Turn HARD_REGNO_CALL_PART_CLOBBERED into a target hook
[official-gcc.git] / gcc / config / sh / sh.h
blob195f50419783aeab7fb9bd46e36135241e07a930
1 /* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by Steve Chamberlain (sac@cygnus.com).
4 Improved by Jim Wilson (wilson@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_SH_H
23 #define GCC_SH_H
25 #include "config/vxworks-dummy.h"
27 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
28 include it here, because bconfig.h is also included by gencodes.c . */
29 /* ??? No longer true. */
30 extern int code_for_indirect_jump_scratch;
32 #define TARGET_CPU_CPP_BUILTINS() sh_cpu_cpp_builtins (pfile)
34 /* Value should be nonzero if functions must have frame pointers.
35 Zero means the frame pointer need not be set up (and parms may be accessed
36 via the stack pointer) in functions that seem suitable. */
38 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
39 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
40 #endif
43 /* Nonzero if this is an ELF target - compile time only */
44 #define TARGET_ELF 0
46 /* Nonzero if we should generate code using type 2E insns. */
47 #define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
49 /* Nonzero if we should generate code using type 2A insns. */
50 #define TARGET_SH2A TARGET_HARD_SH2A
51 /* Nonzero if we should generate code using type 2A SF insns. */
52 #define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
53 /* Nonzero if we should generate code using type 2A DF insns. */
54 #define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
56 /* Nonzero if we should generate code using type 3E insns. */
57 #define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
59 /* Nonzero if we schedule for a superscalar implementation. */
60 #define TARGET_SUPERSCALAR (TARGET_HARD_SH4 || TARGET_SH2A)
62 /* Nonzero if a double-precision FPU is available. */
63 #define TARGET_FPU_DOUBLE (TARGET_SH4 || TARGET_SH2A_DOUBLE)
65 /* Nonzero if an FPU is available. */
66 #define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
68 /* Nonzero if we're generating code for SH4a, unless the use of the
69 FPU is disabled (which makes it compatible with SH4al-dsp). */
70 #define TARGET_SH4A_FP (TARGET_SH4A && TARGET_FPU_ANY)
73 /* This is not used by the SH2E calling convention */
74 #define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
75 (! TARGET_SH2E \
76 && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
78 #ifndef TARGET_CPU_DEFAULT
79 #define TARGET_CPU_DEFAULT SELECT_SH1
80 #define SUPPORT_SH1 1
81 #define SUPPORT_SH2E 1
82 #define SUPPORT_SH4 1
83 #define SUPPORT_SH4_SINGLE 1
84 #define SUPPORT_SH2A 1
85 #define SUPPORT_SH2A_SINGLE 1
86 #endif
88 #define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
89 #define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
90 #define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
92 #define SELECT_SH1 (MASK_SH1)
93 #define SELECT_SH2 (MASK_SH2 | SELECT_SH1)
94 #define SELECT_SH2E (MASK_SH_E | MASK_SH2 | MASK_SH1 \
95 | MASK_FPU_SINGLE)
96 #define SELECT_SH2A (MASK_SH_E | MASK_HARD_SH2A \
97 | MASK_HARD_SH2A_DOUBLE \
98 | MASK_SH2 | MASK_SH1)
99 #define SELECT_SH2A_NOFPU (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
100 #define SELECT_SH2A_SINGLE_ONLY (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
101 | MASK_SH1 | MASK_FPU_SINGLE \
102 | MASK_FPU_SINGLE_ONLY)
103 #define SELECT_SH2A_SINGLE (MASK_SH_E | MASK_HARD_SH2A \
104 | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
105 | MASK_SH2 | MASK_SH1)
106 #define SELECT_SH3 (MASK_SH3 | SELECT_SH2)
107 #define SELECT_SH3E (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
108 #define SELECT_SH4_NOFPU (MASK_HARD_SH4 | SELECT_SH3)
109 #define SELECT_SH4_SINGLE_ONLY (MASK_HARD_SH4 | SELECT_SH3E \
110 | MASK_FPU_SINGLE_ONLY)
111 #define SELECT_SH4 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
112 | SELECT_SH3)
113 #define SELECT_SH4_SINGLE (MASK_FPU_SINGLE | SELECT_SH4)
114 #define SELECT_SH4A_NOFPU (MASK_SH4A | SELECT_SH4_NOFPU)
115 #define SELECT_SH4A_SINGLE_ONLY (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
116 #define SELECT_SH4A (MASK_SH4A | SELECT_SH4)
117 #define SELECT_SH4A_SINGLE (MASK_SH4A | SELECT_SH4_SINGLE)
119 #if SUPPORT_SH1
120 #define SUPPORT_SH2 1
121 #endif
122 #if SUPPORT_SH2
123 #define SUPPORT_SH3 1
124 #define SUPPORT_SH2A_NOFPU 1
125 #endif
126 #if SUPPORT_SH3
127 #define SUPPORT_SH4_NOFPU 1
128 #endif
129 #if SUPPORT_SH4_NOFPU
130 #define SUPPORT_SH4A_NOFPU 1
131 #define SUPPORT_SH4AL 1
132 #endif
134 #if SUPPORT_SH2E
135 #define SUPPORT_SH3E 1
136 #define SUPPORT_SH2A_SINGLE_ONLY 1
137 #endif
138 #if SUPPORT_SH3E
139 #define SUPPORT_SH4_SINGLE_ONLY 1
140 #endif
141 #if SUPPORT_SH4_SINGLE_ONLY
142 #define SUPPORT_SH4A_SINGLE_ONLY 1
143 #endif
145 #if SUPPORT_SH4
146 #define SUPPORT_SH4A 1
147 #endif
149 #if SUPPORT_SH4_SINGLE
150 #define SUPPORT_SH4A_SINGLE 1
151 #endif
153 /* Reset all target-selection flags. */
154 #define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
155 | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
156 | MASK_HARD_SH4 | MASK_FPU_SINGLE \
157 | MASK_FPU_SINGLE_ONLY)
159 /* This defaults us to big-endian. */
160 #ifndef TARGET_ENDIAN_DEFAULT
161 #define TARGET_ENDIAN_DEFAULT 0
162 #endif
164 #ifndef TARGET_OPT_DEFAULT
165 #define TARGET_OPT_DEFAULT 0
166 #endif
168 #define TARGET_DEFAULT \
169 (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
171 #ifndef SH_MULTILIB_CPU_DEFAULT
172 #define SH_MULTILIB_CPU_DEFAULT "m1"
173 #endif
175 #if TARGET_ENDIAN_DEFAULT
176 #define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
177 #else
178 #define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
179 #endif
181 #define CPP_SPEC " %(subtarget_cpp_spec) "
183 #ifndef SUBTARGET_CPP_SPEC
184 #define SUBTARGET_CPP_SPEC ""
185 #endif
187 #ifndef SUBTARGET_EXTRA_SPECS
188 #define SUBTARGET_EXTRA_SPECS
189 #endif
191 #define EXTRA_SPECS \
192 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
193 { "link_emul_prefix", LINK_EMUL_PREFIX }, \
194 { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
195 { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
196 { "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
197 { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
198 { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \
199 { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \
200 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
201 SUBTARGET_EXTRA_SPECS
203 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4
204 #define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:-isa=sh4-up}}}"
205 #else
206 #define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
207 #endif
209 /* Define which ISA type to pass to the assembler.
210 For SH4 we pass SH4A to allow using some instructions that are available
211 on some SH4 variants, but officially are part of the SH4A ISA. */
212 #define SH_ASM_SPEC \
213 "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)} \
214 %(subtarget_asm_isa_spec) %(subtarget_asm_spec) \
215 %{m1:--isa=sh} \
216 %{m2:--isa=sh2} \
217 %{m2e:--isa=sh2e} \
218 %{m3:--isa=sh3} \
219 %{m3e:--isa=sh3e} \
220 %{m4:--isa=sh4a} \
221 %{m4-single:--isa=sh4a} \
222 %{m4-single-only:--isa=sh4a} \
223 %{m4-nofpu:--isa=sh4a-nofpu} \
224 %{m4a:--isa=sh4a} \
225 %{m4a-single:--isa=sh4a} \
226 %{m4a-single-only:--isa=sh4a} \
227 %{m4a-nofpu:--isa=sh4a-nofpu} \
228 %{m2a:--isa=sh2a} \
229 %{m2a-single:--isa=sh2a} \
230 %{m2a-single-only:--isa=sh2a} \
231 %{m2a-nofpu:--isa=sh2a-nofpu} \
232 %{m4al:-dsp}"
234 #define ASM_SPEC SH_ASM_SPEC
236 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
237 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
238 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
239 #else
240 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
241 #endif
242 #endif
244 #if STRICT_NOFPU == 1
245 /* Strict nofpu means that the compiler should tell the assembler
246 to reject FPU instructions. E.g. from ASM inserts. */
247 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
248 #define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:-isa=sh4-nofpu}}}}"
249 #else
251 #define SUBTARGET_ASM_ISA_SPEC \
252 "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
253 #endif
254 #else /* ! STRICT_NOFPU */
255 #define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
256 #endif
258 #ifndef SUBTARGET_ASM_SPEC
259 #define SUBTARGET_ASM_SPEC "%{mfdpic:--fdpic}"
260 #endif
262 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
263 #define LINK_EMUL_PREFIX "sh%{!mb:l}"
264 #else
265 #define LINK_EMUL_PREFIX "sh%{ml:l}"
266 #endif
268 #define LINK_DEFAULT_CPU_EMUL ""
269 #define ASM_ISA_DEFAULT_SPEC ""
271 #define SUBTARGET_LINK_EMUL_SUFFIX "%{mfdpic:_fd}"
272 #define SUBTARGET_LINK_SPEC ""
274 /* Go via SH_LINK_SPEC to avoid code replication. */
275 #define LINK_SPEC SH_LINK_SPEC
277 #define SH_LINK_SPEC "\
278 -m %(link_emul_prefix)\
279 %{!m1:%{!m2:%{!m3*:%{!m4*:%(link_default_cpu_emul)}}}}\
280 %(subtarget_link_emul_suffix) \
281 %{mrelax:-relax} %(subtarget_link_spec)"
283 #ifndef SH_DIV_STR_FOR_SIZE
284 #define SH_DIV_STR_FOR_SIZE "call"
285 #endif
287 /* SH2A does not support little-endian. Catch such combinations
288 taking into account the default configuration. */
289 #if TARGET_ENDIAN_DEFAULT == MASK_BIG_ENDIAN
290 #define IS_LITTLE_ENDIAN_OPTION "%{ml:"
291 #else
292 #define IS_LITTLE_ENDIAN_OPTION "%{!mb:"
293 #endif
295 #if TARGET_CPU_DEFAULT & MASK_HARD_SH2A
296 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
297 "%{m2a*|!m1:%{!m2*:%{!m3*:%{!m4*:%eSH2a does not support little-endian}}}}}"
298 #else
299 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
300 "%{m2a*:%eSH2a does not support little-endian}}"
301 #endif
303 #ifdef FDPIC_DEFAULT
304 #define FDPIC_SELF_SPECS "%{!mno-fdpic:-mfdpic}"
305 #else
306 #define FDPIC_SELF_SPECS
307 #endif
309 #undef DRIVER_SELF_SPECS
310 #define DRIVER_SELF_SPECS UNSUPPORTED_SH2A SUBTARGET_DRIVER_SELF_SPECS \
311 FDPIC_SELF_SPECS
313 #undef SUBTARGET_DRIVER_SELF_SPECS
314 #define SUBTARGET_DRIVER_SELF_SPECS
316 #define ASSEMBLER_DIALECT assembler_dialect
318 extern int assembler_dialect;
320 enum sh_divide_strategy_e {
321 /* SH1 .. SH4 strategies. Because of the small number of registers
322 available, the compiler uses knowledge of the actual set of registers
323 being clobbered by the different functions called. */
324 SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency. */
325 SH_DIV_CALL_FP, /* FPU needed, small size, high latency. */
326 SH_DIV_CALL_TABLE, /* No FPU, large size, medium latency. */
327 SH_DIV_INTRINSIC
330 extern enum sh_divide_strategy_e sh_div_strategy;
332 #ifndef SH_DIV_STRATEGY_DEFAULT
333 #define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL_DIV1
334 #endif
336 #ifdef __cplusplus
338 /* Atomic model. */
339 struct sh_atomic_model
341 enum enum_type
343 none = 0,
344 soft_gusa,
345 hard_llcs,
346 soft_tcb,
347 soft_imask,
349 num_models
352 /* If strict is set, disallow mixing of different models, as it would
353 happen on SH4A. */
354 bool strict;
355 enum_type type;
357 /* Name string as it was specified on the command line. */
358 const char* name;
360 /* Name string as it is used in C/C++ defines. */
361 const char* cdef_name;
363 /* GBR offset variable for TCB model. */
364 int tcb_gbr_offset;
367 extern const sh_atomic_model& selected_atomic_model (void);
369 /* Shortcuts to check the currently selected atomic model. */
370 #define TARGET_ATOMIC_ANY \
371 (selected_atomic_model ().type != sh_atomic_model::none)
373 #define TARGET_ATOMIC_STRICT \
374 (selected_atomic_model ().strict)
376 #define TARGET_ATOMIC_SOFT_GUSA \
377 (selected_atomic_model ().type == sh_atomic_model::soft_gusa)
379 #define TARGET_ATOMIC_HARD_LLCS \
380 (selected_atomic_model ().type == sh_atomic_model::hard_llcs)
382 #define TARGET_ATOMIC_SOFT_TCB \
383 (selected_atomic_model ().type == sh_atomic_model::soft_tcb)
385 #define TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX \
386 GEN_INT (selected_atomic_model ().tcb_gbr_offset)
388 #define TARGET_ATOMIC_SOFT_IMASK \
389 (selected_atomic_model ().type == sh_atomic_model::soft_imask)
391 #endif // __cplusplus
393 #define SUBTARGET_OVERRIDE_OPTIONS (void) 0
396 /* Target machine storage layout. */
398 #define TARGET_BIG_ENDIAN (!TARGET_LITTLE_ENDIAN)
400 #define SH_REG_MSW_OFFSET (TARGET_LITTLE_ENDIAN ? 1 : 0)
401 #define SH_REG_LSW_OFFSET (TARGET_LITTLE_ENDIAN ? 0 : 1)
403 /* Define this if most significant bit is lowest numbered
404 in instructions that operate on numbered bit-fields. */
405 #define BITS_BIG_ENDIAN 0
407 /* Define this if most significant byte of a word is the lowest numbered. */
408 #define BYTES_BIG_ENDIAN TARGET_BIG_ENDIAN
410 /* Define this if most significant word of a multiword number is the lowest
411 numbered. */
412 #define WORDS_BIG_ENDIAN TARGET_BIG_ENDIAN
414 #define MAX_BITS_PER_WORD 64
416 /* Width in bits of an `int'. We want just 32-bits, even if words are
417 longer. */
418 #define INT_TYPE_SIZE 32
420 /* Width in bits of a `long'. */
421 #define LONG_TYPE_SIZE (32)
423 /* Width in bits of a `long long'. */
424 #define LONG_LONG_TYPE_SIZE 64
426 /* Width in bits of a `long double'. */
427 #define LONG_DOUBLE_TYPE_SIZE 64
429 /* Width of a word, in units (bytes). */
430 #define UNITS_PER_WORD (4)
431 #define MIN_UNITS_PER_WORD 4
433 /* Scaling factor for Dwarf data offsets for CFI information.
434 The dwarf2out.c default would use -UNITS_PER_WORD. */
435 #define DWARF_CIE_DATA_ALIGNMENT -4
437 /* Width in bits of a pointer.
438 See also the macro `Pmode' defined below. */
439 #define POINTER_SIZE (32)
441 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
442 #define PARM_BOUNDARY (32)
444 /* Boundary (in *bits*) on which stack pointer should be aligned. */
445 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
447 /* The log (base 2) of the cache line size, in bytes. Processors prior to
448 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
449 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
450 #define CACHE_LOG (TARGET_HARD_SH4 ? 5 : TARGET_SH2 ? 4 : 2)
452 /* ABI given & required minimum allocation boundary (in *bits*) for the
453 code of a function. */
454 #define FUNCTION_BOUNDARY (16)
456 /* Alignment of field after `int : 0' in a structure. */
457 #define EMPTY_FIELD_BOUNDARY 32
459 /* No data type wants to be aligned rounder than this. */
460 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
462 /* The best alignment to use in cases where we have a choice. */
463 #define FASTEST_ALIGNMENT (32)
465 /* Make strings word-aligned so strcpy from constants will be faster. */
466 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
467 ((TREE_CODE (EXP) == STRING_CST \
468 && (ALIGN) < FASTEST_ALIGNMENT) \
469 ? FASTEST_ALIGNMENT : (ALIGN))
471 /* get_mode_alignment assumes complex values are always held in multiple
472 registers, but that is not the case on the SH; CQImode and CHImode are
473 held in a single integer register. */
474 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
475 ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
476 || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
477 ? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
478 : (unsigned) DATA_ALIGNMENT(TYPE, ALIGN))
480 /* Make arrays of chars word-aligned for the same reasons. */
481 #define DATA_ALIGNMENT(TYPE, ALIGN) \
482 (TREE_CODE (TYPE) == ARRAY_TYPE \
483 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
484 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
486 /* Number of bits which any structure or union's size must be a
487 multiple of. Each structure or union's size is rounded up to a
488 multiple of this. */
489 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
491 /* Set this nonzero if move instructions will actually fail to work
492 when given unaligned data. */
493 #define STRICT_ALIGNMENT 1
495 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
496 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
497 barrier_align (LABEL_AFTER_BARRIER)
499 #define LOOP_ALIGN(A_LABEL) sh_loop_align (A_LABEL)
501 #define LABEL_ALIGN(A_LABEL) \
503 (PREV_INSN (A_LABEL) \
504 && NONJUMP_INSN_P (PREV_INSN (A_LABEL)) \
505 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
506 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
507 /* explicit alignment insn in constant tables. */ \
508 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
509 : 0)
511 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
512 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
514 /* The base two logarithm of the known minimum alignment of an insn length. */
515 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
516 (NONJUMP_INSN_P (A_INSN) \
517 ? 1 \
518 : JUMP_P (A_INSN) || CALL_P (A_INSN) \
519 ? 1 \
520 : CACHE_LOG)
522 /* Standard register usage. */
524 /* Register allocation for the Renesas calling convention:
526 r0 arg return
527 r1..r3 scratch
528 r4..r7 args in
529 r8..r13 call saved
530 r14 frame pointer/call saved
531 r15 stack pointer
532 ap arg pointer (doesn't really exist, always eliminated)
533 pr subroutine return address
534 t t bit
535 mach multiply/accumulate result, high part
536 macl multiply/accumulate result, low part.
537 fpul fp/int communication register
538 rap return address pointer register
539 fr0 fp arg return
540 fr1..fr3 scratch floating point registers
541 fr4..fr11 fp args in
542 fr12..fr15 call saved floating point registers */
544 #define MAX_REGISTER_NAME_LENGTH 6
545 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
547 #define SH_REGISTER_NAMES_INITIALIZER \
549 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
550 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
551 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
552 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
553 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
554 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
555 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
556 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
557 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
558 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
559 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
560 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
561 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
562 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
563 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
564 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
565 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
566 "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
567 "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
568 "rap", "sfp", "fpscr0", "fpscr1" \
571 #define REGNAMES_ARR_INDEX_1(index) \
572 (sh_register_names[index])
573 #define REGNAMES_ARR_INDEX_2(index) \
574 REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
575 #define REGNAMES_ARR_INDEX_4(index) \
576 REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
577 #define REGNAMES_ARR_INDEX_8(index) \
578 REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
579 #define REGNAMES_ARR_INDEX_16(index) \
580 REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
581 #define REGNAMES_ARR_INDEX_32(index) \
582 REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
583 #define REGNAMES_ARR_INDEX_64(index) \
584 REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
586 #define REGISTER_NAMES \
588 REGNAMES_ARR_INDEX_64 (0), \
589 REGNAMES_ARR_INDEX_64 (64), \
590 REGNAMES_ARR_INDEX_8 (128), \
591 REGNAMES_ARR_INDEX_8 (136), \
592 REGNAMES_ARR_INDEX_8 (144), \
593 REGNAMES_ARR_INDEX_4 (152) \
596 #define ADDREGNAMES_SIZE 32
597 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
598 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
599 [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
601 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
603 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
604 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
605 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
606 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
609 #define ADDREGNAMES_REGNO(index) \
610 ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
611 : (-1))
613 #define ADDREGNAMES_ARR_INDEX_1(index) \
614 { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
615 #define ADDREGNAMES_ARR_INDEX_2(index) \
616 ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
617 #define ADDREGNAMES_ARR_INDEX_4(index) \
618 ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
619 #define ADDREGNAMES_ARR_INDEX_8(index) \
620 ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
621 #define ADDREGNAMES_ARR_INDEX_16(index) \
622 ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
623 #define ADDREGNAMES_ARR_INDEX_32(index) \
624 ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
626 #define ADDITIONAL_REGISTER_NAMES \
628 ADDREGNAMES_ARR_INDEX_32 (0) \
631 /* Number of actual hardware registers.
632 The hardware registers are assigned numbers for the compiler
633 from 0 to just below FIRST_PSEUDO_REGISTER.
634 All registers that the compiler knows about must be given numbers,
635 even those that are not normally considered general registers. */
637 /* There are many other relevant definitions in sh.md's md_constants. */
639 #define FIRST_GENERAL_REG R0_REG
640 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (15))
641 #define FIRST_FP_REG DR0_REG
642 #define LAST_FP_REG (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1))
643 #define FIRST_XD_REG XD0_REG
644 #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
646 /* Registers that can be accessed through bank0 or bank1 depending on sr.md. */
647 #define FIRST_BANKED_REG R0_REG
648 #define LAST_BANKED_REG R7_REG
650 #define BANKED_REGISTER_P(REGNO) \
651 IN_RANGE ((REGNO), \
652 (unsigned HOST_WIDE_INT) FIRST_BANKED_REG, \
653 (unsigned HOST_WIDE_INT) LAST_BANKED_REG)
655 #define GENERAL_REGISTER_P(REGNO) \
656 IN_RANGE ((REGNO), \
657 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
658 (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
660 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
661 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
662 || ((REGNO) == FRAME_POINTER_REGNUM))
664 #define FP_REGISTER_P(REGNO) \
665 ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
667 #define XD_REGISTER_P(REGNO) \
668 ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
670 #define FP_OR_XD_REGISTER_P(REGNO) \
671 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
673 #define FP_ANY_REGISTER_P(REGNO) \
674 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
676 #define SPECIAL_REGISTER_P(REGNO) \
677 ((REGNO) == GBR_REG || (REGNO) == T_REG \
678 || (REGNO) == MACH_REG || (REGNO) == MACL_REG \
679 || (REGNO) == FPSCR_MODES_REG || (REGNO) == FPSCR_STAT_REG)
681 #define VALID_REGISTER_P(REGNO) \
682 (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
683 || XD_REGISTER_P (REGNO) \
684 || (REGNO) == AP_REG || (REGNO) == RAP_REG \
685 || (REGNO) == FRAME_POINTER_REGNUM \
686 || ((SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
687 || (TARGET_SH2E && (REGNO) == FPUL_REG))
689 /* The mode that should be generally used to store a register by
690 itself in the stack, or to load it back. */
691 #define REGISTER_NATURAL_MODE(REGNO) \
692 (FP_REGISTER_P (REGNO) ? E_SFmode \
693 : XD_REGISTER_P (REGNO) ? E_DFmode : E_SImode)
696 #define FIRST_PSEUDO_REGISTER 156
698 /* Don't count soft frame pointer. */
699 #define DWARF_FRAME_REGISTERS (153)
701 /* 1 for registers that have pervasive standard uses
702 and are not available for the register allocator.
704 Mach register is fixed 'cause it's only 10 bits wide for SH1.
705 It is 32 bits wide for SH2. */
706 #define FIXED_REGISTERS \
708 /* Regular registers. */ \
709 0, 0, 0, 0, 0, 0, 0, 0, \
710 0, 0, 0, 0, 0, 0, 0, 1, \
711 /* r16 is reserved, r18 is the former pr. */ \
712 1, 0, 0, 0, 0, 0, 0, 0, \
713 /* r24 is reserved for the OS; r25, for the assembler or linker. */ \
714 /* r26 is a global variable data pointer; r27 is for constants. */ \
715 1, 1, 1, 1, 0, 0, 0, 0, \
716 0, 0, 0, 0, 0, 0, 0, 0, \
717 0, 0, 0, 0, 0, 0, 0, 0, \
718 0, 0, 0, 0, 0, 0, 0, 0, \
719 0, 0, 0, 0, 0, 0, 0, 1, \
720 /* FP registers. */ \
721 0, 0, 0, 0, 0, 0, 0, 0, \
722 0, 0, 0, 0, 0, 0, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, \
724 0, 0, 0, 0, 0, 0, 0, 0, \
725 0, 0, 0, 0, 0, 0, 0, 0, \
726 0, 0, 0, 0, 0, 0, 0, 0, \
727 0, 0, 0, 0, 0, 0, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, \
729 /* Branch target registers. */ \
730 0, 0, 0, 0, 0, 0, 0, 0, \
731 /* XD registers. */ \
732 0, 0, 0, 0, 0, 0, 0, 0, \
733 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
734 1, 1, 1, 1, 1, 1, 0, 1, \
735 /*"rap", "sfp","fpscr0","fpscr1" */ \
736 1, 1, 1, 1, \
739 /* 1 for registers not available across function calls.
740 These must include the FIXED_REGISTERS and also any
741 registers that can be used without being saved.
742 The latter must include the registers where values are returned
743 and the register where structure-value addresses are passed.
744 Aside from that, you can include as many other registers as you like. */
745 #define CALL_USED_REGISTERS \
747 /* Regular registers. */ \
748 1, 1, 1, 1, 1, 1, 1, 1, \
749 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
750 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
751 across SH5 function calls. */ \
752 0, 0, 0, 0, 0, 0, 0, 1, \
753 1, 1, 1, 1, 1, 1, 1, 1, \
754 1, 1, 1, 1, 0, 0, 0, 0, \
755 0, 0, 0, 0, 1, 1, 1, 1, \
756 1, 1, 1, 1, 0, 0, 0, 0, \
757 0, 0, 0, 0, 0, 0, 0, 0, \
758 0, 0, 0, 0, 1, 1, 1, 1, \
759 /* FP registers. */ \
760 1, 1, 1, 1, 1, 1, 1, 1, \
761 1, 1, 1, 1, 0, 0, 0, 0, \
762 1, 1, 1, 1, 1, 1, 1, 1, \
763 1, 1, 1, 1, 1, 1, 1, 1, \
764 1, 1, 1, 1, 0, 0, 0, 0, \
765 0, 0, 0, 0, 0, 0, 0, 0, \
766 0, 0, 0, 0, 0, 0, 0, 0, \
767 0, 0, 0, 0, 0, 0, 0, 0, \
768 /* Branch target registers. */ \
769 1, 1, 1, 1, 1, 0, 0, 0, \
770 /* XD registers. */ \
771 1, 1, 1, 1, 1, 1, 0, 0, \
772 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
773 1, 1, 1, 1, 1, 1, 1, 1, \
774 /*"rap", "sfp","fpscr0","fpscr1" */ \
775 1, 1, 1, 1, \
778 /* CALL_REALLY_USED_REGISTERS is used as a default setting, which is then
779 overridden by -fcall-saved-* and -fcall-used-* options and then by
780 TARGET_CONDITIONAL_REGISTER_USAGE. There we might want to make a
781 register call-used, yet fixed, like PIC_OFFSET_TABLE_REGNUM. */
782 #define CALL_REALLY_USED_REGISTERS \
784 /* Regular registers. */ \
785 1, 1, 1, 1, 1, 1, 1, 1, \
786 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
787 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
788 across SH5 function calls. */ \
789 0, 0, 0, 0, 0, 0, 0, 1, \
790 1, 1, 1, 1, 1, 1, 1, 1, \
791 1, 1, 1, 1, 0, 0, 0, 0, \
792 0, 0, 0, 0, 1, 1, 1, 1, \
793 1, 1, 1, 1, 0, 0, 0, 0, \
794 0, 0, 0, 0, 0, 0, 0, 0, \
795 0, 0, 0, 0, 1, 1, 1, 1, \
796 /* FP registers. */ \
797 1, 1, 1, 1, 1, 1, 1, 1, \
798 1, 1, 1, 1, 0, 0, 0, 0, \
799 1, 1, 1, 1, 1, 1, 1, 1, \
800 1, 1, 1, 1, 1, 1, 1, 1, \
801 1, 1, 1, 1, 0, 0, 0, 0, \
802 0, 0, 0, 0, 0, 0, 0, 0, \
803 0, 0, 0, 0, 0, 0, 0, 0, \
804 0, 0, 0, 0, 0, 0, 0, 0, \
805 /* Branch target registers. */ \
806 1, 1, 1, 1, 1, 0, 0, 0, \
807 /* XD registers. */ \
808 1, 1, 1, 1, 1, 1, 0, 0, \
809 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
810 0, 1, 1, 1, 1, 1, 1, 1, \
811 /*"rap", "sfp","fpscr0","fpscr1" */ \
812 1, 1, 0, 0, \
815 /* Return number of consecutive hard regs needed starting at reg REGNO
816 to hold something of mode MODE.
817 This is ordinarily the length in words of a value of mode MODE
818 but can be less for certain modes in special long registers.
820 On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
821 #define HARD_REGNO_NREGS(REGNO, MODE) \
822 (XD_REGISTER_P (REGNO) \
823 ? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
824 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
826 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
827 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
828 sh_hard_regno_mode_ok ((REGNO), (MODE))
830 /* Value is 1 if it is a good idea to tie two pseudo registers
831 when one has mode MODE1 and one has mode MODE2.
832 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
833 for any hard reg, then this must be 0 for correct output.
834 That's the case for xd registers: we don't hold SFmode values in
835 them, so we can't tie an SFmode pseudos with one in another
836 floating-point mode. */
837 #define MODES_TIEABLE_P(MODE1, MODE2) \
838 ((MODE1) == (MODE2) \
839 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
840 && (((MODE1) != SFmode && (MODE2) != SFmode))))
842 /* Specify the modes required to caller save a given hard regno. */
843 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
844 sh_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
846 /* A C expression that is nonzero if hard register NEW_REG can be
847 considered for use as a rename register for OLD_REG register */
848 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
849 sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
851 /* Specify the registers used for certain standard purposes.
852 The values of these macros are register numbers. */
854 /* Define this if the program counter is overloaded on a register. */
855 /* #define PC_REGNUM 15*/
857 /* Register to use for pushing function arguments. */
858 #define STACK_POINTER_REGNUM SP_REG
860 /* Base register for access to local variables of the function. */
861 #define HARD_FRAME_POINTER_REGNUM FP_REG
863 /* Base register for access to local variables of the function. */
864 #define FRAME_POINTER_REGNUM 153
866 /* Fake register that holds the address on the stack of the
867 current function's return address. */
868 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
870 /* Register to hold the addressing base for position independent
871 code access to data items. */
872 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
874 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
875 entries would need to handle saving and restoring it). */
876 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
878 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
880 /* Definitions for register eliminations.
882 We have three registers that can be eliminated on the SH. First, the
883 frame pointer register can often be eliminated in favor of the stack
884 pointer register. Secondly, the argument pointer register can always be
885 eliminated; it is replaced with either the stack or frame pointer.
886 Third, there is the return address pointer, which can also be replaced
887 with either the stack or the frame pointer.
889 This is an array of structures. Each structure initializes one pair
890 of eliminable registers. The "from" register number is given first,
891 followed by "to". Eliminations of the same "from" register are listed
892 in order of preference.
894 If you add any registers here that are not actually hard registers,
895 and that have any alternative of elimination that doesn't always
896 apply, you need to amend calc_live_regs to exclude it, because
897 reload spills all eliminable registers where it sees an
898 can_eliminate == 0 entry, thus making them 'live' .
899 If you add any hard registers that can be eliminated in different
900 ways, you have to patch reload to spill them only when all alternatives
901 of elimination fail. */
902 #define ELIMINABLE_REGS \
903 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
904 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
905 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
906 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
907 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
908 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
909 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
911 /* Define the offset between two registers, one to be eliminated, and the other
912 its replacement, at the start of a routine. */
913 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
914 OFFSET = initial_elimination_offset ((FROM), (TO))
916 /* Base register for access to arguments of the function. */
917 #define ARG_POINTER_REGNUM AP_REG
919 /* Register in which the static-chain is passed to a function. */
920 #define STATIC_CHAIN_REGNUM (3)
922 /* Don't default to pcc-struct-return, because we have already specified
923 exactly how to return structures in the TARGET_RETURN_IN_MEMORY
924 target hook. */
925 #define DEFAULT_PCC_STRUCT_RETURN 0
928 /* Define the classes of registers for register constraints in the
929 machine description. Also define ranges of constants.
931 One of the classes must always be named ALL_REGS and include all hard regs.
932 If there is more than one class, another class must be named NO_REGS
933 and contain no registers.
935 The name GENERAL_REGS must be the name of a class (or an alias for
936 another name such as ALL_REGS). This is the class of registers
937 that is allowed by "g" or "r" in a register constraint.
938 Also, registers outside this class are allocated only when
939 instructions express preferences for them.
941 The classes must be numbered in nondecreasing order; that is,
942 a larger-numbered class must never be contained completely
943 in a smaller-numbered class.
945 For any two classes, it is very desirable that there be another
946 class that represents their union.
948 The SH has two sorts of general registers, R0 and the rest. R0 can
949 be used as the destination of some of the arithmetic ops. There are
950 also some special purpose registers; the T bit register, the
951 Procedure Return Register and the Multiply Accumulate Registers.
953 Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
954 reg_class_subunion. We don't want to have an actual union class
955 of these, because it would only be used when both classes are calculated
956 to give the same cost, but there is only one FPUL register.
957 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
958 applying to the actual instruction alternative considered. E.g., the
959 y/r alternative of movsi_ie is considered to have no more cost that
960 the r/r alternative, which is patently untrue. */
961 enum reg_class
963 NO_REGS,
964 R0_REGS,
965 PR_REGS,
966 T_REGS,
967 MAC_REGS,
968 FPUL_REGS,
969 SIBCALL_REGS,
970 NON_SP_REGS,
971 GENERAL_REGS,
972 FP0_REGS,
973 FP_REGS,
974 DF_REGS,
975 FPSCR_REGS,
976 GENERAL_FP_REGS,
977 GENERAL_DF_REGS,
978 TARGET_REGS,
979 ALL_REGS,
980 LIM_REG_CLASSES
983 #define N_REG_CLASSES (int) LIM_REG_CLASSES
985 /* Give names of register classes as strings for dump file. */
986 #define REG_CLASS_NAMES \
988 "NO_REGS", \
989 "R0_REGS", \
990 "PR_REGS", \
991 "T_REGS", \
992 "MAC_REGS", \
993 "FPUL_REGS", \
994 "SIBCALL_REGS", \
995 "NON_SP_REGS", \
996 "GENERAL_REGS", \
997 "FP0_REGS", \
998 "FP_REGS", \
999 "DF_REGS", \
1000 "FPSCR_REGS", \
1001 "GENERAL_FP_REGS", \
1002 "GENERAL_DF_REGS", \
1003 "TARGET_REGS", \
1004 "ALL_REGS", \
1007 /* Define which registers fit in which classes.
1008 This is an initializer for a vector of HARD_REG_SET
1009 of length N_REG_CLASSES. */
1010 #define REG_CLASS_CONTENTS \
1012 /* NO_REGS: */ \
1013 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1014 /* R0_REGS: */ \
1015 { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1016 /* PR_REGS: */ \
1017 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
1018 /* T_REGS: */ \
1019 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
1020 /* MAC_REGS: */ \
1021 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
1022 /* FPUL_REGS: */ \
1023 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00400000 }, \
1024 /* SIBCALL_REGS: Initialized in TARGET_CONDITIONAL_REGISTER_USAGE. */ \
1025 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1026 /* NON_SP_REGS: */ \
1027 { 0xffff7fff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
1028 /* GENERAL_REGS: */ \
1029 { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
1030 /* FP0_REGS: */ \
1031 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
1032 /* FP_REGS: */ \
1033 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1034 /* DF_REGS: */ \
1035 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1036 /* FPSCR_REGS: */ \
1037 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
1038 /* GENERAL_FP_REGS: */ \
1039 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 }, \
1040 /* GENERAL_DF_REGS: */ \
1041 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 }, \
1042 /* TARGET_REGS: */ \
1043 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
1044 /* ALL_REGS: */ \
1045 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0fffffff }, \
1048 /* The same information, inverted:
1049 Return the class number of the smallest class containing
1050 reg number REGNO. This could be a conditional expression
1051 or could index an array. */
1052 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
1053 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1055 /* When this hook returns true for MODE, the compiler allows
1056 registers explicitly used in the rtl to be used as spill registers
1057 but prevents the compiler from extending the lifetime of these
1058 registers. */
1059 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1060 sh_small_register_classes_for_mode_p
1062 /* The order in which register should be allocated. */
1063 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1064 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
1065 spilled or used otherwise, we better have the FP_REGS allocated first. */
1066 #define REG_ALLOC_ORDER \
1067 {/* Caller-saved FPRs */ \
1068 65, 66, 67, 68, 69, 70, 71, 64, \
1069 72, 73, 74, 75, 80, 81, 82, 83, \
1070 84, 85, 86, 87, 88, 89, 90, 91, \
1071 92, 93, 94, 95, 96, 97, 98, 99, \
1072 /* Callee-saved FPRs */ \
1073 76, 77, 78, 79,100,101,102,103, \
1074 104,105,106,107,108,109,110,111, \
1075 112,113,114,115,116,117,118,119, \
1076 120,121,122,123,124,125,126,127, \
1077 136,137,138,139,140,141,142,143, \
1078 /* FPSCR */ 151, \
1079 /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1080 1, 2, 3, 7, 6, 5, 4, 0, \
1081 8, 9, 17, 19, 20, 21, 22, 23, \
1082 36, 37, 38, 39, 40, 41, 42, 43, \
1083 60, 61, 62, \
1084 /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1085 10, 11, 12, 13, 14, 18, \
1086 /* SH5 callee-saved GPRs */ \
1087 28, 29, 30, 31, 32, 33, 34, 35, \
1088 44, 45, 46, 47, 48, 49, 50, 51, \
1089 52, 53, 54, 55, 56, 57, 58, 59, \
1090 /* FPUL */ 150, \
1091 /* Fixed registers */ \
1092 15, 16, 24, 25, 26, 27, 63,144, \
1093 145,146,147,148,149,152,153,154,155 }
1095 /* The class value for index registers, and the one for base regs. */
1096 #define INDEX_REG_CLASS R0_REGS
1097 #define BASE_REG_CLASS GENERAL_REGS
1099 /* Defines for sh.md and constraints.md. */
1101 #define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1102 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1104 #define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1105 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1107 #define ZERO_EXTRACT_ANDMASK(EXTRACT_SZ_RTX, EXTRACT_POS_RTX)\
1108 (((1 << INTVAL (EXTRACT_SZ_RTX)) - 1) << INTVAL (EXTRACT_POS_RTX))
1110 /* Return the maximum number of consecutive registers
1111 needed to represent mode MODE in a register of class CLASS.
1113 If TARGET_SHMEDIA, we need two FP registers per word.
1114 Otherwise we will need at most one register per word. */
1115 #define CLASS_MAX_NREGS(CLASS, MODE) \
1116 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1118 /* If defined, gives a class of registers that cannot be used as the
1119 operand of a SUBREG that changes the mode of the object illegally.
1120 ??? We need to renumber the internal numbers for the frnn registers
1121 when in little endian in order to allow mode size changes. */
1122 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1123 sh_cannot_change_mode_class (FROM, TO, CLASS)
1125 /* Stack layout; function entry, exit and calling. */
1127 /* Define the number of registers that can hold parameters.
1128 These macros are used only in other macro definitions below. */
1129 #define NPARM_REGS(MODE) \
1130 (TARGET_FPU_ANY && (MODE) == SFmode \
1131 ? 8 \
1132 : TARGET_FPU_DOUBLE \
1133 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1134 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1135 ? 8 \
1136 : 4)
1138 #define FIRST_PARM_REG (FIRST_GENERAL_REG + 4)
1139 #define FIRST_RET_REG (FIRST_GENERAL_REG + 0)
1141 #define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
1142 #define FIRST_FP_RET_REG FIRST_FP_REG
1144 /* Define this if pushing a word on the stack
1145 makes the stack pointer a smaller address. */
1146 #define STACK_GROWS_DOWNWARD 1
1148 /* Define this macro to nonzero if the addresses of local variable slots
1149 are at negative offsets from the frame pointer. */
1150 #define FRAME_GROWS_DOWNWARD 1
1152 /* Offset from the frame pointer to the first local variable slot to
1153 be allocated. */
1154 #define STARTING_FRAME_OFFSET 0
1156 /* If we generate an insn to push BYTES bytes,
1157 this says how many the stack pointer really advances by. */
1158 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1159 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1160 do correct alignment. */
1161 #if 0
1162 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
1163 #endif
1165 /* Offset of first parameter from the argument pointer register value. */
1166 #define FIRST_PARM_OFFSET(FNDECL) 0
1168 /* Value is the number of bytes of arguments automatically popped when
1169 calling a subroutine.
1170 CUM is the accumulated argument list. */
1171 #define CALL_POPS_ARGS(CUM) (0)
1173 /* Some subroutine macros specific to this machine. */
1175 #define BASE_RETURN_VALUE_REG(MODE) \
1176 ((TARGET_FPU_ANY && ((MODE) == SFmode)) \
1177 ? FIRST_FP_RET_REG \
1178 : TARGET_FPU_ANY && (MODE) == SCmode \
1179 ? FIRST_FP_RET_REG \
1180 : (TARGET_FPU_DOUBLE \
1181 && ((MODE) == DFmode || (MODE) == SFmode \
1182 || (MODE) == DCmode || (MODE) == SCmode )) \
1183 ? FIRST_FP_RET_REG \
1184 : FIRST_RET_REG)
1186 #define BASE_ARG_REG(MODE) \
1187 ((TARGET_SH2E && ((MODE) == SFmode)) \
1188 ? FIRST_FP_PARM_REG \
1189 : TARGET_FPU_DOUBLE \
1190 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1191 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1192 ? FIRST_FP_PARM_REG \
1193 : FIRST_PARM_REG)
1195 /* 1 if N is a possible register number for function argument passing. */
1196 /* ??? There are some callers that pass REGNO as int, and others that pass
1197 it as unsigned. We get warnings unless we do casts everywhere. */
1198 #define FUNCTION_ARG_REGNO_P(REGNO) \
1199 (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \
1200 && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1201 || (TARGET_FPU_ANY \
1202 && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \
1203 && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \
1204 + NPARM_REGS (SFmode))))
1206 #ifdef __cplusplus
1208 /* Define a data type for recording info about an argument list
1209 during the scan of that argument list. This data type should
1210 hold all necessary information about the function itself
1211 and about the args processed so far, enough to enable macros
1212 such as FUNCTION_ARG to determine where the next arg should go.
1214 On SH, this is a single integer, which is a number of words
1215 of arguments scanned so far (including the invisible argument,
1216 if any, which holds the structure-value-address).
1217 Thus NARGREGS or more means all following args should go on the stack. */
1219 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1221 struct sh_args
1223 /* How many SH_ARG_INT and how many SH_ARG_FLOAT args there are. */
1224 int arg_count[2];
1226 bool force_mem;
1228 /* Nonzero if a prototype is available for the function. */
1229 bool prototype_p;
1231 /* The number of an odd floating-point register, that should be used
1232 for the next argument of type float. */
1233 int free_single_fp_reg;
1235 /* Whether we're processing an outgoing function call. */
1236 bool outgoing;
1238 /* This is set to nonzero when the call in question must use the Renesas ABI,
1239 even without the -mrenesas option. */
1240 bool renesas_abi;
1243 typedef sh_args CUMULATIVE_ARGS;
1245 /* Set when processing a function with interrupt attribute. */
1246 extern bool current_function_interrupt;
1248 #endif // __cplusplus
1250 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1251 for a call to a function whose data type is FNTYPE.
1252 For a library call, FNTYPE is 0.
1254 On SH, the offset always starts at 0: the first parm reg is always
1255 the same reg for a given argument class.
1257 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1258 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1259 sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL),\
1260 (N_NAMED_ARGS), VOIDmode)
1262 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1263 sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1265 /* By accident we got stuck with passing SCmode on SH4 little endian
1266 in two registers that are nominally successive - which is different from
1267 two single SFmode values, where we take endianness translation into
1268 account. That does not work at all if an odd number of registers is
1269 already in use, so that got fixed, but library functions are still more
1270 likely to use complex numbers without mixing them with SFmode arguments
1271 (which in C would have to be structures), so for the sake of ABI
1272 compatibility the way SCmode values are passed when an even number of
1273 FP registers is in use remains different from a pair of SFmode values for
1274 now.
1275 I.e.:
1276 foo (double); a: fr5,fr4
1277 foo (float a, float b); a: fr5 b: fr4
1278 foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
1279 this should be the other way round...
1280 foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */
1281 #define FUNCTION_ARG_SCmode_WART 1
1283 /* Minimum alignment for an argument to be passed by callee-copy
1284 reference. We need such arguments to be aligned to 8 byte
1285 boundaries, because they'll be loaded using quad loads. */
1286 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1288 /* Perform any needed actions needed for a function that is receiving a
1289 variable number of arguments. */
1291 /* Call the function profiler with a given profile label.
1292 We use two .aligns, so as to make sure that both the .long is aligned
1293 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1294 from the trapa instruction. */
1295 #define FUNCTION_PROFILER(STREAM,LABELNO) \
1297 fprintf((STREAM), "\t.align\t2\n"); \
1298 fprintf((STREAM), "\ttrapa\t#33\n"); \
1299 fprintf((STREAM), "\t.align\t2\n"); \
1300 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
1303 /* Define this macro if the code for function profiling should come
1304 before the function prologue. Normally, the profiling code comes
1305 after. */
1306 #define PROFILE_BEFORE_PROLOGUE
1308 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1309 the stack pointer does not matter. The value is tested only in
1310 functions that have frame pointers.
1311 No definition is equivalent to always zero. */
1312 #define EXIT_IGNORE_STACK 1
1315 On the SH, the trampoline looks like
1316 2 0002 D202 mov.l l2,r2
1317 1 0000 D301 mov.l l1,r3
1318 3 0004 422B jmp @r2
1319 4 0006 0009 nop
1320 5 0008 00000000 l1: .long area
1321 6 000c 00000000 l2: .long function */
1323 /* Length in units of the trampoline for entering a nested function. */
1324 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 32 : 16)
1326 /* Alignment required for a trampoline in bits. */
1327 #define TRAMPOLINE_ALIGNMENT \
1328 ((CACHE_LOG < 3 \
1329 || (optimize_size && ! (TARGET_HARD_SH4))) ? 32 \
1330 : 64)
1332 /* A C expression whose value is RTL representing the value of the return
1333 address for the frame COUNT steps up from the current frame.
1334 FRAMEADDR is already the frame pointer of the COUNT frame, so we
1335 can ignore COUNT. */
1336 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1337 (((COUNT) == 0) ? sh_get_pr_initial_val () : NULL_RTX)
1339 /* A C expression whose value is RTL representing the location of the
1340 incoming return address at the beginning of any function, before the
1341 prologue. This RTL is either a REG, indicating that the return
1342 value is saved in REG, or a MEM representing a location in
1343 the stack. */
1344 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PR_REG)
1346 /* Addressing modes, and classification of registers for them. */
1347 #define HAVE_POST_INCREMENT TARGET_SH1
1348 #define HAVE_PRE_DECREMENT TARGET_SH1
1350 #define USE_LOAD_POST_INCREMENT(mode) TARGET_SH1
1351 #define USE_LOAD_PRE_DECREMENT(mode) TARGET_SH2A
1352 #define USE_STORE_POST_INCREMENT(mode) TARGET_SH2A
1353 #define USE_STORE_PRE_DECREMENT(mode) TARGET_SH1
1355 /* If a memory clear move would take CLEAR_RATIO or more simple
1356 move-instruction pairs, we will do a setmem instead. */
1358 #define CLEAR_RATIO(speed) ((speed) ? 15 : 3)
1360 /* Macros to check register numbers against specific register classes. */
1362 /* These assume that REGNO is a hard or pseudo reg number.
1363 They give nonzero only if REGNO is a hard reg of the suitable class
1364 or a pseudo reg currently allocated to a suitable hard reg.
1365 Since they use reg_renumber, they are safe only once reg_renumber
1366 has been allocated, which happens in reginfo.c during register
1367 allocation. */
1368 #define REGNO_OK_FOR_BASE_P(REGNO) \
1369 (GENERAL_OR_AP_REGISTER_P (REGNO) \
1370 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
1371 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1372 ((REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
1374 /* True if SYMBOL + OFFSET constants must refer to something within
1375 SYMBOL's section. */
1376 #define SH_OFFSETS_MUST_BE_WITHIN_SECTIONS_P TARGET_FDPIC
1378 /* Maximum number of registers that can appear in a valid memory
1379 address. */
1380 #define MAX_REGS_PER_ADDRESS 2
1382 /* Recognize any constant value that is a valid address. */
1383 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
1385 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1386 and check its validity for a certain class.
1387 The suitable hard regs are always accepted and all pseudo regs
1388 are also accepted if STRICT is not set. */
1390 /* Nonzero if X is a reg that can be used as a base reg. */
1391 #define REG_OK_FOR_BASE_P(X, STRICT) \
1392 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) \
1393 || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1395 /* Nonzero if X is a reg that can be used as an index. */
1396 #define REG_OK_FOR_INDEX_P(X, STRICT) \
1397 ((REGNO (X) == R0_REG) \
1398 || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1400 /* Nonzero if X/OFFSET is a reg that can be used as an index. */
1401 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET, STRICT) \
1402 ((REGNO (X) == R0_REG && OFFSET == 0) \
1403 || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1405 /* Macros for extra constraints. */
1407 #define IS_PC_RELATIVE_LOAD_ADDR_P(OP) \
1408 ((GET_CODE ((OP)) == LABEL_REF) \
1409 || (GET_CODE ((OP)) == CONST \
1410 && GET_CODE (XEXP ((OP), 0)) == PLUS \
1411 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
1412 && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1414 #define IS_NON_EXPLICIT_CONSTANT_P(OP) \
1415 (CONSTANT_P (OP) \
1416 && !CONST_INT_P (OP) \
1417 && GET_CODE (OP) != CONST_DOUBLE \
1418 && (!flag_pic \
1419 || (LEGITIMATE_PIC_OPERAND_P (OP) \
1420 && !PIC_ADDR_P (OP) \
1421 && GET_CODE (OP) != LABEL_REF)))
1423 #define GOT_ENTRY_P(OP) \
1424 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1425 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
1427 #define GOTPLT_ENTRY_P(OP) \
1428 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1429 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
1431 #define UNSPEC_GOTOFF_P(OP) \
1432 (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
1434 #define GOTOFF_P(OP) \
1435 (GET_CODE (OP) == CONST \
1436 && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
1437 || (GET_CODE (XEXP ((OP), 0)) == PLUS \
1438 && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
1439 && CONST_INT_P (XEXP (XEXP ((OP), 0), 1)))))
1441 #define PIC_ADDR_P(OP) \
1442 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1443 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
1445 #define PCREL_SYMOFF_P(OP) \
1446 (GET_CODE (OP) == CONST \
1447 && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1448 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PCREL_SYMOFF)
1450 #define NON_PIC_REFERENCE_P(OP) \
1451 (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
1452 || (GET_CODE (OP) == CONST \
1453 && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
1454 || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF)) \
1455 || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
1456 && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
1457 || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF) \
1458 && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1460 #define PIC_REFERENCE_P(OP) \
1461 (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
1462 || GOTOFF_P (OP) || PIC_ADDR_P (OP))
1464 #define MAYBE_BASE_REGISTER_RTX_P(X, STRICT) \
1465 ((REG_P (X) && REG_OK_FOR_BASE_P (X, STRICT)) \
1466 || (GET_CODE (X) == SUBREG \
1467 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
1468 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
1469 && REG_P (SUBREG_REG (X)) \
1470 && REG_OK_FOR_BASE_P (SUBREG_REG (X), STRICT)))
1472 /* Since this must be r0, which is a single register class, we must check
1473 SUBREGs more carefully, to be sure that we don't accept one that extends
1474 outside the class. */
1475 #define MAYBE_INDEX_REGISTER_RTX_P(X, STRICT) \
1476 ((REG_P (X) && REG_OK_FOR_INDEX_P (X, STRICT)) \
1477 || (GET_CODE (X) == SUBREG \
1478 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
1479 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
1480 && REG_P (SUBREG_REG (X)) \
1481 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X), STRICT)))
1483 #ifdef REG_OK_STRICT
1484 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, true)
1485 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, true)
1486 #else
1487 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, false)
1488 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, false)
1489 #endif
1492 /* A C compound statement that attempts to replace X, which is an address
1493 that needs reloading, with a valid memory address for an operand of
1494 mode MODE. WIN is a C statement label elsewhere in the code. */
1495 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1496 do { \
1497 if (sh_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE))) \
1498 goto WIN; \
1499 } while (0)
1501 /* Specify the machine mode that this machine uses
1502 for the index in the tablejump instruction. */
1503 #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
1505 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1506 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
1507 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1508 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1509 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1510 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
1511 : SImode)
1513 /* Define as C expression which evaluates to nonzero if the tablejump
1514 instruction expects the table to contain offsets from the address of the
1515 table.
1516 Do not define this if the table should contain absolute addresses. */
1517 #define CASE_VECTOR_PC_RELATIVE 1
1519 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
1520 #define FLOAT_TYPE_SIZE 32
1522 /* Since the SH2e has only `float' support, it is desirable to make all
1523 floating point types equivalent to `float'. */
1524 #define DOUBLE_TYPE_SIZE (TARGET_FPU_SINGLE_ONLY ? 32 : 64)
1526 /* 'char' is signed by default. */
1527 #define DEFAULT_SIGNED_CHAR 1
1529 /* The type of size_t unsigned int. */
1530 #define SIZE_TYPE ("unsigned int")
1532 #undef PTRDIFF_TYPE
1533 #define PTRDIFF_TYPE ("int")
1535 #define WCHAR_TYPE "short unsigned int"
1536 #define WCHAR_TYPE_SIZE 16
1538 #define SH_ELF_WCHAR_TYPE "long int"
1540 /* Max number of bytes we can move from memory to memory
1541 in one reasonably fast instruction. */
1542 #define MOVE_MAX (4)
1544 /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
1545 MOVE_MAX is not a compile-time constant. */
1546 #define MAX_MOVE_MAX 8
1548 /* Max number of bytes we want move_by_pieces to be able to copy
1549 efficiently. */
1550 #define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
1552 /* Define if operations between registers always perform the operation
1553 on the full register even if a narrower mode is specified. */
1554 #define WORD_REGISTER_OPERATIONS 1
1556 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1557 will either zero-extend or sign-extend. The value of this macro should
1558 be the code that says which one of the two operations is implicitly
1559 done, UNKNOWN if none. */
1560 #define LOAD_EXTEND_OP(MODE) ((MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
1562 /* Define if loading short immediate values into registers sign extends. */
1563 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1565 /* Nonzero if access to memory by bytes is no faster than for words. */
1566 #define SLOW_BYTE_ACCESS 1
1568 /* Nonzero if the target supports dynamic shift instructions
1569 like shad and shld. */
1570 #define TARGET_DYNSHIFT (TARGET_SH3 || TARGET_SH2A)
1572 /* The cost of using the dynamic shift insns (shad, shld) are the same
1573 if they are available. If they are not available a library function will
1574 be emitted instead, which is more expensive. */
1575 #define SH_DYNAMIC_SHIFT_COST (TARGET_DYNSHIFT ? 1 : 20)
1577 /* Defining SHIFT_COUNT_TRUNCATED tells the combine pass that code like
1578 (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1579 This is not generally true when hardware dynamic shifts (shad, shld) are
1580 used, because they check the sign bit _before_ the modulo op. The sign
1581 bit determines whether it is a left shift or a right shift:
1582 if (Y < 0)
1583 return X << (Y & 31);
1584 else
1585 return X >> (-Y) & 31);
1587 The dynamic shift library routines in lib1funcs.S do not use the sign bit
1588 like the hardware dynamic shifts and truncate the shift count to 31.
1589 We define SHIFT_COUNT_TRUNCATED to 0 and express the implied shift count
1590 truncation in the library function call patterns, as this gives slightly
1591 more compact code. */
1592 #define SHIFT_COUNT_TRUNCATED (0)
1594 /* All integers have the same format so truncation is easy. */
1595 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) (true)
1597 /* Define this if addresses of constant functions
1598 shouldn't be put through pseudo regs where they can be cse'd.
1599 Desirable on machines where ordinary constants are expensive
1600 but a CALL with constant address is cheap. */
1601 /*#define NO_FUNCTION_CSE 1*/
1603 /* The machine modes of pointers and functions. */
1604 #define Pmode (SImode)
1605 #define FUNCTION_MODE Pmode
1607 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
1608 are actually function calls with some special constraints on arguments
1609 and register usage.
1611 These macros tell reorg that the references to arguments and
1612 register clobbers for insns of type sfunc do not appear to happen
1613 until after the millicode call. This allows reorg to put insns
1614 which set the argument registers into the delay slot of the millicode
1615 call -- thus they act more like traditional CALL_INSNs.
1617 get_attr_is_sfunc will try to recognize the given insn, so make sure to
1618 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1619 in particular. */
1621 #define INSN_SETS_ARE_DELAYED(X) \
1622 ((NONJUMP_INSN_P (X) \
1623 && GET_CODE (PATTERN (X)) != SEQUENCE \
1624 && GET_CODE (PATTERN (X)) != USE \
1625 && GET_CODE (PATTERN (X)) != CLOBBER \
1626 && get_attr_is_sfunc (X)))
1628 #define INSN_REFERENCES_ARE_DELAYED(X) \
1629 ((NONJUMP_INSN_P (X) \
1630 && GET_CODE (PATTERN (X)) != SEQUENCE \
1631 && GET_CODE (PATTERN (X)) != USE \
1632 && GET_CODE (PATTERN (X)) != CLOBBER \
1633 && get_attr_is_sfunc (X)))
1636 /* Position Independent Code. */
1638 /* We can't directly access anything that contains a symbol,
1639 nor can we indirect via the constant pool. */
1640 #define LEGITIMATE_PIC_OPERAND_P(X) \
1641 ((! nonpic_symbol_mentioned_p (X) \
1642 && (GET_CODE (X) != SYMBOL_REF \
1643 || ! CONSTANT_POOL_ADDRESS_P (X) \
1644 || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))))
1646 #define SYMBOLIC_CONST_P(X) \
1647 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
1648 && nonpic_symbol_mentioned_p (X))
1650 /* Compute extra cost of moving data between one register class
1651 and another. */
1653 /* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
1654 uses this information. Hence, the general register <-> floating point
1655 register information here is not used for SFmode. */
1656 #define REGCLASS_HAS_GENERAL_REG(CLASS) \
1657 ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS || (CLASS) == NON_SP_REGS \
1658 || ((CLASS) == SIBCALL_REGS))
1660 #define REGCLASS_HAS_FP_REG(CLASS) \
1661 ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
1662 || (CLASS) == DF_REGS)
1664 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
1665 would be so that people with slow memory systems could generate
1666 different code that does fewer memory accesses. */
1668 /* A C expression for the cost of a branch instruction. A value of 1
1669 is the default; other values are interpreted relative to that. */
1670 #define BRANCH_COST(speed_p, predictable_p) sh_branch_cost
1672 /* Assembler output control. */
1674 /* A C string constant describing how to begin a comment in the target
1675 assembler language. The compiler assumes that the comment will end at
1676 the end of the line. */
1677 #define ASM_COMMENT_START "!"
1679 #define ASM_APP_ON ""
1680 #define ASM_APP_OFF ""
1681 #define FILE_ASM_OP "\t.file\n"
1682 #define SET_ASM_OP "\t.set\t"
1684 /* How to change between sections. */
1685 #define TEXT_SECTION_ASM_OP "\t.text"
1686 #define DATA_SECTION_ASM_OP "\t.data"
1688 #if defined CRT_BEGIN || defined CRT_END
1689 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
1690 #undef TEXT_SECTION_ASM_OP
1691 #define TEXT_SECTION_ASM_OP "\t.text"
1692 #endif
1694 #ifndef BSS_SECTION_ASM_OP
1695 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1696 #endif
1698 #ifndef ASM_OUTPUT_ALIGNED_BSS
1699 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1700 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1701 #endif
1703 /* Define this so that jump tables go in same section as the current function,
1704 which could be text or it could be a user defined section. */
1705 #define JUMP_TABLES_IN_TEXT_SECTION 1
1707 #undef DO_GLOBAL_CTORS_BODY
1708 #define DO_GLOBAL_CTORS_BODY \
1710 typedef void (*pfunc) (void); \
1711 extern pfunc __ctors[]; \
1712 extern pfunc __ctors_end[]; \
1713 pfunc *p; \
1714 for (p = __ctors_end; p > __ctors; ) \
1716 (*--p)(); \
1720 #undef DO_GLOBAL_DTORS_BODY
1721 #define DO_GLOBAL_DTORS_BODY \
1723 typedef void (*pfunc) (void); \
1724 extern pfunc __dtors[]; \
1725 extern pfunc __dtors_end[]; \
1726 pfunc *p; \
1727 for (p = __dtors; p < __dtors_end; p++) \
1729 (*p)(); \
1733 #define ASM_OUTPUT_REG_PUSH(file, v) \
1735 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v)); \
1738 #define ASM_OUTPUT_REG_POP(file, v) \
1740 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v)); \
1743 /* DBX register number for a given compiler register number. */
1744 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
1745 to match gdb. */
1746 /* expand_builtin_init_dwarf_reg_sizes uses this to test if a
1747 register exists, so we should return -1 for invalid register numbers. */
1748 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
1750 #define SH_DBX_REGISTER_NUMBER(REGNO) \
1751 (IN_RANGE ((REGNO), \
1752 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
1753 FIRST_GENERAL_REG + 15U) \
1754 ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
1755 : ((int) (REGNO) >= FIRST_FP_REG \
1756 && ((int) (REGNO) \
1757 <= (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1)))) \
1758 ? ((unsigned) (REGNO) - FIRST_FP_REG + 25) \
1759 : XD_REGISTER_P (REGNO) \
1760 ? ((unsigned) (REGNO) - FIRST_XD_REG + 87) \
1761 : (REGNO) == PR_REG \
1762 ? (17) \
1763 : (REGNO) == GBR_REG \
1764 ? (18) \
1765 : (REGNO) == MACH_REG \
1766 ? (20) \
1767 : (REGNO) == MACL_REG \
1768 ? (21) \
1769 : (REGNO) == T_REG \
1770 ? (22) \
1771 : (REGNO) == FPUL_REG \
1772 ? (23) \
1773 : (REGNO) == FPSCR_REG \
1774 ? (24) \
1775 : (unsigned) -1)
1777 /* This is how to output an assembler line
1778 that says to advance the location counter
1779 to a multiple of 2**LOG bytes. */
1781 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1782 if ((LOG) != 0) \
1783 fprintf ((FILE), "\t.align %d\n", (LOG))
1785 /* Globalizing directive for a label. */
1786 #define GLOBAL_ASM_OP "\t.global\t"
1788 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
1790 /* Output a relative address table. */
1791 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
1792 switch (GET_MODE (BODY)) \
1794 case E_SImode: \
1795 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
1796 break; \
1797 case E_HImode: \
1798 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
1799 break; \
1800 case E_QImode: \
1801 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
1802 break; \
1803 default: \
1804 break; \
1807 /* Output an absolute table element. */
1808 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
1809 if (! optimize || TARGET_BIGTABLE) \
1810 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
1811 else \
1812 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
1815 /* A C statement to be executed just prior to the output of
1816 assembler code for INSN, to modify the extracted operands so
1817 they will be output differently.
1819 Here the argument OPVEC is the vector containing the operands
1820 extracted from INSN, and NOPERANDS is the number of elements of
1821 the vector which contain meaningful data for this insn.
1822 The contents of this vector are what will be used to convert the insn
1823 template into assembler code, so you can change the assembler output
1824 by changing the contents of the vector. */
1825 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1826 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
1828 /* Which processor to schedule for. The elements of the enumeration must
1829 match exactly the cpu attribute in the sh.md file. */
1830 enum processor_type {
1831 PROCESSOR_SH1,
1832 PROCESSOR_SH2,
1833 PROCESSOR_SH2E,
1834 PROCESSOR_SH2A,
1835 PROCESSOR_SH3,
1836 PROCESSOR_SH3E,
1837 PROCESSOR_SH4,
1838 PROCESSOR_SH4A
1841 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
1842 extern enum processor_type sh_cpu;
1844 enum mdep_reorg_phase_e
1846 SH_BEFORE_MDEP_REORG,
1847 SH_INSERT_USES_LABELS,
1848 SH_SHORTEN_BRANCHES0,
1849 SH_FIXUP_PCLOAD,
1850 SH_SHORTEN_BRANCHES1,
1851 SH_AFTER_MDEP_REORG
1854 extern enum mdep_reorg_phase_e mdep_reorg_phase;
1856 /* Handle Renesas compiler's pragmas. */
1857 #define REGISTER_TARGET_PRAGMAS() do { \
1858 c_register_pragma (0, "interrupt", sh_pr_interrupt); \
1859 c_register_pragma (0, "trapa", sh_pr_trapa); \
1860 c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs); \
1861 } while (0)
1863 extern tree sh_deferred_function_attributes;
1864 extern tree *sh_deferred_function_attributes_tail;
1868 /* Instructions with unfilled delay slots take up an
1869 extra two bytes for the nop in the delay slot.
1870 sh-dsp parallel processing insns are four bytes long. */
1871 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1872 (LENGTH) += sh_insn_length_adjustment (X);
1874 /* Define this macro if it is advisable to hold scalars in registers
1875 in a wider mode than that declared by the program. In such cases,
1876 the value is constrained to be within the bounds of the declared
1877 type, but kept valid in the wider mode. The signedness of the
1878 extension may differ from that of the type.
1880 Leaving the unsignedp unchanged gives better code than always setting it
1881 to 0. This is despite the fact that we have only signed char and short
1882 load instructions. */
1883 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1884 if (GET_MODE_CLASS (MODE) == MODE_INT \
1885 && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
1886 (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), (MODE) = SImode;
1888 #define MAX_FIXED_MODE_SIZE (64)
1890 /* Better to allocate once the maximum space for outgoing args in the
1891 prologue rather than duplicate around each call. */
1892 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1894 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
1896 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_FPU_DOUBLE)
1898 #define ACTUAL_NORMAL_MODE(ENTITY) \
1899 (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
1901 #define NORMAL_MODE(ENTITY) \
1902 (sh_cfun_interrupt_handler_p () \
1903 ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
1904 : ACTUAL_NORMAL_MODE (ENTITY))
1906 #define EPILOGUE_USES(REGNO) (TARGET_FPU_ANY && REGNO == FPSCR_REG)
1908 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (PR_REG))
1910 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 4U : INVALID_REGNUM)
1912 #define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
1913 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
1915 /* We have to distinguish between code and data, so that we apply
1916 datalabel where and only where appropriate. Use sdataN for data. */
1917 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1918 ((TARGET_FDPIC \
1919 ? ((GLOBAL) ? DW_EH_PE_indirect | DW_EH_PE_datarel : DW_EH_PE_pcrel) \
1920 : ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
1921 | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr))) \
1922 | ((CODE) ? 0 : DW_EH_PE_sdata4))
1924 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1925 indirect are handled automatically. */
1926 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1927 do { \
1928 if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
1929 && ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
1931 gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
1932 SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
1933 if (0) goto DONE; \
1935 if (TARGET_FDPIC \
1936 && ((ENCODING) & 0xf0) == (DW_EH_PE_indirect | DW_EH_PE_datarel)) \
1938 fputs ("\t.ualong ", FILE); \
1939 output_addr_const (FILE, ADDR); \
1940 if (GET_CODE (ADDR) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (ADDR)) \
1941 fputs ("@GOTFUNCDESC", FILE); \
1942 else \
1943 fputs ("@GOT", FILE); \
1944 goto DONE; \
1946 } while (0)
1948 #if (defined CRT_BEGIN || defined CRT_END)
1949 /* SH constant pool breaks the devices in crtstuff.c to control section
1950 in where code resides. We have to write it as asm code. */
1951 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1952 asm (SECTION_OP "\n\
1953 mov.l 1f,r1\n\
1954 mova 2f,r0\n\
1955 braf r1\n\
1956 lds r0,pr\n\
1957 0: .p2align 2\n\
1958 1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
1959 2:\n" TEXT_SECTION_ASM_OP);
1960 #endif /* (defined CRT_BEGIN || defined CRT_END) */
1962 #endif /* ! GCC_SH_H */