Sync with upstream 4.9 branch
[official-gcc.git] / embedded-4_9-branch / gcc / stor-layout.c
blob9dc10d454fd114a3bcc9eca7535f226df06794e2
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimplify.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
71 void
72 internal_reference_types (void)
74 reference_types_internal = 1;
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
80 tree
81 variable_size (tree size)
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
98 return save_expr (size);
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec<tree, va_gc> *size_functions;
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
111 enum tree_code code = TREE_CODE (*tp);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
118 *walk_subtrees = 0;
119 return NULL_TREE;
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
126 *walk_subtrees = 0;
127 return NULL_TREE;
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
141 *walk_subtrees = 0;
142 return NULL_TREE;
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
157 return copy_tree_r (tp, walk_subtrees, data);
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
163 static tree
164 self_referential_size (tree size)
166 static unsigned HOST_WIDE_INT fnno = 0;
167 vec<tree> self_refs = vNULL;
168 tree param_type_list = NULL, param_decl_list = NULL;
169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
172 vec<tree, va_gc> *args = NULL;
174 /* Do not factor out simple operations. */
175 t = skip_simple_constant_arithmetic (size);
176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
181 gcc_assert (self_refs.length () > 0);
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
194 tree subst, param_name, param_type, param_decl;
196 if (DECL_P (ref))
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 DECL_ARG_TYPE (param_decl) = param_type;
215 DECL_ARTIFICIAL (param_decl) = 1;
216 TREE_READONLY (param_decl) = 1;
218 size = substitute_in_expr (size, subst, param_decl);
220 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
221 param_decl_list = chainon (param_decl, param_decl_list);
222 args->quick_push (ref);
225 self_refs.release ();
227 /* Append 'void' to indicate that the number of parameters is fixed. */
228 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
230 /* The 3 lists have been created in reverse order. */
231 param_type_list = nreverse (param_type_list);
232 param_decl_list = nreverse (param_decl_list);
234 /* Build the function type. */
235 return_type = TREE_TYPE (size);
236 fntype = build_function_type (return_type, param_type_list);
238 /* Build the function declaration. */
239 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
240 fnname = get_file_function_name (buf);
241 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
242 for (t = param_decl_list; t; t = DECL_CHAIN (t))
243 DECL_CONTEXT (t) = fndecl;
244 DECL_ARGUMENTS (fndecl) = param_decl_list;
245 DECL_RESULT (fndecl)
246 = build_decl (input_location, RESULT_DECL, 0, return_type);
247 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
249 /* The function has been created by the compiler and we don't
250 want to emit debug info for it. */
251 DECL_ARTIFICIAL (fndecl) = 1;
252 DECL_IGNORED_P (fndecl) = 1;
254 /* It is supposed to be "const" and never throw. */
255 TREE_READONLY (fndecl) = 1;
256 TREE_NOTHROW (fndecl) = 1;
258 /* We want it to be inlined when this is deemed profitable, as
259 well as discarded if every call has been integrated. */
260 DECL_DECLARED_INLINE_P (fndecl) = 1;
262 /* It is made up of a unique return statement. */
263 DECL_INITIAL (fndecl) = make_node (BLOCK);
264 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
265 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
266 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
267 TREE_STATIC (fndecl) = 1;
269 /* Put it onto the list of size functions. */
270 vec_safe_push (size_functions, fndecl);
272 /* Replace the original expression with a call to the size function. */
273 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
276 /* Take, queue and compile all the size functions. It is essential that
277 the size functions be gimplified at the very end of the compilation
278 in order to guarantee transparent handling of self-referential sizes.
279 Otherwise the GENERIC inliner would not be able to inline them back
280 at each of their call sites, thus creating artificial non-constant
281 size expressions which would trigger nasty problems later on. */
283 void
284 finalize_size_functions (void)
286 unsigned int i;
287 tree fndecl;
289 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
291 allocate_struct_function (fndecl, false);
292 set_cfun (NULL);
293 dump_function (TDI_original, fndecl);
294 gimplify_function_tree (fndecl);
295 dump_function (TDI_generic, fndecl);
296 cgraph_finalize_function (fndecl, false);
299 vec_free (size_functions);
302 /* Return the machine mode to use for a nonscalar of SIZE bits. The
303 mode must be in class MCLASS, and have exactly that many value bits;
304 it may have padding as well. If LIMIT is nonzero, modes of wider
305 than MAX_FIXED_MODE_SIZE will not be used. */
307 enum machine_mode
308 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
310 enum machine_mode mode;
312 if (limit && size > MAX_FIXED_MODE_SIZE)
313 return BLKmode;
315 /* Get the first mode which has this size, in the specified class. */
316 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
317 mode = GET_MODE_WIDER_MODE (mode))
318 if (GET_MODE_PRECISION (mode) == size)
319 return mode;
321 return BLKmode;
324 /* Similar, except passed a tree node. */
326 enum machine_mode
327 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
329 unsigned HOST_WIDE_INT uhwi;
330 unsigned int ui;
332 if (!tree_fits_uhwi_p (size))
333 return BLKmode;
334 uhwi = tree_to_uhwi (size);
335 ui = uhwi;
336 if (uhwi != ui)
337 return BLKmode;
338 return mode_for_size (ui, mclass, limit);
341 /* Similar, but never return BLKmode; return the narrowest mode that
342 contains at least the requested number of value bits. */
344 enum machine_mode
345 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
347 enum machine_mode mode;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
352 mode = GET_MODE_WIDER_MODE (mode))
353 if (GET_MODE_PRECISION (mode) >= size)
354 return mode;
356 gcc_unreachable ();
359 /* Find an integer mode of the exact same size, or BLKmode on failure. */
361 enum machine_mode
362 int_mode_for_mode (enum machine_mode mode)
364 switch (GET_MODE_CLASS (mode))
366 case MODE_INT:
367 case MODE_PARTIAL_INT:
368 break;
370 case MODE_COMPLEX_INT:
371 case MODE_COMPLEX_FLOAT:
372 case MODE_FLOAT:
373 case MODE_DECIMAL_FLOAT:
374 case MODE_VECTOR_INT:
375 case MODE_VECTOR_FLOAT:
376 case MODE_FRACT:
377 case MODE_ACCUM:
378 case MODE_UFRACT:
379 case MODE_UACCUM:
380 case MODE_VECTOR_FRACT:
381 case MODE_VECTOR_ACCUM:
382 case MODE_VECTOR_UFRACT:
383 case MODE_VECTOR_UACCUM:
384 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
385 break;
387 case MODE_RANDOM:
388 if (mode == BLKmode)
389 break;
391 /* ... fall through ... */
393 case MODE_CC:
394 default:
395 gcc_unreachable ();
398 return mode;
401 /* Find a mode that is suitable for representing a vector with
402 NUNITS elements of mode INNERMODE. Returns BLKmode if there
403 is no suitable mode. */
405 enum machine_mode
406 mode_for_vector (enum machine_mode innermode, unsigned nunits)
408 enum machine_mode mode;
410 /* First, look for a supported vector type. */
411 if (SCALAR_FLOAT_MODE_P (innermode))
412 mode = MIN_MODE_VECTOR_FLOAT;
413 else if (SCALAR_FRACT_MODE_P (innermode))
414 mode = MIN_MODE_VECTOR_FRACT;
415 else if (SCALAR_UFRACT_MODE_P (innermode))
416 mode = MIN_MODE_VECTOR_UFRACT;
417 else if (SCALAR_ACCUM_MODE_P (innermode))
418 mode = MIN_MODE_VECTOR_ACCUM;
419 else if (SCALAR_UACCUM_MODE_P (innermode))
420 mode = MIN_MODE_VECTOR_UACCUM;
421 else
422 mode = MIN_MODE_VECTOR_INT;
424 /* Do not check vector_mode_supported_p here. We'll do that
425 later in vector_type_mode. */
426 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
427 if (GET_MODE_NUNITS (mode) == nunits
428 && GET_MODE_INNER (mode) == innermode)
429 break;
431 /* For integers, try mapping it to a same-sized scalar mode. */
432 if (mode == VOIDmode
433 && GET_MODE_CLASS (innermode) == MODE_INT)
434 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
435 MODE_INT, 0);
437 if (mode == VOIDmode
438 || (GET_MODE_CLASS (mode) == MODE_INT
439 && !have_regs_of_mode[mode]))
440 return BLKmode;
442 return mode;
445 /* Return the alignment of MODE. This will be bounded by 1 and
446 BIGGEST_ALIGNMENT. */
448 unsigned int
449 get_mode_alignment (enum machine_mode mode)
451 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
454 /* Return the precision of the mode, or for a complex or vector mode the
455 precision of the mode of its elements. */
457 unsigned int
458 element_precision (enum machine_mode mode)
460 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
461 mode = GET_MODE_INNER (mode);
463 return GET_MODE_PRECISION (mode);
466 /* Return the natural mode of an array, given that it is SIZE bytes in
467 total and has elements of type ELEM_TYPE. */
469 static enum machine_mode
470 mode_for_array (tree elem_type, tree size)
472 tree elem_size;
473 unsigned HOST_WIDE_INT int_size, int_elem_size;
474 bool limit_p;
476 /* One-element arrays get the component type's mode. */
477 elem_size = TYPE_SIZE (elem_type);
478 if (simple_cst_equal (size, elem_size))
479 return TYPE_MODE (elem_type);
481 limit_p = true;
482 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
484 int_size = tree_to_uhwi (size);
485 int_elem_size = tree_to_uhwi (elem_size);
486 if (int_elem_size > 0
487 && int_size % int_elem_size == 0
488 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
489 int_size / int_elem_size))
490 limit_p = false;
492 return mode_for_size_tree (size, MODE_INT, limit_p);
495 /* Subroutine of layout_decl: Force alignment required for the data type.
496 But if the decl itself wants greater alignment, don't override that. */
498 static inline void
499 do_type_align (tree type, tree decl)
501 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
503 DECL_ALIGN (decl) = TYPE_ALIGN (type);
504 if (TREE_CODE (decl) == FIELD_DECL)
505 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
509 /* Set the size, mode and alignment of a ..._DECL node.
510 TYPE_DECL does need this for C++.
511 Note that LABEL_DECL and CONST_DECL nodes do not need this,
512 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
513 Don't call layout_decl for them.
515 KNOWN_ALIGN is the amount of alignment we can assume this
516 decl has with no special effort. It is relevant only for FIELD_DECLs
517 and depends on the previous fields.
518 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
519 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
520 the record will be aligned to suit. */
522 void
523 layout_decl (tree decl, unsigned int known_align)
525 tree type = TREE_TYPE (decl);
526 enum tree_code code = TREE_CODE (decl);
527 rtx rtl = NULL_RTX;
528 location_t loc = DECL_SOURCE_LOCATION (decl);
530 if (code == CONST_DECL)
531 return;
533 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
534 || code == TYPE_DECL ||code == FIELD_DECL);
536 rtl = DECL_RTL_IF_SET (decl);
538 if (type == error_mark_node)
539 type = void_type_node;
541 /* Usually the size and mode come from the data type without change,
542 however, the front-end may set the explicit width of the field, so its
543 size may not be the same as the size of its type. This happens with
544 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
545 also happens with other fields. For example, the C++ front-end creates
546 zero-sized fields corresponding to empty base classes, and depends on
547 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
548 size in bytes from the size in bits. If we have already set the mode,
549 don't set it again since we can be called twice for FIELD_DECLs. */
551 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
552 if (DECL_MODE (decl) == VOIDmode)
553 DECL_MODE (decl) = TYPE_MODE (type);
555 if (DECL_SIZE (decl) == 0)
557 DECL_SIZE (decl) = TYPE_SIZE (type);
558 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
560 else if (DECL_SIZE_UNIT (decl) == 0)
561 DECL_SIZE_UNIT (decl)
562 = fold_convert_loc (loc, sizetype,
563 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
564 bitsize_unit_node));
566 if (code != FIELD_DECL)
567 /* For non-fields, update the alignment from the type. */
568 do_type_align (type, decl);
569 else
570 /* For fields, it's a bit more complicated... */
572 bool old_user_align = DECL_USER_ALIGN (decl);
573 bool zero_bitfield = false;
574 bool packed_p = DECL_PACKED (decl);
575 unsigned int mfa;
577 if (DECL_BIT_FIELD (decl))
579 DECL_BIT_FIELD_TYPE (decl) = type;
581 /* A zero-length bit-field affects the alignment of the next
582 field. In essence such bit-fields are not influenced by
583 any packing due to #pragma pack or attribute packed. */
584 if (integer_zerop (DECL_SIZE (decl))
585 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
587 zero_bitfield = true;
588 packed_p = false;
589 #ifdef PCC_BITFIELD_TYPE_MATTERS
590 if (PCC_BITFIELD_TYPE_MATTERS)
591 do_type_align (type, decl);
592 else
593 #endif
595 #ifdef EMPTY_FIELD_BOUNDARY
596 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
598 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
599 DECL_USER_ALIGN (decl) = 0;
601 #endif
605 /* See if we can use an ordinary integer mode for a bit-field.
606 Conditions are: a fixed size that is correct for another mode,
607 occupying a complete byte or bytes on proper boundary. */
608 if (TYPE_SIZE (type) != 0
609 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
610 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
612 enum machine_mode xmode
613 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
614 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
616 if (xmode != BLKmode
617 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
618 && (known_align == 0 || known_align >= xalign))
620 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
621 DECL_MODE (decl) = xmode;
622 DECL_BIT_FIELD (decl) = 0;
626 /* Turn off DECL_BIT_FIELD if we won't need it set. */
627 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
628 && known_align >= TYPE_ALIGN (type)
629 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
630 DECL_BIT_FIELD (decl) = 0;
632 else if (packed_p && DECL_USER_ALIGN (decl))
633 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
634 round up; we'll reduce it again below. We want packing to
635 supersede USER_ALIGN inherited from the type, but defer to
636 alignment explicitly specified on the field decl. */;
637 else
638 do_type_align (type, decl);
640 /* If the field is packed and not explicitly aligned, give it the
641 minimum alignment. Note that do_type_align may set
642 DECL_USER_ALIGN, so we need to check old_user_align instead. */
643 if (packed_p
644 && !old_user_align)
645 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
647 if (! packed_p && ! DECL_USER_ALIGN (decl))
649 /* Some targets (i.e. i386, VMS) limit struct field alignment
650 to a lower boundary than alignment of variables unless
651 it was overridden by attribute aligned. */
652 #ifdef BIGGEST_FIELD_ALIGNMENT
653 DECL_ALIGN (decl)
654 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
655 #endif
656 #ifdef ADJUST_FIELD_ALIGN
657 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
658 #endif
661 if (zero_bitfield)
662 mfa = initial_max_fld_align * BITS_PER_UNIT;
663 else
664 mfa = maximum_field_alignment;
665 /* Should this be controlled by DECL_USER_ALIGN, too? */
666 if (mfa != 0)
667 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
670 /* Evaluate nonconstant size only once, either now or as soon as safe. */
671 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
672 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
673 if (DECL_SIZE_UNIT (decl) != 0
674 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
675 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
677 /* If requested, warn about definitions of large data objects. */
678 if (warn_larger_than
679 && (code == VAR_DECL || code == PARM_DECL)
680 && ! DECL_EXTERNAL (decl))
682 tree size = DECL_SIZE_UNIT (decl);
684 if (size != 0 && TREE_CODE (size) == INTEGER_CST
685 && compare_tree_int (size, larger_than_size) > 0)
687 int size_as_int = TREE_INT_CST_LOW (size);
689 if (compare_tree_int (size, size_as_int) == 0)
690 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
691 else
692 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
693 decl, larger_than_size);
697 /* If the RTL was already set, update its mode and mem attributes. */
698 if (rtl)
700 PUT_MODE (rtl, DECL_MODE (decl));
701 SET_DECL_RTL (decl, 0);
702 set_mem_attributes (rtl, decl, 1);
703 SET_DECL_RTL (decl, rtl);
707 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
708 a previous call to layout_decl and calls it again. */
710 void
711 relayout_decl (tree decl)
713 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
714 DECL_MODE (decl) = VOIDmode;
715 if (!DECL_USER_ALIGN (decl))
716 DECL_ALIGN (decl) = 0;
717 SET_DECL_RTL (decl, 0);
719 layout_decl (decl, 0);
722 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
723 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
724 is to be passed to all other layout functions for this record. It is the
725 responsibility of the caller to call `free' for the storage returned.
726 Note that garbage collection is not permitted until we finish laying
727 out the record. */
729 record_layout_info
730 start_record_layout (tree t)
732 record_layout_info rli = XNEW (struct record_layout_info_s);
734 rli->t = t;
736 /* If the type has a minimum specified alignment (via an attribute
737 declaration, for example) use it -- otherwise, start with a
738 one-byte alignment. */
739 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
740 rli->unpacked_align = rli->record_align;
741 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
743 #ifdef STRUCTURE_SIZE_BOUNDARY
744 /* Packed structures don't need to have minimum size. */
745 if (! TYPE_PACKED (t))
747 unsigned tmp;
749 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
750 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
751 if (maximum_field_alignment != 0)
752 tmp = MIN (tmp, maximum_field_alignment);
753 rli->record_align = MAX (rli->record_align, tmp);
755 #endif
757 rli->offset = size_zero_node;
758 rli->bitpos = bitsize_zero_node;
759 rli->prev_field = 0;
760 rli->pending_statics = 0;
761 rli->packed_maybe_necessary = 0;
762 rli->remaining_in_alignment = 0;
764 return rli;
767 /* Return the combined bit position for the byte offset OFFSET and the
768 bit position BITPOS.
770 These functions operate on byte and bit positions present in FIELD_DECLs
771 and assume that these expressions result in no (intermediate) overflow.
772 This assumption is necessary to fold the expressions as much as possible,
773 so as to avoid creating artificially variable-sized types in languages
774 supporting variable-sized types like Ada. */
776 tree
777 bit_from_pos (tree offset, tree bitpos)
779 if (TREE_CODE (offset) == PLUS_EXPR)
780 offset = size_binop (PLUS_EXPR,
781 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
782 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
783 else
784 offset = fold_convert (bitsizetype, offset);
785 return size_binop (PLUS_EXPR, bitpos,
786 size_binop (MULT_EXPR, offset, bitsize_unit_node));
789 /* Return the combined truncated byte position for the byte offset OFFSET and
790 the bit position BITPOS. */
792 tree
793 byte_from_pos (tree offset, tree bitpos)
795 tree bytepos;
796 if (TREE_CODE (bitpos) == MULT_EXPR
797 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
798 bytepos = TREE_OPERAND (bitpos, 0);
799 else
800 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
801 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
804 /* Split the bit position POS into a byte offset *POFFSET and a bit
805 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
807 void
808 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
809 tree pos)
811 tree toff_align = bitsize_int (off_align);
812 if (TREE_CODE (pos) == MULT_EXPR
813 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
815 *poffset = size_binop (MULT_EXPR,
816 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
817 size_int (off_align / BITS_PER_UNIT));
818 *pbitpos = bitsize_zero_node;
820 else
822 *poffset = size_binop (MULT_EXPR,
823 fold_convert (sizetype,
824 size_binop (FLOOR_DIV_EXPR, pos,
825 toff_align)),
826 size_int (off_align / BITS_PER_UNIT));
827 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
831 /* Given a pointer to bit and byte offsets and an offset alignment,
832 normalize the offsets so they are within the alignment. */
834 void
835 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
837 /* If the bit position is now larger than it should be, adjust it
838 downwards. */
839 if (compare_tree_int (*pbitpos, off_align) >= 0)
841 tree offset, bitpos;
842 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
843 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
844 *pbitpos = bitpos;
848 /* Print debugging information about the information in RLI. */
850 DEBUG_FUNCTION void
851 debug_rli (record_layout_info rli)
853 print_node_brief (stderr, "type", rli->t, 0);
854 print_node_brief (stderr, "\noffset", rli->offset, 0);
855 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
857 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
858 rli->record_align, rli->unpacked_align,
859 rli->offset_align);
861 /* The ms_struct code is the only that uses this. */
862 if (targetm.ms_bitfield_layout_p (rli->t))
863 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
865 if (rli->packed_maybe_necessary)
866 fprintf (stderr, "packed may be necessary\n");
868 if (!vec_safe_is_empty (rli->pending_statics))
870 fprintf (stderr, "pending statics:\n");
871 debug_vec_tree (rli->pending_statics);
875 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
876 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
878 void
879 normalize_rli (record_layout_info rli)
881 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
884 /* Returns the size in bytes allocated so far. */
886 tree
887 rli_size_unit_so_far (record_layout_info rli)
889 return byte_from_pos (rli->offset, rli->bitpos);
892 /* Returns the size in bits allocated so far. */
894 tree
895 rli_size_so_far (record_layout_info rli)
897 return bit_from_pos (rli->offset, rli->bitpos);
900 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
901 the next available location within the record is given by KNOWN_ALIGN.
902 Update the variable alignment fields in RLI, and return the alignment
903 to give the FIELD. */
905 unsigned int
906 update_alignment_for_field (record_layout_info rli, tree field,
907 unsigned int known_align)
909 /* The alignment required for FIELD. */
910 unsigned int desired_align;
911 /* The type of this field. */
912 tree type = TREE_TYPE (field);
913 /* True if the field was explicitly aligned by the user. */
914 bool user_align;
915 bool is_bitfield;
917 /* Do not attempt to align an ERROR_MARK node */
918 if (TREE_CODE (type) == ERROR_MARK)
919 return 0;
921 /* Lay out the field so we know what alignment it needs. */
922 layout_decl (field, known_align);
923 desired_align = DECL_ALIGN (field);
924 user_align = DECL_USER_ALIGN (field);
926 is_bitfield = (type != error_mark_node
927 && DECL_BIT_FIELD_TYPE (field)
928 && ! integer_zerop (TYPE_SIZE (type)));
930 /* Record must have at least as much alignment as any field.
931 Otherwise, the alignment of the field within the record is
932 meaningless. */
933 if (targetm.ms_bitfield_layout_p (rli->t))
935 /* Here, the alignment of the underlying type of a bitfield can
936 affect the alignment of a record; even a zero-sized field
937 can do this. The alignment should be to the alignment of
938 the type, except that for zero-size bitfields this only
939 applies if there was an immediately prior, nonzero-size
940 bitfield. (That's the way it is, experimentally.) */
941 if ((!is_bitfield && !DECL_PACKED (field))
942 || ((DECL_SIZE (field) == NULL_TREE
943 || !integer_zerop (DECL_SIZE (field)))
944 ? !DECL_PACKED (field)
945 : (rli->prev_field
946 && DECL_BIT_FIELD_TYPE (rli->prev_field)
947 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
949 unsigned int type_align = TYPE_ALIGN (type);
950 type_align = MAX (type_align, desired_align);
951 if (maximum_field_alignment != 0)
952 type_align = MIN (type_align, maximum_field_alignment);
953 rli->record_align = MAX (rli->record_align, type_align);
954 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
957 #ifdef PCC_BITFIELD_TYPE_MATTERS
958 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
960 /* Named bit-fields cause the entire structure to have the
961 alignment implied by their type. Some targets also apply the same
962 rules to unnamed bitfields. */
963 if (DECL_NAME (field) != 0
964 || targetm.align_anon_bitfield ())
966 unsigned int type_align = TYPE_ALIGN (type);
968 #ifdef ADJUST_FIELD_ALIGN
969 if (! TYPE_USER_ALIGN (type))
970 type_align = ADJUST_FIELD_ALIGN (field, type_align);
971 #endif
973 /* Targets might chose to handle unnamed and hence possibly
974 zero-width bitfield. Those are not influenced by #pragmas
975 or packed attributes. */
976 if (integer_zerop (DECL_SIZE (field)))
978 if (initial_max_fld_align)
979 type_align = MIN (type_align,
980 initial_max_fld_align * BITS_PER_UNIT);
982 else if (maximum_field_alignment != 0)
983 type_align = MIN (type_align, maximum_field_alignment);
984 else if (DECL_PACKED (field))
985 type_align = MIN (type_align, BITS_PER_UNIT);
987 /* The alignment of the record is increased to the maximum
988 of the current alignment, the alignment indicated on the
989 field (i.e., the alignment specified by an __aligned__
990 attribute), and the alignment indicated by the type of
991 the field. */
992 rli->record_align = MAX (rli->record_align, desired_align);
993 rli->record_align = MAX (rli->record_align, type_align);
995 if (warn_packed)
996 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
997 user_align |= TYPE_USER_ALIGN (type);
1000 #endif
1001 else
1003 rli->record_align = MAX (rli->record_align, desired_align);
1004 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1007 TYPE_USER_ALIGN (rli->t) |= user_align;
1009 return desired_align;
1012 /* Called from place_field to handle unions. */
1014 static void
1015 place_union_field (record_layout_info rli, tree field)
1017 update_alignment_for_field (rli, field, /*known_align=*/0);
1019 DECL_FIELD_OFFSET (field) = size_zero_node;
1020 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1021 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1023 /* If this is an ERROR_MARK return *after* having set the
1024 field at the start of the union. This helps when parsing
1025 invalid fields. */
1026 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1027 return;
1029 /* We assume the union's size will be a multiple of a byte so we don't
1030 bother with BITPOS. */
1031 if (TREE_CODE (rli->t) == UNION_TYPE)
1032 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1033 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1034 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1035 DECL_SIZE_UNIT (field), rli->offset);
1038 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1039 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1040 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1041 units of alignment than the underlying TYPE. */
1042 static int
1043 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1044 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1046 /* Note that the calculation of OFFSET might overflow; we calculate it so
1047 that we still get the right result as long as ALIGN is a power of two. */
1048 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1050 offset = offset % align;
1051 return ((offset + size + align - 1) / align
1052 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1054 #endif
1056 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1057 is a FIELD_DECL to be added after those fields already present in
1058 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1059 callers that desire that behavior must manually perform that step.) */
1061 void
1062 place_field (record_layout_info rli, tree field)
1064 /* The alignment required for FIELD. */
1065 unsigned int desired_align;
1066 /* The alignment FIELD would have if we just dropped it into the
1067 record as it presently stands. */
1068 unsigned int known_align;
1069 unsigned int actual_align;
1070 /* The type of this field. */
1071 tree type = TREE_TYPE (field);
1073 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1075 /* If FIELD is static, then treat it like a separate variable, not
1076 really like a structure field. If it is a FUNCTION_DECL, it's a
1077 method. In both cases, all we do is lay out the decl, and we do
1078 it *after* the record is laid out. */
1079 if (TREE_CODE (field) == VAR_DECL)
1081 vec_safe_push (rli->pending_statics, field);
1082 return;
1085 /* Enumerators and enum types which are local to this class need not
1086 be laid out. Likewise for initialized constant fields. */
1087 else if (TREE_CODE (field) != FIELD_DECL)
1088 return;
1090 /* Unions are laid out very differently than records, so split
1091 that code off to another function. */
1092 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1094 place_union_field (rli, field);
1095 return;
1098 else if (TREE_CODE (type) == ERROR_MARK)
1100 /* Place this field at the current allocation position, so we
1101 maintain monotonicity. */
1102 DECL_FIELD_OFFSET (field) = rli->offset;
1103 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1104 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1105 return;
1108 /* Work out the known alignment so far. Note that A & (-A) is the
1109 value of the least-significant bit in A that is one. */
1110 if (! integer_zerop (rli->bitpos))
1111 known_align = (tree_to_uhwi (rli->bitpos)
1112 & - tree_to_uhwi (rli->bitpos));
1113 else if (integer_zerop (rli->offset))
1114 known_align = 0;
1115 else if (tree_fits_uhwi_p (rli->offset))
1116 known_align = (BITS_PER_UNIT
1117 * (tree_to_uhwi (rli->offset)
1118 & - tree_to_uhwi (rli->offset)));
1119 else
1120 known_align = rli->offset_align;
1122 desired_align = update_alignment_for_field (rli, field, known_align);
1123 if (known_align == 0)
1124 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1126 if (warn_packed && DECL_PACKED (field))
1128 if (known_align >= TYPE_ALIGN (type))
1130 if (TYPE_ALIGN (type) > desired_align)
1132 if (STRICT_ALIGNMENT)
1133 warning (OPT_Wattributes, "packed attribute causes "
1134 "inefficient alignment for %q+D", field);
1135 /* Don't warn if DECL_PACKED was set by the type. */
1136 else if (!TYPE_PACKED (rli->t))
1137 warning (OPT_Wattributes, "packed attribute is "
1138 "unnecessary for %q+D", field);
1141 else
1142 rli->packed_maybe_necessary = 1;
1145 /* Does this field automatically have alignment it needs by virtue
1146 of the fields that precede it and the record's own alignment? */
1147 if (known_align < desired_align)
1149 /* No, we need to skip space before this field.
1150 Bump the cumulative size to multiple of field alignment. */
1152 if (!targetm.ms_bitfield_layout_p (rli->t)
1153 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1154 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1156 /* If the alignment is still within offset_align, just align
1157 the bit position. */
1158 if (desired_align < rli->offset_align)
1159 rli->bitpos = round_up (rli->bitpos, desired_align);
1160 else
1162 /* First adjust OFFSET by the partial bits, then align. */
1163 rli->offset
1164 = size_binop (PLUS_EXPR, rli->offset,
1165 fold_convert (sizetype,
1166 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1167 bitsize_unit_node)));
1168 rli->bitpos = bitsize_zero_node;
1170 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1173 if (! TREE_CONSTANT (rli->offset))
1174 rli->offset_align = desired_align;
1175 if (targetm.ms_bitfield_layout_p (rli->t))
1176 rli->prev_field = NULL;
1179 /* Handle compatibility with PCC. Note that if the record has any
1180 variable-sized fields, we need not worry about compatibility. */
1181 #ifdef PCC_BITFIELD_TYPE_MATTERS
1182 if (PCC_BITFIELD_TYPE_MATTERS
1183 && ! targetm.ms_bitfield_layout_p (rli->t)
1184 && TREE_CODE (field) == FIELD_DECL
1185 && type != error_mark_node
1186 && DECL_BIT_FIELD (field)
1187 && (! DECL_PACKED (field)
1188 /* Enter for these packed fields only to issue a warning. */
1189 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1190 && maximum_field_alignment == 0
1191 && ! integer_zerop (DECL_SIZE (field))
1192 && tree_fits_uhwi_p (DECL_SIZE (field))
1193 && tree_fits_uhwi_p (rli->offset)
1194 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1196 unsigned int type_align = TYPE_ALIGN (type);
1197 tree dsize = DECL_SIZE (field);
1198 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1199 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1200 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1202 #ifdef ADJUST_FIELD_ALIGN
1203 if (! TYPE_USER_ALIGN (type))
1204 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1205 #endif
1207 /* A bit field may not span more units of alignment of its type
1208 than its type itself. Advance to next boundary if necessary. */
1209 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1211 if (DECL_PACKED (field))
1213 if (warn_packed_bitfield_compat == 1)
1214 inform
1215 (input_location,
1216 "offset of packed bit-field %qD has changed in GCC 4.4",
1217 field);
1219 else
1220 rli->bitpos = round_up (rli->bitpos, type_align);
1223 if (! DECL_PACKED (field))
1224 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1226 #endif
1228 #ifdef BITFIELD_NBYTES_LIMITED
1229 if (BITFIELD_NBYTES_LIMITED
1230 && ! targetm.ms_bitfield_layout_p (rli->t)
1231 && TREE_CODE (field) == FIELD_DECL
1232 && type != error_mark_node
1233 && DECL_BIT_FIELD_TYPE (field)
1234 && ! DECL_PACKED (field)
1235 && ! integer_zerop (DECL_SIZE (field))
1236 && tree_fits_uhwi_p (DECL_SIZE (field))
1237 && tree_fits_uhwi_p (rli->offset)
1238 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1240 unsigned int type_align = TYPE_ALIGN (type);
1241 tree dsize = DECL_SIZE (field);
1242 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1243 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1244 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1246 #ifdef ADJUST_FIELD_ALIGN
1247 if (! TYPE_USER_ALIGN (type))
1248 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1249 #endif
1251 if (maximum_field_alignment != 0)
1252 type_align = MIN (type_align, maximum_field_alignment);
1253 /* ??? This test is opposite the test in the containing if
1254 statement, so this code is unreachable currently. */
1255 else if (DECL_PACKED (field))
1256 type_align = MIN (type_align, BITS_PER_UNIT);
1258 /* A bit field may not span the unit of alignment of its type.
1259 Advance to next boundary if necessary. */
1260 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1261 rli->bitpos = round_up (rli->bitpos, type_align);
1263 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1265 #endif
1267 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1268 A subtlety:
1269 When a bit field is inserted into a packed record, the whole
1270 size of the underlying type is used by one or more same-size
1271 adjacent bitfields. (That is, if its long:3, 32 bits is
1272 used in the record, and any additional adjacent long bitfields are
1273 packed into the same chunk of 32 bits. However, if the size
1274 changes, a new field of that size is allocated.) In an unpacked
1275 record, this is the same as using alignment, but not equivalent
1276 when packing.
1278 Note: for compatibility, we use the type size, not the type alignment
1279 to determine alignment, since that matches the documentation */
1281 if (targetm.ms_bitfield_layout_p (rli->t))
1283 tree prev_saved = rli->prev_field;
1284 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1286 /* This is a bitfield if it exists. */
1287 if (rli->prev_field)
1289 /* If both are bitfields, nonzero, and the same size, this is
1290 the middle of a run. Zero declared size fields are special
1291 and handled as "end of run". (Note: it's nonzero declared
1292 size, but equal type sizes!) (Since we know that both
1293 the current and previous fields are bitfields by the
1294 time we check it, DECL_SIZE must be present for both.) */
1295 if (DECL_BIT_FIELD_TYPE (field)
1296 && !integer_zerop (DECL_SIZE (field))
1297 && !integer_zerop (DECL_SIZE (rli->prev_field))
1298 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1299 && tree_fits_uhwi_p (TYPE_SIZE (type))
1300 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1302 /* We're in the middle of a run of equal type size fields; make
1303 sure we realign if we run out of bits. (Not decl size,
1304 type size!) */
1305 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1307 if (rli->remaining_in_alignment < bitsize)
1309 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1311 /* out of bits; bump up to next 'word'. */
1312 rli->bitpos
1313 = size_binop (PLUS_EXPR, rli->bitpos,
1314 bitsize_int (rli->remaining_in_alignment));
1315 rli->prev_field = field;
1316 if (typesize < bitsize)
1317 rli->remaining_in_alignment = 0;
1318 else
1319 rli->remaining_in_alignment = typesize - bitsize;
1321 else
1322 rli->remaining_in_alignment -= bitsize;
1324 else
1326 /* End of a run: if leaving a run of bitfields of the same type
1327 size, we have to "use up" the rest of the bits of the type
1328 size.
1330 Compute the new position as the sum of the size for the prior
1331 type and where we first started working on that type.
1332 Note: since the beginning of the field was aligned then
1333 of course the end will be too. No round needed. */
1335 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1337 rli->bitpos
1338 = size_binop (PLUS_EXPR, rli->bitpos,
1339 bitsize_int (rli->remaining_in_alignment));
1341 else
1342 /* We "use up" size zero fields; the code below should behave
1343 as if the prior field was not a bitfield. */
1344 prev_saved = NULL;
1346 /* Cause a new bitfield to be captured, either this time (if
1347 currently a bitfield) or next time we see one. */
1348 if (!DECL_BIT_FIELD_TYPE (field)
1349 || integer_zerop (DECL_SIZE (field)))
1350 rli->prev_field = NULL;
1353 normalize_rli (rli);
1356 /* If we're starting a new run of same type size bitfields
1357 (or a run of non-bitfields), set up the "first of the run"
1358 fields.
1360 That is, if the current field is not a bitfield, or if there
1361 was a prior bitfield the type sizes differ, or if there wasn't
1362 a prior bitfield the size of the current field is nonzero.
1364 Note: we must be sure to test ONLY the type size if there was
1365 a prior bitfield and ONLY for the current field being zero if
1366 there wasn't. */
1368 if (!DECL_BIT_FIELD_TYPE (field)
1369 || (prev_saved != NULL
1370 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1371 : !integer_zerop (DECL_SIZE (field)) ))
1373 /* Never smaller than a byte for compatibility. */
1374 unsigned int type_align = BITS_PER_UNIT;
1376 /* (When not a bitfield), we could be seeing a flex array (with
1377 no DECL_SIZE). Since we won't be using remaining_in_alignment
1378 until we see a bitfield (and come by here again) we just skip
1379 calculating it. */
1380 if (DECL_SIZE (field) != NULL
1381 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1382 && tree_fits_uhwi_p (DECL_SIZE (field)))
1384 unsigned HOST_WIDE_INT bitsize
1385 = tree_to_uhwi (DECL_SIZE (field));
1386 unsigned HOST_WIDE_INT typesize
1387 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1389 if (typesize < bitsize)
1390 rli->remaining_in_alignment = 0;
1391 else
1392 rli->remaining_in_alignment = typesize - bitsize;
1395 /* Now align (conventionally) for the new type. */
1396 type_align = TYPE_ALIGN (TREE_TYPE (field));
1398 if (maximum_field_alignment != 0)
1399 type_align = MIN (type_align, maximum_field_alignment);
1401 rli->bitpos = round_up (rli->bitpos, type_align);
1403 /* If we really aligned, don't allow subsequent bitfields
1404 to undo that. */
1405 rli->prev_field = NULL;
1409 /* Offset so far becomes the position of this field after normalizing. */
1410 normalize_rli (rli);
1411 DECL_FIELD_OFFSET (field) = rli->offset;
1412 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1413 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1415 /* If this field ended up more aligned than we thought it would be (we
1416 approximate this by seeing if its position changed), lay out the field
1417 again; perhaps we can use an integral mode for it now. */
1418 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1419 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1420 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1421 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1422 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1423 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1424 actual_align = (BITS_PER_UNIT
1425 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1426 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1427 else
1428 actual_align = DECL_OFFSET_ALIGN (field);
1429 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1430 store / extract bit field operations will check the alignment of the
1431 record against the mode of bit fields. */
1433 if (known_align != actual_align)
1434 layout_decl (field, actual_align);
1436 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1437 rli->prev_field = field;
1439 /* Now add size of this field to the size of the record. If the size is
1440 not constant, treat the field as being a multiple of bytes and just
1441 adjust the offset, resetting the bit position. Otherwise, apportion the
1442 size amongst the bit position and offset. First handle the case of an
1443 unspecified size, which can happen when we have an invalid nested struct
1444 definition, such as struct j { struct j { int i; } }. The error message
1445 is printed in finish_struct. */
1446 if (DECL_SIZE (field) == 0)
1447 /* Do nothing. */;
1448 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1449 || TREE_OVERFLOW (DECL_SIZE (field)))
1451 rli->offset
1452 = size_binop (PLUS_EXPR, rli->offset,
1453 fold_convert (sizetype,
1454 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1455 bitsize_unit_node)));
1456 rli->offset
1457 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1458 rli->bitpos = bitsize_zero_node;
1459 rli->offset_align = MIN (rli->offset_align, desired_align);
1461 else if (targetm.ms_bitfield_layout_p (rli->t))
1463 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1465 /* If we ended a bitfield before the full length of the type then
1466 pad the struct out to the full length of the last type. */
1467 if ((DECL_CHAIN (field) == NULL
1468 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1469 && DECL_BIT_FIELD_TYPE (field)
1470 && !integer_zerop (DECL_SIZE (field)))
1471 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1472 bitsize_int (rli->remaining_in_alignment));
1474 normalize_rli (rli);
1476 else
1478 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1479 normalize_rli (rli);
1483 /* Assuming that all the fields have been laid out, this function uses
1484 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1485 indicated by RLI. */
1487 static void
1488 finalize_record_size (record_layout_info rli)
1490 tree unpadded_size, unpadded_size_unit;
1492 /* Now we want just byte and bit offsets, so set the offset alignment
1493 to be a byte and then normalize. */
1494 rli->offset_align = BITS_PER_UNIT;
1495 normalize_rli (rli);
1497 /* Determine the desired alignment. */
1498 #ifdef ROUND_TYPE_ALIGN
1499 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1500 rli->record_align);
1501 #else
1502 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1503 #endif
1505 /* Compute the size so far. Be sure to allow for extra bits in the
1506 size in bytes. We have guaranteed above that it will be no more
1507 than a single byte. */
1508 unpadded_size = rli_size_so_far (rli);
1509 unpadded_size_unit = rli_size_unit_so_far (rli);
1510 if (! integer_zerop (rli->bitpos))
1511 unpadded_size_unit
1512 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1514 /* Round the size up to be a multiple of the required alignment. */
1515 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1516 TYPE_SIZE_UNIT (rli->t)
1517 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1519 if (TREE_CONSTANT (unpadded_size)
1520 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1521 && input_location != BUILTINS_LOCATION)
1522 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1524 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1525 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1526 && TREE_CONSTANT (unpadded_size))
1528 tree unpacked_size;
1530 #ifdef ROUND_TYPE_ALIGN
1531 rli->unpacked_align
1532 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1533 #else
1534 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1535 #endif
1537 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1538 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1540 if (TYPE_NAME (rli->t))
1542 tree name;
1544 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1545 name = TYPE_NAME (rli->t);
1546 else
1547 name = DECL_NAME (TYPE_NAME (rli->t));
1549 if (STRICT_ALIGNMENT)
1550 warning (OPT_Wpacked, "packed attribute causes inefficient "
1551 "alignment for %qE", name);
1552 else
1553 warning (OPT_Wpacked,
1554 "packed attribute is unnecessary for %qE", name);
1556 else
1558 if (STRICT_ALIGNMENT)
1559 warning (OPT_Wpacked,
1560 "packed attribute causes inefficient alignment");
1561 else
1562 warning (OPT_Wpacked, "packed attribute is unnecessary");
1568 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1570 void
1571 compute_record_mode (tree type)
1573 tree field;
1574 enum machine_mode mode = VOIDmode;
1576 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1577 However, if possible, we use a mode that fits in a register
1578 instead, in order to allow for better optimization down the
1579 line. */
1580 SET_TYPE_MODE (type, BLKmode);
1582 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1583 return;
1585 /* A record which has any BLKmode members must itself be
1586 BLKmode; it can't go in a register. Unless the member is
1587 BLKmode only because it isn't aligned. */
1588 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1590 if (TREE_CODE (field) != FIELD_DECL)
1591 continue;
1593 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1594 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1595 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1596 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1597 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1598 || ! tree_fits_uhwi_p (bit_position (field))
1599 || DECL_SIZE (field) == 0
1600 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1601 return;
1603 /* If this field is the whole struct, remember its mode so
1604 that, say, we can put a double in a class into a DF
1605 register instead of forcing it to live in the stack. */
1606 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1607 mode = DECL_MODE (field);
1609 /* With some targets, it is sub-optimal to access an aligned
1610 BLKmode structure as a scalar. */
1611 if (targetm.member_type_forces_blk (field, mode))
1612 return;
1615 /* If we only have one real field; use its mode if that mode's size
1616 matches the type's size. This only applies to RECORD_TYPE. This
1617 does not apply to unions. */
1618 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1619 && tree_fits_uhwi_p (TYPE_SIZE (type))
1620 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1621 SET_TYPE_MODE (type, mode);
1622 else
1623 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1625 /* If structure's known alignment is less than what the scalar
1626 mode would need, and it matters, then stick with BLKmode. */
1627 if (TYPE_MODE (type) != BLKmode
1628 && STRICT_ALIGNMENT
1629 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1630 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1632 /* If this is the only reason this type is BLKmode, then
1633 don't force containing types to be BLKmode. */
1634 TYPE_NO_FORCE_BLK (type) = 1;
1635 SET_TYPE_MODE (type, BLKmode);
1639 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1640 out. */
1642 static void
1643 finalize_type_size (tree type)
1645 /* Normally, use the alignment corresponding to the mode chosen.
1646 However, where strict alignment is not required, avoid
1647 over-aligning structures, since most compilers do not do this
1648 alignment. */
1650 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1651 && (STRICT_ALIGNMENT
1652 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1653 && TREE_CODE (type) != QUAL_UNION_TYPE
1654 && TREE_CODE (type) != ARRAY_TYPE)))
1656 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1658 /* Don't override a larger alignment requirement coming from a user
1659 alignment of one of the fields. */
1660 if (mode_align >= TYPE_ALIGN (type))
1662 TYPE_ALIGN (type) = mode_align;
1663 TYPE_USER_ALIGN (type) = 0;
1667 /* Do machine-dependent extra alignment. */
1668 #ifdef ROUND_TYPE_ALIGN
1669 TYPE_ALIGN (type)
1670 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1671 #endif
1673 /* If we failed to find a simple way to calculate the unit size
1674 of the type, find it by division. */
1675 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1676 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1677 result will fit in sizetype. We will get more efficient code using
1678 sizetype, so we force a conversion. */
1679 TYPE_SIZE_UNIT (type)
1680 = fold_convert (sizetype,
1681 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1682 bitsize_unit_node));
1684 if (TYPE_SIZE (type) != 0)
1686 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1687 TYPE_SIZE_UNIT (type)
1688 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1691 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1692 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1693 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1694 if (TYPE_SIZE_UNIT (type) != 0
1695 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1696 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1698 /* Also layout any other variants of the type. */
1699 if (TYPE_NEXT_VARIANT (type)
1700 || type != TYPE_MAIN_VARIANT (type))
1702 tree variant;
1703 /* Record layout info of this variant. */
1704 tree size = TYPE_SIZE (type);
1705 tree size_unit = TYPE_SIZE_UNIT (type);
1706 unsigned int align = TYPE_ALIGN (type);
1707 unsigned int user_align = TYPE_USER_ALIGN (type);
1708 enum machine_mode mode = TYPE_MODE (type);
1710 /* Copy it into all variants. */
1711 for (variant = TYPE_MAIN_VARIANT (type);
1712 variant != 0;
1713 variant = TYPE_NEXT_VARIANT (variant))
1715 TYPE_SIZE (variant) = size;
1716 TYPE_SIZE_UNIT (variant) = size_unit;
1717 TYPE_ALIGN (variant) = align;
1718 TYPE_USER_ALIGN (variant) = user_align;
1719 SET_TYPE_MODE (variant, mode);
1724 /* Return a new underlying object for a bitfield started with FIELD. */
1726 static tree
1727 start_bitfield_representative (tree field)
1729 tree repr = make_node (FIELD_DECL);
1730 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1731 /* Force the representative to begin at a BITS_PER_UNIT aligned
1732 boundary - C++ may use tail-padding of a base object to
1733 continue packing bits so the bitfield region does not start
1734 at bit zero (see g++.dg/abi/bitfield5.C for example).
1735 Unallocated bits may happen for other reasons as well,
1736 for example Ada which allows explicit bit-granular structure layout. */
1737 DECL_FIELD_BIT_OFFSET (repr)
1738 = size_binop (BIT_AND_EXPR,
1739 DECL_FIELD_BIT_OFFSET (field),
1740 bitsize_int (~(BITS_PER_UNIT - 1)));
1741 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1742 DECL_SIZE (repr) = DECL_SIZE (field);
1743 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1744 DECL_PACKED (repr) = DECL_PACKED (field);
1745 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1746 return repr;
1749 /* Finish up a bitfield group that was started by creating the underlying
1750 object REPR with the last field in the bitfield group FIELD. */
1752 static void
1753 finish_bitfield_representative (tree repr, tree field)
1755 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1756 enum machine_mode mode;
1757 tree nextf, size;
1759 size = size_diffop (DECL_FIELD_OFFSET (field),
1760 DECL_FIELD_OFFSET (repr));
1761 gcc_assert (tree_fits_uhwi_p (size));
1762 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1763 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1764 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1765 + tree_to_uhwi (DECL_SIZE (field)));
1767 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1768 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1770 /* Now nothing tells us how to pad out bitsize ... */
1771 nextf = DECL_CHAIN (field);
1772 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1773 nextf = DECL_CHAIN (nextf);
1774 if (nextf)
1776 tree maxsize;
1777 /* If there was an error, the field may be not laid out
1778 correctly. Don't bother to do anything. */
1779 if (TREE_TYPE (nextf) == error_mark_node)
1780 return;
1781 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1782 DECL_FIELD_OFFSET (repr));
1783 if (tree_fits_uhwi_p (maxsize))
1785 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1786 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1787 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1788 /* If the group ends within a bitfield nextf does not need to be
1789 aligned to BITS_PER_UNIT. Thus round up. */
1790 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1792 else
1793 maxbitsize = bitsize;
1795 else
1797 /* ??? If you consider that tail-padding of this struct might be
1798 re-used when deriving from it we cannot really do the following
1799 and thus need to set maxsize to bitsize? Also we cannot
1800 generally rely on maxsize to fold to an integer constant, so
1801 use bitsize as fallback for this case. */
1802 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1803 DECL_FIELD_OFFSET (repr));
1804 if (tree_fits_uhwi_p (maxsize))
1805 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1806 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1807 else
1808 maxbitsize = bitsize;
1811 /* Only if we don't artificially break up the representative in
1812 the middle of a large bitfield with different possibly
1813 overlapping representatives. And all representatives start
1814 at byte offset. */
1815 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1817 /* Find the smallest nice mode to use. */
1818 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1819 mode = GET_MODE_WIDER_MODE (mode))
1820 if (GET_MODE_BITSIZE (mode) >= bitsize)
1821 break;
1822 if (mode != VOIDmode
1823 && (GET_MODE_BITSIZE (mode) > maxbitsize
1824 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1825 mode = VOIDmode;
1827 if (mode == VOIDmode)
1829 /* We really want a BLKmode representative only as a last resort,
1830 considering the member b in
1831 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1832 Otherwise we simply want to split the representative up
1833 allowing for overlaps within the bitfield region as required for
1834 struct { int a : 7; int b : 7;
1835 int c : 10; int d; } __attribute__((packed));
1836 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1837 DECL_SIZE (repr) = bitsize_int (bitsize);
1838 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1839 DECL_MODE (repr) = BLKmode;
1840 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1841 bitsize / BITS_PER_UNIT);
1843 else
1845 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1846 DECL_SIZE (repr) = bitsize_int (modesize);
1847 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1848 DECL_MODE (repr) = mode;
1849 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1852 /* Remember whether the bitfield group is at the end of the
1853 structure or not. */
1854 DECL_CHAIN (repr) = nextf;
1857 /* Compute and set FIELD_DECLs for the underlying objects we should
1858 use for bitfield access for the structure laid out with RLI. */
1860 static void
1861 finish_bitfield_layout (record_layout_info rli)
1863 tree field, prev;
1864 tree repr = NULL_TREE;
1866 /* Unions would be special, for the ease of type-punning optimizations
1867 we could use the underlying type as hint for the representative
1868 if the bitfield would fit and the representative would not exceed
1869 the union in size. */
1870 if (TREE_CODE (rli->t) != RECORD_TYPE)
1871 return;
1873 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1874 field; field = DECL_CHAIN (field))
1876 if (TREE_CODE (field) != FIELD_DECL)
1877 continue;
1879 /* In the C++ memory model, consecutive bit fields in a structure are
1880 considered one memory location and updating a memory location
1881 may not store into adjacent memory locations. */
1882 if (!repr
1883 && DECL_BIT_FIELD_TYPE (field))
1885 /* Start new representative. */
1886 repr = start_bitfield_representative (field);
1888 else if (repr
1889 && ! DECL_BIT_FIELD_TYPE (field))
1891 /* Finish off new representative. */
1892 finish_bitfield_representative (repr, prev);
1893 repr = NULL_TREE;
1895 else if (DECL_BIT_FIELD_TYPE (field))
1897 gcc_assert (repr != NULL_TREE);
1899 /* Zero-size bitfields finish off a representative and
1900 do not have a representative themselves. This is
1901 required by the C++ memory model. */
1902 if (integer_zerop (DECL_SIZE (field)))
1904 finish_bitfield_representative (repr, prev);
1905 repr = NULL_TREE;
1908 /* We assume that either DECL_FIELD_OFFSET of the representative
1909 and each bitfield member is a constant or they are equal.
1910 This is because we need to be able to compute the bit-offset
1911 of each field relative to the representative in get_bit_range
1912 during RTL expansion.
1913 If these constraints are not met, simply force a new
1914 representative to be generated. That will at most
1915 generate worse code but still maintain correctness with
1916 respect to the C++ memory model. */
1917 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1918 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1919 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1920 DECL_FIELD_OFFSET (field), 0)))
1922 finish_bitfield_representative (repr, prev);
1923 repr = start_bitfield_representative (field);
1926 else
1927 continue;
1929 if (repr)
1930 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1932 prev = field;
1935 if (repr)
1936 finish_bitfield_representative (repr, prev);
1939 /* Do all of the work required to layout the type indicated by RLI,
1940 once the fields have been laid out. This function will call `free'
1941 for RLI, unless FREE_P is false. Passing a value other than false
1942 for FREE_P is bad practice; this option only exists to support the
1943 G++ 3.2 ABI. */
1945 void
1946 finish_record_layout (record_layout_info rli, int free_p)
1948 tree variant;
1950 /* Compute the final size. */
1951 finalize_record_size (rli);
1953 /* Compute the TYPE_MODE for the record. */
1954 compute_record_mode (rli->t);
1956 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1957 finalize_type_size (rli->t);
1959 /* Compute bitfield representatives. */
1960 finish_bitfield_layout (rli);
1962 /* Propagate TYPE_PACKED to variants. With C++ templates,
1963 handle_packed_attribute is too early to do this. */
1964 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1965 variant = TYPE_NEXT_VARIANT (variant))
1966 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1968 /* Lay out any static members. This is done now because their type
1969 may use the record's type. */
1970 while (!vec_safe_is_empty (rli->pending_statics))
1971 layout_decl (rli->pending_statics->pop (), 0);
1973 /* Clean up. */
1974 if (free_p)
1976 vec_free (rli->pending_statics);
1977 free (rli);
1982 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1983 NAME, its fields are chained in reverse on FIELDS.
1985 If ALIGN_TYPE is non-null, it is given the same alignment as
1986 ALIGN_TYPE. */
1988 void
1989 finish_builtin_struct (tree type, const char *name, tree fields,
1990 tree align_type)
1992 tree tail, next;
1994 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1996 DECL_FIELD_CONTEXT (fields) = type;
1997 next = DECL_CHAIN (fields);
1998 DECL_CHAIN (fields) = tail;
2000 TYPE_FIELDS (type) = tail;
2002 if (align_type)
2004 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2005 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2008 layout_type (type);
2009 #if 0 /* not yet, should get fixed properly later */
2010 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2011 #else
2012 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2013 TYPE_DECL, get_identifier (name), type);
2014 #endif
2015 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2016 layout_decl (TYPE_NAME (type), 0);
2019 /* Calculate the mode, size, and alignment for TYPE.
2020 For an array type, calculate the element separation as well.
2021 Record TYPE on the chain of permanent or temporary types
2022 so that dbxout will find out about it.
2024 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2025 layout_type does nothing on such a type.
2027 If the type is incomplete, its TYPE_SIZE remains zero. */
2029 void
2030 layout_type (tree type)
2032 gcc_assert (type);
2034 if (type == error_mark_node)
2035 return;
2037 /* Do nothing if type has been laid out before. */
2038 if (TYPE_SIZE (type))
2039 return;
2041 switch (TREE_CODE (type))
2043 case LANG_TYPE:
2044 /* This kind of type is the responsibility
2045 of the language-specific code. */
2046 gcc_unreachable ();
2048 case BOOLEAN_TYPE:
2049 case INTEGER_TYPE:
2050 case ENUMERAL_TYPE:
2051 SET_TYPE_MODE (type,
2052 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2053 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2054 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2055 break;
2057 case REAL_TYPE:
2058 SET_TYPE_MODE (type,
2059 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2060 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2061 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2062 break;
2064 case FIXED_POINT_TYPE:
2065 /* TYPE_MODE (type) has been set already. */
2066 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2067 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2068 break;
2070 case COMPLEX_TYPE:
2071 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2072 SET_TYPE_MODE (type,
2073 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2074 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2075 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2076 0));
2077 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2078 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2079 break;
2081 case VECTOR_TYPE:
2083 int nunits = TYPE_VECTOR_SUBPARTS (type);
2084 tree innertype = TREE_TYPE (type);
2086 gcc_assert (!(nunits & (nunits - 1)));
2088 /* Find an appropriate mode for the vector type. */
2089 if (TYPE_MODE (type) == VOIDmode)
2090 SET_TYPE_MODE (type,
2091 mode_for_vector (TYPE_MODE (innertype), nunits));
2093 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2094 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2095 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2096 TYPE_SIZE_UNIT (innertype),
2097 size_int (nunits));
2098 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2099 bitsize_int (nunits));
2101 /* For vector types, we do not default to the mode's alignment.
2102 Instead, query a target hook, defaulting to natural alignment.
2103 This prevents ABI changes depending on whether or not native
2104 vector modes are supported. */
2105 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2107 /* However, if the underlying mode requires a bigger alignment than
2108 what the target hook provides, we cannot use the mode. For now,
2109 simply reject that case. */
2110 gcc_assert (TYPE_ALIGN (type)
2111 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2112 break;
2115 case VOID_TYPE:
2116 /* This is an incomplete type and so doesn't have a size. */
2117 TYPE_ALIGN (type) = 1;
2118 TYPE_USER_ALIGN (type) = 0;
2119 SET_TYPE_MODE (type, VOIDmode);
2120 break;
2122 case OFFSET_TYPE:
2123 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2124 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2125 /* A pointer might be MODE_PARTIAL_INT,
2126 but ptrdiff_t must be integral. */
2127 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2128 TYPE_PRECISION (type) = POINTER_SIZE;
2129 break;
2131 case FUNCTION_TYPE:
2132 case METHOD_TYPE:
2133 /* It's hard to see what the mode and size of a function ought to
2134 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2135 make it consistent with that. */
2136 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2137 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2138 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2139 break;
2141 case POINTER_TYPE:
2142 case REFERENCE_TYPE:
2144 enum machine_mode mode = TYPE_MODE (type);
2145 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2147 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2148 mode = targetm.addr_space.address_mode (as);
2151 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2152 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2153 TYPE_UNSIGNED (type) = 1;
2154 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2156 break;
2158 case ARRAY_TYPE:
2160 tree index = TYPE_DOMAIN (type);
2161 tree element = TREE_TYPE (type);
2163 build_pointer_type (element);
2165 /* We need to know both bounds in order to compute the size. */
2166 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2167 && TYPE_SIZE (element))
2169 tree ub = TYPE_MAX_VALUE (index);
2170 tree lb = TYPE_MIN_VALUE (index);
2171 tree element_size = TYPE_SIZE (element);
2172 tree length;
2174 /* Make sure that an array of zero-sized element is zero-sized
2175 regardless of its extent. */
2176 if (integer_zerop (element_size))
2177 length = size_zero_node;
2179 /* The computation should happen in the original signedness so
2180 that (possible) negative values are handled appropriately
2181 when determining overflow. */
2182 else
2184 /* ??? When it is obvious that the range is signed
2185 represent it using ssizetype. */
2186 if (TREE_CODE (lb) == INTEGER_CST
2187 && TREE_CODE (ub) == INTEGER_CST
2188 && TYPE_UNSIGNED (TREE_TYPE (lb))
2189 && tree_int_cst_lt (ub, lb))
2191 unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
2192 lb = double_int_to_tree
2193 (ssizetype,
2194 tree_to_double_int (lb).sext (prec));
2195 ub = double_int_to_tree
2196 (ssizetype,
2197 tree_to_double_int (ub).sext (prec));
2199 length
2200 = fold_convert (sizetype,
2201 size_binop (PLUS_EXPR,
2202 build_int_cst (TREE_TYPE (lb), 1),
2203 size_binop (MINUS_EXPR, ub, lb)));
2206 /* ??? We have no way to distinguish a null-sized array from an
2207 array spanning the whole sizetype range, so we arbitrarily
2208 decide that [0, -1] is the only valid representation. */
2209 if (integer_zerop (length)
2210 && TREE_OVERFLOW (length)
2211 && integer_zerop (lb))
2212 length = size_zero_node;
2214 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2215 fold_convert (bitsizetype,
2216 length));
2218 /* If we know the size of the element, calculate the total size
2219 directly, rather than do some division thing below. This
2220 optimization helps Fortran assumed-size arrays (where the
2221 size of the array is determined at runtime) substantially. */
2222 if (TYPE_SIZE_UNIT (element))
2223 TYPE_SIZE_UNIT (type)
2224 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2227 /* Now round the alignment and size,
2228 using machine-dependent criteria if any. */
2230 #ifdef ROUND_TYPE_ALIGN
2231 TYPE_ALIGN (type)
2232 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2233 #else
2234 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2235 #endif
2236 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2237 SET_TYPE_MODE (type, BLKmode);
2238 if (TYPE_SIZE (type) != 0
2239 && ! targetm.member_type_forces_blk (type, VOIDmode)
2240 /* BLKmode elements force BLKmode aggregate;
2241 else extract/store fields may lose. */
2242 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2243 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2245 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2246 TYPE_SIZE (type)));
2247 if (TYPE_MODE (type) != BLKmode
2248 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2249 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2251 TYPE_NO_FORCE_BLK (type) = 1;
2252 SET_TYPE_MODE (type, BLKmode);
2255 /* When the element size is constant, check that it is at least as
2256 large as the element alignment. */
2257 if (TYPE_SIZE_UNIT (element)
2258 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2259 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2260 TYPE_ALIGN_UNIT. */
2261 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2262 && !integer_zerop (TYPE_SIZE_UNIT (element))
2263 && compare_tree_int (TYPE_SIZE_UNIT (element),
2264 TYPE_ALIGN_UNIT (element)) < 0)
2265 error ("alignment of array elements is greater than element size");
2266 break;
2269 case RECORD_TYPE:
2270 case UNION_TYPE:
2271 case QUAL_UNION_TYPE:
2273 tree field;
2274 record_layout_info rli;
2276 /* Initialize the layout information. */
2277 rli = start_record_layout (type);
2279 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2280 in the reverse order in building the COND_EXPR that denotes
2281 its size. We reverse them again later. */
2282 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2283 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2285 /* Place all the fields. */
2286 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2287 place_field (rli, field);
2289 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2290 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2292 /* Finish laying out the record. */
2293 finish_record_layout (rli, /*free_p=*/true);
2295 break;
2297 default:
2298 gcc_unreachable ();
2301 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2302 records and unions, finish_record_layout already called this
2303 function. */
2304 if (TREE_CODE (type) != RECORD_TYPE
2305 && TREE_CODE (type) != UNION_TYPE
2306 && TREE_CODE (type) != QUAL_UNION_TYPE)
2307 finalize_type_size (type);
2309 /* We should never see alias sets on incomplete aggregates. And we
2310 should not call layout_type on not incomplete aggregates. */
2311 if (AGGREGATE_TYPE_P (type))
2312 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2315 /* Vector types need to re-check the target flags each time we report
2316 the machine mode. We need to do this because attribute target can
2317 change the result of vector_mode_supported_p and have_regs_of_mode
2318 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2319 change on a per-function basis. */
2320 /* ??? Possibly a better solution is to run through all the types
2321 referenced by a function and re-compute the TYPE_MODE once, rather
2322 than make the TYPE_MODE macro call a function. */
2324 enum machine_mode
2325 vector_type_mode (const_tree t)
2327 enum machine_mode mode;
2329 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2331 mode = t->type_common.mode;
2332 if (VECTOR_MODE_P (mode)
2333 && (!targetm.vector_mode_supported_p (mode)
2334 || !have_regs_of_mode[mode]))
2336 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2338 /* For integers, try mapping it to a same-sized scalar mode. */
2339 if (GET_MODE_CLASS (innermode) == MODE_INT)
2341 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2342 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2344 if (mode != VOIDmode && have_regs_of_mode[mode])
2345 return mode;
2348 return BLKmode;
2351 return mode;
2354 /* Create and return a type for signed integers of PRECISION bits. */
2356 tree
2357 make_signed_type (int precision)
2359 tree type = make_node (INTEGER_TYPE);
2361 TYPE_PRECISION (type) = precision;
2363 fixup_signed_type (type);
2364 return type;
2367 /* Create and return a type for unsigned integers of PRECISION bits. */
2369 tree
2370 make_unsigned_type (int precision)
2372 tree type = make_node (INTEGER_TYPE);
2374 TYPE_PRECISION (type) = precision;
2376 fixup_unsigned_type (type);
2377 return type;
2380 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2381 and SATP. */
2383 tree
2384 make_fract_type (int precision, int unsignedp, int satp)
2386 tree type = make_node (FIXED_POINT_TYPE);
2388 TYPE_PRECISION (type) = precision;
2390 if (satp)
2391 TYPE_SATURATING (type) = 1;
2393 /* Lay out the type: set its alignment, size, etc. */
2394 if (unsignedp)
2396 TYPE_UNSIGNED (type) = 1;
2397 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2399 else
2400 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2401 layout_type (type);
2403 return type;
2406 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2407 and SATP. */
2409 tree
2410 make_accum_type (int precision, int unsignedp, int satp)
2412 tree type = make_node (FIXED_POINT_TYPE);
2414 TYPE_PRECISION (type) = precision;
2416 if (satp)
2417 TYPE_SATURATING (type) = 1;
2419 /* Lay out the type: set its alignment, size, etc. */
2420 if (unsignedp)
2422 TYPE_UNSIGNED (type) = 1;
2423 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2425 else
2426 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2427 layout_type (type);
2429 return type;
2432 /* Initialize sizetypes so layout_type can use them. */
2434 void
2435 initialize_sizetypes (void)
2437 int precision, bprecision;
2439 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2440 if (strcmp (SIZETYPE, "unsigned int") == 0)
2441 precision = INT_TYPE_SIZE;
2442 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2443 precision = LONG_TYPE_SIZE;
2444 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2445 precision = LONG_LONG_TYPE_SIZE;
2446 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2447 precision = SHORT_TYPE_SIZE;
2448 else
2449 gcc_unreachable ();
2451 bprecision
2452 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2453 bprecision
2454 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2455 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2456 bprecision = HOST_BITS_PER_DOUBLE_INT;
2458 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2459 sizetype = make_node (INTEGER_TYPE);
2460 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2461 TYPE_PRECISION (sizetype) = precision;
2462 TYPE_UNSIGNED (sizetype) = 1;
2463 bitsizetype = make_node (INTEGER_TYPE);
2464 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2465 TYPE_PRECISION (bitsizetype) = bprecision;
2466 TYPE_UNSIGNED (bitsizetype) = 1;
2468 /* Now layout both types manually. */
2469 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2470 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2471 TYPE_SIZE (sizetype) = bitsize_int (precision);
2472 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2473 set_min_and_max_values_for_integral_type (sizetype, precision,
2474 /*is_unsigned=*/true);
2476 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2477 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2478 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2479 TYPE_SIZE_UNIT (bitsizetype)
2480 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2481 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2482 /*is_unsigned=*/true);
2484 /* Create the signed variants of *sizetype. */
2485 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2486 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2487 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2488 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2491 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2492 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2493 for TYPE, based on the PRECISION and whether or not the TYPE
2494 IS_UNSIGNED. PRECISION need not correspond to a width supported
2495 natively by the hardware; for example, on a machine with 8-bit,
2496 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2497 61. */
2499 void
2500 set_min_and_max_values_for_integral_type (tree type,
2501 int precision,
2502 bool is_unsigned)
2504 tree min_value;
2505 tree max_value;
2507 /* For bitfields with zero width we end up creating integer types
2508 with zero precision. Don't assign any minimum/maximum values
2509 to those types, they don't have any valid value. */
2510 if (precision < 1)
2511 return;
2513 if (is_unsigned)
2515 min_value = build_int_cst (type, 0);
2516 max_value
2517 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2518 ? -1
2519 : (HOST_WIDE_INT_1U << precision) - 1,
2520 precision - HOST_BITS_PER_WIDE_INT > 0
2521 ? ((unsigned HOST_WIDE_INT) ~0
2522 >> (HOST_BITS_PER_WIDE_INT
2523 - (precision - HOST_BITS_PER_WIDE_INT)))
2524 : 0);
2526 else
2528 min_value
2529 = build_int_cst_wide (type,
2530 (precision - HOST_BITS_PER_WIDE_INT > 0
2532 : HOST_WIDE_INT_M1U << (precision - 1)),
2533 (((HOST_WIDE_INT) (-1)
2534 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2535 ? precision - HOST_BITS_PER_WIDE_INT - 1
2536 : 0))));
2537 max_value
2538 = build_int_cst_wide (type,
2539 (precision - HOST_BITS_PER_WIDE_INT > 0
2540 ? -1
2541 : (HOST_WIDE_INT)
2542 (((unsigned HOST_WIDE_INT) 1
2543 << (precision - 1)) - 1)),
2544 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2545 ? (HOST_WIDE_INT)
2546 ((((unsigned HOST_WIDE_INT) 1
2547 << (precision - HOST_BITS_PER_WIDE_INT
2548 - 1))) - 1)
2549 : 0));
2552 TYPE_MIN_VALUE (type) = min_value;
2553 TYPE_MAX_VALUE (type) = max_value;
2556 /* Set the extreme values of TYPE based on its precision in bits,
2557 then lay it out. Used when make_signed_type won't do
2558 because the tree code is not INTEGER_TYPE.
2559 E.g. for Pascal, when the -fsigned-char option is given. */
2561 void
2562 fixup_signed_type (tree type)
2564 int precision = TYPE_PRECISION (type);
2566 /* We can not represent properly constants greater then
2567 HOST_BITS_PER_DOUBLE_INT, still we need the types
2568 as they are used by i386 vector extensions and friends. */
2569 if (precision > HOST_BITS_PER_DOUBLE_INT)
2570 precision = HOST_BITS_PER_DOUBLE_INT;
2572 set_min_and_max_values_for_integral_type (type, precision,
2573 /*is_unsigned=*/false);
2575 /* Lay out the type: set its alignment, size, etc. */
2576 layout_type (type);
2579 /* Set the extreme values of TYPE based on its precision in bits,
2580 then lay it out. This is used both in `make_unsigned_type'
2581 and for enumeral types. */
2583 void
2584 fixup_unsigned_type (tree type)
2586 int precision = TYPE_PRECISION (type);
2588 /* We can not represent properly constants greater then
2589 HOST_BITS_PER_DOUBLE_INT, still we need the types
2590 as they are used by i386 vector extensions and friends. */
2591 if (precision > HOST_BITS_PER_DOUBLE_INT)
2592 precision = HOST_BITS_PER_DOUBLE_INT;
2594 TYPE_UNSIGNED (type) = 1;
2596 set_min_and_max_values_for_integral_type (type, precision,
2597 /*is_unsigned=*/true);
2599 /* Lay out the type: set its alignment, size, etc. */
2600 layout_type (type);
2603 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2604 starting at BITPOS.
2606 BITREGION_START is the bit position of the first bit in this
2607 sequence of bit fields. BITREGION_END is the last bit in this
2608 sequence. If these two fields are non-zero, we should restrict the
2609 memory access to that range. Otherwise, we are allowed to touch
2610 any adjacent non bit-fields.
2612 ALIGN is the alignment of the underlying object in bits.
2613 VOLATILEP says whether the bitfield is volatile. */
2615 bit_field_mode_iterator
2616 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2617 HOST_WIDE_INT bitregion_start,
2618 HOST_WIDE_INT bitregion_end,
2619 unsigned int align, bool volatilep)
2620 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2621 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2622 m_bitregion_end (bitregion_end), m_align (align),
2623 m_volatilep (volatilep), m_count (0)
2625 if (!m_bitregion_end)
2627 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2628 the bitfield is mapped and won't trap, provided that ALIGN isn't
2629 too large. The cap is the biggest required alignment for data,
2630 or at least the word size. And force one such chunk at least. */
2631 unsigned HOST_WIDE_INT units
2632 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2633 if (bitsize <= 0)
2634 bitsize = 1;
2635 m_bitregion_end = bitpos + bitsize + units - 1;
2636 m_bitregion_end -= m_bitregion_end % units + 1;
2640 /* Calls to this function return successively larger modes that can be used
2641 to represent the bitfield. Return true if another bitfield mode is
2642 available, storing it in *OUT_MODE if so. */
2644 bool
2645 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2647 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2649 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2651 /* Skip modes that don't have full precision. */
2652 if (unit != GET_MODE_PRECISION (m_mode))
2653 continue;
2655 /* Stop if the mode is too wide to handle efficiently. */
2656 if (unit > MAX_FIXED_MODE_SIZE)
2657 break;
2659 /* Don't deliver more than one multiword mode; the smallest one
2660 should be used. */
2661 if (m_count > 0 && unit > BITS_PER_WORD)
2662 break;
2664 /* Skip modes that are too small. */
2665 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2666 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2667 if (subend > unit)
2668 continue;
2670 /* Stop if the mode goes outside the bitregion. */
2671 HOST_WIDE_INT start = m_bitpos - substart;
2672 if (m_bitregion_start && start < m_bitregion_start)
2673 break;
2674 HOST_WIDE_INT end = start + unit;
2675 if (end > m_bitregion_end + 1)
2676 break;
2678 /* Stop if the mode requires too much alignment. */
2679 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2680 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2681 break;
2683 *out_mode = m_mode;
2684 m_mode = GET_MODE_WIDER_MODE (m_mode);
2685 m_count++;
2686 return true;
2688 return false;
2691 /* Return true if smaller modes are generally preferred for this kind
2692 of bitfield. */
2694 bool
2695 bit_field_mode_iterator::prefer_smaller_modes ()
2697 return (m_volatilep
2698 ? targetm.narrow_volatile_bitfield ()
2699 : !SLOW_BYTE_ACCESS);
2702 /* Find the best machine mode to use when referencing a bit field of length
2703 BITSIZE bits starting at BITPOS.
2705 BITREGION_START is the bit position of the first bit in this
2706 sequence of bit fields. BITREGION_END is the last bit in this
2707 sequence. If these two fields are non-zero, we should restrict the
2708 memory access to that range. Otherwise, we are allowed to touch
2709 any adjacent non bit-fields.
2711 The underlying object is known to be aligned to a boundary of ALIGN bits.
2712 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2713 larger than LARGEST_MODE (usually SImode).
2715 If no mode meets all these conditions, we return VOIDmode.
2717 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2718 smallest mode meeting these conditions.
2720 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2721 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2722 all the conditions.
2724 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2725 decide which of the above modes should be used. */
2727 enum machine_mode
2728 get_best_mode (int bitsize, int bitpos,
2729 unsigned HOST_WIDE_INT bitregion_start,
2730 unsigned HOST_WIDE_INT bitregion_end,
2731 unsigned int align,
2732 enum machine_mode largest_mode, bool volatilep)
2734 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2735 bitregion_end, align, volatilep);
2736 enum machine_mode widest_mode = VOIDmode;
2737 enum machine_mode mode;
2738 while (iter.next_mode (&mode)
2739 /* ??? For historical reasons, reject modes that would normally
2740 receive greater alignment, even if unaligned accesses are
2741 acceptable. This has both advantages and disadvantages.
2742 Removing this check means that something like:
2744 struct s { unsigned int x; unsigned int y; };
2745 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2747 can be implemented using a single load and compare on
2748 64-bit machines that have no alignment restrictions.
2749 For example, on powerpc64-linux-gnu, we would generate:
2751 ld 3,0(3)
2752 cntlzd 3,3
2753 srdi 3,3,6
2756 rather than:
2758 lwz 9,0(3)
2759 cmpwi 7,9,0
2760 bne 7,.L3
2761 lwz 3,4(3)
2762 cntlzw 3,3
2763 srwi 3,3,5
2764 extsw 3,3
2766 .p2align 4,,15
2767 .L3:
2768 li 3,0
2771 However, accessing more than one field can make life harder
2772 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2773 has a series of unsigned short copies followed by a series of
2774 unsigned short comparisons. With this check, both the copies
2775 and comparisons remain 16-bit accesses and FRE is able
2776 to eliminate the latter. Without the check, the comparisons
2777 can be done using 2 64-bit operations, which FRE isn't able
2778 to handle in the same way.
2780 Either way, it would probably be worth disabling this check
2781 during expand. One particular example where removing the
2782 check would help is the get_best_mode call in store_bit_field.
2783 If we are given a memory bitregion of 128 bits that is aligned
2784 to a 64-bit boundary, and the bitfield we want to modify is
2785 in the second half of the bitregion, this check causes
2786 store_bitfield to turn the memory into a 64-bit reference
2787 to the _first_ half of the region. We later use
2788 adjust_bitfield_address to get a reference to the correct half,
2789 but doing so looks to adjust_bitfield_address as though we are
2790 moving past the end of the original object, so it drops the
2791 associated MEM_EXPR and MEM_OFFSET. Removing the check
2792 causes store_bit_field to keep a 128-bit memory reference,
2793 so that the final bitfield reference still has a MEM_EXPR
2794 and MEM_OFFSET. */
2795 && GET_MODE_ALIGNMENT (mode) <= align
2796 && (largest_mode == VOIDmode
2797 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2799 widest_mode = mode;
2800 if (iter.prefer_smaller_modes ())
2801 break;
2803 return widest_mode;
2806 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2807 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2809 void
2810 get_mode_bounds (enum machine_mode mode, int sign,
2811 enum machine_mode target_mode,
2812 rtx *mmin, rtx *mmax)
2814 unsigned size = GET_MODE_PRECISION (mode);
2815 unsigned HOST_WIDE_INT min_val, max_val;
2817 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2819 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2820 if (mode == BImode)
2822 if (STORE_FLAG_VALUE < 0)
2824 min_val = STORE_FLAG_VALUE;
2825 max_val = 0;
2827 else
2829 min_val = 0;
2830 max_val = STORE_FLAG_VALUE;
2833 else if (sign)
2835 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2836 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2838 else
2840 min_val = 0;
2841 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2844 *mmin = gen_int_mode (min_val, target_mode);
2845 *mmax = gen_int_mode (max_val, target_mode);
2848 #include "gt-stor-layout.h"