Merge reload-branch up to revision 101000
[official-gcc.git] / gcc / df.c
blob339f2c9ac4f4fdddb91698b696b85137e5569818
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA.
25 OVERVIEW:
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
41 USAGE:
43 Here's an example of using the dataflow routines.
45 struct df *df;
47 df = df_init ();
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
53 df_finish (df);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
79 PHILOSOPHY:
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
100 DATA STRUCTURES:
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
118 TODO:
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
158 NOTES:
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
173 read/write.
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
177 #include "config.h"
178 #include "system.h"
179 #include "coretypes.h"
180 #include "tm.h"
181 #include "rtl.h"
182 #include "tm_p.h"
183 #include "insn-config.h"
184 #include "recog.h"
185 #include "function.h"
186 #include "regs.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
190 #include "sbitmap.h"
191 #include "bitmap.h"
192 #include "df.h"
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
195 do \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
201 (BB) = BASIC_BLOCK (node_); \
202 CODE; \
205 while (0)
207 static alloc_pool df_ref_pool;
208 static alloc_pool df_link_pool;
209 static struct df *ddf;
211 static void df_reg_table_realloc (struct df *, int);
212 static void df_insn_table_realloc (struct df *, unsigned int);
213 static void df_bb_table_realloc (struct df *, unsigned int);
214 static void df_bitmaps_alloc (struct df *, bitmap, int);
215 static void df_bitmaps_free (struct df *, int);
216 static void df_free (struct df *);
217 static void df_alloc (struct df *, int);
219 static rtx df_reg_use_gen (unsigned int);
221 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
222 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
223 static void df_def_unlink (struct df *, struct ref *);
224 static void df_use_unlink (struct df *, struct ref *);
225 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
226 #if 0
227 static void df_bb_refs_unlink (struct df *, basic_block);
228 static void df_refs_unlink (struct df *, bitmap);
229 #endif
231 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
232 enum df_ref_type, enum df_ref_flags);
233 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
234 enum df_ref_flags);
235 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
236 enum df_ref_flags);
237 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
238 static void df_defs_record (struct df *, rtx, basic_block, rtx);
239 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
240 basic_block, rtx, enum df_ref_flags);
241 static void df_insn_refs_record (struct df *, basic_block, rtx);
242 static void df_bb_refs_record (struct df *, basic_block);
243 static void df_refs_record (struct df *, bitmap);
245 static void df_bb_reg_def_chain_create (struct df *, basic_block);
246 static void df_reg_def_chain_create (struct df *, bitmap, bool);
247 static void df_bb_reg_use_chain_create (struct df *, basic_block);
248 static void df_reg_use_chain_create (struct df *, bitmap, bool);
249 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
250 static void df_du_chain_create (struct df *, bitmap);
251 static void df_bb_ud_chain_create (struct df *, basic_block);
252 static void df_ud_chain_create (struct df *, bitmap);
253 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
254 static void df_rd_local_compute (struct df *, bitmap);
255 static void df_bb_ru_local_compute (struct df *, basic_block);
256 static void df_ru_local_compute (struct df *, bitmap);
257 static void df_bb_lr_local_compute (struct df *, basic_block);
258 static void df_lr_local_compute (struct df *, bitmap);
259 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
260 static void df_reg_info_compute (struct df *, bitmap);
262 static int df_bb_luids_set (struct df *df, basic_block);
263 static int df_luids_set (struct df *df, bitmap);
265 static int df_modified_p (struct df *, bitmap);
266 static int df_refs_queue (struct df *);
267 static int df_refs_process (struct df *);
268 static int df_bb_refs_update (struct df *, basic_block);
269 static int df_refs_update (struct df *, bitmap);
270 static void df_analyze_1 (struct df *, bitmap, int, int);
272 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
273 static int df_rtx_mem_replace (rtx *, void *);
274 static int df_rtx_reg_replace (rtx *, void *);
275 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
277 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
278 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
279 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
280 rtx, unsigned int);
281 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
282 rtx, unsigned int);
284 static void df_chain_dump (struct df_link *, FILE *file);
285 static void df_chain_dump_regno (struct df_link *, FILE *file);
286 static void df_regno_debug (struct df *, unsigned int, FILE *);
287 static void df_ref_debug (struct df *, struct ref *, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
289 void *, void *);
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
291 void *, void *);
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
293 void *, void *);
294 static void hybrid_search (basic_block, struct dataflow *,
295 sbitmap, sbitmap, sbitmap);
298 /* Local memory allocation/deallocation routines. */
301 /* Increase the insn info table to have space for at least SIZE + 1
302 elements. */
303 static void
304 df_insn_table_realloc (struct df *df, unsigned int size)
306 size++;
307 if (size <= df->insn_size)
308 return;
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size += df->insn_size / 4;
314 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
316 memset (df->insns + df->insn_size, 0,
317 (size - df->insn_size) * sizeof (struct insn_info));
319 df->insn_size = size;
321 if (! df->insns_modified)
323 df->insns_modified = BITMAP_ALLOC (NULL);
324 bitmap_zero (df->insns_modified);
328 /* Increase the bb info table to have space for at least SIZE + 1
329 elements. */
331 static void
332 df_bb_table_realloc (struct df *df, unsigned int size)
334 size++;
335 if (size <= df->n_bbs)
336 return;
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size += df->n_bbs / 4;
342 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
344 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
346 df->n_bbs = size;
349 /* Increase the reg info table by SIZE more elements. */
350 static void
351 df_reg_table_realloc (struct df *df, int size)
353 /* Make table 25 percent larger by default. */
354 if (! size)
355 size = df->reg_size / 4;
357 size += df->reg_size;
358 if (size < max_reg_num ())
359 size = max_reg_num ();
361 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
362 df->reg_def_last = xrealloc (df->reg_def_last,
363 size * sizeof (struct ref *));
365 /* Zero the new entries. */
366 memset (df->regs + df->reg_size, 0,
367 (size - df->reg_size) * sizeof (struct reg_info));
369 df->reg_size = size;
373 /* Allocate bitmaps for each basic block. */
375 static void
376 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
378 basic_block bb;
380 df->n_defs = df->def_id;
381 df->n_uses = df->use_id;
383 if (!blocks)
384 blocks = df->all_blocks;
386 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
388 struct bb_info *bb_info = DF_BB_INFO (df, bb);
390 if (flags & DF_RD)
392 if (!bb_info->rd_in)
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info->rd_kill = BITMAP_ALLOC (NULL);
396 bb_info->rd_gen = BITMAP_ALLOC (NULL);
397 bb_info->rd_in = BITMAP_ALLOC (NULL);
398 bb_info->rd_out = BITMAP_ALLOC (NULL);
400 else
402 bitmap_clear (bb_info->rd_kill);
403 bitmap_clear (bb_info->rd_gen);
404 bitmap_clear (bb_info->rd_in);
405 bitmap_clear (bb_info->rd_out);
409 if (flags & DF_RU)
411 if (!bb_info->ru_in)
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info->ru_kill = BITMAP_ALLOC (NULL);
415 bb_info->ru_gen = BITMAP_ALLOC (NULL);
416 bb_info->ru_in = BITMAP_ALLOC (NULL);
417 bb_info->ru_out = BITMAP_ALLOC (NULL);
419 else
421 bitmap_clear (bb_info->ru_kill);
422 bitmap_clear (bb_info->ru_gen);
423 bitmap_clear (bb_info->ru_in);
424 bitmap_clear (bb_info->ru_out);
428 if (flags & DF_LR)
430 if (!bb_info->lr_in)
432 /* Allocate bitmaps for live variables. */
433 bb_info->lr_def = BITMAP_ALLOC (NULL);
434 bb_info->lr_use = BITMAP_ALLOC (NULL);
435 bb_info->lr_in = BITMAP_ALLOC (NULL);
436 bb_info->lr_out = BITMAP_ALLOC (NULL);
438 else
440 bitmap_clear (bb_info->lr_def);
441 bitmap_clear (bb_info->lr_use);
442 bitmap_clear (bb_info->lr_in);
443 bitmap_clear (bb_info->lr_out);
450 /* Free bitmaps for each basic block. */
451 static void
452 df_bitmaps_free (struct df *df, int flags)
454 basic_block bb;
456 FOR_EACH_BB (bb)
458 struct bb_info *bb_info = DF_BB_INFO (df, bb);
460 if (!bb_info)
461 continue;
463 if ((flags & DF_RD) && bb_info->rd_in)
465 /* Free bitmaps for reaching definitions. */
466 BITMAP_FREE (bb_info->rd_kill);
467 bb_info->rd_kill = NULL;
468 BITMAP_FREE (bb_info->rd_gen);
469 bb_info->rd_gen = NULL;
470 BITMAP_FREE (bb_info->rd_in);
471 bb_info->rd_in = NULL;
472 BITMAP_FREE (bb_info->rd_out);
473 bb_info->rd_out = NULL;
476 if ((flags & DF_RU) && bb_info->ru_in)
478 /* Free bitmaps for upward exposed uses. */
479 BITMAP_FREE (bb_info->ru_kill);
480 bb_info->ru_kill = NULL;
481 BITMAP_FREE (bb_info->ru_gen);
482 bb_info->ru_gen = NULL;
483 BITMAP_FREE (bb_info->ru_in);
484 bb_info->ru_in = NULL;
485 BITMAP_FREE (bb_info->ru_out);
486 bb_info->ru_out = NULL;
489 if ((flags & DF_LR) && bb_info->lr_in)
491 /* Free bitmaps for live variables. */
492 BITMAP_FREE (bb_info->lr_def);
493 bb_info->lr_def = NULL;
494 BITMAP_FREE (bb_info->lr_use);
495 bb_info->lr_use = NULL;
496 BITMAP_FREE (bb_info->lr_in);
497 bb_info->lr_in = NULL;
498 BITMAP_FREE (bb_info->lr_out);
499 bb_info->lr_out = NULL;
502 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
506 /* Allocate and initialize dataflow memory. */
507 static void
508 df_alloc (struct df *df, int n_regs)
510 int n_insns;
511 basic_block bb;
513 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
514 100);
515 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
517 /* Perhaps we should use LUIDs to save memory for the insn_refs
518 table. This is only a small saving; a few pointers. */
519 n_insns = get_max_uid () + 1;
521 df->def_id = 0;
522 df->n_defs = 0;
523 /* Approximate number of defs by number of insns. */
524 df->def_size = n_insns;
525 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
527 df->use_id = 0;
528 df->n_uses = 0;
529 /* Approximate number of uses by twice number of insns. */
530 df->use_size = n_insns * 2;
531 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
533 df->n_regs = n_regs;
534 df->n_bbs = last_basic_block;
536 /* Allocate temporary working array used during local dataflow analysis. */
537 df_insn_table_realloc (df, n_insns);
539 df_reg_table_realloc (df, df->n_regs);
541 df->bbs_modified = BITMAP_ALLOC (NULL);
542 bitmap_zero (df->bbs_modified);
544 df->flags = 0;
546 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
548 df->all_blocks = BITMAP_ALLOC (NULL);
549 FOR_EACH_BB (bb)
550 bitmap_set_bit (df->all_blocks, bb->index);
554 /* Free all the dataflow info. */
555 static void
556 df_free (struct df *df)
558 df_bitmaps_free (df, DF_ALL);
560 if (df->bbs)
561 free (df->bbs);
562 df->bbs = 0;
564 if (df->insns)
565 free (df->insns);
566 df->insns = 0;
567 df->insn_size = 0;
569 if (df->defs)
570 free (df->defs);
571 df->defs = 0;
572 df->def_size = 0;
573 df->def_id = 0;
575 if (df->uses)
576 free (df->uses);
577 df->uses = 0;
578 df->use_size = 0;
579 df->use_id = 0;
581 if (df->regs)
582 free (df->regs);
583 df->regs = 0;
584 df->reg_size = 0;
586 BITMAP_FREE (df->bbs_modified);
587 df->bbs_modified = 0;
589 BITMAP_FREE (df->insns_modified);
590 df->insns_modified = 0;
592 BITMAP_FREE (df->all_blocks);
593 df->all_blocks = 0;
595 free_alloc_pool (df_ref_pool);
596 free_alloc_pool (df_link_pool);
599 /* Local miscellaneous routines. */
601 /* Return a USE for register REGNO. */
602 static rtx df_reg_use_gen (unsigned int regno)
604 rtx reg;
605 rtx use;
607 reg = regno_reg_rtx[regno];
609 use = gen_rtx_USE (GET_MODE (reg), reg);
610 return use;
613 /* Local chain manipulation routines. */
615 /* Create a link in a def-use or use-def chain. */
616 static inline struct df_link *
617 df_link_create (struct ref *ref, struct df_link *next)
619 struct df_link *link;
621 link = pool_alloc (df_link_pool);
622 link->next = next;
623 link->ref = ref;
624 return link;
627 /* Releases members of the CHAIN. */
629 static void
630 free_reg_ref_chain (struct df_link **chain)
632 struct df_link *act, *next;
634 for (act = *chain; act; act = next)
636 next = act->next;
637 pool_free (df_link_pool, act);
640 *chain = NULL;
643 /* Add REF to chain head pointed to by PHEAD. */
644 static struct df_link *
645 df_ref_unlink (struct df_link **phead, struct ref *ref)
647 struct df_link *link = *phead;
649 if (link)
651 if (! link->next)
653 /* Only a single ref. It must be the one we want.
654 If not, the def-use and use-def chains are likely to
655 be inconsistent. */
656 gcc_assert (link->ref == ref);
658 /* Now have an empty chain. */
659 *phead = NULL;
661 else
663 /* Multiple refs. One of them must be us. */
664 if (link->ref == ref)
665 *phead = link->next;
666 else
668 /* Follow chain. */
669 for (; link->next; link = link->next)
671 if (link->next->ref == ref)
673 /* Unlink from list. */
674 link->next = link->next->next;
675 return link->next;
681 return link;
685 /* Unlink REF from all def-use/use-def chains, etc. */
687 df_ref_remove (struct df *df, struct ref *ref)
689 if (DF_REF_REG_DEF_P (ref))
691 df_def_unlink (df, ref);
692 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
694 else
696 df_use_unlink (df, ref);
697 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
699 return 1;
703 /* Unlink DEF from use-def and reg-def chains. */
704 static void
705 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
707 struct df_link *du_link;
708 unsigned int dregno = DF_REF_REGNO (def);
710 /* Follow def-use chain to find all the uses of this def. */
711 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
713 struct ref *use = du_link->ref;
715 /* Unlink this def from the use-def chain. */
716 df_ref_unlink (&DF_REF_CHAIN (use), def);
718 DF_REF_CHAIN (def) = 0;
720 /* Unlink def from reg-def chain. */
721 df_ref_unlink (&df->regs[dregno].defs, def);
723 df->defs[DF_REF_ID (def)] = 0;
727 /* Unlink use from def-use and reg-use chains. */
728 static void
729 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
731 struct df_link *ud_link;
732 unsigned int uregno = DF_REF_REGNO (use);
734 /* Follow use-def chain to find all the defs of this use. */
735 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
737 struct ref *def = ud_link->ref;
739 /* Unlink this use from the def-use chain. */
740 df_ref_unlink (&DF_REF_CHAIN (def), use);
742 DF_REF_CHAIN (use) = 0;
744 /* Unlink use from reg-use chain. */
745 df_ref_unlink (&df->regs[uregno].uses, use);
747 df->uses[DF_REF_ID (use)] = 0;
750 /* Local routines for recording refs. */
753 /* Create a new ref of type DF_REF_TYPE for register REG at address
754 LOC within INSN of BB. */
755 static struct ref *
756 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
757 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
759 struct ref *this_ref;
761 this_ref = pool_alloc (df_ref_pool);
762 DF_REF_REG (this_ref) = reg;
763 DF_REF_LOC (this_ref) = loc;
764 DF_REF_INSN (this_ref) = insn;
765 DF_REF_CHAIN (this_ref) = 0;
766 DF_REF_TYPE (this_ref) = ref_type;
767 DF_REF_FLAGS (this_ref) = ref_flags;
768 DF_REF_DATA (this_ref) = NULL;
770 if (ref_type == DF_REF_REG_DEF)
772 if (df->def_id >= df->def_size)
774 /* Make table 25 percent larger. */
775 df->def_size += (df->def_size / 4);
776 df->defs = xrealloc (df->defs,
777 df->def_size * sizeof (*df->defs));
779 DF_REF_ID (this_ref) = df->def_id;
780 df->defs[df->def_id++] = this_ref;
782 else
784 if (df->use_id >= df->use_size)
786 /* Make table 25 percent larger. */
787 df->use_size += (df->use_size / 4);
788 df->uses = xrealloc (df->uses,
789 df->use_size * sizeof (*df->uses));
791 DF_REF_ID (this_ref) = df->use_id;
792 df->uses[df->use_id++] = this_ref;
794 return this_ref;
798 /* Create a new reference of type DF_REF_TYPE for a single register REG,
799 used inside the LOC rtx of INSN. */
800 static void
801 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
802 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
804 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
808 /* Create new references of type DF_REF_TYPE for each part of register REG
809 at address LOC within INSN of BB. */
810 static void
811 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
812 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
814 unsigned int regno;
816 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
818 /* For the reg allocator we are interested in some SUBREG rtx's, but not
819 all. Notably only those representing a word extraction from a multi-word
820 reg. As written in the docu those should have the form
821 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
822 XXX Is that true? We could also use the global word_mode variable. */
823 if ((df->flags & DF_SUBREGS) == 0
824 && GET_CODE (reg) == SUBREG
825 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
826 || GET_MODE_SIZE (GET_MODE (reg))
827 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
829 loc = &SUBREG_REG (reg);
830 reg = *loc;
831 ref_flags |= DF_REF_STRIPPED;
834 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
835 if (regno < FIRST_PSEUDO_REGISTER)
837 int i;
838 int endregno;
840 if (! (df->flags & DF_HARD_REGS))
841 return;
843 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
844 for the mode, because we only want to add references to regs, which
845 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
846 reference the whole reg 0 in DI mode (which would also include
847 reg 1, at least, if 0 and 1 are SImode registers). */
848 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
849 if (GET_CODE (reg) == SUBREG)
850 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
851 SUBREG_BYTE (reg), GET_MODE (reg));
852 endregno += regno;
854 for (i = regno; i < endregno; i++)
855 df_ref_record_1 (df, regno_reg_rtx[i],
856 loc, insn, ref_type, ref_flags);
858 else
860 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
865 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
866 covered by the outer mode is smaller than that covered by the inner mode,
867 is a read-modify-write operation.
868 This function returns true iff the SUBREG X is such a SUBREG. */
869 bool
870 read_modify_subreg_p (rtx x)
872 unsigned int isize, osize;
873 if (GET_CODE (x) != SUBREG)
874 return false;
875 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
876 osize = GET_MODE_SIZE (GET_MODE (x));
877 return (isize > osize && isize > UNITS_PER_WORD);
881 /* Process all the registers defined in the rtx, X. */
882 static void
883 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
885 rtx *loc;
886 rtx dst;
887 enum df_ref_flags flags = 0;
889 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
890 construct. */
891 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
892 loc = &XEXP (x, 0);
893 else
894 loc = &SET_DEST (x);
895 dst = *loc;
897 /* Some targets place small structures in registers for
898 return values of functions. */
899 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
901 int i;
903 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
905 rtx temp = XVECEXP (dst, 0, i);
906 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
907 || GET_CODE (temp) == SET)
908 df_def_record_1 (df, temp, bb, insn);
910 return;
913 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
914 be handy for the reg allocator. */
915 while (GET_CODE (dst) == STRICT_LOW_PART
916 || GET_CODE (dst) == ZERO_EXTRACT
917 || read_modify_subreg_p (dst))
919 /* Strict low part always contains SUBREG, but we do not want to make
920 it appear outside, as whole register is always considered. */
921 if (GET_CODE (dst) == STRICT_LOW_PART)
923 loc = &XEXP (dst, 0);
924 dst = *loc;
926 loc = &XEXP (dst, 0);
927 dst = *loc;
928 flags |= DF_REF_READ_WRITE;
931 if (REG_P (dst)
932 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
933 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
937 /* Process all the registers defined in the pattern rtx, X. */
938 static void
939 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
941 RTX_CODE code = GET_CODE (x);
943 if (code == SET || code == CLOBBER)
945 /* Mark the single def within the pattern. */
946 df_def_record_1 (df, x, bb, insn);
948 else if (code == PARALLEL)
950 int i;
952 /* Mark the multiple defs within the pattern. */
953 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
955 code = GET_CODE (XVECEXP (x, 0, i));
956 if (code == SET || code == CLOBBER)
957 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
963 /* Process all the registers used in the rtx at address LOC. */
964 static void
965 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
966 basic_block bb, rtx insn, enum df_ref_flags flags)
968 RTX_CODE code;
969 rtx x;
970 retry:
971 x = *loc;
972 if (!x)
973 return;
974 code = GET_CODE (x);
975 switch (code)
977 case LABEL_REF:
978 case SYMBOL_REF:
979 case CONST_INT:
980 case CONST:
981 case CONST_DOUBLE:
982 case CONST_VECTOR:
983 case PC:
984 case CC0:
985 case ADDR_VEC:
986 case ADDR_DIFF_VEC:
987 return;
989 case CLOBBER:
990 /* If we are clobbering a MEM, mark any registers inside the address
991 as being used. */
992 if (MEM_P (XEXP (x, 0)))
993 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
994 DF_REF_REG_MEM_STORE, bb, insn, flags);
996 /* If we're clobbering a REG then we have a def so ignore. */
997 return;
999 case MEM:
1000 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
1001 return;
1003 case SUBREG:
1004 /* While we're here, optimize this case. */
1006 /* In case the SUBREG is not of a REG, do not optimize. */
1007 if (!REG_P (SUBREG_REG (x)))
1009 loc = &SUBREG_REG (x);
1010 df_uses_record (df, loc, ref_type, bb, insn, flags);
1011 return;
1013 /* ... Fall through ... */
1015 case REG:
1016 df_ref_record (df, x, loc, insn, ref_type, flags);
1017 return;
1019 case SET:
1021 rtx dst = SET_DEST (x);
1023 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1025 switch (GET_CODE (dst))
1027 case SUBREG:
1028 if (read_modify_subreg_p (dst))
1030 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1031 insn, DF_REF_READ_WRITE);
1032 break;
1034 /* Fall through. */
1035 case REG:
1036 case PARALLEL:
1037 case PC:
1038 case CC0:
1039 break;
1040 case MEM:
1041 df_uses_record (df, &XEXP (dst, 0),
1042 DF_REF_REG_MEM_STORE,
1043 bb, insn, 0);
1044 break;
1045 case STRICT_LOW_PART:
1046 /* A strict_low_part uses the whole REG and not just the
1047 SUBREG. */
1048 dst = XEXP (dst, 0);
1049 gcc_assert (GET_CODE (dst) == SUBREG);
1050 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1051 insn, DF_REF_READ_WRITE);
1052 break;
1053 case ZERO_EXTRACT:
1054 case SIGN_EXTRACT:
1055 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1056 DF_REF_READ_WRITE);
1057 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1058 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1059 dst = XEXP (dst, 0);
1060 break;
1061 default:
1062 gcc_unreachable ();
1064 return;
1067 case RETURN:
1068 break;
1070 case ASM_OPERANDS:
1071 case UNSPEC_VOLATILE:
1072 case TRAP_IF:
1073 case ASM_INPUT:
1075 /* Traditional and volatile asm instructions must be considered to use
1076 and clobber all hard registers, all pseudo-registers and all of
1077 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1079 Consider for instance a volatile asm that changes the fpu rounding
1080 mode. An insn should not be moved across this even if it only uses
1081 pseudo-regs because it might give an incorrectly rounded result.
1083 For now, just mark any regs we can find in ASM_OPERANDS as
1084 used. */
1086 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1087 We can not just fall through here since then we would be confused
1088 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1089 traditional asms unlike their normal usage. */
1090 if (code == ASM_OPERANDS)
1092 int j;
1094 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1095 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1096 DF_REF_REG_USE, bb, insn, 0);
1097 return;
1099 break;
1102 case PRE_DEC:
1103 case POST_DEC:
1104 case PRE_INC:
1105 case POST_INC:
1106 case PRE_MODIFY:
1107 case POST_MODIFY:
1108 /* Catch the def of the register being modified. */
1109 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1111 /* ... Fall through to handle uses ... */
1113 default:
1114 break;
1117 /* Recursively scan the operands of this expression. */
1119 const char *fmt = GET_RTX_FORMAT (code);
1120 int i;
1122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1124 if (fmt[i] == 'e')
1126 /* Tail recursive case: save a function call level. */
1127 if (i == 0)
1129 loc = &XEXP (x, 0);
1130 goto retry;
1132 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1134 else if (fmt[i] == 'E')
1136 int j;
1137 for (j = 0; j < XVECLEN (x, i); j++)
1138 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1139 bb, insn, flags);
1146 /* Record all the df within INSN of basic block BB. */
1147 static void
1148 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1150 int i;
1152 if (INSN_P (insn))
1154 rtx note;
1156 /* Record register defs. */
1157 df_defs_record (df, PATTERN (insn), bb, insn);
1159 if (df->flags & DF_EQUIV_NOTES)
1160 for (note = REG_NOTES (insn); note;
1161 note = XEXP (note, 1))
1163 switch (REG_NOTE_KIND (note))
1165 case REG_EQUIV:
1166 case REG_EQUAL:
1167 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1168 bb, insn, 0);
1169 default:
1170 break;
1174 if (CALL_P (insn))
1176 rtx note;
1177 rtx x;
1179 /* Record the registers used to pass arguments. */
1180 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1181 note = XEXP (note, 1))
1183 if (GET_CODE (XEXP (note, 0)) == USE)
1184 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1185 bb, insn, 0);
1188 /* The stack ptr is used (honorarily) by a CALL insn. */
1189 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1190 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1192 if (df->flags & DF_HARD_REGS)
1194 /* Calls may also reference any of the global registers,
1195 so they are recorded as used. */
1196 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1197 if (global_regs[i])
1199 x = df_reg_use_gen (i);
1200 df_uses_record (df, &XEXP (x, 0),
1201 DF_REF_REG_USE, bb, insn, 0);
1206 /* Record the register uses. */
1207 df_uses_record (df, &PATTERN (insn),
1208 DF_REF_REG_USE, bb, insn, 0);
1210 if (CALL_P (insn))
1212 rtx note;
1214 /* We do not record hard registers clobbered by the call,
1215 since there are awfully many of them and "defs" created
1216 through them are not interesting (since no use can be legally
1217 reached by them). So we must just make sure we include them when
1218 computing kill bitmaps. */
1220 /* There may be extra registers to be clobbered. */
1221 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1222 note;
1223 note = XEXP (note, 1))
1224 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1225 df_defs_record (df, XEXP (note, 0), bb, insn);
1231 /* Record all the refs within the basic block BB. */
1232 static void
1233 df_bb_refs_record (struct df *df, basic_block bb)
1235 rtx insn;
1237 /* Scan the block an insn at a time from beginning to end. */
1238 FOR_BB_INSNS (bb, insn)
1240 if (INSN_P (insn))
1242 /* Record defs within INSN. */
1243 df_insn_refs_record (df, bb, insn);
1249 /* Record all the refs in the basic blocks specified by BLOCKS. */
1250 static void
1251 df_refs_record (struct df *df, bitmap blocks)
1253 basic_block bb;
1255 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1257 df_bb_refs_record (df, bb);
1261 /* Dataflow analysis routines. */
1263 /* Create reg-def chains for basic block BB. These are a list of
1264 definitions for each register. */
1266 static void
1267 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1269 rtx insn;
1271 /* Perhaps the defs should be sorted using a depth first search
1272 of the CFG (or possibly a breadth first search). */
1274 FOR_BB_INSNS_REVERSE (bb, insn)
1276 struct df_link *link;
1277 unsigned int uid = INSN_UID (insn);
1279 if (! INSN_P (insn))
1280 continue;
1282 for (link = df->insns[uid].defs; link; link = link->next)
1284 struct ref *def = link->ref;
1285 unsigned int dregno = DF_REF_REGNO (def);
1287 /* Do not add ref's to the chain twice, i.e., only add new
1288 refs. XXX the same could be done by testing if the
1289 current insn is a modified (or a new) one. This would be
1290 faster. */
1291 if (DF_REF_ID (def) < df->def_id_save)
1292 continue;
1294 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1300 /* Create reg-def chains for each basic block within BLOCKS. These
1301 are a list of definitions for each register. If REDO is true, add
1302 all defs, otherwise just add the new defs. */
1304 static void
1305 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1307 basic_block bb;
1308 #ifdef ENABLE_CHECKING
1309 unsigned regno;
1310 #endif
1311 unsigned old_def_id_save = df->def_id_save;
1313 if (redo)
1315 #ifdef ENABLE_CHECKING
1316 for (regno = 0; regno < df->n_regs; regno++)
1317 gcc_assert (!df->regs[regno].defs);
1318 #endif
1320 /* Pretend that all defs are new. */
1321 df->def_id_save = 0;
1324 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1326 df_bb_reg_def_chain_create (df, bb);
1329 df->def_id_save = old_def_id_save;
1332 /* Remove all reg-def chains stored in the dataflow object DF. */
1334 static void
1335 df_reg_def_chain_clean (struct df *df)
1337 unsigned regno;
1339 for (regno = 0; regno < df->n_regs; regno++)
1340 free_reg_ref_chain (&df->regs[regno].defs);
1343 /* Create reg-use chains for basic block BB. These are a list of uses
1344 for each register. */
1346 static void
1347 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1349 rtx insn;
1351 /* Scan in forward order so that the last uses appear at the start
1352 of the chain. */
1354 FOR_BB_INSNS (bb, insn)
1356 struct df_link *link;
1357 unsigned int uid = INSN_UID (insn);
1359 if (! INSN_P (insn))
1360 continue;
1362 for (link = df->insns[uid].uses; link; link = link->next)
1364 struct ref *use = link->ref;
1365 unsigned int uregno = DF_REF_REGNO (use);
1367 /* Do not add ref's to the chain twice, i.e., only add new
1368 refs. XXX the same could be done by testing if the
1369 current insn is a modified (or a new) one. This would be
1370 faster. */
1371 if (DF_REF_ID (use) < df->use_id_save)
1372 continue;
1374 df->regs[uregno].uses
1375 = df_link_create (use, df->regs[uregno].uses);
1381 /* Create reg-use chains for each basic block within BLOCKS. These
1382 are a list of uses for each register. If REDO is true, remove the
1383 old reg-use chains first, otherwise just add new uses to them. */
1385 static void
1386 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1388 basic_block bb;
1389 #ifdef ENABLE_CHECKING
1390 unsigned regno;
1391 #endif
1392 unsigned old_use_id_save = df->use_id_save;
1394 if (redo)
1396 #ifdef ENABLE_CHECKING
1397 for (regno = 0; regno < df->n_regs; regno++)
1398 gcc_assert (!df->regs[regno].uses);
1399 #endif
1401 /* Pretend that all uses are new. */
1402 df->use_id_save = 0;
1405 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1407 df_bb_reg_use_chain_create (df, bb);
1410 df->use_id_save = old_use_id_save;
1413 /* Remove all reg-use chains stored in the dataflow object DF. */
1415 static void
1416 df_reg_use_chain_clean (struct df *df)
1418 unsigned regno;
1420 for (regno = 0; regno < df->n_regs; regno++)
1421 free_reg_ref_chain (&df->regs[regno].uses);
1424 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1425 static void
1426 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1428 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1429 rtx insn;
1431 bitmap_copy (ru, bb_info->ru_out);
1433 /* For each def in BB create a linked list (chain) of uses
1434 reached from the def. */
1435 FOR_BB_INSNS_REVERSE (bb, insn)
1437 struct df_link *def_link;
1438 struct df_link *use_link;
1439 unsigned int uid = INSN_UID (insn);
1441 if (! INSN_P (insn))
1442 continue;
1444 /* For each def in insn... */
1445 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1447 struct ref *def = def_link->ref;
1448 unsigned int dregno = DF_REF_REGNO (def);
1450 DF_REF_CHAIN (def) = 0;
1452 /* While the reg-use chains are not essential, it
1453 is _much_ faster to search these short lists rather
1454 than all the reaching uses, especially for large functions. */
1455 for (use_link = df->regs[dregno].uses; use_link;
1456 use_link = use_link->next)
1458 struct ref *use = use_link->ref;
1460 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1462 DF_REF_CHAIN (def)
1463 = df_link_create (use, DF_REF_CHAIN (def));
1465 bitmap_clear_bit (ru, DF_REF_ID (use));
1470 /* For each use in insn... */
1471 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1473 struct ref *use = use_link->ref;
1474 bitmap_set_bit (ru, DF_REF_ID (use));
1480 /* Create def-use chains from reaching use bitmaps for basic blocks
1481 in BLOCKS. */
1482 static void
1483 df_du_chain_create (struct df *df, bitmap blocks)
1485 bitmap ru;
1486 basic_block bb;
1488 ru = BITMAP_ALLOC (NULL);
1490 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1492 df_bb_du_chain_create (df, bb, ru);
1495 BITMAP_FREE (ru);
1499 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1500 static void
1501 df_bb_ud_chain_create (struct df *df, basic_block bb)
1503 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1504 struct ref **reg_def_last = df->reg_def_last;
1505 rtx insn;
1507 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1509 /* For each use in BB create a linked list (chain) of defs
1510 that reach the use. */
1511 FOR_BB_INSNS (bb, insn)
1513 unsigned int uid = INSN_UID (insn);
1514 struct df_link *use_link;
1515 struct df_link *def_link;
1517 if (! INSN_P (insn))
1518 continue;
1520 /* For each use in insn... */
1521 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1523 struct ref *use = use_link->ref;
1524 unsigned int regno = DF_REF_REGNO (use);
1526 DF_REF_CHAIN (use) = 0;
1528 /* Has regno been defined in this BB yet? If so, use
1529 the last def as the single entry for the use-def
1530 chain for this use. Otherwise, we need to add all
1531 the defs using this regno that reach the start of
1532 this BB. */
1533 if (reg_def_last[regno])
1535 DF_REF_CHAIN (use)
1536 = df_link_create (reg_def_last[regno], 0);
1538 else
1540 /* While the reg-def chains are not essential, it is
1541 _much_ faster to search these short lists rather than
1542 all the reaching defs, especially for large
1543 functions. */
1544 for (def_link = df->regs[regno].defs; def_link;
1545 def_link = def_link->next)
1547 struct ref *def = def_link->ref;
1549 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1551 DF_REF_CHAIN (use)
1552 = df_link_create (def, DF_REF_CHAIN (use));
1559 /* For each def in insn... record the last def of each reg. */
1560 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1562 struct ref *def = def_link->ref;
1563 int dregno = DF_REF_REGNO (def);
1565 reg_def_last[dregno] = def;
1571 /* Create use-def chains from reaching def bitmaps for basic blocks
1572 within BLOCKS. */
1573 static void
1574 df_ud_chain_create (struct df *df, bitmap blocks)
1576 basic_block bb;
1578 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1580 df_bb_ud_chain_create (df, bb);
1586 static void
1587 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1588 void *out, void *gen, void *kill,
1589 void *data ATTRIBUTE_UNUSED)
1591 *changed = bitmap_ior_and_compl (out, gen, in, kill);
1595 static void
1596 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1597 void *out, void *gen, void *kill,
1598 void *data ATTRIBUTE_UNUSED)
1600 *changed = bitmap_ior_and_compl (in, gen, out, kill);
1604 static void
1605 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1606 void *out, void *use, void *def,
1607 void *data ATTRIBUTE_UNUSED)
1609 *changed = bitmap_ior_and_compl (in, use, out, def);
1613 /* Compute local reaching def info for basic block BB. */
1614 static void
1615 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1617 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1618 rtx insn;
1619 bitmap seen = BITMAP_ALLOC (NULL);
1620 bool call_seen = false;
1622 FOR_BB_INSNS_REVERSE (bb, insn)
1624 unsigned int uid = INSN_UID (insn);
1625 struct df_link *def_link;
1627 if (! INSN_P (insn))
1628 continue;
1630 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1632 struct ref *def = def_link->ref;
1633 unsigned int regno = DF_REF_REGNO (def);
1634 struct df_link *def2_link;
1636 if (bitmap_bit_p (seen, regno)
1637 || (call_seen
1638 && regno < FIRST_PSEUDO_REGISTER
1639 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1640 continue;
1642 for (def2_link = df->regs[regno].defs; def2_link;
1643 def2_link = def2_link->next)
1645 struct ref *def2 = def2_link->ref;
1647 /* Add all defs of this reg to the set of kills. This
1648 is greedy since many of these defs will not actually
1649 be killed by this BB but it keeps things a lot
1650 simpler. */
1651 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1654 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1655 bitmap_set_bit (seen, regno);
1658 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1660 bitmap_ior_into (bb_info->rd_kill, call_killed_defs);
1661 call_seen = 1;
1665 BITMAP_FREE (seen);
1669 /* Compute local reaching def info for each basic block within BLOCKS. */
1670 static void
1671 df_rd_local_compute (struct df *df, bitmap blocks)
1673 basic_block bb;
1674 bitmap killed_by_call = NULL;
1675 unsigned regno;
1676 struct df_link *def_link;
1678 if (df->flags & DF_HARD_REGS)
1680 killed_by_call = BITMAP_ALLOC (NULL);
1681 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1683 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1684 continue;
1686 for (def_link = df->regs[regno].defs;
1687 def_link;
1688 def_link = def_link->next)
1689 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1693 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1695 df_bb_rd_local_compute (df, bb, killed_by_call);
1698 if (df->flags & DF_HARD_REGS)
1699 BITMAP_FREE (killed_by_call);
1703 /* Compute local reaching use (upward exposed use) info for basic
1704 block BB. */
1705 static void
1706 df_bb_ru_local_compute (struct df *df, basic_block bb)
1708 /* This is much more tricky than computing reaching defs. With
1709 reaching defs, defs get killed by other defs. With upwards
1710 exposed uses, these get killed by defs with the same regno. */
1712 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1713 rtx insn;
1716 FOR_BB_INSNS_REVERSE (bb, insn)
1718 unsigned int uid = INSN_UID (insn);
1719 struct df_link *def_link;
1720 struct df_link *use_link;
1722 if (! INSN_P (insn))
1723 continue;
1725 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1727 struct ref *def = def_link->ref;
1728 unsigned int dregno = DF_REF_REGNO (def);
1730 for (use_link = df->regs[dregno].uses; use_link;
1731 use_link = use_link->next)
1733 struct ref *use = use_link->ref;
1735 /* Add all uses of this reg to the set of kills. This
1736 is greedy since many of these uses will not actually
1737 be killed by this BB but it keeps things a lot
1738 simpler. */
1739 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1741 /* Zap from the set of gens for this BB. */
1742 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1746 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1748 struct ref *use = use_link->ref;
1749 /* Add use to set of gens in this BB. */
1750 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1756 /* Compute local reaching use (upward exposed use) info for each basic
1757 block within BLOCKS. */
1758 static void
1759 df_ru_local_compute (struct df *df, bitmap blocks)
1761 basic_block bb;
1763 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1765 df_bb_ru_local_compute (df, bb);
1770 /* Compute local live variable info for basic block BB. */
1771 static void
1772 df_bb_lr_local_compute (struct df *df, basic_block bb)
1774 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1775 rtx insn;
1777 FOR_BB_INSNS_REVERSE (bb, insn)
1779 unsigned int uid = INSN_UID (insn);
1780 struct df_link *link;
1782 if (! INSN_P (insn))
1783 continue;
1785 for (link = df->insns[uid].defs; link; link = link->next)
1787 struct ref *def = link->ref;
1788 unsigned int dregno = DF_REF_REGNO (def);
1790 /* Add def to set of defs in this BB. */
1791 bitmap_set_bit (bb_info->lr_def, dregno);
1793 bitmap_clear_bit (bb_info->lr_use, dregno);
1796 for (link = df->insns[uid].uses; link; link = link->next)
1798 struct ref *use = link->ref;
1799 /* Add use to set of uses in this BB. */
1800 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1806 /* Compute local live variable info for each basic block within BLOCKS. */
1807 static void
1808 df_lr_local_compute (struct df *df, bitmap blocks)
1810 basic_block bb;
1812 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1814 df_bb_lr_local_compute (df, bb);
1819 /* Compute register info: lifetime, bb, and number of defs and uses
1820 for basic block BB. */
1821 static void
1822 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1824 struct reg_info *reg_info = df->regs;
1825 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1826 rtx insn;
1828 bitmap_copy (live, bb_info->lr_out);
1830 FOR_BB_INSNS_REVERSE (bb, insn)
1832 unsigned int uid = INSN_UID (insn);
1833 unsigned int regno;
1834 struct df_link *link;
1835 bitmap_iterator bi;
1837 if (! INSN_P (insn))
1838 continue;
1840 for (link = df->insns[uid].defs; link; link = link->next)
1842 struct ref *def = link->ref;
1843 unsigned int dregno = DF_REF_REGNO (def);
1845 /* Kill this register. */
1846 bitmap_clear_bit (live, dregno);
1847 reg_info[dregno].n_defs++;
1850 for (link = df->insns[uid].uses; link; link = link->next)
1852 struct ref *use = link->ref;
1853 unsigned int uregno = DF_REF_REGNO (use);
1855 /* This register is now live. */
1856 bitmap_set_bit (live, uregno);
1857 reg_info[uregno].n_uses++;
1860 /* Increment lifetimes of all live registers. */
1861 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno, bi)
1863 reg_info[regno].lifetime++;
1869 /* Compute register info: lifetime, bb, and number of defs and uses. */
1870 static void
1871 df_reg_info_compute (struct df *df, bitmap blocks)
1873 basic_block bb;
1874 bitmap live;
1876 live = BITMAP_ALLOC (NULL);
1878 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1880 df_bb_reg_info_compute (df, bb, live);
1883 BITMAP_FREE (live);
1887 /* Assign LUIDs for BB. */
1888 static int
1889 df_bb_luids_set (struct df *df, basic_block bb)
1891 rtx insn;
1892 int luid = 0;
1894 /* The LUIDs are monotonically increasing for each basic block. */
1896 FOR_BB_INSNS (bb, insn)
1898 if (INSN_P (insn))
1899 DF_INSN_LUID (df, insn) = luid++;
1900 DF_INSN_LUID (df, insn) = luid;
1902 return luid;
1906 /* Assign LUIDs for each basic block within BLOCKS. */
1907 static int
1908 df_luids_set (struct df *df, bitmap blocks)
1910 basic_block bb;
1911 int total = 0;
1913 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1915 total += df_bb_luids_set (df, bb);
1917 return total;
1921 /* Perform dataflow analysis using existing DF structure for blocks
1922 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1923 static void
1924 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1926 int aflags;
1927 int dflags;
1928 int i;
1929 basic_block bb;
1930 struct dataflow dflow;
1932 dflags = 0;
1933 aflags = flags;
1934 if (flags & DF_UD_CHAIN)
1935 aflags |= DF_RD | DF_RD_CHAIN;
1937 if (flags & DF_DU_CHAIN)
1938 aflags |= DF_RU;
1940 if (flags & DF_RU)
1941 aflags |= DF_RU_CHAIN;
1943 if (flags & DF_REG_INFO)
1944 aflags |= DF_LR;
1946 if (! blocks)
1947 blocks = df->all_blocks;
1949 df->flags = flags;
1950 if (update)
1952 df_refs_update (df, NULL);
1953 /* More fine grained incremental dataflow analysis would be
1954 nice. For now recompute the whole shebang for the
1955 modified blocks. */
1956 #if 0
1957 df_refs_unlink (df, blocks);
1958 #endif
1959 /* All the def-use, use-def chains can be potentially
1960 modified by changes in one block. The size of the
1961 bitmaps can also change. */
1963 else
1965 /* Scan the function for all register defs and uses. */
1966 df_refs_queue (df);
1967 df_refs_record (df, blocks);
1969 /* Link all the new defs and uses to the insns. */
1970 df_refs_process (df);
1973 /* Allocate the bitmaps now the total number of defs and uses are
1974 known. If the number of defs or uses have changed, then
1975 these bitmaps need to be reallocated. */
1976 df_bitmaps_alloc (df, NULL, aflags);
1978 /* Set the LUIDs for each specified basic block. */
1979 df_luids_set (df, blocks);
1981 /* Recreate reg-def and reg-use chains from scratch so that first
1982 def is at the head of the reg-def chain and the last use is at
1983 the head of the reg-use chain. This is only important for
1984 regs local to a basic block as it speeds up searching. */
1985 if (aflags & DF_RD_CHAIN)
1987 df_reg_def_chain_create (df, blocks, false);
1990 if (aflags & DF_RU_CHAIN)
1992 df_reg_use_chain_create (df, blocks, false);
1995 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
1996 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
1997 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
1998 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
1999 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
2000 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2002 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2003 flow_reverse_top_sort_order_compute (df->rts_order);
2004 for (i = 0; i < n_basic_blocks; i++)
2006 df->inverse_dfs_map[df->dfs_order[i]] = i;
2007 df->inverse_rc_map[df->rc_order[i]] = i;
2008 df->inverse_rts_map[df->rts_order[i]] = i;
2010 if (aflags & DF_RD)
2012 /* Compute the sets of gens and kills for the defs of each bb. */
2013 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2014 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2015 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2016 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2018 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2019 FOR_EACH_BB (bb)
2021 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2022 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2023 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2024 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2027 dflow.repr = SR_BITMAP;
2028 dflow.dir = DF_FORWARD;
2029 dflow.conf_op = DF_UNION;
2030 dflow.transfun = df_rd_transfer_function;
2031 dflow.n_blocks = n_basic_blocks;
2032 dflow.order = df->rc_order;
2033 dflow.data = NULL;
2035 iterative_dataflow (&dflow);
2036 free (dflow.in);
2037 free (dflow.out);
2038 free (dflow.gen);
2039 free (dflow.kill);
2042 if (aflags & DF_UD_CHAIN)
2044 /* Create use-def chains. */
2045 df_ud_chain_create (df, df->all_blocks);
2047 if (! (flags & DF_RD))
2048 dflags |= DF_RD;
2051 if (aflags & DF_RU)
2053 /* Compute the sets of gens and kills for the upwards exposed
2054 uses in each bb. */
2055 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2056 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2057 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2058 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2060 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2062 FOR_EACH_BB (bb)
2064 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2065 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2066 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2067 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2070 dflow.repr = SR_BITMAP;
2071 dflow.dir = DF_BACKWARD;
2072 dflow.conf_op = DF_UNION;
2073 dflow.transfun = df_ru_transfer_function;
2074 dflow.n_blocks = n_basic_blocks;
2075 dflow.order = df->rts_order;
2076 dflow.data = NULL;
2078 iterative_dataflow (&dflow);
2079 free (dflow.in);
2080 free (dflow.out);
2081 free (dflow.gen);
2082 free (dflow.kill);
2085 if (aflags & DF_DU_CHAIN)
2087 /* Create def-use chains. */
2088 df_du_chain_create (df, df->all_blocks);
2090 if (! (flags & DF_RU))
2091 dflags |= DF_RU;
2094 /* Free up bitmaps that are no longer required. */
2095 if (dflags)
2096 df_bitmaps_free (df, dflags);
2098 if (aflags & DF_LR)
2100 /* Compute the sets of defs and uses of live variables. */
2101 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2102 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2103 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2104 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2106 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2108 FOR_EACH_BB (bb)
2110 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2111 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2112 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2113 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2116 dflow.repr = SR_BITMAP;
2117 dflow.dir = DF_BACKWARD;
2118 dflow.conf_op = DF_UNION;
2119 dflow.transfun = df_lr_transfer_function;
2120 dflow.n_blocks = n_basic_blocks;
2121 dflow.order = df->rts_order;
2122 dflow.data = NULL;
2124 iterative_dataflow (&dflow);
2125 free (dflow.in);
2126 free (dflow.out);
2127 free (dflow.gen);
2128 free (dflow.kill);
2131 if (aflags & DF_REG_INFO)
2133 df_reg_info_compute (df, df->all_blocks);
2136 free (df->dfs_order);
2137 free (df->rc_order);
2138 free (df->rts_order);
2139 free (df->inverse_rc_map);
2140 free (df->inverse_dfs_map);
2141 free (df->inverse_rts_map);
2145 /* Initialize dataflow analysis. */
2146 struct df *
2147 df_init (void)
2149 struct df *df;
2151 df = xcalloc (1, sizeof (struct df));
2153 /* Squirrel away a global for debugging. */
2154 ddf = df;
2156 return df;
2160 /* Start queuing refs. */
2161 static int
2162 df_refs_queue (struct df *df)
2164 df->def_id_save = df->def_id;
2165 df->use_id_save = df->use_id;
2166 /* ???? Perhaps we should save current obstack state so that we can
2167 unwind it. */
2168 return 0;
2172 /* Process queued refs. */
2173 static int
2174 df_refs_process (struct df *df)
2176 unsigned int i;
2178 /* Build new insn-def chains. */
2179 for (i = df->def_id_save; i != df->def_id; i++)
2181 struct ref *def = df->defs[i];
2182 unsigned int uid = DF_REF_INSN_UID (def);
2184 /* Add def to head of def list for INSN. */
2185 df->insns[uid].defs
2186 = df_link_create (def, df->insns[uid].defs);
2189 /* Build new insn-use chains. */
2190 for (i = df->use_id_save; i != df->use_id; i++)
2192 struct ref *use = df->uses[i];
2193 unsigned int uid = DF_REF_INSN_UID (use);
2195 /* Add use to head of use list for INSN. */
2196 df->insns[uid].uses
2197 = df_link_create (use, df->insns[uid].uses);
2199 return 0;
2203 /* Update refs for basic block BB. */
2204 static int
2205 df_bb_refs_update (struct df *df, basic_block bb)
2207 rtx insn;
2208 int count = 0;
2210 /* While we have to scan the chain of insns for this BB, we do not
2211 need to allocate and queue a long chain of BB/INSN pairs. Using
2212 a bitmap for insns_modified saves memory and avoids queuing
2213 duplicates. */
2215 FOR_BB_INSNS (bb, insn)
2217 unsigned int uid;
2219 uid = INSN_UID (insn);
2221 if (bitmap_bit_p (df->insns_modified, uid))
2223 /* Delete any allocated refs of this insn. MPH, FIXME. */
2224 df_insn_refs_unlink (df, bb, insn);
2226 /* Scan the insn for refs. */
2227 df_insn_refs_record (df, bb, insn);
2229 count++;
2232 return count;
2236 /* Process all the modified/deleted insns that were queued. */
2237 static int
2238 df_refs_update (struct df *df, bitmap blocks)
2240 basic_block bb;
2241 unsigned count = 0, bbno;
2243 df->n_regs = max_reg_num ();
2244 if (df->n_regs >= df->reg_size)
2245 df_reg_table_realloc (df, 0);
2247 df_refs_queue (df);
2249 if (!blocks)
2251 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2253 count += df_bb_refs_update (df, bb);
2256 else
2258 bitmap_iterator bi;
2260 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno, bi)
2262 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2266 df_refs_process (df);
2267 return count;
2271 /* Return nonzero if any of the requested blocks in the bitmap
2272 BLOCKS have been modified. */
2273 static int
2274 df_modified_p (struct df *df, bitmap blocks)
2276 int update = 0;
2277 basic_block bb;
2279 if (!df->n_bbs)
2280 return 0;
2282 FOR_EACH_BB (bb)
2283 if (bitmap_bit_p (df->bbs_modified, bb->index)
2284 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2286 update = 1;
2287 break;
2290 return update;
2293 /* Analyze dataflow info for the basic blocks specified by the bitmap
2294 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2295 modified blocks if BLOCKS is -1. */
2298 df_analyze (struct df *df, bitmap blocks, int flags)
2300 int update;
2302 /* We could deal with additional basic blocks being created by
2303 rescanning everything again. */
2304 gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);
2306 update = df_modified_p (df, blocks);
2307 if (update || (flags != df->flags))
2309 if (! blocks)
2311 if (df->n_bbs)
2313 /* Recompute everything from scratch. */
2314 df_free (df);
2316 /* Allocate and initialize data structures. */
2317 df_alloc (df, max_reg_num ());
2318 df_analyze_1 (df, 0, flags, 0);
2319 update = 1;
2321 else
2323 if (blocks == (bitmap) -1)
2324 blocks = df->bbs_modified;
2326 gcc_assert (df->n_bbs);
2328 df_analyze_1 (df, blocks, flags, 1);
2329 bitmap_zero (df->bbs_modified);
2330 bitmap_zero (df->insns_modified);
2333 return update;
2336 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2337 the order of the remaining entries. Returns the length of the resulting
2338 list. */
2340 static unsigned
2341 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2343 unsigned act, last;
2345 for (act = 0, last = 0; act < len; act++)
2346 if (bitmap_bit_p (blocks, list[act]))
2347 list[last++] = list[act];
2349 return last;
2352 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2353 graph induced by BLOCKS.
2355 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2356 here, and simultaneously not make even greater chaos in it. We behave
2357 slightly differently in some details, especially in handling modified
2358 insns. */
2360 void
2361 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2363 rtx insn;
2364 basic_block bb;
2365 struct dataflow dflow;
2366 unsigned n_blocks;
2368 if (flags & DF_UD_CHAIN)
2369 flags |= DF_RD | DF_RD_CHAIN;
2370 if (flags & DF_DU_CHAIN)
2371 flags |= DF_RU;
2372 if (flags & DF_RU)
2373 flags |= DF_RU_CHAIN;
2374 if (flags & DF_REG_INFO)
2375 flags |= DF_LR;
2377 if (!df->n_bbs)
2379 df_alloc (df, max_reg_num ());
2381 /* Mark all insns as modified. */
2383 FOR_EACH_BB (bb)
2385 FOR_BB_INSNS (bb, insn)
2387 df_insn_modify (df, bb, insn);
2392 df->flags = flags;
2394 df_reg_def_chain_clean (df);
2395 df_reg_use_chain_clean (df);
2397 df_refs_update (df, blocks);
2399 /* Clear the updated stuff from ``modified'' bitmaps. */
2400 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2402 if (bitmap_bit_p (df->bbs_modified, bb->index))
2404 FOR_BB_INSNS (bb, insn)
2406 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2409 bitmap_clear_bit (df->bbs_modified, bb->index);
2413 /* Allocate the bitmaps now the total number of defs and uses are
2414 known. If the number of defs or uses have changed, then
2415 these bitmaps need to be reallocated. */
2416 df_bitmaps_alloc (df, blocks, flags);
2418 /* Set the LUIDs for each specified basic block. */
2419 df_luids_set (df, blocks);
2421 /* Recreate reg-def and reg-use chains from scratch so that first
2422 def is at the head of the reg-def chain and the last use is at
2423 the head of the reg-use chain. This is only important for
2424 regs local to a basic block as it speeds up searching. */
2425 if (flags & DF_RD_CHAIN)
2427 df_reg_def_chain_create (df, blocks, true);
2430 if (flags & DF_RU_CHAIN)
2432 df_reg_use_chain_create (df, blocks, true);
2435 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2436 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2437 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2439 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2440 flow_reverse_top_sort_order_compute (df->rts_order);
2442 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks, blocks);
2443 prune_to_subcfg (df->rc_order, n_basic_blocks, blocks);
2444 prune_to_subcfg (df->rts_order, n_basic_blocks, blocks);
2446 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2447 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2448 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2449 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2451 if (flags & DF_RD)
2453 /* Compute the sets of gens and kills for the defs of each bb. */
2454 df_rd_local_compute (df, blocks);
2456 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2458 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2459 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2460 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2461 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2464 dflow.repr = SR_BITMAP;
2465 dflow.dir = DF_FORWARD;
2466 dflow.conf_op = DF_UNION;
2467 dflow.transfun = df_rd_transfer_function;
2468 dflow.n_blocks = n_blocks;
2469 dflow.order = df->rc_order;
2470 dflow.data = NULL;
2472 iterative_dataflow (&dflow);
2475 if (flags & DF_UD_CHAIN)
2477 /* Create use-def chains. */
2478 df_ud_chain_create (df, blocks);
2481 if (flags & DF_RU)
2483 /* Compute the sets of gens and kills for the upwards exposed
2484 uses in each bb. */
2485 df_ru_local_compute (df, blocks);
2487 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2489 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2490 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2491 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2492 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2495 dflow.repr = SR_BITMAP;
2496 dflow.dir = DF_BACKWARD;
2497 dflow.conf_op = DF_UNION;
2498 dflow.transfun = df_ru_transfer_function;
2499 dflow.n_blocks = n_blocks;
2500 dflow.order = df->rts_order;
2501 dflow.data = NULL;
2503 iterative_dataflow (&dflow);
2506 if (flags & DF_DU_CHAIN)
2508 /* Create def-use chains. */
2509 df_du_chain_create (df, blocks);
2512 if (flags & DF_LR)
2514 /* Compute the sets of defs and uses of live variables. */
2515 df_lr_local_compute (df, blocks);
2517 FOR_EACH_BB (bb)
2519 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2520 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2521 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2522 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2525 dflow.repr = SR_BITMAP;
2526 dflow.dir = DF_BACKWARD;
2527 dflow.conf_op = DF_UNION;
2528 dflow.transfun = df_lr_transfer_function;
2529 dflow.n_blocks = n_blocks;
2530 dflow.order = df->rts_order;
2531 dflow.data = NULL;
2533 iterative_dataflow (&dflow);
2536 if (flags & DF_REG_INFO)
2538 df_reg_info_compute (df, blocks);
2541 free (dflow.in);
2542 free (dflow.out);
2543 free (dflow.gen);
2544 free (dflow.kill);
2546 free (df->dfs_order);
2547 free (df->rc_order);
2548 free (df->rts_order);
2551 /* Free all the dataflow info and the DF structure. */
2552 void
2553 df_finish (struct df *df)
2555 df_free (df);
2556 free (df);
2559 /* Unlink INSN from its reference information. */
2560 static void
2561 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2563 struct df_link *link;
2564 unsigned int uid;
2566 uid = INSN_UID (insn);
2568 /* Unlink all refs defined by this insn. */
2569 for (link = df->insns[uid].defs; link; link = link->next)
2570 df_def_unlink (df, link->ref);
2572 /* Unlink all refs used by this insn. */
2573 for (link = df->insns[uid].uses; link; link = link->next)
2574 df_use_unlink (df, link->ref);
2576 df->insns[uid].defs = 0;
2577 df->insns[uid].uses = 0;
2581 #if 0
2582 /* Unlink all the insns within BB from their reference information. */
2583 static void
2584 df_bb_refs_unlink (struct df *df, basic_block bb)
2586 rtx insn;
2588 /* Scan the block an insn at a time from beginning to end. */
2589 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2591 if (INSN_P (insn))
2593 /* Unlink refs for INSN. */
2594 df_insn_refs_unlink (df, bb, insn);
2596 if (insn == BB_END (bb))
2597 break;
2602 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2603 Not currently used. */
2604 static void
2605 df_refs_unlink (struct df *df, bitmap blocks)
2607 basic_block bb;
2609 if (blocks)
2611 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2613 df_bb_refs_unlink (df, bb);
2616 else
2618 FOR_EACH_BB (bb)
2619 df_bb_refs_unlink (df, bb);
2622 #endif
2624 /* Functions to modify insns. */
2627 /* Delete INSN and all its reference information. */
2629 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2631 /* If the insn is a jump, we should perhaps call delete_insn to
2632 handle the JUMP_LABEL? */
2634 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2635 gcc_assert (insn != BB_HEAD (bb));
2637 /* Delete the insn. */
2638 delete_insn (insn);
2640 df_insn_modify (df, bb, insn);
2642 return NEXT_INSN (insn);
2645 /* Mark that basic block BB was modified. */
2647 static void
2648 df_bb_modify (struct df *df, basic_block bb)
2650 if ((unsigned) bb->index >= df->n_bbs)
2651 df_bb_table_realloc (df, df->n_bbs);
2653 bitmap_set_bit (df->bbs_modified, bb->index);
2656 /* Mark that INSN within BB may have changed (created/modified/deleted).
2657 This may be called multiple times for the same insn. There is no
2658 harm calling this function if the insn wasn't changed; it will just
2659 slow down the rescanning of refs. */
2660 void
2661 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2663 unsigned int uid;
2665 uid = INSN_UID (insn);
2666 if (uid >= df->insn_size)
2667 df_insn_table_realloc (df, uid);
2669 df_bb_modify (df, bb);
2670 bitmap_set_bit (df->insns_modified, uid);
2672 /* For incremental updating on the fly, perhaps we could make a copy
2673 of all the refs of the original insn and turn them into
2674 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2675 the original refs. If validate_change fails then these anti-refs
2676 will just get ignored. */
2679 /* Check if INSN was marked as changed. Of course the correctness of
2680 the information depends on whether the instruction was really modified
2681 at the time df_insn_modify was called. */
2682 bool
2683 df_insn_modified_p (struct df *df, rtx insn)
2685 unsigned int uid;
2687 uid = INSN_UID (insn);
2688 return (df->insns_modified
2689 && uid < df->insn_size
2690 && bitmap_bit_p (df->insns_modified, uid));
2693 typedef struct replace_args
2695 rtx match;
2696 rtx replacement;
2697 rtx insn;
2698 int modified;
2699 } replace_args;
2702 /* Replace mem pointed to by PX with its associated pseudo register.
2703 DATA is actually a pointer to a structure describing the
2704 instruction currently being scanned and the MEM we are currently
2705 replacing. */
2706 static int
2707 df_rtx_mem_replace (rtx *px, void *data)
2709 replace_args *args = (replace_args *) data;
2710 rtx mem = *px;
2712 if (mem == NULL_RTX)
2713 return 0;
2715 switch (GET_CODE (mem))
2717 case MEM:
2718 break;
2720 case CONST_DOUBLE:
2721 /* We're not interested in the MEM associated with a
2722 CONST_DOUBLE, so there's no need to traverse into one. */
2723 return -1;
2725 default:
2726 /* This is not a MEM. */
2727 return 0;
2730 if (!rtx_equal_p (args->match, mem))
2731 /* This is not the MEM we are currently replacing. */
2732 return 0;
2734 /* Actually replace the MEM. */
2735 validate_change (args->insn, px, args->replacement, 1);
2736 args->modified++;
2738 return 0;
2743 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2745 replace_args args;
2747 args.insn = insn;
2748 args.match = mem;
2749 args.replacement = reg;
2750 args.modified = 0;
2752 /* Search and replace all matching mems within insn. */
2753 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2755 if (args.modified)
2756 df_insn_modify (df, bb, insn);
2758 /* ???? FIXME. We may have a new def or one or more new uses of REG
2759 in INSN. REG should be a new pseudo so it won't affect the
2760 dataflow information that we currently have. We should add
2761 the new uses and defs to INSN and then recreate the chains
2762 when df_analyze is called. */
2763 return args.modified;
2767 /* Replace one register with another. Called through for_each_rtx; PX
2768 points to the rtx being scanned. DATA is actually a pointer to a
2769 structure of arguments. */
2770 static int
2771 df_rtx_reg_replace (rtx *px, void *data)
2773 rtx x = *px;
2774 replace_args *args = (replace_args *) data;
2776 if (x == NULL_RTX)
2777 return 0;
2779 if (x == args->match)
2781 validate_change (args->insn, px, args->replacement, 1);
2782 args->modified++;
2785 return 0;
2789 /* Replace the reg within every ref on CHAIN that is within the set
2790 BLOCKS of basic blocks with NEWREG. Also update the regs within
2791 REG_NOTES. */
2792 void
2793 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2795 struct df_link *link;
2796 replace_args args;
2798 if (! blocks)
2799 blocks = df->all_blocks;
2801 args.match = oldreg;
2802 args.replacement = newreg;
2803 args.modified = 0;
2805 for (link = chain; link; link = link->next)
2807 struct ref *ref = link->ref;
2808 rtx insn = DF_REF_INSN (ref);
2810 if (! INSN_P (insn))
2811 continue;
2813 gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
2815 df_ref_reg_replace (df, ref, oldreg, newreg);
2817 /* Replace occurrences of the reg within the REG_NOTES. */
2818 if ((! link->next || DF_REF_INSN (ref)
2819 != DF_REF_INSN (link->next->ref))
2820 && REG_NOTES (insn))
2822 args.insn = insn;
2823 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2829 /* Replace all occurrences of register OLDREG with register NEWREG in
2830 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2831 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2832 routine expects the reg-use and reg-def chains to be valid. */
2834 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2836 unsigned int oldregno = REGNO (oldreg);
2838 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2839 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2840 return 1;
2844 /* Try replacing the reg within REF with NEWREG. Do not modify
2845 def-use/use-def chains. */
2847 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2849 /* Check that insn was deleted by being converted into a NOTE. If
2850 so ignore this insn. */
2851 if (! INSN_P (DF_REF_INSN (ref)))
2852 return 0;
2854 gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));
2856 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2857 return 0;
2859 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2860 return 1;
2864 struct ref*
2865 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2867 struct ref *def;
2868 struct ref *use;
2869 int def_uid;
2870 int use_uid;
2871 struct df_link *link;
2873 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2874 if (! def)
2875 return 0;
2877 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2878 if (! use)
2879 return 0;
2881 /* The USE no longer exists. */
2882 use_uid = INSN_UID (use_insn);
2883 df_use_unlink (df, use);
2884 df_ref_unlink (&df->insns[use_uid].uses, use);
2886 /* The DEF requires shifting so remove it from DEF_INSN
2887 and add it to USE_INSN by reusing LINK. */
2888 def_uid = INSN_UID (def_insn);
2889 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2890 link->ref = def;
2891 link->next = df->insns[use_uid].defs;
2892 df->insns[use_uid].defs = link;
2894 #if 0
2895 link = df_ref_unlink (&df->regs[regno].defs, def);
2896 link->ref = def;
2897 link->next = df->regs[regno].defs;
2898 df->insns[regno].defs = link;
2899 #endif
2901 DF_REF_INSN (def) = use_insn;
2902 return def;
2906 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2907 insns must be processed by this routine. */
2908 static void
2909 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2911 rtx insn;
2913 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2915 unsigned int uid;
2917 /* A non-const call should not have slipped through the net. If
2918 it does, we need to create a new basic block. Ouch. The
2919 same applies for a label. */
2920 gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
2921 && !LABEL_P (insn));
2923 uid = INSN_UID (insn);
2925 if (uid >= df->insn_size)
2926 df_insn_table_realloc (df, uid);
2928 df_insn_modify (df, bb, insn);
2930 if (insn == last_insn)
2931 break;
2936 /* Emit PATTERN before INSN within BB. */
2938 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2940 rtx ret_insn;
2941 rtx prev_insn = PREV_INSN (insn);
2943 /* We should not be inserting before the start of the block. */
2944 gcc_assert (insn != BB_HEAD (bb));
2945 ret_insn = emit_insn_before (pattern, insn);
2946 if (ret_insn == insn)
2947 return ret_insn;
2949 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2950 return ret_insn;
2954 /* Emit PATTERN after INSN within BB. */
2956 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2958 rtx ret_insn;
2960 ret_insn = emit_insn_after (pattern, insn);
2961 if (ret_insn == insn)
2962 return ret_insn;
2964 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2965 return ret_insn;
2969 /* Emit jump PATTERN after INSN within BB. */
2971 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2973 rtx ret_insn;
2975 ret_insn = emit_jump_insn_after (pattern, insn);
2976 if (ret_insn == insn)
2977 return ret_insn;
2979 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2980 return ret_insn;
2984 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2986 This function should only be used to move loop invariant insns
2987 out of a loop where it has been proven that the def-use info
2988 will still be valid. */
2990 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2992 struct df_link *link;
2993 unsigned int uid;
2995 if (! bb)
2996 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2998 uid = INSN_UID (insn);
3000 /* Change bb for all df defined and used by this insn. */
3001 for (link = df->insns[uid].defs; link; link = link->next)
3002 DF_REF_BB (link->ref) = before_bb;
3003 for (link = df->insns[uid].uses; link; link = link->next)
3004 DF_REF_BB (link->ref) = before_bb;
3006 /* The lifetimes of the registers used in this insn will be reduced
3007 while the lifetimes of the registers defined in this insn
3008 are likely to be increased. */
3010 /* ???? Perhaps all the insns moved should be stored on a list
3011 which df_analyze removes when it recalculates data flow. */
3013 return emit_insn_before (insn, before_insn);
3016 /* Functions to query dataflow information. */
3020 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3021 rtx insn, unsigned int regno)
3023 unsigned int uid;
3024 struct df_link *link;
3026 uid = INSN_UID (insn);
3028 for (link = df->insns[uid].defs; link; link = link->next)
3030 struct ref *def = link->ref;
3032 if (DF_REF_REGNO (def) == regno)
3033 return 1;
3036 return 0;
3039 /* Finds the reference corresponding to the definition of REG in INSN.
3040 DF is the dataflow object. */
3042 struct ref *
3043 df_find_def (struct df *df, rtx insn, rtx reg)
3045 struct df_link *defs;
3047 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3048 if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
3049 return defs->ref;
3051 return NULL;
3054 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3057 df_reg_used (struct df *df, rtx insn, rtx reg)
3059 struct df_link *uses;
3061 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3062 if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
3063 return 1;
3065 return 0;
3068 static int
3069 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3071 struct df_link *du_link;
3073 /* Follow def-use chain to find all the uses of this def. */
3074 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3076 struct ref *use = du_link->ref;
3077 struct df_link *ud_link;
3079 /* Follow use-def chain to check all the defs for this use. */
3080 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3081 if (ud_link->ref != def)
3082 return 0;
3084 return 1;
3089 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3090 rtx insn)
3092 unsigned int uid;
3093 struct df_link *link;
3095 uid = INSN_UID (insn);
3097 for (link = df->insns[uid].defs; link; link = link->next)
3099 struct ref *def = link->ref;
3101 if (! df_def_dominates_all_uses_p (df, def))
3102 return 0;
3105 return 1;
3109 /* Return nonzero if all DF dominates all the uses within the bitmap
3110 BLOCKS. */
3111 static int
3112 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3113 bitmap blocks)
3115 struct df_link *du_link;
3117 /* Follow def-use chain to find all the uses of this def. */
3118 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3120 struct ref *use = du_link->ref;
3121 struct df_link *ud_link;
3123 /* Only worry about the uses within BLOCKS. For example,
3124 consider a register defined within a loop that is live at the
3125 loop exits. */
3126 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3128 /* Follow use-def chain to check all the defs for this use. */
3129 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3130 if (ud_link->ref != def)
3131 return 0;
3134 return 1;
3138 /* Return nonzero if all the defs of INSN within BB dominates
3139 all the corresponding uses. */
3141 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3142 rtx insn, bitmap blocks)
3144 unsigned int uid;
3145 struct df_link *link;
3147 uid = INSN_UID (insn);
3149 for (link = df->insns[uid].defs; link; link = link->next)
3151 struct ref *def = link->ref;
3153 /* Only consider the defs within BLOCKS. */
3154 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3155 && ! df_def_dominates_uses_p (df, def, blocks))
3156 return 0;
3158 return 1;
3162 /* Return the basic block that REG referenced in or NULL if referenced
3163 in multiple basic blocks. */
3164 basic_block
3165 df_regno_bb (struct df *df, unsigned int regno)
3167 struct df_link *defs = df->regs[regno].defs;
3168 struct df_link *uses = df->regs[regno].uses;
3169 struct ref *def = defs ? defs->ref : 0;
3170 struct ref *use = uses ? uses->ref : 0;
3171 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3172 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3174 /* Compare blocks of first def and last use. ???? FIXME. What if
3175 the reg-def and reg-use lists are not correctly ordered. */
3176 return bb_def == bb_use ? bb_def : 0;
3180 /* Return nonzero if REG used in multiple basic blocks. */
3182 df_reg_global_p (struct df *df, rtx reg)
3184 return df_regno_bb (df, REGNO (reg)) != 0;
3188 /* Return total lifetime (in insns) of REG. */
3190 df_reg_lifetime (struct df *df, rtx reg)
3192 return df->regs[REGNO (reg)].lifetime;
3196 /* Return nonzero if REG live at start of BB. */
3198 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3200 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3202 gcc_assert (bb_info->lr_in);
3204 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3208 /* Return nonzero if REG live at end of BB. */
3210 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3212 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3214 gcc_assert (bb_info->lr_in);
3216 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3220 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3221 after life of REG2, or 0, if the lives overlap. */
3223 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3225 unsigned int regno1 = REGNO (reg1);
3226 unsigned int regno2 = REGNO (reg2);
3227 struct ref *def1;
3228 struct ref *use1;
3229 struct ref *def2;
3230 struct ref *use2;
3233 /* The regs must be local to BB. */
3234 gcc_assert (df_regno_bb (df, regno1) == bb
3235 && df_regno_bb (df, regno2) == bb);
3237 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3238 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3240 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3241 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3242 return -1;
3244 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3245 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3247 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3248 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3249 return 1;
3251 return 0;
3255 /* Return true if the definition DEF, which is in the same basic
3256 block as USE, is available at USE. So DEF may as well be
3257 dead, in which case using it will extend its live range. */
3258 bool
3259 df_local_def_available_p (struct df *df, struct ref *def, struct ref *use)
3261 struct df_link *link;
3262 int def_luid = DF_INSN_LUID (df, DF_REF_INSN (def));
3263 int in_bb = 0;
3264 unsigned int regno = REGNO (def->reg);
3265 basic_block bb;
3267 /* The regs must be local to BB. */
3268 gcc_assert (DF_REF_BB (def) == DF_REF_BB (use));
3269 bb = DF_REF_BB (def);
3271 /* This assumes that the reg-def list is ordered such that for any
3272 BB, the first def is found first. However, since the BBs are not
3273 ordered, the first def in the chain is not necessarily the first
3274 def in the function. */
3275 for (link = df->regs[regno].defs; link; link = link->next)
3277 struct ref *this_def = link->ref;
3278 if (DF_REF_BB (this_def) == bb)
3280 int this_luid = DF_INSN_LUID (df, DF_REF_INSN (this_def));
3281 /* Do nothing with defs coming before DEF. */
3282 if (this_luid > def_luid)
3283 return this_luid > DF_INSN_LUID (df, DF_REF_INSN (use));
3285 in_bb = 1;
3287 else if (in_bb)
3288 /* DEF was the last in its basic block. */
3289 return 1;
3292 /* DEF was the last in the function. */
3293 return 1;
3297 /* Return last use of REGNO within BB. */
3298 struct ref *
3299 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3301 struct df_link *link;
3303 /* This assumes that the reg-use list is ordered such that for any
3304 BB, the last use is found first. However, since the BBs are not
3305 ordered, the first use in the chain is not necessarily the last
3306 use in the function. */
3307 for (link = df->regs[regno].uses; link; link = link->next)
3309 struct ref *use = link->ref;
3311 if (DF_REF_BB (use) == bb)
3312 return use;
3314 return 0;
3318 /* Return first def of REGNO within BB. */
3319 struct ref *
3320 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3322 struct df_link *link;
3324 /* This assumes that the reg-def list is ordered such that for any
3325 BB, the first def is found first. However, since the BBs are not
3326 ordered, the first def in the chain is not necessarily the first
3327 def in the function. */
3328 for (link = df->regs[regno].defs; link; link = link->next)
3330 struct ref *def = link->ref;
3332 if (DF_REF_BB (def) == bb)
3333 return def;
3335 return 0;
3338 /* Return last def of REGNO within BB. */
3339 struct ref *
3340 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3342 struct df_link *link;
3343 struct ref *last_def = NULL;
3344 int in_bb = 0;
3346 /* This assumes that the reg-def list is ordered such that for any
3347 BB, the first def is found first. However, since the BBs are not
3348 ordered, the first def in the chain is not necessarily the first
3349 def in the function. */
3350 for (link = df->regs[regno].defs; link; link = link->next)
3352 struct ref *def = link->ref;
3353 /* The first time in the desired block. */
3354 if (DF_REF_BB (def) == bb)
3355 in_bb = 1;
3356 /* The last def in the desired block. */
3357 else if (in_bb)
3358 return last_def;
3359 last_def = def;
3361 return last_def;
3364 /* Return last use of REGNO inside INSN within BB. */
3365 static struct ref *
3366 df_bb_insn_regno_last_use_find (struct df *df,
3367 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3368 unsigned int regno)
3370 unsigned int uid;
3371 struct df_link *link;
3373 uid = INSN_UID (insn);
3375 for (link = df->insns[uid].uses; link; link = link->next)
3377 struct ref *use = link->ref;
3379 if (DF_REF_REGNO (use) == regno)
3380 return use;
3383 return 0;
3387 /* Return first def of REGNO inside INSN within BB. */
3388 static struct ref *
3389 df_bb_insn_regno_first_def_find (struct df *df,
3390 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3391 unsigned int regno)
3393 unsigned int uid;
3394 struct df_link *link;
3396 uid = INSN_UID (insn);
3398 for (link = df->insns[uid].defs; link; link = link->next)
3400 struct ref *def = link->ref;
3402 if (DF_REF_REGNO (def) == regno)
3403 return def;
3406 return 0;
3410 /* Return insn using REG if the BB contains only a single
3411 use and def of REG. */
3413 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3415 struct ref *def;
3416 struct ref *use;
3417 struct df_link *du_link;
3419 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3421 gcc_assert (def);
3423 du_link = DF_REF_CHAIN (def);
3425 if (! du_link)
3426 return NULL_RTX;
3428 use = du_link->ref;
3430 /* Check if def is dead. */
3431 if (! use)
3432 return NULL_RTX;
3434 /* Check for multiple uses. */
3435 if (du_link->next)
3436 return NULL_RTX;
3438 return DF_REF_INSN (use);
3441 /* Functions for debugging/dumping dataflow information. */
3444 /* Dump a def-use or use-def chain for REF to FILE. */
3445 static void
3446 df_chain_dump (struct df_link *link, FILE *file)
3448 fprintf (file, "{ ");
3449 for (; link; link = link->next)
3451 fprintf (file, "%c%d ",
3452 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3453 DF_REF_ID (link->ref));
3455 fprintf (file, "}");
3459 /* Dump a chain of refs with the associated regno. */
3460 static void
3461 df_chain_dump_regno (struct df_link *link, FILE *file)
3463 fprintf (file, "{ ");
3464 for (; link; link = link->next)
3466 fprintf (file, "%c%d(%d) ",
3467 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3468 DF_REF_ID (link->ref),
3469 DF_REF_REGNO (link->ref));
3471 fprintf (file, "}");
3475 /* Dump dataflow info. */
3476 void
3477 df_dump (struct df *df, int flags, FILE *file)
3479 unsigned int j;
3480 basic_block bb;
3482 if (! df || ! file)
3483 return;
3485 fprintf (file, "\nDataflow summary:\n");
3486 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3487 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3489 if (flags & DF_RD)
3491 basic_block bb;
3493 fprintf (file, "Reaching defs:\n");
3494 FOR_EACH_BB (bb)
3496 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3498 if (! bb_info->rd_in)
3499 continue;
3501 fprintf (file, "bb %d in \t", bb->index);
3502 dump_bitmap (file, bb_info->rd_in);
3503 fprintf (file, "bb %d gen \t", bb->index);
3504 dump_bitmap (file, bb_info->rd_gen);
3505 fprintf (file, "bb %d kill\t", bb->index);
3506 dump_bitmap (file, bb_info->rd_kill);
3507 fprintf (file, "bb %d out \t", bb->index);
3508 dump_bitmap (file, bb_info->rd_out);
3512 if (flags & DF_UD_CHAIN)
3514 fprintf (file, "Use-def chains:\n");
3515 for (j = 0; j < df->n_defs; j++)
3517 if (df->defs[j])
3519 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3520 j, DF_REF_BBNO (df->defs[j]),
3521 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3522 DF_REF_INSN_UID (df->defs[j]),
3523 DF_REF_REGNO (df->defs[j]));
3524 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3525 fprintf (file, "read/write ");
3526 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3527 fprintf (file, "\n");
3532 if (flags & DF_RU)
3534 fprintf (file, "Reaching uses:\n");
3535 FOR_EACH_BB (bb)
3537 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3539 if (! bb_info->ru_in)
3540 continue;
3542 fprintf (file, "bb %d in \t", bb->index);
3543 dump_bitmap (file, bb_info->ru_in);
3544 fprintf (file, "bb %d gen \t", bb->index);
3545 dump_bitmap (file, bb_info->ru_gen);
3546 fprintf (file, "bb %d kill\t", bb->index);
3547 dump_bitmap (file, bb_info->ru_kill);
3548 fprintf (file, "bb %d out \t", bb->index);
3549 dump_bitmap (file, bb_info->ru_out);
3553 if (flags & DF_DU_CHAIN)
3555 fprintf (file, "Def-use chains:\n");
3556 for (j = 0; j < df->n_uses; j++)
3558 if (df->uses[j])
3560 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3561 j, DF_REF_BBNO (df->uses[j]),
3562 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3563 DF_REF_INSN_UID (df->uses[j]),
3564 DF_REF_REGNO (df->uses[j]));
3565 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3566 fprintf (file, "read/write ");
3567 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3568 fprintf (file, "\n");
3573 if (flags & DF_LR)
3575 fprintf (file, "Live regs:\n");
3576 FOR_EACH_BB (bb)
3578 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3580 if (! bb_info->lr_in)
3581 continue;
3583 fprintf (file, "bb %d in \t", bb->index);
3584 dump_bitmap (file, bb_info->lr_in);
3585 fprintf (file, "bb %d use \t", bb->index);
3586 dump_bitmap (file, bb_info->lr_use);
3587 fprintf (file, "bb %d def \t", bb->index);
3588 dump_bitmap (file, bb_info->lr_def);
3589 fprintf (file, "bb %d out \t", bb->index);
3590 dump_bitmap (file, bb_info->lr_out);
3594 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3596 struct reg_info *reg_info = df->regs;
3598 fprintf (file, "Register info:\n");
3599 for (j = 0; j < df->n_regs; j++)
3601 if (((flags & DF_REG_INFO)
3602 && (reg_info[j].n_uses || reg_info[j].n_defs))
3603 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3604 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3606 fprintf (file, "reg %d", j);
3607 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3609 basic_block bb = df_regno_bb (df, j);
3611 if (bb)
3612 fprintf (file, " bb %d", bb->index);
3613 else
3614 fprintf (file, " bb ?");
3616 if (flags & DF_REG_INFO)
3618 fprintf (file, " life %d", reg_info[j].lifetime);
3621 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3623 fprintf (file, " defs ");
3624 if (flags & DF_REG_INFO)
3625 fprintf (file, "%d ", reg_info[j].n_defs);
3626 if (flags & DF_RD_CHAIN)
3627 df_chain_dump (reg_info[j].defs, file);
3630 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3632 fprintf (file, " uses ");
3633 if (flags & DF_REG_INFO)
3634 fprintf (file, "%d ", reg_info[j].n_uses);
3635 if (flags & DF_RU_CHAIN)
3636 df_chain_dump (reg_info[j].uses, file);
3639 fprintf (file, "\n");
3643 fprintf (file, "\n");
3647 void
3648 df_insn_debug (struct df *df, rtx insn, FILE *file)
3650 unsigned int uid;
3651 int bbi;
3653 uid = INSN_UID (insn);
3654 if (uid >= df->insn_size)
3655 return;
3657 if (df->insns[uid].defs)
3658 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3659 else if (df->insns[uid].uses)
3660 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3661 else
3662 bbi = -1;
3664 fprintf (file, "insn %d bb %d luid %d defs ",
3665 uid, bbi, DF_INSN_LUID (df, insn));
3666 df_chain_dump (df->insns[uid].defs, file);
3667 fprintf (file, " uses ");
3668 df_chain_dump (df->insns[uid].uses, file);
3669 fprintf (file, "\n");
3673 void
3674 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3676 unsigned int uid;
3677 int bbi;
3679 uid = INSN_UID (insn);
3680 if (uid >= df->insn_size)
3681 return;
3683 if (df->insns[uid].defs)
3684 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3685 else if (df->insns[uid].uses)
3686 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3687 else
3688 bbi = -1;
3690 fprintf (file, "insn %d bb %d luid %d defs ",
3691 uid, bbi, DF_INSN_LUID (df, insn));
3692 df_chain_dump_regno (df->insns[uid].defs, file);
3693 fprintf (file, " uses ");
3694 df_chain_dump_regno (df->insns[uid].uses, file);
3695 fprintf (file, "\n");
3699 static void
3700 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3702 if (regno >= df->reg_size)
3703 return;
3705 fprintf (file, "reg %d life %d defs ",
3706 regno, df->regs[regno].lifetime);
3707 df_chain_dump (df->regs[regno].defs, file);
3708 fprintf (file, " uses ");
3709 df_chain_dump (df->regs[regno].uses, file);
3710 fprintf (file, "\n");
3714 static void
3715 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3717 fprintf (file, "%c%d ",
3718 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3719 DF_REF_ID (ref));
3720 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3721 DF_REF_REGNO (ref),
3722 DF_REF_BBNO (ref),
3723 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3724 INSN_UID (DF_REF_INSN (ref)));
3725 df_chain_dump (DF_REF_CHAIN (ref), file);
3726 fprintf (file, "\n");
3729 /* Functions for debugging from GDB. */
3731 void
3732 debug_df_insn (rtx insn)
3734 df_insn_debug (ddf, insn, stderr);
3735 debug_rtx (insn);
3739 void
3740 debug_df_reg (rtx reg)
3742 df_regno_debug (ddf, REGNO (reg), stderr);
3746 void
3747 debug_df_regno (unsigned int regno)
3749 df_regno_debug (ddf, regno, stderr);
3753 void
3754 debug_df_ref (struct ref *ref)
3756 df_ref_debug (ddf, ref, stderr);
3760 void
3761 debug_df_defno (unsigned int defno)
3763 df_ref_debug (ddf, ddf->defs[defno], stderr);
3767 void
3768 debug_df_useno (unsigned int defno)
3770 df_ref_debug (ddf, ddf->uses[defno], stderr);
3774 void
3775 debug_df_chain (struct df_link *link)
3777 df_chain_dump (link, stderr);
3778 fputc ('\n', stderr);
3782 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3783 storing the result in OP1. */
3785 static void
3786 dataflow_set_a_op_b (enum set_representation repr,
3787 enum df_confluence_op op,
3788 void *op1, void *op2)
3790 switch (repr)
3792 case SR_SBITMAP:
3793 switch (op)
3795 case DF_UNION:
3796 sbitmap_a_or_b (op1, op1, op2);
3797 break;
3799 case DF_INTERSECTION:
3800 sbitmap_a_and_b (op1, op1, op2);
3801 break;
3803 default:
3804 gcc_unreachable ();
3806 break;
3808 case SR_BITMAP:
3809 switch (op)
3811 case DF_UNION:
3812 bitmap_ior_into (op1, op2);
3813 break;
3815 case DF_INTERSECTION:
3816 bitmap_and_into (op1, op2);
3817 break;
3819 default:
3820 gcc_unreachable ();
3822 break;
3824 default:
3825 gcc_unreachable ();
3829 static void
3830 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3832 switch (repr)
3834 case SR_SBITMAP:
3835 sbitmap_copy (dest, src);
3836 break;
3838 case SR_BITMAP:
3839 bitmap_copy (dest, src);
3840 break;
3842 default:
3843 gcc_unreachable ();
3847 /* Hybrid search algorithm from "Implementation Techniques for
3848 Efficient Data-Flow Analysis of Large Programs". */
3850 static void
3851 hybrid_search (basic_block bb, struct dataflow *dataflow,
3852 sbitmap visited, sbitmap pending, sbitmap considered)
3854 int changed;
3855 int i = bb->index;
3856 edge e;
3857 edge_iterator ei;
3859 SET_BIT (visited, bb->index);
3860 gcc_assert (TEST_BIT (pending, bb->index));
3861 RESET_BIT (pending, i);
3863 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3864 E, E_BB, E_START_BB, OUT_SET) \
3865 do \
3867 /* Calculate <conf_op> of predecessor_outs. */ \
3868 bitmap_zero (IN_SET[i]); \
3869 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3871 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3872 continue; \
3873 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3874 continue; \
3876 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3877 IN_SET[i], \
3878 OUT_SET[e->E_ANTI_BB->index]); \
3881 (*dataflow->transfun)(i, &changed, \
3882 dataflow->in[i], dataflow->out[i], \
3883 dataflow->gen[i], dataflow->kill[i], \
3884 dataflow->data); \
3886 if (!changed) \
3887 break; \
3889 FOR_EACH_EDGE (e, ei, bb->E) \
3891 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3892 continue; \
3894 if (!TEST_BIT (considered, e->E_BB->index)) \
3895 continue; \
3897 SET_BIT (pending, e->E_BB->index); \
3900 FOR_EACH_EDGE (e, ei, bb->E) \
3902 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3903 continue; \
3905 if (!TEST_BIT (considered, e->E_BB->index)) \
3906 continue; \
3908 if (!TEST_BIT (visited, e->E_BB->index)) \
3909 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3911 } while (0)
3913 if (dataflow->dir == DF_FORWARD)
3914 HS (preds, src, ENTRY_BLOCK_PTR, dataflow->in,
3915 succs, dest, EXIT_BLOCK_PTR, dataflow->out);
3916 else
3917 HS (succs, dest, EXIT_BLOCK_PTR, dataflow->out,
3918 preds, src, ENTRY_BLOCK_PTR, dataflow->in);
3921 /* This function will perform iterative bitvector dataflow described by
3922 DATAFLOW, producing the in and out sets. Only the part of the cfg
3923 induced by blocks in DATAFLOW->order is taken into account.
3925 For forward problems, you probably want to pass in a mapping of
3926 block number to rc_order (like df->inverse_rc_map). */
3928 void
3929 iterative_dataflow (struct dataflow *dataflow)
3931 unsigned i, idx;
3932 sbitmap visited, pending, considered;
3934 pending = sbitmap_alloc (last_basic_block);
3935 visited = sbitmap_alloc (last_basic_block);
3936 considered = sbitmap_alloc (last_basic_block);
3937 sbitmap_zero (pending);
3938 sbitmap_zero (visited);
3939 sbitmap_zero (considered);
3941 for (i = 0; i < dataflow->n_blocks; i++)
3943 idx = dataflow->order[i];
3944 SET_BIT (pending, idx);
3945 SET_BIT (considered, idx);
3946 if (dataflow->dir == DF_FORWARD)
3947 dataflow_set_copy (dataflow->repr,
3948 dataflow->out[idx], dataflow->gen[idx]);
3949 else
3950 dataflow_set_copy (dataflow->repr,
3951 dataflow->in[idx], dataflow->gen[idx]);
3954 while (1)
3956 for (i = 0; i < dataflow->n_blocks; i++)
3958 idx = dataflow->order[i];
3960 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3961 hybrid_search (BASIC_BLOCK (idx), dataflow,
3962 visited, pending, considered);
3965 if (sbitmap_first_set_bit (pending) == -1)
3966 break;
3968 sbitmap_zero (visited);
3971 sbitmap_free (pending);
3972 sbitmap_free (visited);
3973 sbitmap_free (considered);