Sync with upstream 4.9 branch
[official-gcc.git] / embedded-4_9-branch / gcc / config / sparc / sparc.h
blob79dbba22d0973cbf425e5d347f4686ff75af8fdf
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config/vxworks-dummy.h"
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
30 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
31 /* #define SPARC_BI_ARCH */
33 /* Macro used later in this file to determine default architecture. */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37 architectures to compile for. We allow targets to choose compile time or
38 runtime selection. */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (! TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (! TARGET_ARCH32)
54 /* Code model selection in 64-bit environment.
56 The machine mode used for addresses is 32-bit wide:
58 TARGET_CM_32: 32-bit address space.
59 It is the code model used when generating 32-bit code.
61 The machine mode used for addresses is 64-bit wide:
63 TARGET_CM_MEDLOW: 32-bit address space.
64 The executable must be in the low 32 bits of memory.
65 This avoids generating %uhi and %ulo terms. Programs
66 can be statically or dynamically linked.
68 TARGET_CM_MEDMID: 44-bit address space.
69 The executable must be in the low 44 bits of memory,
70 and the %[hml]44 terms are used. The text and data
71 segments have a maximum size of 2GB (31-bit span).
72 The maximum offset from any instruction to the label
73 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
75 TARGET_CM_MEDANY: 64-bit address space.
76 The text and data segments have a maximum size of 2GB
77 (31-bit span) and may be located anywhere in memory.
78 The maximum offset from any instruction to the label
79 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
81 TARGET_CM_EMBMEDANY: 64-bit address space.
82 The text and data segments have a maximum size of 2GB
83 (31-bit span) and may be located anywhere in memory.
84 The global register %g4 contains the start address of
85 the data segment. Programs are statically linked and
86 PIC is not supported.
88 Different code models are not supported in 32-bit environment. */
90 enum cmodel {
91 CM_32,
92 CM_MEDLOW,
93 CM_MEDMID,
94 CM_MEDANY,
95 CM_EMBMEDANY
98 /* One of CM_FOO. */
99 extern enum cmodel sparc_cmodel;
101 /* V9 code model selection. */
102 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
103 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
104 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
105 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
107 #define SPARC_DEFAULT_CMODEL CM_32
109 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
110 which requires the following macro to be true if enabled. Prior to V9,
111 there are no instructions to even talk about memory synchronization.
112 Note that the UltraSPARC III processors don't implement RMO, unlike the
113 UltraSPARC II processors. Niagara, Niagara-2, and Niagara-3 do not
114 implement RMO either.
116 Default to false; for example, Solaris never enables RMO, only ever uses
117 total memory ordering (TMO). */
118 #define SPARC_RELAXED_ORDERING false
120 /* Do not use the .note.GNU-stack convention by default. */
121 #define NEED_INDICATE_EXEC_STACK 0
123 /* This is call-clobbered in the normal ABI, but is reserved in the
124 home grown (aka upward compatible) embedded ABI. */
125 #define EMBMEDANY_BASE_REG "%g4"
127 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
128 and specified by the user via --with-cpu=foo.
129 This specifies the cpu implementation, not the architecture size. */
130 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
131 capable cpu's. */
132 #define TARGET_CPU_sparc 0
133 #define TARGET_CPU_v7 0 /* alias */
134 #define TARGET_CPU_cypress 0 /* alias */
135 #define TARGET_CPU_v8 1 /* generic v8 implementation */
136 #define TARGET_CPU_supersparc 2
137 #define TARGET_CPU_hypersparc 3
138 #define TARGET_CPU_leon 4
139 #define TARGET_CPU_leon3 5
140 #define TARGET_CPU_leon3v7 6
141 #define TARGET_CPU_sparclite 7
142 #define TARGET_CPU_f930 7 /* alias */
143 #define TARGET_CPU_f934 7 /* alias */
144 #define TARGET_CPU_sparclite86x 8
145 #define TARGET_CPU_sparclet 9
146 #define TARGET_CPU_tsc701 9 /* alias */
147 #define TARGET_CPU_v9 10 /* generic v9 implementation */
148 #define TARGET_CPU_sparcv9 10 /* alias */
149 #define TARGET_CPU_sparc64 10 /* alias */
150 #define TARGET_CPU_ultrasparc 11
151 #define TARGET_CPU_ultrasparc3 12
152 #define TARGET_CPU_niagara 13
153 #define TARGET_CPU_niagara2 14
154 #define TARGET_CPU_niagara3 15
155 #define TARGET_CPU_niagara4 16
157 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
158 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
159 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
160 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
161 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
162 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
163 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
165 #define CPP_CPU32_DEFAULT_SPEC ""
166 #define ASM_CPU32_DEFAULT_SPEC ""
168 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
169 /* ??? What does Sun's CC pass? */
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 /* ??? It's not clear how other assemblers will handle this, so by default
172 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
173 is handled in sol2.h. */
174 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
175 #endif
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
177 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
178 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
179 #endif
180 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
181 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
182 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
183 #endif
184 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
185 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
186 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
187 #endif
188 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
189 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
190 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
191 #endif
192 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
193 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
194 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
195 #endif
196 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
197 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
198 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
199 #endif
201 #else
203 #define CPP_CPU64_DEFAULT_SPEC ""
204 #define ASM_CPU64_DEFAULT_SPEC ""
206 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
207 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
208 #define CPP_CPU32_DEFAULT_SPEC ""
209 #define ASM_CPU32_DEFAULT_SPEC ""
210 #endif
212 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
213 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
214 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
215 #endif
217 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
218 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
219 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
220 #endif
222 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
223 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
224 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
225 #endif
227 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
228 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
229 #define ASM_CPU32_DEFAULT_SPEC ""
230 #endif
232 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
233 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
234 #define ASM_CPU32_DEFAULT_SPEC ""
235 #endif
237 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
238 || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
239 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
240 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
241 #endif
243 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
244 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
245 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
246 #endif
248 #endif
250 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
251 #error Unrecognized value in TARGET_CPU_DEFAULT.
252 #endif
254 #ifdef SPARC_BI_ARCH
256 #define CPP_CPU_DEFAULT_SPEC \
257 (DEFAULT_ARCH32_P ? "\
258 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
259 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
260 " : "\
261 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
262 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
264 #define ASM_CPU_DEFAULT_SPEC \
265 (DEFAULT_ARCH32_P ? "\
266 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
267 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
268 " : "\
269 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
270 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
273 #else /* !SPARC_BI_ARCH */
275 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
276 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
278 #endif /* !SPARC_BI_ARCH */
280 /* Define macros to distinguish architectures. */
282 /* Common CPP definitions used by CPP_SPEC amongst the various targets
283 for handling -mcpu=xxx switches. */
284 #define CPP_CPU_SPEC "\
285 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
286 %{mcpu=sparclite:-D__sparclite__} \
287 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
288 %{mcpu=sparclite86x:-D__sparclite86x__} \
289 %{mcpu=v8:-D__sparc_v8__} \
290 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
291 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
292 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
293 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
294 %{mcpu=leon3v7:-D__leon__} \
295 %{mcpu=v9:-D__sparc_v9__} \
296 %{mcpu=ultrasparc:-D__sparc_v9__} \
297 %{mcpu=ultrasparc3:-D__sparc_v9__} \
298 %{mcpu=niagara:-D__sparc_v9__} \
299 %{mcpu=niagara2:-D__sparc_v9__} \
300 %{mcpu=niagara3:-D__sparc_v9__} \
301 %{mcpu=niagara4:-D__sparc_v9__} \
302 %{!mcpu*:%(cpp_cpu_default)} \
304 #define CPP_ARCH32_SPEC ""
305 #define CPP_ARCH64_SPEC "-D__arch64__"
307 #define CPP_ARCH_DEFAULT_SPEC \
308 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
310 #define CPP_ARCH_SPEC "\
311 %{m32:%(cpp_arch32)} \
312 %{m64:%(cpp_arch64)} \
313 %{!m32:%{!m64:%(cpp_arch_default)}} \
316 /* Macros to distinguish the endianness, window model and FP support. */
317 #define CPP_OTHER_SPEC "\
318 %{mflat:-D_FLAT} \
319 %{msoft-float:-D_SOFT_FLOAT} \
322 /* Macros to distinguish the particular subtarget. */
323 #define CPP_SUBTARGET_SPEC ""
325 #define CPP_SPEC \
326 "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
328 /* This used to translate -dalign to -malign, but that is no good
329 because it can't turn off the usual meaning of making debugging dumps. */
331 #define CC1_SPEC ""
333 /* Override in target specific files. */
334 #define ASM_CPU_SPEC "\
335 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
336 %{mcpu=sparclite:-Asparclite} \
337 %{mcpu=sparclite86x:-Asparclite} \
338 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
339 %{mcpu=v8:-Av8} \
340 %{mcpu=supersparc:-Av8} \
341 %{mcpu=hypersparc:-Av8} \
342 %{mcpu=leon:" AS_LEON_FLAG "} \
343 %{mcpu=leon3:" AS_LEON_FLAG "} \
344 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
345 %{mv8plus:-Av8plus} \
346 %{mcpu=v9:-Av9} \
347 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
348 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
349 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
350 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
351 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
352 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
353 %{!mcpu*:%(asm_cpu_default)} \
356 /* Word size selection, among other things.
357 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
359 #define ASM_ARCH32_SPEC "-32"
360 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
361 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
362 #else
363 #define ASM_ARCH64_SPEC "-64"
364 #endif
365 #define ASM_ARCH_DEFAULT_SPEC \
366 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
368 #define ASM_ARCH_SPEC "\
369 %{m32:%(asm_arch32)} \
370 %{m64:%(asm_arch64)} \
371 %{!m32:%{!m64:%(asm_arch_default)}} \
374 #ifdef HAVE_AS_RELAX_OPTION
375 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
376 #else
377 #define ASM_RELAX_SPEC ""
378 #endif
380 /* Special flags to the Sun-4 assembler when using pipe for input. */
382 #define ASM_SPEC "\
383 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
384 %(asm_cpu) %(asm_relax)"
386 /* This macro defines names of additional specifications to put in the specs
387 that can be used in various specifications like CC1_SPEC. Its definition
388 is an initializer with a subgrouping for each command option.
390 Each subgrouping contains a string constant, that defines the
391 specification name, and a string constant that used by the GCC driver
392 program.
394 Do not define this macro if it does not need to do anything. */
396 #define EXTRA_SPECS \
397 { "cpp_cpu", CPP_CPU_SPEC }, \
398 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
399 { "cpp_arch32", CPP_ARCH32_SPEC }, \
400 { "cpp_arch64", CPP_ARCH64_SPEC }, \
401 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
402 { "cpp_arch", CPP_ARCH_SPEC }, \
403 { "cpp_other", CPP_OTHER_SPEC }, \
404 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
405 { "asm_cpu", ASM_CPU_SPEC }, \
406 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
407 { "asm_arch32", ASM_ARCH32_SPEC }, \
408 { "asm_arch64", ASM_ARCH64_SPEC }, \
409 { "asm_relax", ASM_RELAX_SPEC }, \
410 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
411 { "asm_arch", ASM_ARCH_SPEC }, \
412 SUBTARGET_EXTRA_SPECS
414 #define SUBTARGET_EXTRA_SPECS
416 /* Because libgcc can generate references back to libc (via .umul etc.) we have
417 to list libc again after the second libgcc. */
418 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
421 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
422 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
424 /* ??? This should be 32 bits for v9 but what can we do? */
425 #define WCHAR_TYPE "short unsigned int"
426 #define WCHAR_TYPE_SIZE 16
428 /* Mask of all CPU selection flags. */
429 #define MASK_ISA \
430 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
432 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
433 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
434 to get high 32 bits. False in V8+ or V9 because multiply stores
435 a 64-bit result in a register. */
437 #define TARGET_HARD_MUL32 \
438 ((TARGET_V8 || TARGET_SPARCLITE \
439 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
440 && ! TARGET_V8PLUS && TARGET_ARCH32)
442 #define TARGET_HARD_MUL \
443 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
444 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
446 /* MASK_APP_REGS must always be the default because that's what
447 FIXED_REGISTERS is set to and -ffixed- is processed before
448 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
449 -mno-app-regs). */
450 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
452 /* Recast the cpu class to be the cpu attribute.
453 Every file includes us, but not every file includes insn-attr.h. */
454 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
456 /* Support for a compile-time default CPU, et cetera. The rules are:
457 --with-cpu is ignored if -mcpu is specified.
458 --with-tune is ignored if -mtune is specified.
459 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
460 are specified. */
461 #define OPTION_DEFAULT_SPECS \
462 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
463 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
464 {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
466 /* target machine storage layout */
468 /* Define this if most significant bit is lowest numbered
469 in instructions that operate on numbered bit-fields. */
470 #define BITS_BIG_ENDIAN 1
472 /* Define this if most significant byte of a word is the lowest numbered. */
473 #define BYTES_BIG_ENDIAN 1
475 /* Define this if most significant word of a multiword number is the lowest
476 numbered. */
477 #define WORDS_BIG_ENDIAN 1
479 #define MAX_BITS_PER_WORD 64
481 /* Width of a word, in units (bytes). */
482 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
483 #ifdef IN_LIBGCC2
484 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
485 #else
486 #define MIN_UNITS_PER_WORD 4
487 #endif
489 /* Now define the sizes of the C data types. */
490 #define SHORT_TYPE_SIZE 16
491 #define INT_TYPE_SIZE 32
492 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
493 #define LONG_LONG_TYPE_SIZE 64
494 #define FLOAT_TYPE_SIZE 32
495 #define DOUBLE_TYPE_SIZE 64
497 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
498 SPARC ABI says that it is 128-bit wide. */
499 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
501 /* The widest floating-point format really supported by the hardware. */
502 #define WIDEST_HARDWARE_FP_SIZE 64
504 /* Width in bits of a pointer. This is the size of ptr_mode. */
505 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
507 /* This is the machine mode used for addresses. */
508 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
510 /* If we have to extend pointers (only when TARGET_ARCH64 and not
511 TARGET_PTR64), we want to do it unsigned. This macro does nothing
512 if ptr_mode and Pmode are the same. */
513 #define POINTERS_EXTEND_UNSIGNED 1
515 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
516 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
518 /* Boundary (in *bits*) on which stack pointer should be aligned. */
519 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
520 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
521 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
522 /* Temporary hack until the FIXME above is fixed. */
523 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
525 /* ALIGN FRAMES on double word boundaries */
526 #define SPARC_STACK_ALIGN(LOC) \
527 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
529 /* Allocation boundary (in *bits*) for the code of a function. */
530 #define FUNCTION_BOUNDARY 32
532 /* Alignment of field after `int : 0' in a structure. */
533 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
535 /* Every structure's size must be a multiple of this. */
536 #define STRUCTURE_SIZE_BOUNDARY 8
538 /* A bit-field declared as `int' forces `int' alignment for the struct. */
539 #define PCC_BITFIELD_TYPE_MATTERS 1
541 /* No data type wants to be aligned rounder than this. */
542 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
544 /* The best alignment to use in cases where we have a choice. */
545 #define FASTEST_ALIGNMENT 64
547 /* Define this macro as an expression for the alignment of a structure
548 (given by STRUCT as a tree node) if the alignment computed in the
549 usual way is COMPUTED and the alignment explicitly specified was
550 SPECIFIED.
552 The default is to use SPECIFIED if it is larger; otherwise, use
553 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
554 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
555 (TARGET_FASTER_STRUCTS ? \
556 ((TREE_CODE (STRUCT) == RECORD_TYPE \
557 || TREE_CODE (STRUCT) == UNION_TYPE \
558 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
559 && TYPE_FIELDS (STRUCT) != 0 \
560 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
561 : MAX ((COMPUTED), (SPECIFIED))) \
562 : MAX ((COMPUTED), (SPECIFIED)))
564 /* An integer expression for the size in bits of the largest integer machine
565 mode that should actually be used. We allow pairs of registers. */
566 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
568 /* We need 2 words, so we can save the stack pointer and the return register
569 of the function containing a non-local goto target. */
570 #define STACK_SAVEAREA_MODE(LEVEL) \
571 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
573 /* Make strings word-aligned so strcpy from constants will be faster. */
574 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
575 ((TREE_CODE (EXP) == STRING_CST \
576 && (ALIGN) < FASTEST_ALIGNMENT) \
577 ? FASTEST_ALIGNMENT : (ALIGN))
579 /* Make arrays of chars word-aligned for the same reasons. */
580 #define DATA_ALIGNMENT(TYPE, ALIGN) \
581 (TREE_CODE (TYPE) == ARRAY_TYPE \
582 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
583 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
585 /* Make local arrays of chars word-aligned for the same reasons. */
586 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
588 /* Set this nonzero if move instructions will actually fail to work
589 when given unaligned data. */
590 #define STRICT_ALIGNMENT 1
592 /* Things that must be doubleword aligned cannot go in the text section,
593 because the linker fails to align the text section enough!
594 Put them in the data section. This macro is only used in this file. */
595 #define MAX_TEXT_ALIGN 32
597 /* Standard register usage. */
599 /* Number of actual hardware registers.
600 The hardware registers are assigned numbers for the compiler
601 from 0 to just below FIRST_PSEUDO_REGISTER.
602 All registers that the compiler knows about must be given numbers,
603 even those that are not normally considered general registers.
605 SPARC has 32 integer registers and 32 floating point registers.
606 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
607 accessible. We still account for them to simplify register computations
608 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
609 32+32+32+4 == 100.
610 Register 100 is used as the integer condition code register.
611 Register 101 is used as the soft frame pointer register. */
613 #define FIRST_PSEUDO_REGISTER 103
615 #define SPARC_FIRST_INT_REG 0
616 #define SPARC_LAST_INT_REG 31
617 #define SPARC_FIRST_FP_REG 32
618 /* Additional V9 fp regs. */
619 #define SPARC_FIRST_V9_FP_REG 64
620 #define SPARC_LAST_V9_FP_REG 95
621 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
622 #define SPARC_FIRST_V9_FCC_REG 96
623 #define SPARC_LAST_V9_FCC_REG 99
624 /* V8 fcc reg. */
625 #define SPARC_FCC_REG 96
626 /* Integer CC reg. We don't distinguish %icc from %xcc. */
627 #define SPARC_ICC_REG 100
628 #define SPARC_GSR_REG 102
630 /* Nonzero if REGNO is an fp reg. */
631 #define SPARC_FP_REG_P(REGNO) \
632 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
634 /* Nonzero if REGNO is an int reg. */
635 #define SPARC_INT_REG_P(REGNO) \
636 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
638 /* Argument passing regs. */
639 #define SPARC_OUTGOING_INT_ARG_FIRST 8
640 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
641 #define SPARC_FP_ARG_FIRST 32
643 /* 1 for registers that have pervasive standard uses
644 and are not available for the register allocator.
646 On non-v9 systems:
647 g1 is free to use as temporary.
648 g2-g4 are reserved for applications. Gcc normally uses them as
649 temporaries, but this can be disabled via the -mno-app-regs option.
650 g5 through g7 are reserved for the operating system.
652 On v9 systems:
653 g1,g5 are free to use as temporaries, and are free to use between calls
654 if the call is to an external function via the PLT.
655 g4 is free to use as a temporary in the non-embedded case.
656 g4 is reserved in the embedded case.
657 g2-g3 are reserved for applications. Gcc normally uses them as
658 temporaries, but this can be disabled via the -mno-app-regs option.
659 g6-g7 are reserved for the operating system (or application in
660 embedded case).
661 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
662 currently be a fixed register until this pattern is rewritten.
663 Register 1 is also used when restoring call-preserved registers in large
664 stack frames.
666 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
667 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
670 #define FIXED_REGISTERS \
671 {1, 0, 2, 2, 2, 2, 1, 1, \
672 0, 0, 0, 0, 0, 0, 1, 0, \
673 0, 0, 0, 0, 0, 0, 0, 0, \
674 0, 0, 0, 0, 0, 0, 0, 1, \
676 0, 0, 0, 0, 0, 0, 0, 0, \
677 0, 0, 0, 0, 0, 0, 0, 0, \
678 0, 0, 0, 0, 0, 0, 0, 0, \
679 0, 0, 0, 0, 0, 0, 0, 0, \
681 0, 0, 0, 0, 0, 0, 0, 0, \
682 0, 0, 0, 0, 0, 0, 0, 0, \
683 0, 0, 0, 0, 0, 0, 0, 0, \
684 0, 0, 0, 0, 0, 0, 0, 0, \
686 0, 0, 0, 0, 0, 1, 1}
688 /* 1 for registers not available across function calls.
689 These must include the FIXED_REGISTERS and also any
690 registers that can be used without being saved.
691 The latter must include the registers where values are returned
692 and the register where structure-value addresses are passed.
693 Aside from that, you can include as many other registers as you like. */
695 #define CALL_USED_REGISTERS \
696 {1, 1, 1, 1, 1, 1, 1, 1, \
697 1, 1, 1, 1, 1, 1, 1, 1, \
698 0, 0, 0, 0, 0, 0, 0, 0, \
699 0, 0, 0, 0, 0, 0, 0, 1, \
701 1, 1, 1, 1, 1, 1, 1, 1, \
702 1, 1, 1, 1, 1, 1, 1, 1, \
703 1, 1, 1, 1, 1, 1, 1, 1, \
704 1, 1, 1, 1, 1, 1, 1, 1, \
706 1, 1, 1, 1, 1, 1, 1, 1, \
707 1, 1, 1, 1, 1, 1, 1, 1, \
708 1, 1, 1, 1, 1, 1, 1, 1, \
709 1, 1, 1, 1, 1, 1, 1, 1, \
711 1, 1, 1, 1, 1, 1, 1}
713 /* Return number of consecutive hard regs needed starting at reg REGNO
714 to hold something of mode MODE.
715 This is ordinarily the length in words of a value of mode MODE
716 but can be less for certain modes in special long registers.
718 On SPARC, ordinary registers hold 32 bits worth;
719 this means both integer and floating point registers.
720 On v9, integer regs hold 64 bits worth; floating point regs hold
721 32 bits worth (this includes the new fp regs as even the odd ones are
722 included in the hard register count). */
724 #define HARD_REGNO_NREGS(REGNO, MODE) \
725 ((REGNO) == SPARC_GSR_REG ? 1 : \
726 (TARGET_ARCH64 \
727 ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM \
728 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
729 : (GET_MODE_SIZE (MODE) + 3) / 4) \
730 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
732 /* Due to the ARCH64 discrepancy above we must override this next
733 macro too. */
734 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
736 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
737 See sparc.c for how we initialize this. */
738 extern const int *hard_regno_mode_classes;
739 extern int sparc_mode_class[];
741 /* ??? Because of the funny way we pass parameters we should allow certain
742 ??? types of float/complex values to be in integer registers during
743 ??? RTL generation. This only matters on arch32. */
744 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
745 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
747 /* Value is 1 if it is OK to rename a hard register FROM to another hard
748 register TO. We cannot rename %g1 as it may be used before the save
749 register window instruction in the prologue. */
750 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
752 #define MODES_TIEABLE_P(MODE1, MODE2) sparc_modes_tieable_p (MODE1, MODE2)
754 /* Specify the registers used for certain standard purposes.
755 The values of these macros are register numbers. */
757 /* Register to use for pushing function arguments. */
758 #define STACK_POINTER_REGNUM 14
760 /* The stack bias (amount by which the hardware register is offset by). */
761 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
763 /* Actual top-of-stack address is 92/176 greater than the contents of the
764 stack pointer register for !v9/v9. That is:
765 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
766 address, and 6*4 bytes for the 6 register parameters.
767 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
768 parameter regs. */
769 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
771 /* Base register for access to local variables of the function. */
772 #define HARD_FRAME_POINTER_REGNUM 30
774 /* The soft frame pointer does not have the stack bias applied. */
775 #define FRAME_POINTER_REGNUM 101
777 /* Given the stack bias, the stack pointer isn't actually aligned. */
778 #define INIT_EXPANDERS \
779 do { \
780 if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS) \
782 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
783 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
785 } while (0)
787 /* Base register for access to arguments of the function. */
788 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
790 /* Register in which static-chain is passed to a function. This must
791 not be a register used by the prologue. */
792 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
794 /* Register which holds the global offset table, if any. */
796 #define GLOBAL_OFFSET_TABLE_REGNUM 23
798 /* Register which holds offset table for position-independent
799 data references. */
801 #define PIC_OFFSET_TABLE_REGNUM \
802 (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
804 /* Pick a default value we can notice from override_options:
805 !v9: Default is on.
806 v9: Default is off.
807 Originally it was -1, but later on the container of options changed to
808 unsigned byte, so we decided to pick 127 as default value, which does
809 reflect an undefined default value in case of 0/1. */
811 #define DEFAULT_PCC_STRUCT_RETURN 127
813 /* Functions which return large structures get the address
814 to place the wanted value at offset 64 from the frame.
815 Must reserve 64 bytes for the in and local registers.
816 v9: Functions which return large structures get the address to place the
817 wanted value from an invisible first argument. */
818 #define STRUCT_VALUE_OFFSET 64
820 /* Define the classes of registers for register constraints in the
821 machine description. Also define ranges of constants.
823 One of the classes must always be named ALL_REGS and include all hard regs.
824 If there is more than one class, another class must be named NO_REGS
825 and contain no registers.
827 The name GENERAL_REGS must be the name of a class (or an alias for
828 another name such as ALL_REGS). This is the class of registers
829 that is allowed by "g" or "r" in a register constraint.
830 Also, registers outside this class are allocated only when
831 instructions express preferences for them.
833 The classes must be numbered in nondecreasing order; that is,
834 a larger-numbered class must never be contained completely
835 in a smaller-numbered class.
837 For any two classes, it is very desirable that there be another
838 class that represents their union. */
840 /* The SPARC has various kinds of registers: general, floating point,
841 and condition codes [well, it has others as well, but none that we
842 care directly about].
844 For v9 we must distinguish between the upper and lower floating point
845 registers because the upper ones can't hold SFmode values.
846 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
847 satisfying a group need for a class will also satisfy a single need for
848 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
849 regs.
851 It is important that one class contains all the general and all the standard
852 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
853 because reg_class_record() will bias the selection in favor of fp regs,
854 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
855 because FP_REGS > GENERAL_REGS.
857 It is also important that one class contain all the general and all
858 the fp regs. Otherwise when spilling a DFmode reg, it may be from
859 EXTRA_FP_REGS but find_reloads() may use class
860 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
861 because the compiler thinks it doesn't have a spill reg when in
862 fact it does.
864 v9 also has 4 floating point condition code registers. Since we don't
865 have a class that is the union of FPCC_REGS with either of the others,
866 it is important that it appear first. Otherwise the compiler will die
867 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
868 constraints.
870 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
871 may try to use it to hold an SImode value. See register_operand.
872 ??? Should %fcc[0123] be handled similarly?
875 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
876 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
877 ALL_REGS, LIM_REG_CLASSES };
879 #define N_REG_CLASSES (int) LIM_REG_CLASSES
881 /* Give names of register classes as strings for dump file. */
883 #define REG_CLASS_NAMES \
884 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
885 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
886 "ALL_REGS" }
888 /* Define which registers fit in which classes.
889 This is an initializer for a vector of HARD_REG_SET
890 of length N_REG_CLASSES. */
892 #define REG_CLASS_CONTENTS \
893 {{0, 0, 0, 0}, /* NO_REGS */ \
894 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
895 {0xffff, 0, 0, 0}, /* I64_REGS */ \
896 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
897 {0, -1, 0, 0}, /* FP_REGS */ \
898 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
899 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
900 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
901 {-1, -1, -1, 0x7f}} /* ALL_REGS */
903 /* The same information, inverted:
904 Return the class number of the smallest class containing
905 reg number REGNO. This could be a conditional expression
906 or could index an array. */
908 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
910 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
912 /* Defines invalid mode changes. Borrowed from the PA port.
914 SImode loads to floating-point registers are not zero-extended.
915 The definition for LOAD_EXTEND_OP specifies that integer loads
916 narrower than BITS_PER_WORD will be zero-extended. As a result,
917 we inhibit changes from SImode unless they are to a mode that is
918 identical in size.
920 Likewise for SFmode, since word-mode paradoxical subregs are
921 problematic on big-endian architectures. */
923 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
924 (TARGET_ARCH64 \
925 && GET_MODE_SIZE (FROM) == 4 \
926 && GET_MODE_SIZE (TO) != 4 \
927 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
929 /* This is the order in which to allocate registers normally.
931 We put %f0-%f7 last among the float registers, so as to make it more
932 likely that a pseudo-register which dies in the float return register
933 area will get allocated to the float return register, thus saving a move
934 instruction at the end of the function.
936 Similarly for integer return value registers.
938 We know in this case that we will not end up with a leaf function.
940 The register allocator is given the global and out registers first
941 because these registers are call clobbered and thus less useful to
942 global register allocation.
944 Next we list the local and in registers. They are not call clobbered
945 and thus very useful for global register allocation. We list the input
946 registers before the locals so that it is more likely the incoming
947 arguments received in those registers can just stay there and not be
948 reloaded. */
950 #define REG_ALLOC_ORDER \
951 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
952 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
953 15, /* %o7 */ \
954 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
955 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
956 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
957 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
958 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
959 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
960 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
961 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
962 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
963 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
964 96, 97, 98, 99, /* %fcc0-3 */ \
965 100, 0, 14, 30, 101, 102 } /* %icc, %g0, %o6, %i6, %sfp, %gsr */
967 /* This is the order in which to allocate registers for
968 leaf functions. If all registers can fit in the global and
969 output registers, then we have the possibility of having a leaf
970 function.
972 The macro actually mentioned the input registers first,
973 because they get renumbered into the output registers once
974 we know really do have a leaf function.
976 To be more precise, this register allocation order is used
977 when %o7 is found to not be clobbered right before register
978 allocation. Normally, the reason %o7 would be clobbered is
979 due to a call which could not be transformed into a sibling
980 call.
982 As a consequence, it is possible to use the leaf register
983 allocation order and not end up with a leaf function. We will
984 not get suboptimal register allocation in that case because by
985 definition of being potentially leaf, there were no function
986 calls. Therefore, allocation order within the local register
987 window is not critical like it is when we do have function calls. */
989 #define REG_LEAF_ALLOC_ORDER \
990 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
991 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
992 15, /* %o7 */ \
993 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
994 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
995 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
996 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
997 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
998 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
999 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1000 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1001 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1002 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1003 96, 97, 98, 99, /* %fcc0-3 */ \
1004 100, 0, 14, 30, 31, 101, 102 } /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1006 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1008 extern char sparc_leaf_regs[];
1009 #define LEAF_REGISTERS sparc_leaf_regs
1011 extern char leaf_reg_remap[];
1012 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1014 /* The class value for index registers, and the one for base regs. */
1015 #define INDEX_REG_CLASS GENERAL_REGS
1016 #define BASE_REG_CLASS GENERAL_REGS
1018 /* Local macro to handle the two v9 classes of FP regs. */
1019 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1021 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants. */
1022 #define SPARC_SIMM5_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1023 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1024 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1025 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1027 /* 10- and 11-bit immediates are only used for a few specific insns.
1028 SMALL_INT is used throughout the port so we continue to use it. */
1029 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1031 /* Predicate for constants that can be loaded with a sethi instruction.
1032 This is the general, 64-bit aware, bitwise version that ensures that
1033 only constants whose representation fits in the mask
1035 0x00000000fffffc00
1037 are accepted. It will reject, for example, negative SImode constants
1038 on 64-bit hosts, so correct handling is to mask the value beforehand
1039 according to the mode of the instruction. */
1040 #define SPARC_SETHI_P(X) \
1041 (((unsigned HOST_WIDE_INT) (X) \
1042 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1044 /* Version of the above predicate for SImode constants and below. */
1045 #define SPARC_SETHI32_P(X) \
1046 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1048 /* On SPARC when not VIS3 it is not possible to directly move data
1049 between GENERAL_REGS and FP_REGS. */
1050 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1051 ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1052 && (! TARGET_VIS3 \
1053 || GET_MODE_SIZE (MODE) > 8 \
1054 || GET_MODE_SIZE (MODE) < 4))
1056 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1057 because the movsi and movsf patterns don't handle r/f moves.
1058 For v8 we copy the default definition. */
1059 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1060 (TARGET_ARCH64 \
1061 ? (GET_MODE_BITSIZE (MODE) < 32 \
1062 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1063 : MODE) \
1064 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1065 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1066 : MODE))
1068 /* Return the maximum number of consecutive registers
1069 needed to represent mode MODE in a register of class CLASS. */
1070 /* On SPARC, this is the size of MODE in words. */
1071 #define CLASS_MAX_NREGS(CLASS, MODE) \
1072 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1073 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1075 /* Stack layout; function entry, exit and calling. */
1077 /* Define this if pushing a word on the stack
1078 makes the stack pointer a smaller address. */
1079 #define STACK_GROWS_DOWNWARD
1081 /* Define this to nonzero if the nominal address of the stack frame
1082 is at the high-address end of the local variables;
1083 that is, each additional local variable allocated
1084 goes at a more negative offset in the frame. */
1085 #define FRAME_GROWS_DOWNWARD 1
1087 /* Offset within stack frame to start allocating local variables at.
1088 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1089 first local allocated. Otherwise, it is the offset to the BEGINNING
1090 of the first local allocated. */
1091 #define STARTING_FRAME_OFFSET 0
1093 /* Offset of first parameter from the argument pointer register value.
1094 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1095 even if this function isn't going to use it.
1096 v9: This is 128 for the ins and locals. */
1097 #define FIRST_PARM_OFFSET(FNDECL) \
1098 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1100 /* Offset from the argument pointer register value to the CFA.
1101 This is different from FIRST_PARM_OFFSET because the register window
1102 comes between the CFA and the arguments. */
1103 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1105 /* When a parameter is passed in a register, stack space is still
1106 allocated for it.
1107 !v9: All 6 possible integer registers have backing store allocated.
1108 v9: Only space for the arguments passed is allocated. */
1109 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1110 meaning to the backend. Further, we need to be able to detect if a
1111 varargs/unprototyped function is called, as they may want to spill more
1112 registers than we've provided space. Ugly, ugly. So for now we retain
1113 all 6 slots even for v9. */
1114 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1116 /* Definitions for register elimination. */
1118 #define ELIMINABLE_REGS \
1119 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1120 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1122 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1123 do \
1125 (OFFSET) = sparc_initial_elimination_offset ((TO)); \
1127 while (0)
1129 /* Keep the stack pointer constant throughout the function.
1130 This is both an optimization and a necessity: longjmp
1131 doesn't behave itself when the stack pointer moves within
1132 the function! */
1133 #define ACCUMULATE_OUTGOING_ARGS 1
1135 /* Define this macro if the target machine has "register windows". This
1136 C expression returns the register number as seen by the called function
1137 corresponding to register number OUT as seen by the calling function.
1138 Return OUT if register number OUT is not an outbound register. */
1140 #define INCOMING_REGNO(OUT) \
1141 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1143 /* Define this macro if the target machine has "register windows". This
1144 C expression returns the register number as seen by the calling function
1145 corresponding to register number IN as seen by the called function.
1146 Return IN if register number IN is not an inbound register. */
1148 #define OUTGOING_REGNO(IN) \
1149 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1151 /* Define this macro if the target machine has register windows. This
1152 C expression returns true if the register is call-saved but is in the
1153 register window. */
1155 #define LOCAL_REGNO(REGNO) \
1156 (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1158 /* Define the size of space to allocate for the return value of an
1159 untyped_call. */
1161 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1163 /* 1 if N is a possible register number for function argument passing.
1164 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1166 #define FUNCTION_ARG_REGNO_P(N) \
1167 (TARGET_ARCH64 \
1168 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1169 : ((N) >= 8 && (N) <= 13))
1171 /* Define a data type for recording info about an argument list
1172 during the scan of that argument list. This data type should
1173 hold all necessary information about the function itself
1174 and about the args processed so far, enough to enable macros
1175 such as FUNCTION_ARG to determine where the next arg should go.
1177 On SPARC (!v9), this is a single integer, which is a number of words
1178 of arguments scanned so far (including the invisible argument,
1179 if any, which holds the structure-value-address).
1180 Thus 7 or more means all following args should go on the stack.
1182 For v9, we also need to know whether a prototype is present. */
1184 struct sparc_args {
1185 int words; /* number of words passed so far */
1186 int prototype_p; /* nonzero if a prototype is present */
1187 int libcall_p; /* nonzero if a library call */
1189 #define CUMULATIVE_ARGS struct sparc_args
1191 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1192 for a call to a function whose data type is FNTYPE.
1193 For a library call, FNTYPE is 0. */
1195 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1196 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1198 /* If defined, a C expression which determines whether, and in which direction,
1199 to pad out an argument with extra space. The value should be of type
1200 `enum direction': either `upward' to pad above the argument,
1201 `downward' to pad below, or `none' to inhibit padding. */
1203 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1204 function_arg_padding ((MODE), (TYPE))
1207 /* Generate the special assembly code needed to tell the assembler whatever
1208 it might need to know about the return value of a function.
1210 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1211 information to the assembler relating to peephole optimization (done in
1212 the assembler). */
1214 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1215 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1217 /* Output the special assembly code needed to tell the assembler some
1218 register is used as global register variable.
1220 SPARC 64bit psABI declares registers %g2 and %g3 as application
1221 registers and %g6 and %g7 as OS registers. Any object using them
1222 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1223 and how they are used (scratch or some global variable).
1224 Linker will then refuse to link together objects which use those
1225 registers incompatibly.
1227 Unless the registers are used for scratch, two different global
1228 registers cannot be declared to the same name, so in the unlikely
1229 case of a global register variable occupying more than one register
1230 we prefix the second and following registers with .gnu.part1. etc. */
1232 extern GTY(()) char sparc_hard_reg_printed[8];
1234 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1235 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1236 do { \
1237 if (TARGET_ARCH64) \
1239 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1240 int reg; \
1241 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1242 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1244 if (reg == (REGNO)) \
1245 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1246 else \
1247 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1248 reg, reg - (REGNO), (NAME)); \
1249 sparc_hard_reg_printed[reg] = 1; \
1252 } while (0)
1253 #endif
1256 /* Emit rtl for profiling. */
1257 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1259 /* All the work done in PROFILE_HOOK, but still required. */
1260 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1262 /* Set the name of the mcount function for the system. */
1263 #define MCOUNT_FUNCTION "*mcount"
1265 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1266 the stack pointer does not matter. The value is tested only in
1267 functions that have frame pointers. */
1268 #define EXIT_IGNORE_STACK 1
1270 /* Length in units of the trampoline for entering a nested function. */
1271 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1273 /* Alignment required for trampolines, in bits. */
1274 #define TRAMPOLINE_ALIGNMENT 128
1276 /* Generate RTL to flush the register windows so as to make arbitrary frames
1277 available. */
1278 #define SETUP_FRAME_ADDRESSES() \
1279 do { \
1280 if (!TARGET_FLAT) \
1281 emit_insn (gen_flush_register_windows ());\
1282 } while (0)
1284 /* Given an rtx for the address of a frame,
1285 return an rtx for the address of the word in the frame
1286 that holds the dynamic chain--the previous frame's address. */
1287 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1288 plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1290 /* Given an rtx for the frame pointer,
1291 return an rtx for the address of the frame. */
1292 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1294 /* The return address isn't on the stack, it is in a register, so we can't
1295 access it from the current frame pointer. We can access it from the
1296 previous frame pointer though by reading a value from the register window
1297 save area. */
1298 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1300 /* This is the offset of the return address to the true next instruction to be
1301 executed for the current function. */
1302 #define RETURN_ADDR_OFFSET \
1303 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1305 /* The current return address is in %i7. The return address of anything
1306 farther back is in the register window save area at [%fp+60]. */
1307 /* ??? This ignores the fact that the actual return address is +8 for normal
1308 returns, and +12 for structure returns. */
1309 #define RETURN_ADDR_REGNUM 31
1310 #define RETURN_ADDR_RTX(count, frame) \
1311 ((count == -1) \
1312 ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) \
1313 : gen_rtx_MEM (Pmode, \
1314 memory_address (Pmode, plus_constant (Pmode, frame, \
1315 15 * UNITS_PER_WORD \
1316 + SPARC_STACK_BIAS))))
1318 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1319 +12, but always using +8 is close enough for frame unwind purposes.
1320 Actually, just using %o7 is close enough for unwinding, but %o7+8
1321 is something you can return to. */
1322 #define INCOMING_RETURN_ADDR_REGNUM 15
1323 #define INCOMING_RETURN_ADDR_RTX \
1324 plus_constant (word_mode, \
1325 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1326 #define DWARF_FRAME_RETURN_COLUMN \
1327 DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1329 /* The offset from the incoming value of %sp to the top of the stack frame
1330 for the current function. On sparc64, we have to account for the stack
1331 bias if present. */
1332 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1334 /* Describe how we implement __builtin_eh_return. */
1335 #define EH_RETURN_REGNUM 1
1336 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1337 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1339 /* Define registers used by the epilogue and return instruction. */
1340 #define EPILOGUE_USES(REGNO) \
1341 ((REGNO) == RETURN_ADDR_REGNUM \
1342 || (TARGET_FLAT \
1343 && epilogue_completed \
1344 && (REGNO) == INCOMING_RETURN_ADDR_REGNUM) \
1345 || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1347 /* Select a format to encode pointers in exception handling data. CODE
1348 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1349 true if the symbol may be affected by dynamic relocations.
1351 If assembler and linker properly support .uaword %r_disp32(foo),
1352 then use PC relative 32-bit relocations instead of absolute relocs
1353 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1354 for binaries, to save memory.
1356 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1357 symbol %r_disp32() is against was not local, but .hidden. In that
1358 case, we have to use DW_EH_PE_absptr for pic personality. */
1359 #ifdef HAVE_AS_SPARC_UA_PCREL
1360 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1361 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1362 (flag_pic \
1363 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1364 : ((TARGET_ARCH64 && ! GLOBAL) \
1365 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1366 : DW_EH_PE_absptr))
1367 #else
1368 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1369 (flag_pic \
1370 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1371 : ((TARGET_ARCH64 && ! GLOBAL) \
1372 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1373 : DW_EH_PE_absptr))
1374 #endif
1376 /* Emit a PC-relative relocation. */
1377 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1378 do { \
1379 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1380 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1381 assemble_name (FILE, LABEL); \
1382 fputc (')', FILE); \
1383 } while (0)
1384 #endif
1386 /* Addressing modes, and classification of registers for them. */
1388 /* Macros to check register numbers against specific register classes. */
1390 /* These assume that REGNO is a hard or pseudo reg number.
1391 They give nonzero only if REGNO is a hard reg of the suitable class
1392 or a pseudo reg currently allocated to a suitable hard reg.
1393 Since they use reg_renumber, they are safe only once reg_renumber
1394 has been allocated, which happens in reginfo.c during register
1395 allocation. */
1397 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1398 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1399 || (REGNO) == FRAME_POINTER_REGNUM \
1400 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1402 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1404 #define REGNO_OK_FOR_FP_P(REGNO) \
1405 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1406 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1408 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1409 (TARGET_V9 \
1410 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1411 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1413 /* Maximum number of registers that can appear in a valid memory address. */
1415 #define MAX_REGS_PER_ADDRESS 2
1417 /* Recognize any constant value that is a valid address.
1418 When PIC, we do not accept an address that would require a scratch reg
1419 to load into a register. */
1421 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1423 /* Define this, so that when PIC, reload won't try to reload invalid
1424 addresses which require two reload registers. */
1426 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1428 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1430 #ifdef HAVE_AS_OFFSETABLE_LO10
1431 #define USE_AS_OFFSETABLE_LO10 1
1432 #else
1433 #define USE_AS_OFFSETABLE_LO10 0
1434 #endif
1436 /* Try a machine-dependent way of reloading an illegitimate address
1437 operand. If we find one, push the reload and jump to WIN. This
1438 macro is used in only one place: `find_reloads_address' in reload.c. */
1439 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1440 do { \
1441 int win; \
1442 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1443 (int)(TYPE), (IND_LEVELS), &win); \
1444 if (win) \
1445 goto WIN; \
1446 } while (0)
1448 /* Specify the machine mode that this machine uses
1449 for the index in the tablejump instruction. */
1450 /* If we ever implement any of the full models (such as CM_FULLANY),
1451 this has to be DImode in that case */
1452 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1453 #define CASE_VECTOR_MODE \
1454 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1455 #else
1456 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1457 we have to sign extend which slows things down. */
1458 #define CASE_VECTOR_MODE \
1459 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1460 #endif
1462 /* Define this as 1 if `char' should by default be signed; else as 0. */
1463 #define DEFAULT_SIGNED_CHAR 1
1465 /* Max number of bytes we can move from memory to memory
1466 in one reasonably fast instruction. */
1467 #define MOVE_MAX 8
1469 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1470 move-instruction pairs, we will do a movmem or libcall instead. */
1472 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1474 /* Define if operations between registers always perform the operation
1475 on the full register even if a narrower mode is specified. */
1476 #define WORD_REGISTER_OPERATIONS
1478 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1479 will either zero-extend or sign-extend. The value of this macro should
1480 be the code that says which one of the two operations is implicitly
1481 done, UNKNOWN if none. */
1482 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1484 /* Nonzero if access to memory by bytes is slow and undesirable.
1485 For RISC chips, it means that access to memory by bytes is no
1486 better than access by words when possible, so grab a whole word
1487 and maybe make use of that. */
1488 #define SLOW_BYTE_ACCESS 1
1490 /* Define this to be nonzero if shift instructions ignore all but the low-order
1491 few bits. */
1492 #define SHIFT_COUNT_TRUNCATED 1
1494 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1495 is done just by pretending it is already truncated. */
1496 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1498 /* For SImode, we make sure the top 32-bits of the register are clear and
1499 then we subtract 32 from the lzd instruction result. */
1500 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1501 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1503 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1504 return the mode to be used for the comparison. For floating-point,
1505 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
1506 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1507 processing is needed. */
1508 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1510 /* Return nonzero if MODE implies a floating point inequality can be
1511 reversed. For SPARC this is always true because we have a full
1512 compliment of ordered and unordered comparisons, but until generic
1513 code knows how to reverse it correctly we keep the old definition. */
1514 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1516 /* A function address in a call instruction for indexing purposes. */
1517 #define FUNCTION_MODE Pmode
1519 /* Define this if addresses of constant functions
1520 shouldn't be put through pseudo regs where they can be cse'd.
1521 Desirable on machines where ordinary constants are expensive
1522 but a CALL with constant address is cheap. */
1523 #define NO_FUNCTION_CSE
1525 /* The _Q_* comparison libcalls return booleans. */
1526 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1528 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1529 that the inputs are fully consumed before the output memory is clobbered. */
1531 #define TARGET_BUGGY_QP_LIB 0
1533 /* Assume by default that we do not have the Solaris-specific conversion
1534 routines nor 64-bit integer multiply and divide routines. */
1536 #define SUN_CONVERSION_LIBFUNCS 0
1537 #define DITF_CONVERSION_LIBFUNCS 0
1538 #define SUN_INTEGER_MULTIPLY_64 0
1540 /* Provide the cost of a branch. For pre-v9 processors we use
1541 a value of 3 to take into account the potential annulling of
1542 the delay slot (which ends up being a bubble in the pipeline slot)
1543 plus a cycle to take into consideration the instruction cache
1544 effects.
1546 On v9 and later, which have branch prediction facilities, we set
1547 it to the depth of the pipeline as that is the cost of a
1548 mispredicted branch.
1550 On Niagara, normal branches insert 3 bubbles into the pipe
1551 and annulled branches insert 4 bubbles.
1553 On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1554 a taken branch costs 6 cycles. */
1556 #define BRANCH_COST(speed_p, predictable_p) \
1557 ((sparc_cpu == PROCESSOR_V9 \
1558 || sparc_cpu == PROCESSOR_ULTRASPARC) \
1559 ? 7 \
1560 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1561 ? 9 \
1562 : (sparc_cpu == PROCESSOR_NIAGARA \
1563 ? 4 \
1564 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1565 || sparc_cpu == PROCESSOR_NIAGARA3) \
1566 ? 5 \
1567 : 3))))
1569 /* Control the assembler format that we output. */
1571 /* A C string constant describing how to begin a comment in the target
1572 assembler language. The compiler assumes that the comment will end at
1573 the end of the line. */
1575 #define ASM_COMMENT_START "!"
1577 /* Output to assembler file text saying following lines
1578 may contain character constants, extra white space, comments, etc. */
1580 #define ASM_APP_ON ""
1582 /* Output to assembler file text saying following lines
1583 no longer contain unusual constructs. */
1585 #define ASM_APP_OFF ""
1587 /* How to refer to registers in assembler output.
1588 This sequence is indexed by compiler's hard-register-number (see above). */
1590 #define REGISTER_NAMES \
1591 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1592 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1593 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1594 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1595 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1596 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1597 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1598 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1599 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1600 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1601 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1602 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1603 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1605 /* Define additional names for use in asm clobbers and asm declarations. */
1607 #define ADDITIONAL_REGISTER_NAMES \
1608 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1610 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
1611 can run past this up to a continuation point. Once we used 1500, but
1612 a single entry in C++ can run more than 500 bytes, due to the length of
1613 mangled symbol names. dbxout.c should really be fixed to do
1614 continuations when they are actually needed instead of trying to
1615 guess... */
1616 #define DBX_CONTIN_LENGTH 1000
1618 /* This is how to output a command to make the user-level label named NAME
1619 defined for reference from other files. */
1621 /* Globalizing directive for a label. */
1622 #define GLOBAL_ASM_OP "\t.global "
1624 /* The prefix to add to user-visible assembler symbols. */
1626 #define USER_LABEL_PREFIX "_"
1628 /* This is how to store into the string LABEL
1629 the symbol_ref name of an internal numbered label where
1630 PREFIX is the class of label and NUM is the number within the class.
1631 This is suitable for output with `assemble_name'. */
1633 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1634 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1636 /* This is how we hook in and defer the case-vector until the end of
1637 the function. */
1638 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1639 sparc_defer_case_vector ((LAB),(VEC), 0)
1641 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1642 sparc_defer_case_vector ((LAB),(VEC), 1)
1644 /* This is how to output an element of a case-vector that is absolute. */
1646 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1647 do { \
1648 char label[30]; \
1649 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1650 if (CASE_VECTOR_MODE == SImode) \
1651 fprintf (FILE, "\t.word\t"); \
1652 else \
1653 fprintf (FILE, "\t.xword\t"); \
1654 assemble_name (FILE, label); \
1655 fputc ('\n', FILE); \
1656 } while (0)
1658 /* This is how to output an element of a case-vector that is relative.
1659 (SPARC uses such vectors only when generating PIC.) */
1661 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1662 do { \
1663 char label[30]; \
1664 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1665 if (CASE_VECTOR_MODE == SImode) \
1666 fprintf (FILE, "\t.word\t"); \
1667 else \
1668 fprintf (FILE, "\t.xword\t"); \
1669 assemble_name (FILE, label); \
1670 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1671 fputc ('-', FILE); \
1672 assemble_name (FILE, label); \
1673 fputc ('\n', FILE); \
1674 } while (0)
1676 /* This is what to output before and after case-vector (both
1677 relative and absolute). If .subsection -1 works, we put case-vectors
1678 at the beginning of the current section. */
1680 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1682 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1683 fprintf(FILE, "\t.subsection\t-1\n")
1685 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1686 fprintf(FILE, "\t.previous\n")
1688 #endif
1690 /* This is how to output an assembler line
1691 that says to advance the location counter
1692 to a multiple of 2**LOG bytes. */
1694 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1695 if ((LOG) != 0) \
1696 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1698 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1699 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1701 /* This says how to output an assembler line
1702 to define a global common symbol. */
1704 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1705 ( fputs ("\t.common ", (FILE)), \
1706 assemble_name ((FILE), (NAME)), \
1707 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1709 /* This says how to output an assembler line to define a local common
1710 symbol. */
1712 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1713 ( fputs ("\t.reserve ", (FILE)), \
1714 assemble_name ((FILE), (NAME)), \
1715 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1716 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1718 /* A C statement (sans semicolon) to output to the stdio stream
1719 FILE the assembler definition of uninitialized global DECL named
1720 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1721 Try to use asm_output_aligned_bss to implement this macro. */
1723 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1724 do { \
1725 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1726 } while (0)
1728 /* Output #ident as a .ident. */
1730 #undef TARGET_ASM_OUTPUT_IDENT
1731 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1733 /* Prettify the assembly. */
1735 extern int sparc_indent_opcode;
1737 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
1738 do { \
1739 if (sparc_indent_opcode) \
1741 putc (' ', FILE); \
1742 sparc_indent_opcode = 0; \
1744 } while (0)
1746 /* TLS support defaulting to original Sun flavor. GNU extensions
1747 must be activated in separate configuration files. */
1748 #ifdef HAVE_AS_TLS
1749 #define TARGET_TLS 1
1750 #else
1751 #define TARGET_TLS 0
1752 #endif
1754 #define TARGET_SUN_TLS TARGET_TLS
1755 #define TARGET_GNU_TLS 0
1757 #ifdef HAVE_AS_FMAF_HPC_VIS3
1758 #define AS_NIAGARA3_FLAG "d"
1759 #else
1760 #define AS_NIAGARA3_FLAG "b"
1761 #endif
1763 #ifdef HAVE_AS_SPARC4
1764 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1765 #else
1766 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1767 #endif
1769 #ifdef HAVE_AS_LEON
1770 #define AS_LEON_FLAG "-Aleon"
1771 #define AS_LEONV7_FLAG "-Aleon"
1772 #else
1773 #define AS_LEON_FLAG "-Av8"
1774 #define AS_LEONV7_FLAG "-Av7"
1775 #endif
1777 /* We use gcc _mcount for profiling. */
1778 #define NO_PROFILE_COUNTERS 0
1780 /* Debug support */
1781 #define MASK_DEBUG_OPTIONS 0x01 /* debug option handling */
1782 #define MASK_DEBUG_ALL MASK_DEBUG_OPTIONS
1784 #define TARGET_DEBUG_OPTIONS (sparc_debug & MASK_DEBUG_OPTIONS)
1786 /* By default, use the weakest memory model for the cpu. */
1787 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1788 #define SUBTARGET_DEFAULT_MEMORY_MODEL SMM_DEFAULT
1789 #endif
1791 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1. */
1792 #define SPARC_LOW_FE_EXCEPT_VALUES 0