SCALAR_ACCUM_MODE_P (innermode))
496 mode = MIN_MODE_VECTOR_ACCUM;
497 else if (SCALAR_UACCUM_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_UACCUM;
499 else
500 mode = MIN_MODE_VECTOR_INT;
502 /* Do not check vector_mode_supported_p here. We'll do that
503 later in vector_type_mode. */
504 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
505 if (GET_MODE_NUNITS (mode) == nunits
506 && GET_MODE_INNER (mode) == innermode)
507 break;
509 /* For integers, try mapping it to a same-sized scalar mode. */
510 if (mode == VOIDmode
511 && GET_MODE_CLASS (innermode) == MODE_INT)
512 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
513 MODE_INT, 0);
515 if (mode == VOIDmode
516 || (GET_MODE_CLASS (mode) == MODE_INT
517 && !have_regs_of_mode[mode]))
518 return BLKmode;
520 return mode;
523 /* Return the alignment of MODE. This will be bounded by 1 and
524 BIGGEST_ALIGNMENT. */
526 unsigned int
527 get_mode_alignment (machine_mode mode)
529 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
532 /* Return the natural mode of an array, given that it is SIZE bytes in
533 total and has elements of type ELEM_TYPE. */
535 static machine_mode
536 mode_for_array (tree elem_type, tree size)
538 tree elem_size;
539 unsigned HOST_WIDE_INT int_size, int_elem_size;
540 bool limit_p;
542 /* One-element arrays get the component type's mode. */
543 elem_size = TYPE_SIZE (elem_type);
544 if (simple_cst_equal (size, elem_size))
545 return TYPE_MODE (elem_type);
547 limit_p = true;
548 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
550 int_size = tree_to_uhwi (size);
551 int_elem_size = tree_to_uhwi (elem_size);
552 if (int_elem_size > 0
553 && int_size % int_elem_size == 0
554 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
555 int_size / int_elem_size))
556 limit_p = false;
558 return mode_for_size_tree (size, MODE_INT, limit_p);
561 /* Subroutine of layout_decl: Force alignment required for the data type.
562 But if the decl itself wants greater alignment, don't override that. */
564 static inline void
565 do_type_align (tree type, tree decl)
567 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
569 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
570 if (TREE_CODE (decl) == FIELD_DECL)
571 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
575 /* Set the size, mode and alignment of a ..._DECL node.
576 TYPE_DECL does need this for C++.
577 Note that LABEL_DECL and CONST_DECL nodes do not need this,
578 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
579 Don't call layout_decl for them.
581 KNOWN_ALIGN is the amount of alignment we can assume this
582 decl has with no special effort. It is relevant only for FIELD_DECLs
583 and depends on the previous fields.
584 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
585 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
586 the record will be aligned to suit. */
588 void
589 layout_decl (tree decl, unsigned int known_align)
591 tree type = TREE_TYPE (decl);
592 enum tree_code code = TREE_CODE (decl);
593 rtx rtl = NULL_RTX;
594 location_t loc = DECL_SOURCE_LOCATION (decl);
596 if (code == CONST_DECL)
597 return;
599 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
600 || code == TYPE_DECL || code == FIELD_DECL);
602 rtl = DECL_RTL_IF_SET (decl);
604 if (type == error_mark_node)
605 type = void_type_node;
607 /* Usually the size and mode come from the data type without change,
608 however, the front-end may set the explicit width of the field, so its
609 size may not be the same as the size of its type. This happens with
610 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
611 also happens with other fields. For example, the C++ front-end creates
612 zero-sized fields corresponding to empty base classes, and depends on
613 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
614 size in bytes from the size in bits. If we have already set the mode,
615 don't set it again since we can be called twice for FIELD_DECLs. */
617 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
618 if (DECL_MODE (decl) == VOIDmode)
619 SET_DECL_MODE (decl, TYPE_MODE (type));
621 if (DECL_SIZE (decl) == 0)
623 DECL_SIZE (decl) = TYPE_SIZE (type);
624 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
626 else if (DECL_SIZE_UNIT (decl) == 0)
627 DECL_SIZE_UNIT (decl)
628 = fold_convert_loc (loc, sizetype,
629 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
630 bitsize_unit_node));
632 if (code != FIELD_DECL)
633 /* For non-fields, update the alignment from the type. */
634 do_type_align (type, decl);
635 else
636 /* For fields, it's a bit more complicated... */
638 bool old_user_align = DECL_USER_ALIGN (decl);
639 bool zero_bitfield = false;
640 bool packed_p = DECL_PACKED (decl);
641 unsigned int mfa;
643 if (DECL_BIT_FIELD (decl))
645 DECL_BIT_FIELD_TYPE (decl) = type;
647 /* A zero-length bit-field affects the alignment of the next
648 field. In essence such bit-fields are not influenced by
649 any packing due to #pragma pack or attribute packed. */
650 if (integer_zerop (DECL_SIZE (decl))
651 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
653 zero_bitfield = true;
654 packed_p = false;
655 if (PCC_BITFIELD_TYPE_MATTERS)
656 do_type_align (type, decl);
657 else
659 #ifdef EMPTY_FIELD_BOUNDARY
660 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
662 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
663 DECL_USER_ALIGN (decl) = 0;
665 #endif
669 /* See if we can use an ordinary integer mode for a bit-field.
670 Conditions are: a fixed size that is correct for another mode,
671 occupying a complete byte or bytes on proper boundary. */
672 if (TYPE_SIZE (type) != 0
673 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
674 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
676 machine_mode xmode
677 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
678 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
680 if (xmode != BLKmode
681 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
682 && (known_align == 0 || known_align >= xalign))
684 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
685 SET_DECL_MODE (decl, xmode);
686 DECL_BIT_FIELD (decl) = 0;
690 /* Turn off DECL_BIT_FIELD if we won't need it set. */
691 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
692 && known_align >= TYPE_ALIGN (type)
693 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
694 DECL_BIT_FIELD (decl) = 0;
696 else if (packed_p && DECL_USER_ALIGN (decl))
697 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
698 round up; we'll reduce it again below. We want packing to
699 supersede USER_ALIGN inherited from the type, but defer to
700 alignment explicitly specified on the field decl. */;
701 else
702 do_type_align (type, decl);
704 /* If the field is packed and not explicitly aligned, give it the
705 minimum alignment. Note that do_type_align may set
706 DECL_USER_ALIGN, so we need to check old_user_align instead. */
707 if (packed_p
708 && !old_user_align)
709 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
711 if (! packed_p && ! DECL_USER_ALIGN (decl))
713 /* Some targets (i.e. i386, VMS) limit struct field alignment
714 to a lower boundary than alignment of variables unless
715 it was overridden by attribute aligned. */
716 #ifdef BIGGEST_FIELD_ALIGNMENT
717 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
718 (unsigned) BIGGEST_FIELD_ALIGNMENT));
719 #endif
720 #ifdef ADJUST_FIELD_ALIGN
721 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl)));
722 #endif
725 if (zero_bitfield)
726 mfa = initial_max_fld_align * BITS_PER_UNIT;
727 else
728 mfa = maximum_field_alignment;
729 /* Should this be controlled by DECL_USER_ALIGN, too? */
730 if (mfa != 0)
731 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
734 /* Evaluate nonconstant size only once, either now or as soon as safe. */
735 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
736 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
737 if (DECL_SIZE_UNIT (decl) != 0
738 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
739 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
741 /* If requested, warn about definitions of large data objects. */
742 if (warn_larger_than
743 && (code == VAR_DECL || code == PARM_DECL)
744 && ! DECL_EXTERNAL (decl))
746 tree size = DECL_SIZE_UNIT (decl);
748 if (size != 0 && TREE_CODE (size) == INTEGER_CST
749 && compare_tree_int (size, larger_than_size) > 0)
751 int size_as_int = TREE_INT_CST_LOW (size);
753 if (compare_tree_int (size, size_as_int) == 0)
754 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
755 else
756 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
757 decl, larger_than_size);
761 /* If the RTL was already set, update its mode and mem attributes. */
762 if (rtl)
764 PUT_MODE (rtl, DECL_MODE (decl));
765 SET_DECL_RTL (decl, 0);
766 if (MEM_P (rtl))
767 set_mem_attributes (rtl, decl, 1);
768 SET_DECL_RTL (decl, rtl);
772 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
773 results of a previous call to layout_decl and calls it again. */
775 void
776 relayout_decl (tree decl)
778 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
779 SET_DECL_MODE (decl, VOIDmode);
780 if (!DECL_USER_ALIGN (decl))
781 SET_DECL_ALIGN (decl, 0);
782 if (DECL_RTL_SET_P (decl))
783 SET_DECL_RTL (decl, 0);
785 layout_decl (decl, 0);
788 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
789 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
790 is to be passed to all other layout functions for this record. It is the
791 responsibility of the caller to call `free' for the storage returned.
792 Note that garbage collection is not permitted until we finish laying
793 out the record. */
795 record_layout_info
796 start_record_layout (tree t)
798 record_layout_info rli = XNEW (struct record_layout_info_s);
800 rli->t = t;
802 /* If the type has a minimum specified alignment (via an attribute
803 declaration, for example) use it -- otherwise, start with a
804 one-byte alignment. */
805 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
806 rli->unpacked_align = rli->record_align;
807 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
809 #ifdef STRUCTURE_SIZE_BOUNDARY
810 /* Packed structures don't need to have minimum size. */
811 if (! TYPE_PACKED (t))
813 unsigned tmp;
815 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
816 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
817 if (maximum_field_alignment != 0)
818 tmp = MIN (tmp, maximum_field_alignment);
819 rli->record_align = MAX (rli->record_align, tmp);
821 #endif
823 rli->offset = size_zero_node;
824 rli->bitpos = bitsize_zero_node;
825 rli->prev_field = 0;
826 rli->pending_statics = 0;
827 rli->packed_maybe_necessary = 0;
828 rli->remaining_in_alignment = 0;
830 return rli;
833 /* Return the combined bit position for the byte offset OFFSET and the
834 bit position BITPOS.
836 These functions operate on byte and bit positions present in FIELD_DECLs
837 and assume that these expressions result in no (intermediate) overflow.
838 This assumption is necessary to fold the expressions as much as possible,
839 so as to avoid creating artificially variable-sized types in languages
840 supporting variable-sized types like Ada. */
842 tree
843 bit_from_pos (tree offset, tree bitpos)
845 if (TREE_CODE (offset) == PLUS_EXPR)
846 offset = size_binop (PLUS_EXPR,
847 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
848 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
849 else
850 offset = fold_convert (bitsizetype, offset);
851 return size_binop (PLUS_EXPR, bitpos,
852 size_binop (MULT_EXPR, offset, bitsize_unit_node));
855 /* Return the combined truncated byte position for the byte offset OFFSET and
856 the bit position BITPOS. */
858 tree
859 byte_from_pos (tree offset, tree bitpos)
861 tree bytepos;
862 if (TREE_CODE (bitpos) == MULT_EXPR
863 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
864 bytepos = TREE_OPERAND (bitpos, 0);
865 else
866 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
867 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
870 /* Split the bit position POS into a byte offset *POFFSET and a bit
871 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
873 void
874 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
875 tree pos)
877 tree toff_align = bitsize_int (off_align);
878 if (TREE_CODE (pos) == MULT_EXPR
879 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
881 *poffset = size_binop (MULT_EXPR,
882 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
883 size_int (off_align / BITS_PER_UNIT));
884 *pbitpos = bitsize_zero_node;
886 else
888 *poffset = size_binop (MULT_EXPR,
889 fold_convert (sizetype,
890 size_binop (FLOOR_DIV_EXPR, pos,
891 toff_align)),
892 size_int (off_align / BITS_PER_UNIT));
893 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
897 /* Given a pointer to bit and byte offsets and an offset alignment,
898 normalize the offsets so they are within the alignment. */
900 void
901 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
903 /* If the bit position is now larger than it should be, adjust it
904 downwards. */
905 if (compare_tree_int (*pbitpos, off_align) >= 0)
907 tree offset, bitpos;
908 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
909 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
910 *pbitpos = bitpos;
914 /* Print debugging information about the information in RLI. */
916 DEBUG_FUNCTION void
917 debug_rli (record_layout_info rli)
919 print_node_brief (stderr, "type", rli->t, 0);
920 print_node_brief (stderr, "\noffset", rli->offset, 0);
921 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
923 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
924 rli->record_align, rli->unpacked_align,
925 rli->offset_align);
927 /* The ms_struct code is the only that uses this. */
928 if (targetm.ms_bitfield_layout_p (rli->t))
929 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
931 if (rli->packed_maybe_necessary)
932 fprintf (stderr, "packed may be necessary\n");
934 if (!vec_safe_is_empty (rli->pending_statics))
936 fprintf (stderr, "pending statics:\n");
937 debug_vec_tree (rli->pending_statics);
941 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
942 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
944 void
945 normalize_rli (record_layout_info rli)
947 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
950 /* Returns the size in bytes allocated so far. */
952 tree
953 rli_size_unit_so_far (record_layout_info rli)
955 return byte_from_pos (rli->offset, rli->bitpos);
958 /* Returns the size in bits allocated so far. */
960 tree
961 rli_size_so_far (record_layout_info rli)
963 return bit_from_pos (rli->offset, rli->bitpos);
966 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
967 the next available location within the record is given by KNOWN_ALIGN.
968 Update the variable alignment fields in RLI, and return the alignment
969 to give the FIELD. */
971 unsigned int
972 update_alignment_for_field (record_layout_info rli, tree field,
973 unsigned int known_align)
975 /* The alignment required for FIELD. */
976 unsigned int desired_align;
977 /* The type of this field. */
978 tree type = TREE_TYPE (field);
979 /* True if the field was explicitly aligned by the user. */
980 bool user_align;
981 bool is_bitfield;
983 /* Do not attempt to align an ERROR_MARK node */
984 if (TREE_CODE (type) == ERROR_MARK)
985 return 0;
987 /* Lay out the field so we know what alignment it needs. */
988 layout_decl (field, known_align);
989 desired_align = DECL_ALIGN (field);
990 user_align = DECL_USER_ALIGN (field);
992 is_bitfield = (type != error_mark_node
993 && DECL_BIT_FIELD_TYPE (field)
994 && ! integer_zerop (TYPE_SIZE (type)));
996 /* Record must have at least as much alignment as any field.
997 Otherwise, the alignment of the field within the record is
998 meaningless. */
999 if (targetm.ms_bitfield_layout_p (rli->t))
1001 /* Here, the alignment of the underlying type of a bitfield can
1002 affect the alignment of a record; even a zero-sized field
1003 can do this. The alignment should be to the alignment of
1004 the type, except that for zero-size bitfields this only
1005 applies if there was an immediately prior, nonzero-size
1006 bitfield. (That's the way it is, experimentally.) */
1007 if ((!is_bitfield && !DECL_PACKED (field))
1008 || ((DECL_SIZE (field) == NULL_TREE
1009 || !integer_zerop (DECL_SIZE (field)))
1010 ? !DECL_PACKED (field)
1011 : (rli->prev_field
1012 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1013 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1015 unsigned int type_align = TYPE_ALIGN (type);
1016 type_align = MAX (type_align, desired_align);
1017 if (maximum_field_alignment != 0)
1018 type_align = MIN (type_align, maximum_field_alignment);
1019 rli->record_align = MAX (rli->record_align, type_align);
1020 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1023 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1025 /* Named bit-fields cause the entire structure to have the
1026 alignment implied by their type. Some targets also apply the same
1027 rules to unnamed bitfields. */
1028 if (DECL_NAME (field) != 0
1029 || targetm.align_anon_bitfield ())
1031 unsigned int type_align = TYPE_ALIGN (type);
1033 #ifdef ADJUST_FIELD_ALIGN
1034 if (! TYPE_USER_ALIGN (type))
1035 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1036 #endif
1038 /* Targets might chose to handle unnamed and hence possibly
1039 zero-width bitfield. Those are not influenced by #pragmas
1040 or packed attributes. */
1041 if (integer_zerop (DECL_SIZE (field)))
1043 if (initial_max_fld_align)
1044 type_align = MIN (type_align,
1045 initial_max_fld_align * BITS_PER_UNIT);
1047 else if (maximum_field_alignment != 0)
1048 type_align = MIN (type_align, maximum_field_alignment);
1049 else if (DECL_PACKED (field))
1050 type_align = MIN (type_align, BITS_PER_UNIT);
1052 /* The alignment of the record is increased to the maximum
1053 of the current alignment, the alignment indicated on the
1054 field (i.e., the alignment specified by an __aligned__
1055 attribute), and the alignment indicated by the type of
1056 the field. */
1057 rli->record_align = MAX (rli->record_align, desired_align);
1058 rli->record_align = MAX (rli->record_align, type_align);
1060 if (warn_packed)
1061 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1062 user_align |= TYPE_USER_ALIGN (type);
1065 else
1067 rli->record_align = MAX (rli->record_align, desired_align);
1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1071 TYPE_USER_ALIGN (rli->t) |= user_align;
1073 return desired_align;
1076 /* Called from place_field to handle unions. */
1078 static void
1079 place_union_field (record_layout_info rli, tree field)
1081 update_alignment_for_field (rli, field, /*known_align=*/0);
1083 DECL_FIELD_OFFSET (field) = size_zero_node;
1084 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1085 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1087 /* If this is an ERROR_MARK return *after* having set the
1088 field at the start of the union. This helps when parsing
1089 invalid fields. */
1090 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1091 return;
1093 /* We assume the union's size will be a multiple of a byte so we don't
1094 bother with BITPOS. */
1095 if (TREE_CODE (rli->t) == UNION_TYPE)
1096 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1097 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1098 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1099 DECL_SIZE_UNIT (field), rli->offset);
1102 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1103 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1104 units of alignment than the underlying TYPE. */
1105 static int
1106 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1107 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1109 /* Note that the calculation of OFFSET might overflow; we calculate it so
1110 that we still get the right result as long as ALIGN is a power of two. */
1111 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1113 offset = offset % align;
1114 return ((offset + size + align - 1) / align
1115 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1118 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1119 is a FIELD_DECL to be added after those fields already present in
1120 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1121 callers that desire that behavior must manually perform that step.) */
1123 void
1124 place_field (record_layout_info rli, tree field)
1126 /* The alignment required for FIELD. */
1127 unsigned int desired_align;
1128 /* The alignment FIELD would have if we just dropped it into the
1129 record as it presently stands. */
1130 unsigned int known_align;
1131 unsigned int actual_align;
1132 /* The type of this field. */
1133 tree type = TREE_TYPE (field);
1135 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1137 /* If FIELD is static, then treat it like a separate variable, not
1138 really like a structure field. If it is a FUNCTION_DECL, it's a
1139 method. In both cases, all we do is lay out the decl, and we do
1140 it *after* the record is laid out. */
1141 if (VAR_P (field))
1143 vec_safe_push (rli->pending_statics, field);
1144 return;
1147 /* Enumerators and enum types which are local to this class need not
1148 be laid out. Likewise for initialized constant fields. */
1149 else if (TREE_CODE (field) != FIELD_DECL)
1150 return;
1152 /* Unions are laid out very differently than records, so split
1153 that code off to another function. */
1154 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1156 place_union_field (rli, field);
1157 return;
1160 else if (TREE_CODE (type) == ERROR_MARK)
1162 /* Place this field at the current allocation position, so we
1163 maintain monotonicity. */
1164 DECL_FIELD_OFFSET (field) = rli->offset;
1165 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1166 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1167 return;
1170 /* Work out the known alignment so far. Note that A & (-A) is the
1171 value of the least-significant bit in A that is one. */
1172 if (! integer_zerop (rli->bitpos))
1173 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1174 else if (integer_zerop (rli->offset))
1175 known_align = 0;
1176 else if (tree_fits_uhwi_p (rli->offset))
1177 known_align = (BITS_PER_UNIT
1178 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1179 else
1180 known_align = rli->offset_align;
1182 desired_align = update_alignment_for_field (rli, field, known_align);
1183 if (known_align == 0)
1184 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1186 if (warn_packed && DECL_PACKED (field))
1188 if (known_align >= TYPE_ALIGN (type))
1190 if (TYPE_ALIGN (type) > desired_align)
1192 if (STRICT_ALIGNMENT)
1193 warning (OPT_Wattributes, "packed attribute causes "
1194 "inefficient alignment for %q+D", field);
1195 /* Don't warn if DECL_PACKED was set by the type. */
1196 else if (!TYPE_PACKED (rli->t))
1197 warning (OPT_Wattributes, "packed attribute is "
1198 "unnecessary for %q+D", field);
1201 else
1202 rli->packed_maybe_necessary = 1;
1205 /* Does this field automatically have alignment it needs by virtue
1206 of the fields that precede it and the record's own alignment? */
1207 if (known_align < desired_align)
1209 /* No, we need to skip space before this field.
1210 Bump the cumulative size to multiple of field alignment. */
1212 if (!targetm.ms_bitfield_layout_p (rli->t)
1213 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1214 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1216 /* If the alignment is still within offset_align, just align
1217 the bit position. */
1218 if (desired_align < rli->offset_align)
1219 rli->bitpos = round_up (rli->bitpos, desired_align);
1220 else
1222 /* First adjust OFFSET by the partial bits, then align. */
1223 rli->offset
1224 = size_binop (PLUS_EXPR, rli->offset,
1225 fold_convert (sizetype,
1226 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1227 bitsize_unit_node)));
1228 rli->bitpos = bitsize_zero_node;
1230 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1233 if (! TREE_CONSTANT (rli->offset))
1234 rli->offset_align = desired_align;
1235 if (targetm.ms_bitfield_layout_p (rli->t))
1236 rli->prev_field = NULL;
1239 /* Handle compatibility with PCC. Note that if the record has any
1240 variable-sized fields, we need not worry about compatibility. */
1241 if (PCC_BITFIELD_TYPE_MATTERS
1242 && ! targetm.ms_bitfield_layout_p (rli->t)
1243 && TREE_CODE (field) == FIELD_DECL
1244 && type != error_mark_node
1245 && DECL_BIT_FIELD (field)
1246 && (! DECL_PACKED (field)
1247 /* Enter for these packed fields only to issue a warning. */
1248 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1249 && maximum_field_alignment == 0
1250 && ! integer_zerop (DECL_SIZE (field))
1251 && tree_fits_uhwi_p (DECL_SIZE (field))
1252 && tree_fits_uhwi_p (rli->offset)
1253 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1255 unsigned int type_align = TYPE_ALIGN (type);
1256 tree dsize = DECL_SIZE (field);
1257 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1258 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1259 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1261 #ifdef ADJUST_FIELD_ALIGN
1262 if (! TYPE_USER_ALIGN (type))
1263 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1264 #endif
1266 /* A bit field may not span more units of alignment of its type
1267 than its type itself. Advance to next boundary if necessary. */
1268 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1270 if (DECL_PACKED (field))
1272 if (warn_packed_bitfield_compat == 1)
1273 inform
1274 (input_location,
1275 "offset of packed bit-field %qD has changed in GCC 4.4",
1276 field);
1278 else
1279 rli->bitpos = round_up (rli->bitpos, type_align);
1282 if (! DECL_PACKED (field))
1283 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1286 #ifdef BITFIELD_NBYTES_LIMITED
1287 if (BITFIELD_NBYTES_LIMITED
1288 && ! targetm.ms_bitfield_layout_p (rli->t)
1289 && TREE_CODE (field) == FIELD_DECL
1290 && type != error_mark_node
1291 && DECL_BIT_FIELD_TYPE (field)
1292 && ! DECL_PACKED (field)
1293 && ! integer_zerop (DECL_SIZE (field))
1294 && tree_fits_uhwi_p (DECL_SIZE (field))
1295 && tree_fits_uhwi_p (rli->offset)
1296 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1298 unsigned int type_align = TYPE_ALIGN (type);
1299 tree dsize = DECL_SIZE (field);
1300 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1301 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1302 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1304 #ifdef ADJUST_FIELD_ALIGN
1305 if (! TYPE_USER_ALIGN (type))
1306 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1307 #endif
1309 if (maximum_field_alignment != 0)
1310 type_align = MIN (type_align, maximum_field_alignment);
1311 /* ??? This test is opposite the test in the containing if
1312 statement, so this code is unreachable currently. */
1313 else if (DECL_PACKED (field))
1314 type_align = MIN (type_align, BITS_PER_UNIT);
1316 /* A bit field may not span the unit of alignment of its type.
1317 Advance to next boundary if necessary. */
1318 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1319 rli->bitpos = round_up (rli->bitpos, type_align);
1321 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1323 #endif
1325 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1326 A subtlety:
1327 When a bit field is inserted into a packed record, the whole
1328 size of the underlying type is used by one or more same-size
1329 adjacent bitfields. (That is, if its long:3, 32 bits is
1330 used in the record, and any additional adjacent long bitfields are
1331 packed into the same chunk of 32 bits. However, if the size
1332 changes, a new field of that size is allocated.) In an unpacked
1333 record, this is the same as using alignment, but not equivalent
1334 when packing.
1336 Note: for compatibility, we use the type size, not the type alignment
1337 to determine alignment, since that matches the documentation */
1339 if (targetm.ms_bitfield_layout_p (rli->t))
1341 tree prev_saved = rli->prev_field;
1342 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1344 /* This is a bitfield if it exists. */
1345 if (rli->prev_field)
1347 /* If both are bitfields, nonzero, and the same size, this is
1348 the middle of a run. Zero declared size fields are special
1349 and handled as "end of run". (Note: it's nonzero declared
1350 size, but equal type sizes!) (Since we know that both
1351 the current and previous fields are bitfields by the
1352 time we check it, DECL_SIZE must be present for both.) */
1353 if (DECL_BIT_FIELD_TYPE (field)
1354 && !integer_zerop (DECL_SIZE (field))
1355 && !integer_zerop (DECL_SIZE (rli->prev_field))
1356 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1357 && tree_fits_uhwi_p (TYPE_SIZE (type))
1358 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1360 /* We're in the middle of a run of equal type size fields; make
1361 sure we realign if we run out of bits. (Not decl size,
1362 type size!) */
1363 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1365 if (rli->remaining_in_alignment < bitsize)
1367 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1369 /* out of bits; bump up to next 'word'. */
1370 rli->bitpos
1371 = size_binop (PLUS_EXPR, rli->bitpos,
1372 bitsize_int (rli->remaining_in_alignment));
1373 rli->prev_field = field;
1374 if (typesize < bitsize)
1375 rli->remaining_in_alignment = 0;
1376 else
1377 rli->remaining_in_alignment = typesize - bitsize;
1379 else
1380 rli->remaining_in_alignment -= bitsize;
1382 else
1384 /* End of a run: if leaving a run of bitfields of the same type
1385 size, we have to "use up" the rest of the bits of the type
1386 size.
1388 Compute the new position as the sum of the size for the prior
1389 type and where we first started working on that type.
1390 Note: since the beginning of the field was aligned then
1391 of course the end will be too. No round needed. */
1393 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1395 rli->bitpos
1396 = size_binop (PLUS_EXPR, rli->bitpos,
1397 bitsize_int (rli->remaining_in_alignment));
1399 else
1400 /* We "use up" size zero fields; the code below should behave
1401 as if the prior field was not a bitfield. */
1402 prev_saved = NULL;
1404 /* Cause a new bitfield to be captured, either this time (if
1405 currently a bitfield) or next time we see one. */
1406 if (!DECL_BIT_FIELD_TYPE (field)
1407 || integer_zerop (DECL_SIZE (field)))
1408 rli->prev_field = NULL;
1411 normalize_rli (rli);
1414 /* If we're starting a new run of same type size bitfields
1415 (or a run of non-bitfields), set up the "first of the run"
1416 fields.
1418 That is, if the current field is not a bitfield, or if there
1419 was a prior bitfield the type sizes differ, or if there wasn't
1420 a prior bitfield the size of the current field is nonzero.
1422 Note: we must be sure to test ONLY the type size if there was
1423 a prior bitfield and ONLY for the current field being zero if
1424 there wasn't. */
1426 if (!DECL_BIT_FIELD_TYPE (field)
1427 || (prev_saved != NULL
1428 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1429 : !integer_zerop (DECL_SIZE (field)) ))
1431 /* Never smaller than a byte for compatibility. */
1432 unsigned int type_align = BITS_PER_UNIT;
1434 /* (When not a bitfield), we could be seeing a flex array (with
1435 no DECL_SIZE). Since we won't be using remaining_in_alignment
1436 until we see a bitfield (and come by here again) we just skip
1437 calculating it. */
1438 if (DECL_SIZE (field) != NULL
1439 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1440 && tree_fits_uhwi_p (DECL_SIZE (field)))
1442 unsigned HOST_WIDE_INT bitsize
1443 = tree_to_uhwi (DECL_SIZE (field));
1444 unsigned HOST_WIDE_INT typesize
1445 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1447 if (typesize < bitsize)
1448 rli->remaining_in_alignment = 0;
1449 else
1450 rli->remaining_in_alignment = typesize - bitsize;
1453 /* Now align (conventionally) for the new type. */
1454 type_align = TYPE_ALIGN (TREE_TYPE (field));
1456 if (maximum_field_alignment != 0)
1457 type_align = MIN (type_align, maximum_field_alignment);
1459 rli->bitpos = round_up (rli->bitpos, type_align);
1461 /* If we really aligned, don't allow subsequent bitfields
1462 to undo that. */
1463 rli->prev_field = NULL;
1467 /* Offset so far becomes the position of this field after normalizing. */
1468 normalize_rli (rli);
1469 DECL_FIELD_OFFSET (field) = rli->offset;
1470 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1471 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1473 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1474 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1475 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1477 /* If this field ended up more aligned than we thought it would be (we
1478 approximate this by seeing if its position changed), lay out the field
1479 again; perhaps we can use an integral mode for it now. */
1480 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1481 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1482 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1483 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1484 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1485 actual_align = (BITS_PER_UNIT
1486 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1487 else
1488 actual_align = DECL_OFFSET_ALIGN (field);
1489 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1490 store / extract bit field operations will check the alignment of the
1491 record against the mode of bit fields. */
1493 if (known_align != actual_align)
1494 layout_decl (field, actual_align);
1496 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1497 rli->prev_field = field;
1499 /* Now add size of this field to the size of the record. If the size is
1500 not constant, treat the field as being a multiple of bytes and just
1501 adjust the offset, resetting the bit position. Otherwise, apportion the
1502 size amongst the bit position and offset. First handle the case of an
1503 unspecified size, which can happen when we have an invalid nested struct
1504 definition, such as struct j { struct j { int i; } }. The error message
1505 is printed in finish_struct. */
1506 if (DECL_SIZE (field) == 0)
1507 /* Do nothing. */;
1508 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1509 || TREE_OVERFLOW (DECL_SIZE (field)))
1511 rli->offset
1512 = size_binop (PLUS_EXPR, rli->offset,
1513 fold_convert (sizetype,
1514 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1515 bitsize_unit_node)));
1516 rli->offset
1517 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1518 rli->bitpos = bitsize_zero_node;
1519 rli->offset_align = MIN (rli->offset_align, desired_align);
1521 else if (targetm.ms_bitfield_layout_p (rli->t))
1523 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1525 /* If we ended a bitfield before the full length of the type then
1526 pad the struct out to the full length of the last type. */
1527 if ((DECL_CHAIN (field) == NULL
1528 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1529 && DECL_BIT_FIELD_TYPE (field)
1530 && !integer_zerop (DECL_SIZE (field)))
1531 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1532 bitsize_int (rli->remaining_in_alignment));
1534 normalize_rli (rli);
1536 else
1538 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1539 normalize_rli (rli);
1543 /* Assuming that all the fields have been laid out, this function uses
1544 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1545 indicated by RLI. */
1547 static void
1548 finalize_record_size (record_layout_info rli)
1550 tree unpadded_size, unpadded_size_unit;
1552 /* Now we want just byte and bit offsets, so set the offset alignment
1553 to be a byte and then normalize. */
1554 rli->offset_align = BITS_PER_UNIT;
1555 normalize_rli (rli);
1557 /* Determine the desired alignment. */
1558 #ifdef ROUND_TYPE_ALIGN
1559 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1560 rli->record_align));
1561 #else
1562 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1563 #endif
1565 /* Compute the size so far. Be sure to allow for extra bits in the
1566 size in bytes. We have guaranteed above that it will be no more
1567 than a single byte. */
1568 unpadded_size = rli_size_so_far (rli);
1569 unpadded_size_unit = rli_size_unit_so_far (rli);
1570 if (! integer_zerop (rli->bitpos))
1571 unpadded_size_unit
1572 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1574 /* Round the size up to be a multiple of the required alignment. */
1575 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1576 TYPE_SIZE_UNIT (rli->t)
1577 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1579 if (TREE_CONSTANT (unpadded_size)
1580 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1581 && input_location != BUILTINS_LOCATION)
1582 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1584 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1585 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1586 && TREE_CONSTANT (unpadded_size))
1588 tree unpacked_size;
1590 #ifdef ROUND_TYPE_ALIGN
1591 rli->unpacked_align
1592 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1593 #else
1594 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1595 #endif
1597 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1598 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1600 if (TYPE_NAME (rli->t))
1602 tree name;
1604 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1605 name = TYPE_NAME (rli->t);
1606 else
1607 name = DECL_NAME (TYPE_NAME (rli->t));
1609 if (STRICT_ALIGNMENT)
1610 warning (OPT_Wpacked, "packed attribute causes inefficient "
1611 "alignment for %qE", name);
1612 else
1613 warning (OPT_Wpacked,
1614 "packed attribute is unnecessary for %qE", name);
1616 else
1618 if (STRICT_ALIGNMENT)
1619 warning (OPT_Wpacked,
1620 "packed attribute causes inefficient alignment");
1621 else
1622 warning (OPT_Wpacked, "packed attribute is unnecessary");
1628 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1630 void
1631 compute_record_mode (tree type)
1633 tree field;
1634 machine_mode mode = VOIDmode;
1636 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1637 However, if possible, we use a mode that fits in a register
1638 instead, in order to allow for better optimization down the
1639 line. */
1640 SET_TYPE_MODE (type, BLKmode);
1642 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1643 return;
1645 /* A record which has any BLKmode members must itself be
1646 BLKmode; it can't go in a register. Unless the member is
1647 BLKmode only because it isn't aligned. */
1648 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1650 if (TREE_CODE (field) != FIELD_DECL)
1651 continue;
1653 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1654 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1655 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1656 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1657 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1658 || ! tree_fits_uhwi_p (bit_position (field))
1659 || DECL_SIZE (field) == 0
1660 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1661 return;
1663 /* If this field is the whole struct, remember its mode so
1664 that, say, we can put a double in a class into a DF
1665 register instead of forcing it to live in the stack. */
1666 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1667 mode = DECL_MODE (field);
1669 /* With some targets, it is sub-optimal to access an aligned
1670 BLKmode structure as a scalar. */
1671 if (targetm.member_type_forces_blk (field, mode))
1672 return;
1675 /* If we only have one real field; use its mode if that mode's size
1676 matches the type's size. This only applies to RECORD_TYPE. This
1677 does not apply to unions. */
1678 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1679 && tree_fits_uhwi_p (TYPE_SIZE (type))
1680 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1681 SET_TYPE_MODE (type, mode);
1682 else
1683 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1685 /* If structure's known alignment is less than what the scalar
1686 mode would need, and it matters, then stick with BLKmode. */
1687 if (TYPE_MODE (type) != BLKmode
1688 && STRICT_ALIGNMENT
1689 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1690 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1692 /* If this is the only reason this type is BLKmode, then
1693 don't force containing types to be BLKmode. */
1694 TYPE_NO_FORCE_BLK (type) = 1;
1695 SET_TYPE_MODE (type, BLKmode);
1699 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1700 out. */
1702 static void
1703 finalize_type_size (tree type)
1705 /* Normally, use the alignment corresponding to the mode chosen.
1706 However, where strict alignment is not required, avoid
1707 over-aligning structures, since most compilers do not do this
1708 alignment. */
1709 if (TYPE_MODE (type) != BLKmode
1710 && TYPE_MODE (type) != VOIDmode
1711 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1713 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1715 /* Don't override a larger alignment requirement coming from a user
1716 alignment of one of the fields. */
1717 if (mode_align >= TYPE_ALIGN (type))
1719 SET_TYPE_ALIGN (type, mode_align);
1720 TYPE_USER_ALIGN (type) = 0;
1724 /* Do machine-dependent extra alignment. */
1725 #ifdef ROUND_TYPE_ALIGN
1726 SET_TYPE_ALIGN (type,
1727 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1728 #endif
1730 /* If we failed to find a simple way to calculate the unit size
1731 of the type, find it by division. */
1732 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1733 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1734 result will fit in sizetype. We will get more efficient code using
1735 sizetype, so we force a conversion. */
1736 TYPE_SIZE_UNIT (type)
1737 = fold_convert (sizetype,
1738 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1739 bitsize_unit_node));
1741 if (TYPE_SIZE (type) != 0)
1743 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1744 TYPE_SIZE_UNIT (type)
1745 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1748 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1749 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1750 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1751 if (TYPE_SIZE_UNIT (type) != 0
1752 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1753 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1755 /* Also layout any other variants of the type. */
1756 if (TYPE_NEXT_VARIANT (type)
1757 || type != TYPE_MAIN_VARIANT (type))
1759 tree variant;
1760 /* Record layout info of this variant. */
1761 tree size = TYPE_SIZE (type);
1762 tree size_unit = TYPE_SIZE_UNIT (type);
1763 unsigned int align = TYPE_ALIGN (type);
1764 unsigned int precision = TYPE_PRECISION (type);
1765 unsigned int user_align = TYPE_USER_ALIGN (type);
1766 machine_mode mode = TYPE_MODE (type);
1768 /* Copy it into all variants. */
1769 for (variant = TYPE_MAIN_VARIANT (type);
1770 variant != 0;
1771 variant = TYPE_NEXT_VARIANT (variant))
1773 TYPE_SIZE (variant) = size;
1774 TYPE_SIZE_UNIT (variant) = size_unit;
1775 unsigned valign = align;
1776 if (TYPE_USER_ALIGN (variant))
1777 valign = MAX (valign, TYPE_ALIGN (variant));
1778 else
1779 TYPE_USER_ALIGN (variant) = user_align;
1780 SET_TYPE_ALIGN (variant, valign);
1781 TYPE_PRECISION (variant) = precision;
1782 SET_TYPE_MODE (variant, mode);
1787 /* Return a new underlying object for a bitfield started with FIELD. */
1789 static tree
1790 start_bitfield_representative (tree field)
1792 tree repr = make_node (FIELD_DECL);
1793 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1794 /* Force the representative to begin at a BITS_PER_UNIT aligned
1795 boundary - C++ may use tail-padding of a base object to
1796 continue packing bits so the bitfield region does not start
1797 at bit zero (see g++.dg/abi/bitfield5.C for example).
1798 Unallocated bits may happen for other reasons as well,
1799 for example Ada which allows explicit bit-granular structure layout. */
1800 DECL_FIELD_BIT_OFFSET (repr)
1801 = size_binop (BIT_AND_EXPR,
1802 DECL_FIELD_BIT_OFFSET (field),
1803 bitsize_int (~(BITS_PER_UNIT - 1)));
1804 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1805 DECL_SIZE (repr) = DECL_SIZE (field);
1806 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1807 DECL_PACKED (repr) = DECL_PACKED (field);
1808 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1809 /* There are no indirect accesses to this field. If we introduce
1810 some then they have to use the record alias set. This makes
1811 sure to properly conflict with [indirect] accesses to addressable
1812 fields of the bitfield group. */
1813 DECL_NONADDRESSABLE_P (repr) = 1;
1814 return repr;
1817 /* Finish up a bitfield group that was started by creating the underlying
1818 object REPR with the last field in the bitfield group FIELD. */
1820 static void
1821 finish_bitfield_representative (tree repr, tree field)
1823 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1824 machine_mode mode;
1825 tree nextf, size;
1827 size = size_diffop (DECL_FIELD_OFFSET (field),
1828 DECL_FIELD_OFFSET (repr));
1829 while (TREE_CODE (size) == COMPOUND_EXPR)
1830 size = TREE_OPERAND (size, 1);
1831 gcc_assert (tree_fits_uhwi_p (size));
1832 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1833 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1834 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1835 + tree_to_uhwi (DECL_SIZE (field)));
1837 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1838 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1840 /* Now nothing tells us how to pad out bitsize ... */
1841 nextf = DECL_CHAIN (field);
1842 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1843 nextf = DECL_CHAIN (nextf);
1844 if (nextf)
1846 tree maxsize;
1847 /* If there was an error, the field may be not laid out
1848 correctly. Don't bother to do anything. */
1849 if (TREE_TYPE (nextf) == error_mark_node)
1850 return;
1851 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1852 DECL_FIELD_OFFSET (repr));
1853 if (tree_fits_uhwi_p (maxsize))
1855 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1856 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1857 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1858 /* If the group ends within a bitfield nextf does not need to be
1859 aligned to BITS_PER_UNIT. Thus round up. */
1860 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1862 else
1863 maxbitsize = bitsize;
1865 else
1867 /* ??? If you consider that tail-padding of this struct might be
1868 re-used when deriving from it we cannot really do the following
1869 and thus need to set maxsize to bitsize? Also we cannot
1870 generally rely on maxsize to fold to an integer constant, so
1871 use bitsize as fallback for this case. */
1872 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1873 DECL_FIELD_OFFSET (repr));
1874 if (tree_fits_uhwi_p (maxsize))
1875 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1876 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1877 else
1878 maxbitsize = bitsize;
1881 /* Only if we don't artificially break up the representative in
1882 the middle of a large bitfield with different possibly
1883 overlapping representatives. And all representatives start
1884 at byte offset. */
1885 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1887 /* Find the smallest nice mode to use. */
1888 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1889 mode = GET_MODE_WIDER_MODE (mode))
1890 if (GET_MODE_BITSIZE (mode) >= bitsize)
1891 break;
1892 if (mode != VOIDmode
1893 && (GET_MODE_BITSIZE (mode) > maxbitsize
1894 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1895 mode = VOIDmode;
1897 if (mode == VOIDmode)
1899 /* We really want a BLKmode representative only as a last resort,
1900 considering the member b in
1901 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1902 Otherwise we simply want to split the representative up
1903 allowing for overlaps within the bitfield region as required for
1904 struct { int a : 7; int b : 7;
1905 int c : 10; int d; } __attribute__((packed));
1906 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1907 DECL_SIZE (repr) = bitsize_int (bitsize);
1908 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1909 SET_DECL_MODE (repr, BLKmode);
1910 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1911 bitsize / BITS_PER_UNIT);
1913 else
1915 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1916 DECL_SIZE (repr) = bitsize_int (modesize);
1917 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1918 SET_DECL_MODE (repr, mode);
1919 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1922 /* Remember whether the bitfield group is at the end of the
1923 structure or not. */
1924 DECL_CHAIN (repr) = nextf;
1927 /* Compute and set FIELD_DECLs for the underlying objects we should
1928 use for bitfield access for the structure T. */
1930 void
1931 finish_bitfield_layout (tree t)
1933 tree field, prev;
1934 tree repr = NULL_TREE;
1936 /* Unions would be special, for the ease of type-punning optimizations
1937 we could use the underlying type as hint for the representative
1938 if the bitfield would fit and the representative would not exceed
1939 the union in size. */
1940 if (TREE_CODE (t) != RECORD_TYPE)
1941 return;
1943 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1944 field; field = DECL_CHAIN (field))
1946 if (TREE_CODE (field) != FIELD_DECL)
1947 continue;
1949 /* In the C++ memory model, consecutive bit fields in a structure are
1950 considered one memory location and updating a memory location
1951 may not store into adjacent memory locations. */
1952 if (!repr
1953 && DECL_BIT_FIELD_TYPE (field))
1955 /* Start new representative. */
1956 repr = start_bitfield_representative (field);
1958 else if (repr
1959 && ! DECL_BIT_FIELD_TYPE (field))
1961 /* Finish off new representative. */
1962 finish_bitfield_representative (repr, prev);
1963 repr = NULL_TREE;
1965 else if (DECL_BIT_FIELD_TYPE (field))
1967 gcc_assert (repr != NULL_TREE);
1969 /* Zero-size bitfields finish off a representative and
1970 do not have a representative themselves. This is
1971 required by the C++ memory model. */
1972 if (integer_zerop (DECL_SIZE (field)))
1974 finish_bitfield_representative (repr, prev);
1975 repr = NULL_TREE;
1978 /* We assume that either DECL_FIELD_OFFSET of the representative
1979 and each bitfield member is a constant or they are equal.
1980 This is because we need to be able to compute the bit-offset
1981 of each field relative to the representative in get_bit_range
1982 during RTL expansion.
1983 If these constraints are not met, simply force a new
1984 representative to be generated. That will at most
1985 generate worse code but still maintain correctness with
1986 respect to the C++ memory model. */
1987 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1988 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1989 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1990 DECL_FIELD_OFFSET (field), 0)))
1992 finish_bitfield_representative (repr, prev);
1993 repr = start_bitfield_representative (field);
1996 else
1997 continue;
1999 if (repr)
2000 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2002 prev = field;
2005 if (repr)
2006 finish_bitfield_representative (repr, prev);
2009 /* Do all of the work required to layout the type indicated by RLI,
2010 once the fields have been laid out. This function will call `free'
2011 for RLI, unless FREE_P is false. Passing a value other than false
2012 for FREE_P is bad practice; this option only exists to support the
2013 G++ 3.2 ABI. */
2015 void
2016 finish_record_layout (record_layout_info rli, int free_p)
2018 tree variant;
2020 /* Compute the final size. */
2021 finalize_record_size (rli);
2023 /* Compute the TYPE_MODE for the record. */
2024 compute_record_mode (rli->t);
2026 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2027 finalize_type_size (rli->t);
2029 /* Compute bitfield representatives. */
2030 finish_bitfield_layout (rli->t);
2032 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2033 With C++ templates, it is too early to do this when the attribute
2034 is being parsed. */
2035 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2036 variant = TYPE_NEXT_VARIANT (variant))
2038 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2039 TYPE_REVERSE_STORAGE_ORDER (variant)
2040 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2043 /* Lay out any static members. This is done now because their type
2044 may use the record's type. */
2045 while (!vec_safe_is_empty (rli->pending_statics))
2046 layout_decl (rli->pending_statics->pop (), 0);
2048 /* Clean up. */
2049 if (free_p)
2051 vec_free (rli->pending_statics);
2052 free (rli);
2057 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2058 NAME, its fields are chained in reverse on FIELDS.
2060 If ALIGN_TYPE is non-null, it is given the same alignment as
2061 ALIGN_TYPE. */
2063 void
2064 finish_builtin_struct (tree type, const char *name, tree fields,
2065 tree align_type)
2067 tree tail, next;
2069 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2071 DECL_FIELD_CONTEXT (fields) = type;
2072 next = DECL_CHAIN (fields);
2073 DECL_CHAIN (fields) = tail;
2075 TYPE_FIELDS (type) = tail;
2077 if (align_type)
2079 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2080 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2083 layout_type (type);
2084 #if 0 /* not yet, should get fixed properly later */
2085 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2086 #else
2087 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2088 TYPE_DECL, get_identifier (name), type);
2089 #endif
2090 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2091 layout_decl (TYPE_NAME (type), 0);
2094 /* Calculate the mode, size, and alignment for TYPE.
2095 For an array type, calculate the element separation as well.
2096 Record TYPE on the chain of permanent or temporary types
2097 so that dbxout will find out about it.
2099 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2100 layout_type does nothing on such a type.
2102 If the type is incomplete, its TYPE_SIZE remains zero. */
2104 void
2105 layout_type (tree type)
2107 gcc_assert (type);
2109 if (type == error_mark_node)
2110 return;
2112 /* We don't want finalize_type_size to copy an alignment attribute to
2113 variants that don't have it. */
2114 type = TYPE_MAIN_VARIANT (type);
2116 /* Do nothing if type has been laid out before. */
2117 if (TYPE_SIZE (type))
2118 return;
2120 switch (TREE_CODE (type))
2122 case LANG_TYPE:
2123 /* This kind of type is the responsibility
2124 of the language-specific code. */
2125 gcc_unreachable ();
2127 case BOOLEAN_TYPE:
2128 case INTEGER_TYPE:
2129 case ENUMERAL_TYPE:
2130 SET_TYPE_MODE (type,
2131 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2132 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2133 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2134 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2135 break;
2137 case REAL_TYPE:
2138 /* Allow the caller to choose the type mode, which is how decimal
2139 floats are distinguished from binary ones. */
2140 if (TYPE_MODE (type) == VOIDmode)
2141 SET_TYPE_MODE (type,
2142 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2143 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2144 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2145 break;
2147 case FIXED_POINT_TYPE:
2148 /* TYPE_MODE (type) has been set already. */
2149 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2150 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2151 break;
2153 case COMPLEX_TYPE:
2154 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2155 SET_TYPE_MODE (type,
2156 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2158 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2159 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2160 break;
2162 case VECTOR_TYPE:
2164 int nunits = TYPE_VECTOR_SUBPARTS (type);
2165 tree innertype = TREE_TYPE (type);
2167 gcc_assert (!(nunits & (nunits - 1)));
2169 /* Find an appropriate mode for the vector type. */
2170 if (TYPE_MODE (type) == VOIDmode)
2171 SET_TYPE_MODE (type,
2172 mode_for_vector (TYPE_MODE (innertype), nunits));
2174 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2175 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2176 /* Several boolean vector elements may fit in a single unit. */
2177 if (VECTOR_BOOLEAN_TYPE_P (type)
2178 && type->type_common.mode != BLKmode)
2179 TYPE_SIZE_UNIT (type)
2180 = size_int (GET_MODE_SIZE (type->type_common.mode));
2181 else
2182 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2183 TYPE_SIZE_UNIT (innertype),
2184 size_int (nunits));
2185 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2186 TYPE_SIZE (innertype),
2187 bitsize_int (nunits));
2189 /* For vector types, we do not default to the mode's alignment.
2190 Instead, query a target hook, defaulting to natural alignment.
2191 This prevents ABI changes depending on whether or not native
2192 vector modes are supported. */
2193 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2195 /* However, if the underlying mode requires a bigger alignment than
2196 what the target hook provides, we cannot use the mode. For now,
2197 simply reject that case. */
2198 gcc_assert (TYPE_ALIGN (type)
2199 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2200 break;
2203 case VOID_TYPE:
2204 /* This is an incomplete type and so doesn't have a size. */
2205 SET_TYPE_ALIGN (type, 1);
2206 TYPE_USER_ALIGN (type) = 0;
2207 SET_TYPE_MODE (type, VOIDmode);
2208 break;
2210 case POINTER_BOUNDS_TYPE:
2211 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2212 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2213 break;
2215 case OFFSET_TYPE:
2216 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2217 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2218 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2219 integral, which may be an __intN. */
2220 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2221 TYPE_PRECISION (type) = POINTER_SIZE;
2222 break;
2224 case FUNCTION_TYPE:
2225 case METHOD_TYPE:
2226 /* It's hard to see what the mode and size of a function ought to
2227 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2228 make it consistent with that. */
2229 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2230 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2231 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2232 break;
2234 case POINTER_TYPE:
2235 case REFERENCE_TYPE:
2237 machine_mode mode = TYPE_MODE (type);
2238 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2239 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2240 TYPE_UNSIGNED (type) = 1;
2241 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2243 break;
2245 case ARRAY_TYPE:
2247 tree index = TYPE_DOMAIN (type);
2248 tree element = TREE_TYPE (type);
2250 /* We need to know both bounds in order to compute the size. */
2251 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2252 && TYPE_SIZE (element))
2254 tree ub = TYPE_MAX_VALUE (index);
2255 tree lb = TYPE_MIN_VALUE (index);
2256 tree element_size = TYPE_SIZE (element);
2257 tree length;
2259 /* Make sure that an array of zero-sized element is zero-sized
2260 regardless of its extent. */
2261 if (integer_zerop (element_size))
2262 length = size_zero_node;
2264 /* The computation should happen in the original signedness so
2265 that (possible) negative values are handled appropriately
2266 when determining overflow. */
2267 else
2269 /* ??? When it is obvious that the range is signed
2270 represent it using ssizetype. */
2271 if (TREE_CODE (lb) == INTEGER_CST
2272 && TREE_CODE (ub) == INTEGER_CST
2273 && TYPE_UNSIGNED (TREE_TYPE (lb))
2274 && tree_int_cst_lt (ub, lb))
2276 lb = wide_int_to_tree (ssizetype,
2277 offset_int::from (lb, SIGNED));
2278 ub = wide_int_to_tree (ssizetype,
2279 offset_int::from (ub, SIGNED));
2281 length
2282 = fold_convert (sizetype,
2283 size_binop (PLUS_EXPR,
2284 build_int_cst (TREE_TYPE (lb), 1),
2285 size_binop (MINUS_EXPR, ub, lb)));
2288 /* ??? We have no way to distinguish a null-sized array from an
2289 array spanning the whole sizetype range, so we arbitrarily
2290 decide that [0, -1] is the only valid representation. */
2291 if (integer_zerop (length)
2292 && TREE_OVERFLOW (length)
2293 && integer_zerop (lb))
2294 length = size_zero_node;
2296 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2297 fold_convert (bitsizetype,
2298 length));
2300 /* If we know the size of the element, calculate the total size
2301 directly, rather than do some division thing below. This
2302 optimization helps Fortran assumed-size arrays (where the
2303 size of the array is determined at runtime) substantially. */
2304 if (TYPE_SIZE_UNIT (element))
2305 TYPE_SIZE_UNIT (type)
2306 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2309 /* Now round the alignment and size,
2310 using machine-dependent criteria if any. */
2312 unsigned align = TYPE_ALIGN (element);
2313 if (TYPE_USER_ALIGN (type))
2314 align = MAX (align, TYPE_ALIGN (type));
2315 else
2316 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2317 #ifdef ROUND_TYPE_ALIGN
2318 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2319 #else
2320 align = MAX (align, BITS_PER_UNIT);
2321 #endif
2322 SET_TYPE_ALIGN (type, align);
2323 SET_TYPE_MODE (type, BLKmode);
2324 if (TYPE_SIZE (type) != 0
2325 && ! targetm.member_type_forces_blk (type, VOIDmode)
2326 /* BLKmode elements force BLKmode aggregate;
2327 else extract/store fields may lose. */
2328 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2329 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2331 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2332 TYPE_SIZE (type)));
2333 if (TYPE_MODE (type) != BLKmode
2334 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2335 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2337 TYPE_NO_FORCE_BLK (type) = 1;
2338 SET_TYPE_MODE (type, BLKmode);
2341 /* When the element size is constant, check that it is at least as
2342 large as the element alignment. */
2343 if (TYPE_SIZE_UNIT (element)
2344 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2345 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2346 TYPE_ALIGN_UNIT. */
2347 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2348 && !integer_zerop (TYPE_SIZE_UNIT (element))
2349 && compare_tree_int (TYPE_SIZE_UNIT (element),
2350 TYPE_ALIGN_UNIT (element)) < 0)
2351 error ("alignment of array elements is greater than element size");
2352 break;
2355 case RECORD_TYPE:
2356 case UNION_TYPE:
2357 case QUAL_UNION_TYPE:
2359 tree field;
2360 record_layout_info rli;
2362 /* Initialize the layout information. */
2363 rli = start_record_layout (type);
2365 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2366 in the reverse order in building the COND_EXPR that denotes
2367 its size. We reverse them again later. */
2368 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2369 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2371 /* Place all the fields. */
2372 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2373 place_field (rli, field);
2375 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2376 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2378 /* Finish laying out the record. */
2379 finish_record_layout (rli, /*free_p=*/true);
2381 break;
2383 default:
2384 gcc_unreachable ();
2387 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2388 records and unions, finish_record_layout already called this
2389 function. */
2390 if (!RECORD_OR_UNION_TYPE_P (type))
2391 finalize_type_size (type);
2393 /* We should never see alias sets on incomplete aggregates. And we
2394 should not call layout_type on not incomplete aggregates. */
2395 if (AGGREGATE_TYPE_P (type))
2396 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2399 /* Return the least alignment required for type TYPE. */
2401 unsigned int
2402 min_align_of_type (tree type)
2404 unsigned int align = TYPE_ALIGN (type);
2405 if (!TYPE_USER_ALIGN (type))
2407 align = MIN (align, BIGGEST_ALIGNMENT);
2408 #ifdef BIGGEST_FIELD_ALIGNMENT
2409 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2410 #endif
2411 unsigned int field_align = align;
2412 #ifdef ADJUST_FIELD_ALIGN
2413 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2414 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2415 ggc_free (field);
2416 #endif
2417 align = MIN (align, field_align);
2419 return align / BITS_PER_UNIT;
2422 /* Vector types need to re-check the target flags each time we report
2423 the machine mode. We need to do this because attribute target can
2424 change the result of vector_mode_supported_p and have_regs_of_mode
2425 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2426 change on a per-function basis. */
2427 /* ??? Possibly a better solution is to run through all the types
2428 referenced by a function and re-compute the TYPE_MODE once, rather
2429 than make the TYPE_MODE macro call a function. */
2431 machine_mode
2432 vector_type_mode (const_tree t)
2434 machine_mode mode;
2436 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2438 mode = t->type_common.mode;
2439 if (VECTOR_MODE_P (mode)
2440 && (!targetm.vector_mode_supported_p (mode)
2441 || !have_regs_of_mode[mode]))
2443 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2445 /* For integers, try mapping it to a same-sized scalar mode. */
2446 if (GET_MODE_CLASS (innermode) == MODE_INT)
2448 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2449 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2451 if (mode != VOIDmode && have_regs_of_mode[mode])
2452 return mode;
2455 return BLKmode;
2458 return mode;
2461 /* Create and return a type for signed integers of PRECISION bits. */
2463 tree
2464 make_signed_type (int precision)
2466 tree type = make_node (INTEGER_TYPE);
2468 TYPE_PRECISION (type) = precision;
2470 fixup_signed_type (type);
2471 return type;
2474 /* Create and return a type for unsigned integers of PRECISION bits. */
2476 tree
2477 make_unsigned_type (int precision)
2479 tree type = make_node (INTEGER_TYPE);
2481 TYPE_PRECISION (type) = precision;
2483 fixup_unsigned_type (type);
2484 return type;
2487 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2488 and SATP. */
2490 tree
2491 make_fract_type (int precision, int unsignedp, int satp)
2493 tree type = make_node (FIXED_POINT_TYPE);
2495 TYPE_PRECISION (type) = precision;
2497 if (satp)
2498 TYPE_SATURATING (type) = 1;
2500 /* Lay out the type: set its alignment, size, etc. */
2501 if (unsignedp)
2503 TYPE_UNSIGNED (type) = 1;
2504 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2506 else
2507 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2508 layout_type (type);
2510 return type;
2513 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2514 and SATP. */
2516 tree
2517 make_accum_type (int precision, int unsignedp, int satp)
2519 tree type = make_node (FIXED_POINT_TYPE);
2521 TYPE_PRECISION (type) = precision;
2523 if (satp)
2524 TYPE_SATURATING (type) = 1;
2526 /* Lay out the type: set its alignment, size, etc. */
2527 if (unsignedp)
2529 TYPE_UNSIGNED (type) = 1;
2530 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2532 else
2533 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2534 layout_type (type);
2536 return type;
2539 /* Initialize sizetypes so layout_type can use them. */
2541 void
2542 initialize_sizetypes (void)
2544 int precision, bprecision;
2546 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2547 if (strcmp (SIZETYPE, "unsigned int") == 0)
2548 precision = INT_TYPE_SIZE;
2549 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2550 precision = LONG_TYPE_SIZE;
2551 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2552 precision = LONG_LONG_TYPE_SIZE;
2553 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2554 precision = SHORT_TYPE_SIZE;
2555 else
2557 int i;
2559 precision = -1;
2560 for (i = 0; i < NUM_INT_N_ENTS; i++)
2561 if (int_n_enabled_p[i])
2563 char name[50];
2564 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2566 if (strcmp (name, SIZETYPE) == 0)
2568 precision = int_n_data[i].bitsize;
2571 if (precision == -1)
2572 gcc_unreachable ();
2575 bprecision
2576 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2577 bprecision
2578 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2579 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2580 bprecision = HOST_BITS_PER_DOUBLE_INT;
2582 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2583 sizetype = make_node (INTEGER_TYPE);
2584 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2585 TYPE_PRECISION (sizetype) = precision;
2586 TYPE_UNSIGNED (sizetype) = 1;
2587 bitsizetype = make_node (INTEGER_TYPE);
2588 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2589 TYPE_PRECISION (bitsizetype) = bprecision;
2590 TYPE_UNSIGNED (bitsizetype) = 1;
2592 /* Now layout both types manually. */
2593 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2594 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2595 TYPE_SIZE (sizetype) = bitsize_int (precision);
2596 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2597 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2599 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2600 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2601 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2602 TYPE_SIZE_UNIT (bitsizetype)
2603 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2604 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2606 /* Create the signed variants of *sizetype. */
2607 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2608 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2609 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2610 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2613 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2614 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2615 for TYPE, based on the PRECISION and whether or not the TYPE
2616 IS_UNSIGNED. PRECISION need not correspond to a width supported
2617 natively by the hardware; for example, on a machine with 8-bit,
2618 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2619 61. */
2621 void
2622 set_min_and_max_values_for_integral_type (tree type,
2623 int precision,
2624 signop sgn)
2626 /* For bitfields with zero width we end up creating integer types
2627 with zero precision. Don't assign any minimum/maximum values
2628 to those types, they don't have any valid value. */
2629 if (precision < 1)
2630 return;
2632 TYPE_MIN_VALUE (type)
2633 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2634 TYPE_MAX_VALUE (type)
2635 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2638 /* Set the extreme values of TYPE based on its precision in bits,
2639 then lay it out. Used when make_signed_type won't do
2640 because the tree code is not INTEGER_TYPE.
2641 E.g. for Pascal, when the -fsigned-char option is given. */
2643 void
2644 fixup_signed_type (tree type)
2646 int precision = TYPE_PRECISION (type);
2648 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2650 /* Lay out the type: set its alignment, size, etc. */
2651 layout_type (type);
2654 /* Set the extreme values of TYPE based on its precision in bits,
2655 then lay it out. This is used both in `make_unsigned_type'
2656 and for enumeral types. */
2658 void
2659 fixup_unsigned_type (tree type)
2661 int precision = TYPE_PRECISION (type);
2663 TYPE_UNSIGNED (type) = 1;
2665 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2667 /* Lay out the type: set its alignment, size, etc. */
2668 layout_type (type);
2671 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2672 starting at BITPOS.
2674 BITREGION_START is the bit position of the first bit in this
2675 sequence of bit fields. BITREGION_END is the last bit in this
2676 sequence. If these two fields are non-zero, we should restrict the
2677 memory access to that range. Otherwise, we are allowed to touch
2678 any adjacent non bit-fields.
2680 ALIGN is the alignment of the underlying object in bits.
2681 VOLATILEP says whether the bitfield is volatile. */
2683 bit_field_mode_iterator
2684 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2685 HOST_WIDE_INT bitregion_start,
2686 HOST_WIDE_INT bitregion_end,
2687 unsigned int align, bool volatilep)
2688 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2689 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2690 m_bitregion_end (bitregion_end), m_align (align),
2691 m_volatilep (volatilep), m_count (0)
2693 if (!m_bitregion_end)
2695 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2696 the bitfield is mapped and won't trap, provided that ALIGN isn't
2697 too large. The cap is the biggest required alignment for data,
2698 or at least the word size. And force one such chunk at least. */
2699 unsigned HOST_WIDE_INT units
2700 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2701 if (bitsize <= 0)
2702 bitsize = 1;
2703 m_bitregion_end = bitpos + bitsize + units - 1;
2704 m_bitregion_end -= m_bitregion_end % units + 1;
2708 /* Calls to this function return successively larger modes that can be used
2709 to represent the bitfield. Return true if another bitfield mode is
2710 available, storing it in *OUT_MODE if so. */
2712 bool
2713 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2715 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2717 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2719 /* Skip modes that don't have full precision. */
2720 if (unit != GET_MODE_PRECISION (m_mode))
2721 continue;
2723 /* Stop if the mode is too wide to handle efficiently. */
2724 if (unit > MAX_FIXED_MODE_SIZE)
2725 break;
2727 /* Don't deliver more than one multiword mode; the smallest one
2728 should be used. */
2729 if (m_count > 0 && unit > BITS_PER_WORD)
2730 break;
2732 /* Skip modes that are too small. */
2733 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2734 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2735 if (subend > unit)
2736 continue;
2738 /* Stop if the mode goes outside the bitregion. */
2739 HOST_WIDE_INT start = m_bitpos - substart;
2740 if (m_bitregion_start && start < m_bitregion_start)
2741 break;
2742 HOST_WIDE_INT end = start + unit;
2743 if (end > m_bitregion_end + 1)
2744 break;
2746 /* Stop if the mode requires too much alignment. */
2747 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2748 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2749 break;
2751 *out_mode = m_mode;
2752 m_mode = GET_MODE_WIDER_MODE (m_mode);
2753 m_count++;
2754 return true;
2756 return false;
2759 /* Return true if smaller modes are generally preferred for this kind
2760 of bitfield. */
2762 bool
2763 bit_field_mode_iterator::prefer_smaller_modes ()
2765 return (m_volatilep
2766 ? targetm.narrow_volatile_bitfield ()
2767 : !SLOW_BYTE_ACCESS);
2770 /* Find the best machine mode to use when referencing a bit field of length
2771 BITSIZE bits starting at BITPOS.
2773 BITREGION_START is the bit position of the first bit in this
2774 sequence of bit fields. BITREGION_END is the last bit in this
2775 sequence. If these two fields are non-zero, we should restrict the
2776 memory access to that range. Otherwise, we are allowed to touch
2777 any adjacent non bit-fields.
2779 The underlying object is known to be aligned to a boundary of ALIGN bits.
2780 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2781 larger than LARGEST_MODE (usually SImode).
2783 If no mode meets all these conditions, we return VOIDmode.
2785 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2786 smallest mode meeting these conditions.
2788 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2789 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2790 all the conditions.
2792 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2793 decide which of the above modes should be used. */
2795 machine_mode
2796 get_best_mode (int bitsize, int bitpos,
2797 unsigned HOST_WIDE_INT bitregion_start,
2798 unsigned HOST_WIDE_INT bitregion_end,
2799 unsigned int align,
2800 machine_mode largest_mode, bool volatilep)
2802 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2803 bitregion_end, align, volatilep);
2804 machine_mode widest_mode = VOIDmode;
2805 machine_mode mode;
2806 while (iter.next_mode (&mode)
2807 /* ??? For historical reasons, reject modes that would normally
2808 receive greater alignment, even if unaligned accesses are
2809 acceptable. This has both advantages and disadvantages.
2810 Removing this check means that something like:
2812 struct s { unsigned int x; unsigned int y; };
2813 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2815 can be implemented using a single load and compare on
2816 64-bit machines that have no alignment restrictions.
2817 For example, on powerpc64-linux-gnu, we would generate:
2819 ld 3,0(3)
2820 cntlzd 3,3
2821 srdi 3,3,6
2824 rather than:
2826 lwz 9,0(3)
2827 cmpwi 7,9,0
2828 bne 7,.L3
2829 lwz 3,4(3)
2830 cntlzw 3,3
2831 srwi 3,3,5
2832 extsw 3,3
2834 .p2align 4,,15
2835 .L3:
2836 li 3,0
2839 However, accessing more than one field can make life harder
2840 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2841 has a series of unsigned short copies followed by a series of
2842 unsigned short comparisons. With this check, both the copies
2843 and comparisons remain 16-bit accesses and FRE is able
2844 to eliminate the latter. Without the check, the comparisons
2845 can be done using 2 64-bit operations, which FRE isn't able
2846 to handle in the same way.
2848 Either way, it would probably be worth disabling this check
2849 during expand. One particular example where removing the
2850 check would help is the get_best_mode call in store_bit_field.
2851 If we are given a memory bitregion of 128 bits that is aligned
2852 to a 64-bit boundary, and the bitfield we want to modify is
2853 in the second half of the bitregion, this check causes
2854 store_bitfield to turn the memory into a 64-bit reference
2855 to the _first_ half of the region. We later use
2856 adjust_bitfield_address to get a reference to the correct half,
2857 but doing so looks to adjust_bitfield_address as though we are
2858 moving past the end of the original object, so it drops the
2859 associated MEM_EXPR and MEM_OFFSET. Removing the check
2860 causes store_bit_field to keep a 128-bit memory reference,
2861 so that the final bitfield reference still has a MEM_EXPR
2862 and MEM_OFFSET. */
2863 && GET_MODE_ALIGNMENT (mode) <= align
2864 && (largest_mode == VOIDmode
2865 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2867 widest_mode = mode;
2868 if (iter.prefer_smaller_modes ())
2869 break;
2871 return widest_mode;
2874 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2875 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2877 void
2878 get_mode_bounds (machine_mode mode, int sign,
2879 machine_mode target_mode,
2880 rtx *mmin, rtx *mmax)
2882 unsigned size = GET_MODE_PRECISION (mode);
2883 unsigned HOST_WIDE_INT min_val, max_val;
2885 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2887 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2888 if (mode == BImode)
2890 if (STORE_FLAG_VALUE < 0)
2892 min_val = STORE_FLAG_VALUE;
2893 max_val = 0;
2895 else
2897 min_val = 0;
2898 max_val = STORE_FLAG_VALUE;
2901 else if (sign)
2903 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2904 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2906 else
2908 min_val = 0;
2909 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2912 *mmin = gen_int_mode (min_val, target_mode);
2913 *mmax = gen_int_mode (max_val, target_mode);
2916 #include "gt-stor-layout.h"