Revert:
[official-gcc.git] / gcc / alias.c
blobba7f948c89ea387caf685b6da1694385f0dcae9a
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47 #include "tree-pass.h"
48 #include "ipa-type-escape.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &px1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
115 |/_ _\|
116 int double
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct alias_set_entry GTY(())
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 HOST_WIDE_INT alias_set;
136 /* The children of the alias set. These are not just the immediate
137 children, but, in fact, all descendants. So, if we have:
139 struct T { struct S s; float f; }
141 continuing our example above, the children here will be all of
142 `int', `double', `float', and `struct S'. */
143 splay_tree GTY((param1_is (int), param2_is (int))) children;
145 /* Nonzero if would have a child of zero: this effectively makes this
146 alias set the same as alias set zero. */
147 int has_zero_child;
149 typedef struct alias_set_entry *alias_set_entry;
151 static int rtx_equal_for_memref_p (rtx, rtx);
152 static rtx find_symbolic_term (rtx);
153 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
154 static void record_set (rtx, rtx, void *);
155 static int base_alias_check (rtx, rtx, enum machine_mode,
156 enum machine_mode);
157 static rtx find_base_value (rtx);
158 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
159 static int insert_subset_children (splay_tree_node, void*);
160 static tree find_base_decl (tree);
161 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
162 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
163 int (*) (rtx, int));
164 static int aliases_everything_p (rtx);
165 static bool nonoverlapping_component_refs_p (tree, tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int nonoverlapping_memrefs_p (rtx, rtx);
169 static int write_dependence_p (rtx, rtx, int);
171 static void memory_modified_1 (rtx, rtx, void *);
172 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
174 /* Set up all info needed to perform alias analysis on memory references. */
176 /* Returns the size in bytes of the mode of X. */
177 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
179 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
180 different alias sets. We ignore alias sets in functions making use
181 of variable arguments because the va_arg macros on some systems are
182 not legal ANSI C. */
183 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
184 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains. 10 is a completely arbitrary choice. */
188 #define MAX_ALIAS_LOOP_PASSES 10
190 /* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
194 of the first set.
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
197 expressions represent certain special values: function arguments and
198 the stack, frame, and argument pointers.
200 The contents of an ADDRESS is not normally used, the mode of the
201 ADDRESS determines whether the ADDRESS is a function argument or some
202 other special value. Pointer equality, not rtx_equal_p, determines whether
203 two ADDRESS expressions refer to the same base address.
205 The only use of the contents of an ADDRESS is for determining if the
206 current function performs nonlocal memory memory references for the
207 purposes of marking the function as a constant function. */
209 static GTY(()) VEC(rtx,gc) *reg_base_value;
210 static rtx *new_reg_base_value;
212 /* We preserve the copy of old array around to avoid amount of garbage
213 produced. About 8% of garbage produced were attributed to this
214 array. */
215 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
217 /* Static hunks of RTL used by the aliasing code; these are initialized
218 once per function to avoid unnecessary RTL allocations. */
219 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
221 #define REG_BASE_VALUE(X) \
222 (REGNO (X) < VEC_length (rtx, reg_base_value) \
223 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
225 /* Vector indexed by N giving the initial (unchanging) value known for
226 pseudo-register N. This array is initialized in init_alias_analysis,
227 and does not change until end_alias_analysis is called. */
228 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
230 /* Indicates number of valid entries in reg_known_value. */
231 static GTY(()) unsigned int reg_known_value_size;
233 /* Vector recording for each reg_known_value whether it is due to a
234 REG_EQUIV note. Future passes (viz., reload) may replace the
235 pseudo with the equivalent expression and so we account for the
236 dependences that would be introduced if that happens.
238 The REG_EQUIV notes created in assign_parms may mention the arg
239 pointer, and there are explicit insns in the RTL that modify the
240 arg pointer. Thus we must ensure that such insns don't get
241 scheduled across each other because that would invalidate the
242 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
243 wrong, but solving the problem in the scheduler will likely give
244 better code, so we do it here. */
245 static bool *reg_known_equiv_p;
247 /* True when scanning insns from the start of the rtl to the
248 NOTE_INSN_FUNCTION_BEG note. */
249 static bool copying_arguments;
251 DEF_VEC_P(alias_set_entry);
252 DEF_VEC_ALLOC_P(alias_set_entry,gc);
254 /* The splay-tree used to store the various alias set entries. */
255 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
257 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
258 such an entry, or NULL otherwise. */
260 static inline alias_set_entry
261 get_alias_set_entry (HOST_WIDE_INT alias_set)
263 return VEC_index (alias_set_entry, alias_sets, alias_set);
266 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
267 the two MEMs cannot alias each other. */
269 static inline int
270 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
272 /* Perform a basic sanity check. Namely, that there are no alias sets
273 if we're not using strict aliasing. This helps to catch bugs
274 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
275 where a MEM is allocated in some way other than by the use of
276 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
277 use alias sets to indicate that spilled registers cannot alias each
278 other, we might need to remove this check. */
279 gcc_assert (flag_strict_aliasing
280 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
282 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
285 /* Insert the NODE into the splay tree given by DATA. Used by
286 record_alias_subset via splay_tree_foreach. */
288 static int
289 insert_subset_children (splay_tree_node node, void *data)
291 splay_tree_insert ((splay_tree) data, node->key, node->value);
293 return 0;
296 /* Return true if the first alias set is a subset of the second. */
298 bool
299 alias_set_subset_of (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
301 alias_set_entry ase;
303 /* Everything is a subset of the "aliases everything" set. */
304 if (set2 == 0)
305 return true;
307 /* Otherwise, check if set1 is a subset of set2. */
308 ase = get_alias_set_entry (set2);
309 if (ase != 0
310 && (splay_tree_lookup (ase->children,
311 (splay_tree_key) set1)))
312 return true;
313 return false;
316 /* Return 1 if the two specified alias sets may conflict. */
319 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
321 alias_set_entry ase;
323 /* If have no alias set information for one of the operands, we have
324 to assume it can alias anything. */
325 if (set1 == 0 || set2 == 0
326 /* If the two alias sets are the same, they may alias. */
327 || set1 == set2)
328 return 1;
330 /* See if the first alias set is a subset of the second. */
331 ase = get_alias_set_entry (set1);
332 if (ase != 0
333 && (ase->has_zero_child
334 || splay_tree_lookup (ase->children,
335 (splay_tree_key) set2)))
336 return 1;
338 /* Now do the same, but with the alias sets reversed. */
339 ase = get_alias_set_entry (set2);
340 if (ase != 0
341 && (ase->has_zero_child
342 || splay_tree_lookup (ase->children,
343 (splay_tree_key) set1)))
344 return 1;
346 /* The two alias sets are distinct and neither one is the
347 child of the other. Therefore, they cannot alias. */
348 return 0;
351 /* Return 1 if the two specified alias sets might conflict, or if any subtype
352 of these alias sets might conflict. */
355 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
357 if (set1 == 0 || set2 == 0 || set1 == set2)
358 return 1;
360 return 0;
364 /* Return 1 if any MEM object of type T1 will always conflict (using the
365 dependency routines in this file) with any MEM object of type T2.
366 This is used when allocating temporary storage. If T1 and/or T2 are
367 NULL_TREE, it means we know nothing about the storage. */
370 objects_must_conflict_p (tree t1, tree t2)
372 HOST_WIDE_INT set1, set2;
374 /* If neither has a type specified, we don't know if they'll conflict
375 because we may be using them to store objects of various types, for
376 example the argument and local variables areas of inlined functions. */
377 if (t1 == 0 && t2 == 0)
378 return 0;
380 /* If they are the same type, they must conflict. */
381 if (t1 == t2
382 /* Likewise if both are volatile. */
383 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
384 return 1;
386 set1 = t1 ? get_alias_set (t1) : 0;
387 set2 = t2 ? get_alias_set (t2) : 0;
389 /* Otherwise they conflict if they have no alias set or the same. We
390 can't simply use alias_sets_conflict_p here, because we must make
391 sure that every subtype of t1 will conflict with every subtype of
392 t2 for which a pair of subobjects of these respective subtypes
393 overlaps on the stack. */
394 return set1 == 0 || set2 == 0 || set1 == set2;
397 /* T is an expression with pointer type. Find the DECL on which this
398 expression is based. (For example, in `a[i]' this would be `a'.)
399 If there is no such DECL, or a unique decl cannot be determined,
400 NULL_TREE is returned. */
402 static tree
403 find_base_decl (tree t)
405 tree d0, d1;
407 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
408 return 0;
410 /* If this is a declaration, return it. If T is based on a restrict
411 qualified decl, return that decl. */
412 if (DECL_P (t))
414 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
415 t = DECL_GET_RESTRICT_BASE (t);
416 return t;
419 /* Handle general expressions. It would be nice to deal with
420 COMPONENT_REFs here. If we could tell that `a' and `b' were the
421 same, then `a->f' and `b->f' are also the same. */
422 switch (TREE_CODE_CLASS (TREE_CODE (t)))
424 case tcc_unary:
425 return find_base_decl (TREE_OPERAND (t, 0));
427 case tcc_binary:
428 /* Return 0 if found in neither or both are the same. */
429 d0 = find_base_decl (TREE_OPERAND (t, 0));
430 d1 = find_base_decl (TREE_OPERAND (t, 1));
431 if (d0 == d1)
432 return d0;
433 else if (d0 == 0)
434 return d1;
435 else if (d1 == 0)
436 return d0;
437 else
438 return 0;
440 default:
441 return 0;
445 /* Return true if all nested component references handled by
446 get_inner_reference in T are such that we should use the alias set
447 provided by the object at the heart of T.
449 This is true for non-addressable components (which don't have their
450 own alias set), as well as components of objects in alias set zero.
451 This later point is a special case wherein we wish to override the
452 alias set used by the component, but we don't have per-FIELD_DECL
453 assignable alias sets. */
455 bool
456 component_uses_parent_alias_set (tree t)
458 while (1)
460 /* If we're at the end, it vacuously uses its own alias set. */
461 if (!handled_component_p (t))
462 return false;
464 switch (TREE_CODE (t))
466 case COMPONENT_REF:
467 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
468 return true;
469 break;
471 case ARRAY_REF:
472 case ARRAY_RANGE_REF:
473 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
474 return true;
475 break;
477 case REALPART_EXPR:
478 case IMAGPART_EXPR:
479 break;
481 default:
482 /* Bitfields and casts are never addressable. */
483 return true;
486 t = TREE_OPERAND (t, 0);
487 if (get_alias_set (TREE_TYPE (t)) == 0)
488 return true;
492 /* Return the alias set for T, which may be either a type or an
493 expression. Call language-specific routine for help, if needed. */
495 HOST_WIDE_INT
496 get_alias_set (tree t)
498 HOST_WIDE_INT set;
500 /* If we're not doing any alias analysis, just assume everything
501 aliases everything else. Also return 0 if this or its type is
502 an error. */
503 if (! flag_strict_aliasing || t == error_mark_node
504 || (! TYPE_P (t)
505 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
506 return 0;
508 /* We can be passed either an expression or a type. This and the
509 language-specific routine may make mutually-recursive calls to each other
510 to figure out what to do. At each juncture, we see if this is a tree
511 that the language may need to handle specially. First handle things that
512 aren't types. */
513 if (! TYPE_P (t))
515 tree inner = t;
517 /* Remove any nops, then give the language a chance to do
518 something with this tree before we look at it. */
519 STRIP_NOPS (t);
520 set = lang_hooks.get_alias_set (t);
521 if (set != -1)
522 return set;
524 /* First see if the actual object referenced is an INDIRECT_REF from a
525 restrict-qualified pointer or a "void *". */
526 while (handled_component_p (inner))
528 inner = TREE_OPERAND (inner, 0);
529 STRIP_NOPS (inner);
532 /* Check for accesses through restrict-qualified pointers. */
533 if (INDIRECT_REF_P (inner))
535 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
537 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
539 /* If we haven't computed the actual alias set, do it now. */
540 if (DECL_POINTER_ALIAS_SET (decl) == -2)
542 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
544 /* No two restricted pointers can point at the same thing.
545 However, a restricted pointer can point at the same thing
546 as an unrestricted pointer, if that unrestricted pointer
547 is based on the restricted pointer. So, we make the
548 alias set for the restricted pointer a subset of the
549 alias set for the type pointed to by the type of the
550 decl. */
551 HOST_WIDE_INT pointed_to_alias_set
552 = get_alias_set (pointed_to_type);
554 if (pointed_to_alias_set == 0)
555 /* It's not legal to make a subset of alias set zero. */
556 DECL_POINTER_ALIAS_SET (decl) = 0;
557 else if (AGGREGATE_TYPE_P (pointed_to_type))
558 /* For an aggregate, we must treat the restricted
559 pointer the same as an ordinary pointer. If we
560 were to make the type pointed to by the
561 restricted pointer a subset of the pointed-to
562 type, then we would believe that other subsets
563 of the pointed-to type (such as fields of that
564 type) do not conflict with the type pointed to
565 by the restricted pointer. */
566 DECL_POINTER_ALIAS_SET (decl)
567 = pointed_to_alias_set;
568 else
570 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
571 record_alias_subset (pointed_to_alias_set,
572 DECL_POINTER_ALIAS_SET (decl));
576 /* We use the alias set indicated in the declaration. */
577 return DECL_POINTER_ALIAS_SET (decl);
580 /* If we have an INDIRECT_REF via a void pointer, we don't
581 know anything about what that might alias. Likewise if the
582 pointer is marked that way. */
583 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
584 || (TYPE_REF_CAN_ALIAS_ALL
585 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
586 return 0;
589 /* Otherwise, pick up the outermost object that we could have a pointer
590 to, processing conversions as above. */
591 while (component_uses_parent_alias_set (t))
593 t = TREE_OPERAND (t, 0);
594 STRIP_NOPS (t);
597 /* If we've already determined the alias set for a decl, just return
598 it. This is necessary for C++ anonymous unions, whose component
599 variables don't look like union members (boo!). */
600 if (TREE_CODE (t) == VAR_DECL
601 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
602 return MEM_ALIAS_SET (DECL_RTL (t));
604 /* Now all we care about is the type. */
605 t = TREE_TYPE (t);
608 /* Variant qualifiers don't affect the alias set, so get the main
609 variant. If this is a type with a known alias set, return it. */
610 t = TYPE_MAIN_VARIANT (t);
611 if (TYPE_ALIAS_SET_KNOWN_P (t))
612 return TYPE_ALIAS_SET (t);
614 /* See if the language has special handling for this type. */
615 set = lang_hooks.get_alias_set (t);
616 if (set != -1)
617 return set;
619 /* There are no objects of FUNCTION_TYPE, so there's no point in
620 using up an alias set for them. (There are, of course, pointers
621 and references to functions, but that's different.) */
622 else if (TREE_CODE (t) == FUNCTION_TYPE)
623 set = 0;
625 /* Unless the language specifies otherwise, let vector types alias
626 their components. This avoids some nasty type punning issues in
627 normal usage. And indeed lets vectors be treated more like an
628 array slice. */
629 else if (TREE_CODE (t) == VECTOR_TYPE)
630 set = get_alias_set (TREE_TYPE (t));
632 else
633 /* Otherwise make a new alias set for this type. */
634 set = new_alias_set ();
636 TYPE_ALIAS_SET (t) = set;
638 /* If this is an aggregate type, we must record any component aliasing
639 information. */
640 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
641 record_component_aliases (t);
643 return set;
646 /* Return a brand-new alias set. */
648 HOST_WIDE_INT
649 new_alias_set (void)
651 if (flag_strict_aliasing)
653 if (alias_sets == 0)
654 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
655 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
656 return VEC_length (alias_set_entry, alias_sets) - 1;
658 else
659 return 0;
662 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
663 not everything that aliases SUPERSET also aliases SUBSET. For example,
664 in C, a store to an `int' can alias a load of a structure containing an
665 `int', and vice versa. But it can't alias a load of a 'double' member
666 of the same structure. Here, the structure would be the SUPERSET and
667 `int' the SUBSET. This relationship is also described in the comment at
668 the beginning of this file.
670 This function should be called only once per SUPERSET/SUBSET pair.
672 It is illegal for SUPERSET to be zero; everything is implicitly a
673 subset of alias set zero. */
675 static void
676 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
678 alias_set_entry superset_entry;
679 alias_set_entry subset_entry;
681 /* It is possible in complex type situations for both sets to be the same,
682 in which case we can ignore this operation. */
683 if (superset == subset)
684 return;
686 gcc_assert (superset);
688 superset_entry = get_alias_set_entry (superset);
689 if (superset_entry == 0)
691 /* Create an entry for the SUPERSET, so that we have a place to
692 attach the SUBSET. */
693 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
694 superset_entry->alias_set = superset;
695 superset_entry->children
696 = splay_tree_new_ggc (splay_tree_compare_ints);
697 superset_entry->has_zero_child = 0;
698 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
701 if (subset == 0)
702 superset_entry->has_zero_child = 1;
703 else
705 subset_entry = get_alias_set_entry (subset);
706 /* If there is an entry for the subset, enter all of its children
707 (if they are not already present) as children of the SUPERSET. */
708 if (subset_entry)
710 if (subset_entry->has_zero_child)
711 superset_entry->has_zero_child = 1;
713 splay_tree_foreach (subset_entry->children, insert_subset_children,
714 superset_entry->children);
717 /* Enter the SUBSET itself as a child of the SUPERSET. */
718 splay_tree_insert (superset_entry->children,
719 (splay_tree_key) subset, 0);
723 /* Record that component types of TYPE, if any, are part of that type for
724 aliasing purposes. For record types, we only record component types
725 for fields that are marked addressable. For array types, we always
726 record the component types, so the front end should not call this
727 function if the individual component aren't addressable. */
729 void
730 record_component_aliases (tree type)
732 HOST_WIDE_INT superset = get_alias_set (type);
733 tree field;
735 if (superset == 0)
736 return;
738 switch (TREE_CODE (type))
740 case ARRAY_TYPE:
741 if (! TYPE_NONALIASED_COMPONENT (type))
742 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
743 break;
745 case RECORD_TYPE:
746 case UNION_TYPE:
747 case QUAL_UNION_TYPE:
748 /* Recursively record aliases for the base classes, if there are any. */
749 if (TYPE_BINFO (type))
751 int i;
752 tree binfo, base_binfo;
754 for (binfo = TYPE_BINFO (type), i = 0;
755 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
756 record_alias_subset (superset,
757 get_alias_set (BINFO_TYPE (base_binfo)));
759 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
760 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
761 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
762 break;
764 case COMPLEX_TYPE:
765 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
766 break;
768 default:
769 break;
773 /* Allocate an alias set for use in storing and reading from the varargs
774 spill area. */
776 static GTY(()) HOST_WIDE_INT varargs_set = -1;
778 HOST_WIDE_INT
779 get_varargs_alias_set (void)
781 #if 1
782 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
783 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
784 consistently use the varargs alias set for loads from the varargs
785 area. So don't use it anywhere. */
786 return 0;
787 #else
788 if (varargs_set == -1)
789 varargs_set = new_alias_set ();
791 return varargs_set;
792 #endif
795 /* Likewise, but used for the fixed portions of the frame, e.g., register
796 save areas. */
798 static GTY(()) HOST_WIDE_INT frame_set = -1;
800 HOST_WIDE_INT
801 get_frame_alias_set (void)
803 if (frame_set == -1)
804 frame_set = new_alias_set ();
806 return frame_set;
809 /* Inside SRC, the source of a SET, find a base address. */
811 static rtx
812 find_base_value (rtx src)
814 unsigned int regno;
816 switch (GET_CODE (src))
818 case SYMBOL_REF:
819 case LABEL_REF:
820 return src;
822 case REG:
823 regno = REGNO (src);
824 /* At the start of a function, argument registers have known base
825 values which may be lost later. Returning an ADDRESS
826 expression here allows optimization based on argument values
827 even when the argument registers are used for other purposes. */
828 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
829 return new_reg_base_value[regno];
831 /* If a pseudo has a known base value, return it. Do not do this
832 for non-fixed hard regs since it can result in a circular
833 dependency chain for registers which have values at function entry.
835 The test above is not sufficient because the scheduler may move
836 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
837 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
838 && regno < VEC_length (rtx, reg_base_value))
840 /* If we're inside init_alias_analysis, use new_reg_base_value
841 to reduce the number of relaxation iterations. */
842 if (new_reg_base_value && new_reg_base_value[regno]
843 && REG_N_SETS (regno) == 1)
844 return new_reg_base_value[regno];
846 if (VEC_index (rtx, reg_base_value, regno))
847 return VEC_index (rtx, reg_base_value, regno);
850 return 0;
852 case MEM:
853 /* Check for an argument passed in memory. Only record in the
854 copying-arguments block; it is too hard to track changes
855 otherwise. */
856 if (copying_arguments
857 && (XEXP (src, 0) == arg_pointer_rtx
858 || (GET_CODE (XEXP (src, 0)) == PLUS
859 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
860 return gen_rtx_ADDRESS (VOIDmode, src);
861 return 0;
863 case CONST:
864 src = XEXP (src, 0);
865 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
866 break;
868 /* ... fall through ... */
870 case PLUS:
871 case MINUS:
873 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
875 /* If either operand is a REG that is a known pointer, then it
876 is the base. */
877 if (REG_P (src_0) && REG_POINTER (src_0))
878 return find_base_value (src_0);
879 if (REG_P (src_1) && REG_POINTER (src_1))
880 return find_base_value (src_1);
882 /* If either operand is a REG, then see if we already have
883 a known value for it. */
884 if (REG_P (src_0))
886 temp = find_base_value (src_0);
887 if (temp != 0)
888 src_0 = temp;
891 if (REG_P (src_1))
893 temp = find_base_value (src_1);
894 if (temp!= 0)
895 src_1 = temp;
898 /* If either base is named object or a special address
899 (like an argument or stack reference), then use it for the
900 base term. */
901 if (src_0 != 0
902 && (GET_CODE (src_0) == SYMBOL_REF
903 || GET_CODE (src_0) == LABEL_REF
904 || (GET_CODE (src_0) == ADDRESS
905 && GET_MODE (src_0) != VOIDmode)))
906 return src_0;
908 if (src_1 != 0
909 && (GET_CODE (src_1) == SYMBOL_REF
910 || GET_CODE (src_1) == LABEL_REF
911 || (GET_CODE (src_1) == ADDRESS
912 && GET_MODE (src_1) != VOIDmode)))
913 return src_1;
915 /* Guess which operand is the base address:
916 If either operand is a symbol, then it is the base. If
917 either operand is a CONST_INT, then the other is the base. */
918 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
919 return find_base_value (src_0);
920 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
921 return find_base_value (src_1);
923 return 0;
926 case LO_SUM:
927 /* The standard form is (lo_sum reg sym) so look only at the
928 second operand. */
929 return find_base_value (XEXP (src, 1));
931 case AND:
932 /* If the second operand is constant set the base
933 address to the first operand. */
934 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
935 return find_base_value (XEXP (src, 0));
936 return 0;
938 case TRUNCATE:
939 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
940 break;
941 /* Fall through. */
942 case HIGH:
943 case PRE_INC:
944 case PRE_DEC:
945 case POST_INC:
946 case POST_DEC:
947 case PRE_MODIFY:
948 case POST_MODIFY:
949 return find_base_value (XEXP (src, 0));
951 case ZERO_EXTEND:
952 case SIGN_EXTEND: /* used for NT/Alpha pointers */
954 rtx temp = find_base_value (XEXP (src, 0));
956 if (temp != 0 && CONSTANT_P (temp))
957 temp = convert_memory_address (Pmode, temp);
959 return temp;
962 default:
963 break;
966 return 0;
969 /* Called from init_alias_analysis indirectly through note_stores. */
971 /* While scanning insns to find base values, reg_seen[N] is nonzero if
972 register N has been set in this function. */
973 static char *reg_seen;
975 /* Addresses which are known not to alias anything else are identified
976 by a unique integer. */
977 static int unique_id;
979 static void
980 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
982 unsigned regno;
983 rtx src;
984 int n;
986 if (!REG_P (dest))
987 return;
989 regno = REGNO (dest);
991 gcc_assert (regno < VEC_length (rtx, reg_base_value));
993 /* If this spans multiple hard registers, then we must indicate that every
994 register has an unusable value. */
995 if (regno < FIRST_PSEUDO_REGISTER)
996 n = hard_regno_nregs[regno][GET_MODE (dest)];
997 else
998 n = 1;
999 if (n != 1)
1001 while (--n >= 0)
1003 reg_seen[regno + n] = 1;
1004 new_reg_base_value[regno + n] = 0;
1006 return;
1009 if (set)
1011 /* A CLOBBER wipes out any old value but does not prevent a previously
1012 unset register from acquiring a base address (i.e. reg_seen is not
1013 set). */
1014 if (GET_CODE (set) == CLOBBER)
1016 new_reg_base_value[regno] = 0;
1017 return;
1019 src = SET_SRC (set);
1021 else
1023 if (reg_seen[regno])
1025 new_reg_base_value[regno] = 0;
1026 return;
1028 reg_seen[regno] = 1;
1029 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1030 GEN_INT (unique_id++));
1031 return;
1034 /* If this is not the first set of REGNO, see whether the new value
1035 is related to the old one. There are two cases of interest:
1037 (1) The register might be assigned an entirely new value
1038 that has the same base term as the original set.
1040 (2) The set might be a simple self-modification that
1041 cannot change REGNO's base value.
1043 If neither case holds, reject the original base value as invalid.
1044 Note that the following situation is not detected:
1046 extern int x, y; int *p = &x; p += (&y-&x);
1048 ANSI C does not allow computing the difference of addresses
1049 of distinct top level objects. */
1050 if (new_reg_base_value[regno] != 0
1051 && find_base_value (src) != new_reg_base_value[regno])
1052 switch (GET_CODE (src))
1054 case LO_SUM:
1055 case MINUS:
1056 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1057 new_reg_base_value[regno] = 0;
1058 break;
1059 case PLUS:
1060 /* If the value we add in the PLUS is also a valid base value,
1061 this might be the actual base value, and the original value
1062 an index. */
1064 rtx other = NULL_RTX;
1066 if (XEXP (src, 0) == dest)
1067 other = XEXP (src, 1);
1068 else if (XEXP (src, 1) == dest)
1069 other = XEXP (src, 0);
1071 if (! other || find_base_value (other))
1072 new_reg_base_value[regno] = 0;
1073 break;
1075 case AND:
1076 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1077 new_reg_base_value[regno] = 0;
1078 break;
1079 default:
1080 new_reg_base_value[regno] = 0;
1081 break;
1083 /* If this is the first set of a register, record the value. */
1084 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1085 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1086 new_reg_base_value[regno] = find_base_value (src);
1088 reg_seen[regno] = 1;
1091 /* Clear alias info for a register. This is used if an RTL transformation
1092 changes the value of a register. This is used in flow by AUTO_INC_DEC
1093 optimizations. We don't need to clear reg_base_value, since flow only
1094 changes the offset. */
1096 void
1097 clear_reg_alias_info (rtx reg)
1099 unsigned int regno = REGNO (reg);
1101 if (regno >= FIRST_PSEUDO_REGISTER)
1103 regno -= FIRST_PSEUDO_REGISTER;
1104 if (regno < reg_known_value_size)
1106 reg_known_value[regno] = reg;
1107 reg_known_equiv_p[regno] = false;
1112 /* If a value is known for REGNO, return it. */
1115 get_reg_known_value (unsigned int regno)
1117 if (regno >= FIRST_PSEUDO_REGISTER)
1119 regno -= FIRST_PSEUDO_REGISTER;
1120 if (regno < reg_known_value_size)
1121 return reg_known_value[regno];
1123 return NULL;
1126 /* Set it. */
1128 static void
1129 set_reg_known_value (unsigned int regno, rtx val)
1131 if (regno >= FIRST_PSEUDO_REGISTER)
1133 regno -= FIRST_PSEUDO_REGISTER;
1134 if (regno < reg_known_value_size)
1135 reg_known_value[regno] = val;
1139 /* Similarly for reg_known_equiv_p. */
1141 bool
1142 get_reg_known_equiv_p (unsigned int regno)
1144 if (regno >= FIRST_PSEUDO_REGISTER)
1146 regno -= FIRST_PSEUDO_REGISTER;
1147 if (regno < reg_known_value_size)
1148 return reg_known_equiv_p[regno];
1150 return false;
1153 static void
1154 set_reg_known_equiv_p (unsigned int regno, bool val)
1156 if (regno >= FIRST_PSEUDO_REGISTER)
1158 regno -= FIRST_PSEUDO_REGISTER;
1159 if (regno < reg_known_value_size)
1160 reg_known_equiv_p[regno] = val;
1165 /* Returns a canonical version of X, from the point of view alias
1166 analysis. (For example, if X is a MEM whose address is a register,
1167 and the register has a known value (say a SYMBOL_REF), then a MEM
1168 whose address is the SYMBOL_REF is returned.) */
1171 canon_rtx (rtx x)
1173 /* Recursively look for equivalences. */
1174 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1176 rtx t = get_reg_known_value (REGNO (x));
1177 if (t == x)
1178 return x;
1179 if (t)
1180 return canon_rtx (t);
1183 if (GET_CODE (x) == PLUS)
1185 rtx x0 = canon_rtx (XEXP (x, 0));
1186 rtx x1 = canon_rtx (XEXP (x, 1));
1188 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1190 if (GET_CODE (x0) == CONST_INT)
1191 return plus_constant (x1, INTVAL (x0));
1192 else if (GET_CODE (x1) == CONST_INT)
1193 return plus_constant (x0, INTVAL (x1));
1194 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1198 /* This gives us much better alias analysis when called from
1199 the loop optimizer. Note we want to leave the original
1200 MEM alone, but need to return the canonicalized MEM with
1201 all the flags with their original values. */
1202 else if (MEM_P (x))
1203 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1205 return x;
1208 /* Return 1 if X and Y are identical-looking rtx's.
1209 Expect that X and Y has been already canonicalized.
1211 We use the data in reg_known_value above to see if two registers with
1212 different numbers are, in fact, equivalent. */
1214 static int
1215 rtx_equal_for_memref_p (rtx x, rtx y)
1217 int i;
1218 int j;
1219 enum rtx_code code;
1220 const char *fmt;
1222 if (x == 0 && y == 0)
1223 return 1;
1224 if (x == 0 || y == 0)
1225 return 0;
1227 if (x == y)
1228 return 1;
1230 code = GET_CODE (x);
1231 /* Rtx's of different codes cannot be equal. */
1232 if (code != GET_CODE (y))
1233 return 0;
1235 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1236 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1238 if (GET_MODE (x) != GET_MODE (y))
1239 return 0;
1241 /* Some RTL can be compared without a recursive examination. */
1242 switch (code)
1244 case REG:
1245 return REGNO (x) == REGNO (y);
1247 case LABEL_REF:
1248 return XEXP (x, 0) == XEXP (y, 0);
1250 case SYMBOL_REF:
1251 return XSTR (x, 0) == XSTR (y, 0);
1253 case VALUE:
1254 case CONST_INT:
1255 case CONST_DOUBLE:
1256 /* There's no need to compare the contents of CONST_DOUBLEs or
1257 CONST_INTs because pointer equality is a good enough
1258 comparison for these nodes. */
1259 return 0;
1261 default:
1262 break;
1265 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1266 if (code == PLUS)
1267 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1268 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1269 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1270 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1271 /* For commutative operations, the RTX match if the operand match in any
1272 order. Also handle the simple binary and unary cases without a loop. */
1273 if (COMMUTATIVE_P (x))
1275 rtx xop0 = canon_rtx (XEXP (x, 0));
1276 rtx yop0 = canon_rtx (XEXP (y, 0));
1277 rtx yop1 = canon_rtx (XEXP (y, 1));
1279 return ((rtx_equal_for_memref_p (xop0, yop0)
1280 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1281 || (rtx_equal_for_memref_p (xop0, yop1)
1282 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1284 else if (NON_COMMUTATIVE_P (x))
1286 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1287 canon_rtx (XEXP (y, 0)))
1288 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1289 canon_rtx (XEXP (y, 1))));
1291 else if (UNARY_P (x))
1292 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1293 canon_rtx (XEXP (y, 0)));
1295 /* Compare the elements. If any pair of corresponding elements
1296 fail to match, return 0 for the whole things.
1298 Limit cases to types which actually appear in addresses. */
1300 fmt = GET_RTX_FORMAT (code);
1301 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1303 switch (fmt[i])
1305 case 'i':
1306 if (XINT (x, i) != XINT (y, i))
1307 return 0;
1308 break;
1310 case 'E':
1311 /* Two vectors must have the same length. */
1312 if (XVECLEN (x, i) != XVECLEN (y, i))
1313 return 0;
1315 /* And the corresponding elements must match. */
1316 for (j = 0; j < XVECLEN (x, i); j++)
1317 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1318 canon_rtx (XVECEXP (y, i, j))) == 0)
1319 return 0;
1320 break;
1322 case 'e':
1323 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1324 canon_rtx (XEXP (y, i))) == 0)
1325 return 0;
1326 break;
1328 /* This can happen for asm operands. */
1329 case 's':
1330 if (strcmp (XSTR (x, i), XSTR (y, i)))
1331 return 0;
1332 break;
1334 /* This can happen for an asm which clobbers memory. */
1335 case '0':
1336 break;
1338 /* It is believed that rtx's at this level will never
1339 contain anything but integers and other rtx's,
1340 except for within LABEL_REFs and SYMBOL_REFs. */
1341 default:
1342 gcc_unreachable ();
1345 return 1;
1348 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1349 X and return it, or return 0 if none found. */
1351 static rtx
1352 find_symbolic_term (rtx x)
1354 int i;
1355 enum rtx_code code;
1356 const char *fmt;
1358 code = GET_CODE (x);
1359 if (code == SYMBOL_REF || code == LABEL_REF)
1360 return x;
1361 if (OBJECT_P (x))
1362 return 0;
1364 fmt = GET_RTX_FORMAT (code);
1365 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1367 rtx t;
1369 if (fmt[i] == 'e')
1371 t = find_symbolic_term (XEXP (x, i));
1372 if (t != 0)
1373 return t;
1375 else if (fmt[i] == 'E')
1376 break;
1378 return 0;
1382 find_base_term (rtx x)
1384 cselib_val *val;
1385 struct elt_loc_list *l;
1387 #if defined (FIND_BASE_TERM)
1388 /* Try machine-dependent ways to find the base term. */
1389 x = FIND_BASE_TERM (x);
1390 #endif
1392 switch (GET_CODE (x))
1394 case REG:
1395 return REG_BASE_VALUE (x);
1397 case TRUNCATE:
1398 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1399 return 0;
1400 /* Fall through. */
1401 case HIGH:
1402 case PRE_INC:
1403 case PRE_DEC:
1404 case POST_INC:
1405 case POST_DEC:
1406 case PRE_MODIFY:
1407 case POST_MODIFY:
1408 return find_base_term (XEXP (x, 0));
1410 case ZERO_EXTEND:
1411 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1413 rtx temp = find_base_term (XEXP (x, 0));
1415 if (temp != 0 && CONSTANT_P (temp))
1416 temp = convert_memory_address (Pmode, temp);
1418 return temp;
1421 case VALUE:
1422 val = CSELIB_VAL_PTR (x);
1423 if (!val)
1424 return 0;
1425 for (l = val->locs; l; l = l->next)
1426 if ((x = find_base_term (l->loc)) != 0)
1427 return x;
1428 return 0;
1430 case CONST:
1431 x = XEXP (x, 0);
1432 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1433 return 0;
1434 /* Fall through. */
1435 case LO_SUM:
1436 case PLUS:
1437 case MINUS:
1439 rtx tmp1 = XEXP (x, 0);
1440 rtx tmp2 = XEXP (x, 1);
1442 /* This is a little bit tricky since we have to determine which of
1443 the two operands represents the real base address. Otherwise this
1444 routine may return the index register instead of the base register.
1446 That may cause us to believe no aliasing was possible, when in
1447 fact aliasing is possible.
1449 We use a few simple tests to guess the base register. Additional
1450 tests can certainly be added. For example, if one of the operands
1451 is a shift or multiply, then it must be the index register and the
1452 other operand is the base register. */
1454 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1455 return find_base_term (tmp2);
1457 /* If either operand is known to be a pointer, then use it
1458 to determine the base term. */
1459 if (REG_P (tmp1) && REG_POINTER (tmp1))
1460 return find_base_term (tmp1);
1462 if (REG_P (tmp2) && REG_POINTER (tmp2))
1463 return find_base_term (tmp2);
1465 /* Neither operand was known to be a pointer. Go ahead and find the
1466 base term for both operands. */
1467 tmp1 = find_base_term (tmp1);
1468 tmp2 = find_base_term (tmp2);
1470 /* If either base term is named object or a special address
1471 (like an argument or stack reference), then use it for the
1472 base term. */
1473 if (tmp1 != 0
1474 && (GET_CODE (tmp1) == SYMBOL_REF
1475 || GET_CODE (tmp1) == LABEL_REF
1476 || (GET_CODE (tmp1) == ADDRESS
1477 && GET_MODE (tmp1) != VOIDmode)))
1478 return tmp1;
1480 if (tmp2 != 0
1481 && (GET_CODE (tmp2) == SYMBOL_REF
1482 || GET_CODE (tmp2) == LABEL_REF
1483 || (GET_CODE (tmp2) == ADDRESS
1484 && GET_MODE (tmp2) != VOIDmode)))
1485 return tmp2;
1487 /* We could not determine which of the two operands was the
1488 base register and which was the index. So we can determine
1489 nothing from the base alias check. */
1490 return 0;
1493 case AND:
1494 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1495 return find_base_term (XEXP (x, 0));
1496 return 0;
1498 case SYMBOL_REF:
1499 case LABEL_REF:
1500 return x;
1502 default:
1503 return 0;
1507 /* Return 0 if the addresses X and Y are known to point to different
1508 objects, 1 if they might be pointers to the same object. */
1510 static int
1511 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1512 enum machine_mode y_mode)
1514 rtx x_base = find_base_term (x);
1515 rtx y_base = find_base_term (y);
1517 /* If the address itself has no known base see if a known equivalent
1518 value has one. If either address still has no known base, nothing
1519 is known about aliasing. */
1520 if (x_base == 0)
1522 rtx x_c;
1524 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1525 return 1;
1527 x_base = find_base_term (x_c);
1528 if (x_base == 0)
1529 return 1;
1532 if (y_base == 0)
1534 rtx y_c;
1535 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1536 return 1;
1538 y_base = find_base_term (y_c);
1539 if (y_base == 0)
1540 return 1;
1543 /* If the base addresses are equal nothing is known about aliasing. */
1544 if (rtx_equal_p (x_base, y_base))
1545 return 1;
1547 /* The base addresses of the read and write are different expressions.
1548 If they are both symbols and they are not accessed via AND, there is
1549 no conflict. We can bring knowledge of object alignment into play
1550 here. For example, on alpha, "char a, b;" can alias one another,
1551 though "char a; long b;" cannot. */
1552 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1554 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1555 return 1;
1556 if (GET_CODE (x) == AND
1557 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1558 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1559 return 1;
1560 if (GET_CODE (y) == AND
1561 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1562 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1563 return 1;
1564 /* Differing symbols never alias. */
1565 return 0;
1568 /* If one address is a stack reference there can be no alias:
1569 stack references using different base registers do not alias,
1570 a stack reference can not alias a parameter, and a stack reference
1571 can not alias a global. */
1572 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1573 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1574 return 0;
1576 if (! flag_argument_noalias)
1577 return 1;
1579 if (flag_argument_noalias > 1)
1580 return 0;
1582 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1583 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1586 /* Convert the address X into something we can use. This is done by returning
1587 it unchanged unless it is a value; in the latter case we call cselib to get
1588 a more useful rtx. */
1591 get_addr (rtx x)
1593 cselib_val *v;
1594 struct elt_loc_list *l;
1596 if (GET_CODE (x) != VALUE)
1597 return x;
1598 v = CSELIB_VAL_PTR (x);
1599 if (v)
1601 for (l = v->locs; l; l = l->next)
1602 if (CONSTANT_P (l->loc))
1603 return l->loc;
1604 for (l = v->locs; l; l = l->next)
1605 if (!REG_P (l->loc) && !MEM_P (l->loc))
1606 return l->loc;
1607 if (v->locs)
1608 return v->locs->loc;
1610 return x;
1613 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1614 where SIZE is the size in bytes of the memory reference. If ADDR
1615 is not modified by the memory reference then ADDR is returned. */
1617 static rtx
1618 addr_side_effect_eval (rtx addr, int size, int n_refs)
1620 int offset = 0;
1622 switch (GET_CODE (addr))
1624 case PRE_INC:
1625 offset = (n_refs + 1) * size;
1626 break;
1627 case PRE_DEC:
1628 offset = -(n_refs + 1) * size;
1629 break;
1630 case POST_INC:
1631 offset = n_refs * size;
1632 break;
1633 case POST_DEC:
1634 offset = -n_refs * size;
1635 break;
1637 default:
1638 return addr;
1641 if (offset)
1642 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1643 GEN_INT (offset));
1644 else
1645 addr = XEXP (addr, 0);
1646 addr = canon_rtx (addr);
1648 return addr;
1651 /* Return nonzero if X and Y (memory addresses) could reference the
1652 same location in memory. C is an offset accumulator. When
1653 C is nonzero, we are testing aliases between X and Y + C.
1654 XSIZE is the size in bytes of the X reference,
1655 similarly YSIZE is the size in bytes for Y.
1656 Expect that canon_rtx has been already called for X and Y.
1658 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1659 referenced (the reference was BLKmode), so make the most pessimistic
1660 assumptions.
1662 If XSIZE or YSIZE is negative, we may access memory outside the object
1663 being referenced as a side effect. This can happen when using AND to
1664 align memory references, as is done on the Alpha.
1666 Nice to notice that varying addresses cannot conflict with fp if no
1667 local variables had their addresses taken, but that's too hard now. */
1669 static int
1670 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1672 if (GET_CODE (x) == VALUE)
1673 x = get_addr (x);
1674 if (GET_CODE (y) == VALUE)
1675 y = get_addr (y);
1676 if (GET_CODE (x) == HIGH)
1677 x = XEXP (x, 0);
1678 else if (GET_CODE (x) == LO_SUM)
1679 x = XEXP (x, 1);
1680 else
1681 x = addr_side_effect_eval (x, xsize, 0);
1682 if (GET_CODE (y) == HIGH)
1683 y = XEXP (y, 0);
1684 else if (GET_CODE (y) == LO_SUM)
1685 y = XEXP (y, 1);
1686 else
1687 y = addr_side_effect_eval (y, ysize, 0);
1689 if (rtx_equal_for_memref_p (x, y))
1691 if (xsize <= 0 || ysize <= 0)
1692 return 1;
1693 if (c >= 0 && xsize > c)
1694 return 1;
1695 if (c < 0 && ysize+c > 0)
1696 return 1;
1697 return 0;
1700 /* This code used to check for conflicts involving stack references and
1701 globals but the base address alias code now handles these cases. */
1703 if (GET_CODE (x) == PLUS)
1705 /* The fact that X is canonicalized means that this
1706 PLUS rtx is canonicalized. */
1707 rtx x0 = XEXP (x, 0);
1708 rtx x1 = XEXP (x, 1);
1710 if (GET_CODE (y) == PLUS)
1712 /* The fact that Y is canonicalized means that this
1713 PLUS rtx is canonicalized. */
1714 rtx y0 = XEXP (y, 0);
1715 rtx y1 = XEXP (y, 1);
1717 if (rtx_equal_for_memref_p (x1, y1))
1718 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1719 if (rtx_equal_for_memref_p (x0, y0))
1720 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1721 if (GET_CODE (x1) == CONST_INT)
1723 if (GET_CODE (y1) == CONST_INT)
1724 return memrefs_conflict_p (xsize, x0, ysize, y0,
1725 c - INTVAL (x1) + INTVAL (y1));
1726 else
1727 return memrefs_conflict_p (xsize, x0, ysize, y,
1728 c - INTVAL (x1));
1730 else if (GET_CODE (y1) == CONST_INT)
1731 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1733 return 1;
1735 else if (GET_CODE (x1) == CONST_INT)
1736 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1738 else if (GET_CODE (y) == PLUS)
1740 /* The fact that Y is canonicalized means that this
1741 PLUS rtx is canonicalized. */
1742 rtx y0 = XEXP (y, 0);
1743 rtx y1 = XEXP (y, 1);
1745 if (GET_CODE (y1) == CONST_INT)
1746 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1747 else
1748 return 1;
1751 if (GET_CODE (x) == GET_CODE (y))
1752 switch (GET_CODE (x))
1754 case MULT:
1756 /* Handle cases where we expect the second operands to be the
1757 same, and check only whether the first operand would conflict
1758 or not. */
1759 rtx x0, y0;
1760 rtx x1 = canon_rtx (XEXP (x, 1));
1761 rtx y1 = canon_rtx (XEXP (y, 1));
1762 if (! rtx_equal_for_memref_p (x1, y1))
1763 return 1;
1764 x0 = canon_rtx (XEXP (x, 0));
1765 y0 = canon_rtx (XEXP (y, 0));
1766 if (rtx_equal_for_memref_p (x0, y0))
1767 return (xsize == 0 || ysize == 0
1768 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1770 /* Can't properly adjust our sizes. */
1771 if (GET_CODE (x1) != CONST_INT)
1772 return 1;
1773 xsize /= INTVAL (x1);
1774 ysize /= INTVAL (x1);
1775 c /= INTVAL (x1);
1776 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1779 default:
1780 break;
1783 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1784 as an access with indeterminate size. Assume that references
1785 besides AND are aligned, so if the size of the other reference is
1786 at least as large as the alignment, assume no other overlap. */
1787 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1789 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1790 xsize = -1;
1791 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1793 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1795 /* ??? If we are indexing far enough into the array/structure, we
1796 may yet be able to determine that we can not overlap. But we
1797 also need to that we are far enough from the end not to overlap
1798 a following reference, so we do nothing with that for now. */
1799 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1800 ysize = -1;
1801 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1804 if (CONSTANT_P (x))
1806 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1808 c += (INTVAL (y) - INTVAL (x));
1809 return (xsize <= 0 || ysize <= 0
1810 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1813 if (GET_CODE (x) == CONST)
1815 if (GET_CODE (y) == CONST)
1816 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1817 ysize, canon_rtx (XEXP (y, 0)), c);
1818 else
1819 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1820 ysize, y, c);
1822 if (GET_CODE (y) == CONST)
1823 return memrefs_conflict_p (xsize, x, ysize,
1824 canon_rtx (XEXP (y, 0)), c);
1826 if (CONSTANT_P (y))
1827 return (xsize <= 0 || ysize <= 0
1828 || (rtx_equal_for_memref_p (x, y)
1829 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1831 return 1;
1833 return 1;
1836 /* Functions to compute memory dependencies.
1838 Since we process the insns in execution order, we can build tables
1839 to keep track of what registers are fixed (and not aliased), what registers
1840 are varying in known ways, and what registers are varying in unknown
1841 ways.
1843 If both memory references are volatile, then there must always be a
1844 dependence between the two references, since their order can not be
1845 changed. A volatile and non-volatile reference can be interchanged
1846 though.
1848 A MEM_IN_STRUCT reference at a non-AND varying address can never
1849 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1850 also must allow AND addresses, because they may generate accesses
1851 outside the object being referenced. This is used to generate
1852 aligned addresses from unaligned addresses, for instance, the alpha
1853 storeqi_unaligned pattern. */
1855 /* Read dependence: X is read after read in MEM takes place. There can
1856 only be a dependence here if both reads are volatile. */
1859 read_dependence (rtx mem, rtx x)
1861 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1864 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1865 MEM2 is a reference to a structure at a varying address, or returns
1866 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1867 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1868 to decide whether or not an address may vary; it should return
1869 nonzero whenever variation is possible.
1870 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1872 static rtx
1873 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1874 rtx mem2_addr,
1875 int (*varies_p) (rtx, int))
1877 if (! flag_strict_aliasing)
1878 return NULL_RTX;
1880 if (MEM_ALIAS_SET (mem2)
1881 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1882 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1883 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1884 varying address. */
1885 return mem1;
1887 if (MEM_ALIAS_SET (mem1)
1888 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1889 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1890 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1891 varying address. */
1892 return mem2;
1894 return NULL_RTX;
1897 /* Returns nonzero if something about the mode or address format MEM1
1898 indicates that it might well alias *anything*. */
1900 static int
1901 aliases_everything_p (rtx mem)
1903 if (GET_CODE (XEXP (mem, 0)) == AND)
1904 /* If the address is an AND, it's very hard to know at what it is
1905 actually pointing. */
1906 return 1;
1908 return 0;
1911 /* Return true if we can determine that the fields referenced cannot
1912 overlap for any pair of objects. */
1914 static bool
1915 nonoverlapping_component_refs_p (tree x, tree y)
1917 tree fieldx, fieldy, typex, typey, orig_y;
1921 /* The comparison has to be done at a common type, since we don't
1922 know how the inheritance hierarchy works. */
1923 orig_y = y;
1926 fieldx = TREE_OPERAND (x, 1);
1927 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1929 y = orig_y;
1932 fieldy = TREE_OPERAND (y, 1);
1933 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1935 if (typex == typey)
1936 goto found;
1938 y = TREE_OPERAND (y, 0);
1940 while (y && TREE_CODE (y) == COMPONENT_REF);
1942 x = TREE_OPERAND (x, 0);
1944 while (x && TREE_CODE (x) == COMPONENT_REF);
1945 /* Never found a common type. */
1946 return false;
1948 found:
1949 /* If we're left with accessing different fields of a structure,
1950 then no overlap. */
1951 if (TREE_CODE (typex) == RECORD_TYPE
1952 && fieldx != fieldy)
1953 return true;
1955 /* The comparison on the current field failed. If we're accessing
1956 a very nested structure, look at the next outer level. */
1957 x = TREE_OPERAND (x, 0);
1958 y = TREE_OPERAND (y, 0);
1960 while (x && y
1961 && TREE_CODE (x) == COMPONENT_REF
1962 && TREE_CODE (y) == COMPONENT_REF);
1964 return false;
1967 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1969 static tree
1970 decl_for_component_ref (tree x)
1974 x = TREE_OPERAND (x, 0);
1976 while (x && TREE_CODE (x) == COMPONENT_REF);
1978 return x && DECL_P (x) ? x : NULL_TREE;
1981 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1982 offset of the field reference. */
1984 static rtx
1985 adjust_offset_for_component_ref (tree x, rtx offset)
1987 HOST_WIDE_INT ioffset;
1989 if (! offset)
1990 return NULL_RTX;
1992 ioffset = INTVAL (offset);
1995 tree offset = component_ref_field_offset (x);
1996 tree field = TREE_OPERAND (x, 1);
1998 if (! host_integerp (offset, 1))
1999 return NULL_RTX;
2000 ioffset += (tree_low_cst (offset, 1)
2001 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2002 / BITS_PER_UNIT));
2004 x = TREE_OPERAND (x, 0);
2006 while (x && TREE_CODE (x) == COMPONENT_REF);
2008 return GEN_INT (ioffset);
2011 /* Return nonzero if we can determine the exprs corresponding to memrefs
2012 X and Y and they do not overlap. */
2014 static int
2015 nonoverlapping_memrefs_p (rtx x, rtx y)
2017 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2018 rtx rtlx, rtly;
2019 rtx basex, basey;
2020 rtx moffsetx, moffsety;
2021 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2023 /* Unless both have exprs, we can't tell anything. */
2024 if (exprx == 0 || expry == 0)
2025 return 0;
2027 /* If both are field references, we may be able to determine something. */
2028 if (TREE_CODE (exprx) == COMPONENT_REF
2029 && TREE_CODE (expry) == COMPONENT_REF
2030 && nonoverlapping_component_refs_p (exprx, expry))
2031 return 1;
2034 /* If the field reference test failed, look at the DECLs involved. */
2035 moffsetx = MEM_OFFSET (x);
2036 if (TREE_CODE (exprx) == COMPONENT_REF)
2038 if (TREE_CODE (expry) == VAR_DECL
2039 && POINTER_TYPE_P (TREE_TYPE (expry)))
2041 tree field = TREE_OPERAND (exprx, 1);
2042 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2043 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2044 TREE_TYPE (field)))
2045 return 1;
2048 tree t = decl_for_component_ref (exprx);
2049 if (! t)
2050 return 0;
2051 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2052 exprx = t;
2055 else if (INDIRECT_REF_P (exprx))
2057 exprx = TREE_OPERAND (exprx, 0);
2058 if (flag_argument_noalias < 2
2059 || TREE_CODE (exprx) != PARM_DECL)
2060 return 0;
2063 moffsety = MEM_OFFSET (y);
2064 if (TREE_CODE (expry) == COMPONENT_REF)
2066 if (TREE_CODE (exprx) == VAR_DECL
2067 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2069 tree field = TREE_OPERAND (expry, 1);
2070 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2071 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2072 TREE_TYPE (field)))
2073 return 1;
2076 tree t = decl_for_component_ref (expry);
2077 if (! t)
2078 return 0;
2079 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2080 expry = t;
2083 else if (INDIRECT_REF_P (expry))
2085 expry = TREE_OPERAND (expry, 0);
2086 if (flag_argument_noalias < 2
2087 || TREE_CODE (expry) != PARM_DECL)
2088 return 0;
2091 if (! DECL_P (exprx) || ! DECL_P (expry))
2092 return 0;
2094 rtlx = DECL_RTL (exprx);
2095 rtly = DECL_RTL (expry);
2097 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2098 can't overlap unless they are the same because we never reuse that part
2099 of the stack frame used for locals for spilled pseudos. */
2100 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2101 && ! rtx_equal_p (rtlx, rtly))
2102 return 1;
2104 /* Get the base and offsets of both decls. If either is a register, we
2105 know both are and are the same, so use that as the base. The only
2106 we can avoid overlap is if we can deduce that they are nonoverlapping
2107 pieces of that decl, which is very rare. */
2108 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2109 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2110 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2112 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2113 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2114 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2116 /* If the bases are different, we know they do not overlap if both
2117 are constants or if one is a constant and the other a pointer into the
2118 stack frame. Otherwise a different base means we can't tell if they
2119 overlap or not. */
2120 if (! rtx_equal_p (basex, basey))
2121 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2122 || (CONSTANT_P (basex) && REG_P (basey)
2123 && REGNO_PTR_FRAME_P (REGNO (basey)))
2124 || (CONSTANT_P (basey) && REG_P (basex)
2125 && REGNO_PTR_FRAME_P (REGNO (basex))));
2127 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2128 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2129 : -1);
2130 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2131 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2132 -1);
2134 /* If we have an offset for either memref, it can update the values computed
2135 above. */
2136 if (moffsetx)
2137 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2138 if (moffsety)
2139 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2141 /* If a memref has both a size and an offset, we can use the smaller size.
2142 We can't do this if the offset isn't known because we must view this
2143 memref as being anywhere inside the DECL's MEM. */
2144 if (MEM_SIZE (x) && moffsetx)
2145 sizex = INTVAL (MEM_SIZE (x));
2146 if (MEM_SIZE (y) && moffsety)
2147 sizey = INTVAL (MEM_SIZE (y));
2149 /* Put the values of the memref with the lower offset in X's values. */
2150 if (offsetx > offsety)
2152 tem = offsetx, offsetx = offsety, offsety = tem;
2153 tem = sizex, sizex = sizey, sizey = tem;
2156 /* If we don't know the size of the lower-offset value, we can't tell
2157 if they conflict. Otherwise, we do the test. */
2158 return sizex >= 0 && offsety >= offsetx + sizex;
2161 /* True dependence: X is read after store in MEM takes place. */
2164 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2165 int (*varies) (rtx, int))
2167 rtx x_addr, mem_addr;
2168 rtx base;
2170 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2171 return 1;
2173 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2174 This is used in epilogue deallocation functions, and in cselib. */
2175 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2176 return 1;
2177 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2178 return 1;
2179 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2180 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2181 return 1;
2183 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2184 return 0;
2186 /* Read-only memory is by definition never modified, and therefore can't
2187 conflict with anything. We don't expect to find read-only set on MEM,
2188 but stupid user tricks can produce them, so don't die. */
2189 if (MEM_READONLY_P (x))
2190 return 0;
2192 if (nonoverlapping_memrefs_p (mem, x))
2193 return 0;
2195 if (mem_mode == VOIDmode)
2196 mem_mode = GET_MODE (mem);
2198 x_addr = get_addr (XEXP (x, 0));
2199 mem_addr = get_addr (XEXP (mem, 0));
2201 base = find_base_term (x_addr);
2202 if (base && (GET_CODE (base) == LABEL_REF
2203 || (GET_CODE (base) == SYMBOL_REF
2204 && CONSTANT_POOL_ADDRESS_P (base))))
2205 return 0;
2207 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2208 return 0;
2210 x_addr = canon_rtx (x_addr);
2211 mem_addr = canon_rtx (mem_addr);
2213 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2214 SIZE_FOR_MODE (x), x_addr, 0))
2215 return 0;
2217 if (aliases_everything_p (x))
2218 return 1;
2220 /* We cannot use aliases_everything_p to test MEM, since we must look
2221 at MEM_MODE, rather than GET_MODE (MEM). */
2222 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2223 return 1;
2225 /* In true_dependence we also allow BLKmode to alias anything. Why
2226 don't we do this in anti_dependence and output_dependence? */
2227 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2228 return 1;
2230 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2231 varies);
2234 /* Canonical true dependence: X is read after store in MEM takes place.
2235 Variant of true_dependence which assumes MEM has already been
2236 canonicalized (hence we no longer do that here).
2237 The mem_addr argument has been added, since true_dependence computed
2238 this value prior to canonicalizing. */
2241 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2242 rtx x, int (*varies) (rtx, int))
2244 rtx x_addr;
2246 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2247 return 1;
2249 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2250 This is used in epilogue deallocation functions. */
2251 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2252 return 1;
2253 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2254 return 1;
2255 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2256 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2257 return 1;
2259 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2260 return 0;
2262 /* Read-only memory is by definition never modified, and therefore can't
2263 conflict with anything. We don't expect to find read-only set on MEM,
2264 but stupid user tricks can produce them, so don't die. */
2265 if (MEM_READONLY_P (x))
2266 return 0;
2268 if (nonoverlapping_memrefs_p (x, mem))
2269 return 0;
2271 x_addr = get_addr (XEXP (x, 0));
2273 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2274 return 0;
2276 x_addr = canon_rtx (x_addr);
2277 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2278 SIZE_FOR_MODE (x), x_addr, 0))
2279 return 0;
2281 if (aliases_everything_p (x))
2282 return 1;
2284 /* We cannot use aliases_everything_p to test MEM, since we must look
2285 at MEM_MODE, rather than GET_MODE (MEM). */
2286 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2287 return 1;
2289 /* In true_dependence we also allow BLKmode to alias anything. Why
2290 don't we do this in anti_dependence and output_dependence? */
2291 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2292 return 1;
2294 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2295 varies);
2298 /* Returns nonzero if a write to X might alias a previous read from
2299 (or, if WRITEP is nonzero, a write to) MEM. */
2301 static int
2302 write_dependence_p (rtx mem, rtx x, int writep)
2304 rtx x_addr, mem_addr;
2305 rtx fixed_scalar;
2306 rtx base;
2308 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2309 return 1;
2311 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2312 This is used in epilogue deallocation functions. */
2313 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2314 return 1;
2315 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2316 return 1;
2317 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2318 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2319 return 1;
2321 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2322 return 0;
2324 /* A read from read-only memory can't conflict with read-write memory. */
2325 if (!writep && MEM_READONLY_P (mem))
2326 return 0;
2328 if (nonoverlapping_memrefs_p (x, mem))
2329 return 0;
2331 x_addr = get_addr (XEXP (x, 0));
2332 mem_addr = get_addr (XEXP (mem, 0));
2334 if (! writep)
2336 base = find_base_term (mem_addr);
2337 if (base && (GET_CODE (base) == LABEL_REF
2338 || (GET_CODE (base) == SYMBOL_REF
2339 && CONSTANT_POOL_ADDRESS_P (base))))
2340 return 0;
2343 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2344 GET_MODE (mem)))
2345 return 0;
2347 x_addr = canon_rtx (x_addr);
2348 mem_addr = canon_rtx (mem_addr);
2350 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2351 SIZE_FOR_MODE (x), x_addr, 0))
2352 return 0;
2354 fixed_scalar
2355 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2356 rtx_addr_varies_p);
2358 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2359 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2362 /* Anti dependence: X is written after read in MEM takes place. */
2365 anti_dependence (rtx mem, rtx x)
2367 return write_dependence_p (mem, x, /*writep=*/0);
2370 /* Output dependence: X is written after store in MEM takes place. */
2373 output_dependence (rtx mem, rtx x)
2375 return write_dependence_p (mem, x, /*writep=*/1);
2379 void
2380 init_alias_once (void)
2382 int i;
2384 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2385 /* Check whether this register can hold an incoming pointer
2386 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2387 numbers, so translate if necessary due to register windows. */
2388 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2389 && HARD_REGNO_MODE_OK (i, Pmode))
2390 static_reg_base_value[i]
2391 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2393 static_reg_base_value[STACK_POINTER_REGNUM]
2394 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2395 static_reg_base_value[ARG_POINTER_REGNUM]
2396 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2397 static_reg_base_value[FRAME_POINTER_REGNUM]
2398 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2399 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2400 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2401 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2402 #endif
2405 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2406 to be memory reference. */
2407 static bool memory_modified;
2408 static void
2409 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2411 if (MEM_P (x))
2413 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2414 memory_modified = true;
2419 /* Return true when INSN possibly modify memory contents of MEM
2420 (i.e. address can be modified). */
2421 bool
2422 memory_modified_in_insn_p (rtx mem, rtx insn)
2424 if (!INSN_P (insn))
2425 return false;
2426 memory_modified = false;
2427 note_stores (PATTERN (insn), memory_modified_1, mem);
2428 return memory_modified;
2431 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2432 array. */
2434 void
2435 init_alias_analysis (void)
2437 unsigned int maxreg = max_reg_num ();
2438 int changed, pass;
2439 int i;
2440 unsigned int ui;
2441 rtx insn;
2443 timevar_push (TV_ALIAS_ANALYSIS);
2445 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2446 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2447 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2449 /* If we have memory allocated from the previous run, use it. */
2450 if (old_reg_base_value)
2451 reg_base_value = old_reg_base_value;
2453 if (reg_base_value)
2454 VEC_truncate (rtx, reg_base_value, 0);
2456 VEC_safe_grow (rtx, gc, reg_base_value, maxreg);
2457 memset (VEC_address (rtx, reg_base_value), 0,
2458 sizeof (rtx) * VEC_length (rtx, reg_base_value));
2460 new_reg_base_value = XNEWVEC (rtx, maxreg);
2461 reg_seen = XNEWVEC (char, maxreg);
2463 /* The basic idea is that each pass through this loop will use the
2464 "constant" information from the previous pass to propagate alias
2465 information through another level of assignments.
2467 This could get expensive if the assignment chains are long. Maybe
2468 we should throttle the number of iterations, possibly based on
2469 the optimization level or flag_expensive_optimizations.
2471 We could propagate more information in the first pass by making use
2472 of REG_N_SETS to determine immediately that the alias information
2473 for a pseudo is "constant".
2475 A program with an uninitialized variable can cause an infinite loop
2476 here. Instead of doing a full dataflow analysis to detect such problems
2477 we just cap the number of iterations for the loop.
2479 The state of the arrays for the set chain in question does not matter
2480 since the program has undefined behavior. */
2482 pass = 0;
2485 /* Assume nothing will change this iteration of the loop. */
2486 changed = 0;
2488 /* We want to assign the same IDs each iteration of this loop, so
2489 start counting from zero each iteration of the loop. */
2490 unique_id = 0;
2492 /* We're at the start of the function each iteration through the
2493 loop, so we're copying arguments. */
2494 copying_arguments = true;
2496 /* Wipe the potential alias information clean for this pass. */
2497 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2499 /* Wipe the reg_seen array clean. */
2500 memset (reg_seen, 0, maxreg);
2502 /* Mark all hard registers which may contain an address.
2503 The stack, frame and argument pointers may contain an address.
2504 An argument register which can hold a Pmode value may contain
2505 an address even if it is not in BASE_REGS.
2507 The address expression is VOIDmode for an argument and
2508 Pmode for other registers. */
2510 memcpy (new_reg_base_value, static_reg_base_value,
2511 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2513 /* Walk the insns adding values to the new_reg_base_value array. */
2514 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2516 if (INSN_P (insn))
2518 rtx note, set;
2520 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2521 /* The prologue/epilogue insns are not threaded onto the
2522 insn chain until after reload has completed. Thus,
2523 there is no sense wasting time checking if INSN is in
2524 the prologue/epilogue until after reload has completed. */
2525 if (reload_completed
2526 && prologue_epilogue_contains (insn))
2527 continue;
2528 #endif
2530 /* If this insn has a noalias note, process it, Otherwise,
2531 scan for sets. A simple set will have no side effects
2532 which could change the base value of any other register. */
2534 if (GET_CODE (PATTERN (insn)) == SET
2535 && REG_NOTES (insn) != 0
2536 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2537 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2538 else
2539 note_stores (PATTERN (insn), record_set, NULL);
2541 set = single_set (insn);
2543 if (set != 0
2544 && REG_P (SET_DEST (set))
2545 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2547 unsigned int regno = REGNO (SET_DEST (set));
2548 rtx src = SET_SRC (set);
2549 rtx t;
2551 if (REG_NOTES (insn) != 0
2552 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2553 && REG_N_SETS (regno) == 1)
2554 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2555 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2556 && ! rtx_varies_p (XEXP (note, 0), 1)
2557 && ! reg_overlap_mentioned_p (SET_DEST (set),
2558 XEXP (note, 0)))
2560 set_reg_known_value (regno, XEXP (note, 0));
2561 set_reg_known_equiv_p (regno,
2562 REG_NOTE_KIND (note) == REG_EQUIV);
2564 else if (REG_N_SETS (regno) == 1
2565 && GET_CODE (src) == PLUS
2566 && REG_P (XEXP (src, 0))
2567 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2568 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2570 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2571 set_reg_known_value (regno, t);
2572 set_reg_known_equiv_p (regno, 0);
2574 else if (REG_N_SETS (regno) == 1
2575 && ! rtx_varies_p (src, 1))
2577 set_reg_known_value (regno, src);
2578 set_reg_known_equiv_p (regno, 0);
2582 else if (NOTE_P (insn)
2583 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2584 copying_arguments = false;
2587 /* Now propagate values from new_reg_base_value to reg_base_value. */
2588 gcc_assert (maxreg == (unsigned int) max_reg_num());
2590 for (ui = 0; ui < maxreg; ui++)
2592 if (new_reg_base_value[ui]
2593 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2594 && ! rtx_equal_p (new_reg_base_value[ui],
2595 VEC_index (rtx, reg_base_value, ui)))
2597 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2598 changed = 1;
2602 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2604 /* Fill in the remaining entries. */
2605 for (i = 0; i < (int)reg_known_value_size; i++)
2606 if (reg_known_value[i] == 0)
2607 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2609 /* Clean up. */
2610 free (new_reg_base_value);
2611 new_reg_base_value = 0;
2612 free (reg_seen);
2613 reg_seen = 0;
2614 timevar_pop (TV_ALIAS_ANALYSIS);
2617 void
2618 end_alias_analysis (void)
2620 old_reg_base_value = reg_base_value;
2621 ggc_free (reg_known_value);
2622 reg_known_value = 0;
2623 reg_known_value_size = 0;
2624 free (reg_known_equiv_p);
2625 reg_known_equiv_p = 0;
2628 #include "gt-alias.h"