Sync with upstream 4.9 branch
[official-gcc.git] / embedded-4_9-branch / gcc / tree-vrp.c
blob57a58b152db5d1c5fd9964655c56f7dee823aeb0
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "flags.h"
26 #include "tree.h"
27 #include "stor-layout.h"
28 #include "calls.h"
29 #include "basic-block.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "gimple-fold.h"
33 #include "tree-eh.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "tree-pass.h"
51 #include "tree-dump.h"
52 #include "gimple-pretty-print.h"
53 #include "diagnostic-core.h"
54 #include "intl.h"
55 #include "cfgloop.h"
56 #include "tree-scalar-evolution.h"
57 #include "tree-ssa-propagate.h"
58 #include "tree-chrec.h"
59 #include "tree-ssa-threadupdate.h"
60 #include "expr.h"
61 #include "optabs.h"
62 #include "tree-ssa-threadedge.h"
66 /* Range of values that can be associated with an SSA_NAME after VRP
67 has executed. */
68 struct value_range_d
70 /* Lattice value represented by this range. */
71 enum value_range_type type;
73 /* Minimum and maximum values represented by this range. These
74 values should be interpreted as follows:
76 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
77 be NULL.
79 - If TYPE == VR_RANGE then MIN holds the minimum value and
80 MAX holds the maximum value of the range [MIN, MAX].
82 - If TYPE == ANTI_RANGE the variable is known to NOT
83 take any values in the range [MIN, MAX]. */
84 tree min;
85 tree max;
87 /* Set of SSA names whose value ranges are equivalent to this one.
88 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
89 bitmap equiv;
92 typedef struct value_range_d value_range_t;
94 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
96 /* Set of SSA names found live during the RPO traversal of the function
97 for still active basic-blocks. */
98 static sbitmap *live;
100 /* Return true if the SSA name NAME is live on the edge E. */
102 static bool
103 live_on_edge (edge e, tree name)
105 return (live[e->dest->index]
106 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
109 /* Local functions. */
110 static int compare_values (tree val1, tree val2);
111 static int compare_values_warnv (tree val1, tree val2, bool *);
112 static void vrp_meet (value_range_t *, value_range_t *);
113 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
114 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
115 tree, tree, bool, bool *,
116 bool *);
118 /* Location information for ASSERT_EXPRs. Each instance of this
119 structure describes an ASSERT_EXPR for an SSA name. Since a single
120 SSA name may have more than one assertion associated with it, these
121 locations are kept in a linked list attached to the corresponding
122 SSA name. */
123 struct assert_locus_d
125 /* Basic block where the assertion would be inserted. */
126 basic_block bb;
128 /* Some assertions need to be inserted on an edge (e.g., assertions
129 generated by COND_EXPRs). In those cases, BB will be NULL. */
130 edge e;
132 /* Pointer to the statement that generated this assertion. */
133 gimple_stmt_iterator si;
135 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
136 enum tree_code comp_code;
138 /* Value being compared against. */
139 tree val;
141 /* Expression to compare. */
142 tree expr;
144 /* Next node in the linked list. */
145 struct assert_locus_d *next;
148 typedef struct assert_locus_d *assert_locus_t;
150 /* If bit I is present, it means that SSA name N_i has a list of
151 assertions that should be inserted in the IL. */
152 static bitmap need_assert_for;
154 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
155 holds a list of ASSERT_LOCUS_T nodes that describe where
156 ASSERT_EXPRs for SSA name N_I should be inserted. */
157 static assert_locus_t *asserts_for;
159 /* Value range array. After propagation, VR_VALUE[I] holds the range
160 of values that SSA name N_I may take. */
161 static unsigned num_vr_values;
162 static value_range_t **vr_value;
163 static bool values_propagated;
165 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
166 number of executable edges we saw the last time we visited the
167 node. */
168 static int *vr_phi_edge_counts;
170 typedef struct {
171 gimple stmt;
172 tree vec;
173 } switch_update;
175 static vec<edge> to_remove_edges;
176 static vec<switch_update> to_update_switch_stmts;
179 /* Return the maximum value for TYPE. */
181 static inline tree
182 vrp_val_max (const_tree type)
184 if (!INTEGRAL_TYPE_P (type))
185 return NULL_TREE;
187 return TYPE_MAX_VALUE (type);
190 /* Return the minimum value for TYPE. */
192 static inline tree
193 vrp_val_min (const_tree type)
195 if (!INTEGRAL_TYPE_P (type))
196 return NULL_TREE;
198 return TYPE_MIN_VALUE (type);
201 /* Return whether VAL is equal to the maximum value of its type. This
202 will be true for a positive overflow infinity. We can't do a
203 simple equality comparison with TYPE_MAX_VALUE because C typedefs
204 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
205 to the integer constant with the same value in the type. */
207 static inline bool
208 vrp_val_is_max (const_tree val)
210 tree type_max = vrp_val_max (TREE_TYPE (val));
211 return (val == type_max
212 || (type_max != NULL_TREE
213 && operand_equal_p (val, type_max, 0)));
216 /* Return whether VAL is equal to the minimum value of its type. This
217 will be true for a negative overflow infinity. */
219 static inline bool
220 vrp_val_is_min (const_tree val)
222 tree type_min = vrp_val_min (TREE_TYPE (val));
223 return (val == type_min
224 || (type_min != NULL_TREE
225 && operand_equal_p (val, type_min, 0)));
229 /* Return whether TYPE should use an overflow infinity distinct from
230 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
231 represent a signed overflow during VRP computations. An infinity
232 is distinct from a half-range, which will go from some number to
233 TYPE_{MIN,MAX}_VALUE. */
235 static inline bool
236 needs_overflow_infinity (const_tree type)
238 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
241 /* Return whether TYPE can support our overflow infinity
242 representation: we use the TREE_OVERFLOW flag, which only exists
243 for constants. If TYPE doesn't support this, we don't optimize
244 cases which would require signed overflow--we drop them to
245 VARYING. */
247 static inline bool
248 supports_overflow_infinity (const_tree type)
250 tree min = vrp_val_min (type), max = vrp_val_max (type);
251 #ifdef ENABLE_CHECKING
252 gcc_assert (needs_overflow_infinity (type));
253 #endif
254 return (min != NULL_TREE
255 && CONSTANT_CLASS_P (min)
256 && max != NULL_TREE
257 && CONSTANT_CLASS_P (max));
260 /* VAL is the maximum or minimum value of a type. Return a
261 corresponding overflow infinity. */
263 static inline tree
264 make_overflow_infinity (tree val)
266 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
267 val = copy_node (val);
268 TREE_OVERFLOW (val) = 1;
269 return val;
272 /* Return a negative overflow infinity for TYPE. */
274 static inline tree
275 negative_overflow_infinity (tree type)
277 gcc_checking_assert (supports_overflow_infinity (type));
278 return make_overflow_infinity (vrp_val_min (type));
281 /* Return a positive overflow infinity for TYPE. */
283 static inline tree
284 positive_overflow_infinity (tree type)
286 gcc_checking_assert (supports_overflow_infinity (type));
287 return make_overflow_infinity (vrp_val_max (type));
290 /* Return whether VAL is a negative overflow infinity. */
292 static inline bool
293 is_negative_overflow_infinity (const_tree val)
295 return (needs_overflow_infinity (TREE_TYPE (val))
296 && CONSTANT_CLASS_P (val)
297 && TREE_OVERFLOW (val)
298 && vrp_val_is_min (val));
301 /* Return whether VAL is a positive overflow infinity. */
303 static inline bool
304 is_positive_overflow_infinity (const_tree val)
306 return (needs_overflow_infinity (TREE_TYPE (val))
307 && CONSTANT_CLASS_P (val)
308 && TREE_OVERFLOW (val)
309 && vrp_val_is_max (val));
312 /* Return whether VAL is a positive or negative overflow infinity. */
314 static inline bool
315 is_overflow_infinity (const_tree val)
317 return (needs_overflow_infinity (TREE_TYPE (val))
318 && CONSTANT_CLASS_P (val)
319 && TREE_OVERFLOW (val)
320 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
323 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
325 static inline bool
326 stmt_overflow_infinity (gimple stmt)
328 if (is_gimple_assign (stmt)
329 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
330 GIMPLE_SINGLE_RHS)
331 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
332 return false;
335 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
336 the same value with TREE_OVERFLOW clear. This can be used to avoid
337 confusing a regular value with an overflow value. */
339 static inline tree
340 avoid_overflow_infinity (tree val)
342 if (!is_overflow_infinity (val))
343 return val;
345 if (vrp_val_is_max (val))
346 return vrp_val_max (TREE_TYPE (val));
347 else
349 gcc_checking_assert (vrp_val_is_min (val));
350 return vrp_val_min (TREE_TYPE (val));
355 /* Return true if ARG is marked with the nonnull attribute in the
356 current function signature. */
358 static bool
359 nonnull_arg_p (const_tree arg)
361 tree t, attrs, fntype;
362 unsigned HOST_WIDE_INT arg_num;
364 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
366 /* The static chain decl is always non null. */
367 if (arg == cfun->static_chain_decl)
368 return true;
370 fntype = TREE_TYPE (current_function_decl);
371 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
373 attrs = lookup_attribute ("nonnull", attrs);
375 /* If "nonnull" wasn't specified, we know nothing about the argument. */
376 if (attrs == NULL_TREE)
377 return false;
379 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
380 if (TREE_VALUE (attrs) == NULL_TREE)
381 return true;
383 /* Get the position number for ARG in the function signature. */
384 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
386 t = DECL_CHAIN (t), arg_num++)
388 if (t == arg)
389 break;
392 gcc_assert (t == arg);
394 /* Now see if ARG_NUM is mentioned in the nonnull list. */
395 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
397 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
398 return true;
402 return false;
406 /* Set value range VR to VR_UNDEFINED. */
408 static inline void
409 set_value_range_to_undefined (value_range_t *vr)
411 vr->type = VR_UNDEFINED;
412 vr->min = vr->max = NULL_TREE;
413 if (vr->equiv)
414 bitmap_clear (vr->equiv);
418 /* Set value range VR to VR_VARYING. */
420 static inline void
421 set_value_range_to_varying (value_range_t *vr)
423 vr->type = VR_VARYING;
424 vr->min = vr->max = NULL_TREE;
425 if (vr->equiv)
426 bitmap_clear (vr->equiv);
430 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
432 static void
433 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
434 tree max, bitmap equiv)
436 #if defined ENABLE_CHECKING
437 /* Check the validity of the range. */
438 if (t == VR_RANGE || t == VR_ANTI_RANGE)
440 int cmp;
442 gcc_assert (min && max);
444 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
445 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
447 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
448 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
450 cmp = compare_values (min, max);
451 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
453 if (needs_overflow_infinity (TREE_TYPE (min)))
454 gcc_assert (!is_overflow_infinity (min)
455 || !is_overflow_infinity (max));
458 if (t == VR_UNDEFINED || t == VR_VARYING)
459 gcc_assert (min == NULL_TREE && max == NULL_TREE);
461 if (t == VR_UNDEFINED || t == VR_VARYING)
462 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
463 #endif
465 vr->type = t;
466 vr->min = min;
467 vr->max = max;
469 /* Since updating the equivalence set involves deep copying the
470 bitmaps, only do it if absolutely necessary. */
471 if (vr->equiv == NULL
472 && equiv != NULL)
473 vr->equiv = BITMAP_ALLOC (NULL);
475 if (equiv != vr->equiv)
477 if (equiv && !bitmap_empty_p (equiv))
478 bitmap_copy (vr->equiv, equiv);
479 else
480 bitmap_clear (vr->equiv);
485 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
486 This means adjusting T, MIN and MAX representing the case of a
487 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
488 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
489 In corner cases where MAX+1 or MIN-1 wraps this will fall back
490 to varying.
491 This routine exists to ease canonicalization in the case where we
492 extract ranges from var + CST op limit. */
494 static void
495 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
496 tree min, tree max, bitmap equiv)
498 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
499 if (t == VR_UNDEFINED)
501 set_value_range_to_undefined (vr);
502 return;
504 else if (t == VR_VARYING)
506 set_value_range_to_varying (vr);
507 return;
510 /* Nothing to canonicalize for symbolic ranges. */
511 if (TREE_CODE (min) != INTEGER_CST
512 || TREE_CODE (max) != INTEGER_CST)
514 set_value_range (vr, t, min, max, equiv);
515 return;
518 /* Wrong order for min and max, to swap them and the VR type we need
519 to adjust them. */
520 if (tree_int_cst_lt (max, min))
522 tree one, tmp;
524 /* For one bit precision if max < min, then the swapped
525 range covers all values, so for VR_RANGE it is varying and
526 for VR_ANTI_RANGE empty range, so drop to varying as well. */
527 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
529 set_value_range_to_varying (vr);
530 return;
533 one = build_int_cst (TREE_TYPE (min), 1);
534 tmp = int_const_binop (PLUS_EXPR, max, one);
535 max = int_const_binop (MINUS_EXPR, min, one);
536 min = tmp;
538 /* There's one corner case, if we had [C+1, C] before we now have
539 that again. But this represents an empty value range, so drop
540 to varying in this case. */
541 if (tree_int_cst_lt (max, min))
543 set_value_range_to_varying (vr);
544 return;
547 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
550 /* Anti-ranges that can be represented as ranges should be so. */
551 if (t == VR_ANTI_RANGE)
553 bool is_min = vrp_val_is_min (min);
554 bool is_max = vrp_val_is_max (max);
556 if (is_min && is_max)
558 /* We cannot deal with empty ranges, drop to varying.
559 ??? This could be VR_UNDEFINED instead. */
560 set_value_range_to_varying (vr);
561 return;
563 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
564 && (is_min || is_max))
566 /* Non-empty boolean ranges can always be represented
567 as a singleton range. */
568 if (is_min)
569 min = max = vrp_val_max (TREE_TYPE (min));
570 else
571 min = max = vrp_val_min (TREE_TYPE (min));
572 t = VR_RANGE;
574 else if (is_min
575 /* As a special exception preserve non-null ranges. */
576 && !(TYPE_UNSIGNED (TREE_TYPE (min))
577 && integer_zerop (max)))
579 tree one = build_int_cst (TREE_TYPE (max), 1);
580 min = int_const_binop (PLUS_EXPR, max, one);
581 max = vrp_val_max (TREE_TYPE (max));
582 t = VR_RANGE;
584 else if (is_max)
586 tree one = build_int_cst (TREE_TYPE (min), 1);
587 max = int_const_binop (MINUS_EXPR, min, one);
588 min = vrp_val_min (TREE_TYPE (min));
589 t = VR_RANGE;
593 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
594 if (needs_overflow_infinity (TREE_TYPE (min))
595 && is_overflow_infinity (min)
596 && is_overflow_infinity (max))
598 set_value_range_to_varying (vr);
599 return;
602 set_value_range (vr, t, min, max, equiv);
605 /* Copy value range FROM into value range TO. */
607 static inline void
608 copy_value_range (value_range_t *to, value_range_t *from)
610 set_value_range (to, from->type, from->min, from->max, from->equiv);
613 /* Set value range VR to a single value. This function is only called
614 with values we get from statements, and exists to clear the
615 TREE_OVERFLOW flag so that we don't think we have an overflow
616 infinity when we shouldn't. */
618 static inline void
619 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
621 gcc_assert (is_gimple_min_invariant (val));
622 if (TREE_OVERFLOW_P (val))
623 val = drop_tree_overflow (val);
624 set_value_range (vr, VR_RANGE, val, val, equiv);
627 /* Set value range VR to a non-negative range of type TYPE.
628 OVERFLOW_INFINITY indicates whether to use an overflow infinity
629 rather than TYPE_MAX_VALUE; this should be true if we determine
630 that the range is nonnegative based on the assumption that signed
631 overflow does not occur. */
633 static inline void
634 set_value_range_to_nonnegative (value_range_t *vr, tree type,
635 bool overflow_infinity)
637 tree zero;
639 if (overflow_infinity && !supports_overflow_infinity (type))
641 set_value_range_to_varying (vr);
642 return;
645 zero = build_int_cst (type, 0);
646 set_value_range (vr, VR_RANGE, zero,
647 (overflow_infinity
648 ? positive_overflow_infinity (type)
649 : TYPE_MAX_VALUE (type)),
650 vr->equiv);
653 /* Set value range VR to a non-NULL range of type TYPE. */
655 static inline void
656 set_value_range_to_nonnull (value_range_t *vr, tree type)
658 tree zero = build_int_cst (type, 0);
659 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
663 /* Set value range VR to a NULL range of type TYPE. */
665 static inline void
666 set_value_range_to_null (value_range_t *vr, tree type)
668 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
672 /* Set value range VR to a range of a truthvalue of type TYPE. */
674 static inline void
675 set_value_range_to_truthvalue (value_range_t *vr, tree type)
677 if (TYPE_PRECISION (type) == 1)
678 set_value_range_to_varying (vr);
679 else
680 set_value_range (vr, VR_RANGE,
681 build_int_cst (type, 0), build_int_cst (type, 1),
682 vr->equiv);
686 /* If abs (min) < abs (max), set VR to [-max, max], if
687 abs (min) >= abs (max), set VR to [-min, min]. */
689 static void
690 abs_extent_range (value_range_t *vr, tree min, tree max)
692 int cmp;
694 gcc_assert (TREE_CODE (min) == INTEGER_CST);
695 gcc_assert (TREE_CODE (max) == INTEGER_CST);
696 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
697 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
698 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
699 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
700 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
702 set_value_range_to_varying (vr);
703 return;
705 cmp = compare_values (min, max);
706 if (cmp == -1)
707 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
708 else if (cmp == 0 || cmp == 1)
710 max = min;
711 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
713 else
715 set_value_range_to_varying (vr);
716 return;
718 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
722 /* Return value range information for VAR.
724 If we have no values ranges recorded (ie, VRP is not running), then
725 return NULL. Otherwise create an empty range if none existed for VAR. */
727 static value_range_t *
728 get_value_range (const_tree var)
730 static const struct value_range_d vr_const_varying
731 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
732 value_range_t *vr;
733 tree sym;
734 unsigned ver = SSA_NAME_VERSION (var);
736 /* If we have no recorded ranges, then return NULL. */
737 if (! vr_value)
738 return NULL;
740 /* If we query the range for a new SSA name return an unmodifiable VARYING.
741 We should get here at most from the substitute-and-fold stage which
742 will never try to change values. */
743 if (ver >= num_vr_values)
744 return CONST_CAST (value_range_t *, &vr_const_varying);
746 vr = vr_value[ver];
747 if (vr)
748 return vr;
750 /* After propagation finished do not allocate new value-ranges. */
751 if (values_propagated)
752 return CONST_CAST (value_range_t *, &vr_const_varying);
754 /* Create a default value range. */
755 vr_value[ver] = vr = XCNEW (value_range_t);
757 /* Defer allocating the equivalence set. */
758 vr->equiv = NULL;
760 /* If VAR is a default definition of a parameter, the variable can
761 take any value in VAR's type. */
762 if (SSA_NAME_IS_DEFAULT_DEF (var))
764 sym = SSA_NAME_VAR (var);
765 if (TREE_CODE (sym) == PARM_DECL)
767 /* Try to use the "nonnull" attribute to create ~[0, 0]
768 anti-ranges for pointers. Note that this is only valid with
769 default definitions of PARM_DECLs. */
770 if (POINTER_TYPE_P (TREE_TYPE (sym))
771 && nonnull_arg_p (sym))
772 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
773 else
774 set_value_range_to_varying (vr);
776 else if (TREE_CODE (sym) == RESULT_DECL
777 && DECL_BY_REFERENCE (sym))
778 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
781 return vr;
784 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
786 static inline bool
787 vrp_operand_equal_p (const_tree val1, const_tree val2)
789 if (val1 == val2)
790 return true;
791 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
792 return false;
793 if (is_overflow_infinity (val1))
794 return is_overflow_infinity (val2);
795 return true;
798 /* Return true, if the bitmaps B1 and B2 are equal. */
800 static inline bool
801 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
803 return (b1 == b2
804 || ((!b1 || bitmap_empty_p (b1))
805 && (!b2 || bitmap_empty_p (b2)))
806 || (b1 && b2
807 && bitmap_equal_p (b1, b2)));
810 /* Update the value range and equivalence set for variable VAR to
811 NEW_VR. Return true if NEW_VR is different from VAR's previous
812 value.
814 NOTE: This function assumes that NEW_VR is a temporary value range
815 object created for the sole purpose of updating VAR's range. The
816 storage used by the equivalence set from NEW_VR will be freed by
817 this function. Do not call update_value_range when NEW_VR
818 is the range object associated with another SSA name. */
820 static inline bool
821 update_value_range (const_tree var, value_range_t *new_vr)
823 value_range_t *old_vr;
824 bool is_new;
826 /* Update the value range, if necessary. */
827 old_vr = get_value_range (var);
828 is_new = old_vr->type != new_vr->type
829 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
830 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
831 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
833 if (is_new)
835 /* Do not allow transitions up the lattice. The following
836 is slightly more awkward than just new_vr->type < old_vr->type
837 because VR_RANGE and VR_ANTI_RANGE need to be considered
838 the same. We may not have is_new when transitioning to
839 UNDEFINED or from VARYING. */
840 if (new_vr->type == VR_UNDEFINED
841 || old_vr->type == VR_VARYING)
842 set_value_range_to_varying (old_vr);
843 else
844 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
845 new_vr->equiv);
848 BITMAP_FREE (new_vr->equiv);
850 return is_new;
854 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
855 point where equivalence processing can be turned on/off. */
857 static void
858 add_equivalence (bitmap *equiv, const_tree var)
860 unsigned ver = SSA_NAME_VERSION (var);
861 value_range_t *vr = vr_value[ver];
863 if (*equiv == NULL)
864 *equiv = BITMAP_ALLOC (NULL);
865 bitmap_set_bit (*equiv, ver);
866 if (vr && vr->equiv)
867 bitmap_ior_into (*equiv, vr->equiv);
871 /* Return true if VR is ~[0, 0]. */
873 static inline bool
874 range_is_nonnull (value_range_t *vr)
876 return vr->type == VR_ANTI_RANGE
877 && integer_zerop (vr->min)
878 && integer_zerop (vr->max);
882 /* Return true if VR is [0, 0]. */
884 static inline bool
885 range_is_null (value_range_t *vr)
887 return vr->type == VR_RANGE
888 && integer_zerop (vr->min)
889 && integer_zerop (vr->max);
892 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
893 a singleton. */
895 static inline bool
896 range_int_cst_p (value_range_t *vr)
898 return (vr->type == VR_RANGE
899 && TREE_CODE (vr->max) == INTEGER_CST
900 && TREE_CODE (vr->min) == INTEGER_CST);
903 /* Return true if VR is a INTEGER_CST singleton. */
905 static inline bool
906 range_int_cst_singleton_p (value_range_t *vr)
908 return (range_int_cst_p (vr)
909 && !is_overflow_infinity (vr->min)
910 && !is_overflow_infinity (vr->max)
911 && tree_int_cst_equal (vr->min, vr->max));
914 /* Return true if value range VR involves at least one symbol. */
916 static inline bool
917 symbolic_range_p (value_range_t *vr)
919 return (!is_gimple_min_invariant (vr->min)
920 || !is_gimple_min_invariant (vr->max));
923 /* Return true if value range VR uses an overflow infinity. */
925 static inline bool
926 overflow_infinity_range_p (value_range_t *vr)
928 return (vr->type == VR_RANGE
929 && (is_overflow_infinity (vr->min)
930 || is_overflow_infinity (vr->max)));
933 /* Return false if we can not make a valid comparison based on VR;
934 this will be the case if it uses an overflow infinity and overflow
935 is not undefined (i.e., -fno-strict-overflow is in effect).
936 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
937 uses an overflow infinity. */
939 static bool
940 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
942 gcc_assert (vr->type == VR_RANGE);
943 if (is_overflow_infinity (vr->min))
945 *strict_overflow_p = true;
946 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
947 return false;
949 if (is_overflow_infinity (vr->max))
951 *strict_overflow_p = true;
952 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
953 return false;
955 return true;
959 /* Return true if the result of assignment STMT is know to be non-negative.
960 If the return value is based on the assumption that signed overflow is
961 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
962 *STRICT_OVERFLOW_P.*/
964 static bool
965 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
967 enum tree_code code = gimple_assign_rhs_code (stmt);
968 switch (get_gimple_rhs_class (code))
970 case GIMPLE_UNARY_RHS:
971 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
972 gimple_expr_type (stmt),
973 gimple_assign_rhs1 (stmt),
974 strict_overflow_p);
975 case GIMPLE_BINARY_RHS:
976 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
977 gimple_expr_type (stmt),
978 gimple_assign_rhs1 (stmt),
979 gimple_assign_rhs2 (stmt),
980 strict_overflow_p);
981 case GIMPLE_TERNARY_RHS:
982 return false;
983 case GIMPLE_SINGLE_RHS:
984 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
985 strict_overflow_p);
986 case GIMPLE_INVALID_RHS:
987 gcc_unreachable ();
988 default:
989 gcc_unreachable ();
993 /* Return true if return value of call STMT is know to be non-negative.
994 If the return value is based on the assumption that signed overflow is
995 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
996 *STRICT_OVERFLOW_P.*/
998 static bool
999 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1001 tree arg0 = gimple_call_num_args (stmt) > 0 ?
1002 gimple_call_arg (stmt, 0) : NULL_TREE;
1003 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1004 gimple_call_arg (stmt, 1) : NULL_TREE;
1006 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1007 gimple_call_fndecl (stmt),
1008 arg0,
1009 arg1,
1010 strict_overflow_p);
1013 /* Return true if STMT is know to to compute a non-negative value.
1014 If the return value is based on the assumption that signed overflow is
1015 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1016 *STRICT_OVERFLOW_P.*/
1018 static bool
1019 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1021 switch (gimple_code (stmt))
1023 case GIMPLE_ASSIGN:
1024 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1025 case GIMPLE_CALL:
1026 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1027 default:
1028 gcc_unreachable ();
1032 /* Return true if the result of assignment STMT is know to be non-zero.
1033 If the return value is based on the assumption that signed overflow is
1034 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1035 *STRICT_OVERFLOW_P.*/
1037 static bool
1038 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1040 enum tree_code code = gimple_assign_rhs_code (stmt);
1041 switch (get_gimple_rhs_class (code))
1043 case GIMPLE_UNARY_RHS:
1044 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1045 gimple_expr_type (stmt),
1046 gimple_assign_rhs1 (stmt),
1047 strict_overflow_p);
1048 case GIMPLE_BINARY_RHS:
1049 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1050 gimple_expr_type (stmt),
1051 gimple_assign_rhs1 (stmt),
1052 gimple_assign_rhs2 (stmt),
1053 strict_overflow_p);
1054 case GIMPLE_TERNARY_RHS:
1055 return false;
1056 case GIMPLE_SINGLE_RHS:
1057 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1058 strict_overflow_p);
1059 case GIMPLE_INVALID_RHS:
1060 gcc_unreachable ();
1061 default:
1062 gcc_unreachable ();
1066 /* Return true if STMT is known to compute a non-zero value.
1067 If the return value is based on the assumption that signed overflow is
1068 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1069 *STRICT_OVERFLOW_P.*/
1071 static bool
1072 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1074 switch (gimple_code (stmt))
1076 case GIMPLE_ASSIGN:
1077 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1078 case GIMPLE_CALL:
1080 tree fndecl = gimple_call_fndecl (stmt);
1081 if (!fndecl) return false;
1082 if (flag_delete_null_pointer_checks && !flag_check_new
1083 && DECL_IS_OPERATOR_NEW (fndecl)
1084 && !TREE_NOTHROW (fndecl))
1085 return true;
1086 if (flag_delete_null_pointer_checks &&
1087 lookup_attribute ("returns_nonnull",
1088 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1089 return true;
1090 return gimple_alloca_call_p (stmt);
1092 default:
1093 gcc_unreachable ();
1097 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1098 obtained so far. */
1100 static bool
1101 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1103 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1104 return true;
1106 /* If we have an expression of the form &X->a, then the expression
1107 is nonnull if X is nonnull. */
1108 if (is_gimple_assign (stmt)
1109 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1111 tree expr = gimple_assign_rhs1 (stmt);
1112 tree base = get_base_address (TREE_OPERAND (expr, 0));
1114 if (base != NULL_TREE
1115 && TREE_CODE (base) == MEM_REF
1116 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1118 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1119 if (range_is_nonnull (vr))
1120 return true;
1124 return false;
1127 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1128 a gimple invariant, or SSA_NAME +- CST. */
1130 static bool
1131 valid_value_p (tree expr)
1133 if (TREE_CODE (expr) == SSA_NAME)
1134 return true;
1136 if (TREE_CODE (expr) == PLUS_EXPR
1137 || TREE_CODE (expr) == MINUS_EXPR)
1138 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1139 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1141 return is_gimple_min_invariant (expr);
1144 /* Return
1145 1 if VAL < VAL2
1146 0 if !(VAL < VAL2)
1147 -2 if those are incomparable. */
1148 static inline int
1149 operand_less_p (tree val, tree val2)
1151 /* LT is folded faster than GE and others. Inline the common case. */
1152 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1154 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1155 return INT_CST_LT_UNSIGNED (val, val2);
1156 else
1158 if (INT_CST_LT (val, val2))
1159 return 1;
1162 else
1164 tree tcmp;
1166 fold_defer_overflow_warnings ();
1168 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1170 fold_undefer_and_ignore_overflow_warnings ();
1172 if (!tcmp
1173 || TREE_CODE (tcmp) != INTEGER_CST)
1174 return -2;
1176 if (!integer_zerop (tcmp))
1177 return 1;
1180 /* val >= val2, not considering overflow infinity. */
1181 if (is_negative_overflow_infinity (val))
1182 return is_negative_overflow_infinity (val2) ? 0 : 1;
1183 else if (is_positive_overflow_infinity (val2))
1184 return is_positive_overflow_infinity (val) ? 0 : 1;
1186 return 0;
1189 /* Compare two values VAL1 and VAL2. Return
1191 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1192 -1 if VAL1 < VAL2,
1193 0 if VAL1 == VAL2,
1194 +1 if VAL1 > VAL2, and
1195 +2 if VAL1 != VAL2
1197 This is similar to tree_int_cst_compare but supports pointer values
1198 and values that cannot be compared at compile time.
1200 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1201 true if the return value is only valid if we assume that signed
1202 overflow is undefined. */
1204 static int
1205 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1207 if (val1 == val2)
1208 return 0;
1210 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1211 both integers. */
1212 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1213 == POINTER_TYPE_P (TREE_TYPE (val2)));
1214 /* Convert the two values into the same type. This is needed because
1215 sizetype causes sign extension even for unsigned types. */
1216 val2 = fold_convert (TREE_TYPE (val1), val2);
1217 STRIP_USELESS_TYPE_CONVERSION (val2);
1219 if ((TREE_CODE (val1) == SSA_NAME
1220 || TREE_CODE (val1) == PLUS_EXPR
1221 || TREE_CODE (val1) == MINUS_EXPR)
1222 && (TREE_CODE (val2) == SSA_NAME
1223 || TREE_CODE (val2) == PLUS_EXPR
1224 || TREE_CODE (val2) == MINUS_EXPR))
1226 tree n1, c1, n2, c2;
1227 enum tree_code code1, code2;
1229 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1230 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1231 same name, return -2. */
1232 if (TREE_CODE (val1) == SSA_NAME)
1234 code1 = SSA_NAME;
1235 n1 = val1;
1236 c1 = NULL_TREE;
1238 else
1240 code1 = TREE_CODE (val1);
1241 n1 = TREE_OPERAND (val1, 0);
1242 c1 = TREE_OPERAND (val1, 1);
1243 if (tree_int_cst_sgn (c1) == -1)
1245 if (is_negative_overflow_infinity (c1))
1246 return -2;
1247 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1248 if (!c1)
1249 return -2;
1250 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1254 if (TREE_CODE (val2) == SSA_NAME)
1256 code2 = SSA_NAME;
1257 n2 = val2;
1258 c2 = NULL_TREE;
1260 else
1262 code2 = TREE_CODE (val2);
1263 n2 = TREE_OPERAND (val2, 0);
1264 c2 = TREE_OPERAND (val2, 1);
1265 if (tree_int_cst_sgn (c2) == -1)
1267 if (is_negative_overflow_infinity (c2))
1268 return -2;
1269 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1270 if (!c2)
1271 return -2;
1272 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1276 /* Both values must use the same name. */
1277 if (n1 != n2)
1278 return -2;
1280 if (code1 == SSA_NAME
1281 && code2 == SSA_NAME)
1282 /* NAME == NAME */
1283 return 0;
1285 /* If overflow is defined we cannot simplify more. */
1286 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1287 return -2;
1289 if (strict_overflow_p != NULL
1290 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1291 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1292 *strict_overflow_p = true;
1294 if (code1 == SSA_NAME)
1296 if (code2 == PLUS_EXPR)
1297 /* NAME < NAME + CST */
1298 return -1;
1299 else if (code2 == MINUS_EXPR)
1300 /* NAME > NAME - CST */
1301 return 1;
1303 else if (code1 == PLUS_EXPR)
1305 if (code2 == SSA_NAME)
1306 /* NAME + CST > NAME */
1307 return 1;
1308 else if (code2 == PLUS_EXPR)
1309 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1310 return compare_values_warnv (c1, c2, strict_overflow_p);
1311 else if (code2 == MINUS_EXPR)
1312 /* NAME + CST1 > NAME - CST2 */
1313 return 1;
1315 else if (code1 == MINUS_EXPR)
1317 if (code2 == SSA_NAME)
1318 /* NAME - CST < NAME */
1319 return -1;
1320 else if (code2 == PLUS_EXPR)
1321 /* NAME - CST1 < NAME + CST2 */
1322 return -1;
1323 else if (code2 == MINUS_EXPR)
1324 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1325 C1 and C2 are swapped in the call to compare_values. */
1326 return compare_values_warnv (c2, c1, strict_overflow_p);
1329 gcc_unreachable ();
1332 /* We cannot compare non-constants. */
1333 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1334 return -2;
1336 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1338 /* We cannot compare overflowed values, except for overflow
1339 infinities. */
1340 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1342 if (strict_overflow_p != NULL)
1343 *strict_overflow_p = true;
1344 if (is_negative_overflow_infinity (val1))
1345 return is_negative_overflow_infinity (val2) ? 0 : -1;
1346 else if (is_negative_overflow_infinity (val2))
1347 return 1;
1348 else if (is_positive_overflow_infinity (val1))
1349 return is_positive_overflow_infinity (val2) ? 0 : 1;
1350 else if (is_positive_overflow_infinity (val2))
1351 return -1;
1352 return -2;
1355 return tree_int_cst_compare (val1, val2);
1357 else
1359 tree t;
1361 /* First see if VAL1 and VAL2 are not the same. */
1362 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1363 return 0;
1365 /* If VAL1 is a lower address than VAL2, return -1. */
1366 if (operand_less_p (val1, val2) == 1)
1367 return -1;
1369 /* If VAL1 is a higher address than VAL2, return +1. */
1370 if (operand_less_p (val2, val1) == 1)
1371 return 1;
1373 /* If VAL1 is different than VAL2, return +2.
1374 For integer constants we either have already returned -1 or 1
1375 or they are equivalent. We still might succeed in proving
1376 something about non-trivial operands. */
1377 if (TREE_CODE (val1) != INTEGER_CST
1378 || TREE_CODE (val2) != INTEGER_CST)
1380 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1381 if (t && integer_onep (t))
1382 return 2;
1385 return -2;
1389 /* Compare values like compare_values_warnv, but treat comparisons of
1390 nonconstants which rely on undefined overflow as incomparable. */
1392 static int
1393 compare_values (tree val1, tree val2)
1395 bool sop;
1396 int ret;
1398 sop = false;
1399 ret = compare_values_warnv (val1, val2, &sop);
1400 if (sop
1401 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1402 ret = -2;
1403 return ret;
1407 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1408 0 if VAL is not inside [MIN, MAX],
1409 -2 if we cannot tell either way.
1411 Benchmark compile/20001226-1.c compilation time after changing this
1412 function. */
1414 static inline int
1415 value_inside_range (tree val, tree min, tree max)
1417 int cmp1, cmp2;
1419 cmp1 = operand_less_p (val, min);
1420 if (cmp1 == -2)
1421 return -2;
1422 if (cmp1 == 1)
1423 return 0;
1425 cmp2 = operand_less_p (max, val);
1426 if (cmp2 == -2)
1427 return -2;
1429 return !cmp2;
1433 /* Return true if value ranges VR0 and VR1 have a non-empty
1434 intersection.
1436 Benchmark compile/20001226-1.c compilation time after changing this
1437 function.
1440 static inline bool
1441 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1443 /* The value ranges do not intersect if the maximum of the first range is
1444 less than the minimum of the second range or vice versa.
1445 When those relations are unknown, we can't do any better. */
1446 if (operand_less_p (vr0->max, vr1->min) != 0)
1447 return false;
1448 if (operand_less_p (vr1->max, vr0->min) != 0)
1449 return false;
1450 return true;
1454 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1455 include the value zero, -2 if we cannot tell. */
1457 static inline int
1458 range_includes_zero_p (tree min, tree max)
1460 tree zero = build_int_cst (TREE_TYPE (min), 0);
1461 return value_inside_range (zero, min, max);
1464 /* Return true if *VR is know to only contain nonnegative values. */
1466 static inline bool
1467 value_range_nonnegative_p (value_range_t *vr)
1469 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1470 which would return a useful value should be encoded as a
1471 VR_RANGE. */
1472 if (vr->type == VR_RANGE)
1474 int result = compare_values (vr->min, integer_zero_node);
1475 return (result == 0 || result == 1);
1478 return false;
1481 /* If *VR has a value rante that is a single constant value return that,
1482 otherwise return NULL_TREE. */
1484 static tree
1485 value_range_constant_singleton (value_range_t *vr)
1487 if (vr->type == VR_RANGE
1488 && operand_equal_p (vr->min, vr->max, 0)
1489 && is_gimple_min_invariant (vr->min))
1490 return vr->min;
1492 return NULL_TREE;
1495 /* If OP has a value range with a single constant value return that,
1496 otherwise return NULL_TREE. This returns OP itself if OP is a
1497 constant. */
1499 static tree
1500 op_with_constant_singleton_value_range (tree op)
1502 if (is_gimple_min_invariant (op))
1503 return op;
1505 if (TREE_CODE (op) != SSA_NAME)
1506 return NULL_TREE;
1508 return value_range_constant_singleton (get_value_range (op));
1511 /* Return true if op is in a boolean [0, 1] value-range. */
1513 static bool
1514 op_with_boolean_value_range_p (tree op)
1516 value_range_t *vr;
1518 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1519 return true;
1521 if (integer_zerop (op)
1522 || integer_onep (op))
1523 return true;
1525 if (TREE_CODE (op) != SSA_NAME)
1526 return false;
1528 vr = get_value_range (op);
1529 return (vr->type == VR_RANGE
1530 && integer_zerop (vr->min)
1531 && integer_onep (vr->max));
1534 /* Extract value range information from an ASSERT_EXPR EXPR and store
1535 it in *VR_P. */
1537 static void
1538 extract_range_from_assert (value_range_t *vr_p, tree expr)
1540 tree var, cond, limit, min, max, type;
1541 value_range_t *limit_vr;
1542 enum tree_code cond_code;
1544 var = ASSERT_EXPR_VAR (expr);
1545 cond = ASSERT_EXPR_COND (expr);
1547 gcc_assert (COMPARISON_CLASS_P (cond));
1549 /* Find VAR in the ASSERT_EXPR conditional. */
1550 if (var == TREE_OPERAND (cond, 0)
1551 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1552 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1554 /* If the predicate is of the form VAR COMP LIMIT, then we just
1555 take LIMIT from the RHS and use the same comparison code. */
1556 cond_code = TREE_CODE (cond);
1557 limit = TREE_OPERAND (cond, 1);
1558 cond = TREE_OPERAND (cond, 0);
1560 else
1562 /* If the predicate is of the form LIMIT COMP VAR, then we need
1563 to flip around the comparison code to create the proper range
1564 for VAR. */
1565 cond_code = swap_tree_comparison (TREE_CODE (cond));
1566 limit = TREE_OPERAND (cond, 0);
1567 cond = TREE_OPERAND (cond, 1);
1570 limit = avoid_overflow_infinity (limit);
1572 type = TREE_TYPE (var);
1573 gcc_assert (limit != var);
1575 /* For pointer arithmetic, we only keep track of pointer equality
1576 and inequality. */
1577 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1579 set_value_range_to_varying (vr_p);
1580 return;
1583 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1584 try to use LIMIT's range to avoid creating symbolic ranges
1585 unnecessarily. */
1586 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1588 /* LIMIT's range is only interesting if it has any useful information. */
1589 if (limit_vr
1590 && (limit_vr->type == VR_UNDEFINED
1591 || limit_vr->type == VR_VARYING
1592 || symbolic_range_p (limit_vr)))
1593 limit_vr = NULL;
1595 /* Initially, the new range has the same set of equivalences of
1596 VAR's range. This will be revised before returning the final
1597 value. Since assertions may be chained via mutually exclusive
1598 predicates, we will need to trim the set of equivalences before
1599 we are done. */
1600 gcc_assert (vr_p->equiv == NULL);
1601 add_equivalence (&vr_p->equiv, var);
1603 /* Extract a new range based on the asserted comparison for VAR and
1604 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1605 will only use it for equality comparisons (EQ_EXPR). For any
1606 other kind of assertion, we cannot derive a range from LIMIT's
1607 anti-range that can be used to describe the new range. For
1608 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1609 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1610 no single range for x_2 that could describe LE_EXPR, so we might
1611 as well build the range [b_4, +INF] for it.
1612 One special case we handle is extracting a range from a
1613 range test encoded as (unsigned)var + CST <= limit. */
1614 if (TREE_CODE (cond) == NOP_EXPR
1615 || TREE_CODE (cond) == PLUS_EXPR)
1617 if (TREE_CODE (cond) == PLUS_EXPR)
1619 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1620 TREE_OPERAND (cond, 1));
1621 max = int_const_binop (PLUS_EXPR, limit, min);
1622 cond = TREE_OPERAND (cond, 0);
1624 else
1626 min = build_int_cst (TREE_TYPE (var), 0);
1627 max = limit;
1630 /* Make sure to not set TREE_OVERFLOW on the final type
1631 conversion. We are willingly interpreting large positive
1632 unsigned values as negative singed values here. */
1633 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1634 0, false);
1635 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1636 0, false);
1638 /* We can transform a max, min range to an anti-range or
1639 vice-versa. Use set_and_canonicalize_value_range which does
1640 this for us. */
1641 if (cond_code == LE_EXPR)
1642 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1643 min, max, vr_p->equiv);
1644 else if (cond_code == GT_EXPR)
1645 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1646 min, max, vr_p->equiv);
1647 else
1648 gcc_unreachable ();
1650 else if (cond_code == EQ_EXPR)
1652 enum value_range_type range_type;
1654 if (limit_vr)
1656 range_type = limit_vr->type;
1657 min = limit_vr->min;
1658 max = limit_vr->max;
1660 else
1662 range_type = VR_RANGE;
1663 min = limit;
1664 max = limit;
1667 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1669 /* When asserting the equality VAR == LIMIT and LIMIT is another
1670 SSA name, the new range will also inherit the equivalence set
1671 from LIMIT. */
1672 if (TREE_CODE (limit) == SSA_NAME)
1673 add_equivalence (&vr_p->equiv, limit);
1675 else if (cond_code == NE_EXPR)
1677 /* As described above, when LIMIT's range is an anti-range and
1678 this assertion is an inequality (NE_EXPR), then we cannot
1679 derive anything from the anti-range. For instance, if
1680 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1681 not imply that VAR's range is [0, 0]. So, in the case of
1682 anti-ranges, we just assert the inequality using LIMIT and
1683 not its anti-range.
1685 If LIMIT_VR is a range, we can only use it to build a new
1686 anti-range if LIMIT_VR is a single-valued range. For
1687 instance, if LIMIT_VR is [0, 1], the predicate
1688 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1689 Rather, it means that for value 0 VAR should be ~[0, 0]
1690 and for value 1, VAR should be ~[1, 1]. We cannot
1691 represent these ranges.
1693 The only situation in which we can build a valid
1694 anti-range is when LIMIT_VR is a single-valued range
1695 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1696 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1697 if (limit_vr
1698 && limit_vr->type == VR_RANGE
1699 && compare_values (limit_vr->min, limit_vr->max) == 0)
1701 min = limit_vr->min;
1702 max = limit_vr->max;
1704 else
1706 /* In any other case, we cannot use LIMIT's range to build a
1707 valid anti-range. */
1708 min = max = limit;
1711 /* If MIN and MAX cover the whole range for their type, then
1712 just use the original LIMIT. */
1713 if (INTEGRAL_TYPE_P (type)
1714 && vrp_val_is_min (min)
1715 && vrp_val_is_max (max))
1716 min = max = limit;
1718 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1719 min, max, vr_p->equiv);
1721 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1723 min = TYPE_MIN_VALUE (type);
1725 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1726 max = limit;
1727 else
1729 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1730 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1731 LT_EXPR. */
1732 max = limit_vr->max;
1735 /* If the maximum value forces us to be out of bounds, simply punt.
1736 It would be pointless to try and do anything more since this
1737 all should be optimized away above us. */
1738 if ((cond_code == LT_EXPR
1739 && compare_values (max, min) == 0)
1740 || is_overflow_infinity (max))
1741 set_value_range_to_varying (vr_p);
1742 else
1744 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1745 if (cond_code == LT_EXPR)
1747 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1748 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1749 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1750 build_int_cst (TREE_TYPE (max), -1));
1751 else
1752 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1753 build_int_cst (TREE_TYPE (max), 1));
1754 if (EXPR_P (max))
1755 TREE_NO_WARNING (max) = 1;
1758 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1761 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1763 max = TYPE_MAX_VALUE (type);
1765 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1766 min = limit;
1767 else
1769 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1770 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1771 GT_EXPR. */
1772 min = limit_vr->min;
1775 /* If the minimum value forces us to be out of bounds, simply punt.
1776 It would be pointless to try and do anything more since this
1777 all should be optimized away above us. */
1778 if ((cond_code == GT_EXPR
1779 && compare_values (min, max) == 0)
1780 || is_overflow_infinity (min))
1781 set_value_range_to_varying (vr_p);
1782 else
1784 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1785 if (cond_code == GT_EXPR)
1787 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1788 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1789 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1790 build_int_cst (TREE_TYPE (min), -1));
1791 else
1792 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1793 build_int_cst (TREE_TYPE (min), 1));
1794 if (EXPR_P (min))
1795 TREE_NO_WARNING (min) = 1;
1798 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1801 else
1802 gcc_unreachable ();
1804 /* Finally intersect the new range with what we already know about var. */
1805 vrp_intersect_ranges (vr_p, get_value_range (var));
1809 /* Extract range information from SSA name VAR and store it in VR. If
1810 VAR has an interesting range, use it. Otherwise, create the
1811 range [VAR, VAR] and return it. This is useful in situations where
1812 we may have conditionals testing values of VARYING names. For
1813 instance,
1815 x_3 = y_5;
1816 if (x_3 > y_5)
1819 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1820 always false. */
1822 static void
1823 extract_range_from_ssa_name (value_range_t *vr, tree var)
1825 value_range_t *var_vr = get_value_range (var);
1827 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1828 copy_value_range (vr, var_vr);
1829 else
1830 set_value_range (vr, VR_RANGE, var, var, NULL);
1832 add_equivalence (&vr->equiv, var);
1836 /* Wrapper around int_const_binop. If the operation overflows and we
1837 are not using wrapping arithmetic, then adjust the result to be
1838 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1839 NULL_TREE if we need to use an overflow infinity representation but
1840 the type does not support it. */
1842 static tree
1843 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1845 tree res;
1847 res = int_const_binop (code, val1, val2);
1849 /* If we are using unsigned arithmetic, operate symbolically
1850 on -INF and +INF as int_const_binop only handles signed overflow. */
1851 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1853 int checkz = compare_values (res, val1);
1854 bool overflow = false;
1856 /* Ensure that res = val1 [+*] val2 >= val1
1857 or that res = val1 - val2 <= val1. */
1858 if ((code == PLUS_EXPR
1859 && !(checkz == 1 || checkz == 0))
1860 || (code == MINUS_EXPR
1861 && !(checkz == 0 || checkz == -1)))
1863 overflow = true;
1865 /* Checking for multiplication overflow is done by dividing the
1866 output of the multiplication by the first input of the
1867 multiplication. If the result of that division operation is
1868 not equal to the second input of the multiplication, then the
1869 multiplication overflowed. */
1870 else if (code == MULT_EXPR && !integer_zerop (val1))
1872 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1873 res,
1874 val1);
1875 int check = compare_values (tmp, val2);
1877 if (check != 0)
1878 overflow = true;
1881 if (overflow)
1883 res = copy_node (res);
1884 TREE_OVERFLOW (res) = 1;
1888 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1889 /* If the singed operation wraps then int_const_binop has done
1890 everything we want. */
1892 else if ((TREE_OVERFLOW (res)
1893 && !TREE_OVERFLOW (val1)
1894 && !TREE_OVERFLOW (val2))
1895 || is_overflow_infinity (val1)
1896 || is_overflow_infinity (val2))
1898 /* If the operation overflowed but neither VAL1 nor VAL2 are
1899 overflown, return -INF or +INF depending on the operation
1900 and the combination of signs of the operands. */
1901 int sgn1 = tree_int_cst_sgn (val1);
1902 int sgn2 = tree_int_cst_sgn (val2);
1904 if (needs_overflow_infinity (TREE_TYPE (res))
1905 && !supports_overflow_infinity (TREE_TYPE (res)))
1906 return NULL_TREE;
1908 /* We have to punt on adding infinities of different signs,
1909 since we can't tell what the sign of the result should be.
1910 Likewise for subtracting infinities of the same sign. */
1911 if (((code == PLUS_EXPR && sgn1 != sgn2)
1912 || (code == MINUS_EXPR && sgn1 == sgn2))
1913 && is_overflow_infinity (val1)
1914 && is_overflow_infinity (val2))
1915 return NULL_TREE;
1917 /* Don't try to handle division or shifting of infinities. */
1918 if ((code == TRUNC_DIV_EXPR
1919 || code == FLOOR_DIV_EXPR
1920 || code == CEIL_DIV_EXPR
1921 || code == EXACT_DIV_EXPR
1922 || code == ROUND_DIV_EXPR
1923 || code == RSHIFT_EXPR)
1924 && (is_overflow_infinity (val1)
1925 || is_overflow_infinity (val2)))
1926 return NULL_TREE;
1928 /* Notice that we only need to handle the restricted set of
1929 operations handled by extract_range_from_binary_expr.
1930 Among them, only multiplication, addition and subtraction
1931 can yield overflow without overflown operands because we
1932 are working with integral types only... except in the
1933 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1934 for division too. */
1936 /* For multiplication, the sign of the overflow is given
1937 by the comparison of the signs of the operands. */
1938 if ((code == MULT_EXPR && sgn1 == sgn2)
1939 /* For addition, the operands must be of the same sign
1940 to yield an overflow. Its sign is therefore that
1941 of one of the operands, for example the first. For
1942 infinite operands X + -INF is negative, not positive. */
1943 || (code == PLUS_EXPR
1944 && (sgn1 >= 0
1945 ? !is_negative_overflow_infinity (val2)
1946 : is_positive_overflow_infinity (val2)))
1947 /* For subtraction, non-infinite operands must be of
1948 different signs to yield an overflow. Its sign is
1949 therefore that of the first operand or the opposite of
1950 that of the second operand. A first operand of 0 counts
1951 as positive here, for the corner case 0 - (-INF), which
1952 overflows, but must yield +INF. For infinite operands 0
1953 - INF is negative, not positive. */
1954 || (code == MINUS_EXPR
1955 && (sgn1 >= 0
1956 ? !is_positive_overflow_infinity (val2)
1957 : is_negative_overflow_infinity (val2)))
1958 /* We only get in here with positive shift count, so the
1959 overflow direction is the same as the sign of val1.
1960 Actually rshift does not overflow at all, but we only
1961 handle the case of shifting overflowed -INF and +INF. */
1962 || (code == RSHIFT_EXPR
1963 && sgn1 >= 0)
1964 /* For division, the only case is -INF / -1 = +INF. */
1965 || code == TRUNC_DIV_EXPR
1966 || code == FLOOR_DIV_EXPR
1967 || code == CEIL_DIV_EXPR
1968 || code == EXACT_DIV_EXPR
1969 || code == ROUND_DIV_EXPR)
1970 return (needs_overflow_infinity (TREE_TYPE (res))
1971 ? positive_overflow_infinity (TREE_TYPE (res))
1972 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1973 else
1974 return (needs_overflow_infinity (TREE_TYPE (res))
1975 ? negative_overflow_infinity (TREE_TYPE (res))
1976 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1979 return res;
1983 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1984 bitmask if some bit is unset, it means for all numbers in the range
1985 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1986 bitmask if some bit is set, it means for all numbers in the range
1987 the bit is 1, otherwise it might be 0 or 1. */
1989 static bool
1990 zero_nonzero_bits_from_vr (value_range_t *vr,
1991 double_int *may_be_nonzero,
1992 double_int *must_be_nonzero)
1994 *may_be_nonzero = double_int_minus_one;
1995 *must_be_nonzero = double_int_zero;
1996 if (!range_int_cst_p (vr)
1997 || is_overflow_infinity (vr->min)
1998 || is_overflow_infinity (vr->max))
1999 return false;
2001 if (range_int_cst_singleton_p (vr))
2003 *may_be_nonzero = tree_to_double_int (vr->min);
2004 *must_be_nonzero = *may_be_nonzero;
2006 else if (tree_int_cst_sgn (vr->min) >= 0
2007 || tree_int_cst_sgn (vr->max) < 0)
2009 double_int dmin = tree_to_double_int (vr->min);
2010 double_int dmax = tree_to_double_int (vr->max);
2011 double_int xor_mask = dmin ^ dmax;
2012 *may_be_nonzero = dmin | dmax;
2013 *must_be_nonzero = dmin & dmax;
2014 if (xor_mask.high != 0)
2016 unsigned HOST_WIDE_INT mask
2017 = ((unsigned HOST_WIDE_INT) 1
2018 << floor_log2 (xor_mask.high)) - 1;
2019 may_be_nonzero->low = ALL_ONES;
2020 may_be_nonzero->high |= mask;
2021 must_be_nonzero->low = 0;
2022 must_be_nonzero->high &= ~mask;
2024 else if (xor_mask.low != 0)
2026 unsigned HOST_WIDE_INT mask
2027 = ((unsigned HOST_WIDE_INT) 1
2028 << floor_log2 (xor_mask.low)) - 1;
2029 may_be_nonzero->low |= mask;
2030 must_be_nonzero->low &= ~mask;
2034 return true;
2037 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2038 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2039 false otherwise. If *AR can be represented with a single range
2040 *VR1 will be VR_UNDEFINED. */
2042 static bool
2043 ranges_from_anti_range (value_range_t *ar,
2044 value_range_t *vr0, value_range_t *vr1)
2046 tree type = TREE_TYPE (ar->min);
2048 vr0->type = VR_UNDEFINED;
2049 vr1->type = VR_UNDEFINED;
2051 if (ar->type != VR_ANTI_RANGE
2052 || TREE_CODE (ar->min) != INTEGER_CST
2053 || TREE_CODE (ar->max) != INTEGER_CST
2054 || !vrp_val_min (type)
2055 || !vrp_val_max (type))
2056 return false;
2058 if (!vrp_val_is_min (ar->min))
2060 vr0->type = VR_RANGE;
2061 vr0->min = vrp_val_min (type);
2062 vr0->max
2063 = double_int_to_tree (type,
2064 tree_to_double_int (ar->min) - double_int_one);
2066 if (!vrp_val_is_max (ar->max))
2068 vr1->type = VR_RANGE;
2069 vr1->min
2070 = double_int_to_tree (type,
2071 tree_to_double_int (ar->max) + double_int_one);
2072 vr1->max = vrp_val_max (type);
2074 if (vr0->type == VR_UNDEFINED)
2076 *vr0 = *vr1;
2077 vr1->type = VR_UNDEFINED;
2080 return vr0->type != VR_UNDEFINED;
2083 /* Helper to extract a value-range *VR for a multiplicative operation
2084 *VR0 CODE *VR1. */
2086 static void
2087 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2088 enum tree_code code,
2089 value_range_t *vr0, value_range_t *vr1)
2091 enum value_range_type type;
2092 tree val[4];
2093 size_t i;
2094 tree min, max;
2095 bool sop;
2096 int cmp;
2098 /* Multiplications, divisions and shifts are a bit tricky to handle,
2099 depending on the mix of signs we have in the two ranges, we
2100 need to operate on different values to get the minimum and
2101 maximum values for the new range. One approach is to figure
2102 out all the variations of range combinations and do the
2103 operations.
2105 However, this involves several calls to compare_values and it
2106 is pretty convoluted. It's simpler to do the 4 operations
2107 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2108 MAX1) and then figure the smallest and largest values to form
2109 the new range. */
2110 gcc_assert (code == MULT_EXPR
2111 || code == TRUNC_DIV_EXPR
2112 || code == FLOOR_DIV_EXPR
2113 || code == CEIL_DIV_EXPR
2114 || code == EXACT_DIV_EXPR
2115 || code == ROUND_DIV_EXPR
2116 || code == RSHIFT_EXPR
2117 || code == LSHIFT_EXPR);
2118 gcc_assert ((vr0->type == VR_RANGE
2119 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2120 && vr0->type == vr1->type);
2122 type = vr0->type;
2124 /* Compute the 4 cross operations. */
2125 sop = false;
2126 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2127 if (val[0] == NULL_TREE)
2128 sop = true;
2130 if (vr1->max == vr1->min)
2131 val[1] = NULL_TREE;
2132 else
2134 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2135 if (val[1] == NULL_TREE)
2136 sop = true;
2139 if (vr0->max == vr0->min)
2140 val[2] = NULL_TREE;
2141 else
2143 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2144 if (val[2] == NULL_TREE)
2145 sop = true;
2148 if (vr0->min == vr0->max || vr1->min == vr1->max)
2149 val[3] = NULL_TREE;
2150 else
2152 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2153 if (val[3] == NULL_TREE)
2154 sop = true;
2157 if (sop)
2159 set_value_range_to_varying (vr);
2160 return;
2163 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2164 of VAL[i]. */
2165 min = val[0];
2166 max = val[0];
2167 for (i = 1; i < 4; i++)
2169 if (!is_gimple_min_invariant (min)
2170 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2171 || !is_gimple_min_invariant (max)
2172 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2173 break;
2175 if (val[i])
2177 if (!is_gimple_min_invariant (val[i])
2178 || (TREE_OVERFLOW (val[i])
2179 && !is_overflow_infinity (val[i])))
2181 /* If we found an overflowed value, set MIN and MAX
2182 to it so that we set the resulting range to
2183 VARYING. */
2184 min = max = val[i];
2185 break;
2188 if (compare_values (val[i], min) == -1)
2189 min = val[i];
2191 if (compare_values (val[i], max) == 1)
2192 max = val[i];
2196 /* If either MIN or MAX overflowed, then set the resulting range to
2197 VARYING. But we do accept an overflow infinity
2198 representation. */
2199 if (min == NULL_TREE
2200 || !is_gimple_min_invariant (min)
2201 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2202 || max == NULL_TREE
2203 || !is_gimple_min_invariant (max)
2204 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2206 set_value_range_to_varying (vr);
2207 return;
2210 /* We punt if:
2211 1) [-INF, +INF]
2212 2) [-INF, +-INF(OVF)]
2213 3) [+-INF(OVF), +INF]
2214 4) [+-INF(OVF), +-INF(OVF)]
2215 We learn nothing when we have INF and INF(OVF) on both sides.
2216 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2217 overflow. */
2218 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2219 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2221 set_value_range_to_varying (vr);
2222 return;
2225 cmp = compare_values (min, max);
2226 if (cmp == -2 || cmp == 1)
2228 /* If the new range has its limits swapped around (MIN > MAX),
2229 then the operation caused one of them to wrap around, mark
2230 the new range VARYING. */
2231 set_value_range_to_varying (vr);
2233 else
2234 set_value_range (vr, type, min, max, NULL);
2237 /* Some quadruple precision helpers. */
2238 static int
2239 quad_int_cmp (double_int l0, double_int h0,
2240 double_int l1, double_int h1, bool uns)
2242 int c = h0.cmp (h1, uns);
2243 if (c != 0) return c;
2244 return l0.ucmp (l1);
2247 static void
2248 quad_int_pair_sort (double_int *l0, double_int *h0,
2249 double_int *l1, double_int *h1, bool uns)
2251 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2253 double_int tmp;
2254 tmp = *l0; *l0 = *l1; *l1 = tmp;
2255 tmp = *h0; *h0 = *h1; *h1 = tmp;
2259 /* Extract range information from a binary operation CODE based on
2260 the ranges of each of its operands, *VR0 and *VR1 with resulting
2261 type EXPR_TYPE. The resulting range is stored in *VR. */
2263 static void
2264 extract_range_from_binary_expr_1 (value_range_t *vr,
2265 enum tree_code code, tree expr_type,
2266 value_range_t *vr0_, value_range_t *vr1_)
2268 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2269 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2270 enum value_range_type type;
2271 tree min = NULL_TREE, max = NULL_TREE;
2272 int cmp;
2274 if (!INTEGRAL_TYPE_P (expr_type)
2275 && !POINTER_TYPE_P (expr_type))
2277 set_value_range_to_varying (vr);
2278 return;
2281 /* Not all binary expressions can be applied to ranges in a
2282 meaningful way. Handle only arithmetic operations. */
2283 if (code != PLUS_EXPR
2284 && code != MINUS_EXPR
2285 && code != POINTER_PLUS_EXPR
2286 && code != MULT_EXPR
2287 && code != TRUNC_DIV_EXPR
2288 && code != FLOOR_DIV_EXPR
2289 && code != CEIL_DIV_EXPR
2290 && code != EXACT_DIV_EXPR
2291 && code != ROUND_DIV_EXPR
2292 && code != TRUNC_MOD_EXPR
2293 && code != RSHIFT_EXPR
2294 && code != LSHIFT_EXPR
2295 && code != MIN_EXPR
2296 && code != MAX_EXPR
2297 && code != BIT_AND_EXPR
2298 && code != BIT_IOR_EXPR
2299 && code != BIT_XOR_EXPR)
2301 set_value_range_to_varying (vr);
2302 return;
2305 /* If both ranges are UNDEFINED, so is the result. */
2306 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2308 set_value_range_to_undefined (vr);
2309 return;
2311 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2312 code. At some point we may want to special-case operations that
2313 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2314 operand. */
2315 else if (vr0.type == VR_UNDEFINED)
2316 set_value_range_to_varying (&vr0);
2317 else if (vr1.type == VR_UNDEFINED)
2318 set_value_range_to_varying (&vr1);
2320 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2321 and express ~[] op X as ([]' op X) U ([]'' op X). */
2322 if (vr0.type == VR_ANTI_RANGE
2323 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2325 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2326 if (vrtem1.type != VR_UNDEFINED)
2328 value_range_t vrres = VR_INITIALIZER;
2329 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2330 &vrtem1, vr1_);
2331 vrp_meet (vr, &vrres);
2333 return;
2335 /* Likewise for X op ~[]. */
2336 if (vr1.type == VR_ANTI_RANGE
2337 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2339 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2340 if (vrtem1.type != VR_UNDEFINED)
2342 value_range_t vrres = VR_INITIALIZER;
2343 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2344 vr0_, &vrtem1);
2345 vrp_meet (vr, &vrres);
2347 return;
2350 /* The type of the resulting value range defaults to VR0.TYPE. */
2351 type = vr0.type;
2353 /* Refuse to operate on VARYING ranges, ranges of different kinds
2354 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2355 because we may be able to derive a useful range even if one of
2356 the operands is VR_VARYING or symbolic range. Similarly for
2357 divisions. TODO, we may be able to derive anti-ranges in
2358 some cases. */
2359 if (code != BIT_AND_EXPR
2360 && code != BIT_IOR_EXPR
2361 && code != TRUNC_DIV_EXPR
2362 && code != FLOOR_DIV_EXPR
2363 && code != CEIL_DIV_EXPR
2364 && code != EXACT_DIV_EXPR
2365 && code != ROUND_DIV_EXPR
2366 && code != TRUNC_MOD_EXPR
2367 && code != MIN_EXPR
2368 && code != MAX_EXPR
2369 && (vr0.type == VR_VARYING
2370 || vr1.type == VR_VARYING
2371 || vr0.type != vr1.type
2372 || symbolic_range_p (&vr0)
2373 || symbolic_range_p (&vr1)))
2375 set_value_range_to_varying (vr);
2376 return;
2379 /* Now evaluate the expression to determine the new range. */
2380 if (POINTER_TYPE_P (expr_type))
2382 if (code == MIN_EXPR || code == MAX_EXPR)
2384 /* For MIN/MAX expressions with pointers, we only care about
2385 nullness, if both are non null, then the result is nonnull.
2386 If both are null, then the result is null. Otherwise they
2387 are varying. */
2388 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2389 set_value_range_to_nonnull (vr, expr_type);
2390 else if (range_is_null (&vr0) && range_is_null (&vr1))
2391 set_value_range_to_null (vr, expr_type);
2392 else
2393 set_value_range_to_varying (vr);
2395 else if (code == POINTER_PLUS_EXPR)
2397 /* For pointer types, we are really only interested in asserting
2398 whether the expression evaluates to non-NULL. */
2399 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2400 set_value_range_to_nonnull (vr, expr_type);
2401 else if (range_is_null (&vr0) && range_is_null (&vr1))
2402 set_value_range_to_null (vr, expr_type);
2403 else
2404 set_value_range_to_varying (vr);
2406 else if (code == BIT_AND_EXPR)
2408 /* For pointer types, we are really only interested in asserting
2409 whether the expression evaluates to non-NULL. */
2410 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2411 set_value_range_to_nonnull (vr, expr_type);
2412 else if (range_is_null (&vr0) || range_is_null (&vr1))
2413 set_value_range_to_null (vr, expr_type);
2414 else
2415 set_value_range_to_varying (vr);
2417 else
2418 set_value_range_to_varying (vr);
2420 return;
2423 /* For integer ranges, apply the operation to each end of the
2424 range and see what we end up with. */
2425 if (code == PLUS_EXPR || code == MINUS_EXPR)
2427 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2428 ranges compute the precise range for such case if possible. */
2429 if (range_int_cst_p (&vr0)
2430 && range_int_cst_p (&vr1)
2431 /* We need as many bits as the possibly unsigned inputs. */
2432 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2434 double_int min0 = tree_to_double_int (vr0.min);
2435 double_int max0 = tree_to_double_int (vr0.max);
2436 double_int min1 = tree_to_double_int (vr1.min);
2437 double_int max1 = tree_to_double_int (vr1.max);
2438 bool uns = TYPE_UNSIGNED (expr_type);
2439 double_int type_min
2440 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2441 double_int type_max
2442 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2443 double_int dmin, dmax;
2444 int min_ovf = 0;
2445 int max_ovf = 0;
2447 if (code == PLUS_EXPR)
2449 dmin = min0 + min1;
2450 dmax = max0 + max1;
2452 /* Check for overflow in double_int. */
2453 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2454 min_ovf = min0.cmp (dmin, uns);
2455 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2456 max_ovf = max0.cmp (dmax, uns);
2458 else /* if (code == MINUS_EXPR) */
2460 dmin = min0 - max1;
2461 dmax = max0 - min1;
2463 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2464 min_ovf = min0.cmp (max1, uns);
2465 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2466 max_ovf = max0.cmp (min1, uns);
2469 /* For non-wrapping arithmetic look at possibly smaller
2470 value-ranges of the type. */
2471 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2473 if (vrp_val_min (expr_type))
2474 type_min = tree_to_double_int (vrp_val_min (expr_type));
2475 if (vrp_val_max (expr_type))
2476 type_max = tree_to_double_int (vrp_val_max (expr_type));
2479 /* Check for type overflow. */
2480 if (min_ovf == 0)
2482 if (dmin.cmp (type_min, uns) == -1)
2483 min_ovf = -1;
2484 else if (dmin.cmp (type_max, uns) == 1)
2485 min_ovf = 1;
2487 if (max_ovf == 0)
2489 if (dmax.cmp (type_min, uns) == -1)
2490 max_ovf = -1;
2491 else if (dmax.cmp (type_max, uns) == 1)
2492 max_ovf = 1;
2495 if (TYPE_OVERFLOW_WRAPS (expr_type))
2497 /* If overflow wraps, truncate the values and adjust the
2498 range kind and bounds appropriately. */
2499 double_int tmin
2500 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2501 double_int tmax
2502 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2503 if (min_ovf == max_ovf)
2505 /* No overflow or both overflow or underflow. The
2506 range kind stays VR_RANGE. */
2507 min = double_int_to_tree (expr_type, tmin);
2508 max = double_int_to_tree (expr_type, tmax);
2510 else if (min_ovf == -1
2511 && max_ovf == 1)
2513 /* Underflow and overflow, drop to VR_VARYING. */
2514 set_value_range_to_varying (vr);
2515 return;
2517 else
2519 /* Min underflow or max overflow. The range kind
2520 changes to VR_ANTI_RANGE. */
2521 bool covers = false;
2522 double_int tem = tmin;
2523 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2524 || (max_ovf == 1 && min_ovf == 0));
2525 type = VR_ANTI_RANGE;
2526 tmin = tmax + double_int_one;
2527 if (tmin.cmp (tmax, uns) < 0)
2528 covers = true;
2529 tmax = tem + double_int_minus_one;
2530 if (tmax.cmp (tem, uns) > 0)
2531 covers = true;
2532 /* If the anti-range would cover nothing, drop to varying.
2533 Likewise if the anti-range bounds are outside of the
2534 types values. */
2535 if (covers || tmin.cmp (tmax, uns) > 0)
2537 set_value_range_to_varying (vr);
2538 return;
2540 min = double_int_to_tree (expr_type, tmin);
2541 max = double_int_to_tree (expr_type, tmax);
2544 else
2546 /* If overflow does not wrap, saturate to the types min/max
2547 value. */
2548 if (min_ovf == -1)
2550 if (needs_overflow_infinity (expr_type)
2551 && supports_overflow_infinity (expr_type))
2552 min = negative_overflow_infinity (expr_type);
2553 else
2554 min = double_int_to_tree (expr_type, type_min);
2556 else if (min_ovf == 1)
2558 if (needs_overflow_infinity (expr_type)
2559 && supports_overflow_infinity (expr_type))
2560 min = positive_overflow_infinity (expr_type);
2561 else
2562 min = double_int_to_tree (expr_type, type_max);
2564 else
2565 min = double_int_to_tree (expr_type, dmin);
2567 if (max_ovf == -1)
2569 if (needs_overflow_infinity (expr_type)
2570 && supports_overflow_infinity (expr_type))
2571 max = negative_overflow_infinity (expr_type);
2572 else
2573 max = double_int_to_tree (expr_type, type_min);
2575 else if (max_ovf == 1)
2577 if (needs_overflow_infinity (expr_type)
2578 && supports_overflow_infinity (expr_type))
2579 max = positive_overflow_infinity (expr_type);
2580 else
2581 max = double_int_to_tree (expr_type, type_max);
2583 else
2584 max = double_int_to_tree (expr_type, dmax);
2586 if (needs_overflow_infinity (expr_type)
2587 && supports_overflow_infinity (expr_type))
2589 if (is_negative_overflow_infinity (vr0.min)
2590 || (code == PLUS_EXPR
2591 ? is_negative_overflow_infinity (vr1.min)
2592 : is_positive_overflow_infinity (vr1.max)))
2593 min = negative_overflow_infinity (expr_type);
2594 if (is_positive_overflow_infinity (vr0.max)
2595 || (code == PLUS_EXPR
2596 ? is_positive_overflow_infinity (vr1.max)
2597 : is_negative_overflow_infinity (vr1.min)))
2598 max = positive_overflow_infinity (expr_type);
2601 else
2603 /* For other cases, for example if we have a PLUS_EXPR with two
2604 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2605 to compute a precise range for such a case.
2606 ??? General even mixed range kind operations can be expressed
2607 by for example transforming ~[3, 5] + [1, 2] to range-only
2608 operations and a union primitive:
2609 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2610 [-INF+1, 4] U [6, +INF(OVF)]
2611 though usually the union is not exactly representable with
2612 a single range or anti-range as the above is
2613 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2614 but one could use a scheme similar to equivalences for this. */
2615 set_value_range_to_varying (vr);
2616 return;
2619 else if (code == MIN_EXPR
2620 || code == MAX_EXPR)
2622 if (vr0.type == VR_RANGE
2623 && !symbolic_range_p (&vr0))
2625 type = VR_RANGE;
2626 if (vr1.type == VR_RANGE
2627 && !symbolic_range_p (&vr1))
2629 /* For operations that make the resulting range directly
2630 proportional to the original ranges, apply the operation to
2631 the same end of each range. */
2632 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2633 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2635 else if (code == MIN_EXPR)
2637 min = vrp_val_min (expr_type);
2638 max = vr0.max;
2640 else if (code == MAX_EXPR)
2642 min = vr0.min;
2643 max = vrp_val_max (expr_type);
2646 else if (vr1.type == VR_RANGE
2647 && !symbolic_range_p (&vr1))
2649 type = VR_RANGE;
2650 if (code == MIN_EXPR)
2652 min = vrp_val_min (expr_type);
2653 max = vr1.max;
2655 else if (code == MAX_EXPR)
2657 min = vr1.min;
2658 max = vrp_val_max (expr_type);
2661 else
2663 set_value_range_to_varying (vr);
2664 return;
2667 else if (code == MULT_EXPR)
2669 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2670 drop to varying. */
2671 if (range_int_cst_p (&vr0)
2672 && range_int_cst_p (&vr1)
2673 && TYPE_OVERFLOW_WRAPS (expr_type))
2675 double_int min0, max0, min1, max1, sizem1, size;
2676 double_int prod0l, prod0h, prod1l, prod1h,
2677 prod2l, prod2h, prod3l, prod3h;
2678 bool uns0, uns1, uns;
2680 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2681 size = sizem1 + double_int_one;
2683 min0 = tree_to_double_int (vr0.min);
2684 max0 = tree_to_double_int (vr0.max);
2685 min1 = tree_to_double_int (vr1.min);
2686 max1 = tree_to_double_int (vr1.max);
2688 uns0 = TYPE_UNSIGNED (expr_type);
2689 uns1 = uns0;
2691 /* Canonicalize the intervals. */
2692 if (TYPE_UNSIGNED (expr_type))
2694 double_int min2 = size - min0;
2695 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2697 min0 = -min2;
2698 max0 -= size;
2699 uns0 = false;
2702 min2 = size - min1;
2703 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2705 min1 = -min2;
2706 max1 -= size;
2707 uns1 = false;
2710 uns = uns0 & uns1;
2712 bool overflow;
2713 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2714 if (!uns0 && min0.is_negative ())
2715 prod0h -= min1;
2716 if (!uns1 && min1.is_negative ())
2717 prod0h -= min0;
2719 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2720 if (!uns0 && min0.is_negative ())
2721 prod1h -= max1;
2722 if (!uns1 && max1.is_negative ())
2723 prod1h -= min0;
2725 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2726 if (!uns0 && max0.is_negative ())
2727 prod2h -= min1;
2728 if (!uns1 && min1.is_negative ())
2729 prod2h -= max0;
2731 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2732 if (!uns0 && max0.is_negative ())
2733 prod3h -= max1;
2734 if (!uns1 && max1.is_negative ())
2735 prod3h -= max0;
2737 /* Sort the 4 products. */
2738 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2739 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2740 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2741 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2743 /* Max - min. */
2744 if (prod0l.is_zero ())
2746 prod1l = double_int_zero;
2747 prod1h = -prod0h;
2749 else
2751 prod1l = -prod0l;
2752 prod1h = ~prod0h;
2754 prod2l = prod3l + prod1l;
2755 prod2h = prod3h + prod1h;
2756 if (prod2l.ult (prod3l))
2757 prod2h += double_int_one; /* carry */
2759 if (!prod2h.is_zero ()
2760 || prod2l.cmp (sizem1, true) >= 0)
2762 /* the range covers all values. */
2763 set_value_range_to_varying (vr);
2764 return;
2767 /* The following should handle the wrapping and selecting
2768 VR_ANTI_RANGE for us. */
2769 min = double_int_to_tree (expr_type, prod0l);
2770 max = double_int_to_tree (expr_type, prod3l);
2771 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2772 return;
2775 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2776 drop to VR_VARYING. It would take more effort to compute a
2777 precise range for such a case. For example, if we have
2778 op0 == 65536 and op1 == 65536 with their ranges both being
2779 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2780 we cannot claim that the product is in ~[0,0]. Note that we
2781 are guaranteed to have vr0.type == vr1.type at this
2782 point. */
2783 if (vr0.type == VR_ANTI_RANGE
2784 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2786 set_value_range_to_varying (vr);
2787 return;
2790 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2791 return;
2793 else if (code == RSHIFT_EXPR
2794 || code == LSHIFT_EXPR)
2796 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2797 then drop to VR_VARYING. Outside of this range we get undefined
2798 behavior from the shift operation. We cannot even trust
2799 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2800 shifts, and the operation at the tree level may be widened. */
2801 if (range_int_cst_p (&vr1)
2802 && compare_tree_int (vr1.min, 0) >= 0
2803 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2805 if (code == RSHIFT_EXPR)
2807 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2808 return;
2810 /* We can map lshifts by constants to MULT_EXPR handling. */
2811 else if (code == LSHIFT_EXPR
2812 && range_int_cst_singleton_p (&vr1))
2814 bool saved_flag_wrapv;
2815 value_range_t vr1p = VR_INITIALIZER;
2816 vr1p.type = VR_RANGE;
2817 vr1p.min
2818 = double_int_to_tree (expr_type,
2819 double_int_one
2820 .llshift (TREE_INT_CST_LOW (vr1.min),
2821 TYPE_PRECISION (expr_type)));
2822 vr1p.max = vr1p.min;
2823 /* We have to use a wrapping multiply though as signed overflow
2824 on lshifts is implementation defined in C89. */
2825 saved_flag_wrapv = flag_wrapv;
2826 flag_wrapv = 1;
2827 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2828 &vr0, &vr1p);
2829 flag_wrapv = saved_flag_wrapv;
2830 return;
2832 else if (code == LSHIFT_EXPR
2833 && range_int_cst_p (&vr0))
2835 int prec = TYPE_PRECISION (expr_type);
2836 int overflow_pos = prec;
2837 int bound_shift;
2838 double_int bound, complement, low_bound, high_bound;
2839 bool uns = TYPE_UNSIGNED (expr_type);
2840 bool in_bounds = false;
2842 if (!uns)
2843 overflow_pos -= 1;
2845 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2846 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2847 overflow. However, for that to happen, vr1.max needs to be
2848 zero, which means vr1 is a singleton range of zero, which
2849 means it should be handled by the previous LSHIFT_EXPR
2850 if-clause. */
2851 bound = double_int_one.llshift (bound_shift, prec);
2852 complement = ~(bound - double_int_one);
2854 if (uns)
2856 low_bound = bound.zext (prec);
2857 high_bound = complement.zext (prec);
2858 if (tree_to_double_int (vr0.max).ult (low_bound))
2860 /* [5, 6] << [1, 2] == [10, 24]. */
2861 /* We're shifting out only zeroes, the value increases
2862 monotonically. */
2863 in_bounds = true;
2865 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2867 /* [0xffffff00, 0xffffffff] << [1, 2]
2868 == [0xfffffc00, 0xfffffffe]. */
2869 /* We're shifting out only ones, the value decreases
2870 monotonically. */
2871 in_bounds = true;
2874 else
2876 /* [-1, 1] << [1, 2] == [-4, 4]. */
2877 low_bound = complement.sext (prec);
2878 high_bound = bound;
2879 if (tree_to_double_int (vr0.max).slt (high_bound)
2880 && low_bound.slt (tree_to_double_int (vr0.min)))
2882 /* For non-negative numbers, we're shifting out only
2883 zeroes, the value increases monotonically.
2884 For negative numbers, we're shifting out only ones, the
2885 value decreases monotomically. */
2886 in_bounds = true;
2890 if (in_bounds)
2892 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2893 return;
2897 set_value_range_to_varying (vr);
2898 return;
2900 else if (code == TRUNC_DIV_EXPR
2901 || code == FLOOR_DIV_EXPR
2902 || code == CEIL_DIV_EXPR
2903 || code == EXACT_DIV_EXPR
2904 || code == ROUND_DIV_EXPR)
2906 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2908 /* For division, if op1 has VR_RANGE but op0 does not, something
2909 can be deduced just from that range. Say [min, max] / [4, max]
2910 gives [min / 4, max / 4] range. */
2911 if (vr1.type == VR_RANGE
2912 && !symbolic_range_p (&vr1)
2913 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2915 vr0.type = type = VR_RANGE;
2916 vr0.min = vrp_val_min (expr_type);
2917 vr0.max = vrp_val_max (expr_type);
2919 else
2921 set_value_range_to_varying (vr);
2922 return;
2926 /* For divisions, if flag_non_call_exceptions is true, we must
2927 not eliminate a division by zero. */
2928 if (cfun->can_throw_non_call_exceptions
2929 && (vr1.type != VR_RANGE
2930 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2932 set_value_range_to_varying (vr);
2933 return;
2936 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2937 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2938 include 0. */
2939 if (vr0.type == VR_RANGE
2940 && (vr1.type != VR_RANGE
2941 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2943 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2944 int cmp;
2946 min = NULL_TREE;
2947 max = NULL_TREE;
2948 if (TYPE_UNSIGNED (expr_type)
2949 || value_range_nonnegative_p (&vr1))
2951 /* For unsigned division or when divisor is known
2952 to be non-negative, the range has to cover
2953 all numbers from 0 to max for positive max
2954 and all numbers from min to 0 for negative min. */
2955 cmp = compare_values (vr0.max, zero);
2956 if (cmp == -1)
2957 max = zero;
2958 else if (cmp == 0 || cmp == 1)
2959 max = vr0.max;
2960 else
2961 type = VR_VARYING;
2962 cmp = compare_values (vr0.min, zero);
2963 if (cmp == 1)
2964 min = zero;
2965 else if (cmp == 0 || cmp == -1)
2966 min = vr0.min;
2967 else
2968 type = VR_VARYING;
2970 else
2972 /* Otherwise the range is -max .. max or min .. -min
2973 depending on which bound is bigger in absolute value,
2974 as the division can change the sign. */
2975 abs_extent_range (vr, vr0.min, vr0.max);
2976 return;
2978 if (type == VR_VARYING)
2980 set_value_range_to_varying (vr);
2981 return;
2984 else
2986 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2987 return;
2990 else if (code == TRUNC_MOD_EXPR)
2992 if (vr1.type != VR_RANGE
2993 || range_includes_zero_p (vr1.min, vr1.max) != 0
2994 || vrp_val_is_min (vr1.min))
2996 set_value_range_to_varying (vr);
2997 return;
2999 type = VR_RANGE;
3000 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3001 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
3002 if (tree_int_cst_lt (max, vr1.max))
3003 max = vr1.max;
3004 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
3005 /* If the dividend is non-negative the modulus will be
3006 non-negative as well. */
3007 if (TYPE_UNSIGNED (expr_type)
3008 || value_range_nonnegative_p (&vr0))
3009 min = build_int_cst (TREE_TYPE (max), 0);
3010 else
3011 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
3013 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3015 bool int_cst_range0, int_cst_range1;
3016 double_int may_be_nonzero0, may_be_nonzero1;
3017 double_int must_be_nonzero0, must_be_nonzero1;
3019 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3020 &must_be_nonzero0);
3021 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3022 &must_be_nonzero1);
3024 type = VR_RANGE;
3025 if (code == BIT_AND_EXPR)
3027 double_int dmax;
3028 min = double_int_to_tree (expr_type,
3029 must_be_nonzero0 & must_be_nonzero1);
3030 dmax = may_be_nonzero0 & may_be_nonzero1;
3031 /* If both input ranges contain only negative values we can
3032 truncate the result range maximum to the minimum of the
3033 input range maxima. */
3034 if (int_cst_range0 && int_cst_range1
3035 && tree_int_cst_sgn (vr0.max) < 0
3036 && tree_int_cst_sgn (vr1.max) < 0)
3038 dmax = dmax.min (tree_to_double_int (vr0.max),
3039 TYPE_UNSIGNED (expr_type));
3040 dmax = dmax.min (tree_to_double_int (vr1.max),
3041 TYPE_UNSIGNED (expr_type));
3043 /* If either input range contains only non-negative values
3044 we can truncate the result range maximum to the respective
3045 maximum of the input range. */
3046 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3047 dmax = dmax.min (tree_to_double_int (vr0.max),
3048 TYPE_UNSIGNED (expr_type));
3049 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3050 dmax = dmax.min (tree_to_double_int (vr1.max),
3051 TYPE_UNSIGNED (expr_type));
3052 max = double_int_to_tree (expr_type, dmax);
3054 else if (code == BIT_IOR_EXPR)
3056 double_int dmin;
3057 max = double_int_to_tree (expr_type,
3058 may_be_nonzero0 | may_be_nonzero1);
3059 dmin = must_be_nonzero0 | must_be_nonzero1;
3060 /* If the input ranges contain only positive values we can
3061 truncate the minimum of the result range to the maximum
3062 of the input range minima. */
3063 if (int_cst_range0 && int_cst_range1
3064 && tree_int_cst_sgn (vr0.min) >= 0
3065 && tree_int_cst_sgn (vr1.min) >= 0)
3067 dmin = dmin.max (tree_to_double_int (vr0.min),
3068 TYPE_UNSIGNED (expr_type));
3069 dmin = dmin.max (tree_to_double_int (vr1.min),
3070 TYPE_UNSIGNED (expr_type));
3072 /* If either input range contains only negative values
3073 we can truncate the minimum of the result range to the
3074 respective minimum range. */
3075 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3076 dmin = dmin.max (tree_to_double_int (vr0.min),
3077 TYPE_UNSIGNED (expr_type));
3078 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3079 dmin = dmin.max (tree_to_double_int (vr1.min),
3080 TYPE_UNSIGNED (expr_type));
3081 min = double_int_to_tree (expr_type, dmin);
3083 else if (code == BIT_XOR_EXPR)
3085 double_int result_zero_bits, result_one_bits;
3086 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3087 | ~(may_be_nonzero0 | may_be_nonzero1);
3088 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3089 | must_be_nonzero1.and_not (may_be_nonzero0);
3090 max = double_int_to_tree (expr_type, ~result_zero_bits);
3091 min = double_int_to_tree (expr_type, result_one_bits);
3092 /* If the range has all positive or all negative values the
3093 result is better than VARYING. */
3094 if (tree_int_cst_sgn (min) < 0
3095 || tree_int_cst_sgn (max) >= 0)
3097 else
3098 max = min = NULL_TREE;
3101 else
3102 gcc_unreachable ();
3104 /* If either MIN or MAX overflowed, then set the resulting range to
3105 VARYING. But we do accept an overflow infinity
3106 representation. */
3107 if (min == NULL_TREE
3108 || !is_gimple_min_invariant (min)
3109 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3110 || max == NULL_TREE
3111 || !is_gimple_min_invariant (max)
3112 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3114 set_value_range_to_varying (vr);
3115 return;
3118 /* We punt if:
3119 1) [-INF, +INF]
3120 2) [-INF, +-INF(OVF)]
3121 3) [+-INF(OVF), +INF]
3122 4) [+-INF(OVF), +-INF(OVF)]
3123 We learn nothing when we have INF and INF(OVF) on both sides.
3124 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3125 overflow. */
3126 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3127 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3129 set_value_range_to_varying (vr);
3130 return;
3133 cmp = compare_values (min, max);
3134 if (cmp == -2 || cmp == 1)
3136 /* If the new range has its limits swapped around (MIN > MAX),
3137 then the operation caused one of them to wrap around, mark
3138 the new range VARYING. */
3139 set_value_range_to_varying (vr);
3141 else
3142 set_value_range (vr, type, min, max, NULL);
3145 /* Extract range information from a binary expression OP0 CODE OP1 based on
3146 the ranges of each of its operands with resulting type EXPR_TYPE.
3147 The resulting range is stored in *VR. */
3149 static void
3150 extract_range_from_binary_expr (value_range_t *vr,
3151 enum tree_code code,
3152 tree expr_type, tree op0, tree op1)
3154 value_range_t vr0 = VR_INITIALIZER;
3155 value_range_t vr1 = VR_INITIALIZER;
3157 /* Get value ranges for each operand. For constant operands, create
3158 a new value range with the operand to simplify processing. */
3159 if (TREE_CODE (op0) == SSA_NAME)
3160 vr0 = *(get_value_range (op0));
3161 else if (is_gimple_min_invariant (op0))
3162 set_value_range_to_value (&vr0, op0, NULL);
3163 else
3164 set_value_range_to_varying (&vr0);
3166 if (TREE_CODE (op1) == SSA_NAME)
3167 vr1 = *(get_value_range (op1));
3168 else if (is_gimple_min_invariant (op1))
3169 set_value_range_to_value (&vr1, op1, NULL);
3170 else
3171 set_value_range_to_varying (&vr1);
3173 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3176 /* Extract range information from a unary operation CODE based on
3177 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3178 The The resulting range is stored in *VR. */
3180 static void
3181 extract_range_from_unary_expr_1 (value_range_t *vr,
3182 enum tree_code code, tree type,
3183 value_range_t *vr0_, tree op0_type)
3185 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3187 /* VRP only operates on integral and pointer types. */
3188 if (!(INTEGRAL_TYPE_P (op0_type)
3189 || POINTER_TYPE_P (op0_type))
3190 || !(INTEGRAL_TYPE_P (type)
3191 || POINTER_TYPE_P (type)))
3193 set_value_range_to_varying (vr);
3194 return;
3197 /* If VR0 is UNDEFINED, so is the result. */
3198 if (vr0.type == VR_UNDEFINED)
3200 set_value_range_to_undefined (vr);
3201 return;
3204 /* Handle operations that we express in terms of others. */
3205 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3207 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3208 copy_value_range (vr, &vr0);
3209 return;
3211 else if (code == NEGATE_EXPR)
3213 /* -X is simply 0 - X, so re-use existing code that also handles
3214 anti-ranges fine. */
3215 value_range_t zero = VR_INITIALIZER;
3216 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3217 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3218 return;
3220 else if (code == BIT_NOT_EXPR)
3222 /* ~X is simply -1 - X, so re-use existing code that also handles
3223 anti-ranges fine. */
3224 value_range_t minusone = VR_INITIALIZER;
3225 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3226 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3227 type, &minusone, &vr0);
3228 return;
3231 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3232 and express op ~[] as (op []') U (op []''). */
3233 if (vr0.type == VR_ANTI_RANGE
3234 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3236 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3237 if (vrtem1.type != VR_UNDEFINED)
3239 value_range_t vrres = VR_INITIALIZER;
3240 extract_range_from_unary_expr_1 (&vrres, code, type,
3241 &vrtem1, op0_type);
3242 vrp_meet (vr, &vrres);
3244 return;
3247 if (CONVERT_EXPR_CODE_P (code))
3249 tree inner_type = op0_type;
3250 tree outer_type = type;
3252 /* If the expression evaluates to a pointer, we are only interested in
3253 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3254 if (POINTER_TYPE_P (type))
3256 if (range_is_nonnull (&vr0))
3257 set_value_range_to_nonnull (vr, type);
3258 else if (range_is_null (&vr0))
3259 set_value_range_to_null (vr, type);
3260 else
3261 set_value_range_to_varying (vr);
3262 return;
3265 /* If VR0 is varying and we increase the type precision, assume
3266 a full range for the following transformation. */
3267 if (vr0.type == VR_VARYING
3268 && INTEGRAL_TYPE_P (inner_type)
3269 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3271 vr0.type = VR_RANGE;
3272 vr0.min = TYPE_MIN_VALUE (inner_type);
3273 vr0.max = TYPE_MAX_VALUE (inner_type);
3276 /* If VR0 is a constant range or anti-range and the conversion is
3277 not truncating we can convert the min and max values and
3278 canonicalize the resulting range. Otherwise we can do the
3279 conversion if the size of the range is less than what the
3280 precision of the target type can represent and the range is
3281 not an anti-range. */
3282 if ((vr0.type == VR_RANGE
3283 || vr0.type == VR_ANTI_RANGE)
3284 && TREE_CODE (vr0.min) == INTEGER_CST
3285 && TREE_CODE (vr0.max) == INTEGER_CST
3286 && (!is_overflow_infinity (vr0.min)
3287 || (vr0.type == VR_RANGE
3288 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3289 && needs_overflow_infinity (outer_type)
3290 && supports_overflow_infinity (outer_type)))
3291 && (!is_overflow_infinity (vr0.max)
3292 || (vr0.type == VR_RANGE
3293 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3294 && needs_overflow_infinity (outer_type)
3295 && supports_overflow_infinity (outer_type)))
3296 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3297 || (vr0.type == VR_RANGE
3298 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3299 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3300 size_int (TYPE_PRECISION (outer_type)))))))
3302 tree new_min, new_max;
3303 if (is_overflow_infinity (vr0.min))
3304 new_min = negative_overflow_infinity (outer_type);
3305 else
3306 new_min = force_fit_type_double (outer_type,
3307 tree_to_double_int (vr0.min),
3308 0, false);
3309 if (is_overflow_infinity (vr0.max))
3310 new_max = positive_overflow_infinity (outer_type);
3311 else
3312 new_max = force_fit_type_double (outer_type,
3313 tree_to_double_int (vr0.max),
3314 0, false);
3315 set_and_canonicalize_value_range (vr, vr0.type,
3316 new_min, new_max, NULL);
3317 return;
3320 set_value_range_to_varying (vr);
3321 return;
3323 else if (code == ABS_EXPR)
3325 tree min, max;
3326 int cmp;
3328 /* Pass through vr0 in the easy cases. */
3329 if (TYPE_UNSIGNED (type)
3330 || value_range_nonnegative_p (&vr0))
3332 copy_value_range (vr, &vr0);
3333 return;
3336 /* For the remaining varying or symbolic ranges we can't do anything
3337 useful. */
3338 if (vr0.type == VR_VARYING
3339 || symbolic_range_p (&vr0))
3341 set_value_range_to_varying (vr);
3342 return;
3345 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3346 useful range. */
3347 if (!TYPE_OVERFLOW_UNDEFINED (type)
3348 && ((vr0.type == VR_RANGE
3349 && vrp_val_is_min (vr0.min))
3350 || (vr0.type == VR_ANTI_RANGE
3351 && !vrp_val_is_min (vr0.min))))
3353 set_value_range_to_varying (vr);
3354 return;
3357 /* ABS_EXPR may flip the range around, if the original range
3358 included negative values. */
3359 if (is_overflow_infinity (vr0.min))
3360 min = positive_overflow_infinity (type);
3361 else if (!vrp_val_is_min (vr0.min))
3362 min = fold_unary_to_constant (code, type, vr0.min);
3363 else if (!needs_overflow_infinity (type))
3364 min = TYPE_MAX_VALUE (type);
3365 else if (supports_overflow_infinity (type))
3366 min = positive_overflow_infinity (type);
3367 else
3369 set_value_range_to_varying (vr);
3370 return;
3373 if (is_overflow_infinity (vr0.max))
3374 max = positive_overflow_infinity (type);
3375 else if (!vrp_val_is_min (vr0.max))
3376 max = fold_unary_to_constant (code, type, vr0.max);
3377 else if (!needs_overflow_infinity (type))
3378 max = TYPE_MAX_VALUE (type);
3379 else if (supports_overflow_infinity (type)
3380 /* We shouldn't generate [+INF, +INF] as set_value_range
3381 doesn't like this and ICEs. */
3382 && !is_positive_overflow_infinity (min))
3383 max = positive_overflow_infinity (type);
3384 else
3386 set_value_range_to_varying (vr);
3387 return;
3390 cmp = compare_values (min, max);
3392 /* If a VR_ANTI_RANGEs contains zero, then we have
3393 ~[-INF, min(MIN, MAX)]. */
3394 if (vr0.type == VR_ANTI_RANGE)
3396 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3398 /* Take the lower of the two values. */
3399 if (cmp != 1)
3400 max = min;
3402 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3403 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3404 flag_wrapv is set and the original anti-range doesn't include
3405 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3406 if (TYPE_OVERFLOW_WRAPS (type))
3408 tree type_min_value = TYPE_MIN_VALUE (type);
3410 min = (vr0.min != type_min_value
3411 ? int_const_binop (PLUS_EXPR, type_min_value,
3412 integer_one_node)
3413 : type_min_value);
3415 else
3417 if (overflow_infinity_range_p (&vr0))
3418 min = negative_overflow_infinity (type);
3419 else
3420 min = TYPE_MIN_VALUE (type);
3423 else
3425 /* All else has failed, so create the range [0, INF], even for
3426 flag_wrapv since TYPE_MIN_VALUE is in the original
3427 anti-range. */
3428 vr0.type = VR_RANGE;
3429 min = build_int_cst (type, 0);
3430 if (needs_overflow_infinity (type))
3432 if (supports_overflow_infinity (type))
3433 max = positive_overflow_infinity (type);
3434 else
3436 set_value_range_to_varying (vr);
3437 return;
3440 else
3441 max = TYPE_MAX_VALUE (type);
3445 /* If the range contains zero then we know that the minimum value in the
3446 range will be zero. */
3447 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3449 if (cmp == 1)
3450 max = min;
3451 min = build_int_cst (type, 0);
3453 else
3455 /* If the range was reversed, swap MIN and MAX. */
3456 if (cmp == 1)
3458 tree t = min;
3459 min = max;
3460 max = t;
3464 cmp = compare_values (min, max);
3465 if (cmp == -2 || cmp == 1)
3467 /* If the new range has its limits swapped around (MIN > MAX),
3468 then the operation caused one of them to wrap around, mark
3469 the new range VARYING. */
3470 set_value_range_to_varying (vr);
3472 else
3473 set_value_range (vr, vr0.type, min, max, NULL);
3474 return;
3477 /* For unhandled operations fall back to varying. */
3478 set_value_range_to_varying (vr);
3479 return;
3483 /* Extract range information from a unary expression CODE OP0 based on
3484 the range of its operand with resulting type TYPE.
3485 The resulting range is stored in *VR. */
3487 static void
3488 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3489 tree type, tree op0)
3491 value_range_t vr0 = VR_INITIALIZER;
3493 /* Get value ranges for the operand. For constant operands, create
3494 a new value range with the operand to simplify processing. */
3495 if (TREE_CODE (op0) == SSA_NAME)
3496 vr0 = *(get_value_range (op0));
3497 else if (is_gimple_min_invariant (op0))
3498 set_value_range_to_value (&vr0, op0, NULL);
3499 else
3500 set_value_range_to_varying (&vr0);
3502 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3506 /* Extract range information from a conditional expression STMT based on
3507 the ranges of each of its operands and the expression code. */
3509 static void
3510 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3512 tree op0, op1;
3513 value_range_t vr0 = VR_INITIALIZER;
3514 value_range_t vr1 = VR_INITIALIZER;
3516 /* Get value ranges for each operand. For constant operands, create
3517 a new value range with the operand to simplify processing. */
3518 op0 = gimple_assign_rhs2 (stmt);
3519 if (TREE_CODE (op0) == SSA_NAME)
3520 vr0 = *(get_value_range (op0));
3521 else if (is_gimple_min_invariant (op0))
3522 set_value_range_to_value (&vr0, op0, NULL);
3523 else
3524 set_value_range_to_varying (&vr0);
3526 op1 = gimple_assign_rhs3 (stmt);
3527 if (TREE_CODE (op1) == SSA_NAME)
3528 vr1 = *(get_value_range (op1));
3529 else if (is_gimple_min_invariant (op1))
3530 set_value_range_to_value (&vr1, op1, NULL);
3531 else
3532 set_value_range_to_varying (&vr1);
3534 /* The resulting value range is the union of the operand ranges */
3535 copy_value_range (vr, &vr0);
3536 vrp_meet (vr, &vr1);
3540 /* Extract range information from a comparison expression EXPR based
3541 on the range of its operand and the expression code. */
3543 static void
3544 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3545 tree type, tree op0, tree op1)
3547 bool sop = false;
3548 tree val;
3550 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3551 NULL);
3553 /* A disadvantage of using a special infinity as an overflow
3554 representation is that we lose the ability to record overflow
3555 when we don't have an infinity. So we have to ignore a result
3556 which relies on overflow. */
3558 if (val && !is_overflow_infinity (val) && !sop)
3560 /* Since this expression was found on the RHS of an assignment,
3561 its type may be different from _Bool. Convert VAL to EXPR's
3562 type. */
3563 val = fold_convert (type, val);
3564 if (is_gimple_min_invariant (val))
3565 set_value_range_to_value (vr, val, vr->equiv);
3566 else
3567 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3569 else
3570 /* The result of a comparison is always true or false. */
3571 set_value_range_to_truthvalue (vr, type);
3574 /* Try to derive a nonnegative or nonzero range out of STMT relying
3575 primarily on generic routines in fold in conjunction with range data.
3576 Store the result in *VR */
3578 static void
3579 extract_range_basic (value_range_t *vr, gimple stmt)
3581 bool sop = false;
3582 tree type = gimple_expr_type (stmt);
3584 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3586 tree fndecl = gimple_call_fndecl (stmt), arg;
3587 int mini, maxi, zerov = 0, prec;
3589 switch (DECL_FUNCTION_CODE (fndecl))
3591 case BUILT_IN_CONSTANT_P:
3592 /* If the call is __builtin_constant_p and the argument is a
3593 function parameter resolve it to false. This avoids bogus
3594 array bound warnings.
3595 ??? We could do this as early as inlining is finished. */
3596 arg = gimple_call_arg (stmt, 0);
3597 if (TREE_CODE (arg) == SSA_NAME
3598 && SSA_NAME_IS_DEFAULT_DEF (arg)
3599 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3601 set_value_range_to_null (vr, type);
3602 return;
3604 break;
3605 /* Both __builtin_ffs* and __builtin_popcount return
3606 [0, prec]. */
3607 CASE_INT_FN (BUILT_IN_FFS):
3608 CASE_INT_FN (BUILT_IN_POPCOUNT):
3609 arg = gimple_call_arg (stmt, 0);
3610 prec = TYPE_PRECISION (TREE_TYPE (arg));
3611 mini = 0;
3612 maxi = prec;
3613 if (TREE_CODE (arg) == SSA_NAME)
3615 value_range_t *vr0 = get_value_range (arg);
3616 /* If arg is non-zero, then ffs or popcount
3617 are non-zero. */
3618 if (((vr0->type == VR_RANGE
3619 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3620 || (vr0->type == VR_ANTI_RANGE
3621 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3622 && !is_overflow_infinity (vr0->min)
3623 && !is_overflow_infinity (vr0->max))
3624 mini = 1;
3625 /* If some high bits are known to be zero,
3626 we can decrease the maximum. */
3627 if (vr0->type == VR_RANGE
3628 && TREE_CODE (vr0->max) == INTEGER_CST
3629 && !operand_less_p (vr0->min,
3630 build_zero_cst (TREE_TYPE (vr0->min)))
3631 && !is_overflow_infinity (vr0->max))
3632 maxi = tree_floor_log2 (vr0->max) + 1;
3634 goto bitop_builtin;
3635 /* __builtin_parity* returns [0, 1]. */
3636 CASE_INT_FN (BUILT_IN_PARITY):
3637 mini = 0;
3638 maxi = 1;
3639 goto bitop_builtin;
3640 /* __builtin_c[lt]z* return [0, prec-1], except for
3641 when the argument is 0, but that is undefined behavior.
3642 On many targets where the CLZ RTL or optab value is defined
3643 for 0 the value is prec, so include that in the range
3644 by default. */
3645 CASE_INT_FN (BUILT_IN_CLZ):
3646 arg = gimple_call_arg (stmt, 0);
3647 prec = TYPE_PRECISION (TREE_TYPE (arg));
3648 mini = 0;
3649 maxi = prec;
3650 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3651 != CODE_FOR_nothing
3652 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3653 zerov)
3654 /* Handle only the single common value. */
3655 && zerov != prec)
3656 /* Magic value to give up, unless vr0 proves
3657 arg is non-zero. */
3658 mini = -2;
3659 if (TREE_CODE (arg) == SSA_NAME)
3661 value_range_t *vr0 = get_value_range (arg);
3662 /* From clz of VR_RANGE minimum we can compute
3663 result maximum. */
3664 if (vr0->type == VR_RANGE
3665 && TREE_CODE (vr0->min) == INTEGER_CST
3666 && !is_overflow_infinity (vr0->min))
3668 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3669 if (maxi != prec)
3670 mini = 0;
3672 else if (vr0->type == VR_ANTI_RANGE
3673 && integer_zerop (vr0->min)
3674 && !is_overflow_infinity (vr0->min))
3676 maxi = prec - 1;
3677 mini = 0;
3679 if (mini == -2)
3680 break;
3681 /* From clz of VR_RANGE maximum we can compute
3682 result minimum. */
3683 if (vr0->type == VR_RANGE
3684 && TREE_CODE (vr0->max) == INTEGER_CST
3685 && !is_overflow_infinity (vr0->max))
3687 mini = prec - 1 - tree_floor_log2 (vr0->max);
3688 if (mini == prec)
3689 break;
3692 if (mini == -2)
3693 break;
3694 goto bitop_builtin;
3695 /* __builtin_ctz* return [0, prec-1], except for
3696 when the argument is 0, but that is undefined behavior.
3697 If there is a ctz optab for this mode and
3698 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3699 otherwise just assume 0 won't be seen. */
3700 CASE_INT_FN (BUILT_IN_CTZ):
3701 arg = gimple_call_arg (stmt, 0);
3702 prec = TYPE_PRECISION (TREE_TYPE (arg));
3703 mini = 0;
3704 maxi = prec - 1;
3705 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3706 != CODE_FOR_nothing
3707 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3708 zerov))
3710 /* Handle only the two common values. */
3711 if (zerov == -1)
3712 mini = -1;
3713 else if (zerov == prec)
3714 maxi = prec;
3715 else
3716 /* Magic value to give up, unless vr0 proves
3717 arg is non-zero. */
3718 mini = -2;
3720 if (TREE_CODE (arg) == SSA_NAME)
3722 value_range_t *vr0 = get_value_range (arg);
3723 /* If arg is non-zero, then use [0, prec - 1]. */
3724 if (((vr0->type == VR_RANGE
3725 && integer_nonzerop (vr0->min))
3726 || (vr0->type == VR_ANTI_RANGE
3727 && integer_zerop (vr0->min)))
3728 && !is_overflow_infinity (vr0->min))
3730 mini = 0;
3731 maxi = prec - 1;
3733 /* If some high bits are known to be zero,
3734 we can decrease the result maximum. */
3735 if (vr0->type == VR_RANGE
3736 && TREE_CODE (vr0->max) == INTEGER_CST
3737 && !is_overflow_infinity (vr0->max))
3739 maxi = tree_floor_log2 (vr0->max);
3740 /* For vr0 [0, 0] give up. */
3741 if (maxi == -1)
3742 break;
3745 if (mini == -2)
3746 break;
3747 goto bitop_builtin;
3748 /* __builtin_clrsb* returns [0, prec-1]. */
3749 CASE_INT_FN (BUILT_IN_CLRSB):
3750 arg = gimple_call_arg (stmt, 0);
3751 prec = TYPE_PRECISION (TREE_TYPE (arg));
3752 mini = 0;
3753 maxi = prec - 1;
3754 goto bitop_builtin;
3755 bitop_builtin:
3756 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3757 build_int_cst (type, maxi), NULL);
3758 return;
3759 default:
3760 break;
3763 else if (is_gimple_call (stmt)
3764 && gimple_call_internal_p (stmt))
3766 enum tree_code subcode = ERROR_MARK;
3767 switch (gimple_call_internal_fn (stmt))
3769 case IFN_UBSAN_CHECK_ADD:
3770 subcode = PLUS_EXPR;
3771 break;
3772 case IFN_UBSAN_CHECK_SUB:
3773 subcode = MINUS_EXPR;
3774 break;
3775 case IFN_UBSAN_CHECK_MUL:
3776 subcode = MULT_EXPR;
3777 break;
3778 default:
3779 break;
3781 if (subcode != ERROR_MARK)
3783 bool saved_flag_wrapv = flag_wrapv;
3784 /* Pretend the arithmetics is wrapping. If there is
3785 any overflow, we'll complain, but will actually do
3786 wrapping operation. */
3787 flag_wrapv = 1;
3788 extract_range_from_binary_expr (vr, subcode, type,
3789 gimple_call_arg (stmt, 0),
3790 gimple_call_arg (stmt, 1));
3791 flag_wrapv = saved_flag_wrapv;
3793 /* If for both arguments vrp_valueize returned non-NULL,
3794 this should have been already folded and if not, it
3795 wasn't folded because of overflow. Avoid removing the
3796 UBSAN_CHECK_* calls in that case. */
3797 if (vr->type == VR_RANGE
3798 && (vr->min == vr->max
3799 || operand_equal_p (vr->min, vr->max, 0)))
3800 set_value_range_to_varying (vr);
3801 return;
3804 if (INTEGRAL_TYPE_P (type)
3805 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3806 set_value_range_to_nonnegative (vr, type,
3807 sop || stmt_overflow_infinity (stmt));
3808 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3809 && !sop)
3810 set_value_range_to_nonnull (vr, type);
3811 else
3812 set_value_range_to_varying (vr);
3816 /* Try to compute a useful range out of assignment STMT and store it
3817 in *VR. */
3819 static void
3820 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3822 enum tree_code code = gimple_assign_rhs_code (stmt);
3824 if (code == ASSERT_EXPR)
3825 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3826 else if (code == SSA_NAME)
3827 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3828 else if (TREE_CODE_CLASS (code) == tcc_binary)
3829 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3830 gimple_expr_type (stmt),
3831 gimple_assign_rhs1 (stmt),
3832 gimple_assign_rhs2 (stmt));
3833 else if (TREE_CODE_CLASS (code) == tcc_unary)
3834 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3835 gimple_expr_type (stmt),
3836 gimple_assign_rhs1 (stmt));
3837 else if (code == COND_EXPR)
3838 extract_range_from_cond_expr (vr, stmt);
3839 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3840 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3841 gimple_expr_type (stmt),
3842 gimple_assign_rhs1 (stmt),
3843 gimple_assign_rhs2 (stmt));
3844 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3845 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3846 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3847 else
3848 set_value_range_to_varying (vr);
3850 if (vr->type == VR_VARYING)
3851 extract_range_basic (vr, stmt);
3854 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3855 would be profitable to adjust VR using scalar evolution information
3856 for VAR. If so, update VR with the new limits. */
3858 static void
3859 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3860 gimple stmt, tree var)
3862 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3863 enum ev_direction dir;
3865 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3866 better opportunities than a regular range, but I'm not sure. */
3867 if (vr->type == VR_ANTI_RANGE)
3868 return;
3870 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3872 /* Like in PR19590, scev can return a constant function. */
3873 if (is_gimple_min_invariant (chrec))
3875 set_value_range_to_value (vr, chrec, vr->equiv);
3876 return;
3879 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3880 return;
3882 init = initial_condition_in_loop_num (chrec, loop->num);
3883 tem = op_with_constant_singleton_value_range (init);
3884 if (tem)
3885 init = tem;
3886 step = evolution_part_in_loop_num (chrec, loop->num);
3887 tem = op_with_constant_singleton_value_range (step);
3888 if (tem)
3889 step = tem;
3891 /* If STEP is symbolic, we can't know whether INIT will be the
3892 minimum or maximum value in the range. Also, unless INIT is
3893 a simple expression, compare_values and possibly other functions
3894 in tree-vrp won't be able to handle it. */
3895 if (step == NULL_TREE
3896 || !is_gimple_min_invariant (step)
3897 || !valid_value_p (init))
3898 return;
3900 dir = scev_direction (chrec);
3901 if (/* Do not adjust ranges if we do not know whether the iv increases
3902 or decreases, ... */
3903 dir == EV_DIR_UNKNOWN
3904 /* ... or if it may wrap. */
3905 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3906 true))
3907 return;
3909 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3910 negative_overflow_infinity and positive_overflow_infinity,
3911 because we have concluded that the loop probably does not
3912 wrap. */
3914 type = TREE_TYPE (var);
3915 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3916 tmin = lower_bound_in_type (type, type);
3917 else
3918 tmin = TYPE_MIN_VALUE (type);
3919 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3920 tmax = upper_bound_in_type (type, type);
3921 else
3922 tmax = TYPE_MAX_VALUE (type);
3924 /* Try to use estimated number of iterations for the loop to constrain the
3925 final value in the evolution. */
3926 if (TREE_CODE (step) == INTEGER_CST
3927 && is_gimple_val (init)
3928 && (TREE_CODE (init) != SSA_NAME
3929 || get_value_range (init)->type == VR_RANGE))
3931 double_int nit;
3933 /* We are only entering here for loop header PHI nodes, so using
3934 the number of latch executions is the correct thing to use. */
3935 if (max_loop_iterations (loop, &nit))
3937 value_range_t maxvr = VR_INITIALIZER;
3938 double_int dtmp;
3939 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3940 bool overflow = false;
3942 dtmp = tree_to_double_int (step)
3943 .mul_with_sign (nit, unsigned_p, &overflow);
3944 /* If the multiplication overflowed we can't do a meaningful
3945 adjustment. Likewise if the result doesn't fit in the type
3946 of the induction variable. For a signed type we have to
3947 check whether the result has the expected signedness which
3948 is that of the step as number of iterations is unsigned. */
3949 if (!overflow
3950 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3951 && (unsigned_p
3952 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3954 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3955 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3956 TREE_TYPE (init), init, tem);
3957 /* Likewise if the addition did. */
3958 if (maxvr.type == VR_RANGE)
3960 tmin = maxvr.min;
3961 tmax = maxvr.max;
3967 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3969 min = tmin;
3970 max = tmax;
3972 /* For VARYING or UNDEFINED ranges, just about anything we get
3973 from scalar evolutions should be better. */
3975 if (dir == EV_DIR_DECREASES)
3976 max = init;
3977 else
3978 min = init;
3980 /* If we would create an invalid range, then just assume we
3981 know absolutely nothing. This may be over-conservative,
3982 but it's clearly safe, and should happen only in unreachable
3983 parts of code, or for invalid programs. */
3984 if (compare_values (min, max) == 1)
3985 return;
3987 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3989 else if (vr->type == VR_RANGE)
3991 min = vr->min;
3992 max = vr->max;
3994 if (dir == EV_DIR_DECREASES)
3996 /* INIT is the maximum value. If INIT is lower than VR->MAX
3997 but no smaller than VR->MIN, set VR->MAX to INIT. */
3998 if (compare_values (init, max) == -1)
3999 max = init;
4001 /* According to the loop information, the variable does not
4002 overflow. If we think it does, probably because of an
4003 overflow due to arithmetic on a different INF value,
4004 reset now. */
4005 if (is_negative_overflow_infinity (min)
4006 || compare_values (min, tmin) == -1)
4007 min = tmin;
4010 else
4012 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4013 if (compare_values (init, min) == 1)
4014 min = init;
4016 if (is_positive_overflow_infinity (max)
4017 || compare_values (tmax, max) == -1)
4018 max = tmax;
4021 /* If we just created an invalid range with the minimum
4022 greater than the maximum, we fail conservatively.
4023 This should happen only in unreachable
4024 parts of code, or for invalid programs. */
4025 if (compare_values (min, max) == 1)
4026 return;
4028 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4032 /* Return true if VAR may overflow at STMT. This checks any available
4033 loop information to see if we can determine that VAR does not
4034 overflow. */
4036 static bool
4037 vrp_var_may_overflow (tree var, gimple stmt)
4039 struct loop *l;
4040 tree chrec, init, step;
4042 if (current_loops == NULL)
4043 return true;
4045 l = loop_containing_stmt (stmt);
4046 if (l == NULL
4047 || !loop_outer (l))
4048 return true;
4050 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
4051 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4052 return true;
4054 init = initial_condition_in_loop_num (chrec, l->num);
4055 step = evolution_part_in_loop_num (chrec, l->num);
4057 if (step == NULL_TREE
4058 || !is_gimple_min_invariant (step)
4059 || !valid_value_p (init))
4060 return true;
4062 /* If we get here, we know something useful about VAR based on the
4063 loop information. If it wraps, it may overflow. */
4065 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4066 true))
4067 return true;
4069 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
4071 print_generic_expr (dump_file, var, 0);
4072 fprintf (dump_file, ": loop information indicates does not overflow\n");
4075 return false;
4079 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4081 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4082 all the values in the ranges.
4084 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4086 - Return NULL_TREE if it is not always possible to determine the
4087 value of the comparison.
4089 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4090 overflow infinity was used in the test. */
4093 static tree
4094 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4095 bool *strict_overflow_p)
4097 /* VARYING or UNDEFINED ranges cannot be compared. */
4098 if (vr0->type == VR_VARYING
4099 || vr0->type == VR_UNDEFINED
4100 || vr1->type == VR_VARYING
4101 || vr1->type == VR_UNDEFINED)
4102 return NULL_TREE;
4104 /* Anti-ranges need to be handled separately. */
4105 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4107 /* If both are anti-ranges, then we cannot compute any
4108 comparison. */
4109 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4110 return NULL_TREE;
4112 /* These comparisons are never statically computable. */
4113 if (comp == GT_EXPR
4114 || comp == GE_EXPR
4115 || comp == LT_EXPR
4116 || comp == LE_EXPR)
4117 return NULL_TREE;
4119 /* Equality can be computed only between a range and an
4120 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4121 if (vr0->type == VR_RANGE)
4123 /* To simplify processing, make VR0 the anti-range. */
4124 value_range_t *tmp = vr0;
4125 vr0 = vr1;
4126 vr1 = tmp;
4129 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4131 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4132 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4133 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4135 return NULL_TREE;
4138 if (!usable_range_p (vr0, strict_overflow_p)
4139 || !usable_range_p (vr1, strict_overflow_p))
4140 return NULL_TREE;
4142 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4143 operands around and change the comparison code. */
4144 if (comp == GT_EXPR || comp == GE_EXPR)
4146 value_range_t *tmp;
4147 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4148 tmp = vr0;
4149 vr0 = vr1;
4150 vr1 = tmp;
4153 if (comp == EQ_EXPR)
4155 /* Equality may only be computed if both ranges represent
4156 exactly one value. */
4157 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4158 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4160 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4161 strict_overflow_p);
4162 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4163 strict_overflow_p);
4164 if (cmp_min == 0 && cmp_max == 0)
4165 return boolean_true_node;
4166 else if (cmp_min != -2 && cmp_max != -2)
4167 return boolean_false_node;
4169 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4170 else if (compare_values_warnv (vr0->min, vr1->max,
4171 strict_overflow_p) == 1
4172 || compare_values_warnv (vr1->min, vr0->max,
4173 strict_overflow_p) == 1)
4174 return boolean_false_node;
4176 return NULL_TREE;
4178 else if (comp == NE_EXPR)
4180 int cmp1, cmp2;
4182 /* If VR0 is completely to the left or completely to the right
4183 of VR1, they are always different. Notice that we need to
4184 make sure that both comparisons yield similar results to
4185 avoid comparing values that cannot be compared at
4186 compile-time. */
4187 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4188 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4189 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4190 return boolean_true_node;
4192 /* If VR0 and VR1 represent a single value and are identical,
4193 return false. */
4194 else if (compare_values_warnv (vr0->min, vr0->max,
4195 strict_overflow_p) == 0
4196 && compare_values_warnv (vr1->min, vr1->max,
4197 strict_overflow_p) == 0
4198 && compare_values_warnv (vr0->min, vr1->min,
4199 strict_overflow_p) == 0
4200 && compare_values_warnv (vr0->max, vr1->max,
4201 strict_overflow_p) == 0)
4202 return boolean_false_node;
4204 /* Otherwise, they may or may not be different. */
4205 else
4206 return NULL_TREE;
4208 else if (comp == LT_EXPR || comp == LE_EXPR)
4210 int tst;
4212 /* If VR0 is to the left of VR1, return true. */
4213 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4214 if ((comp == LT_EXPR && tst == -1)
4215 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4217 if (overflow_infinity_range_p (vr0)
4218 || overflow_infinity_range_p (vr1))
4219 *strict_overflow_p = true;
4220 return boolean_true_node;
4223 /* If VR0 is to the right of VR1, return false. */
4224 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4225 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4226 || (comp == LE_EXPR && tst == 1))
4228 if (overflow_infinity_range_p (vr0)
4229 || overflow_infinity_range_p (vr1))
4230 *strict_overflow_p = true;
4231 return boolean_false_node;
4234 /* Otherwise, we don't know. */
4235 return NULL_TREE;
4238 gcc_unreachable ();
4242 /* Given a value range VR, a value VAL and a comparison code COMP, return
4243 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4244 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4245 always returns false. Return NULL_TREE if it is not always
4246 possible to determine the value of the comparison. Also set
4247 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4248 infinity was used in the test. */
4250 static tree
4251 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4252 bool *strict_overflow_p)
4254 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4255 return NULL_TREE;
4257 /* Anti-ranges need to be handled separately. */
4258 if (vr->type == VR_ANTI_RANGE)
4260 /* For anti-ranges, the only predicates that we can compute at
4261 compile time are equality and inequality. */
4262 if (comp == GT_EXPR
4263 || comp == GE_EXPR
4264 || comp == LT_EXPR
4265 || comp == LE_EXPR)
4266 return NULL_TREE;
4268 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4269 if (value_inside_range (val, vr->min, vr->max) == 1)
4270 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4272 return NULL_TREE;
4275 if (!usable_range_p (vr, strict_overflow_p))
4276 return NULL_TREE;
4278 if (comp == EQ_EXPR)
4280 /* EQ_EXPR may only be computed if VR represents exactly
4281 one value. */
4282 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4284 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4285 if (cmp == 0)
4286 return boolean_true_node;
4287 else if (cmp == -1 || cmp == 1 || cmp == 2)
4288 return boolean_false_node;
4290 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4291 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4292 return boolean_false_node;
4294 return NULL_TREE;
4296 else if (comp == NE_EXPR)
4298 /* If VAL is not inside VR, then they are always different. */
4299 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4300 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4301 return boolean_true_node;
4303 /* If VR represents exactly one value equal to VAL, then return
4304 false. */
4305 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4306 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4307 return boolean_false_node;
4309 /* Otherwise, they may or may not be different. */
4310 return NULL_TREE;
4312 else if (comp == LT_EXPR || comp == LE_EXPR)
4314 int tst;
4316 /* If VR is to the left of VAL, return true. */
4317 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4318 if ((comp == LT_EXPR && tst == -1)
4319 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4321 if (overflow_infinity_range_p (vr))
4322 *strict_overflow_p = true;
4323 return boolean_true_node;
4326 /* If VR is to the right of VAL, return false. */
4327 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4328 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4329 || (comp == LE_EXPR && tst == 1))
4331 if (overflow_infinity_range_p (vr))
4332 *strict_overflow_p = true;
4333 return boolean_false_node;
4336 /* Otherwise, we don't know. */
4337 return NULL_TREE;
4339 else if (comp == GT_EXPR || comp == GE_EXPR)
4341 int tst;
4343 /* If VR is to the right of VAL, return true. */
4344 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4345 if ((comp == GT_EXPR && tst == 1)
4346 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4348 if (overflow_infinity_range_p (vr))
4349 *strict_overflow_p = true;
4350 return boolean_true_node;
4353 /* If VR is to the left of VAL, return false. */
4354 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4355 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4356 || (comp == GE_EXPR && tst == -1))
4358 if (overflow_infinity_range_p (vr))
4359 *strict_overflow_p = true;
4360 return boolean_false_node;
4363 /* Otherwise, we don't know. */
4364 return NULL_TREE;
4367 gcc_unreachable ();
4371 /* Debugging dumps. */
4373 void dump_value_range (FILE *, value_range_t *);
4374 void debug_value_range (value_range_t *);
4375 void dump_all_value_ranges (FILE *);
4376 void debug_all_value_ranges (void);
4377 void dump_vr_equiv (FILE *, bitmap);
4378 void debug_vr_equiv (bitmap);
4381 /* Dump value range VR to FILE. */
4383 void
4384 dump_value_range (FILE *file, value_range_t *vr)
4386 if (vr == NULL)
4387 fprintf (file, "[]");
4388 else if (vr->type == VR_UNDEFINED)
4389 fprintf (file, "UNDEFINED");
4390 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4392 tree type = TREE_TYPE (vr->min);
4394 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4396 if (is_negative_overflow_infinity (vr->min))
4397 fprintf (file, "-INF(OVF)");
4398 else if (INTEGRAL_TYPE_P (type)
4399 && !TYPE_UNSIGNED (type)
4400 && vrp_val_is_min (vr->min))
4401 fprintf (file, "-INF");
4402 else
4403 print_generic_expr (file, vr->min, 0);
4405 fprintf (file, ", ");
4407 if (is_positive_overflow_infinity (vr->max))
4408 fprintf (file, "+INF(OVF)");
4409 else if (INTEGRAL_TYPE_P (type)
4410 && vrp_val_is_max (vr->max))
4411 fprintf (file, "+INF");
4412 else
4413 print_generic_expr (file, vr->max, 0);
4415 fprintf (file, "]");
4417 if (vr->equiv)
4419 bitmap_iterator bi;
4420 unsigned i, c = 0;
4422 fprintf (file, " EQUIVALENCES: { ");
4424 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4426 print_generic_expr (file, ssa_name (i), 0);
4427 fprintf (file, " ");
4428 c++;
4431 fprintf (file, "} (%u elements)", c);
4434 else if (vr->type == VR_VARYING)
4435 fprintf (file, "VARYING");
4436 else
4437 fprintf (file, "INVALID RANGE");
4441 /* Dump value range VR to stderr. */
4443 DEBUG_FUNCTION void
4444 debug_value_range (value_range_t *vr)
4446 dump_value_range (stderr, vr);
4447 fprintf (stderr, "\n");
4451 /* Dump value ranges of all SSA_NAMEs to FILE. */
4453 void
4454 dump_all_value_ranges (FILE *file)
4456 size_t i;
4458 for (i = 0; i < num_vr_values; i++)
4460 if (vr_value[i])
4462 print_generic_expr (file, ssa_name (i), 0);
4463 fprintf (file, ": ");
4464 dump_value_range (file, vr_value[i]);
4465 fprintf (file, "\n");
4469 fprintf (file, "\n");
4473 /* Dump all value ranges to stderr. */
4475 DEBUG_FUNCTION void
4476 debug_all_value_ranges (void)
4478 dump_all_value_ranges (stderr);
4482 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4483 create a new SSA name N and return the assertion assignment
4484 'V = ASSERT_EXPR <V, V OP W>'. */
4486 static gimple
4487 build_assert_expr_for (tree cond, tree v)
4489 tree a;
4490 gimple assertion;
4492 gcc_assert (TREE_CODE (v) == SSA_NAME
4493 && COMPARISON_CLASS_P (cond));
4495 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4496 assertion = gimple_build_assign (NULL_TREE, a);
4498 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4499 operand of the ASSERT_EXPR. Create it so the new name and the old one
4500 are registered in the replacement table so that we can fix the SSA web
4501 after adding all the ASSERT_EXPRs. */
4502 create_new_def_for (v, assertion, NULL);
4504 return assertion;
4508 /* Return false if EXPR is a predicate expression involving floating
4509 point values. */
4511 static inline bool
4512 fp_predicate (gimple stmt)
4514 GIMPLE_CHECK (stmt, GIMPLE_COND);
4516 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4519 /* If the range of values taken by OP can be inferred after STMT executes,
4520 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4521 describes the inferred range. Return true if a range could be
4522 inferred. */
4524 static bool
4525 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4527 *val_p = NULL_TREE;
4528 *comp_code_p = ERROR_MARK;
4530 /* Do not attempt to infer anything in names that flow through
4531 abnormal edges. */
4532 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4533 return false;
4535 /* Similarly, don't infer anything from statements that may throw
4536 exceptions. ??? Relax this requirement? */
4537 if (stmt_could_throw_p (stmt))
4538 return false;
4540 /* If STMT is the last statement of a basic block with no normal
4541 successors, there is no point inferring anything about any of its
4542 operands. We would not be able to find a proper insertion point
4543 for the assertion, anyway. */
4544 if (stmt_ends_bb_p (stmt))
4546 edge_iterator ei;
4547 edge e;
4549 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4550 if (!(e->flags & EDGE_ABNORMAL))
4551 break;
4552 if (e == NULL)
4553 return false;
4556 if (infer_nonnull_range (stmt, op, true, true))
4558 *val_p = build_int_cst (TREE_TYPE (op), 0);
4559 *comp_code_p = NE_EXPR;
4560 return true;
4563 return false;
4567 void dump_asserts_for (FILE *, tree);
4568 void debug_asserts_for (tree);
4569 void dump_all_asserts (FILE *);
4570 void debug_all_asserts (void);
4572 /* Dump all the registered assertions for NAME to FILE. */
4574 void
4575 dump_asserts_for (FILE *file, tree name)
4577 assert_locus_t loc;
4579 fprintf (file, "Assertions to be inserted for ");
4580 print_generic_expr (file, name, 0);
4581 fprintf (file, "\n");
4583 loc = asserts_for[SSA_NAME_VERSION (name)];
4584 while (loc)
4586 fprintf (file, "\t");
4587 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4588 fprintf (file, "\n\tBB #%d", loc->bb->index);
4589 if (loc->e)
4591 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4592 loc->e->dest->index);
4593 dump_edge_info (file, loc->e, dump_flags, 0);
4595 fprintf (file, "\n\tPREDICATE: ");
4596 print_generic_expr (file, name, 0);
4597 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4598 print_generic_expr (file, loc->val, 0);
4599 fprintf (file, "\n\n");
4600 loc = loc->next;
4603 fprintf (file, "\n");
4607 /* Dump all the registered assertions for NAME to stderr. */
4609 DEBUG_FUNCTION void
4610 debug_asserts_for (tree name)
4612 dump_asserts_for (stderr, name);
4616 /* Dump all the registered assertions for all the names to FILE. */
4618 void
4619 dump_all_asserts (FILE *file)
4621 unsigned i;
4622 bitmap_iterator bi;
4624 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4625 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4626 dump_asserts_for (file, ssa_name (i));
4627 fprintf (file, "\n");
4631 /* Dump all the registered assertions for all the names to stderr. */
4633 DEBUG_FUNCTION void
4634 debug_all_asserts (void)
4636 dump_all_asserts (stderr);
4640 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4641 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4642 E->DEST, then register this location as a possible insertion point
4643 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4645 BB, E and SI provide the exact insertion point for the new
4646 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4647 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4648 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4649 must not be NULL. */
4651 static void
4652 register_new_assert_for (tree name, tree expr,
4653 enum tree_code comp_code,
4654 tree val,
4655 basic_block bb,
4656 edge e,
4657 gimple_stmt_iterator si)
4659 assert_locus_t n, loc, last_loc;
4660 basic_block dest_bb;
4662 gcc_checking_assert (bb == NULL || e == NULL);
4664 if (e == NULL)
4665 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4666 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4668 /* Never build an assert comparing against an integer constant with
4669 TREE_OVERFLOW set. This confuses our undefined overflow warning
4670 machinery. */
4671 if (TREE_OVERFLOW_P (val))
4672 val = drop_tree_overflow (val);
4674 /* The new assertion A will be inserted at BB or E. We need to
4675 determine if the new location is dominated by a previously
4676 registered location for A. If we are doing an edge insertion,
4677 assume that A will be inserted at E->DEST. Note that this is not
4678 necessarily true.
4680 If E is a critical edge, it will be split. But even if E is
4681 split, the new block will dominate the same set of blocks that
4682 E->DEST dominates.
4684 The reverse, however, is not true, blocks dominated by E->DEST
4685 will not be dominated by the new block created to split E. So,
4686 if the insertion location is on a critical edge, we will not use
4687 the new location to move another assertion previously registered
4688 at a block dominated by E->DEST. */
4689 dest_bb = (bb) ? bb : e->dest;
4691 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4692 VAL at a block dominating DEST_BB, then we don't need to insert a new
4693 one. Similarly, if the same assertion already exists at a block
4694 dominated by DEST_BB and the new location is not on a critical
4695 edge, then update the existing location for the assertion (i.e.,
4696 move the assertion up in the dominance tree).
4698 Note, this is implemented as a simple linked list because there
4699 should not be more than a handful of assertions registered per
4700 name. If this becomes a performance problem, a table hashed by
4701 COMP_CODE and VAL could be implemented. */
4702 loc = asserts_for[SSA_NAME_VERSION (name)];
4703 last_loc = loc;
4704 while (loc)
4706 if (loc->comp_code == comp_code
4707 && (loc->val == val
4708 || operand_equal_p (loc->val, val, 0))
4709 && (loc->expr == expr
4710 || operand_equal_p (loc->expr, expr, 0)))
4712 /* If E is not a critical edge and DEST_BB
4713 dominates the existing location for the assertion, move
4714 the assertion up in the dominance tree by updating its
4715 location information. */
4716 if ((e == NULL || !EDGE_CRITICAL_P (e))
4717 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4719 loc->bb = dest_bb;
4720 loc->e = e;
4721 loc->si = si;
4722 return;
4726 /* Update the last node of the list and move to the next one. */
4727 last_loc = loc;
4728 loc = loc->next;
4731 /* If we didn't find an assertion already registered for
4732 NAME COMP_CODE VAL, add a new one at the end of the list of
4733 assertions associated with NAME. */
4734 n = XNEW (struct assert_locus_d);
4735 n->bb = dest_bb;
4736 n->e = e;
4737 n->si = si;
4738 n->comp_code = comp_code;
4739 n->val = val;
4740 n->expr = expr;
4741 n->next = NULL;
4743 if (last_loc)
4744 last_loc->next = n;
4745 else
4746 asserts_for[SSA_NAME_VERSION (name)] = n;
4748 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4751 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4752 Extract a suitable test code and value and store them into *CODE_P and
4753 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4755 If no extraction was possible, return FALSE, otherwise return TRUE.
4757 If INVERT is true, then we invert the result stored into *CODE_P. */
4759 static bool
4760 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4761 tree cond_op0, tree cond_op1,
4762 bool invert, enum tree_code *code_p,
4763 tree *val_p)
4765 enum tree_code comp_code;
4766 tree val;
4768 /* Otherwise, we have a comparison of the form NAME COMP VAL
4769 or VAL COMP NAME. */
4770 if (name == cond_op1)
4772 /* If the predicate is of the form VAL COMP NAME, flip
4773 COMP around because we need to register NAME as the
4774 first operand in the predicate. */
4775 comp_code = swap_tree_comparison (cond_code);
4776 val = cond_op0;
4778 else
4780 /* The comparison is of the form NAME COMP VAL, so the
4781 comparison code remains unchanged. */
4782 comp_code = cond_code;
4783 val = cond_op1;
4786 /* Invert the comparison code as necessary. */
4787 if (invert)
4788 comp_code = invert_tree_comparison (comp_code, 0);
4790 /* VRP does not handle float types. */
4791 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4792 return false;
4794 /* Do not register always-false predicates.
4795 FIXME: this works around a limitation in fold() when dealing with
4796 enumerations. Given 'enum { N1, N2 } x;', fold will not
4797 fold 'if (x > N2)' to 'if (0)'. */
4798 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4799 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4801 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4802 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4804 if (comp_code == GT_EXPR
4805 && (!max
4806 || compare_values (val, max) == 0))
4807 return false;
4809 if (comp_code == LT_EXPR
4810 && (!min
4811 || compare_values (val, min) == 0))
4812 return false;
4814 *code_p = comp_code;
4815 *val_p = val;
4816 return true;
4819 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4820 (otherwise return VAL). VAL and MASK must be zero-extended for
4821 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4822 (to transform signed values into unsigned) and at the end xor
4823 SGNBIT back. */
4825 static double_int
4826 masked_increment (double_int val, double_int mask, double_int sgnbit,
4827 unsigned int prec)
4829 double_int bit = double_int_one, res;
4830 unsigned int i;
4832 val ^= sgnbit;
4833 for (i = 0; i < prec; i++, bit += bit)
4835 res = mask;
4836 if ((res & bit).is_zero ())
4837 continue;
4838 res = bit - double_int_one;
4839 res = (val + bit).and_not (res);
4840 res &= mask;
4841 if (res.ugt (val))
4842 return res ^ sgnbit;
4844 return val ^ sgnbit;
4847 /* Try to register an edge assertion for SSA name NAME on edge E for
4848 the condition COND contributing to the conditional jump pointed to by BSI.
4849 Invert the condition COND if INVERT is true.
4850 Return true if an assertion for NAME could be registered. */
4852 static bool
4853 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4854 enum tree_code cond_code,
4855 tree cond_op0, tree cond_op1, bool invert)
4857 tree val;
4858 enum tree_code comp_code;
4859 bool retval = false;
4861 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4862 cond_op0,
4863 cond_op1,
4864 invert, &comp_code, &val))
4865 return false;
4867 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4868 reachable from E. */
4869 if (live_on_edge (e, name)
4870 && !has_single_use (name))
4872 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4873 retval = true;
4876 /* In the case of NAME <= CST and NAME being defined as
4877 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4878 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4879 This catches range and anti-range tests. */
4880 if ((comp_code == LE_EXPR
4881 || comp_code == GT_EXPR)
4882 && TREE_CODE (val) == INTEGER_CST
4883 && TYPE_UNSIGNED (TREE_TYPE (val)))
4885 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4886 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4888 /* Extract CST2 from the (optional) addition. */
4889 if (is_gimple_assign (def_stmt)
4890 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4892 name2 = gimple_assign_rhs1 (def_stmt);
4893 cst2 = gimple_assign_rhs2 (def_stmt);
4894 if (TREE_CODE (name2) == SSA_NAME
4895 && TREE_CODE (cst2) == INTEGER_CST)
4896 def_stmt = SSA_NAME_DEF_STMT (name2);
4899 /* Extract NAME2 from the (optional) sign-changing cast. */
4900 if (gimple_assign_cast_p (def_stmt))
4902 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4903 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4904 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4905 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4906 name3 = gimple_assign_rhs1 (def_stmt);
4909 /* If name3 is used later, create an ASSERT_EXPR for it. */
4910 if (name3 != NULL_TREE
4911 && TREE_CODE (name3) == SSA_NAME
4912 && (cst2 == NULL_TREE
4913 || TREE_CODE (cst2) == INTEGER_CST)
4914 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4915 && live_on_edge (e, name3)
4916 && !has_single_use (name3))
4918 tree tmp;
4920 /* Build an expression for the range test. */
4921 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4922 if (cst2 != NULL_TREE)
4923 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4925 if (dump_file)
4927 fprintf (dump_file, "Adding assert for ");
4928 print_generic_expr (dump_file, name3, 0);
4929 fprintf (dump_file, " from ");
4930 print_generic_expr (dump_file, tmp, 0);
4931 fprintf (dump_file, "\n");
4934 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4936 retval = true;
4939 /* If name2 is used later, create an ASSERT_EXPR for it. */
4940 if (name2 != NULL_TREE
4941 && TREE_CODE (name2) == SSA_NAME
4942 && TREE_CODE (cst2) == INTEGER_CST
4943 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4944 && live_on_edge (e, name2)
4945 && !has_single_use (name2))
4947 tree tmp;
4949 /* Build an expression for the range test. */
4950 tmp = name2;
4951 if (TREE_TYPE (name) != TREE_TYPE (name2))
4952 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4953 if (cst2 != NULL_TREE)
4954 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4956 if (dump_file)
4958 fprintf (dump_file, "Adding assert for ");
4959 print_generic_expr (dump_file, name2, 0);
4960 fprintf (dump_file, " from ");
4961 print_generic_expr (dump_file, tmp, 0);
4962 fprintf (dump_file, "\n");
4965 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4967 retval = true;
4971 /* In the case of post-in/decrement tests like if (i++) ... and uses
4972 of the in/decremented value on the edge the extra name we want to
4973 assert for is not on the def chain of the name compared. Instead
4974 it is in the set of use stmts. */
4975 if ((comp_code == NE_EXPR
4976 || comp_code == EQ_EXPR)
4977 && TREE_CODE (val) == INTEGER_CST)
4979 imm_use_iterator ui;
4980 gimple use_stmt;
4981 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4983 /* Cut off to use-stmts that are in the predecessor. */
4984 if (gimple_bb (use_stmt) != e->src)
4985 continue;
4987 if (!is_gimple_assign (use_stmt))
4988 continue;
4990 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4991 if (code != PLUS_EXPR
4992 && code != MINUS_EXPR)
4993 continue;
4995 tree cst = gimple_assign_rhs2 (use_stmt);
4996 if (TREE_CODE (cst) != INTEGER_CST)
4997 continue;
4999 tree name2 = gimple_assign_lhs (use_stmt);
5000 if (live_on_edge (e, name2))
5002 cst = int_const_binop (code, val, cst);
5003 register_new_assert_for (name2, name2, comp_code, cst,
5004 NULL, e, bsi);
5005 retval = true;
5010 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5011 && TREE_CODE (val) == INTEGER_CST)
5013 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5014 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5015 tree val2 = NULL_TREE;
5016 double_int mask = double_int_zero;
5017 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5018 unsigned int nprec = prec;
5019 enum tree_code rhs_code = ERROR_MARK;
5021 if (is_gimple_assign (def_stmt))
5022 rhs_code = gimple_assign_rhs_code (def_stmt);
5024 /* Add asserts for NAME cmp CST and NAME being defined
5025 as NAME = (int) NAME2. */
5026 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5027 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5028 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5029 && gimple_assign_cast_p (def_stmt))
5031 name2 = gimple_assign_rhs1 (def_stmt);
5032 if (CONVERT_EXPR_CODE_P (rhs_code)
5033 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5034 && TYPE_UNSIGNED (TREE_TYPE (name2))
5035 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5036 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5037 || !tree_int_cst_equal (val,
5038 TYPE_MIN_VALUE (TREE_TYPE (val))))
5039 && live_on_edge (e, name2)
5040 && !has_single_use (name2))
5042 tree tmp, cst;
5043 enum tree_code new_comp_code = comp_code;
5045 cst = fold_convert (TREE_TYPE (name2),
5046 TYPE_MIN_VALUE (TREE_TYPE (val)));
5047 /* Build an expression for the range test. */
5048 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5049 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5050 fold_convert (TREE_TYPE (name2), val));
5051 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5053 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5054 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5055 build_int_cst (TREE_TYPE (name2), 1));
5058 if (dump_file)
5060 fprintf (dump_file, "Adding assert for ");
5061 print_generic_expr (dump_file, name2, 0);
5062 fprintf (dump_file, " from ");
5063 print_generic_expr (dump_file, tmp, 0);
5064 fprintf (dump_file, "\n");
5067 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5068 e, bsi);
5070 retval = true;
5074 /* Add asserts for NAME cmp CST and NAME being defined as
5075 NAME = NAME2 >> CST2.
5077 Extract CST2 from the right shift. */
5078 if (rhs_code == RSHIFT_EXPR)
5080 name2 = gimple_assign_rhs1 (def_stmt);
5081 cst2 = gimple_assign_rhs2 (def_stmt);
5082 if (TREE_CODE (name2) == SSA_NAME
5083 && tree_fits_uhwi_p (cst2)
5084 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5085 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5086 && prec <= HOST_BITS_PER_DOUBLE_INT
5087 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5088 && live_on_edge (e, name2)
5089 && !has_single_use (name2))
5091 mask = double_int::mask (tree_to_uhwi (cst2));
5092 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5095 if (val2 != NULL_TREE
5096 && TREE_CODE (val2) == INTEGER_CST
5097 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5098 TREE_TYPE (val),
5099 val2, cst2), val))
5101 enum tree_code new_comp_code = comp_code;
5102 tree tmp, new_val;
5104 tmp = name2;
5105 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5107 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5109 tree type = build_nonstandard_integer_type (prec, 1);
5110 tmp = build1 (NOP_EXPR, type, name2);
5111 val2 = fold_convert (type, val2);
5113 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5114 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
5115 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5117 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5119 double_int minval
5120 = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5121 new_val = val2;
5122 if (minval == tree_to_double_int (new_val))
5123 new_val = NULL_TREE;
5125 else
5127 double_int maxval
5128 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5129 mask |= tree_to_double_int (val2);
5130 if (mask == maxval)
5131 new_val = NULL_TREE;
5132 else
5133 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
5136 if (new_val)
5138 if (dump_file)
5140 fprintf (dump_file, "Adding assert for ");
5141 print_generic_expr (dump_file, name2, 0);
5142 fprintf (dump_file, " from ");
5143 print_generic_expr (dump_file, tmp, 0);
5144 fprintf (dump_file, "\n");
5147 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5148 NULL, e, bsi);
5149 retval = true;
5153 /* Add asserts for NAME cmp CST and NAME being defined as
5154 NAME = NAME2 & CST2.
5156 Extract CST2 from the and.
5158 Also handle
5159 NAME = (unsigned) NAME2;
5160 casts where NAME's type is unsigned and has smaller precision
5161 than NAME2's type as if it was NAME = NAME2 & MASK. */
5162 names[0] = NULL_TREE;
5163 names[1] = NULL_TREE;
5164 cst2 = NULL_TREE;
5165 if (rhs_code == BIT_AND_EXPR
5166 || (CONVERT_EXPR_CODE_P (rhs_code)
5167 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5168 && TYPE_UNSIGNED (TREE_TYPE (val))
5169 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5170 > prec
5171 && !retval))
5173 name2 = gimple_assign_rhs1 (def_stmt);
5174 if (rhs_code == BIT_AND_EXPR)
5175 cst2 = gimple_assign_rhs2 (def_stmt);
5176 else
5178 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5179 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5181 if (TREE_CODE (name2) == SSA_NAME
5182 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5183 && TREE_CODE (cst2) == INTEGER_CST
5184 && !integer_zerop (cst2)
5185 && nprec <= HOST_BITS_PER_DOUBLE_INT
5186 && (nprec > 1
5187 || TYPE_UNSIGNED (TREE_TYPE (val))))
5189 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5190 if (gimple_assign_cast_p (def_stmt2))
5192 names[1] = gimple_assign_rhs1 (def_stmt2);
5193 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5194 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5195 || (TYPE_PRECISION (TREE_TYPE (name2))
5196 != TYPE_PRECISION (TREE_TYPE (names[1])))
5197 || !live_on_edge (e, names[1])
5198 || has_single_use (names[1]))
5199 names[1] = NULL_TREE;
5201 if (live_on_edge (e, name2)
5202 && !has_single_use (name2))
5203 names[0] = name2;
5206 if (names[0] || names[1])
5208 double_int minv, maxv = double_int_zero, valv, cst2v;
5209 double_int tem, sgnbit;
5210 bool valid_p = false, valn = false, cst2n = false;
5211 enum tree_code ccode = comp_code;
5213 valv = tree_to_double_int (val).zext (nprec);
5214 cst2v = tree_to_double_int (cst2).zext (nprec);
5215 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5217 valn = valv.sext (nprec).is_negative ();
5218 cst2n = cst2v.sext (nprec).is_negative ();
5220 /* If CST2 doesn't have most significant bit set,
5221 but VAL is negative, we have comparison like
5222 if ((x & 0x123) > -4) (always true). Just give up. */
5223 if (!cst2n && valn)
5224 ccode = ERROR_MARK;
5225 if (cst2n)
5226 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5227 else
5228 sgnbit = double_int_zero;
5229 minv = valv & cst2v;
5230 switch (ccode)
5232 case EQ_EXPR:
5233 /* Minimum unsigned value for equality is VAL & CST2
5234 (should be equal to VAL, otherwise we probably should
5235 have folded the comparison into false) and
5236 maximum unsigned value is VAL | ~CST2. */
5237 maxv = valv | ~cst2v;
5238 maxv = maxv.zext (nprec);
5239 valid_p = true;
5240 break;
5241 case NE_EXPR:
5242 tem = valv | ~cst2v;
5243 tem = tem.zext (nprec);
5244 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5245 if (valv.is_zero ())
5247 cst2n = false;
5248 sgnbit = double_int_zero;
5249 goto gt_expr;
5251 /* If (VAL | ~CST2) is all ones, handle it as
5252 (X & CST2) < VAL. */
5253 if (tem == double_int::mask (nprec))
5255 cst2n = false;
5256 valn = false;
5257 sgnbit = double_int_zero;
5258 goto lt_expr;
5260 if (!cst2n
5261 && cst2v.sext (nprec).is_negative ())
5262 sgnbit
5263 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5264 if (!sgnbit.is_zero ())
5266 if (valv == sgnbit)
5268 cst2n = true;
5269 valn = true;
5270 goto gt_expr;
5272 if (tem == double_int::mask (nprec - 1))
5274 cst2n = true;
5275 goto lt_expr;
5277 if (!cst2n)
5278 sgnbit = double_int_zero;
5280 break;
5281 case GE_EXPR:
5282 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5283 is VAL and maximum unsigned value is ~0. For signed
5284 comparison, if CST2 doesn't have most significant bit
5285 set, handle it similarly. If CST2 has MSB set,
5286 the minimum is the same, and maximum is ~0U/2. */
5287 if (minv != valv)
5289 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5290 VAL. */
5291 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5292 if (minv == valv)
5293 break;
5295 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5296 valid_p = true;
5297 break;
5298 case GT_EXPR:
5299 gt_expr:
5300 /* Find out smallest MINV where MINV > VAL
5301 && (MINV & CST2) == MINV, if any. If VAL is signed and
5302 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5303 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5304 if (minv == valv)
5305 break;
5306 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5307 valid_p = true;
5308 break;
5309 case LE_EXPR:
5310 /* Minimum unsigned value for <= is 0 and maximum
5311 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5312 Otherwise, find smallest VAL2 where VAL2 > VAL
5313 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5314 as maximum.
5315 For signed comparison, if CST2 doesn't have most
5316 significant bit set, handle it similarly. If CST2 has
5317 MSB set, the maximum is the same and minimum is INT_MIN. */
5318 if (minv == valv)
5319 maxv = valv;
5320 else
5322 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5323 if (maxv == valv)
5324 break;
5325 maxv -= double_int_one;
5327 maxv |= ~cst2v;
5328 maxv = maxv.zext (nprec);
5329 minv = sgnbit;
5330 valid_p = true;
5331 break;
5332 case LT_EXPR:
5333 lt_expr:
5334 /* Minimum unsigned value for < is 0 and maximum
5335 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5336 Otherwise, find smallest VAL2 where VAL2 > VAL
5337 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5338 as maximum.
5339 For signed comparison, if CST2 doesn't have most
5340 significant bit set, handle it similarly. If CST2 has
5341 MSB set, the maximum is the same and minimum is INT_MIN. */
5342 if (minv == valv)
5344 if (valv == sgnbit)
5345 break;
5346 maxv = valv;
5348 else
5350 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5351 if (maxv == valv)
5352 break;
5354 maxv -= double_int_one;
5355 maxv |= ~cst2v;
5356 maxv = maxv.zext (nprec);
5357 minv = sgnbit;
5358 valid_p = true;
5359 break;
5360 default:
5361 break;
5363 if (valid_p
5364 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5366 tree tmp, new_val, type;
5367 int i;
5369 for (i = 0; i < 2; i++)
5370 if (names[i])
5372 double_int maxv2 = maxv;
5373 tmp = names[i];
5374 type = TREE_TYPE (names[i]);
5375 if (!TYPE_UNSIGNED (type))
5377 type = build_nonstandard_integer_type (nprec, 1);
5378 tmp = build1 (NOP_EXPR, type, names[i]);
5380 if (!minv.is_zero ())
5382 tmp = build2 (PLUS_EXPR, type, tmp,
5383 double_int_to_tree (type, -minv));
5384 maxv2 = maxv - minv;
5386 new_val = double_int_to_tree (type, maxv2);
5388 if (dump_file)
5390 fprintf (dump_file, "Adding assert for ");
5391 print_generic_expr (dump_file, names[i], 0);
5392 fprintf (dump_file, " from ");
5393 print_generic_expr (dump_file, tmp, 0);
5394 fprintf (dump_file, "\n");
5397 register_new_assert_for (names[i], tmp, LE_EXPR,
5398 new_val, NULL, e, bsi);
5399 retval = true;
5405 return retval;
5408 /* OP is an operand of a truth value expression which is known to have
5409 a particular value. Register any asserts for OP and for any
5410 operands in OP's defining statement.
5412 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5413 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5415 static bool
5416 register_edge_assert_for_1 (tree op, enum tree_code code,
5417 edge e, gimple_stmt_iterator bsi)
5419 bool retval = false;
5420 gimple op_def;
5421 tree val;
5422 enum tree_code rhs_code;
5424 /* We only care about SSA_NAMEs. */
5425 if (TREE_CODE (op) != SSA_NAME)
5426 return false;
5428 /* We know that OP will have a zero or nonzero value. If OP is used
5429 more than once go ahead and register an assert for OP. */
5430 if (live_on_edge (e, op)
5431 && !has_single_use (op))
5433 val = build_int_cst (TREE_TYPE (op), 0);
5434 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5435 retval = true;
5438 /* Now look at how OP is set. If it's set from a comparison,
5439 a truth operation or some bit operations, then we may be able
5440 to register information about the operands of that assignment. */
5441 op_def = SSA_NAME_DEF_STMT (op);
5442 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5443 return retval;
5445 rhs_code = gimple_assign_rhs_code (op_def);
5447 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5449 bool invert = (code == EQ_EXPR ? true : false);
5450 tree op0 = gimple_assign_rhs1 (op_def);
5451 tree op1 = gimple_assign_rhs2 (op_def);
5453 if (TREE_CODE (op0) == SSA_NAME)
5454 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5455 invert);
5456 if (TREE_CODE (op1) == SSA_NAME)
5457 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5458 invert);
5460 else if ((code == NE_EXPR
5461 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5462 || (code == EQ_EXPR
5463 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5465 /* Recurse on each operand. */
5466 tree op0 = gimple_assign_rhs1 (op_def);
5467 tree op1 = gimple_assign_rhs2 (op_def);
5468 if (TREE_CODE (op0) == SSA_NAME
5469 && has_single_use (op0))
5470 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5471 if (TREE_CODE (op1) == SSA_NAME
5472 && has_single_use (op1))
5473 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5475 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5476 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5478 /* Recurse, flipping CODE. */
5479 code = invert_tree_comparison (code, false);
5480 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5481 code, e, bsi);
5483 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5485 /* Recurse through the copy. */
5486 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5487 code, e, bsi);
5489 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5491 /* Recurse through the type conversion, unless it is a narrowing
5492 conversion or conversion from non-integral type. */
5493 tree rhs = gimple_assign_rhs1 (op_def);
5494 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5495 && (TYPE_PRECISION (TREE_TYPE (rhs))
5496 <= TYPE_PRECISION (TREE_TYPE (op))))
5497 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
5500 return retval;
5503 /* Try to register an edge assertion for SSA name NAME on edge E for
5504 the condition COND contributing to the conditional jump pointed to by SI.
5505 Return true if an assertion for NAME could be registered. */
5507 static bool
5508 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5509 enum tree_code cond_code, tree cond_op0,
5510 tree cond_op1)
5512 tree val;
5513 enum tree_code comp_code;
5514 bool retval = false;
5515 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5517 /* Do not attempt to infer anything in names that flow through
5518 abnormal edges. */
5519 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5520 return false;
5522 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5523 cond_op0, cond_op1,
5524 is_else_edge,
5525 &comp_code, &val))
5526 return false;
5528 /* Register ASSERT_EXPRs for name. */
5529 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5530 cond_op1, is_else_edge);
5533 /* If COND is effectively an equality test of an SSA_NAME against
5534 the value zero or one, then we may be able to assert values
5535 for SSA_NAMEs which flow into COND. */
5537 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5538 statement of NAME we can assert both operands of the BIT_AND_EXPR
5539 have nonzero value. */
5540 if (((comp_code == EQ_EXPR && integer_onep (val))
5541 || (comp_code == NE_EXPR && integer_zerop (val))))
5543 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5545 if (is_gimple_assign (def_stmt)
5546 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5548 tree op0 = gimple_assign_rhs1 (def_stmt);
5549 tree op1 = gimple_assign_rhs2 (def_stmt);
5550 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5551 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5555 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5556 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5557 have zero value. */
5558 if (((comp_code == EQ_EXPR && integer_zerop (val))
5559 || (comp_code == NE_EXPR && integer_onep (val))))
5561 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5563 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5564 necessarily zero value, or if type-precision is one. */
5565 if (is_gimple_assign (def_stmt)
5566 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5567 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5568 || comp_code == EQ_EXPR)))
5570 tree op0 = gimple_assign_rhs1 (def_stmt);
5571 tree op1 = gimple_assign_rhs2 (def_stmt);
5572 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5573 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5577 return retval;
5581 /* Determine whether the outgoing edges of BB should receive an
5582 ASSERT_EXPR for each of the operands of BB's LAST statement.
5583 The last statement of BB must be a COND_EXPR.
5585 If any of the sub-graphs rooted at BB have an interesting use of
5586 the predicate operands, an assert location node is added to the
5587 list of assertions for the corresponding operands. */
5589 static bool
5590 find_conditional_asserts (basic_block bb, gimple last)
5592 bool need_assert;
5593 gimple_stmt_iterator bsi;
5594 tree op;
5595 edge_iterator ei;
5596 edge e;
5597 ssa_op_iter iter;
5599 need_assert = false;
5600 bsi = gsi_for_stmt (last);
5602 /* Look for uses of the operands in each of the sub-graphs
5603 rooted at BB. We need to check each of the outgoing edges
5604 separately, so that we know what kind of ASSERT_EXPR to
5605 insert. */
5606 FOR_EACH_EDGE (e, ei, bb->succs)
5608 if (e->dest == bb)
5609 continue;
5611 /* Register the necessary assertions for each operand in the
5612 conditional predicate. */
5613 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5615 need_assert |= register_edge_assert_for (op, e, bsi,
5616 gimple_cond_code (last),
5617 gimple_cond_lhs (last),
5618 gimple_cond_rhs (last));
5622 return need_assert;
5625 struct case_info
5627 tree expr;
5628 basic_block bb;
5631 /* Compare two case labels sorting first by the destination bb index
5632 and then by the case value. */
5634 static int
5635 compare_case_labels (const void *p1, const void *p2)
5637 const struct case_info *ci1 = (const struct case_info *) p1;
5638 const struct case_info *ci2 = (const struct case_info *) p2;
5639 int idx1 = ci1->bb->index;
5640 int idx2 = ci2->bb->index;
5642 if (idx1 < idx2)
5643 return -1;
5644 else if (idx1 == idx2)
5646 /* Make sure the default label is first in a group. */
5647 if (!CASE_LOW (ci1->expr))
5648 return -1;
5649 else if (!CASE_LOW (ci2->expr))
5650 return 1;
5651 else
5652 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5653 CASE_LOW (ci2->expr));
5655 else
5656 return 1;
5659 /* Determine whether the outgoing edges of BB should receive an
5660 ASSERT_EXPR for each of the operands of BB's LAST statement.
5661 The last statement of BB must be a SWITCH_EXPR.
5663 If any of the sub-graphs rooted at BB have an interesting use of
5664 the predicate operands, an assert location node is added to the
5665 list of assertions for the corresponding operands. */
5667 static bool
5668 find_switch_asserts (basic_block bb, gimple last)
5670 bool need_assert;
5671 gimple_stmt_iterator bsi;
5672 tree op;
5673 edge e;
5674 struct case_info *ci;
5675 size_t n = gimple_switch_num_labels (last);
5676 #if GCC_VERSION >= 4000
5677 unsigned int idx;
5678 #else
5679 /* Work around GCC 3.4 bug (PR 37086). */
5680 volatile unsigned int idx;
5681 #endif
5683 need_assert = false;
5684 bsi = gsi_for_stmt (last);
5685 op = gimple_switch_index (last);
5686 if (TREE_CODE (op) != SSA_NAME)
5687 return false;
5689 /* Build a vector of case labels sorted by destination label. */
5690 ci = XNEWVEC (struct case_info, n);
5691 for (idx = 0; idx < n; ++idx)
5693 ci[idx].expr = gimple_switch_label (last, idx);
5694 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5696 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5698 for (idx = 0; idx < n; ++idx)
5700 tree min, max;
5701 tree cl = ci[idx].expr;
5702 basic_block cbb = ci[idx].bb;
5704 min = CASE_LOW (cl);
5705 max = CASE_HIGH (cl);
5707 /* If there are multiple case labels with the same destination
5708 we need to combine them to a single value range for the edge. */
5709 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5711 /* Skip labels until the last of the group. */
5712 do {
5713 ++idx;
5714 } while (idx < n && cbb == ci[idx].bb);
5715 --idx;
5717 /* Pick up the maximum of the case label range. */
5718 if (CASE_HIGH (ci[idx].expr))
5719 max = CASE_HIGH (ci[idx].expr);
5720 else
5721 max = CASE_LOW (ci[idx].expr);
5724 /* Nothing to do if the range includes the default label until we
5725 can register anti-ranges. */
5726 if (min == NULL_TREE)
5727 continue;
5729 /* Find the edge to register the assert expr on. */
5730 e = find_edge (bb, cbb);
5732 /* Register the necessary assertions for the operand in the
5733 SWITCH_EXPR. */
5734 need_assert |= register_edge_assert_for (op, e, bsi,
5735 max ? GE_EXPR : EQ_EXPR,
5737 fold_convert (TREE_TYPE (op),
5738 min));
5739 if (max)
5741 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5743 fold_convert (TREE_TYPE (op),
5744 max));
5748 XDELETEVEC (ci);
5749 return need_assert;
5753 /* Traverse all the statements in block BB looking for statements that
5754 may generate useful assertions for the SSA names in their operand.
5755 If a statement produces a useful assertion A for name N_i, then the
5756 list of assertions already generated for N_i is scanned to
5757 determine if A is actually needed.
5759 If N_i already had the assertion A at a location dominating the
5760 current location, then nothing needs to be done. Otherwise, the
5761 new location for A is recorded instead.
5763 1- For every statement S in BB, all the variables used by S are
5764 added to bitmap FOUND_IN_SUBGRAPH.
5766 2- If statement S uses an operand N in a way that exposes a known
5767 value range for N, then if N was not already generated by an
5768 ASSERT_EXPR, create a new assert location for N. For instance,
5769 if N is a pointer and the statement dereferences it, we can
5770 assume that N is not NULL.
5772 3- COND_EXPRs are a special case of #2. We can derive range
5773 information from the predicate but need to insert different
5774 ASSERT_EXPRs for each of the sub-graphs rooted at the
5775 conditional block. If the last statement of BB is a conditional
5776 expression of the form 'X op Y', then
5778 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5780 b) If the conditional is the only entry point to the sub-graph
5781 corresponding to the THEN_CLAUSE, recurse into it. On
5782 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5783 an ASSERT_EXPR is added for the corresponding variable.
5785 c) Repeat step (b) on the ELSE_CLAUSE.
5787 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5789 For instance,
5791 if (a == 9)
5792 b = a;
5793 else
5794 b = c + 1;
5796 In this case, an assertion on the THEN clause is useful to
5797 determine that 'a' is always 9 on that edge. However, an assertion
5798 on the ELSE clause would be unnecessary.
5800 4- If BB does not end in a conditional expression, then we recurse
5801 into BB's dominator children.
5803 At the end of the recursive traversal, every SSA name will have a
5804 list of locations where ASSERT_EXPRs should be added. When a new
5805 location for name N is found, it is registered by calling
5806 register_new_assert_for. That function keeps track of all the
5807 registered assertions to prevent adding unnecessary assertions.
5808 For instance, if a pointer P_4 is dereferenced more than once in a
5809 dominator tree, only the location dominating all the dereference of
5810 P_4 will receive an ASSERT_EXPR.
5812 If this function returns true, then it means that there are names
5813 for which we need to generate ASSERT_EXPRs. Those assertions are
5814 inserted by process_assert_insertions. */
5816 static bool
5817 find_assert_locations_1 (basic_block bb, sbitmap live)
5819 gimple_stmt_iterator si;
5820 gimple last;
5821 bool need_assert;
5823 need_assert = false;
5824 last = last_stmt (bb);
5826 /* If BB's last statement is a conditional statement involving integer
5827 operands, determine if we need to add ASSERT_EXPRs. */
5828 if (last
5829 && gimple_code (last) == GIMPLE_COND
5830 && !fp_predicate (last)
5831 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5832 need_assert |= find_conditional_asserts (bb, last);
5834 /* If BB's last statement is a switch statement involving integer
5835 operands, determine if we need to add ASSERT_EXPRs. */
5836 if (last
5837 && gimple_code (last) == GIMPLE_SWITCH
5838 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5839 need_assert |= find_switch_asserts (bb, last);
5841 /* Traverse all the statements in BB marking used names and looking
5842 for statements that may infer assertions for their used operands. */
5843 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5845 gimple stmt;
5846 tree op;
5847 ssa_op_iter i;
5849 stmt = gsi_stmt (si);
5851 if (is_gimple_debug (stmt))
5852 continue;
5854 /* See if we can derive an assertion for any of STMT's operands. */
5855 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5857 tree value;
5858 enum tree_code comp_code;
5860 /* If op is not live beyond this stmt, do not bother to insert
5861 asserts for it. */
5862 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5863 continue;
5865 /* If OP is used in such a way that we can infer a value
5866 range for it, and we don't find a previous assertion for
5867 it, create a new assertion location node for OP. */
5868 if (infer_value_range (stmt, op, &comp_code, &value))
5870 /* If we are able to infer a nonzero value range for OP,
5871 then walk backwards through the use-def chain to see if OP
5872 was set via a typecast.
5874 If so, then we can also infer a nonzero value range
5875 for the operand of the NOP_EXPR. */
5876 if (comp_code == NE_EXPR && integer_zerop (value))
5878 tree t = op;
5879 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5881 while (is_gimple_assign (def_stmt)
5882 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5883 && TREE_CODE
5884 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5885 && POINTER_TYPE_P
5886 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5888 t = gimple_assign_rhs1 (def_stmt);
5889 def_stmt = SSA_NAME_DEF_STMT (t);
5891 /* Note we want to register the assert for the
5892 operand of the NOP_EXPR after SI, not after the
5893 conversion. */
5894 if (! has_single_use (t))
5896 register_new_assert_for (t, t, comp_code, value,
5897 bb, NULL, si);
5898 need_assert = true;
5903 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5904 need_assert = true;
5908 /* Update live. */
5909 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5910 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5911 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5912 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5915 /* Traverse all PHI nodes in BB, updating live. */
5916 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5918 use_operand_p arg_p;
5919 ssa_op_iter i;
5920 gimple phi = gsi_stmt (si);
5921 tree res = gimple_phi_result (phi);
5923 if (virtual_operand_p (res))
5924 continue;
5926 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5928 tree arg = USE_FROM_PTR (arg_p);
5929 if (TREE_CODE (arg) == SSA_NAME)
5930 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5933 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5936 return need_assert;
5939 /* Do an RPO walk over the function computing SSA name liveness
5940 on-the-fly and deciding on assert expressions to insert.
5941 Returns true if there are assert expressions to be inserted. */
5943 static bool
5944 find_assert_locations (void)
5946 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5947 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5948 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
5949 int rpo_cnt, i;
5950 bool need_asserts;
5952 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
5953 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5954 for (i = 0; i < rpo_cnt; ++i)
5955 bb_rpo[rpo[i]] = i;
5957 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
5958 the order we compute liveness and insert asserts we otherwise
5959 fail to insert asserts into the loop latch. */
5960 loop_p loop;
5961 FOR_EACH_LOOP (loop, 0)
5963 i = loop->latch->index;
5964 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
5965 for (gimple_stmt_iterator gsi = gsi_start_phis (loop->header);
5966 !gsi_end_p (gsi); gsi_next (&gsi))
5968 gimple phi = gsi_stmt (gsi);
5969 if (virtual_operand_p (gimple_phi_result (phi)))
5970 continue;
5971 tree arg = gimple_phi_arg_def (phi, j);
5972 if (TREE_CODE (arg) == SSA_NAME)
5974 if (live[i] == NULL)
5976 live[i] = sbitmap_alloc (num_ssa_names);
5977 bitmap_clear (live[i]);
5979 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
5984 need_asserts = false;
5985 for (i = rpo_cnt - 1; i >= 0; --i)
5987 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
5988 edge e;
5989 edge_iterator ei;
5991 if (!live[rpo[i]])
5993 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5994 bitmap_clear (live[rpo[i]]);
5997 /* Process BB and update the live information with uses in
5998 this block. */
5999 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
6001 /* Merge liveness into the predecessor blocks and free it. */
6002 if (!bitmap_empty_p (live[rpo[i]]))
6004 int pred_rpo = i;
6005 FOR_EACH_EDGE (e, ei, bb->preds)
6007 int pred = e->src->index;
6008 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6009 continue;
6011 if (!live[pred])
6013 live[pred] = sbitmap_alloc (num_ssa_names);
6014 bitmap_clear (live[pred]);
6016 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6018 if (bb_rpo[pred] < pred_rpo)
6019 pred_rpo = bb_rpo[pred];
6022 /* Record the RPO number of the last visited block that needs
6023 live information from this block. */
6024 last_rpo[rpo[i]] = pred_rpo;
6026 else
6028 sbitmap_free (live[rpo[i]]);
6029 live[rpo[i]] = NULL;
6032 /* We can free all successors live bitmaps if all their
6033 predecessors have been visited already. */
6034 FOR_EACH_EDGE (e, ei, bb->succs)
6035 if (last_rpo[e->dest->index] == i
6036 && live[e->dest->index])
6038 sbitmap_free (live[e->dest->index]);
6039 live[e->dest->index] = NULL;
6043 XDELETEVEC (rpo);
6044 XDELETEVEC (bb_rpo);
6045 XDELETEVEC (last_rpo);
6046 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6047 if (live[i])
6048 sbitmap_free (live[i]);
6049 XDELETEVEC (live);
6051 return need_asserts;
6054 /* Create an ASSERT_EXPR for NAME and insert it in the location
6055 indicated by LOC. Return true if we made any edge insertions. */
6057 static bool
6058 process_assert_insertions_for (tree name, assert_locus_t loc)
6060 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6061 gimple stmt;
6062 tree cond;
6063 gimple assert_stmt;
6064 edge_iterator ei;
6065 edge e;
6067 /* If we have X <=> X do not insert an assert expr for that. */
6068 if (loc->expr == loc->val)
6069 return false;
6071 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6072 assert_stmt = build_assert_expr_for (cond, name);
6073 if (loc->e)
6075 /* We have been asked to insert the assertion on an edge. This
6076 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6077 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6078 || (gimple_code (gsi_stmt (loc->si))
6079 == GIMPLE_SWITCH));
6081 gsi_insert_on_edge (loc->e, assert_stmt);
6082 return true;
6085 /* Otherwise, we can insert right after LOC->SI iff the
6086 statement must not be the last statement in the block. */
6087 stmt = gsi_stmt (loc->si);
6088 if (!stmt_ends_bb_p (stmt))
6090 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6091 return false;
6094 /* If STMT must be the last statement in BB, we can only insert new
6095 assertions on the non-abnormal edge out of BB. Note that since
6096 STMT is not control flow, there may only be one non-abnormal edge
6097 out of BB. */
6098 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6099 if (!(e->flags & EDGE_ABNORMAL))
6101 gsi_insert_on_edge (e, assert_stmt);
6102 return true;
6105 gcc_unreachable ();
6109 /* Process all the insertions registered for every name N_i registered
6110 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6111 found in ASSERTS_FOR[i]. */
6113 static void
6114 process_assert_insertions (void)
6116 unsigned i;
6117 bitmap_iterator bi;
6118 bool update_edges_p = false;
6119 int num_asserts = 0;
6121 if (dump_file && (dump_flags & TDF_DETAILS))
6122 dump_all_asserts (dump_file);
6124 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6126 assert_locus_t loc = asserts_for[i];
6127 gcc_assert (loc);
6129 while (loc)
6131 assert_locus_t next = loc->next;
6132 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6133 free (loc);
6134 loc = next;
6135 num_asserts++;
6139 if (update_edges_p)
6140 gsi_commit_edge_inserts ();
6142 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6143 num_asserts);
6147 /* Traverse the flowgraph looking for conditional jumps to insert range
6148 expressions. These range expressions are meant to provide information
6149 to optimizations that need to reason in terms of value ranges. They
6150 will not be expanded into RTL. For instance, given:
6152 x = ...
6153 y = ...
6154 if (x < y)
6155 y = x - 2;
6156 else
6157 x = y + 3;
6159 this pass will transform the code into:
6161 x = ...
6162 y = ...
6163 if (x < y)
6165 x = ASSERT_EXPR <x, x < y>
6166 y = x - 2
6168 else
6170 y = ASSERT_EXPR <y, x <= y>
6171 x = y + 3
6174 The idea is that once copy and constant propagation have run, other
6175 optimizations will be able to determine what ranges of values can 'x'
6176 take in different paths of the code, simply by checking the reaching
6177 definition of 'x'. */
6179 static void
6180 insert_range_assertions (void)
6182 need_assert_for = BITMAP_ALLOC (NULL);
6183 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6185 calculate_dominance_info (CDI_DOMINATORS);
6187 if (find_assert_locations ())
6189 process_assert_insertions ();
6190 update_ssa (TODO_update_ssa_no_phi);
6193 if (dump_file && (dump_flags & TDF_DETAILS))
6195 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6196 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6199 free (asserts_for);
6200 BITMAP_FREE (need_assert_for);
6203 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6204 and "struct" hacks. If VRP can determine that the
6205 array subscript is a constant, check if it is outside valid
6206 range. If the array subscript is a RANGE, warn if it is
6207 non-overlapping with valid range.
6208 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6210 static void
6211 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6213 value_range_t* vr = NULL;
6214 tree low_sub, up_sub;
6215 tree low_bound, up_bound, up_bound_p1;
6216 tree base;
6218 if (TREE_NO_WARNING (ref))
6219 return;
6221 low_sub = up_sub = TREE_OPERAND (ref, 1);
6222 up_bound = array_ref_up_bound (ref);
6224 /* Can not check flexible arrays. */
6225 if (!up_bound
6226 || TREE_CODE (up_bound) != INTEGER_CST)
6227 return;
6229 /* Accesses to trailing arrays via pointers may access storage
6230 beyond the types array bounds. */
6231 base = get_base_address (ref);
6232 if (base && TREE_CODE (base) == MEM_REF)
6234 tree cref, next = NULL_TREE;
6236 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6237 return;
6239 cref = TREE_OPERAND (ref, 0);
6240 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6241 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6242 next && TREE_CODE (next) != FIELD_DECL;
6243 next = DECL_CHAIN (next))
6246 /* If this is the last field in a struct type or a field in a
6247 union type do not warn. */
6248 if (!next)
6249 return;
6252 low_bound = array_ref_low_bound (ref);
6253 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
6255 if (TREE_CODE (low_sub) == SSA_NAME)
6257 vr = get_value_range (low_sub);
6258 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6260 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6261 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6265 if (vr && vr->type == VR_ANTI_RANGE)
6267 if (TREE_CODE (up_sub) == INTEGER_CST
6268 && tree_int_cst_lt (up_bound, up_sub)
6269 && TREE_CODE (low_sub) == INTEGER_CST
6270 && tree_int_cst_lt (low_sub, low_bound))
6272 warning_at (location, OPT_Warray_bounds,
6273 "array subscript is outside array bounds");
6274 TREE_NO_WARNING (ref) = 1;
6277 else if (TREE_CODE (up_sub) == INTEGER_CST
6278 && (ignore_off_by_one
6279 ? (tree_int_cst_lt (up_bound, up_sub)
6280 && !tree_int_cst_equal (up_bound_p1, up_sub))
6281 : (tree_int_cst_lt (up_bound, up_sub)
6282 || tree_int_cst_equal (up_bound_p1, up_sub))))
6284 if (dump_file && (dump_flags & TDF_DETAILS))
6286 fprintf (dump_file, "Array bound warning for ");
6287 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6288 fprintf (dump_file, "\n");
6290 warning_at (location, OPT_Warray_bounds,
6291 "array subscript is above array bounds");
6292 TREE_NO_WARNING (ref) = 1;
6294 else if (TREE_CODE (low_sub) == INTEGER_CST
6295 && tree_int_cst_lt (low_sub, low_bound))
6297 if (dump_file && (dump_flags & TDF_DETAILS))
6299 fprintf (dump_file, "Array bound warning for ");
6300 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6301 fprintf (dump_file, "\n");
6303 warning_at (location, OPT_Warray_bounds,
6304 "array subscript is below array bounds");
6305 TREE_NO_WARNING (ref) = 1;
6309 /* Searches if the expr T, located at LOCATION computes
6310 address of an ARRAY_REF, and call check_array_ref on it. */
6312 static void
6313 search_for_addr_array (tree t, location_t location)
6315 while (TREE_CODE (t) == SSA_NAME)
6317 gimple g = SSA_NAME_DEF_STMT (t);
6319 if (gimple_code (g) != GIMPLE_ASSIGN)
6320 return;
6322 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6323 != GIMPLE_SINGLE_RHS)
6324 return;
6326 t = gimple_assign_rhs1 (g);
6330 /* We are only interested in addresses of ARRAY_REF's. */
6331 if (TREE_CODE (t) != ADDR_EXPR)
6332 return;
6334 /* Check each ARRAY_REFs in the reference chain. */
6337 if (TREE_CODE (t) == ARRAY_REF)
6338 check_array_ref (location, t, true /*ignore_off_by_one*/);
6340 t = TREE_OPERAND (t, 0);
6342 while (handled_component_p (t));
6344 if (TREE_CODE (t) == MEM_REF
6345 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6346 && !TREE_NO_WARNING (t))
6348 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6349 tree low_bound, up_bound, el_sz;
6350 double_int idx;
6351 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6352 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6353 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6354 return;
6356 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6357 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6358 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6359 if (!low_bound
6360 || TREE_CODE (low_bound) != INTEGER_CST
6361 || !up_bound
6362 || TREE_CODE (up_bound) != INTEGER_CST
6363 || !el_sz
6364 || TREE_CODE (el_sz) != INTEGER_CST)
6365 return;
6367 idx = mem_ref_offset (t);
6368 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6369 if (idx.slt (double_int_zero))
6371 if (dump_file && (dump_flags & TDF_DETAILS))
6373 fprintf (dump_file, "Array bound warning for ");
6374 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6375 fprintf (dump_file, "\n");
6377 warning_at (location, OPT_Warray_bounds,
6378 "array subscript is below array bounds");
6379 TREE_NO_WARNING (t) = 1;
6381 else if (idx.sgt (tree_to_double_int (up_bound)
6382 - tree_to_double_int (low_bound)
6383 + double_int_one))
6385 if (dump_file && (dump_flags & TDF_DETAILS))
6387 fprintf (dump_file, "Array bound warning for ");
6388 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6389 fprintf (dump_file, "\n");
6391 warning_at (location, OPT_Warray_bounds,
6392 "array subscript is above array bounds");
6393 TREE_NO_WARNING (t) = 1;
6398 /* walk_tree() callback that checks if *TP is
6399 an ARRAY_REF inside an ADDR_EXPR (in which an array
6400 subscript one outside the valid range is allowed). Call
6401 check_array_ref for each ARRAY_REF found. The location is
6402 passed in DATA. */
6404 static tree
6405 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6407 tree t = *tp;
6408 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6409 location_t location;
6411 if (EXPR_HAS_LOCATION (t))
6412 location = EXPR_LOCATION (t);
6413 else
6415 location_t *locp = (location_t *) wi->info;
6416 location = *locp;
6419 *walk_subtree = TRUE;
6421 if (TREE_CODE (t) == ARRAY_REF)
6422 check_array_ref (location, t, false /*ignore_off_by_one*/);
6424 if (TREE_CODE (t) == MEM_REF
6425 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6426 search_for_addr_array (TREE_OPERAND (t, 0), location);
6428 if (TREE_CODE (t) == ADDR_EXPR)
6429 *walk_subtree = FALSE;
6431 return NULL_TREE;
6434 /* Walk over all statements of all reachable BBs and call check_array_bounds
6435 on them. */
6437 static void
6438 check_all_array_refs (void)
6440 basic_block bb;
6441 gimple_stmt_iterator si;
6443 FOR_EACH_BB_FN (bb, cfun)
6445 edge_iterator ei;
6446 edge e;
6447 bool executable = false;
6449 /* Skip blocks that were found to be unreachable. */
6450 FOR_EACH_EDGE (e, ei, bb->preds)
6451 executable |= !!(e->flags & EDGE_EXECUTABLE);
6452 if (!executable)
6453 continue;
6455 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6457 gimple stmt = gsi_stmt (si);
6458 struct walk_stmt_info wi;
6459 if (!gimple_has_location (stmt))
6460 continue;
6462 if (is_gimple_call (stmt))
6464 size_t i;
6465 size_t n = gimple_call_num_args (stmt);
6466 for (i = 0; i < n; i++)
6468 tree arg = gimple_call_arg (stmt, i);
6469 search_for_addr_array (arg, gimple_location (stmt));
6472 else
6474 memset (&wi, 0, sizeof (wi));
6475 wi.info = CONST_CAST (void *, (const void *)
6476 gimple_location_ptr (stmt));
6478 walk_gimple_op (gsi_stmt (si),
6479 check_array_bounds,
6480 &wi);
6486 /* Return true if all imm uses of VAR are either in STMT, or
6487 feed (optionally through a chain of single imm uses) GIMPLE_COND
6488 in basic block COND_BB. */
6490 static bool
6491 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6493 use_operand_p use_p, use2_p;
6494 imm_use_iterator iter;
6496 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6497 if (USE_STMT (use_p) != stmt)
6499 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6500 if (is_gimple_debug (use_stmt))
6501 continue;
6502 while (is_gimple_assign (use_stmt)
6503 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6504 && single_imm_use (gimple_assign_lhs (use_stmt),
6505 &use2_p, &use_stmt2))
6506 use_stmt = use_stmt2;
6507 if (gimple_code (use_stmt) != GIMPLE_COND
6508 || gimple_bb (use_stmt) != cond_bb)
6509 return false;
6511 return true;
6514 /* Handle
6515 _4 = x_3 & 31;
6516 if (_4 != 0)
6517 goto <bb 6>;
6518 else
6519 goto <bb 7>;
6520 <bb 6>:
6521 __builtin_unreachable ();
6522 <bb 7>:
6523 x_5 = ASSERT_EXPR <x_3, ...>;
6524 If x_3 has no other immediate uses (checked by caller),
6525 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6526 from the non-zero bitmask. */
6528 static void
6529 maybe_set_nonzero_bits (basic_block bb, tree var)
6531 edge e = single_pred_edge (bb);
6532 basic_block cond_bb = e->src;
6533 gimple stmt = last_stmt (cond_bb);
6534 tree cst;
6536 if (stmt == NULL
6537 || gimple_code (stmt) != GIMPLE_COND
6538 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6539 ? EQ_EXPR : NE_EXPR)
6540 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6541 || !integer_zerop (gimple_cond_rhs (stmt)))
6542 return;
6544 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6545 if (!is_gimple_assign (stmt)
6546 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6547 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6548 return;
6549 if (gimple_assign_rhs1 (stmt) != var)
6551 gimple stmt2;
6553 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6554 return;
6555 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6556 if (!gimple_assign_cast_p (stmt2)
6557 || gimple_assign_rhs1 (stmt2) != var
6558 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6559 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6560 != TYPE_PRECISION (TREE_TYPE (var))))
6561 return;
6563 cst = gimple_assign_rhs2 (stmt);
6564 set_nonzero_bits (var, (get_nonzero_bits (var)
6565 & ~tree_to_double_int (cst)));
6568 /* Convert range assertion expressions into the implied copies and
6569 copy propagate away the copies. Doing the trivial copy propagation
6570 here avoids the need to run the full copy propagation pass after
6571 VRP.
6573 FIXME, this will eventually lead to copy propagation removing the
6574 names that had useful range information attached to them. For
6575 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6576 then N_i will have the range [3, +INF].
6578 However, by converting the assertion into the implied copy
6579 operation N_i = N_j, we will then copy-propagate N_j into the uses
6580 of N_i and lose the range information. We may want to hold on to
6581 ASSERT_EXPRs a little while longer as the ranges could be used in
6582 things like jump threading.
6584 The problem with keeping ASSERT_EXPRs around is that passes after
6585 VRP need to handle them appropriately.
6587 Another approach would be to make the range information a first
6588 class property of the SSA_NAME so that it can be queried from
6589 any pass. This is made somewhat more complex by the need for
6590 multiple ranges to be associated with one SSA_NAME. */
6592 static void
6593 remove_range_assertions (void)
6595 basic_block bb;
6596 gimple_stmt_iterator si;
6597 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6598 a basic block preceeded by GIMPLE_COND branching to it and
6599 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6600 int is_unreachable;
6602 /* Note that the BSI iterator bump happens at the bottom of the
6603 loop and no bump is necessary if we're removing the statement
6604 referenced by the current BSI. */
6605 FOR_EACH_BB_FN (bb, cfun)
6606 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6608 gimple stmt = gsi_stmt (si);
6609 gimple use_stmt;
6611 if (is_gimple_assign (stmt)
6612 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6614 tree lhs = gimple_assign_lhs (stmt);
6615 tree rhs = gimple_assign_rhs1 (stmt);
6616 tree var;
6617 tree cond = fold (ASSERT_EXPR_COND (rhs));
6618 use_operand_p use_p;
6619 imm_use_iterator iter;
6621 gcc_assert (cond != boolean_false_node);
6623 var = ASSERT_EXPR_VAR (rhs);
6624 gcc_assert (TREE_CODE (var) == SSA_NAME);
6626 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6627 && SSA_NAME_RANGE_INFO (lhs))
6629 if (is_unreachable == -1)
6631 is_unreachable = 0;
6632 if (single_pred_p (bb)
6633 && assert_unreachable_fallthru_edge_p
6634 (single_pred_edge (bb)))
6635 is_unreachable = 1;
6637 /* Handle
6638 if (x_7 >= 10 && x_7 < 20)
6639 __builtin_unreachable ();
6640 x_8 = ASSERT_EXPR <x_7, ...>;
6641 if the only uses of x_7 are in the ASSERT_EXPR and
6642 in the condition. In that case, we can copy the
6643 range info from x_8 computed in this pass also
6644 for x_7. */
6645 if (is_unreachable
6646 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6647 single_pred (bb)))
6649 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6650 SSA_NAME_RANGE_INFO (lhs)->min,
6651 SSA_NAME_RANGE_INFO (lhs)->max);
6652 maybe_set_nonzero_bits (bb, var);
6656 /* Propagate the RHS into every use of the LHS. */
6657 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6658 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6659 SET_USE (use_p, var);
6661 /* And finally, remove the copy, it is not needed. */
6662 gsi_remove (&si, true);
6663 release_defs (stmt);
6665 else
6667 if (!is_gimple_debug (gsi_stmt (si)))
6668 is_unreachable = 0;
6669 gsi_next (&si);
6675 /* Return true if STMT is interesting for VRP. */
6677 static bool
6678 stmt_interesting_for_vrp (gimple stmt)
6680 if (gimple_code (stmt) == GIMPLE_PHI)
6682 tree res = gimple_phi_result (stmt);
6683 return (!virtual_operand_p (res)
6684 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6685 || POINTER_TYPE_P (TREE_TYPE (res))));
6687 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6689 tree lhs = gimple_get_lhs (stmt);
6691 /* In general, assignments with virtual operands are not useful
6692 for deriving ranges, with the obvious exception of calls to
6693 builtin functions. */
6694 if (lhs && TREE_CODE (lhs) == SSA_NAME
6695 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6696 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6697 && (is_gimple_call (stmt)
6698 || !gimple_vuse (stmt)))
6699 return true;
6701 else if (gimple_code (stmt) == GIMPLE_COND
6702 || gimple_code (stmt) == GIMPLE_SWITCH)
6703 return true;
6705 return false;
6709 /* Initialize local data structures for VRP. */
6711 static void
6712 vrp_initialize (void)
6714 basic_block bb;
6716 values_propagated = false;
6717 num_vr_values = num_ssa_names;
6718 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6719 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6721 FOR_EACH_BB_FN (bb, cfun)
6723 gimple_stmt_iterator si;
6725 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6727 gimple phi = gsi_stmt (si);
6728 if (!stmt_interesting_for_vrp (phi))
6730 tree lhs = PHI_RESULT (phi);
6731 set_value_range_to_varying (get_value_range (lhs));
6732 prop_set_simulate_again (phi, false);
6734 else
6735 prop_set_simulate_again (phi, true);
6738 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6740 gimple stmt = gsi_stmt (si);
6742 /* If the statement is a control insn, then we do not
6743 want to avoid simulating the statement once. Failure
6744 to do so means that those edges will never get added. */
6745 if (stmt_ends_bb_p (stmt))
6746 prop_set_simulate_again (stmt, true);
6747 else if (!stmt_interesting_for_vrp (stmt))
6749 ssa_op_iter i;
6750 tree def;
6751 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6752 set_value_range_to_varying (get_value_range (def));
6753 prop_set_simulate_again (stmt, false);
6755 else
6756 prop_set_simulate_again (stmt, true);
6761 /* Return the singleton value-range for NAME or NAME. */
6763 static inline tree
6764 vrp_valueize (tree name)
6766 if (TREE_CODE (name) == SSA_NAME)
6768 value_range_t *vr = get_value_range (name);
6769 if (vr->type == VR_RANGE
6770 && (vr->min == vr->max
6771 || operand_equal_p (vr->min, vr->max, 0)))
6772 return vr->min;
6774 return name;
6777 /* Visit assignment STMT. If it produces an interesting range, record
6778 the SSA name in *OUTPUT_P. */
6780 static enum ssa_prop_result
6781 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6783 tree def, lhs;
6784 ssa_op_iter iter;
6785 enum gimple_code code = gimple_code (stmt);
6786 lhs = gimple_get_lhs (stmt);
6788 /* We only keep track of ranges in integral and pointer types. */
6789 if (TREE_CODE (lhs) == SSA_NAME
6790 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6791 /* It is valid to have NULL MIN/MAX values on a type. See
6792 build_range_type. */
6793 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6794 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6795 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6797 value_range_t new_vr = VR_INITIALIZER;
6799 /* Try folding the statement to a constant first. */
6800 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6801 if (tem)
6802 set_value_range_to_value (&new_vr, tem, NULL);
6803 /* Then dispatch to value-range extracting functions. */
6804 else if (code == GIMPLE_CALL)
6805 extract_range_basic (&new_vr, stmt);
6806 else
6807 extract_range_from_assignment (&new_vr, stmt);
6809 if (update_value_range (lhs, &new_vr))
6811 *output_p = lhs;
6813 if (dump_file && (dump_flags & TDF_DETAILS))
6815 fprintf (dump_file, "Found new range for ");
6816 print_generic_expr (dump_file, lhs, 0);
6817 fprintf (dump_file, ": ");
6818 dump_value_range (dump_file, &new_vr);
6819 fprintf (dump_file, "\n\n");
6822 if (new_vr.type == VR_VARYING)
6823 return SSA_PROP_VARYING;
6825 return SSA_PROP_INTERESTING;
6828 return SSA_PROP_NOT_INTERESTING;
6831 /* Every other statement produces no useful ranges. */
6832 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6833 set_value_range_to_varying (get_value_range (def));
6835 return SSA_PROP_VARYING;
6838 /* Helper that gets the value range of the SSA_NAME with version I
6839 or a symbolic range containing the SSA_NAME only if the value range
6840 is varying or undefined. */
6842 static inline value_range_t
6843 get_vr_for_comparison (int i)
6845 value_range_t vr = *get_value_range (ssa_name (i));
6847 /* If name N_i does not have a valid range, use N_i as its own
6848 range. This allows us to compare against names that may
6849 have N_i in their ranges. */
6850 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6852 vr.type = VR_RANGE;
6853 vr.min = ssa_name (i);
6854 vr.max = ssa_name (i);
6857 return vr;
6860 /* Compare all the value ranges for names equivalent to VAR with VAL
6861 using comparison code COMP. Return the same value returned by
6862 compare_range_with_value, including the setting of
6863 *STRICT_OVERFLOW_P. */
6865 static tree
6866 compare_name_with_value (enum tree_code comp, tree var, tree val,
6867 bool *strict_overflow_p)
6869 bitmap_iterator bi;
6870 unsigned i;
6871 bitmap e;
6872 tree retval, t;
6873 int used_strict_overflow;
6874 bool sop;
6875 value_range_t equiv_vr;
6877 /* Get the set of equivalences for VAR. */
6878 e = get_value_range (var)->equiv;
6880 /* Start at -1. Set it to 0 if we do a comparison without relying
6881 on overflow, or 1 if all comparisons rely on overflow. */
6882 used_strict_overflow = -1;
6884 /* Compare vars' value range with val. */
6885 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6886 sop = false;
6887 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6888 if (retval)
6889 used_strict_overflow = sop ? 1 : 0;
6891 /* If the equiv set is empty we have done all work we need to do. */
6892 if (e == NULL)
6894 if (retval
6895 && used_strict_overflow > 0)
6896 *strict_overflow_p = true;
6897 return retval;
6900 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6902 equiv_vr = get_vr_for_comparison (i);
6903 sop = false;
6904 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6905 if (t)
6907 /* If we get different answers from different members
6908 of the equivalence set this check must be in a dead
6909 code region. Folding it to a trap representation
6910 would be correct here. For now just return don't-know. */
6911 if (retval != NULL
6912 && t != retval)
6914 retval = NULL_TREE;
6915 break;
6917 retval = t;
6919 if (!sop)
6920 used_strict_overflow = 0;
6921 else if (used_strict_overflow < 0)
6922 used_strict_overflow = 1;
6926 if (retval
6927 && used_strict_overflow > 0)
6928 *strict_overflow_p = true;
6930 return retval;
6934 /* Given a comparison code COMP and names N1 and N2, compare all the
6935 ranges equivalent to N1 against all the ranges equivalent to N2
6936 to determine the value of N1 COMP N2. Return the same value
6937 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6938 whether we relied on an overflow infinity in the comparison. */
6941 static tree
6942 compare_names (enum tree_code comp, tree n1, tree n2,
6943 bool *strict_overflow_p)
6945 tree t, retval;
6946 bitmap e1, e2;
6947 bitmap_iterator bi1, bi2;
6948 unsigned i1, i2;
6949 int used_strict_overflow;
6950 static bitmap_obstack *s_obstack = NULL;
6951 static bitmap s_e1 = NULL, s_e2 = NULL;
6953 /* Compare the ranges of every name equivalent to N1 against the
6954 ranges of every name equivalent to N2. */
6955 e1 = get_value_range (n1)->equiv;
6956 e2 = get_value_range (n2)->equiv;
6958 /* Use the fake bitmaps if e1 or e2 are not available. */
6959 if (s_obstack == NULL)
6961 s_obstack = XNEW (bitmap_obstack);
6962 bitmap_obstack_initialize (s_obstack);
6963 s_e1 = BITMAP_ALLOC (s_obstack);
6964 s_e2 = BITMAP_ALLOC (s_obstack);
6966 if (e1 == NULL)
6967 e1 = s_e1;
6968 if (e2 == NULL)
6969 e2 = s_e2;
6971 /* Add N1 and N2 to their own set of equivalences to avoid
6972 duplicating the body of the loop just to check N1 and N2
6973 ranges. */
6974 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6975 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6977 /* If the equivalence sets have a common intersection, then the two
6978 names can be compared without checking their ranges. */
6979 if (bitmap_intersect_p (e1, e2))
6981 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6982 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6984 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6985 ? boolean_true_node
6986 : boolean_false_node;
6989 /* Start at -1. Set it to 0 if we do a comparison without relying
6990 on overflow, or 1 if all comparisons rely on overflow. */
6991 used_strict_overflow = -1;
6993 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6994 N2 to their own set of equivalences to avoid duplicating the body
6995 of the loop just to check N1 and N2 ranges. */
6996 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6998 value_range_t vr1 = get_vr_for_comparison (i1);
7000 t = retval = NULL_TREE;
7001 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7003 bool sop = false;
7005 value_range_t vr2 = get_vr_for_comparison (i2);
7007 t = compare_ranges (comp, &vr1, &vr2, &sop);
7008 if (t)
7010 /* If we get different answers from different members
7011 of the equivalence set this check must be in a dead
7012 code region. Folding it to a trap representation
7013 would be correct here. For now just return don't-know. */
7014 if (retval != NULL
7015 && t != retval)
7017 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7018 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7019 return NULL_TREE;
7021 retval = t;
7023 if (!sop)
7024 used_strict_overflow = 0;
7025 else if (used_strict_overflow < 0)
7026 used_strict_overflow = 1;
7030 if (retval)
7032 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7033 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7034 if (used_strict_overflow > 0)
7035 *strict_overflow_p = true;
7036 return retval;
7040 /* None of the equivalent ranges are useful in computing this
7041 comparison. */
7042 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7043 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7044 return NULL_TREE;
7047 /* Helper function for vrp_evaluate_conditional_warnv. */
7049 static tree
7050 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7051 tree op0, tree op1,
7052 bool * strict_overflow_p)
7054 value_range_t *vr0, *vr1;
7056 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7057 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7059 if (vr0 && vr1)
7060 return compare_ranges (code, vr0, vr1, strict_overflow_p);
7061 else if (vr0 && vr1 == NULL)
7062 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
7063 else if (vr0 == NULL && vr1)
7064 return (compare_range_with_value
7065 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7066 return NULL;
7069 /* Helper function for vrp_evaluate_conditional_warnv. */
7071 static tree
7072 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7073 tree op1, bool use_equiv_p,
7074 bool *strict_overflow_p, bool *only_ranges)
7076 tree ret;
7077 if (only_ranges)
7078 *only_ranges = true;
7080 /* We only deal with integral and pointer types. */
7081 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7082 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7083 return NULL_TREE;
7085 if (use_equiv_p)
7087 if (only_ranges
7088 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7089 (code, op0, op1, strict_overflow_p)))
7090 return ret;
7091 *only_ranges = false;
7092 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7093 return compare_names (code, op0, op1, strict_overflow_p);
7094 else if (TREE_CODE (op0) == SSA_NAME)
7095 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7096 else if (TREE_CODE (op1) == SSA_NAME)
7097 return (compare_name_with_value
7098 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7100 else
7101 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7102 strict_overflow_p);
7103 return NULL_TREE;
7106 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7107 information. Return NULL if the conditional can not be evaluated.
7108 The ranges of all the names equivalent with the operands in COND
7109 will be used when trying to compute the value. If the result is
7110 based on undefined signed overflow, issue a warning if
7111 appropriate. */
7113 static tree
7114 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7116 bool sop;
7117 tree ret;
7118 bool only_ranges;
7120 /* Some passes and foldings leak constants with overflow flag set
7121 into the IL. Avoid doing wrong things with these and bail out. */
7122 if ((TREE_CODE (op0) == INTEGER_CST
7123 && TREE_OVERFLOW (op0))
7124 || (TREE_CODE (op1) == INTEGER_CST
7125 && TREE_OVERFLOW (op1)))
7126 return NULL_TREE;
7128 sop = false;
7129 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7130 &only_ranges);
7132 if (ret && sop)
7134 enum warn_strict_overflow_code wc;
7135 const char* warnmsg;
7137 if (is_gimple_min_invariant (ret))
7139 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7140 warnmsg = G_("assuming signed overflow does not occur when "
7141 "simplifying conditional to constant");
7143 else
7145 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7146 warnmsg = G_("assuming signed overflow does not occur when "
7147 "simplifying conditional");
7150 if (issue_strict_overflow_warning (wc))
7152 location_t location;
7154 if (!gimple_has_location (stmt))
7155 location = input_location;
7156 else
7157 location = gimple_location (stmt);
7158 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7162 if (warn_type_limits
7163 && ret && only_ranges
7164 && TREE_CODE_CLASS (code) == tcc_comparison
7165 && TREE_CODE (op0) == SSA_NAME)
7167 /* If the comparison is being folded and the operand on the LHS
7168 is being compared against a constant value that is outside of
7169 the natural range of OP0's type, then the predicate will
7170 always fold regardless of the value of OP0. If -Wtype-limits
7171 was specified, emit a warning. */
7172 tree type = TREE_TYPE (op0);
7173 value_range_t *vr0 = get_value_range (op0);
7175 if (vr0->type != VR_VARYING
7176 && INTEGRAL_TYPE_P (type)
7177 && vrp_val_is_min (vr0->min)
7178 && vrp_val_is_max (vr0->max)
7179 && is_gimple_min_invariant (op1))
7181 location_t location;
7183 if (!gimple_has_location (stmt))
7184 location = input_location;
7185 else
7186 location = gimple_location (stmt);
7188 warning_at (location, OPT_Wtype_limits,
7189 integer_zerop (ret)
7190 ? G_("comparison always false "
7191 "due to limited range of data type")
7192 : G_("comparison always true "
7193 "due to limited range of data type"));
7197 return ret;
7201 /* Visit conditional statement STMT. If we can determine which edge
7202 will be taken out of STMT's basic block, record it in
7203 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7204 SSA_PROP_VARYING. */
7206 static enum ssa_prop_result
7207 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7209 tree val;
7210 bool sop;
7212 *taken_edge_p = NULL;
7214 if (dump_file && (dump_flags & TDF_DETAILS))
7216 tree use;
7217 ssa_op_iter i;
7219 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7220 print_gimple_stmt (dump_file, stmt, 0, 0);
7221 fprintf (dump_file, "\nWith known ranges\n");
7223 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7225 fprintf (dump_file, "\t");
7226 print_generic_expr (dump_file, use, 0);
7227 fprintf (dump_file, ": ");
7228 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7231 fprintf (dump_file, "\n");
7234 /* Compute the value of the predicate COND by checking the known
7235 ranges of each of its operands.
7237 Note that we cannot evaluate all the equivalent ranges here
7238 because those ranges may not yet be final and with the current
7239 propagation strategy, we cannot determine when the value ranges
7240 of the names in the equivalence set have changed.
7242 For instance, given the following code fragment
7244 i_5 = PHI <8, i_13>
7246 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7247 if (i_14 == 1)
7250 Assume that on the first visit to i_14, i_5 has the temporary
7251 range [8, 8] because the second argument to the PHI function is
7252 not yet executable. We derive the range ~[0, 0] for i_14 and the
7253 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7254 the first time, since i_14 is equivalent to the range [8, 8], we
7255 determine that the predicate is always false.
7257 On the next round of propagation, i_13 is determined to be
7258 VARYING, which causes i_5 to drop down to VARYING. So, another
7259 visit to i_14 is scheduled. In this second visit, we compute the
7260 exact same range and equivalence set for i_14, namely ~[0, 0] and
7261 { i_5 }. But we did not have the previous range for i_5
7262 registered, so vrp_visit_assignment thinks that the range for
7263 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7264 is not visited again, which stops propagation from visiting
7265 statements in the THEN clause of that if().
7267 To properly fix this we would need to keep the previous range
7268 value for the names in the equivalence set. This way we would've
7269 discovered that from one visit to the other i_5 changed from
7270 range [8, 8] to VR_VARYING.
7272 However, fixing this apparent limitation may not be worth the
7273 additional checking. Testing on several code bases (GCC, DLV,
7274 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7275 4 more predicates folded in SPEC. */
7276 sop = false;
7278 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7279 gimple_cond_lhs (stmt),
7280 gimple_cond_rhs (stmt),
7281 false, &sop, NULL);
7282 if (val)
7284 if (!sop)
7285 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7286 else
7288 if (dump_file && (dump_flags & TDF_DETAILS))
7289 fprintf (dump_file,
7290 "\nIgnoring predicate evaluation because "
7291 "it assumes that signed overflow is undefined");
7292 val = NULL_TREE;
7296 if (dump_file && (dump_flags & TDF_DETAILS))
7298 fprintf (dump_file, "\nPredicate evaluates to: ");
7299 if (val == NULL_TREE)
7300 fprintf (dump_file, "DON'T KNOW\n");
7301 else
7302 print_generic_stmt (dump_file, val, 0);
7305 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7308 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7309 that includes the value VAL. The search is restricted to the range
7310 [START_IDX, n - 1] where n is the size of VEC.
7312 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7313 returned.
7315 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7316 it is placed in IDX and false is returned.
7318 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7319 returned. */
7321 static bool
7322 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7324 size_t n = gimple_switch_num_labels (stmt);
7325 size_t low, high;
7327 /* Find case label for minimum of the value range or the next one.
7328 At each iteration we are searching in [low, high - 1]. */
7330 for (low = start_idx, high = n; high != low; )
7332 tree t;
7333 int cmp;
7334 /* Note that i != high, so we never ask for n. */
7335 size_t i = (high + low) / 2;
7336 t = gimple_switch_label (stmt, i);
7338 /* Cache the result of comparing CASE_LOW and val. */
7339 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7341 if (cmp == 0)
7343 /* Ranges cannot be empty. */
7344 *idx = i;
7345 return true;
7347 else if (cmp > 0)
7348 high = i;
7349 else
7351 low = i + 1;
7352 if (CASE_HIGH (t) != NULL
7353 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7355 *idx = i;
7356 return true;
7361 *idx = high;
7362 return false;
7365 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7366 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7367 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7368 then MAX_IDX < MIN_IDX.
7369 Returns true if the default label is not needed. */
7371 static bool
7372 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7373 size_t *max_idx)
7375 size_t i, j;
7376 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7377 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7379 if (i == j
7380 && min_take_default
7381 && max_take_default)
7383 /* Only the default case label reached.
7384 Return an empty range. */
7385 *min_idx = 1;
7386 *max_idx = 0;
7387 return false;
7389 else
7391 bool take_default = min_take_default || max_take_default;
7392 tree low, high;
7393 size_t k;
7395 if (max_take_default)
7396 j--;
7398 /* If the case label range is continuous, we do not need
7399 the default case label. Verify that. */
7400 high = CASE_LOW (gimple_switch_label (stmt, i));
7401 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7402 high = CASE_HIGH (gimple_switch_label (stmt, i));
7403 for (k = i + 1; k <= j; ++k)
7405 low = CASE_LOW (gimple_switch_label (stmt, k));
7406 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7408 take_default = true;
7409 break;
7411 high = low;
7412 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7413 high = CASE_HIGH (gimple_switch_label (stmt, k));
7416 *min_idx = i;
7417 *max_idx = j;
7418 return !take_default;
7422 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7423 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7424 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7425 Returns true if the default label is not needed. */
7427 static bool
7428 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7429 size_t *max_idx1, size_t *min_idx2,
7430 size_t *max_idx2)
7432 size_t i, j, k, l;
7433 unsigned int n = gimple_switch_num_labels (stmt);
7434 bool take_default;
7435 tree case_low, case_high;
7436 tree min = vr->min, max = vr->max;
7438 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7440 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7442 /* Set second range to emtpy. */
7443 *min_idx2 = 1;
7444 *max_idx2 = 0;
7446 if (vr->type == VR_RANGE)
7448 *min_idx1 = i;
7449 *max_idx1 = j;
7450 return !take_default;
7453 /* Set first range to all case labels. */
7454 *min_idx1 = 1;
7455 *max_idx1 = n - 1;
7457 if (i > j)
7458 return false;
7460 /* Make sure all the values of case labels [i , j] are contained in
7461 range [MIN, MAX]. */
7462 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7463 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7464 if (tree_int_cst_compare (case_low, min) < 0)
7465 i += 1;
7466 if (case_high != NULL_TREE
7467 && tree_int_cst_compare (max, case_high) < 0)
7468 j -= 1;
7470 if (i > j)
7471 return false;
7473 /* If the range spans case labels [i, j], the corresponding anti-range spans
7474 the labels [1, i - 1] and [j + 1, n - 1]. */
7475 k = j + 1;
7476 l = n - 1;
7477 if (k > l)
7479 k = 1;
7480 l = 0;
7483 j = i - 1;
7484 i = 1;
7485 if (i > j)
7487 i = k;
7488 j = l;
7489 k = 1;
7490 l = 0;
7493 *min_idx1 = i;
7494 *max_idx1 = j;
7495 *min_idx2 = k;
7496 *max_idx2 = l;
7497 return false;
7500 /* Visit switch statement STMT. If we can determine which edge
7501 will be taken out of STMT's basic block, record it in
7502 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7503 SSA_PROP_VARYING. */
7505 static enum ssa_prop_result
7506 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7508 tree op, val;
7509 value_range_t *vr;
7510 size_t i = 0, j = 0, k, l;
7511 bool take_default;
7513 *taken_edge_p = NULL;
7514 op = gimple_switch_index (stmt);
7515 if (TREE_CODE (op) != SSA_NAME)
7516 return SSA_PROP_VARYING;
7518 vr = get_value_range (op);
7519 if (dump_file && (dump_flags & TDF_DETAILS))
7521 fprintf (dump_file, "\nVisiting switch expression with operand ");
7522 print_generic_expr (dump_file, op, 0);
7523 fprintf (dump_file, " with known range ");
7524 dump_value_range (dump_file, vr);
7525 fprintf (dump_file, "\n");
7528 if ((vr->type != VR_RANGE
7529 && vr->type != VR_ANTI_RANGE)
7530 || symbolic_range_p (vr))
7531 return SSA_PROP_VARYING;
7533 /* Find the single edge that is taken from the switch expression. */
7534 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7536 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7537 label */
7538 if (j < i)
7540 gcc_assert (take_default);
7541 val = gimple_switch_default_label (stmt);
7543 else
7545 /* Check if labels with index i to j and maybe the default label
7546 are all reaching the same label. */
7548 val = gimple_switch_label (stmt, i);
7549 if (take_default
7550 && CASE_LABEL (gimple_switch_default_label (stmt))
7551 != CASE_LABEL (val))
7553 if (dump_file && (dump_flags & TDF_DETAILS))
7554 fprintf (dump_file, " not a single destination for this "
7555 "range\n");
7556 return SSA_PROP_VARYING;
7558 for (++i; i <= j; ++i)
7560 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7562 if (dump_file && (dump_flags & TDF_DETAILS))
7563 fprintf (dump_file, " not a single destination for this "
7564 "range\n");
7565 return SSA_PROP_VARYING;
7568 for (; k <= l; ++k)
7570 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7572 if (dump_file && (dump_flags & TDF_DETAILS))
7573 fprintf (dump_file, " not a single destination for this "
7574 "range\n");
7575 return SSA_PROP_VARYING;
7580 *taken_edge_p = find_edge (gimple_bb (stmt),
7581 label_to_block (CASE_LABEL (val)));
7583 if (dump_file && (dump_flags & TDF_DETAILS))
7585 fprintf (dump_file, " will take edge to ");
7586 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7589 return SSA_PROP_INTERESTING;
7593 /* Evaluate statement STMT. If the statement produces a useful range,
7594 return SSA_PROP_INTERESTING and record the SSA name with the
7595 interesting range into *OUTPUT_P.
7597 If STMT is a conditional branch and we can determine its truth
7598 value, the taken edge is recorded in *TAKEN_EDGE_P.
7600 If STMT produces a varying value, return SSA_PROP_VARYING. */
7602 static enum ssa_prop_result
7603 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7605 tree def;
7606 ssa_op_iter iter;
7608 if (dump_file && (dump_flags & TDF_DETAILS))
7610 fprintf (dump_file, "\nVisiting statement:\n");
7611 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7612 fprintf (dump_file, "\n");
7615 if (!stmt_interesting_for_vrp (stmt))
7616 gcc_assert (stmt_ends_bb_p (stmt));
7617 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7618 return vrp_visit_assignment_or_call (stmt, output_p);
7619 else if (gimple_code (stmt) == GIMPLE_COND)
7620 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7621 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7622 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7624 /* All other statements produce nothing of interest for VRP, so mark
7625 their outputs varying and prevent further simulation. */
7626 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7627 set_value_range_to_varying (get_value_range (def));
7629 return SSA_PROP_VARYING;
7632 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7633 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7634 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7635 possible such range. The resulting range is not canonicalized. */
7637 static void
7638 union_ranges (enum value_range_type *vr0type,
7639 tree *vr0min, tree *vr0max,
7640 enum value_range_type vr1type,
7641 tree vr1min, tree vr1max)
7643 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7644 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7646 /* [] is vr0, () is vr1 in the following classification comments. */
7647 if (mineq && maxeq)
7649 /* [( )] */
7650 if (*vr0type == vr1type)
7651 /* Nothing to do for equal ranges. */
7653 else if ((*vr0type == VR_RANGE
7654 && vr1type == VR_ANTI_RANGE)
7655 || (*vr0type == VR_ANTI_RANGE
7656 && vr1type == VR_RANGE))
7658 /* For anti-range with range union the result is varying. */
7659 goto give_up;
7661 else
7662 gcc_unreachable ();
7664 else if (operand_less_p (*vr0max, vr1min) == 1
7665 || operand_less_p (vr1max, *vr0min) == 1)
7667 /* [ ] ( ) or ( ) [ ]
7668 If the ranges have an empty intersection, result of the union
7669 operation is the anti-range or if both are anti-ranges
7670 it covers all. */
7671 if (*vr0type == VR_ANTI_RANGE
7672 && vr1type == VR_ANTI_RANGE)
7673 goto give_up;
7674 else if (*vr0type == VR_ANTI_RANGE
7675 && vr1type == VR_RANGE)
7677 else if (*vr0type == VR_RANGE
7678 && vr1type == VR_ANTI_RANGE)
7680 *vr0type = vr1type;
7681 *vr0min = vr1min;
7682 *vr0max = vr1max;
7684 else if (*vr0type == VR_RANGE
7685 && vr1type == VR_RANGE)
7687 /* The result is the convex hull of both ranges. */
7688 if (operand_less_p (*vr0max, vr1min) == 1)
7690 /* If the result can be an anti-range, create one. */
7691 if (TREE_CODE (*vr0max) == INTEGER_CST
7692 && TREE_CODE (vr1min) == INTEGER_CST
7693 && vrp_val_is_min (*vr0min)
7694 && vrp_val_is_max (vr1max))
7696 tree min = int_const_binop (PLUS_EXPR,
7697 *vr0max, integer_one_node);
7698 tree max = int_const_binop (MINUS_EXPR,
7699 vr1min, integer_one_node);
7700 if (!operand_less_p (max, min))
7702 *vr0type = VR_ANTI_RANGE;
7703 *vr0min = min;
7704 *vr0max = max;
7706 else
7707 *vr0max = vr1max;
7709 else
7710 *vr0max = vr1max;
7712 else
7714 /* If the result can be an anti-range, create one. */
7715 if (TREE_CODE (vr1max) == INTEGER_CST
7716 && TREE_CODE (*vr0min) == INTEGER_CST
7717 && vrp_val_is_min (vr1min)
7718 && vrp_val_is_max (*vr0max))
7720 tree min = int_const_binop (PLUS_EXPR,
7721 vr1max, integer_one_node);
7722 tree max = int_const_binop (MINUS_EXPR,
7723 *vr0min, integer_one_node);
7724 if (!operand_less_p (max, min))
7726 *vr0type = VR_ANTI_RANGE;
7727 *vr0min = min;
7728 *vr0max = max;
7730 else
7731 *vr0min = vr1min;
7733 else
7734 *vr0min = vr1min;
7737 else
7738 gcc_unreachable ();
7740 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7741 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7743 /* [ ( ) ] or [( ) ] or [ ( )] */
7744 if (*vr0type == VR_RANGE
7745 && vr1type == VR_RANGE)
7747 else if (*vr0type == VR_ANTI_RANGE
7748 && vr1type == VR_ANTI_RANGE)
7750 *vr0type = vr1type;
7751 *vr0min = vr1min;
7752 *vr0max = vr1max;
7754 else if (*vr0type == VR_ANTI_RANGE
7755 && vr1type == VR_RANGE)
7757 /* Arbitrarily choose the right or left gap. */
7758 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7759 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7760 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7761 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7762 else
7763 goto give_up;
7765 else if (*vr0type == VR_RANGE
7766 && vr1type == VR_ANTI_RANGE)
7767 /* The result covers everything. */
7768 goto give_up;
7769 else
7770 gcc_unreachable ();
7772 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7773 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7775 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7776 if (*vr0type == VR_RANGE
7777 && vr1type == VR_RANGE)
7779 *vr0type = vr1type;
7780 *vr0min = vr1min;
7781 *vr0max = vr1max;
7783 else if (*vr0type == VR_ANTI_RANGE
7784 && vr1type == VR_ANTI_RANGE)
7786 else if (*vr0type == VR_RANGE
7787 && vr1type == VR_ANTI_RANGE)
7789 *vr0type = VR_ANTI_RANGE;
7790 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7792 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7793 *vr0min = vr1min;
7795 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7797 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7798 *vr0max = vr1max;
7800 else
7801 goto give_up;
7803 else if (*vr0type == VR_ANTI_RANGE
7804 && vr1type == VR_RANGE)
7805 /* The result covers everything. */
7806 goto give_up;
7807 else
7808 gcc_unreachable ();
7810 else if ((operand_less_p (vr1min, *vr0max) == 1
7811 || operand_equal_p (vr1min, *vr0max, 0))
7812 && operand_less_p (*vr0min, vr1min) == 1
7813 && operand_less_p (*vr0max, vr1max) == 1)
7815 /* [ ( ] ) or [ ]( ) */
7816 if (*vr0type == VR_RANGE
7817 && vr1type == VR_RANGE)
7818 *vr0max = vr1max;
7819 else if (*vr0type == VR_ANTI_RANGE
7820 && vr1type == VR_ANTI_RANGE)
7821 *vr0min = vr1min;
7822 else if (*vr0type == VR_ANTI_RANGE
7823 && vr1type == VR_RANGE)
7825 if (TREE_CODE (vr1min) == INTEGER_CST)
7826 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7827 else
7828 goto give_up;
7830 else if (*vr0type == VR_RANGE
7831 && vr1type == VR_ANTI_RANGE)
7833 if (TREE_CODE (*vr0max) == INTEGER_CST)
7835 *vr0type = vr1type;
7836 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7837 *vr0max = vr1max;
7839 else
7840 goto give_up;
7842 else
7843 gcc_unreachable ();
7845 else if ((operand_less_p (*vr0min, vr1max) == 1
7846 || operand_equal_p (*vr0min, vr1max, 0))
7847 && operand_less_p (vr1min, *vr0min) == 1
7848 && operand_less_p (vr1max, *vr0max) == 1)
7850 /* ( [ ) ] or ( )[ ] */
7851 if (*vr0type == VR_RANGE
7852 && vr1type == VR_RANGE)
7853 *vr0min = vr1min;
7854 else if (*vr0type == VR_ANTI_RANGE
7855 && vr1type == VR_ANTI_RANGE)
7856 *vr0max = vr1max;
7857 else if (*vr0type == VR_ANTI_RANGE
7858 && vr1type == VR_RANGE)
7860 if (TREE_CODE (vr1max) == INTEGER_CST)
7861 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7862 else
7863 goto give_up;
7865 else if (*vr0type == VR_RANGE
7866 && vr1type == VR_ANTI_RANGE)
7868 if (TREE_CODE (*vr0min) == INTEGER_CST)
7870 *vr0type = vr1type;
7871 *vr0min = vr1min;
7872 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7874 else
7875 goto give_up;
7877 else
7878 gcc_unreachable ();
7880 else
7881 goto give_up;
7883 return;
7885 give_up:
7886 *vr0type = VR_VARYING;
7887 *vr0min = NULL_TREE;
7888 *vr0max = NULL_TREE;
7891 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7892 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7893 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7894 possible such range. The resulting range is not canonicalized. */
7896 static void
7897 intersect_ranges (enum value_range_type *vr0type,
7898 tree *vr0min, tree *vr0max,
7899 enum value_range_type vr1type,
7900 tree vr1min, tree vr1max)
7902 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7903 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7905 /* [] is vr0, () is vr1 in the following classification comments. */
7906 if (mineq && maxeq)
7908 /* [( )] */
7909 if (*vr0type == vr1type)
7910 /* Nothing to do for equal ranges. */
7912 else if ((*vr0type == VR_RANGE
7913 && vr1type == VR_ANTI_RANGE)
7914 || (*vr0type == VR_ANTI_RANGE
7915 && vr1type == VR_RANGE))
7917 /* For anti-range with range intersection the result is empty. */
7918 *vr0type = VR_UNDEFINED;
7919 *vr0min = NULL_TREE;
7920 *vr0max = NULL_TREE;
7922 else
7923 gcc_unreachable ();
7925 else if (operand_less_p (*vr0max, vr1min) == 1
7926 || operand_less_p (vr1max, *vr0min) == 1)
7928 /* [ ] ( ) or ( ) [ ]
7929 If the ranges have an empty intersection, the result of the
7930 intersect operation is the range for intersecting an
7931 anti-range with a range or empty when intersecting two ranges. */
7932 if (*vr0type == VR_RANGE
7933 && vr1type == VR_ANTI_RANGE)
7935 else if (*vr0type == VR_ANTI_RANGE
7936 && vr1type == VR_RANGE)
7938 *vr0type = vr1type;
7939 *vr0min = vr1min;
7940 *vr0max = vr1max;
7942 else if (*vr0type == VR_RANGE
7943 && vr1type == VR_RANGE)
7945 *vr0type = VR_UNDEFINED;
7946 *vr0min = NULL_TREE;
7947 *vr0max = NULL_TREE;
7949 else if (*vr0type == VR_ANTI_RANGE
7950 && vr1type == VR_ANTI_RANGE)
7952 /* If the anti-ranges are adjacent to each other merge them. */
7953 if (TREE_CODE (*vr0max) == INTEGER_CST
7954 && TREE_CODE (vr1min) == INTEGER_CST
7955 && operand_less_p (*vr0max, vr1min) == 1
7956 && integer_onep (int_const_binop (MINUS_EXPR,
7957 vr1min, *vr0max)))
7958 *vr0max = vr1max;
7959 else if (TREE_CODE (vr1max) == INTEGER_CST
7960 && TREE_CODE (*vr0min) == INTEGER_CST
7961 && operand_less_p (vr1max, *vr0min) == 1
7962 && integer_onep (int_const_binop (MINUS_EXPR,
7963 *vr0min, vr1max)))
7964 *vr0min = vr1min;
7965 /* Else arbitrarily take VR0. */
7968 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7969 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7971 /* [ ( ) ] or [( ) ] or [ ( )] */
7972 if (*vr0type == VR_RANGE
7973 && vr1type == VR_RANGE)
7975 /* If both are ranges the result is the inner one. */
7976 *vr0type = vr1type;
7977 *vr0min = vr1min;
7978 *vr0max = vr1max;
7980 else if (*vr0type == VR_RANGE
7981 && vr1type == VR_ANTI_RANGE)
7983 /* Choose the right gap if the left one is empty. */
7984 if (mineq)
7986 if (TREE_CODE (vr1max) == INTEGER_CST)
7987 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7988 else
7989 *vr0min = vr1max;
7991 /* Choose the left gap if the right one is empty. */
7992 else if (maxeq)
7994 if (TREE_CODE (vr1min) == INTEGER_CST)
7995 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7996 integer_one_node);
7997 else
7998 *vr0max = vr1min;
8000 /* Choose the anti-range if the range is effectively varying. */
8001 else if (vrp_val_is_min (*vr0min)
8002 && vrp_val_is_max (*vr0max))
8004 *vr0type = vr1type;
8005 *vr0min = vr1min;
8006 *vr0max = vr1max;
8008 /* Else choose the range. */
8010 else if (*vr0type == VR_ANTI_RANGE
8011 && vr1type == VR_ANTI_RANGE)
8012 /* If both are anti-ranges the result is the outer one. */
8014 else if (*vr0type == VR_ANTI_RANGE
8015 && vr1type == VR_RANGE)
8017 /* The intersection is empty. */
8018 *vr0type = VR_UNDEFINED;
8019 *vr0min = NULL_TREE;
8020 *vr0max = NULL_TREE;
8022 else
8023 gcc_unreachable ();
8025 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8026 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8028 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8029 if (*vr0type == VR_RANGE
8030 && vr1type == VR_RANGE)
8031 /* Choose the inner range. */
8033 else if (*vr0type == VR_ANTI_RANGE
8034 && vr1type == VR_RANGE)
8036 /* Choose the right gap if the left is empty. */
8037 if (mineq)
8039 *vr0type = VR_RANGE;
8040 if (TREE_CODE (*vr0max) == INTEGER_CST)
8041 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8042 integer_one_node);
8043 else
8044 *vr0min = *vr0max;
8045 *vr0max = vr1max;
8047 /* Choose the left gap if the right is empty. */
8048 else if (maxeq)
8050 *vr0type = VR_RANGE;
8051 if (TREE_CODE (*vr0min) == INTEGER_CST)
8052 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8053 integer_one_node);
8054 else
8055 *vr0max = *vr0min;
8056 *vr0min = vr1min;
8058 /* Choose the anti-range if the range is effectively varying. */
8059 else if (vrp_val_is_min (vr1min)
8060 && vrp_val_is_max (vr1max))
8062 /* Else choose the range. */
8063 else
8065 *vr0type = vr1type;
8066 *vr0min = vr1min;
8067 *vr0max = vr1max;
8070 else if (*vr0type == VR_ANTI_RANGE
8071 && vr1type == VR_ANTI_RANGE)
8073 /* If both are anti-ranges the result is the outer one. */
8074 *vr0type = vr1type;
8075 *vr0min = vr1min;
8076 *vr0max = vr1max;
8078 else if (vr1type == VR_ANTI_RANGE
8079 && *vr0type == VR_RANGE)
8081 /* The intersection is empty. */
8082 *vr0type = VR_UNDEFINED;
8083 *vr0min = NULL_TREE;
8084 *vr0max = NULL_TREE;
8086 else
8087 gcc_unreachable ();
8089 else if ((operand_less_p (vr1min, *vr0max) == 1
8090 || operand_equal_p (vr1min, *vr0max, 0))
8091 && operand_less_p (*vr0min, vr1min) == 1)
8093 /* [ ( ] ) or [ ]( ) */
8094 if (*vr0type == VR_ANTI_RANGE
8095 && vr1type == VR_ANTI_RANGE)
8096 *vr0max = vr1max;
8097 else if (*vr0type == VR_RANGE
8098 && vr1type == VR_RANGE)
8099 *vr0min = vr1min;
8100 else if (*vr0type == VR_RANGE
8101 && vr1type == VR_ANTI_RANGE)
8103 if (TREE_CODE (vr1min) == INTEGER_CST)
8104 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8105 integer_one_node);
8106 else
8107 *vr0max = vr1min;
8109 else if (*vr0type == VR_ANTI_RANGE
8110 && vr1type == VR_RANGE)
8112 *vr0type = VR_RANGE;
8113 if (TREE_CODE (*vr0max) == INTEGER_CST)
8114 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8115 integer_one_node);
8116 else
8117 *vr0min = *vr0max;
8118 *vr0max = vr1max;
8120 else
8121 gcc_unreachable ();
8123 else if ((operand_less_p (*vr0min, vr1max) == 1
8124 || operand_equal_p (*vr0min, vr1max, 0))
8125 && operand_less_p (vr1min, *vr0min) == 1)
8127 /* ( [ ) ] or ( )[ ] */
8128 if (*vr0type == VR_ANTI_RANGE
8129 && vr1type == VR_ANTI_RANGE)
8130 *vr0min = vr1min;
8131 else if (*vr0type == VR_RANGE
8132 && vr1type == VR_RANGE)
8133 *vr0max = vr1max;
8134 else if (*vr0type == VR_RANGE
8135 && vr1type == VR_ANTI_RANGE)
8137 if (TREE_CODE (vr1max) == INTEGER_CST)
8138 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8139 integer_one_node);
8140 else
8141 *vr0min = vr1max;
8143 else if (*vr0type == VR_ANTI_RANGE
8144 && vr1type == VR_RANGE)
8146 *vr0type = VR_RANGE;
8147 if (TREE_CODE (*vr0min) == INTEGER_CST)
8148 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8149 integer_one_node);
8150 else
8151 *vr0max = *vr0min;
8152 *vr0min = vr1min;
8154 else
8155 gcc_unreachable ();
8158 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8159 result for the intersection. That's always a conservative
8160 correct estimate. */
8162 return;
8166 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8167 in *VR0. This may not be the smallest possible such range. */
8169 static void
8170 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8172 value_range_t saved;
8174 /* If either range is VR_VARYING the other one wins. */
8175 if (vr1->type == VR_VARYING)
8176 return;
8177 if (vr0->type == VR_VARYING)
8179 copy_value_range (vr0, vr1);
8180 return;
8183 /* When either range is VR_UNDEFINED the resulting range is
8184 VR_UNDEFINED, too. */
8185 if (vr0->type == VR_UNDEFINED)
8186 return;
8187 if (vr1->type == VR_UNDEFINED)
8189 set_value_range_to_undefined (vr0);
8190 return;
8193 /* Save the original vr0 so we can return it as conservative intersection
8194 result when our worker turns things to varying. */
8195 saved = *vr0;
8196 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8197 vr1->type, vr1->min, vr1->max);
8198 /* Make sure to canonicalize the result though as the inversion of a
8199 VR_RANGE can still be a VR_RANGE. */
8200 set_and_canonicalize_value_range (vr0, vr0->type,
8201 vr0->min, vr0->max, vr0->equiv);
8202 /* If that failed, use the saved original VR0. */
8203 if (vr0->type == VR_VARYING)
8205 *vr0 = saved;
8206 return;
8208 /* If the result is VR_UNDEFINED there is no need to mess with
8209 the equivalencies. */
8210 if (vr0->type == VR_UNDEFINED)
8211 return;
8213 /* The resulting set of equivalences for range intersection is the union of
8214 the two sets. */
8215 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8216 bitmap_ior_into (vr0->equiv, vr1->equiv);
8217 else if (vr1->equiv && !vr0->equiv)
8218 bitmap_copy (vr0->equiv, vr1->equiv);
8221 static void
8222 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8224 if (dump_file && (dump_flags & TDF_DETAILS))
8226 fprintf (dump_file, "Intersecting\n ");
8227 dump_value_range (dump_file, vr0);
8228 fprintf (dump_file, "\nand\n ");
8229 dump_value_range (dump_file, vr1);
8230 fprintf (dump_file, "\n");
8232 vrp_intersect_ranges_1 (vr0, vr1);
8233 if (dump_file && (dump_flags & TDF_DETAILS))
8235 fprintf (dump_file, "to\n ");
8236 dump_value_range (dump_file, vr0);
8237 fprintf (dump_file, "\n");
8241 /* Meet operation for value ranges. Given two value ranges VR0 and
8242 VR1, store in VR0 a range that contains both VR0 and VR1. This
8243 may not be the smallest possible such range. */
8245 static void
8246 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8248 value_range_t saved;
8250 if (vr0->type == VR_UNDEFINED)
8252 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8253 return;
8256 if (vr1->type == VR_UNDEFINED)
8258 /* VR0 already has the resulting range. */
8259 return;
8262 if (vr0->type == VR_VARYING)
8264 /* Nothing to do. VR0 already has the resulting range. */
8265 return;
8268 if (vr1->type == VR_VARYING)
8270 set_value_range_to_varying (vr0);
8271 return;
8274 saved = *vr0;
8275 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8276 vr1->type, vr1->min, vr1->max);
8277 if (vr0->type == VR_VARYING)
8279 /* Failed to find an efficient meet. Before giving up and setting
8280 the result to VARYING, see if we can at least derive a useful
8281 anti-range. FIXME, all this nonsense about distinguishing
8282 anti-ranges from ranges is necessary because of the odd
8283 semantics of range_includes_zero_p and friends. */
8284 if (((saved.type == VR_RANGE
8285 && range_includes_zero_p (saved.min, saved.max) == 0)
8286 || (saved.type == VR_ANTI_RANGE
8287 && range_includes_zero_p (saved.min, saved.max) == 1))
8288 && ((vr1->type == VR_RANGE
8289 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8290 || (vr1->type == VR_ANTI_RANGE
8291 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8293 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8295 /* Since this meet operation did not result from the meeting of
8296 two equivalent names, VR0 cannot have any equivalences. */
8297 if (vr0->equiv)
8298 bitmap_clear (vr0->equiv);
8299 return;
8302 set_value_range_to_varying (vr0);
8303 return;
8305 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8306 vr0->equiv);
8307 if (vr0->type == VR_VARYING)
8308 return;
8310 /* The resulting set of equivalences is always the intersection of
8311 the two sets. */
8312 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8313 bitmap_and_into (vr0->equiv, vr1->equiv);
8314 else if (vr0->equiv && !vr1->equiv)
8315 bitmap_clear (vr0->equiv);
8318 static void
8319 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8321 if (dump_file && (dump_flags & TDF_DETAILS))
8323 fprintf (dump_file, "Meeting\n ");
8324 dump_value_range (dump_file, vr0);
8325 fprintf (dump_file, "\nand\n ");
8326 dump_value_range (dump_file, vr1);
8327 fprintf (dump_file, "\n");
8329 vrp_meet_1 (vr0, vr1);
8330 if (dump_file && (dump_flags & TDF_DETAILS))
8332 fprintf (dump_file, "to\n ");
8333 dump_value_range (dump_file, vr0);
8334 fprintf (dump_file, "\n");
8339 /* Visit all arguments for PHI node PHI that flow through executable
8340 edges. If a valid value range can be derived from all the incoming
8341 value ranges, set a new range for the LHS of PHI. */
8343 static enum ssa_prop_result
8344 vrp_visit_phi_node (gimple phi)
8346 size_t i;
8347 tree lhs = PHI_RESULT (phi);
8348 value_range_t *lhs_vr = get_value_range (lhs);
8349 value_range_t vr_result = VR_INITIALIZER;
8350 bool first = true;
8351 int edges, old_edges;
8352 struct loop *l;
8354 if (dump_file && (dump_flags & TDF_DETAILS))
8356 fprintf (dump_file, "\nVisiting PHI node: ");
8357 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8360 edges = 0;
8361 for (i = 0; i < gimple_phi_num_args (phi); i++)
8363 edge e = gimple_phi_arg_edge (phi, i);
8365 if (dump_file && (dump_flags & TDF_DETAILS))
8367 fprintf (dump_file,
8368 "\n Argument #%d (%d -> %d %sexecutable)\n",
8369 (int) i, e->src->index, e->dest->index,
8370 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8373 if (e->flags & EDGE_EXECUTABLE)
8375 tree arg = PHI_ARG_DEF (phi, i);
8376 value_range_t vr_arg;
8378 ++edges;
8380 if (TREE_CODE (arg) == SSA_NAME)
8382 vr_arg = *(get_value_range (arg));
8383 /* Do not allow equivalences or symbolic ranges to leak in from
8384 backedges. That creates invalid equivalencies.
8385 See PR53465 and PR54767. */
8386 if (e->flags & EDGE_DFS_BACK
8387 && (vr_arg.type == VR_RANGE
8388 || vr_arg.type == VR_ANTI_RANGE))
8390 vr_arg.equiv = NULL;
8391 if (symbolic_range_p (&vr_arg))
8393 vr_arg.type = VR_VARYING;
8394 vr_arg.min = NULL_TREE;
8395 vr_arg.max = NULL_TREE;
8399 else
8401 if (TREE_OVERFLOW_P (arg))
8402 arg = drop_tree_overflow (arg);
8404 vr_arg.type = VR_RANGE;
8405 vr_arg.min = arg;
8406 vr_arg.max = arg;
8407 vr_arg.equiv = NULL;
8410 if (dump_file && (dump_flags & TDF_DETAILS))
8412 fprintf (dump_file, "\t");
8413 print_generic_expr (dump_file, arg, dump_flags);
8414 fprintf (dump_file, "\n\tValue: ");
8415 dump_value_range (dump_file, &vr_arg);
8416 fprintf (dump_file, "\n");
8419 if (first)
8420 copy_value_range (&vr_result, &vr_arg);
8421 else
8422 vrp_meet (&vr_result, &vr_arg);
8423 first = false;
8425 if (vr_result.type == VR_VARYING)
8426 break;
8430 if (vr_result.type == VR_VARYING)
8431 goto varying;
8432 else if (vr_result.type == VR_UNDEFINED)
8433 goto update_range;
8435 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8436 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8438 /* To prevent infinite iterations in the algorithm, derive ranges
8439 when the new value is slightly bigger or smaller than the
8440 previous one. We don't do this if we have seen a new executable
8441 edge; this helps us avoid an overflow infinity for conditionals
8442 which are not in a loop. If the old value-range was VR_UNDEFINED
8443 use the updated range and iterate one more time. */
8444 if (edges > 0
8445 && gimple_phi_num_args (phi) > 1
8446 && edges == old_edges
8447 && lhs_vr->type != VR_UNDEFINED)
8449 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8450 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8452 /* For non VR_RANGE or for pointers fall back to varying if
8453 the range changed. */
8454 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8455 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8456 && (cmp_min != 0 || cmp_max != 0))
8457 goto varying;
8459 /* If the new minimum is smaller or larger than the previous
8460 one, go all the way to -INF. In the first case, to avoid
8461 iterating millions of times to reach -INF, and in the
8462 other case to avoid infinite bouncing between different
8463 minimums. */
8464 if (cmp_min > 0 || cmp_min < 0)
8466 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
8467 || !vrp_var_may_overflow (lhs, phi))
8468 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
8469 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
8470 vr_result.min =
8471 negative_overflow_infinity (TREE_TYPE (vr_result.min));
8474 /* Similarly, if the new maximum is smaller or larger than
8475 the previous one, go all the way to +INF. */
8476 if (cmp_max < 0 || cmp_max > 0)
8478 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
8479 || !vrp_var_may_overflow (lhs, phi))
8480 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
8481 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
8482 vr_result.max =
8483 positive_overflow_infinity (TREE_TYPE (vr_result.max));
8486 /* If we dropped either bound to +-INF then if this is a loop
8487 PHI node SCEV may known more about its value-range. */
8488 if ((cmp_min > 0 || cmp_min < 0
8489 || cmp_max < 0 || cmp_max > 0)
8490 && current_loops
8491 && (l = loop_containing_stmt (phi))
8492 && l->header == gimple_bb (phi))
8493 adjust_range_with_scev (&vr_result, l, phi, lhs);
8495 /* If we will end up with a (-INF, +INF) range, set it to
8496 VARYING. Same if the previous max value was invalid for
8497 the type and we end up with vr_result.min > vr_result.max. */
8498 if ((vrp_val_is_max (vr_result.max)
8499 && vrp_val_is_min (vr_result.min))
8500 || compare_values (vr_result.min,
8501 vr_result.max) > 0)
8502 goto varying;
8505 /* If the new range is different than the previous value, keep
8506 iterating. */
8507 update_range:
8508 if (update_value_range (lhs, &vr_result))
8510 if (dump_file && (dump_flags & TDF_DETAILS))
8512 fprintf (dump_file, "Found new range for ");
8513 print_generic_expr (dump_file, lhs, 0);
8514 fprintf (dump_file, ": ");
8515 dump_value_range (dump_file, &vr_result);
8516 fprintf (dump_file, "\n\n");
8519 return SSA_PROP_INTERESTING;
8522 /* Nothing changed, don't add outgoing edges. */
8523 return SSA_PROP_NOT_INTERESTING;
8525 /* No match found. Set the LHS to VARYING. */
8526 varying:
8527 set_value_range_to_varying (lhs_vr);
8528 return SSA_PROP_VARYING;
8531 /* Simplify boolean operations if the source is known
8532 to be already a boolean. */
8533 static bool
8534 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8536 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8537 tree lhs, op0, op1;
8538 bool need_conversion;
8540 /* We handle only !=/== case here. */
8541 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8543 op0 = gimple_assign_rhs1 (stmt);
8544 if (!op_with_boolean_value_range_p (op0))
8545 return false;
8547 op1 = gimple_assign_rhs2 (stmt);
8548 if (!op_with_boolean_value_range_p (op1))
8549 return false;
8551 /* Reduce number of cases to handle to NE_EXPR. As there is no
8552 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8553 if (rhs_code == EQ_EXPR)
8555 if (TREE_CODE (op1) == INTEGER_CST)
8556 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8557 else
8558 return false;
8561 lhs = gimple_assign_lhs (stmt);
8562 need_conversion
8563 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8565 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8566 if (need_conversion
8567 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8568 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8569 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8570 return false;
8572 /* For A != 0 we can substitute A itself. */
8573 if (integer_zerop (op1))
8574 gimple_assign_set_rhs_with_ops (gsi,
8575 need_conversion
8576 ? NOP_EXPR : TREE_CODE (op0),
8577 op0, NULL_TREE);
8578 /* For A != B we substitute A ^ B. Either with conversion. */
8579 else if (need_conversion)
8581 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8582 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8583 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8584 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8586 /* Or without. */
8587 else
8588 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8589 update_stmt (gsi_stmt (*gsi));
8591 return true;
8594 /* Simplify a division or modulo operator to a right shift or
8595 bitwise and if the first operand is unsigned or is greater
8596 than zero and the second operand is an exact power of two. */
8598 static bool
8599 simplify_div_or_mod_using_ranges (gimple stmt)
8601 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8602 tree val = NULL;
8603 tree op0 = gimple_assign_rhs1 (stmt);
8604 tree op1 = gimple_assign_rhs2 (stmt);
8605 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8607 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8609 val = integer_one_node;
8611 else
8613 bool sop = false;
8615 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8617 if (val
8618 && sop
8619 && integer_onep (val)
8620 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8622 location_t location;
8624 if (!gimple_has_location (stmt))
8625 location = input_location;
8626 else
8627 location = gimple_location (stmt);
8628 warning_at (location, OPT_Wstrict_overflow,
8629 "assuming signed overflow does not occur when "
8630 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8634 if (val && integer_onep (val))
8636 tree t;
8638 if (rhs_code == TRUNC_DIV_EXPR)
8640 t = build_int_cst (integer_type_node, tree_log2 (op1));
8641 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8642 gimple_assign_set_rhs1 (stmt, op0);
8643 gimple_assign_set_rhs2 (stmt, t);
8645 else
8647 t = build_int_cst (TREE_TYPE (op1), 1);
8648 t = int_const_binop (MINUS_EXPR, op1, t);
8649 t = fold_convert (TREE_TYPE (op0), t);
8651 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8652 gimple_assign_set_rhs1 (stmt, op0);
8653 gimple_assign_set_rhs2 (stmt, t);
8656 update_stmt (stmt);
8657 return true;
8660 return false;
8663 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8664 ABS_EXPR. If the operand is <= 0, then simplify the
8665 ABS_EXPR into a NEGATE_EXPR. */
8667 static bool
8668 simplify_abs_using_ranges (gimple stmt)
8670 tree val = NULL;
8671 tree op = gimple_assign_rhs1 (stmt);
8672 tree type = TREE_TYPE (op);
8673 value_range_t *vr = get_value_range (op);
8675 if (TYPE_UNSIGNED (type))
8677 val = integer_zero_node;
8679 else if (vr)
8681 bool sop = false;
8683 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8684 if (!val)
8686 sop = false;
8687 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8688 &sop);
8690 if (val)
8692 if (integer_zerop (val))
8693 val = integer_one_node;
8694 else if (integer_onep (val))
8695 val = integer_zero_node;
8699 if (val
8700 && (integer_onep (val) || integer_zerop (val)))
8702 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8704 location_t location;
8706 if (!gimple_has_location (stmt))
8707 location = input_location;
8708 else
8709 location = gimple_location (stmt);
8710 warning_at (location, OPT_Wstrict_overflow,
8711 "assuming signed overflow does not occur when "
8712 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8715 gimple_assign_set_rhs1 (stmt, op);
8716 if (integer_onep (val))
8717 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8718 else
8719 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8720 update_stmt (stmt);
8721 return true;
8725 return false;
8728 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8729 If all the bits that are being cleared by & are already
8730 known to be zero from VR, or all the bits that are being
8731 set by | are already known to be one from VR, the bit
8732 operation is redundant. */
8734 static bool
8735 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8737 tree op0 = gimple_assign_rhs1 (stmt);
8738 tree op1 = gimple_assign_rhs2 (stmt);
8739 tree op = NULL_TREE;
8740 value_range_t vr0 = VR_INITIALIZER;
8741 value_range_t vr1 = VR_INITIALIZER;
8742 double_int may_be_nonzero0, may_be_nonzero1;
8743 double_int must_be_nonzero0, must_be_nonzero1;
8744 double_int mask;
8746 if (TREE_CODE (op0) == SSA_NAME)
8747 vr0 = *(get_value_range (op0));
8748 else if (is_gimple_min_invariant (op0))
8749 set_value_range_to_value (&vr0, op0, NULL);
8750 else
8751 return false;
8753 if (TREE_CODE (op1) == SSA_NAME)
8754 vr1 = *(get_value_range (op1));
8755 else if (is_gimple_min_invariant (op1))
8756 set_value_range_to_value (&vr1, op1, NULL);
8757 else
8758 return false;
8760 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8761 return false;
8762 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8763 return false;
8765 switch (gimple_assign_rhs_code (stmt))
8767 case BIT_AND_EXPR:
8768 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8769 if (mask.is_zero ())
8771 op = op0;
8772 break;
8774 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8775 if (mask.is_zero ())
8777 op = op1;
8778 break;
8780 break;
8781 case BIT_IOR_EXPR:
8782 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8783 if (mask.is_zero ())
8785 op = op1;
8786 break;
8788 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8789 if (mask.is_zero ())
8791 op = op0;
8792 break;
8794 break;
8795 default:
8796 gcc_unreachable ();
8799 if (op == NULL_TREE)
8800 return false;
8802 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8803 update_stmt (gsi_stmt (*gsi));
8804 return true;
8807 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8808 a known value range VR.
8810 If there is one and only one value which will satisfy the
8811 conditional, then return that value. Else return NULL. */
8813 static tree
8814 test_for_singularity (enum tree_code cond_code, tree op0,
8815 tree op1, value_range_t *vr)
8817 tree min = NULL;
8818 tree max = NULL;
8820 /* Extract minimum/maximum values which satisfy the
8821 the conditional as it was written. */
8822 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8824 /* This should not be negative infinity; there is no overflow
8825 here. */
8826 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8828 max = op1;
8829 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8831 tree one = build_int_cst (TREE_TYPE (op0), 1);
8832 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8833 if (EXPR_P (max))
8834 TREE_NO_WARNING (max) = 1;
8837 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8839 /* This should not be positive infinity; there is no overflow
8840 here. */
8841 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8843 min = op1;
8844 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8846 tree one = build_int_cst (TREE_TYPE (op0), 1);
8847 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8848 if (EXPR_P (min))
8849 TREE_NO_WARNING (min) = 1;
8853 /* Now refine the minimum and maximum values using any
8854 value range information we have for op0. */
8855 if (min && max)
8857 if (compare_values (vr->min, min) == 1)
8858 min = vr->min;
8859 if (compare_values (vr->max, max) == -1)
8860 max = vr->max;
8862 /* If the new min/max values have converged to a single value,
8863 then there is only one value which can satisfy the condition,
8864 return that value. */
8865 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8866 return min;
8868 return NULL;
8871 /* Return whether the value range *VR fits in an integer type specified
8872 by PRECISION and UNSIGNED_P. */
8874 static bool
8875 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8877 tree src_type;
8878 unsigned src_precision;
8879 double_int tem;
8881 /* We can only handle integral and pointer types. */
8882 src_type = TREE_TYPE (vr->min);
8883 if (!INTEGRAL_TYPE_P (src_type)
8884 && !POINTER_TYPE_P (src_type))
8885 return false;
8887 /* An extension is fine unless VR is signed and unsigned_p,
8888 and so is an identity transform. */
8889 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8890 if ((src_precision < precision
8891 && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
8892 || (src_precision == precision
8893 && TYPE_UNSIGNED (src_type) == unsigned_p))
8894 return true;
8896 /* Now we can only handle ranges with constant bounds. */
8897 if (vr->type != VR_RANGE
8898 || TREE_CODE (vr->min) != INTEGER_CST
8899 || TREE_CODE (vr->max) != INTEGER_CST)
8900 return false;
8902 /* For sign changes, the MSB of the double_int has to be clear.
8903 An unsigned value with its MSB set cannot be represented by
8904 a signed double_int, while a negative value cannot be represented
8905 by an unsigned double_int. */
8906 if (TYPE_UNSIGNED (src_type) != unsigned_p
8907 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8908 return false;
8910 /* Then we can perform the conversion on both ends and compare
8911 the result for equality. */
8912 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8913 if (tree_to_double_int (vr->min) != tem)
8914 return false;
8915 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8916 if (tree_to_double_int (vr->max) != tem)
8917 return false;
8919 return true;
8922 /* Simplify a conditional using a relational operator to an equality
8923 test if the range information indicates only one value can satisfy
8924 the original conditional. */
8926 static bool
8927 simplify_cond_using_ranges (gimple stmt)
8929 tree op0 = gimple_cond_lhs (stmt);
8930 tree op1 = gimple_cond_rhs (stmt);
8931 enum tree_code cond_code = gimple_cond_code (stmt);
8933 if (cond_code != NE_EXPR
8934 && cond_code != EQ_EXPR
8935 && TREE_CODE (op0) == SSA_NAME
8936 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8937 && is_gimple_min_invariant (op1))
8939 value_range_t *vr = get_value_range (op0);
8941 /* If we have range information for OP0, then we might be
8942 able to simplify this conditional. */
8943 if (vr->type == VR_RANGE)
8945 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8947 if (new_tree)
8949 if (dump_file)
8951 fprintf (dump_file, "Simplified relational ");
8952 print_gimple_stmt (dump_file, stmt, 0, 0);
8953 fprintf (dump_file, " into ");
8956 gimple_cond_set_code (stmt, EQ_EXPR);
8957 gimple_cond_set_lhs (stmt, op0);
8958 gimple_cond_set_rhs (stmt, new_tree);
8960 update_stmt (stmt);
8962 if (dump_file)
8964 print_gimple_stmt (dump_file, stmt, 0, 0);
8965 fprintf (dump_file, "\n");
8968 return true;
8971 /* Try again after inverting the condition. We only deal
8972 with integral types here, so no need to worry about
8973 issues with inverting FP comparisons. */
8974 cond_code = invert_tree_comparison (cond_code, false);
8975 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8977 if (new_tree)
8979 if (dump_file)
8981 fprintf (dump_file, "Simplified relational ");
8982 print_gimple_stmt (dump_file, stmt, 0, 0);
8983 fprintf (dump_file, " into ");
8986 gimple_cond_set_code (stmt, NE_EXPR);
8987 gimple_cond_set_lhs (stmt, op0);
8988 gimple_cond_set_rhs (stmt, new_tree);
8990 update_stmt (stmt);
8992 if (dump_file)
8994 print_gimple_stmt (dump_file, stmt, 0, 0);
8995 fprintf (dump_file, "\n");
8998 return true;
9003 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9004 see if OP0 was set by a type conversion where the source of
9005 the conversion is another SSA_NAME with a range that fits
9006 into the range of OP0's type.
9008 If so, the conversion is redundant as the earlier SSA_NAME can be
9009 used for the comparison directly if we just massage the constant in the
9010 comparison. */
9011 if (TREE_CODE (op0) == SSA_NAME
9012 && TREE_CODE (op1) == INTEGER_CST)
9014 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
9015 tree innerop;
9017 if (!is_gimple_assign (def_stmt)
9018 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9019 return false;
9021 innerop = gimple_assign_rhs1 (def_stmt);
9023 if (TREE_CODE (innerop) == SSA_NAME
9024 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
9026 value_range_t *vr = get_value_range (innerop);
9028 if (range_int_cst_p (vr)
9029 && range_fits_type_p (vr,
9030 TYPE_PRECISION (TREE_TYPE (op0)),
9031 TYPE_UNSIGNED (TREE_TYPE (op0)))
9032 && int_fits_type_p (op1, TREE_TYPE (innerop))
9033 /* The range must not have overflowed, or if it did overflow
9034 we must not be wrapping/trapping overflow and optimizing
9035 with strict overflow semantics. */
9036 && ((!is_negative_overflow_infinity (vr->min)
9037 && !is_positive_overflow_infinity (vr->max))
9038 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9040 /* If the range overflowed and the user has asked for warnings
9041 when strict overflow semantics were used to optimize code,
9042 issue an appropriate warning. */
9043 if ((is_negative_overflow_infinity (vr->min)
9044 || is_positive_overflow_infinity (vr->max))
9045 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9047 location_t location;
9049 if (!gimple_has_location (stmt))
9050 location = input_location;
9051 else
9052 location = gimple_location (stmt);
9053 warning_at (location, OPT_Wstrict_overflow,
9054 "assuming signed overflow does not occur when "
9055 "simplifying conditional");
9058 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9059 gimple_cond_set_lhs (stmt, innerop);
9060 gimple_cond_set_rhs (stmt, newconst);
9061 return true;
9066 return false;
9069 /* Simplify a switch statement using the value range of the switch
9070 argument. */
9072 static bool
9073 simplify_switch_using_ranges (gimple stmt)
9075 tree op = gimple_switch_index (stmt);
9076 value_range_t *vr;
9077 bool take_default;
9078 edge e;
9079 edge_iterator ei;
9080 size_t i = 0, j = 0, n, n2;
9081 tree vec2;
9082 switch_update su;
9083 size_t k = 1, l = 0;
9085 if (TREE_CODE (op) == SSA_NAME)
9087 vr = get_value_range (op);
9089 /* We can only handle integer ranges. */
9090 if ((vr->type != VR_RANGE
9091 && vr->type != VR_ANTI_RANGE)
9092 || symbolic_range_p (vr))
9093 return false;
9095 /* Find case label for min/max of the value range. */
9096 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9098 else if (TREE_CODE (op) == INTEGER_CST)
9100 take_default = !find_case_label_index (stmt, 1, op, &i);
9101 if (take_default)
9103 i = 1;
9104 j = 0;
9106 else
9108 j = i;
9111 else
9112 return false;
9114 n = gimple_switch_num_labels (stmt);
9116 /* Bail out if this is just all edges taken. */
9117 if (i == 1
9118 && j == n - 1
9119 && take_default)
9120 return false;
9122 /* Build a new vector of taken case labels. */
9123 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9124 n2 = 0;
9126 /* Add the default edge, if necessary. */
9127 if (take_default)
9128 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9130 for (; i <= j; ++i, ++n2)
9131 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9133 for (; k <= l; ++k, ++n2)
9134 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9136 /* Mark needed edges. */
9137 for (i = 0; i < n2; ++i)
9139 e = find_edge (gimple_bb (stmt),
9140 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9141 e->aux = (void *)-1;
9144 /* Queue not needed edges for later removal. */
9145 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9147 if (e->aux == (void *)-1)
9149 e->aux = NULL;
9150 continue;
9153 if (dump_file && (dump_flags & TDF_DETAILS))
9155 fprintf (dump_file, "removing unreachable case label\n");
9157 to_remove_edges.safe_push (e);
9158 e->flags &= ~EDGE_EXECUTABLE;
9161 /* And queue an update for the stmt. */
9162 su.stmt = stmt;
9163 su.vec = vec2;
9164 to_update_switch_stmts.safe_push (su);
9165 return false;
9168 /* Simplify an integral conversion from an SSA name in STMT. */
9170 static bool
9171 simplify_conversion_using_ranges (gimple stmt)
9173 tree innerop, middleop, finaltype;
9174 gimple def_stmt;
9175 value_range_t *innervr;
9176 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
9177 unsigned inner_prec, middle_prec, final_prec;
9178 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9180 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9181 if (!INTEGRAL_TYPE_P (finaltype))
9182 return false;
9183 middleop = gimple_assign_rhs1 (stmt);
9184 def_stmt = SSA_NAME_DEF_STMT (middleop);
9185 if (!is_gimple_assign (def_stmt)
9186 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9187 return false;
9188 innerop = gimple_assign_rhs1 (def_stmt);
9189 if (TREE_CODE (innerop) != SSA_NAME
9190 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9191 return false;
9193 /* Get the value-range of the inner operand. */
9194 innervr = get_value_range (innerop);
9195 if (innervr->type != VR_RANGE
9196 || TREE_CODE (innervr->min) != INTEGER_CST
9197 || TREE_CODE (innervr->max) != INTEGER_CST)
9198 return false;
9200 /* Simulate the conversion chain to check if the result is equal if
9201 the middle conversion is removed. */
9202 innermin = tree_to_double_int (innervr->min);
9203 innermax = tree_to_double_int (innervr->max);
9205 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9206 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9207 final_prec = TYPE_PRECISION (finaltype);
9209 /* If the first conversion is not injective, the second must not
9210 be widening. */
9211 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
9212 && middle_prec < final_prec)
9213 return false;
9214 /* We also want a medium value so that we can track the effect that
9215 narrowing conversions with sign change have. */
9216 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
9217 if (inner_unsigned_p)
9218 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
9219 else
9220 innermed = double_int_zero;
9221 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
9222 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
9223 innermed = innermin;
9225 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
9226 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
9227 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
9228 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
9230 /* Require that the final conversion applied to both the original
9231 and the intermediate range produces the same result. */
9232 final_unsigned_p = TYPE_UNSIGNED (finaltype);
9233 if (middlemin.ext (final_prec, final_unsigned_p)
9234 != innermin.ext (final_prec, final_unsigned_p)
9235 || middlemed.ext (final_prec, final_unsigned_p)
9236 != innermed.ext (final_prec, final_unsigned_p)
9237 || middlemax.ext (final_prec, final_unsigned_p)
9238 != innermax.ext (final_prec, final_unsigned_p))
9239 return false;
9241 gimple_assign_set_rhs1 (stmt, innerop);
9242 update_stmt (stmt);
9243 return true;
9246 /* Simplify a conversion from integral SSA name to float in STMT. */
9248 static bool
9249 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9251 tree rhs1 = gimple_assign_rhs1 (stmt);
9252 value_range_t *vr = get_value_range (rhs1);
9253 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9254 enum machine_mode mode;
9255 tree tem;
9256 gimple conv;
9258 /* We can only handle constant ranges. */
9259 if (vr->type != VR_RANGE
9260 || TREE_CODE (vr->min) != INTEGER_CST
9261 || TREE_CODE (vr->max) != INTEGER_CST)
9262 return false;
9264 /* First check if we can use a signed type in place of an unsigned. */
9265 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9266 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9267 != CODE_FOR_nothing)
9268 && range_fits_type_p (vr, GET_MODE_PRECISION
9269 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
9270 mode = TYPE_MODE (TREE_TYPE (rhs1));
9271 /* If we can do the conversion in the current input mode do nothing. */
9272 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9273 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9274 return false;
9275 /* Otherwise search for a mode we can use, starting from the narrowest
9276 integer mode available. */
9277 else
9279 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9282 /* If we cannot do a signed conversion to float from mode
9283 or if the value-range does not fit in the signed type
9284 try with a wider mode. */
9285 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9286 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
9287 break;
9289 mode = GET_MODE_WIDER_MODE (mode);
9290 /* But do not widen the input. Instead leave that to the
9291 optabs expansion code. */
9292 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9293 return false;
9295 while (mode != VOIDmode);
9296 if (mode == VOIDmode)
9297 return false;
9300 /* It works, insert a truncation or sign-change before the
9301 float conversion. */
9302 tem = make_ssa_name (build_nonstandard_integer_type
9303 (GET_MODE_PRECISION (mode), 0), NULL);
9304 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9305 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9306 gimple_assign_set_rhs1 (stmt, tem);
9307 update_stmt (stmt);
9309 return true;
9312 /* Simplify an internal fn call using ranges if possible. */
9314 static bool
9315 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9317 enum tree_code subcode;
9318 switch (gimple_call_internal_fn (stmt))
9320 case IFN_UBSAN_CHECK_ADD:
9321 subcode = PLUS_EXPR;
9322 break;
9323 case IFN_UBSAN_CHECK_SUB:
9324 subcode = MINUS_EXPR;
9325 break;
9326 case IFN_UBSAN_CHECK_MUL:
9327 subcode = MULT_EXPR;
9328 break;
9329 default:
9330 return false;
9333 value_range_t vr0 = VR_INITIALIZER;
9334 value_range_t vr1 = VR_INITIALIZER;
9335 tree op0 = gimple_call_arg (stmt, 0);
9336 tree op1 = gimple_call_arg (stmt, 1);
9338 if (TREE_CODE (op0) == SSA_NAME)
9339 vr0 = *get_value_range (op0);
9340 else if (TREE_CODE (op0) == INTEGER_CST)
9341 set_value_range_to_value (&vr0, op0, NULL);
9342 else
9343 set_value_range_to_varying (&vr0);
9345 if (TREE_CODE (op1) == SSA_NAME)
9346 vr1 = *get_value_range (op1);
9347 else if (TREE_CODE (op1) == INTEGER_CST)
9348 set_value_range_to_value (&vr1, op1, NULL);
9349 else
9350 set_value_range_to_varying (&vr1);
9352 if (!range_int_cst_p (&vr0))
9354 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9355 optimize at least x = y + 0; x = y - 0; x = y * 0;
9356 and x = y * 1; which never overflow. */
9357 if (!range_int_cst_p (&vr1))
9358 return false;
9359 if (tree_int_cst_sgn (vr1.min) == -1)
9360 return false;
9361 if (compare_tree_int (vr1.max, subcode == MULT_EXPR) == 1)
9362 return false;
9364 else if (!range_int_cst_p (&vr1))
9366 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9367 optimize at least x = 0 + y; x = 0 * y; and x = 1 * y;
9368 which never overflow. */
9369 if (subcode == MINUS_EXPR)
9370 return false;
9371 if (!range_int_cst_p (&vr0))
9372 return false;
9373 if (tree_int_cst_sgn (vr0.min) == -1)
9374 return false;
9375 if (compare_tree_int (vr0.max, subcode == MULT_EXPR) == 1)
9376 return false;
9378 else
9380 tree r1 = int_const_binop (subcode, vr0.min,
9381 subcode == MINUS_EXPR ? vr1.max : vr1.min);
9382 tree r2 = int_const_binop (subcode, vr0.max,
9383 subcode == MINUS_EXPR ? vr1.min : vr1.max);
9384 if (r1 == NULL_TREE || TREE_OVERFLOW (r1)
9385 || r2 == NULL_TREE || TREE_OVERFLOW (r2))
9386 return false;
9387 if (subcode == MULT_EXPR)
9389 tree r3 = int_const_binop (subcode, vr0.min, vr1.max);
9390 tree r4 = int_const_binop (subcode, vr0.max, vr1.min);
9391 if (r3 == NULL_TREE || TREE_OVERFLOW (r3)
9392 || r4 == NULL_TREE || TREE_OVERFLOW (r4))
9393 return false;
9397 gimple g = gimple_build_assign_with_ops (subcode, gimple_call_lhs (stmt),
9398 op0, op1);
9399 gsi_replace (gsi, g, false);
9400 return true;
9403 /* Simplify STMT using ranges if possible. */
9405 static bool
9406 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9408 gimple stmt = gsi_stmt (*gsi);
9409 if (is_gimple_assign (stmt))
9411 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9412 tree rhs1 = gimple_assign_rhs1 (stmt);
9414 switch (rhs_code)
9416 case EQ_EXPR:
9417 case NE_EXPR:
9418 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9419 if the RHS is zero or one, and the LHS are known to be boolean
9420 values. */
9421 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9422 return simplify_truth_ops_using_ranges (gsi, stmt);
9423 break;
9425 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9426 and BIT_AND_EXPR respectively if the first operand is greater
9427 than zero and the second operand is an exact power of two. */
9428 case TRUNC_DIV_EXPR:
9429 case TRUNC_MOD_EXPR:
9430 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9431 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9432 return simplify_div_or_mod_using_ranges (stmt);
9433 break;
9435 /* Transform ABS (X) into X or -X as appropriate. */
9436 case ABS_EXPR:
9437 if (TREE_CODE (rhs1) == SSA_NAME
9438 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9439 return simplify_abs_using_ranges (stmt);
9440 break;
9442 case BIT_AND_EXPR:
9443 case BIT_IOR_EXPR:
9444 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9445 if all the bits being cleared are already cleared or
9446 all the bits being set are already set. */
9447 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9448 return simplify_bit_ops_using_ranges (gsi, stmt);
9449 break;
9451 CASE_CONVERT:
9452 if (TREE_CODE (rhs1) == SSA_NAME
9453 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9454 return simplify_conversion_using_ranges (stmt);
9455 break;
9457 case FLOAT_EXPR:
9458 if (TREE_CODE (rhs1) == SSA_NAME
9459 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9460 return simplify_float_conversion_using_ranges (gsi, stmt);
9461 break;
9463 default:
9464 break;
9467 else if (gimple_code (stmt) == GIMPLE_COND)
9468 return simplify_cond_using_ranges (stmt);
9469 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9470 return simplify_switch_using_ranges (stmt);
9471 else if (is_gimple_call (stmt)
9472 && gimple_call_internal_p (stmt))
9473 return simplify_internal_call_using_ranges (gsi, stmt);
9475 return false;
9478 /* If the statement pointed by SI has a predicate whose value can be
9479 computed using the value range information computed by VRP, compute
9480 its value and return true. Otherwise, return false. */
9482 static bool
9483 fold_predicate_in (gimple_stmt_iterator *si)
9485 bool assignment_p = false;
9486 tree val;
9487 gimple stmt = gsi_stmt (*si);
9489 if (is_gimple_assign (stmt)
9490 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9492 assignment_p = true;
9493 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9494 gimple_assign_rhs1 (stmt),
9495 gimple_assign_rhs2 (stmt),
9496 stmt);
9498 else if (gimple_code (stmt) == GIMPLE_COND)
9499 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9500 gimple_cond_lhs (stmt),
9501 gimple_cond_rhs (stmt),
9502 stmt);
9503 else
9504 return false;
9506 if (val)
9508 if (assignment_p)
9509 val = fold_convert (gimple_expr_type (stmt), val);
9511 if (dump_file)
9513 fprintf (dump_file, "Folding predicate ");
9514 print_gimple_expr (dump_file, stmt, 0, 0);
9515 fprintf (dump_file, " to ");
9516 print_generic_expr (dump_file, val, 0);
9517 fprintf (dump_file, "\n");
9520 if (is_gimple_assign (stmt))
9521 gimple_assign_set_rhs_from_tree (si, val);
9522 else
9524 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9525 if (integer_zerop (val))
9526 gimple_cond_make_false (stmt);
9527 else if (integer_onep (val))
9528 gimple_cond_make_true (stmt);
9529 else
9530 gcc_unreachable ();
9533 return true;
9536 return false;
9539 /* Callback for substitute_and_fold folding the stmt at *SI. */
9541 static bool
9542 vrp_fold_stmt (gimple_stmt_iterator *si)
9544 if (fold_predicate_in (si))
9545 return true;
9547 return simplify_stmt_using_ranges (si);
9550 /* Stack of dest,src equivalency pairs that need to be restored after
9551 each attempt to thread a block's incoming edge to an outgoing edge.
9553 A NULL entry is used to mark the end of pairs which need to be
9554 restored. */
9555 static vec<tree> equiv_stack;
9557 /* A trivial wrapper so that we can present the generic jump threading
9558 code with a simple API for simplifying statements. STMT is the
9559 statement we want to simplify, WITHIN_STMT provides the location
9560 for any overflow warnings. */
9562 static tree
9563 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9565 if (gimple_code (stmt) == GIMPLE_COND)
9566 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9567 gimple_cond_lhs (stmt),
9568 gimple_cond_rhs (stmt), within_stmt);
9570 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9572 value_range_t new_vr = VR_INITIALIZER;
9573 tree lhs = gimple_assign_lhs (stmt);
9575 if (TREE_CODE (lhs) == SSA_NAME
9576 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9577 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9579 extract_range_from_assignment (&new_vr, stmt);
9580 if (range_int_cst_singleton_p (&new_vr))
9581 return new_vr.min;
9585 return NULL_TREE;
9588 /* Blocks which have more than one predecessor and more than
9589 one successor present jump threading opportunities, i.e.,
9590 when the block is reached from a specific predecessor, we
9591 may be able to determine which of the outgoing edges will
9592 be traversed. When this optimization applies, we are able
9593 to avoid conditionals at runtime and we may expose secondary
9594 optimization opportunities.
9596 This routine is effectively a driver for the generic jump
9597 threading code. It basically just presents the generic code
9598 with edges that may be suitable for jump threading.
9600 Unlike DOM, we do not iterate VRP if jump threading was successful.
9601 While iterating may expose new opportunities for VRP, it is expected
9602 those opportunities would be very limited and the compile time cost
9603 to expose those opportunities would be significant.
9605 As jump threading opportunities are discovered, they are registered
9606 for later realization. */
9608 static void
9609 identify_jump_threads (void)
9611 basic_block bb;
9612 gimple dummy;
9613 int i;
9614 edge e;
9616 /* Ugh. When substituting values earlier in this pass we can
9617 wipe the dominance information. So rebuild the dominator
9618 information as we need it within the jump threading code. */
9619 calculate_dominance_info (CDI_DOMINATORS);
9621 /* We do not allow VRP information to be used for jump threading
9622 across a back edge in the CFG. Otherwise it becomes too
9623 difficult to avoid eliminating loop exit tests. Of course
9624 EDGE_DFS_BACK is not accurate at this time so we have to
9625 recompute it. */
9626 mark_dfs_back_edges ();
9628 /* Do not thread across edges we are about to remove. Just marking
9629 them as EDGE_DFS_BACK will do. */
9630 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9631 e->flags |= EDGE_DFS_BACK;
9633 /* Allocate our unwinder stack to unwind any temporary equivalences
9634 that might be recorded. */
9635 equiv_stack.create (20);
9637 /* To avoid lots of silly node creation, we create a single
9638 conditional and just modify it in-place when attempting to
9639 thread jumps. */
9640 dummy = gimple_build_cond (EQ_EXPR,
9641 integer_zero_node, integer_zero_node,
9642 NULL, NULL);
9644 /* Walk through all the blocks finding those which present a
9645 potential jump threading opportunity. We could set this up
9646 as a dominator walker and record data during the walk, but
9647 I doubt it's worth the effort for the classes of jump
9648 threading opportunities we are trying to identify at this
9649 point in compilation. */
9650 FOR_EACH_BB_FN (bb, cfun)
9652 gimple last;
9654 /* If the generic jump threading code does not find this block
9655 interesting, then there is nothing to do. */
9656 if (! potentially_threadable_block (bb))
9657 continue;
9659 /* We only care about blocks ending in a COND_EXPR. While there
9660 may be some value in handling SWITCH_EXPR here, I doubt it's
9661 terribly important. */
9662 last = gsi_stmt (gsi_last_bb (bb));
9664 /* We're basically looking for a switch or any kind of conditional with
9665 integral or pointer type arguments. Note the type of the second
9666 argument will be the same as the first argument, so no need to
9667 check it explicitly. */
9668 if (gimple_code (last) == GIMPLE_SWITCH
9669 || (gimple_code (last) == GIMPLE_COND
9670 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9671 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9672 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9673 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9674 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9676 edge_iterator ei;
9678 /* We've got a block with multiple predecessors and multiple
9679 successors which also ends in a suitable conditional or
9680 switch statement. For each predecessor, see if we can thread
9681 it to a specific successor. */
9682 FOR_EACH_EDGE (e, ei, bb->preds)
9684 /* Do not thread across back edges or abnormal edges
9685 in the CFG. */
9686 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9687 continue;
9689 thread_across_edge (dummy, e, true, &equiv_stack,
9690 simplify_stmt_for_jump_threading);
9695 /* We do not actually update the CFG or SSA graphs at this point as
9696 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9697 handle ASSERT_EXPRs gracefully. */
9700 /* We identified all the jump threading opportunities earlier, but could
9701 not transform the CFG at that time. This routine transforms the
9702 CFG and arranges for the dominator tree to be rebuilt if necessary.
9704 Note the SSA graph update will occur during the normal TODO
9705 processing by the pass manager. */
9706 static void
9707 finalize_jump_threads (void)
9709 thread_through_all_blocks (false);
9710 equiv_stack.release ();
9714 /* Traverse all the blocks folding conditionals with known ranges. */
9716 static void
9717 vrp_finalize (void)
9719 size_t i;
9721 values_propagated = true;
9723 if (dump_file)
9725 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9726 dump_all_value_ranges (dump_file);
9727 fprintf (dump_file, "\n");
9730 substitute_and_fold (op_with_constant_singleton_value_range,
9731 vrp_fold_stmt, false);
9733 if (warn_array_bounds)
9734 check_all_array_refs ();
9736 /* We must identify jump threading opportunities before we release
9737 the datastructures built by VRP. */
9738 identify_jump_threads ();
9740 /* Set value range to non pointer SSA_NAMEs. */
9741 for (i = 0; i < num_vr_values; i++)
9742 if (vr_value[i])
9744 tree name = ssa_name (i);
9746 if (!name
9747 || POINTER_TYPE_P (TREE_TYPE (name))
9748 || (vr_value[i]->type == VR_VARYING)
9749 || (vr_value[i]->type == VR_UNDEFINED))
9750 continue;
9752 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
9753 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
9754 && (vr_value[i]->type == VR_RANGE
9755 || vr_value[i]->type == VR_ANTI_RANGE))
9756 set_range_info (name, vr_value[i]->type,
9757 tree_to_double_int (vr_value[i]->min),
9758 tree_to_double_int (vr_value[i]->max));
9761 /* Free allocated memory. */
9762 for (i = 0; i < num_vr_values; i++)
9763 if (vr_value[i])
9765 BITMAP_FREE (vr_value[i]->equiv);
9766 free (vr_value[i]);
9769 free (vr_value);
9770 free (vr_phi_edge_counts);
9772 /* So that we can distinguish between VRP data being available
9773 and not available. */
9774 vr_value = NULL;
9775 vr_phi_edge_counts = NULL;
9779 /* Main entry point to VRP (Value Range Propagation). This pass is
9780 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9781 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9782 Programming Language Design and Implementation, pp. 67-78, 1995.
9783 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9785 This is essentially an SSA-CCP pass modified to deal with ranges
9786 instead of constants.
9788 While propagating ranges, we may find that two or more SSA name
9789 have equivalent, though distinct ranges. For instance,
9791 1 x_9 = p_3->a;
9792 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9793 3 if (p_4 == q_2)
9794 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9795 5 endif
9796 6 if (q_2)
9798 In the code above, pointer p_5 has range [q_2, q_2], but from the
9799 code we can also determine that p_5 cannot be NULL and, if q_2 had
9800 a non-varying range, p_5's range should also be compatible with it.
9802 These equivalences are created by two expressions: ASSERT_EXPR and
9803 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9804 result of another assertion, then we can use the fact that p_5 and
9805 p_4 are equivalent when evaluating p_5's range.
9807 Together with value ranges, we also propagate these equivalences
9808 between names so that we can take advantage of information from
9809 multiple ranges when doing final replacement. Note that this
9810 equivalency relation is transitive but not symmetric.
9812 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9813 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9814 in contexts where that assertion does not hold (e.g., in line 6).
9816 TODO, the main difference between this pass and Patterson's is that
9817 we do not propagate edge probabilities. We only compute whether
9818 edges can be taken or not. That is, instead of having a spectrum
9819 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9820 DON'T KNOW. In the future, it may be worthwhile to propagate
9821 probabilities to aid branch prediction. */
9823 static unsigned int
9824 execute_vrp (void)
9826 int i;
9827 edge e;
9828 switch_update *su;
9830 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9831 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9832 scev_initialize ();
9834 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9835 Inserting assertions may split edges which will invalidate
9836 EDGE_DFS_BACK. */
9837 insert_range_assertions ();
9839 to_remove_edges.create (10);
9840 to_update_switch_stmts.create (5);
9841 threadedge_initialize_values ();
9843 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9844 mark_dfs_back_edges ();
9846 vrp_initialize ();
9847 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9848 vrp_finalize ();
9850 free_numbers_of_iterations_estimates ();
9852 /* ASSERT_EXPRs must be removed before finalizing jump threads
9853 as finalizing jump threads calls the CFG cleanup code which
9854 does not properly handle ASSERT_EXPRs. */
9855 remove_range_assertions ();
9857 /* If we exposed any new variables, go ahead and put them into
9858 SSA form now, before we handle jump threading. This simplifies
9859 interactions between rewriting of _DECL nodes into SSA form
9860 and rewriting SSA_NAME nodes into SSA form after block
9861 duplication and CFG manipulation. */
9862 update_ssa (TODO_update_ssa);
9864 finalize_jump_threads ();
9866 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9867 CFG in a broken state and requires a cfg_cleanup run. */
9868 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9869 remove_edge (e);
9870 /* Update SWITCH_EXPR case label vector. */
9871 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9873 size_t j;
9874 size_t n = TREE_VEC_LENGTH (su->vec);
9875 tree label;
9876 gimple_switch_set_num_labels (su->stmt, n);
9877 for (j = 0; j < n; j++)
9878 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9879 /* As we may have replaced the default label with a regular one
9880 make sure to make it a real default label again. This ensures
9881 optimal expansion. */
9882 label = gimple_switch_label (su->stmt, 0);
9883 CASE_LOW (label) = NULL_TREE;
9884 CASE_HIGH (label) = NULL_TREE;
9887 if (to_remove_edges.length () > 0)
9889 free_dominance_info (CDI_DOMINATORS);
9890 if (current_loops)
9891 loops_state_set (LOOPS_NEED_FIXUP);
9894 to_remove_edges.release ();
9895 to_update_switch_stmts.release ();
9896 threadedge_finalize_values ();
9898 scev_finalize ();
9899 loop_optimizer_finalize ();
9900 return 0;
9903 static bool
9904 gate_vrp (void)
9906 return flag_tree_vrp != 0;
9909 namespace {
9911 const pass_data pass_data_vrp =
9913 GIMPLE_PASS, /* type */
9914 "vrp", /* name */
9915 OPTGROUP_NONE, /* optinfo_flags */
9916 true, /* has_gate */
9917 true, /* has_execute */
9918 TV_TREE_VRP, /* tv_id */
9919 PROP_ssa, /* properties_required */
9920 0, /* properties_provided */
9921 0, /* properties_destroyed */
9922 0, /* todo_flags_start */
9923 ( TODO_cleanup_cfg | TODO_update_ssa
9924 | TODO_verify_ssa
9925 | TODO_verify_flow ), /* todo_flags_finish */
9928 class pass_vrp : public gimple_opt_pass
9930 public:
9931 pass_vrp (gcc::context *ctxt)
9932 : gimple_opt_pass (pass_data_vrp, ctxt)
9935 /* opt_pass methods: */
9936 opt_pass * clone () { return new pass_vrp (m_ctxt); }
9937 bool gate () { return gate_vrp (); }
9938 unsigned int execute () { return execute_vrp (); }
9940 }; // class pass_vrp
9942 } // anon namespace
9944 gimple_opt_pass *
9945 make_pass_vrp (gcc::context *ctxt)
9947 return new pass_vrp (ctxt);