* testsuite/26_numerics/headers/cmath/hypot.cc: XFAIL on AIX.
[official-gcc.git] / gcc / cfgloop.c
blob205562fe3fa6ecac61280fd5bbef08dc643b45ab
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
35 static void flow_loops_cfg_dump (FILE *);
37 /* Dump loop related CFG information. */
39 static void
40 flow_loops_cfg_dump (FILE *file)
42 basic_block bb;
44 if (!file)
45 return;
47 FOR_EACH_BB_FN (bb, cfun)
49 edge succ;
50 edge_iterator ei;
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
64 unsigned odepth = loop_depth (outer);
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
76 unsigned ldepth = loop_depth (loop);
78 gcc_assert (depth <= ldepth);
80 if (depth == ldepth)
81 return loop;
83 return (*loop->superloops)[depth];
86 /* Returns the list of the latch edges of LOOP. */
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
101 return ret;
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
117 if (! loop || ! loop->header)
118 return;
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
139 if (loop->latch)
141 bool read_profile_p;
142 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
143 if (read_profile_p && !loop->any_estimate)
144 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
145 (uint64_t) nit);
148 fprintf (file, ";; nodes:");
149 bbs = get_loop_body (loop);
150 for (i = 0; i < loop->num_nodes; i++)
151 fprintf (file, " %d", bbs[i]->index);
152 free (bbs);
153 fprintf (file, "\n");
155 if (loop_dump_aux)
156 loop_dump_aux (loop, file, verbose);
159 /* Dump the loop information about loops to the stream FILE,
160 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
162 void
163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
165 struct loop *loop;
167 if (!current_loops || ! file)
168 return;
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
172 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
177 if (verbose)
178 flow_loops_cfg_dump (file);
181 /* Free data allocated for LOOP. */
183 void
184 flow_loop_free (struct loop *loop)
186 struct loop_exit *exit, *next;
188 vec_free (loop->superloops);
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
201 ggc_free (loop->exits);
202 ggc_free (loop);
205 /* Free all the memory allocated for LOOPS. */
207 void
208 flow_loops_free (struct loops *loops)
210 if (loops->larray)
212 unsigned i;
213 loop_p loop;
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
218 if (!loop)
219 continue;
221 flow_loop_free (loop);
224 vec_free (loops->larray);
228 /* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
232 flow_loop_nodes_find (basic_block header, struct loop *loop)
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
239 header->loop_father = loop;
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
251 while (!stack.is_empty ())
253 basic_block node;
254 edge e;
255 edge_iterator ei;
257 node = stack.pop ();
259 FOR_EACH_EDGE (e, ei, node->preds)
261 basic_block ancestor = e->src;
263 if (ancestor->loop_father != loop)
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
272 stack.release ();
274 return num_nodes;
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
304 loop->next = father->inner;
305 father->inner = loop;
307 establish_preds (loop, father);
310 /* Remove LOOP from the loop hierarchy tree. */
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
315 struct loop *prev, *father;
317 father = loop_outer (loop);
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
329 loop->superloops = NULL;
332 /* Allocates and returns new loop structure. */
334 struct loop *
335 alloc_loop (void)
337 struct loop *loop = ggc_cleared_alloc<struct loop> ();
339 loop->exits = ggc_cleared_alloc<loop_exit> ();
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
342 loop->constraints = 0;
343 loop->nb_iterations_upper_bound = 0;
344 loop->nb_iterations_likely_upper_bound = 0;
345 loop->nb_iterations_estimate = 0;
346 return loop;
349 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
350 (including the root of the loop tree). */
352 void
353 init_loops_structure (struct function *fn,
354 struct loops *loops, unsigned num_loops)
356 struct loop *root;
358 memset (loops, 0, sizeof *loops);
359 vec_alloc (loops->larray, num_loops);
361 /* Dummy loop containing whole function. */
362 root = alloc_loop ();
363 root->num_nodes = n_basic_blocks_for_fn (fn);
364 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
365 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
366 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
367 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
369 loops->larray->quick_push (root);
370 loops->tree_root = root;
373 /* Returns whether HEADER is a loop header. */
375 bool
376 bb_loop_header_p (basic_block header)
378 edge_iterator ei;
379 edge e;
381 /* If we have an abnormal predecessor, do not consider the
382 loop (not worth the problems). */
383 if (bb_has_abnormal_pred (header))
384 return false;
386 /* Look for back edges where a predecessor is dominated
387 by this block. A natural loop has a single entry
388 node (header) that dominates all the nodes in the
389 loop. It also has single back edge to the header
390 from a latch node. */
391 FOR_EACH_EDGE (e, ei, header->preds)
393 basic_block latch = e->src;
394 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
395 && dominated_by_p (CDI_DOMINATORS, latch, header))
396 return true;
399 return false;
402 /* Find all the natural loops in the function and save in LOOPS structure and
403 recalculate loop_father information in basic block structures.
404 If LOOPS is non-NULL then the loop structures for already recorded loops
405 will be re-used and their number will not change. We assume that no
406 stale loops exist in LOOPS.
407 When LOOPS is NULL it is allocated and re-built from scratch.
408 Return the built LOOPS structure. */
410 struct loops *
411 flow_loops_find (struct loops *loops)
413 bool from_scratch = (loops == NULL);
414 int *rc_order;
415 int b;
416 unsigned i;
418 /* Ensure that the dominators are computed. */
419 calculate_dominance_info (CDI_DOMINATORS);
421 if (!loops)
423 loops = ggc_cleared_alloc<struct loops> ();
424 init_loops_structure (cfun, loops, 1);
427 /* Ensure that loop exits were released. */
428 gcc_assert (loops->exits == NULL);
430 /* Taking care of this degenerate case makes the rest of
431 this code simpler. */
432 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
433 return loops;
435 /* The root loop node contains all basic-blocks. */
436 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
438 /* Compute depth first search order of the CFG so that outer
439 natural loops will be found before inner natural loops. */
440 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
441 pre_and_rev_post_order_compute (NULL, rc_order, false);
443 /* Gather all loop headers in reverse completion order and allocate
444 loop structures for loops that are not already present. */
445 auto_vec<loop_p> larray (loops->larray->length ());
446 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
448 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
449 if (bb_loop_header_p (header))
451 struct loop *loop;
453 /* The current active loop tree has valid loop-fathers for
454 header blocks. */
455 if (!from_scratch
456 && header->loop_father->header == header)
458 loop = header->loop_father;
459 /* If we found an existing loop remove it from the
460 loop tree. It is going to be inserted again
461 below. */
462 flow_loop_tree_node_remove (loop);
464 else
466 /* Otherwise allocate a new loop structure for the loop. */
467 loop = alloc_loop ();
468 /* ??? We could re-use unused loop slots here. */
469 loop->num = loops->larray->length ();
470 vec_safe_push (loops->larray, loop);
471 loop->header = header;
473 if (!from_scratch
474 && dump_file && (dump_flags & TDF_DETAILS))
475 fprintf (dump_file, "flow_loops_find: discovered new "
476 "loop %d with header %d\n",
477 loop->num, header->index);
479 /* Reset latch, we recompute it below. */
480 loop->latch = NULL;
481 larray.safe_push (loop);
484 /* Make blocks part of the loop root node at start. */
485 header->loop_father = loops->tree_root;
488 free (rc_order);
490 /* Now iterate over the loops found, insert them into the loop tree
491 and assign basic-block ownership. */
492 for (i = 0; i < larray.length (); ++i)
494 struct loop *loop = larray[i];
495 basic_block header = loop->header;
496 edge_iterator ei;
497 edge e;
499 flow_loop_tree_node_add (header->loop_father, loop);
500 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
502 /* Look for the latch for this header block, if it has just a
503 single one. */
504 FOR_EACH_EDGE (e, ei, header->preds)
506 basic_block latch = e->src;
508 if (flow_bb_inside_loop_p (loop, latch))
510 if (loop->latch != NULL)
512 /* More than one latch edge. */
513 loop->latch = NULL;
514 break;
516 loop->latch = latch;
521 return loops;
524 /* Ratio of frequencies of edges so that one of more latch edges is
525 considered to belong to inner loop with same header. */
526 #define HEAVY_EDGE_RATIO 8
528 /* Minimum number of samples for that we apply
529 find_subloop_latch_edge_by_profile heuristics. */
530 #define HEAVY_EDGE_MIN_SAMPLES 10
532 /* If the profile info is available, finds an edge in LATCHES that much more
533 frequent than the remaining edges. Returns such an edge, or NULL if we do
534 not find one.
536 We do not use guessed profile here, only the measured one. The guessed
537 profile is usually too flat and unreliable for this (and it is mostly based
538 on the loop structure of the program, so it does not make much sense to
539 derive the loop structure from it). */
541 static edge
542 find_subloop_latch_edge_by_profile (vec<edge> latches)
544 unsigned i;
545 edge e, me = NULL;
546 gcov_type mcount = 0, tcount = 0;
548 FOR_EACH_VEC_ELT (latches, i, e)
550 if (e->count > mcount)
552 me = e;
553 mcount = e->count;
555 tcount += e->count;
558 if (tcount < HEAVY_EDGE_MIN_SAMPLES
559 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
560 return NULL;
562 if (dump_file)
563 fprintf (dump_file,
564 "Found latch edge %d -> %d using profile information.\n",
565 me->src->index, me->dest->index);
566 return me;
569 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
570 on the structure of induction variables. Returns this edge, or NULL if we
571 do not find any.
573 We are quite conservative, and look just for an obvious simple innermost
574 loop (which is the case where we would lose the most performance by not
575 disambiguating the loop). More precisely, we look for the following
576 situation: The source of the chosen latch edge dominates sources of all
577 the other latch edges. Additionally, the header does not contain a phi node
578 such that the argument from the chosen edge is equal to the argument from
579 another edge. */
581 static edge
582 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
584 edge e, latch = latches[0];
585 unsigned i;
586 gphi *phi;
587 gphi_iterator psi;
588 tree lop;
589 basic_block bb;
591 /* Find the candidate for the latch edge. */
592 for (i = 1; latches.iterate (i, &e); i++)
593 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
594 latch = e;
596 /* Verify that it dominates all the latch edges. */
597 FOR_EACH_VEC_ELT (latches, i, e)
598 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
599 return NULL;
601 /* Check for a phi node that would deny that this is a latch edge of
602 a subloop. */
603 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
605 phi = psi.phi ();
606 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
608 /* Ignore the values that are not changed inside the subloop. */
609 if (TREE_CODE (lop) != SSA_NAME
610 || SSA_NAME_DEF_STMT (lop) == phi)
611 continue;
612 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
613 if (!bb || !flow_bb_inside_loop_p (loop, bb))
614 continue;
616 FOR_EACH_VEC_ELT (latches, i, e)
617 if (e != latch
618 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
619 return NULL;
622 if (dump_file)
623 fprintf (dump_file,
624 "Found latch edge %d -> %d using iv structure.\n",
625 latch->src->index, latch->dest->index);
626 return latch;
629 /* If we can determine that one of the several latch edges of LOOP behaves
630 as a latch edge of a separate subloop, returns this edge. Otherwise
631 returns NULL. */
633 static edge
634 find_subloop_latch_edge (struct loop *loop)
636 vec<edge> latches = get_loop_latch_edges (loop);
637 edge latch = NULL;
639 if (latches.length () > 1)
641 latch = find_subloop_latch_edge_by_profile (latches);
643 if (!latch
644 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
645 should use cfghook for this, but it is hard to imagine it would
646 be useful elsewhere. */
647 && current_ir_type () == IR_GIMPLE)
648 latch = find_subloop_latch_edge_by_ivs (loop, latches);
651 latches.release ();
652 return latch;
655 /* Callback for make_forwarder_block. Returns true if the edge E is marked
656 in the set MFB_REIS_SET. */
658 static hash_set<edge> *mfb_reis_set;
659 static bool
660 mfb_redirect_edges_in_set (edge e)
662 return mfb_reis_set->contains (e);
665 /* Creates a subloop of LOOP with latch edge LATCH. */
667 static void
668 form_subloop (struct loop *loop, edge latch)
670 edge_iterator ei;
671 edge e, new_entry;
672 struct loop *new_loop;
674 mfb_reis_set = new hash_set<edge>;
675 FOR_EACH_EDGE (e, ei, loop->header->preds)
677 if (e != latch)
678 mfb_reis_set->add (e);
680 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
681 NULL);
682 delete mfb_reis_set;
684 loop->header = new_entry->src;
686 /* Find the blocks and subloops that belong to the new loop, and add it to
687 the appropriate place in the loop tree. */
688 new_loop = alloc_loop ();
689 new_loop->header = new_entry->dest;
690 new_loop->latch = latch->src;
691 add_loop (new_loop, loop);
694 /* Make all the latch edges of LOOP to go to a single forwarder block --
695 a new latch of LOOP. */
697 static void
698 merge_latch_edges (struct loop *loop)
700 vec<edge> latches = get_loop_latch_edges (loop);
701 edge latch, e;
702 unsigned i;
704 gcc_assert (latches.length () > 0);
706 if (latches.length () == 1)
707 loop->latch = latches[0]->src;
708 else
710 if (dump_file)
711 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
713 mfb_reis_set = new hash_set<edge>;
714 FOR_EACH_VEC_ELT (latches, i, e)
715 mfb_reis_set->add (e);
716 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
717 NULL);
718 delete mfb_reis_set;
720 loop->header = latch->dest;
721 loop->latch = latch->src;
724 latches.release ();
727 /* LOOP may have several latch edges. Transform it into (possibly several)
728 loops with single latch edge. */
730 static void
731 disambiguate_multiple_latches (struct loop *loop)
733 edge e;
735 /* We eliminate the multiple latches by splitting the header to the forwarder
736 block F and the rest R, and redirecting the edges. There are two cases:
738 1) If there is a latch edge E that corresponds to a subloop (we guess
739 that based on profile -- if it is taken much more often than the
740 remaining edges; and on trees, using the information about induction
741 variables of the loops), we redirect E to R, all the remaining edges to
742 F, then rescan the loops and try again for the outer loop.
743 2) If there is no such edge, we redirect all latch edges to F, and the
744 entry edges to R, thus making F the single latch of the loop. */
746 if (dump_file)
747 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
748 loop->num);
750 /* During latch merging, we may need to redirect the entry edges to a new
751 block. This would cause problems if the entry edge was the one from the
752 entry block. To avoid having to handle this case specially, split
753 such entry edge. */
754 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
755 if (e)
756 split_edge (e);
758 while (1)
760 e = find_subloop_latch_edge (loop);
761 if (!e)
762 break;
764 form_subloop (loop, e);
767 merge_latch_edges (loop);
770 /* Split loops with multiple latch edges. */
772 void
773 disambiguate_loops_with_multiple_latches (void)
775 struct loop *loop;
777 FOR_EACH_LOOP (loop, 0)
779 if (!loop->latch)
780 disambiguate_multiple_latches (loop);
784 /* Return nonzero if basic block BB belongs to LOOP. */
785 bool
786 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
788 struct loop *source_loop;
790 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
791 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
792 return 0;
794 source_loop = bb->loop_father;
795 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
798 /* Enumeration predicate for get_loop_body_with_size. */
799 static bool
800 glb_enum_p (const_basic_block bb, const void *glb_loop)
802 const struct loop *const loop = (const struct loop *) glb_loop;
803 return (bb != loop->header
804 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
807 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
808 order against direction of edges from latch. Specially, if
809 header != latch, latch is the 1-st block. LOOP cannot be the fake
810 loop tree root, and its size must be at most MAX_SIZE. The blocks
811 in the LOOP body are stored to BODY, and the size of the LOOP is
812 returned. */
814 unsigned
815 get_loop_body_with_size (const struct loop *loop, basic_block *body,
816 unsigned max_size)
818 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
819 body, max_size, loop);
822 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
823 order against direction of edges from latch. Specially, if
824 header != latch, latch is the 1-st block. */
826 basic_block *
827 get_loop_body (const struct loop *loop)
829 basic_block *body, bb;
830 unsigned tv = 0;
832 gcc_assert (loop->num_nodes);
834 body = XNEWVEC (basic_block, loop->num_nodes);
836 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
838 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
839 special-case the fake loop that contains the whole function. */
840 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
841 body[tv++] = loop->header;
842 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
843 FOR_EACH_BB_FN (bb, cfun)
844 body[tv++] = bb;
846 else
847 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
849 gcc_assert (tv == loop->num_nodes);
850 return body;
853 /* Fills dominance descendants inside LOOP of the basic block BB into
854 array TOVISIT from index *TV. */
856 static void
857 fill_sons_in_loop (const struct loop *loop, basic_block bb,
858 basic_block *tovisit, int *tv)
860 basic_block son, postpone = NULL;
862 tovisit[(*tv)++] = bb;
863 for (son = first_dom_son (CDI_DOMINATORS, bb);
864 son;
865 son = next_dom_son (CDI_DOMINATORS, son))
867 if (!flow_bb_inside_loop_p (loop, son))
868 continue;
870 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
872 postpone = son;
873 continue;
875 fill_sons_in_loop (loop, son, tovisit, tv);
878 if (postpone)
879 fill_sons_in_loop (loop, postpone, tovisit, tv);
882 /* Gets body of a LOOP (that must be different from the outermost loop)
883 sorted by dominance relation. Additionally, if a basic block s dominates
884 the latch, then only blocks dominated by s are be after it. */
886 basic_block *
887 get_loop_body_in_dom_order (const struct loop *loop)
889 basic_block *tovisit;
890 int tv;
892 gcc_assert (loop->num_nodes);
894 tovisit = XNEWVEC (basic_block, loop->num_nodes);
896 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
898 tv = 0;
899 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
901 gcc_assert (tv == (int) loop->num_nodes);
903 return tovisit;
906 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
908 basic_block *
909 get_loop_body_in_custom_order (const struct loop *loop,
910 int (*bb_comparator) (const void *, const void *))
912 basic_block *bbs = get_loop_body (loop);
914 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
916 return bbs;
919 /* Get body of a LOOP in breadth first sort order. */
921 basic_block *
922 get_loop_body_in_bfs_order (const struct loop *loop)
924 basic_block *blocks;
925 basic_block bb;
926 bitmap visited;
927 unsigned int i = 1;
928 unsigned int vc = 0;
930 gcc_assert (loop->num_nodes);
931 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
933 blocks = XNEWVEC (basic_block, loop->num_nodes);
934 visited = BITMAP_ALLOC (NULL);
935 blocks[0] = loop->header;
936 bitmap_set_bit (visited, loop->header->index);
937 while (i < loop->num_nodes)
939 edge e;
940 edge_iterator ei;
941 gcc_assert (i > vc);
942 bb = blocks[vc++];
944 FOR_EACH_EDGE (e, ei, bb->succs)
946 if (flow_bb_inside_loop_p (loop, e->dest))
948 /* This bb is now visited. */
949 if (bitmap_set_bit (visited, e->dest->index))
950 blocks[i++] = e->dest;
955 BITMAP_FREE (visited);
956 return blocks;
959 /* Hash function for struct loop_exit. */
961 hashval_t
962 loop_exit_hasher::hash (loop_exit *exit)
964 return htab_hash_pointer (exit->e);
967 /* Equality function for struct loop_exit. Compares with edge. */
969 bool
970 loop_exit_hasher::equal (loop_exit *exit, edge e)
972 return exit->e == e;
975 /* Frees the list of loop exit descriptions EX. */
977 void
978 loop_exit_hasher::remove (loop_exit *exit)
980 loop_exit *next;
981 for (; exit; exit = next)
983 next = exit->next_e;
985 exit->next->prev = exit->prev;
986 exit->prev->next = exit->next;
988 ggc_free (exit);
992 /* Returns the list of records for E as an exit of a loop. */
994 static struct loop_exit *
995 get_exit_descriptions (edge e)
997 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1000 /* Updates the lists of loop exits in that E appears.
1001 If REMOVED is true, E is being removed, and we
1002 just remove it from the lists of exits.
1003 If NEW_EDGE is true and E is not a loop exit, we
1004 do not try to remove it from loop exit lists. */
1006 void
1007 rescan_loop_exit (edge e, bool new_edge, bool removed)
1009 struct loop_exit *exits = NULL, *exit;
1010 struct loop *aloop, *cloop;
1012 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1013 return;
1015 if (!removed
1016 && e->src->loop_father != NULL
1017 && e->dest->loop_father != NULL
1018 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1020 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1021 for (aloop = e->src->loop_father;
1022 aloop != cloop;
1023 aloop = loop_outer (aloop))
1025 exit = ggc_alloc<loop_exit> ();
1026 exit->e = e;
1028 exit->next = aloop->exits->next;
1029 exit->prev = aloop->exits;
1030 exit->next->prev = exit;
1031 exit->prev->next = exit;
1033 exit->next_e = exits;
1034 exits = exit;
1038 if (!exits && new_edge)
1039 return;
1041 loop_exit **slot
1042 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1043 exits ? INSERT : NO_INSERT);
1044 if (!slot)
1045 return;
1047 if (exits)
1049 if (*slot)
1050 loop_exit_hasher::remove (*slot);
1051 *slot = exits;
1053 else
1054 current_loops->exits->clear_slot (slot);
1057 /* For each loop, record list of exit edges, and start maintaining these
1058 lists. */
1060 void
1061 record_loop_exits (void)
1063 basic_block bb;
1064 edge_iterator ei;
1065 edge e;
1067 if (!current_loops)
1068 return;
1070 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1071 return;
1072 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1074 gcc_assert (current_loops->exits == NULL);
1075 current_loops->exits
1076 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1078 FOR_EACH_BB_FN (bb, cfun)
1080 FOR_EACH_EDGE (e, ei, bb->succs)
1082 rescan_loop_exit (e, true, false);
1087 /* Dumps information about the exit in *SLOT to FILE.
1088 Callback for htab_traverse. */
1091 dump_recorded_exit (loop_exit **slot, FILE *file)
1093 struct loop_exit *exit = *slot;
1094 unsigned n = 0;
1095 edge e = exit->e;
1097 for (; exit != NULL; exit = exit->next_e)
1098 n++;
1100 fprintf (file, "Edge %d->%d exits %u loops\n",
1101 e->src->index, e->dest->index, n);
1103 return 1;
1106 /* Dumps the recorded exits of loops to FILE. */
1108 extern void dump_recorded_exits (FILE *);
1109 void
1110 dump_recorded_exits (FILE *file)
1112 if (!current_loops->exits)
1113 return;
1114 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1117 /* Releases lists of loop exits. */
1119 void
1120 release_recorded_exits (function *fn)
1122 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1123 loops_for_fn (fn)->exits->empty ();
1124 loops_for_fn (fn)->exits = NULL;
1125 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1128 /* Returns the list of the exit edges of a LOOP. */
1130 vec<edge>
1131 get_loop_exit_edges (const struct loop *loop)
1133 vec<edge> edges = vNULL;
1134 edge e;
1135 unsigned i;
1136 basic_block *body;
1137 edge_iterator ei;
1138 struct loop_exit *exit;
1140 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1142 /* If we maintain the lists of exits, use them. Otherwise we must
1143 scan the body of the loop. */
1144 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1146 for (exit = loop->exits->next; exit->e; exit = exit->next)
1147 edges.safe_push (exit->e);
1149 else
1151 body = get_loop_body (loop);
1152 for (i = 0; i < loop->num_nodes; i++)
1153 FOR_EACH_EDGE (e, ei, body[i]->succs)
1155 if (!flow_bb_inside_loop_p (loop, e->dest))
1156 edges.safe_push (e);
1158 free (body);
1161 return edges;
1164 /* Counts the number of conditional branches inside LOOP. */
1166 unsigned
1167 num_loop_branches (const struct loop *loop)
1169 unsigned i, n;
1170 basic_block * body;
1172 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1174 body = get_loop_body (loop);
1175 n = 0;
1176 for (i = 0; i < loop->num_nodes; i++)
1177 if (EDGE_COUNT (body[i]->succs) >= 2)
1178 n++;
1179 free (body);
1181 return n;
1184 /* Adds basic block BB to LOOP. */
1185 void
1186 add_bb_to_loop (basic_block bb, struct loop *loop)
1188 unsigned i;
1189 loop_p ploop;
1190 edge_iterator ei;
1191 edge e;
1193 gcc_assert (bb->loop_father == NULL);
1194 bb->loop_father = loop;
1195 loop->num_nodes++;
1196 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1197 ploop->num_nodes++;
1199 FOR_EACH_EDGE (e, ei, bb->succs)
1201 rescan_loop_exit (e, true, false);
1203 FOR_EACH_EDGE (e, ei, bb->preds)
1205 rescan_loop_exit (e, true, false);
1209 /* Remove basic block BB from loops. */
1210 void
1211 remove_bb_from_loops (basic_block bb)
1213 unsigned i;
1214 struct loop *loop = bb->loop_father;
1215 loop_p ploop;
1216 edge_iterator ei;
1217 edge e;
1219 gcc_assert (loop != NULL);
1220 loop->num_nodes--;
1221 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1222 ploop->num_nodes--;
1223 bb->loop_father = NULL;
1225 FOR_EACH_EDGE (e, ei, bb->succs)
1227 rescan_loop_exit (e, false, true);
1229 FOR_EACH_EDGE (e, ei, bb->preds)
1231 rescan_loop_exit (e, false, true);
1235 /* Finds nearest common ancestor in loop tree for given loops. */
1236 struct loop *
1237 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1239 unsigned sdepth, ddepth;
1241 if (!loop_s) return loop_d;
1242 if (!loop_d) return loop_s;
1244 sdepth = loop_depth (loop_s);
1245 ddepth = loop_depth (loop_d);
1247 if (sdepth < ddepth)
1248 loop_d = (*loop_d->superloops)[sdepth];
1249 else if (sdepth > ddepth)
1250 loop_s = (*loop_s->superloops)[ddepth];
1252 while (loop_s != loop_d)
1254 loop_s = loop_outer (loop_s);
1255 loop_d = loop_outer (loop_d);
1257 return loop_s;
1260 /* Removes LOOP from structures and frees its data. */
1262 void
1263 delete_loop (struct loop *loop)
1265 /* Remove the loop from structure. */
1266 flow_loop_tree_node_remove (loop);
1268 /* Remove loop from loops array. */
1269 (*current_loops->larray)[loop->num] = NULL;
1271 /* Free loop data. */
1272 flow_loop_free (loop);
1275 /* Cancels the LOOP; it must be innermost one. */
1277 static void
1278 cancel_loop (struct loop *loop)
1280 basic_block *bbs;
1281 unsigned i;
1282 struct loop *outer = loop_outer (loop);
1284 gcc_assert (!loop->inner);
1286 /* Move blocks up one level (they should be removed as soon as possible). */
1287 bbs = get_loop_body (loop);
1288 for (i = 0; i < loop->num_nodes; i++)
1289 bbs[i]->loop_father = outer;
1291 free (bbs);
1292 delete_loop (loop);
1295 /* Cancels LOOP and all its subloops. */
1296 void
1297 cancel_loop_tree (struct loop *loop)
1299 while (loop->inner)
1300 cancel_loop_tree (loop->inner);
1301 cancel_loop (loop);
1304 /* Checks that information about loops is correct
1305 -- sizes of loops are all right
1306 -- results of get_loop_body really belong to the loop
1307 -- loop header have just single entry edge and single latch edge
1308 -- loop latches have only single successor that is header of their loop
1309 -- irreducible loops are correctly marked
1310 -- the cached loop depth and loop father of each bb is correct
1312 DEBUG_FUNCTION void
1313 verify_loop_structure (void)
1315 unsigned *sizes, i, j;
1316 basic_block bb, *bbs;
1317 struct loop *loop;
1318 int err = 0;
1319 edge e;
1320 unsigned num = number_of_loops (cfun);
1321 struct loop_exit *exit, *mexit;
1322 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1324 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1326 error ("loop verification on loop tree that needs fixup");
1327 err = 1;
1330 /* We need up-to-date dominators, compute or verify them. */
1331 if (!dom_available)
1332 calculate_dominance_info (CDI_DOMINATORS);
1333 else
1334 verify_dominators (CDI_DOMINATORS);
1336 /* Check the loop tree root. */
1337 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1338 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1339 || (current_loops->tree_root->num_nodes
1340 != (unsigned) n_basic_blocks_for_fn (cfun)))
1342 error ("corrupt loop tree root");
1343 err = 1;
1346 /* Check the headers. */
1347 FOR_EACH_BB_FN (bb, cfun)
1348 if (bb_loop_header_p (bb))
1350 if (bb->loop_father->header == NULL)
1352 error ("loop with header %d marked for removal", bb->index);
1353 err = 1;
1355 else if (bb->loop_father->header != bb)
1357 error ("loop with header %d not in loop tree", bb->index);
1358 err = 1;
1361 else if (bb->loop_father->header == bb)
1363 error ("non-loop with header %d not marked for removal", bb->index);
1364 err = 1;
1367 /* Check the recorded loop father and sizes of loops. */
1368 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1369 bitmap_clear (visited);
1370 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1371 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1373 unsigned n;
1375 if (loop->header == NULL)
1377 error ("removed loop %d in loop tree", loop->num);
1378 err = 1;
1379 continue;
1382 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1383 if (loop->num_nodes != n)
1385 error ("size of loop %d should be %d, not %d",
1386 loop->num, n, loop->num_nodes);
1387 err = 1;
1390 for (j = 0; j < n; j++)
1392 bb = bbs[j];
1394 if (!flow_bb_inside_loop_p (loop, bb))
1396 error ("bb %d does not belong to loop %d",
1397 bb->index, loop->num);
1398 err = 1;
1401 /* Ignore this block if it is in an inner loop. */
1402 if (bitmap_bit_p (visited, bb->index))
1403 continue;
1404 bitmap_set_bit (visited, bb->index);
1406 if (bb->loop_father != loop)
1408 error ("bb %d has father loop %d, should be loop %d",
1409 bb->index, bb->loop_father->num, loop->num);
1410 err = 1;
1414 free (bbs);
1416 /* Check headers and latches. */
1417 FOR_EACH_LOOP (loop, 0)
1419 i = loop->num;
1420 if (loop->header == NULL)
1421 continue;
1422 if (!bb_loop_header_p (loop->header))
1424 error ("loop %d%'s header is not a loop header", i);
1425 err = 1;
1427 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1428 && EDGE_COUNT (loop->header->preds) != 2)
1430 error ("loop %d%'s header does not have exactly 2 entries", i);
1431 err = 1;
1433 if (loop->latch)
1435 if (!find_edge (loop->latch, loop->header))
1437 error ("loop %d%'s latch does not have an edge to its header", i);
1438 err = 1;
1440 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1442 error ("loop %d%'s latch is not dominated by its header", i);
1443 err = 1;
1446 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1448 if (!single_succ_p (loop->latch))
1450 error ("loop %d%'s latch does not have exactly 1 successor", i);
1451 err = 1;
1453 if (single_succ (loop->latch) != loop->header)
1455 error ("loop %d%'s latch does not have header as successor", i);
1456 err = 1;
1458 if (loop->latch->loop_father != loop)
1460 error ("loop %d%'s latch does not belong directly to it", i);
1461 err = 1;
1464 if (loop->header->loop_father != loop)
1466 error ("loop %d%'s header does not belong directly to it", i);
1467 err = 1;
1469 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1470 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1472 error ("loop %d%'s latch is marked as part of irreducible region", i);
1473 err = 1;
1477 /* Check irreducible loops. */
1478 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1480 /* Record old info. */
1481 auto_sbitmap irreds (last_basic_block_for_fn (cfun));
1482 FOR_EACH_BB_FN (bb, cfun)
1484 edge_iterator ei;
1485 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1486 bitmap_set_bit (irreds, bb->index);
1487 else
1488 bitmap_clear_bit (irreds, bb->index);
1489 FOR_EACH_EDGE (e, ei, bb->succs)
1490 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1491 e->flags |= EDGE_ALL_FLAGS + 1;
1494 /* Recount it. */
1495 mark_irreducible_loops ();
1497 /* Compare. */
1498 FOR_EACH_BB_FN (bb, cfun)
1500 edge_iterator ei;
1502 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1503 && !bitmap_bit_p (irreds, bb->index))
1505 error ("basic block %d should be marked irreducible", bb->index);
1506 err = 1;
1508 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1509 && bitmap_bit_p (irreds, bb->index))
1511 error ("basic block %d should not be marked irreducible", bb->index);
1512 err = 1;
1514 FOR_EACH_EDGE (e, ei, bb->succs)
1516 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1517 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1519 error ("edge from %d to %d should be marked irreducible",
1520 e->src->index, e->dest->index);
1521 err = 1;
1523 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1524 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1526 error ("edge from %d to %d should not be marked irreducible",
1527 e->src->index, e->dest->index);
1528 err = 1;
1530 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1535 /* Check the recorded loop exits. */
1536 FOR_EACH_LOOP (loop, 0)
1538 if (!loop->exits || loop->exits->e != NULL)
1540 error ("corrupted head of the exits list of loop %d",
1541 loop->num);
1542 err = 1;
1544 else
1546 /* Check that the list forms a cycle, and all elements except
1547 for the head are nonnull. */
1548 for (mexit = loop->exits, exit = mexit->next, i = 0;
1549 exit->e && exit != mexit;
1550 exit = exit->next)
1552 if (i++ & 1)
1553 mexit = mexit->next;
1556 if (exit != loop->exits)
1558 error ("corrupted exits list of loop %d", loop->num);
1559 err = 1;
1563 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1565 if (loop->exits->next != loop->exits)
1567 error ("nonempty exits list of loop %d, but exits are not recorded",
1568 loop->num);
1569 err = 1;
1574 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1576 unsigned n_exits = 0, eloops;
1578 sizes = XCNEWVEC (unsigned, num);
1579 memset (sizes, 0, sizeof (unsigned) * num);
1580 FOR_EACH_BB_FN (bb, cfun)
1582 edge_iterator ei;
1583 if (bb->loop_father == current_loops->tree_root)
1584 continue;
1585 FOR_EACH_EDGE (e, ei, bb->succs)
1587 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1588 continue;
1590 n_exits++;
1591 exit = get_exit_descriptions (e);
1592 if (!exit)
1594 error ("exit %d->%d not recorded",
1595 e->src->index, e->dest->index);
1596 err = 1;
1598 eloops = 0;
1599 for (; exit; exit = exit->next_e)
1600 eloops++;
1602 for (loop = bb->loop_father;
1603 loop != e->dest->loop_father
1604 /* When a loop exit is also an entry edge which
1605 can happen when avoiding CFG manipulations
1606 then the last loop exited is the outer loop
1607 of the loop entered. */
1608 && loop != loop_outer (e->dest->loop_father);
1609 loop = loop_outer (loop))
1611 eloops--;
1612 sizes[loop->num]++;
1615 if (eloops != 0)
1617 error ("wrong list of exited loops for edge %d->%d",
1618 e->src->index, e->dest->index);
1619 err = 1;
1624 if (n_exits != current_loops->exits->elements ())
1626 error ("too many loop exits recorded");
1627 err = 1;
1630 FOR_EACH_LOOP (loop, 0)
1632 eloops = 0;
1633 for (exit = loop->exits->next; exit->e; exit = exit->next)
1634 eloops++;
1635 if (eloops != sizes[loop->num])
1637 error ("%d exits recorded for loop %d (having %d exits)",
1638 eloops, loop->num, sizes[loop->num]);
1639 err = 1;
1643 free (sizes);
1646 gcc_assert (!err);
1648 if (!dom_available)
1649 free_dominance_info (CDI_DOMINATORS);
1652 /* Returns latch edge of LOOP. */
1653 edge
1654 loop_latch_edge (const struct loop *loop)
1656 return find_edge (loop->latch, loop->header);
1659 /* Returns preheader edge of LOOP. */
1660 edge
1661 loop_preheader_edge (const struct loop *loop)
1663 edge e;
1664 edge_iterator ei;
1666 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1668 FOR_EACH_EDGE (e, ei, loop->header->preds)
1669 if (e->src != loop->latch)
1670 break;
1672 return e;
1675 /* Returns true if E is an exit of LOOP. */
1677 bool
1678 loop_exit_edge_p (const struct loop *loop, const_edge e)
1680 return (flow_bb_inside_loop_p (loop, e->src)
1681 && !flow_bb_inside_loop_p (loop, e->dest));
1684 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1685 or more than one exit. If loops do not have the exits recorded, NULL
1686 is returned always. */
1688 edge
1689 single_exit (const struct loop *loop)
1691 struct loop_exit *exit = loop->exits->next;
1693 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1694 return NULL;
1696 if (exit->e && exit->next == loop->exits)
1697 return exit->e;
1698 else
1699 return NULL;
1702 /* Returns true when BB has an incoming edge exiting LOOP. */
1704 bool
1705 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1707 edge e;
1708 edge_iterator ei;
1710 FOR_EACH_EDGE (e, ei, bb->preds)
1711 if (loop_exit_edge_p (loop, e))
1712 return true;
1714 return false;
1717 /* Returns true when BB has an outgoing edge exiting LOOP. */
1719 bool
1720 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1722 edge e;
1723 edge_iterator ei;
1725 FOR_EACH_EDGE (e, ei, bb->succs)
1726 if (loop_exit_edge_p (loop, e))
1727 return true;
1729 return false;
1732 /* Return location corresponding to the loop control condition if possible. */
1734 location_t
1735 get_loop_location (struct loop *loop)
1737 rtx_insn *insn = NULL;
1738 struct niter_desc *desc = NULL;
1739 edge exit;
1741 /* For a for or while loop, we would like to return the location
1742 of the for or while statement, if possible. To do this, look
1743 for the branch guarding the loop back-edge. */
1745 /* If this is a simple loop with an in_edge, then the loop control
1746 branch is typically at the end of its source. */
1747 desc = get_simple_loop_desc (loop);
1748 if (desc->in_edge)
1750 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1752 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1753 return INSN_LOCATION (insn);
1756 /* If loop has a single exit, then the loop control branch
1757 must be at the end of its source. */
1758 if ((exit = single_exit (loop)))
1760 FOR_BB_INSNS_REVERSE (exit->src, insn)
1762 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1763 return INSN_LOCATION (insn);
1766 /* Next check the latch, to see if it is non-empty. */
1767 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1769 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1770 return INSN_LOCATION (insn);
1772 /* Finally, if none of the above identifies the loop control branch,
1773 return the first location in the loop header. */
1774 FOR_BB_INSNS (loop->header, insn)
1776 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1777 return INSN_LOCATION (insn);
1779 /* If all else fails, simply return the current function location. */
1780 return DECL_SOURCE_LOCATION (current_function_decl);
1783 /* Records that every statement in LOOP is executed I_BOUND times.
1784 REALISTIC is true if I_BOUND is expected to be close to the real number
1785 of iterations. UPPER is true if we are sure the loop iterates at most
1786 I_BOUND times. */
1788 void
1789 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1790 bool realistic, bool upper)
1792 /* Update the bounds only when there is no previous estimation, or when the
1793 current estimation is smaller. */
1794 if (upper
1795 && (!loop->any_upper_bound
1796 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1798 loop->any_upper_bound = true;
1799 loop->nb_iterations_upper_bound = i_bound;
1800 if (!loop->any_likely_upper_bound)
1802 loop->any_likely_upper_bound = true;
1803 loop->nb_iterations_likely_upper_bound = i_bound;
1806 if (realistic
1807 && (!loop->any_estimate
1808 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1810 loop->any_estimate = true;
1811 loop->nb_iterations_estimate = i_bound;
1813 if (!realistic
1814 && (!loop->any_likely_upper_bound
1815 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1817 loop->any_likely_upper_bound = true;
1818 loop->nb_iterations_likely_upper_bound = i_bound;
1821 /* If an upper bound is smaller than the realistic estimate of the
1822 number of iterations, use the upper bound instead. */
1823 if (loop->any_upper_bound
1824 && loop->any_estimate
1825 && wi::ltu_p (loop->nb_iterations_upper_bound,
1826 loop->nb_iterations_estimate))
1827 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1828 if (loop->any_upper_bound
1829 && loop->any_likely_upper_bound
1830 && wi::ltu_p (loop->nb_iterations_upper_bound,
1831 loop->nb_iterations_likely_upper_bound))
1832 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1835 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1836 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1837 on the number of iterations of LOOP could not be derived, returns -1. */
1839 HOST_WIDE_INT
1840 get_estimated_loop_iterations_int (struct loop *loop)
1842 widest_int nit;
1843 HOST_WIDE_INT hwi_nit;
1845 if (!get_estimated_loop_iterations (loop, &nit))
1846 return -1;
1848 if (!wi::fits_shwi_p (nit))
1849 return -1;
1850 hwi_nit = nit.to_shwi ();
1852 return hwi_nit < 0 ? -1 : hwi_nit;
1855 /* Returns an upper bound on the number of executions of statements
1856 in the LOOP. For statements before the loop exit, this exceeds
1857 the number of execution of the latch by one. */
1859 HOST_WIDE_INT
1860 max_stmt_executions_int (struct loop *loop)
1862 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1863 HOST_WIDE_INT snit;
1865 if (nit == -1)
1866 return -1;
1868 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1870 /* If the computation overflows, return -1. */
1871 return snit < 0 ? -1 : snit;
1874 /* Returns an likely upper bound on the number of executions of statements
1875 in the LOOP. For statements before the loop exit, this exceeds
1876 the number of execution of the latch by one. */
1878 HOST_WIDE_INT
1879 likely_max_stmt_executions_int (struct loop *loop)
1881 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1882 HOST_WIDE_INT snit;
1884 if (nit == -1)
1885 return -1;
1887 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1889 /* If the computation overflows, return -1. */
1890 return snit < 0 ? -1 : snit;
1893 /* Sets NIT to the estimated number of executions of the latch of the
1894 LOOP. If we have no reliable estimate, the function returns false, otherwise
1895 returns true. */
1897 bool
1898 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1900 /* Even if the bound is not recorded, possibly we can derrive one from
1901 profile. */
1902 if (!loop->any_estimate)
1904 if (loop->header->count)
1906 *nit = gcov_type_to_wide_int
1907 (expected_loop_iterations_unbounded (loop) + 1);
1908 return true;
1910 return false;
1913 *nit = loop->nb_iterations_estimate;
1914 return true;
1917 /* Sets NIT to an upper bound for the maximum number of executions of the
1918 latch of the LOOP. If we have no reliable estimate, the function returns
1919 false, otherwise returns true. */
1921 bool
1922 get_max_loop_iterations (const struct loop *loop, widest_int *nit)
1924 if (!loop->any_upper_bound)
1925 return false;
1927 *nit = loop->nb_iterations_upper_bound;
1928 return true;
1931 /* Similar to get_max_loop_iterations, but returns the estimate only
1932 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1933 on the number of iterations of LOOP could not be derived, returns -1. */
1935 HOST_WIDE_INT
1936 get_max_loop_iterations_int (const struct loop *loop)
1938 widest_int nit;
1939 HOST_WIDE_INT hwi_nit;
1941 if (!get_max_loop_iterations (loop, &nit))
1942 return -1;
1944 if (!wi::fits_shwi_p (nit))
1945 return -1;
1946 hwi_nit = nit.to_shwi ();
1948 return hwi_nit < 0 ? -1 : hwi_nit;
1951 /* Sets NIT to an upper bound for the maximum number of executions of the
1952 latch of the LOOP. If we have no reliable estimate, the function returns
1953 false, otherwise returns true. */
1955 bool
1956 get_likely_max_loop_iterations (struct loop *loop, widest_int *nit)
1958 if (!loop->any_likely_upper_bound)
1959 return false;
1961 *nit = loop->nb_iterations_likely_upper_bound;
1962 return true;
1965 /* Similar to get_max_loop_iterations, but returns the estimate only
1966 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1967 on the number of iterations of LOOP could not be derived, returns -1. */
1969 HOST_WIDE_INT
1970 get_likely_max_loop_iterations_int (struct loop *loop)
1972 widest_int nit;
1973 HOST_WIDE_INT hwi_nit;
1975 if (!get_likely_max_loop_iterations (loop, &nit))
1976 return -1;
1978 if (!wi::fits_shwi_p (nit))
1979 return -1;
1980 hwi_nit = nit.to_shwi ();
1982 return hwi_nit < 0 ? -1 : hwi_nit;
1985 /* Returns the loop depth of the loop BB belongs to. */
1988 bb_loop_depth (const_basic_block bb)
1990 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1993 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1995 void
1996 mark_loop_for_removal (loop_p loop)
1998 if (loop->header == NULL)
1999 return;
2000 loop->former_header = loop->header;
2001 loop->header = NULL;
2002 loop->latch = NULL;
2003 loops_state_set (LOOPS_NEED_FIXUP);