* config/sh/sh.h: Delete dead GO_IF_LEGITIMATE_INDEX macro.
[official-gcc.git] / gcc / sel-sched.c
blob2af01aea99e439c267b1c598179d8fb9f07ee288
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "output.h"
47 #include "emit-rtl.h"
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
69 Terminology
70 ===========
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
96 High-level overview
97 ===================
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
119 Computing available expressions
120 ===============================
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
136 Choosing the best expression
137 ============================
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
150 Scheduling the best expression
151 ==============================
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
163 Finalizing the schedule
164 =======================
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
170 Dependence analysis changes
171 ===========================
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
182 Initialization changes
183 ======================
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
194 Target contexts
195 ===============
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
205 Various speedups
206 ================
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
264 /* Definitions of local types and macros. */
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
285 /* What we are searching for. */
286 rtx x;
288 /* The occurence counter. */
289 int n;
292 typedef struct rtx_search_arg *rtx_search_arg_p;
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
350 /* Local params used in move_op_* functions. */
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
372 /* Destination register. */
373 rtx dest;
375 /* Current C_EXPR. */
376 expr_t c_expr;
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
464 /* Current fences. */
465 flist_t fences;
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
505 /* A vector of expressions is used to be able to sort them. */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
515 /* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539 static bitmap code_motion_visited_blocks = NULL;
541 /* Variables to accumulate different statistics. */
543 /* The number of bookkeeping copies created. */
544 static int stat_bookkeeping_copies;
546 /* The number of insns that required bookkeeiping for their scheduling. */
547 static int stat_insns_needed_bookkeeping;
549 /* The number of insns that got renamed. */
550 static int stat_renamed_scheduled;
552 /* The number of substitutions made during scheduling. */
553 static int stat_substitutions_total;
556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
562 static rtx get_dest_from_orig_ops (av_set_t);
563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
565 def_list_t *);
566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
569 static void sel_sched_region_1 (void);
570 static void sel_sched_region_2 (int);
571 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
573 static void debug_state (state_t);
576 /* Functions that work with fences. */
578 /* Advance one cycle on FENCE. */
579 static void
580 advance_one_cycle (fence_t fence)
582 unsigned i;
583 int cycle;
584 rtx insn;
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
591 FENCE_ISSUE_MORE (fence) = can_issue_more;
593 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
595 if (INSN_READY_CYCLE (insn) < cycle)
597 remove_from_deps (FENCE_DC (fence), insn);
598 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599 continue;
601 i++;
603 if (sched_verbose >= 2)
605 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
606 debug_state (FENCE_STATE (fence));
610 /* Returns true when SUCC in a fallthru bb of INSN, possibly
611 skipping empty basic blocks. */
612 static bool
613 in_fallthru_bb_p (rtx insn, rtx succ)
615 basic_block bb = BLOCK_FOR_INSN (insn);
616 edge e;
618 if (bb == BLOCK_FOR_INSN (succ))
619 return true;
621 e = find_fallthru_edge_from (bb);
622 if (e)
623 bb = e->dest;
624 else
625 return false;
627 while (sel_bb_empty_p (bb))
628 bb = bb->next_bb;
630 return bb == BLOCK_FOR_INSN (succ);
633 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
634 When a successor will continue a ebb, transfer all parameters of a fence
635 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
636 of scheduling helping to distinguish between the old and the new code. */
637 static void
638 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
639 int orig_max_seqno)
641 bool was_here_p = false;
642 insn_t insn = NULL_RTX;
643 insn_t succ;
644 succ_iterator si;
645 ilist_iterator ii;
646 fence_t fence = FLIST_FENCE (old_fences);
647 basic_block bb;
649 /* Get the only element of FENCE_BNDS (fence). */
650 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
652 gcc_assert (!was_here_p);
653 was_here_p = true;
655 gcc_assert (was_here_p && insn != NULL_RTX);
657 /* When in the "middle" of the block, just move this fence
658 to the new list. */
659 bb = BLOCK_FOR_INSN (insn);
660 if (! sel_bb_end_p (insn)
661 || (single_succ_p (bb)
662 && single_pred_p (single_succ (bb))))
664 insn_t succ;
666 succ = (sel_bb_end_p (insn)
667 ? sel_bb_head (single_succ (bb))
668 : NEXT_INSN (insn));
670 if (INSN_SEQNO (succ) > 0
671 && INSN_SEQNO (succ) <= orig_max_seqno
672 && INSN_SCHED_TIMES (succ) <= 0)
674 FENCE_INSN (fence) = succ;
675 move_fence_to_fences (old_fences, new_fences);
677 if (sched_verbose >= 1)
678 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
679 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
681 return;
684 /* Otherwise copy fence's structures to (possibly) multiple successors. */
685 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
687 int seqno = INSN_SEQNO (succ);
689 if (0 < seqno && seqno <= orig_max_seqno
690 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
692 bool b = (in_same_ebb_p (insn, succ)
693 || in_fallthru_bb_p (insn, succ));
695 if (sched_verbose >= 1)
696 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
697 INSN_UID (insn), INSN_UID (succ),
698 BLOCK_NUM (succ), b ? "continue" : "reset");
700 if (b)
701 add_dirty_fence_to_fences (new_fences, succ, fence);
702 else
704 /* Mark block of the SUCC as head of the new ebb. */
705 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
706 add_clean_fence_to_fences (new_fences, succ, fence);
713 /* Functions to support substitution. */
715 /* Returns whether INSN with dependence status DS is eligible for
716 substitution, i.e. it's a copy operation x := y, and RHS that is
717 moved up through this insn should be substituted. */
718 static bool
719 can_substitute_through_p (insn_t insn, ds_t ds)
721 /* We can substitute only true dependencies. */
722 if ((ds & DEP_OUTPUT)
723 || (ds & DEP_ANTI)
724 || ! INSN_RHS (insn)
725 || ! INSN_LHS (insn))
726 return false;
728 /* Now we just need to make sure the INSN_RHS consists of only one
729 simple REG rtx. */
730 if (REG_P (INSN_LHS (insn))
731 && REG_P (INSN_RHS (insn)))
732 return true;
733 return false;
736 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
737 source (if INSN is eligible for substitution). Returns TRUE if
738 substitution was actually performed, FALSE otherwise. Substitution might
739 be not performed because it's either EXPR' vinsn doesn't contain INSN's
740 destination or the resulting insn is invalid for the target machine.
741 When UNDO is true, perform unsubstitution instead (the difference is in
742 the part of rtx on which validate_replace_rtx is called). */
743 static bool
744 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
746 rtx *where;
747 bool new_insn_valid;
748 vinsn_t *vi = &EXPR_VINSN (expr);
749 bool has_rhs = VINSN_RHS (*vi) != NULL;
750 rtx old, new_rtx;
752 /* Do not try to replace in SET_DEST. Although we'll choose new
753 register for the RHS, we don't want to change RHS' original reg.
754 If the insn is not SET, we may still be able to substitute something
755 in it, and if we're here (don't have deps), it doesn't write INSN's
756 dest. */
757 where = (has_rhs
758 ? &VINSN_RHS (*vi)
759 : &PATTERN (VINSN_INSN_RTX (*vi)));
760 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
762 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
763 if (rtx_ok_for_substitution_p (old, *where))
765 rtx new_insn;
766 rtx *where_replace;
768 /* We should copy these rtxes before substitution. */
769 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
770 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
772 /* Where we'll replace.
773 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
774 used instead of SET_SRC. */
775 where_replace = (has_rhs
776 ? &SET_SRC (PATTERN (new_insn))
777 : &PATTERN (new_insn));
779 new_insn_valid
780 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
781 new_insn);
783 /* ??? Actually, constrain_operands result depends upon choice of
784 destination register. E.g. if we allow single register to be an rhs,
785 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
786 in invalid insn dx=dx, so we'll loose this rhs here.
787 Just can't come up with significant testcase for this, so just
788 leaving it for now. */
789 if (new_insn_valid)
791 change_vinsn_in_expr (expr,
792 create_vinsn_from_insn_rtx (new_insn, false));
794 /* Do not allow clobbering the address register of speculative
795 insns. */
796 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
797 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
798 expr_dest_reg (expr)))
799 EXPR_TARGET_AVAILABLE (expr) = false;
801 return true;
803 else
804 return false;
806 else
807 return false;
810 /* Helper function for count_occurences_equiv. */
811 static int
812 count_occurrences_1 (rtx *cur_rtx, void *arg)
814 rtx_search_arg_p p = (rtx_search_arg_p) arg;
816 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
818 /* Bail out if mode is different or more than one register is used. */
819 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
820 || (HARD_REGISTER_P (*cur_rtx)
821 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
823 p->n = 0;
824 return 1;
827 p->n++;
829 /* Do not traverse subexprs. */
830 return -1;
833 if (GET_CODE (*cur_rtx) == SUBREG
834 && (!REG_P (SUBREG_REG (*cur_rtx))
835 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
837 /* ??? Do not support substituting regs inside subregs. In that case,
838 simplify_subreg will be called by validate_replace_rtx, and
839 unsubstitution will fail later. */
840 p->n = 0;
841 return 1;
844 /* Continue search. */
845 return 0;
848 /* Return the number of places WHAT appears within WHERE.
849 Bail out when we found a reference occupying several hard registers. */
850 static int
851 count_occurrences_equiv (rtx what, rtx where)
853 struct rtx_search_arg arg;
855 gcc_assert (REG_P (what));
856 arg.x = what;
857 arg.n = 0;
859 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
861 return arg.n;
864 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
865 static bool
866 rtx_ok_for_substitution_p (rtx what, rtx where)
868 return (count_occurrences_equiv (what, where) > 0);
872 /* Functions to support register renaming. */
874 /* Substitute VI's set source with REGNO. Returns newly created pattern
875 that has REGNO as its source. */
876 static rtx
877 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
879 rtx lhs_rtx;
880 rtx pattern;
881 rtx insn_rtx;
883 lhs_rtx = copy_rtx (VINSN_LHS (vi));
885 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
886 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
888 return insn_rtx;
891 /* Returns whether INSN's src can be replaced with register number
892 NEW_SRC_REG. E.g. the following insn is valid for i386:
894 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
895 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
896 (reg:SI 0 ax [orig:770 c1 ] [770]))
897 (const_int 288 [0x120])) [0 str S1 A8])
898 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
899 (nil))
901 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
902 because of operand constraints:
904 (define_insn "*movqi_1"
905 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
906 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
909 So do constrain_operands here, before choosing NEW_SRC_REG as best
910 reg for rhs. */
912 static bool
913 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
915 vinsn_t vi = INSN_VINSN (insn);
916 enum machine_mode mode;
917 rtx dst_loc;
918 bool res;
920 gcc_assert (VINSN_SEPARABLE_P (vi));
922 get_dest_and_mode (insn, &dst_loc, &mode);
923 gcc_assert (mode == GET_MODE (new_src_reg));
925 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
926 return true;
928 /* See whether SET_SRC can be replaced with this register. */
929 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
930 res = verify_changes (0);
931 cancel_changes (0);
933 return res;
936 /* Returns whether INSN still be valid after replacing it's DEST with
937 register NEW_REG. */
938 static bool
939 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
941 vinsn_t vi = INSN_VINSN (insn);
942 bool res;
944 /* We should deal here only with separable insns. */
945 gcc_assert (VINSN_SEPARABLE_P (vi));
946 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
948 /* See whether SET_DEST can be replaced with this register. */
949 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
950 res = verify_changes (0);
951 cancel_changes (0);
953 return res;
956 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
957 static rtx
958 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
960 rtx rhs_rtx;
961 rtx pattern;
962 rtx insn_rtx;
964 rhs_rtx = copy_rtx (VINSN_RHS (vi));
966 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
967 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
969 return insn_rtx;
972 /* Substitute lhs in the given expression EXPR for the register with number
973 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
974 static void
975 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
977 rtx insn_rtx;
978 vinsn_t vinsn;
980 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
981 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
983 change_vinsn_in_expr (expr, vinsn);
984 EXPR_WAS_RENAMED (expr) = 1;
985 EXPR_TARGET_AVAILABLE (expr) = 1;
988 /* Returns whether VI writes either one of the USED_REGS registers or,
989 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
990 static bool
991 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
992 HARD_REG_SET unavailable_hard_regs)
994 unsigned regno;
995 reg_set_iterator rsi;
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1006 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1008 if (REGNO_REG_SET_P (used_regs, regno))
1009 return true;
1010 if (HARD_REGISTER_NUM_P (regno)
1011 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1012 return true;
1015 return false;
1018 /* Returns register class of the output register in INSN.
1019 Returns NO_REGS for call insns because some targets have constraints on
1020 destination register of a call insn.
1022 Code adopted from regrename.c::build_def_use. */
1023 static enum reg_class
1024 get_reg_class (rtx insn)
1026 int alt, i, n_ops;
1028 extract_insn (insn);
1029 if (! constrain_operands (1))
1030 fatal_insn_not_found (insn);
1031 preprocess_constraints ();
1032 alt = which_alternative;
1033 n_ops = recog_data.n_operands;
1035 for (i = 0; i < n_ops; ++i)
1037 int matches = recog_op_alt[i][alt].matches;
1038 if (matches >= 0)
1039 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1042 if (asm_noperands (PATTERN (insn)) > 0)
1044 for (i = 0; i < n_ops; i++)
1045 if (recog_data.operand_type[i] == OP_OUT)
1047 rtx *loc = recog_data.operand_loc[i];
1048 rtx op = *loc;
1049 enum reg_class cl = recog_op_alt[i][alt].cl;
1051 if (REG_P (op)
1052 && REGNO (op) == ORIGINAL_REGNO (op))
1053 continue;
1055 return cl;
1058 else if (!CALL_P (insn))
1060 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1062 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1063 enum reg_class cl = recog_op_alt[opn][alt].cl;
1065 if (recog_data.operand_type[opn] == OP_OUT ||
1066 recog_data.operand_type[opn] == OP_INOUT)
1067 return cl;
1071 /* Insns like
1072 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1073 may result in returning NO_REGS, cause flags is written implicitly through
1074 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1075 return NO_REGS;
1078 #ifdef HARD_REGNO_RENAME_OK
1079 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1080 static void
1081 init_hard_regno_rename (int regno)
1083 int cur_reg;
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1087 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1089 /* We are not interested in renaming in other regs. */
1090 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1091 continue;
1093 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1094 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1097 #endif
1099 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1100 data first. */
1101 static inline bool
1102 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1104 #ifdef HARD_REGNO_RENAME_OK
1105 /* Check whether this is all calculated. */
1106 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1107 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1109 init_hard_regno_rename (from);
1111 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1112 #else
1113 return true;
1114 #endif
1117 /* Calculate set of registers that are capable of holding MODE. */
1118 static void
1119 init_regs_for_mode (enum machine_mode mode)
1121 int cur_reg;
1123 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1126 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1128 int nregs = hard_regno_nregs[cur_reg][mode];
1129 int i;
1131 for (i = nregs - 1; i >= 0; --i)
1132 if (fixed_regs[cur_reg + i]
1133 || global_regs[cur_reg + i]
1134 /* Can't use regs which aren't saved by
1135 the prologue. */
1136 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1137 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1138 it affects aliasing globally and invalidates all AV sets. */
1139 || get_reg_base_value (cur_reg + i)
1140 #ifdef LEAF_REGISTERS
1141 /* We can't use a non-leaf register if we're in a
1142 leaf function. */
1143 || (current_function_is_leaf
1144 && !LEAF_REGISTERS[cur_reg + i])
1145 #endif
1147 break;
1149 if (i >= 0)
1150 continue;
1152 /* See whether it accepts all modes that occur in
1153 original insns. */
1154 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155 continue;
1157 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1158 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1159 cur_reg);
1161 /* If the CUR_REG passed all the checks above,
1162 then it's ok. */
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1166 sel_hrd.regs_for_mode_ok[mode] = true;
1169 /* Init all register sets gathered in HRD. */
1170 static void
1171 init_hard_regs_data (void)
1173 int cur_reg = 0;
1174 int cur_mode = 0;
1176 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1181 /* Initialize registers that are valid based on mode when this is
1182 really needed. */
1183 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1186 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1187 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1190 #ifdef STACK_REGS
1191 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1193 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195 #endif
1198 /* Mark hardware regs in REG_RENAME_P that are not suitable
1199 for renaming rhs in INSN due to hardware restrictions (register class,
1200 modes compatibility etc). This doesn't affect original insn's dest reg,
1201 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1202 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1203 Registers that are in used_regs are always marked in
1204 unavailable_hard_regs as well. */
1206 static void
1207 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208 regset used_regs ATTRIBUTE_UNUSED)
1210 enum machine_mode mode;
1211 enum reg_class cl = NO_REGS;
1212 rtx orig_dest;
1213 unsigned cur_reg, regno;
1214 hard_reg_set_iterator hrsi;
1216 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217 gcc_assert (reg_rename_p);
1219 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1221 /* We have decided not to rename 'mem = something;' insns, as 'something'
1222 is usually a register. */
1223 if (!REG_P (orig_dest))
1224 return;
1226 regno = REGNO (orig_dest);
1228 /* If before reload, don't try to work with pseudos. */
1229 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230 return;
1232 if (reload_completed)
1233 cl = get_reg_class (def->orig_insn);
1235 /* Stop if the original register is one of the fixed_regs, global_regs or
1236 frame pointer, or we could not discover its class. */
1237 if (fixed_regs[regno]
1238 || global_regs[regno]
1239 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1240 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1241 #else
1242 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1243 #endif
1244 || (reload_completed && cl == NO_REGS))
1246 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1248 /* Give a chance for original register, if it isn't in used_regs. */
1249 if (!def->crosses_call)
1250 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1252 return;
1255 /* If something allocated on stack in this function, mark frame pointer
1256 register unavailable, considering also modes.
1257 FIXME: it is enough to do this once per all original defs. */
1258 if (frame_pointer_needed)
1260 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1261 Pmode, FRAME_POINTER_REGNUM);
1263 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1264 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1265 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1268 #ifdef STACK_REGS
1269 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1270 is equivalent to as if all stack regs were in this set.
1271 I.e. no stack register can be renamed, and even if it's an original
1272 register here we make sure it won't be lifted over it's previous def
1273 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1274 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1275 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1276 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1277 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1278 sel_hrd.stack_regs);
1279 #endif
1281 /* If there's a call on this path, make regs from call_used_reg_set
1282 unavailable. */
1283 if (def->crosses_call)
1284 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1285 call_used_reg_set);
1287 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1288 but not register classes. */
1289 if (!reload_completed)
1290 return;
1292 /* Leave regs as 'available' only from the current
1293 register class. */
1294 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1295 reg_class_contents[cl]);
1297 mode = GET_MODE (orig_dest);
1299 /* Leave only registers available for this mode. */
1300 if (!sel_hrd.regs_for_mode_ok[mode])
1301 init_regs_for_mode (mode);
1302 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1303 sel_hrd.regs_for_mode[mode]);
1305 /* Exclude registers that are partially call clobbered. */
1306 if (def->crosses_call
1307 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1308 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1309 sel_hrd.regs_for_call_clobbered[mode]);
1311 /* Leave only those that are ok to rename. */
1312 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313 0, cur_reg, hrsi)
1315 int nregs;
1316 int i;
1318 nregs = hard_regno_nregs[cur_reg][mode];
1319 gcc_assert (nregs > 0);
1321 for (i = nregs - 1; i >= 0; --i)
1322 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1323 break;
1325 if (i >= 0)
1326 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1327 cur_reg);
1330 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1331 reg_rename_p->unavailable_hard_regs);
1333 /* Regno is always ok from the renaming part of view, but it really
1334 could be in *unavailable_hard_regs already, so set it here instead
1335 of there. */
1336 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1339 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1340 best register more recently than REG2. */
1341 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1343 /* Indicates the number of times renaming happened before the current one. */
1344 static int reg_rename_this_tick;
1346 /* Choose the register among free, that is suitable for storing
1347 the rhs value.
1349 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1350 originally appears. There could be multiple original operations
1351 for single rhs since we moving it up and merging along different
1352 paths.
1354 Some code is adapted from regrename.c (regrename_optimize).
1355 If original register is available, function returns it.
1356 Otherwise it performs the checks, so the new register should
1357 comply with the following:
1358 - it should not violate any live ranges (such registers are in
1359 REG_RENAME_P->available_for_renaming set);
1360 - it should not be in the HARD_REGS_USED regset;
1361 - it should be in the class compatible with original uses;
1362 - it should not be clobbered through reference with different mode;
1363 - if we're in the leaf function, then the new register should
1364 not be in the LEAF_REGISTERS;
1365 - etc.
1367 If several registers meet the conditions, the register with smallest
1368 tick is returned to achieve more even register allocation.
1370 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1372 If no register satisfies the above conditions, NULL_RTX is returned. */
1373 static rtx
1374 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1375 struct reg_rename *reg_rename_p,
1376 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1378 int best_new_reg;
1379 unsigned cur_reg;
1380 enum machine_mode mode = VOIDmode;
1381 unsigned regno, i, n;
1382 hard_reg_set_iterator hrsi;
1383 def_list_iterator di;
1384 def_t def;
1386 /* If original register is available, return it. */
1387 *is_orig_reg_p_ptr = true;
1389 FOR_EACH_DEF (def, di, original_insns)
1391 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1393 gcc_assert (REG_P (orig_dest));
1395 /* Check that all original operations have the same mode.
1396 This is done for the next loop; if we'd return from this
1397 loop, we'd check only part of them, but in this case
1398 it doesn't matter. */
1399 if (mode == VOIDmode)
1400 mode = GET_MODE (orig_dest);
1401 gcc_assert (mode == GET_MODE (orig_dest));
1403 regno = REGNO (orig_dest);
1404 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1405 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1406 break;
1408 /* All hard registers are available. */
1409 if (i == n)
1411 gcc_assert (mode != VOIDmode);
1413 /* Hard registers should not be shared. */
1414 return gen_rtx_REG (mode, regno);
1418 *is_orig_reg_p_ptr = false;
1419 best_new_reg = -1;
1421 /* Among all available regs choose the register that was
1422 allocated earliest. */
1423 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1424 0, cur_reg, hrsi)
1425 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1427 /* Check that all hard regs for mode are available. */
1428 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1429 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1430 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1431 cur_reg + i))
1432 break;
1434 if (i < n)
1435 continue;
1437 /* All hard registers are available. */
1438 if (best_new_reg < 0
1439 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1441 best_new_reg = cur_reg;
1443 /* Return immediately when we know there's no better reg. */
1444 if (! reg_rename_tick[best_new_reg])
1445 break;
1449 if (best_new_reg >= 0)
1451 /* Use the check from the above loop. */
1452 gcc_assert (mode != VOIDmode);
1453 return gen_rtx_REG (mode, best_new_reg);
1456 return NULL_RTX;
1459 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1460 assumptions about available registers in the function. */
1461 static rtx
1462 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1463 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1465 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1466 original_insns, is_orig_reg_p_ptr);
1468 /* FIXME loop over hard_regno_nregs here. */
1469 gcc_assert (best_reg == NULL_RTX
1470 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1472 return best_reg;
1475 /* Choose the pseudo register for storing rhs value. As this is supposed
1476 to work before reload, we return either the original register or make
1477 the new one. The parameters are the same that in choose_nest_reg_1
1478 functions, except that USED_REGS may contain pseudos.
1479 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1481 TODO: take into account register pressure while doing this. Up to this
1482 moment, this function would never return NULL for pseudos, but we should
1483 not rely on this. */
1484 static rtx
1485 choose_best_pseudo_reg (regset used_regs,
1486 struct reg_rename *reg_rename_p,
1487 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1489 def_list_iterator i;
1490 def_t def;
1491 enum machine_mode mode = VOIDmode;
1492 bool bad_hard_regs = false;
1494 /* We should not use this after reload. */
1495 gcc_assert (!reload_completed);
1497 /* If original register is available, return it. */
1498 *is_orig_reg_p_ptr = true;
1500 FOR_EACH_DEF (def, i, original_insns)
1502 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1503 int orig_regno;
1505 gcc_assert (REG_P (dest));
1507 /* Check that all original operations have the same mode. */
1508 if (mode == VOIDmode)
1509 mode = GET_MODE (dest);
1510 else
1511 gcc_assert (mode == GET_MODE (dest));
1512 orig_regno = REGNO (dest);
1514 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1516 if (orig_regno < FIRST_PSEUDO_REGISTER)
1518 gcc_assert (df_regs_ever_live_p (orig_regno));
1520 /* For hard registers, we have to check hardware imposed
1521 limitations (frame/stack registers, calls crossed). */
1522 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1523 orig_regno))
1525 /* Don't let register cross a call if it doesn't already
1526 cross one. This condition is written in accordance with
1527 that in sched-deps.c sched_analyze_reg(). */
1528 if (!reg_rename_p->crosses_call
1529 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1530 return gen_rtx_REG (mode, orig_regno);
1533 bad_hard_regs = true;
1535 else
1536 return dest;
1540 *is_orig_reg_p_ptr = false;
1542 /* We had some original hard registers that couldn't be used.
1543 Those were likely special. Don't try to create a pseudo. */
1544 if (bad_hard_regs)
1545 return NULL_RTX;
1547 /* We haven't found a register from original operations. Get a new one.
1548 FIXME: control register pressure somehow. */
1550 rtx new_reg = gen_reg_rtx (mode);
1552 gcc_assert (mode != VOIDmode);
1554 max_regno = max_reg_num ();
1555 maybe_extend_reg_info_p ();
1556 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1558 return new_reg;
1562 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1563 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1564 static void
1565 verify_target_availability (expr_t expr, regset used_regs,
1566 struct reg_rename *reg_rename_p)
1568 unsigned n, i, regno;
1569 enum machine_mode mode;
1570 bool target_available, live_available, hard_available;
1572 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1573 return;
1575 regno = expr_dest_regno (expr);
1576 mode = GET_MODE (EXPR_LHS (expr));
1577 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1578 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1580 live_available = hard_available = true;
1581 for (i = 0; i < n; i++)
1583 if (bitmap_bit_p (used_regs, regno + i))
1584 live_available = false;
1585 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1586 hard_available = false;
1589 /* When target is not available, it may be due to hard register
1590 restrictions, e.g. crosses calls, so we check hard_available too. */
1591 if (target_available)
1592 gcc_assert (live_available);
1593 else
1594 /* Check only if we haven't scheduled something on the previous fence,
1595 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1596 and having more than one fence, we may end having targ_un in a block
1597 in which successors target register is actually available.
1599 The last condition handles the case when a dependence from a call insn
1600 was created in sched-deps.c for insns with destination registers that
1601 never crossed a call before, but do cross one after our code motion.
1603 FIXME: in the latter case, we just uselessly called find_used_regs,
1604 because we can't move this expression with any other register
1605 as well. */
1606 gcc_assert (scheduled_something_on_previous_fence || !live_available
1607 || !hard_available
1608 || (!reload_completed && reg_rename_p->crosses_call
1609 && REG_N_CALLS_CROSSED (regno) == 0));
1612 /* Collect unavailable registers due to liveness for EXPR from BNDS
1613 into USED_REGS. Save additional information about available
1614 registers and unavailable due to hardware restriction registers
1615 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1616 list. */
1617 static void
1618 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1619 struct reg_rename *reg_rename_p,
1620 def_list_t *original_insns)
1622 for (; bnds; bnds = BLIST_NEXT (bnds))
1624 bool res;
1625 av_set_t orig_ops = NULL;
1626 bnd_t bnd = BLIST_BND (bnds);
1628 /* If the chosen best expr doesn't belong to current boundary,
1629 skip it. */
1630 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1631 continue;
1633 /* Put in ORIG_OPS all exprs from this boundary that became
1634 RES on top. */
1635 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1637 /* Compute used regs and OR it into the USED_REGS. */
1638 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1639 reg_rename_p, original_insns);
1641 /* FIXME: the assert is true until we'd have several boundaries. */
1642 gcc_assert (res);
1643 av_set_clear (&orig_ops);
1647 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1648 If BEST_REG is valid, replace LHS of EXPR with it. */
1649 static bool
1650 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1652 /* Try whether we'll be able to generate the insn
1653 'dest := best_reg' at the place of the original operation. */
1654 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1656 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1658 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1660 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1661 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1662 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1663 return false;
1666 /* Make sure that EXPR has the right destination
1667 register. */
1668 if (expr_dest_regno (expr) != REGNO (best_reg))
1669 replace_dest_with_reg_in_expr (expr, best_reg);
1670 else
1671 EXPR_TARGET_AVAILABLE (expr) = 1;
1673 return true;
1676 /* Select and assign best register to EXPR searching from BNDS.
1677 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1678 Return FALSE if no register can be chosen, which could happen when:
1679 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1680 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1681 that are used on the moving path. */
1682 static bool
1683 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1685 static struct reg_rename reg_rename_data;
1687 regset used_regs;
1688 def_list_t original_insns = NULL;
1689 bool reg_ok;
1691 *is_orig_reg_p = false;
1693 /* Don't bother to do anything if this insn doesn't set any registers. */
1694 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1695 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1696 return true;
1698 used_regs = get_clear_regset_from_pool ();
1699 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1701 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1702 &original_insns);
1704 #ifdef ENABLE_CHECKING
1705 /* If after reload, make sure we're working with hard regs here. */
1706 if (reload_completed)
1708 reg_set_iterator rsi;
1709 unsigned i;
1711 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1712 gcc_unreachable ();
1714 #endif
1716 if (EXPR_SEPARABLE_P (expr))
1718 rtx best_reg = NULL_RTX;
1719 /* Check that we have computed availability of a target register
1720 correctly. */
1721 verify_target_availability (expr, used_regs, &reg_rename_data);
1723 /* Turn everything in hard regs after reload. */
1724 if (reload_completed)
1726 HARD_REG_SET hard_regs_used;
1727 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1729 /* Join hard registers unavailable due to register class
1730 restrictions and live range intersection. */
1731 IOR_HARD_REG_SET (hard_regs_used,
1732 reg_rename_data.unavailable_hard_regs);
1734 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1735 original_insns, is_orig_reg_p);
1737 else
1738 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1739 original_insns, is_orig_reg_p);
1741 if (!best_reg)
1742 reg_ok = false;
1743 else if (*is_orig_reg_p)
1745 /* In case of unification BEST_REG may be different from EXPR's LHS
1746 when EXPR's LHS is unavailable, and there is another LHS among
1747 ORIGINAL_INSNS. */
1748 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1750 else
1752 /* Forbid renaming of low-cost insns. */
1753 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1754 reg_ok = false;
1755 else
1756 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1759 else
1761 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1762 any of the HARD_REGS_USED set. */
1763 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1764 reg_rename_data.unavailable_hard_regs))
1766 reg_ok = false;
1767 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1769 else
1771 reg_ok = true;
1772 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1776 ilist_clear (&original_insns);
1777 return_regset_to_pool (used_regs);
1779 return reg_ok;
1783 /* Return true if dependence described by DS can be overcomed. */
1784 static bool
1785 can_speculate_dep_p (ds_t ds)
1787 if (spec_info == NULL)
1788 return false;
1790 /* Leave only speculative data. */
1791 ds &= SPECULATIVE;
1793 if (ds == 0)
1794 return false;
1797 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1798 that we can overcome. */
1799 ds_t spec_mask = spec_info->mask;
1801 if ((ds & spec_mask) != ds)
1802 return false;
1805 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1806 return false;
1808 return true;
1811 /* Get a speculation check instruction.
1812 C_EXPR is a speculative expression,
1813 CHECK_DS describes speculations that should be checked,
1814 ORIG_INSN is the original non-speculative insn in the stream. */
1815 static insn_t
1816 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1818 rtx check_pattern;
1819 rtx insn_rtx;
1820 insn_t insn;
1821 basic_block recovery_block;
1822 rtx label;
1824 /* Create a recovery block if target is going to emit branchy check, or if
1825 ORIG_INSN was speculative already. */
1826 if (targetm.sched.needs_block_p (check_ds)
1827 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1829 recovery_block = sel_create_recovery_block (orig_insn);
1830 label = BB_HEAD (recovery_block);
1832 else
1834 recovery_block = NULL;
1835 label = NULL_RTX;
1838 /* Get pattern of the check. */
1839 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1840 check_ds);
1842 gcc_assert (check_pattern != NULL);
1844 /* Emit check. */
1845 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1847 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1848 INSN_SEQNO (orig_insn), orig_insn);
1850 /* Make check to be non-speculative. */
1851 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1852 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1854 /* Decrease priority of check by difference of load/check instruction
1855 latencies. */
1856 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1857 - sel_vinsn_cost (INSN_VINSN (insn)));
1859 /* Emit copy of original insn (though with replaced target register,
1860 if needed) to the recovery block. */
1861 if (recovery_block != NULL)
1863 rtx twin_rtx;
1865 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1866 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1867 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1868 INSN_EXPR (orig_insn),
1869 INSN_SEQNO (insn),
1870 bb_note (recovery_block));
1873 /* If we've generated a data speculation check, make sure
1874 that all the bookkeeping instruction we'll create during
1875 this move_op () will allocate an ALAT entry so that the
1876 check won't fail.
1877 In case of control speculation we must convert C_EXPR to control
1878 speculative mode, because failing to do so will bring us an exception
1879 thrown by the non-control-speculative load. */
1880 check_ds = ds_get_max_dep_weak (check_ds);
1881 speculate_expr (c_expr, check_ds);
1883 return insn;
1886 /* True when INSN is a "regN = regN" copy. */
1887 static bool
1888 identical_copy_p (rtx insn)
1890 rtx lhs, rhs, pat;
1892 pat = PATTERN (insn);
1894 if (GET_CODE (pat) != SET)
1895 return false;
1897 lhs = SET_DEST (pat);
1898 if (!REG_P (lhs))
1899 return false;
1901 rhs = SET_SRC (pat);
1902 if (!REG_P (rhs))
1903 return false;
1905 return REGNO (lhs) == REGNO (rhs);
1908 /* Undo all transformations on *AV_PTR that were done when
1909 moving through INSN. */
1910 static void
1911 undo_transformations (av_set_t *av_ptr, rtx insn)
1913 av_set_iterator av_iter;
1914 expr_t expr;
1915 av_set_t new_set = NULL;
1917 /* First, kill any EXPR that uses registers set by an insn. This is
1918 required for correctness. */
1919 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1920 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1921 && bitmap_intersect_p (INSN_REG_SETS (insn),
1922 VINSN_REG_USES (EXPR_VINSN (expr)))
1923 /* When an insn looks like 'r1 = r1', we could substitute through
1924 it, but the above condition will still hold. This happened with
1925 gcc.c-torture/execute/961125-1.c. */
1926 && !identical_copy_p (insn))
1928 if (sched_verbose >= 6)
1929 sel_print ("Expr %d removed due to use/set conflict\n",
1930 INSN_UID (EXPR_INSN_RTX (expr)));
1931 av_set_iter_remove (&av_iter);
1934 /* Undo transformations looking at the history vector. */
1935 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1937 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1938 insn, EXPR_VINSN (expr), true);
1940 if (index >= 0)
1942 expr_history_def *phist;
1944 phist = VEC_index (expr_history_def,
1945 EXPR_HISTORY_OF_CHANGES (expr),
1946 index);
1948 switch (phist->type)
1950 case TRANS_SPECULATION:
1952 ds_t old_ds, new_ds;
1954 /* Compute the difference between old and new speculative
1955 statuses: that's what we need to check.
1956 Earlier we used to assert that the status will really
1957 change. This no longer works because only the probability
1958 bits in the status may have changed during compute_av_set,
1959 and in the case of merging different probabilities of the
1960 same speculative status along different paths we do not
1961 record this in the history vector. */
1962 old_ds = phist->spec_ds;
1963 new_ds = EXPR_SPEC_DONE_DS (expr);
1965 old_ds &= SPECULATIVE;
1966 new_ds &= SPECULATIVE;
1967 new_ds &= ~old_ds;
1969 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1970 break;
1972 case TRANS_SUBSTITUTION:
1974 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1975 vinsn_t new_vi;
1976 bool add = true;
1978 new_vi = phist->old_expr_vinsn;
1980 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1981 == EXPR_SEPARABLE_P (expr));
1982 copy_expr (tmp_expr, expr);
1984 if (vinsn_equal_p (phist->new_expr_vinsn,
1985 EXPR_VINSN (tmp_expr)))
1986 change_vinsn_in_expr (tmp_expr, new_vi);
1987 else
1988 /* This happens when we're unsubstituting on a bookkeeping
1989 copy, which was in turn substituted. The history is wrong
1990 in this case. Do it the hard way. */
1991 add = substitute_reg_in_expr (tmp_expr, insn, true);
1992 if (add)
1993 av_set_add (&new_set, tmp_expr);
1994 clear_expr (tmp_expr);
1995 break;
1997 default:
1998 gcc_unreachable ();
2004 av_set_union_and_clear (av_ptr, &new_set, NULL);
2008 /* Moveup_* helpers for code motion and computing av sets. */
2010 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2011 The difference from the below function is that only substitution is
2012 performed. */
2013 static enum MOVEUP_EXPR_CODE
2014 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2016 vinsn_t vi = EXPR_VINSN (expr);
2017 ds_t *has_dep_p;
2018 ds_t full_ds;
2020 /* Do this only inside insn group. */
2021 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2023 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2024 if (full_ds == 0)
2025 return MOVEUP_EXPR_SAME;
2027 /* Substitution is the possible choice in this case. */
2028 if (has_dep_p[DEPS_IN_RHS])
2030 /* Can't substitute UNIQUE VINSNs. */
2031 gcc_assert (!VINSN_UNIQUE_P (vi));
2033 if (can_substitute_through_p (through_insn,
2034 has_dep_p[DEPS_IN_RHS])
2035 && substitute_reg_in_expr (expr, through_insn, false))
2037 EXPR_WAS_SUBSTITUTED (expr) = true;
2038 return MOVEUP_EXPR_CHANGED;
2041 /* Don't care about this, as even true dependencies may be allowed
2042 in an insn group. */
2043 return MOVEUP_EXPR_SAME;
2046 /* This can catch output dependencies in COND_EXECs. */
2047 if (has_dep_p[DEPS_IN_INSN])
2048 return MOVEUP_EXPR_NULL;
2050 /* This is either an output or an anti dependence, which usually have
2051 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2052 will fix this. */
2053 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2054 return MOVEUP_EXPR_AS_RHS;
2057 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2058 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2059 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2060 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2061 && !sel_insn_is_speculation_check (through_insn))
2063 /* True when a conflict on a target register was found during moveup_expr. */
2064 static bool was_target_conflict = false;
2066 /* Return true when moving a debug INSN across THROUGH_INSN will
2067 create a bookkeeping block. We don't want to create such blocks,
2068 for they would cause codegen differences between compilations with
2069 and without debug info. */
2071 static bool
2072 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2073 insn_t through_insn)
2075 basic_block bbi, bbt;
2076 edge e1, e2;
2077 edge_iterator ei1, ei2;
2079 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2081 if (sched_verbose >= 9)
2082 sel_print ("no bookkeeping required: ");
2083 return FALSE;
2086 bbi = BLOCK_FOR_INSN (insn);
2088 if (EDGE_COUNT (bbi->preds) == 1)
2090 if (sched_verbose >= 9)
2091 sel_print ("only one pred edge: ");
2092 return TRUE;
2095 bbt = BLOCK_FOR_INSN (through_insn);
2097 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2099 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2101 if (find_block_for_bookkeeping (e1, e2, TRUE))
2103 if (sched_verbose >= 9)
2104 sel_print ("found existing block: ");
2105 return FALSE;
2110 if (sched_verbose >= 9)
2111 sel_print ("would create bookkeeping block: ");
2113 return TRUE;
2116 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2117 performing necessary transformations. Record the type of transformation
2118 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2119 permit all dependencies except true ones, and try to remove those
2120 too via forward substitution. All cases when a non-eliminable
2121 non-zero cost dependency exists inside an insn group will be fixed
2122 in tick_check_p instead. */
2123 static enum MOVEUP_EXPR_CODE
2124 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2125 enum local_trans_type *ptrans_type)
2127 vinsn_t vi = EXPR_VINSN (expr);
2128 insn_t insn = VINSN_INSN_RTX (vi);
2129 bool was_changed = false;
2130 bool as_rhs = false;
2131 ds_t *has_dep_p;
2132 ds_t full_ds;
2134 /* ??? We use dependencies of non-debug insns on debug insns to
2135 indicate that the debug insns need to be reset if the non-debug
2136 insn is pulled ahead of it. It's hard to figure out how to
2137 introduce such a notion in sel-sched, but it already fails to
2138 support debug insns in other ways, so we just go ahead and
2139 let the deug insns go corrupt for now. */
2140 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2141 return MOVEUP_EXPR_SAME;
2143 /* When inside_insn_group, delegate to the helper. */
2144 if (inside_insn_group)
2145 return moveup_expr_inside_insn_group (expr, through_insn);
2147 /* Deal with unique insns and control dependencies. */
2148 if (VINSN_UNIQUE_P (vi))
2150 /* We can move jumps without side-effects or jumps that are
2151 mutually exclusive with instruction THROUGH_INSN (all in cases
2152 dependencies allow to do so and jump is not speculative). */
2153 if (control_flow_insn_p (insn))
2155 basic_block fallthru_bb;
2157 /* Do not move checks and do not move jumps through other
2158 jumps. */
2159 if (control_flow_insn_p (through_insn)
2160 || sel_insn_is_speculation_check (insn))
2161 return MOVEUP_EXPR_NULL;
2163 /* Don't move jumps through CFG joins. */
2164 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2165 return MOVEUP_EXPR_NULL;
2167 /* The jump should have a clear fallthru block, and
2168 this block should be in the current region. */
2169 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2170 || ! in_current_region_p (fallthru_bb))
2171 return MOVEUP_EXPR_NULL;
2173 /* And it should be mutually exclusive with through_insn. */
2174 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2175 && ! DEBUG_INSN_P (through_insn))
2176 return MOVEUP_EXPR_NULL;
2179 /* Don't move what we can't move. */
2180 if (EXPR_CANT_MOVE (expr)
2181 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182 return MOVEUP_EXPR_NULL;
2184 /* Don't move SCHED_GROUP instruction through anything.
2185 If we don't force this, then it will be possible to start
2186 scheduling a sched_group before all its dependencies are
2187 resolved.
2188 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189 as late as possible through rank_for_schedule. */
2190 if (SCHED_GROUP_P (insn))
2191 return MOVEUP_EXPR_NULL;
2193 else
2194 gcc_assert (!control_flow_insn_p (insn));
2196 /* Don't move debug insns if this would require bookkeeping. */
2197 if (DEBUG_INSN_P (insn)
2198 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200 return MOVEUP_EXPR_NULL;
2202 /* Deal with data dependencies. */
2203 was_target_conflict = false;
2204 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205 if (full_ds == 0)
2207 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208 return MOVEUP_EXPR_SAME;
2210 else
2212 /* We can move UNIQUE insn up only as a whole and unchanged,
2213 so it shouldn't have any dependencies. */
2214 if (VINSN_UNIQUE_P (vi))
2215 return MOVEUP_EXPR_NULL;
2218 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2220 int res;
2222 res = speculate_expr (expr, full_ds);
2223 if (res >= 0)
2225 /* Speculation was successful. */
2226 full_ds = 0;
2227 was_changed = (res > 0);
2228 if (res == 2)
2229 was_target_conflict = true;
2230 if (ptrans_type)
2231 *ptrans_type = TRANS_SPECULATION;
2232 sel_clear_has_dependence ();
2236 if (has_dep_p[DEPS_IN_INSN])
2237 /* We have some dependency that cannot be discarded. */
2238 return MOVEUP_EXPR_NULL;
2240 if (has_dep_p[DEPS_IN_LHS])
2242 /* Only separable insns can be moved up with the new register.
2243 Anyways, we should mark that the original register is
2244 unavailable. */
2245 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246 return MOVEUP_EXPR_NULL;
2248 EXPR_TARGET_AVAILABLE (expr) = false;
2249 was_target_conflict = true;
2250 as_rhs = true;
2253 /* At this point we have either separable insns, that will be lifted
2254 up only as RHSes, or non-separable insns with no dependency in lhs.
2255 If dependency is in RHS, then try to perform substitution and move up
2256 substituted RHS:
2258 Ex. 1: Ex.2
2259 y = x; y = x;
2260 z = y*2; y = y*2;
2262 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2263 moved above y=x assignment as z=x*2.
2265 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2266 side can be moved because of the output dependency. The operation was
2267 cropped to its rhs above. */
2268 if (has_dep_p[DEPS_IN_RHS])
2270 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2272 /* Can't substitute UNIQUE VINSNs. */
2273 gcc_assert (!VINSN_UNIQUE_P (vi));
2275 if (can_speculate_dep_p (*rhs_dsp))
2277 int res;
2279 res = speculate_expr (expr, *rhs_dsp);
2280 if (res >= 0)
2282 /* Speculation was successful. */
2283 *rhs_dsp = 0;
2284 was_changed = (res > 0);
2285 if (res == 2)
2286 was_target_conflict = true;
2287 if (ptrans_type)
2288 *ptrans_type = TRANS_SPECULATION;
2290 else
2291 return MOVEUP_EXPR_NULL;
2293 else if (can_substitute_through_p (through_insn,
2294 *rhs_dsp)
2295 && substitute_reg_in_expr (expr, through_insn, false))
2297 /* ??? We cannot perform substitution AND speculation on the same
2298 insn. */
2299 gcc_assert (!was_changed);
2300 was_changed = true;
2301 if (ptrans_type)
2302 *ptrans_type = TRANS_SUBSTITUTION;
2303 EXPR_WAS_SUBSTITUTED (expr) = true;
2305 else
2306 return MOVEUP_EXPR_NULL;
2309 /* Don't move trapping insns through jumps.
2310 This check should be at the end to give a chance to control speculation
2311 to perform its duties. */
2312 if (CANT_MOVE_TRAPPING (expr, through_insn))
2313 return MOVEUP_EXPR_NULL;
2315 return (was_changed
2316 ? MOVEUP_EXPR_CHANGED
2317 : (as_rhs
2318 ? MOVEUP_EXPR_AS_RHS
2319 : MOVEUP_EXPR_SAME));
2322 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2323 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2324 that can exist within a parallel group. Write to RES the resulting
2325 code for moveup_expr. */
2326 static bool
2327 try_bitmap_cache (expr_t expr, insn_t insn,
2328 bool inside_insn_group,
2329 enum MOVEUP_EXPR_CODE *res)
2331 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2333 /* First check whether we've analyzed this situation already. */
2334 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2336 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2338 if (sched_verbose >= 6)
2339 sel_print ("removed (cached)\n");
2340 *res = MOVEUP_EXPR_NULL;
2341 return true;
2343 else
2345 if (sched_verbose >= 6)
2346 sel_print ("unchanged (cached)\n");
2347 *res = MOVEUP_EXPR_SAME;
2348 return true;
2351 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2353 if (inside_insn_group)
2355 if (sched_verbose >= 6)
2356 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2357 *res = MOVEUP_EXPR_SAME;
2358 return true;
2361 else
2362 EXPR_TARGET_AVAILABLE (expr) = false;
2364 /* This is the only case when propagation result can change over time,
2365 as we can dynamically switch off scheduling as RHS. In this case,
2366 just check the flag to reach the correct decision. */
2367 if (enable_schedule_as_rhs_p)
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (as RHS, cached)\n");
2371 *res = MOVEUP_EXPR_AS_RHS;
2372 return true;
2374 else
2376 if (sched_verbose >= 6)
2377 sel_print ("removed (cached as RHS, but renaming"
2378 " is now disabled)\n");
2379 *res = MOVEUP_EXPR_NULL;
2380 return true;
2384 return false;
2387 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2388 if successful. Write to RES the resulting code for moveup_expr. */
2389 static bool
2390 try_transformation_cache (expr_t expr, insn_t insn,
2391 enum MOVEUP_EXPR_CODE *res)
2393 struct transformed_insns *pti
2394 = (struct transformed_insns *)
2395 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2396 &EXPR_VINSN (expr),
2397 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2398 if (pti)
2400 /* This EXPR was already moved through this insn and was
2401 changed as a result. Fetch the proper data from
2402 the hashtable. */
2403 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2404 INSN_UID (insn), pti->type,
2405 pti->vinsn_old, pti->vinsn_new,
2406 EXPR_SPEC_DONE_DS (expr));
2408 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2409 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2410 change_vinsn_in_expr (expr, pti->vinsn_new);
2411 if (pti->was_target_conflict)
2412 EXPR_TARGET_AVAILABLE (expr) = false;
2413 if (pti->type == TRANS_SPECULATION)
2415 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2416 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2419 if (sched_verbose >= 6)
2421 sel_print ("changed (cached): ");
2422 dump_expr (expr);
2423 sel_print ("\n");
2426 *res = MOVEUP_EXPR_CHANGED;
2427 return true;
2430 return false;
2433 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2434 static void
2435 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2436 enum MOVEUP_EXPR_CODE res)
2438 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2440 /* Do not cache result of propagating jumps through an insn group,
2441 as it is always true, which is not useful outside the group. */
2442 if (inside_insn_group)
2443 return;
2445 if (res == MOVEUP_EXPR_NULL)
2447 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2448 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2450 else if (res == MOVEUP_EXPR_SAME)
2452 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2453 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2455 else if (res == MOVEUP_EXPR_AS_RHS)
2457 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2458 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2460 else
2461 gcc_unreachable ();
2464 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2465 and transformation type TRANS_TYPE. */
2466 static void
2467 update_transformation_cache (expr_t expr, insn_t insn,
2468 bool inside_insn_group,
2469 enum local_trans_type trans_type,
2470 vinsn_t expr_old_vinsn)
2472 struct transformed_insns *pti;
2474 if (inside_insn_group)
2475 return;
2477 pti = XNEW (struct transformed_insns);
2478 pti->vinsn_old = expr_old_vinsn;
2479 pti->vinsn_new = EXPR_VINSN (expr);
2480 pti->type = trans_type;
2481 pti->was_target_conflict = was_target_conflict;
2482 pti->ds = EXPR_SPEC_DONE_DS (expr);
2483 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2484 vinsn_attach (pti->vinsn_old);
2485 vinsn_attach (pti->vinsn_new);
2486 *((struct transformed_insns **)
2487 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2488 pti, VINSN_HASH_RTX (expr_old_vinsn),
2489 INSERT)) = pti;
2492 /* Same as moveup_expr, but first looks up the result of
2493 transformation in caches. */
2494 static enum MOVEUP_EXPR_CODE
2495 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2497 enum MOVEUP_EXPR_CODE res;
2498 bool got_answer = false;
2500 if (sched_verbose >= 6)
2502 sel_print ("Moving ");
2503 dump_expr (expr);
2504 sel_print (" through %d: ", INSN_UID (insn));
2507 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2508 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2509 == EXPR_INSN_RTX (expr)))
2510 /* Don't use cached information for debug insns that are heads of
2511 basic blocks. */;
2512 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2513 /* When inside insn group, we do not want remove stores conflicting
2514 with previosly issued loads. */
2515 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2516 else if (try_transformation_cache (expr, insn, &res))
2517 got_answer = true;
2519 if (! got_answer)
2521 /* Invoke moveup_expr and record the results. */
2522 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2523 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2524 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2525 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2526 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2528 /* ??? Invent something better than this. We can't allow old_vinsn
2529 to go, we need it for the history vector. */
2530 vinsn_attach (expr_old_vinsn);
2532 res = moveup_expr (expr, insn, inside_insn_group,
2533 &trans_type);
2534 switch (res)
2536 case MOVEUP_EXPR_NULL:
2537 update_bitmap_cache (expr, insn, inside_insn_group, res);
2538 if (sched_verbose >= 6)
2539 sel_print ("removed\n");
2540 break;
2542 case MOVEUP_EXPR_SAME:
2543 update_bitmap_cache (expr, insn, inside_insn_group, res);
2544 if (sched_verbose >= 6)
2545 sel_print ("unchanged\n");
2546 break;
2548 case MOVEUP_EXPR_AS_RHS:
2549 gcc_assert (!unique_p || inside_insn_group);
2550 update_bitmap_cache (expr, insn, inside_insn_group, res);
2551 if (sched_verbose >= 6)
2552 sel_print ("unchanged (as RHS)\n");
2553 break;
2555 case MOVEUP_EXPR_CHANGED:
2556 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2557 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2558 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2559 INSN_UID (insn), trans_type,
2560 expr_old_vinsn, EXPR_VINSN (expr),
2561 expr_old_spec_ds);
2562 update_transformation_cache (expr, insn, inside_insn_group,
2563 trans_type, expr_old_vinsn);
2564 if (sched_verbose >= 6)
2566 sel_print ("changed: ");
2567 dump_expr (expr);
2568 sel_print ("\n");
2570 break;
2571 default:
2572 gcc_unreachable ();
2575 vinsn_detach (expr_old_vinsn);
2578 return res;
2581 /* Moves an av set AVP up through INSN, performing necessary
2582 transformations. */
2583 static void
2584 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2586 av_set_iterator i;
2587 expr_t expr;
2589 FOR_EACH_EXPR_1 (expr, i, avp)
2592 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2594 case MOVEUP_EXPR_SAME:
2595 case MOVEUP_EXPR_AS_RHS:
2596 break;
2598 case MOVEUP_EXPR_NULL:
2599 av_set_iter_remove (&i);
2600 break;
2602 case MOVEUP_EXPR_CHANGED:
2603 expr = merge_with_other_exprs (avp, &i, expr);
2604 break;
2606 default:
2607 gcc_unreachable ();
2612 /* Moves AVP set along PATH. */
2613 static void
2614 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2616 int last_cycle;
2618 if (sched_verbose >= 6)
2619 sel_print ("Moving expressions up in the insn group...\n");
2620 if (! path)
2621 return;
2622 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2623 while (path
2624 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2626 moveup_set_expr (avp, ILIST_INSN (path), true);
2627 path = ILIST_NEXT (path);
2631 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2632 static bool
2633 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2635 expr_def _tmp, *tmp = &_tmp;
2636 int last_cycle;
2637 bool res = true;
2639 copy_expr_onside (tmp, expr);
2640 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2641 while (path
2642 && res
2643 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2645 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2646 != MOVEUP_EXPR_NULL);
2647 path = ILIST_NEXT (path);
2650 if (res)
2652 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2653 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2655 if (tmp_vinsn != expr_vliw_vinsn)
2656 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2659 clear_expr (tmp);
2660 return res;
2664 /* Functions that compute av and lv sets. */
2666 /* Returns true if INSN is not a downward continuation of the given path P in
2667 the current stage. */
2668 static bool
2669 is_ineligible_successor (insn_t insn, ilist_t p)
2671 insn_t prev_insn;
2673 /* Check if insn is not deleted. */
2674 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2675 gcc_unreachable ();
2676 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2677 gcc_unreachable ();
2679 /* If it's the first insn visited, then the successor is ok. */
2680 if (!p)
2681 return false;
2683 prev_insn = ILIST_INSN (p);
2685 if (/* a backward edge. */
2686 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2687 /* is already visited. */
2688 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2689 && (ilist_is_in_p (p, insn)
2690 /* We can reach another fence here and still seqno of insn
2691 would be equal to seqno of prev_insn. This is possible
2692 when prev_insn is a previously created bookkeeping copy.
2693 In that case it'd get a seqno of insn. Thus, check here
2694 whether insn is in current fence too. */
2695 || IN_CURRENT_FENCE_P (insn)))
2696 /* Was already scheduled on this round. */
2697 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2698 && IN_CURRENT_FENCE_P (insn))
2699 /* An insn from another fence could also be
2700 scheduled earlier even if this insn is not in
2701 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2702 || (!pipelining_p
2703 && INSN_SCHED_TIMES (insn) > 0))
2704 return true;
2705 else
2706 return false;
2709 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2710 of handling multiple successors and properly merging its av_sets. P is
2711 the current path traversed. WS is the size of lookahead window.
2712 Return the av set computed. */
2713 static av_set_t
2714 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2716 struct succs_info *sinfo;
2717 av_set_t expr_in_all_succ_branches = NULL;
2718 int is;
2719 insn_t succ, zero_succ = NULL;
2720 av_set_t av1 = NULL;
2722 gcc_assert (sel_bb_end_p (insn));
2724 /* Find different kind of successors needed for correct computing of
2725 SPEC and TARGET_AVAILABLE attributes. */
2726 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2728 /* Debug output. */
2729 if (sched_verbose >= 6)
2731 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2732 dump_insn_vector (sinfo->succs_ok);
2733 sel_print ("\n");
2734 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2735 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2738 /* Add insn to the tail of current path. */
2739 ilist_add (&p, insn);
2741 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2743 av_set_t succ_set;
2745 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2746 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2748 av_set_split_usefulness (succ_set,
2749 VEC_index (int, sinfo->probs_ok, is),
2750 sinfo->all_prob);
2752 if (sinfo->all_succs_n > 1)
2754 /* Find EXPR'es that came from *all* successors and save them
2755 into expr_in_all_succ_branches. This set will be used later
2756 for calculating speculation attributes of EXPR'es. */
2757 if (is == 0)
2759 expr_in_all_succ_branches = av_set_copy (succ_set);
2761 /* Remember the first successor for later. */
2762 zero_succ = succ;
2764 else
2766 av_set_iterator i;
2767 expr_t expr;
2769 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2770 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2771 av_set_iter_remove (&i);
2775 /* Union the av_sets. Check liveness restrictions on target registers
2776 in special case of two successors. */
2777 if (sinfo->succs_ok_n == 2 && is == 1)
2779 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2780 basic_block bb1 = BLOCK_FOR_INSN (succ);
2782 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2783 av_set_union_and_live (&av1, &succ_set,
2784 BB_LV_SET (bb0),
2785 BB_LV_SET (bb1),
2786 insn);
2788 else
2789 av_set_union_and_clear (&av1, &succ_set, insn);
2792 /* Check liveness restrictions via hard way when there are more than
2793 two successors. */
2794 if (sinfo->succs_ok_n > 2)
2795 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2797 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2799 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2800 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2801 BB_LV_SET (succ_bb));
2804 /* Finally, check liveness restrictions on paths leaving the region. */
2805 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2806 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2807 mark_unavailable_targets
2808 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2810 if (sinfo->all_succs_n > 1)
2812 av_set_iterator i;
2813 expr_t expr;
2815 /* Increase the spec attribute of all EXPR'es that didn't come
2816 from all successors. */
2817 FOR_EACH_EXPR (expr, i, av1)
2818 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2819 EXPR_SPEC (expr)++;
2821 av_set_clear (&expr_in_all_succ_branches);
2823 /* Do not move conditional branches through other
2824 conditional branches. So, remove all conditional
2825 branches from av_set if current operator is a conditional
2826 branch. */
2827 av_set_substract_cond_branches (&av1);
2830 ilist_remove (&p);
2831 free_succs_info (sinfo);
2833 if (sched_verbose >= 6)
2835 sel_print ("av_succs (%d): ", INSN_UID (insn));
2836 dump_av_set (av1);
2837 sel_print ("\n");
2840 return av1;
2843 /* This function computes av_set for the FIRST_INSN by dragging valid
2844 av_set through all basic block insns either from the end of basic block
2845 (computed using compute_av_set_at_bb_end) or from the insn on which
2846 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2847 below the basic block and handling conditional branches.
2848 FIRST_INSN - the basic block head, P - path consisting of the insns
2849 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2850 and bb ends are added to the path), WS - current window size,
2851 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2852 static av_set_t
2853 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2854 bool need_copy_p)
2856 insn_t cur_insn;
2857 int end_ws = ws;
2858 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2859 insn_t after_bb_end = NEXT_INSN (bb_end);
2860 insn_t last_insn;
2861 av_set_t av = NULL;
2862 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2864 /* Return NULL if insn is not on the legitimate downward path. */
2865 if (is_ineligible_successor (first_insn, p))
2867 if (sched_verbose >= 6)
2868 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2870 return NULL;
2873 /* If insn already has valid av(insn) computed, just return it. */
2874 if (AV_SET_VALID_P (first_insn))
2876 av_set_t av_set;
2878 if (sel_bb_head_p (first_insn))
2879 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2880 else
2881 av_set = NULL;
2883 if (sched_verbose >= 6)
2885 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2886 dump_av_set (av_set);
2887 sel_print ("\n");
2890 return need_copy_p ? av_set_copy (av_set) : av_set;
2893 ilist_add (&p, first_insn);
2895 /* As the result after this loop have completed, in LAST_INSN we'll
2896 have the insn which has valid av_set to start backward computation
2897 from: it either will be NULL because on it the window size was exceeded
2898 or other valid av_set as returned by compute_av_set for the last insn
2899 of the basic block. */
2900 for (last_insn = first_insn; last_insn != after_bb_end;
2901 last_insn = NEXT_INSN (last_insn))
2903 /* We may encounter valid av_set not only on bb_head, but also on
2904 those insns on which previously MAX_WS was exceeded. */
2905 if (AV_SET_VALID_P (last_insn))
2907 if (sched_verbose >= 6)
2908 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2909 break;
2912 /* The special case: the last insn of the BB may be an
2913 ineligible_successor due to its SEQ_NO that was set on
2914 it as a bookkeeping. */
2915 if (last_insn != first_insn
2916 && is_ineligible_successor (last_insn, p))
2918 if (sched_verbose >= 6)
2919 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2920 break;
2923 if (DEBUG_INSN_P (last_insn))
2924 continue;
2926 if (end_ws > max_ws)
2928 /* We can reach max lookahead size at bb_header, so clean av_set
2929 first. */
2930 INSN_WS_LEVEL (last_insn) = global_level;
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d is beyond the software lookahead window size\n",
2934 INSN_UID (last_insn));
2935 break;
2938 end_ws++;
2941 /* Get the valid av_set into AV above the LAST_INSN to start backward
2942 computation from. It either will be empty av_set or av_set computed from
2943 the successors on the last insn of the current bb. */
2944 if (last_insn != after_bb_end)
2946 av = NULL;
2948 /* This is needed only to obtain av_sets that are identical to
2949 those computed by the old compute_av_set version. */
2950 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2951 av_set_add (&av, INSN_EXPR (last_insn));
2953 else
2954 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2955 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2957 /* Compute av_set in AV starting from below the LAST_INSN up to
2958 location above the FIRST_INSN. */
2959 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2960 cur_insn = PREV_INSN (cur_insn))
2961 if (!INSN_NOP_P (cur_insn))
2963 expr_t expr;
2965 moveup_set_expr (&av, cur_insn, false);
2967 /* If the expression for CUR_INSN is already in the set,
2968 replace it by the new one. */
2969 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2970 if (expr != NULL)
2972 clear_expr (expr);
2973 copy_expr (expr, INSN_EXPR (cur_insn));
2975 else
2976 av_set_add (&av, INSN_EXPR (cur_insn));
2979 /* Clear stale bb_av_set. */
2980 if (sel_bb_head_p (first_insn))
2982 av_set_clear (&BB_AV_SET (cur_bb));
2983 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2984 BB_AV_LEVEL (cur_bb) = global_level;
2987 if (sched_verbose >= 6)
2989 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2990 dump_av_set (av);
2991 sel_print ("\n");
2994 ilist_remove (&p);
2995 return av;
2998 /* Compute av set before INSN.
2999 INSN - the current operation (actual rtx INSN)
3000 P - the current path, which is list of insns visited so far
3001 WS - software lookahead window size.
3002 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3003 if we want to save computed av_set in s_i_d, we should make a copy of it.
3005 In the resulting set we will have only expressions that don't have delay
3006 stalls and nonsubstitutable dependences. */
3007 static av_set_t
3008 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3010 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3013 /* Propagate a liveness set LV through INSN. */
3014 static void
3015 propagate_lv_set (regset lv, insn_t insn)
3017 gcc_assert (INSN_P (insn));
3019 if (INSN_NOP_P (insn))
3020 return;
3022 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3025 /* Return livness set at the end of BB. */
3026 static regset
3027 compute_live_after_bb (basic_block bb)
3029 edge e;
3030 edge_iterator ei;
3031 regset lv = get_clear_regset_from_pool ();
3033 gcc_assert (!ignore_first);
3035 FOR_EACH_EDGE (e, ei, bb->succs)
3036 if (sel_bb_empty_p (e->dest))
3038 if (! BB_LV_SET_VALID_P (e->dest))
3040 gcc_unreachable ();
3041 gcc_assert (BB_LV_SET (e->dest) == NULL);
3042 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3043 BB_LV_SET_VALID_P (e->dest) = true;
3045 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3047 else
3048 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3050 return lv;
3053 /* Compute the set of all live registers at the point before INSN and save
3054 it at INSN if INSN is bb header. */
3055 regset
3056 compute_live (insn_t insn)
3058 basic_block bb = BLOCK_FOR_INSN (insn);
3059 insn_t final, temp;
3060 regset lv;
3062 /* Return the valid set if we're already on it. */
3063 if (!ignore_first)
3065 regset src = NULL;
3067 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3068 src = BB_LV_SET (bb);
3069 else
3071 gcc_assert (in_current_region_p (bb));
3072 if (INSN_LIVE_VALID_P (insn))
3073 src = INSN_LIVE (insn);
3076 if (src)
3078 lv = get_regset_from_pool ();
3079 COPY_REG_SET (lv, src);
3081 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3083 COPY_REG_SET (BB_LV_SET (bb), lv);
3084 BB_LV_SET_VALID_P (bb) = true;
3087 return_regset_to_pool (lv);
3088 return lv;
3092 /* We've skipped the wrong lv_set. Don't skip the right one. */
3093 ignore_first = false;
3094 gcc_assert (in_current_region_p (bb));
3096 /* Find a valid LV set in this block or below, if needed.
3097 Start searching from the next insn: either ignore_first is true, or
3098 INSN doesn't have a correct live set. */
3099 temp = NEXT_INSN (insn);
3100 final = NEXT_INSN (BB_END (bb));
3101 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3102 temp = NEXT_INSN (temp);
3103 if (temp == final)
3105 lv = compute_live_after_bb (bb);
3106 temp = PREV_INSN (temp);
3108 else
3110 lv = get_regset_from_pool ();
3111 COPY_REG_SET (lv, INSN_LIVE (temp));
3114 /* Put correct lv sets on the insns which have bad sets. */
3115 final = PREV_INSN (insn);
3116 while (temp != final)
3118 propagate_lv_set (lv, temp);
3119 COPY_REG_SET (INSN_LIVE (temp), lv);
3120 INSN_LIVE_VALID_P (temp) = true;
3121 temp = PREV_INSN (temp);
3124 /* Also put it in a BB. */
3125 if (sel_bb_head_p (insn))
3127 basic_block bb = BLOCK_FOR_INSN (insn);
3129 COPY_REG_SET (BB_LV_SET (bb), lv);
3130 BB_LV_SET_VALID_P (bb) = true;
3133 /* We return LV to the pool, but will not clear it there. Thus we can
3134 legimatelly use LV till the next use of regset_pool_get (). */
3135 return_regset_to_pool (lv);
3136 return lv;
3139 /* Update liveness sets for INSN. */
3140 static inline void
3141 update_liveness_on_insn (rtx insn)
3143 ignore_first = true;
3144 compute_live (insn);
3147 /* Compute liveness below INSN and write it into REGS. */
3148 static inline void
3149 compute_live_below_insn (rtx insn, regset regs)
3151 rtx succ;
3152 succ_iterator si;
3154 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3155 IOR_REG_SET (regs, compute_live (succ));
3158 /* Update the data gathered in av and lv sets starting from INSN. */
3159 static void
3160 update_data_sets (rtx insn)
3162 update_liveness_on_insn (insn);
3163 if (sel_bb_head_p (insn))
3165 gcc_assert (AV_LEVEL (insn) != 0);
3166 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3167 compute_av_set (insn, NULL, 0, 0);
3172 /* Helper for move_op () and find_used_regs ().
3173 Return speculation type for which a check should be created on the place
3174 of INSN. EXPR is one of the original ops we are searching for. */
3175 static ds_t
3176 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3178 ds_t to_check_ds;
3179 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3181 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3183 if (targetm.sched.get_insn_checked_ds)
3184 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3186 if (spec_info != NULL
3187 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3188 already_checked_ds |= BEGIN_CONTROL;
3190 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3192 to_check_ds &= ~already_checked_ds;
3194 return to_check_ds;
3197 /* Find the set of registers that are unavailable for storing expres
3198 while moving ORIG_OPS up on the path starting from INSN due to
3199 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3201 All the original operations found during the traversal are saved in the
3202 ORIGINAL_INSNS list.
3204 REG_RENAME_P denotes the set of hardware registers that
3205 can not be used with renaming due to the register class restrictions,
3206 mode restrictions and other (the register we'll choose should be
3207 compatible class with the original uses, shouldn't be in call_used_regs,
3208 should be HARD_REGNO_RENAME_OK etc).
3210 Returns TRUE if we've found all original insns, FALSE otherwise.
3212 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3213 to traverse the code motion paths. This helper function finds registers
3214 that are not available for storing expres while moving ORIG_OPS up on the
3215 path starting from INSN. A register considered as used on the moving path,
3216 if one of the following conditions is not satisfied:
3218 (1) a register not set or read on any path from xi to an instance of
3219 the original operation,
3220 (2) not among the live registers of the point immediately following the
3221 first original operation on a given downward path, except for the
3222 original target register of the operation,
3223 (3) not live on the other path of any conditional branch that is passed
3224 by the operation, in case original operations are not present on
3225 both paths of the conditional branch.
3227 All the original operations found during the traversal are saved in the
3228 ORIGINAL_INSNS list.
3230 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3231 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3232 to unavailable hard regs at the point original operation is found. */
3234 static bool
3235 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3236 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3238 def_list_iterator i;
3239 def_t def;
3240 int res;
3241 bool needs_spec_check_p = false;
3242 expr_t expr;
3243 av_set_iterator expr_iter;
3244 struct fur_static_params sparams;
3245 struct cmpd_local_params lparams;
3247 /* We haven't visited any blocks yet. */
3248 bitmap_clear (code_motion_visited_blocks);
3250 /* Init parameters for code_motion_path_driver. */
3251 sparams.crosses_call = false;
3252 sparams.original_insns = original_insns;
3253 sparams.used_regs = used_regs;
3255 /* Set the appropriate hooks and data. */
3256 code_motion_path_driver_info = &fur_hooks;
3258 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3260 reg_rename_p->crosses_call |= sparams.crosses_call;
3262 gcc_assert (res == 1);
3263 gcc_assert (original_insns && *original_insns);
3265 /* ??? We calculate whether an expression needs a check when computing
3266 av sets. This information is not as precise as it could be due to
3267 merging this bit in merge_expr. We can do better in find_used_regs,
3268 but we want to avoid multiple traversals of the same code motion
3269 paths. */
3270 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3271 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3273 /* Mark hardware regs in REG_RENAME_P that are not suitable
3274 for renaming expr in INSN due to hardware restrictions (register class,
3275 modes compatibility etc). */
3276 FOR_EACH_DEF (def, i, *original_insns)
3278 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3280 if (VINSN_SEPARABLE_P (vinsn))
3281 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3283 /* Do not allow clobbering of ld.[sa] address in case some of the
3284 original operations need a check. */
3285 if (needs_spec_check_p)
3286 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3289 return true;
3293 /* Functions to choose the best insn from available ones. */
3295 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3296 static int
3297 sel_target_adjust_priority (expr_t expr)
3299 int priority = EXPR_PRIORITY (expr);
3300 int new_priority;
3302 if (targetm.sched.adjust_priority)
3303 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3304 else
3305 new_priority = priority;
3307 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3308 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3310 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3312 if (sched_verbose >= 4)
3313 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3314 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3315 EXPR_PRIORITY_ADJ (expr), new_priority);
3317 return new_priority;
3320 /* Rank two available exprs for schedule. Never return 0 here. */
3321 static int
3322 sel_rank_for_schedule (const void *x, const void *y)
3324 expr_t tmp = *(const expr_t *) y;
3325 expr_t tmp2 = *(const expr_t *) x;
3326 insn_t tmp_insn, tmp2_insn;
3327 vinsn_t tmp_vinsn, tmp2_vinsn;
3328 int val;
3330 tmp_vinsn = EXPR_VINSN (tmp);
3331 tmp2_vinsn = EXPR_VINSN (tmp2);
3332 tmp_insn = EXPR_INSN_RTX (tmp);
3333 tmp2_insn = EXPR_INSN_RTX (tmp2);
3335 /* Schedule debug insns as early as possible. */
3336 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3337 return -1;
3338 else if (DEBUG_INSN_P (tmp2_insn))
3339 return 1;
3341 /* Prefer SCHED_GROUP_P insns to any others. */
3342 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3344 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3345 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3347 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3348 cannot be cloned. */
3349 if (VINSN_UNIQUE_P (tmp2_vinsn))
3350 return 1;
3351 return -1;
3354 /* Discourage scheduling of speculative checks. */
3355 val = (sel_insn_is_speculation_check (tmp_insn)
3356 - sel_insn_is_speculation_check (tmp2_insn));
3357 if (val)
3358 return val;
3360 /* Prefer not scheduled insn over scheduled one. */
3361 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3363 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3364 if (val)
3365 return val;
3368 /* Prefer jump over non-jump instruction. */
3369 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3370 return -1;
3371 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3372 return 1;
3374 /* Prefer an expr with greater priority. */
3375 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3377 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3378 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3380 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3382 else
3383 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3384 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3385 if (val)
3386 return val;
3388 if (spec_info != NULL && spec_info->mask != 0)
3389 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3391 ds_t ds1, ds2;
3392 dw_t dw1, dw2;
3393 int dw;
3395 ds1 = EXPR_SPEC_DONE_DS (tmp);
3396 if (ds1)
3397 dw1 = ds_weak (ds1);
3398 else
3399 dw1 = NO_DEP_WEAK;
3401 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3402 if (ds2)
3403 dw2 = ds_weak (ds2);
3404 else
3405 dw2 = NO_DEP_WEAK;
3407 dw = dw2 - dw1;
3408 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3409 return dw;
3412 /* Prefer an old insn to a bookkeeping insn. */
3413 if (INSN_UID (tmp_insn) < first_emitted_uid
3414 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3415 return -1;
3416 if (INSN_UID (tmp_insn) >= first_emitted_uid
3417 && INSN_UID (tmp2_insn) < first_emitted_uid)
3418 return 1;
3420 /* Prefer an insn with smaller UID, as a last resort.
3421 We can't safely use INSN_LUID as it is defined only for those insns
3422 that are in the stream. */
3423 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3426 /* Filter out expressions from av set pointed to by AV_PTR
3427 that are pipelined too many times. */
3428 static void
3429 process_pipelined_exprs (av_set_t *av_ptr)
3431 expr_t expr;
3432 av_set_iterator si;
3434 /* Don't pipeline already pipelined code as that would increase
3435 number of unnecessary register moves. */
3436 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3438 if (EXPR_SCHED_TIMES (expr)
3439 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3440 av_set_iter_remove (&si);
3444 /* Filter speculative insns from AV_PTR if we don't want them. */
3445 static void
3446 process_spec_exprs (av_set_t *av_ptr)
3448 bool try_data_p = true;
3449 bool try_control_p = true;
3450 expr_t expr;
3451 av_set_iterator si;
3453 if (spec_info == NULL)
3454 return;
3456 /* Scan *AV_PTR to find out if we want to consider speculative
3457 instructions for scheduling. */
3458 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3460 ds_t ds;
3462 ds = EXPR_SPEC_DONE_DS (expr);
3464 /* The probability of a success is too low - don't speculate. */
3465 if ((ds & SPECULATIVE)
3466 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3467 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3468 || (pipelining_p && false
3469 && (ds & DATA_SPEC)
3470 && (ds & CONTROL_SPEC))))
3472 av_set_iter_remove (&si);
3473 continue;
3476 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3477 && !(ds & BEGIN_DATA))
3478 try_data_p = false;
3480 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3481 && !(ds & BEGIN_CONTROL))
3482 try_control_p = false;
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3487 ds_t ds;
3489 ds = EXPR_SPEC_DONE_DS (expr);
3491 if (ds & SPECULATIVE)
3493 if ((ds & BEGIN_DATA) && !try_data_p)
3494 /* We don't want any data speculative instructions right
3495 now. */
3496 av_set_iter_remove (&si);
3498 if ((ds & BEGIN_CONTROL) && !try_control_p)
3499 /* We don't want any control speculative instructions right
3500 now. */
3501 av_set_iter_remove (&si);
3506 /* Search for any use-like insns in AV_PTR and decide on scheduling
3507 them. Return one when found, and NULL otherwise.
3508 Note that we check here whether a USE could be scheduled to avoid
3509 an infinite loop later. */
3510 static expr_t
3511 process_use_exprs (av_set_t *av_ptr)
3513 expr_t expr;
3514 av_set_iterator si;
3515 bool uses_present_p = false;
3516 bool try_uses_p = true;
3518 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3520 /* This will also initialize INSN_CODE for later use. */
3521 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3523 /* If we have a USE in *AV_PTR that was not scheduled yet,
3524 do so because it will do good only. */
3525 if (EXPR_SCHED_TIMES (expr) <= 0)
3527 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528 return expr;
3530 av_set_iter_remove (&si);
3532 else
3534 gcc_assert (pipelining_p);
3536 uses_present_p = true;
3539 else
3540 try_uses_p = false;
3543 if (uses_present_p)
3545 /* If we don't want to schedule any USEs right now and we have some
3546 in *AV_PTR, remove them, else just return the first one found. */
3547 if (!try_uses_p)
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551 av_set_iter_remove (&si);
3553 else
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3557 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3559 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560 return expr;
3562 av_set_iter_remove (&si);
3567 return NULL;
3570 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3571 static bool
3572 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3574 vinsn_t vinsn;
3575 int n;
3577 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3578 if (VINSN_SEPARABLE_P (vinsn))
3580 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3581 return true;
3583 else
3585 /* For non-separable instructions, the blocking insn can have
3586 another pattern due to substitution, and we can't choose
3587 different register as in the above case. Check all registers
3588 being written instead. */
3589 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3590 VINSN_REG_SETS (EXPR_VINSN (expr))))
3591 return true;
3594 return false;
3597 #ifdef ENABLE_CHECKING
3598 /* Return true if either of expressions from ORIG_OPS can be blocked
3599 by previously created bookkeeping code. STATIC_PARAMS points to static
3600 parameters of move_op. */
3601 static bool
3602 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3604 expr_t expr;
3605 av_set_iterator iter;
3606 moveop_static_params_p sparams;
3608 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3609 created while scheduling on another fence. */
3610 FOR_EACH_EXPR (expr, iter, orig_ops)
3611 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3612 return true;
3614 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3615 sparams = (moveop_static_params_p) static_params;
3617 /* Expressions can be also blocked by bookkeeping created during current
3618 move_op. */
3619 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3622 return true;
3624 /* Expressions in ORIG_OPS may have wrong destination register due to
3625 renaming. Check with the right register instead. */
3626 if (sparams->dest && REG_P (sparams->dest))
3628 rtx reg = sparams->dest;
3629 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3631 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3632 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3633 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3634 return true;
3637 return false;
3639 #endif
3641 /* Clear VINSN_VEC and detach vinsns. */
3642 static void
3643 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3645 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3646 if (len > 0)
3648 vinsn_t vinsn;
3649 int n;
3651 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3652 vinsn_detach (vinsn);
3653 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3657 /* Add the vinsn of EXPR to the VINSN_VEC. */
3658 static void
3659 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3661 vinsn_attach (EXPR_VINSN (expr));
3662 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3665 /* Free the vector representing blocked expressions. */
3666 static void
3667 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3669 if (*vinsn_vec)
3670 VEC_free (vinsn_t, heap, *vinsn_vec);
3673 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3675 void sel_add_to_insn_priority (rtx insn, int amount)
3677 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3679 if (sched_verbose >= 2)
3680 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3681 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3682 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3685 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3686 true if there is something to schedule. BNDS and FENCE are current
3687 boundaries and fence, respectively. If we need to stall for some cycles
3688 before an expr from AV would become available, write this number to
3689 *PNEED_STALL. */
3690 static bool
3691 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3692 int *pneed_stall)
3694 av_set_iterator si;
3695 expr_t expr;
3696 int sched_next_worked = 0, stalled, n;
3697 static int av_max_prio, est_ticks_till_branch;
3698 int min_need_stall = -1;
3699 deps_t dc = BND_DC (BLIST_BND (bnds));
3701 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3702 already scheduled. */
3703 if (av == NULL)
3704 return false;
3706 /* Empty vector from the previous stuff. */
3707 if (VEC_length (expr_t, vec_av_set) > 0)
3708 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3710 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3711 for each insn. */
3712 gcc_assert (VEC_empty (expr_t, vec_av_set));
3713 FOR_EACH_EXPR (expr, si, av)
3715 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3717 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3719 /* Adjust priority using target backend hook. */
3720 sel_target_adjust_priority (expr);
3723 /* Sort the vector. */
3724 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3726 /* We record maximal priority of insns in av set for current instruction
3727 group. */
3728 if (FENCE_STARTS_CYCLE_P (fence))
3729 av_max_prio = est_ticks_till_branch = INT_MIN;
3731 /* Filter out inappropriate expressions. Loop's direction is reversed to
3732 visit "best" instructions first. We assume that VEC_unordered_remove
3733 moves last element in place of one being deleted. */
3734 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3736 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3737 insn_t insn = EXPR_INSN_RTX (expr);
3738 signed char target_available;
3739 bool is_orig_reg_p = true;
3740 int need_cycles, new_prio;
3742 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3743 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3745 VEC_unordered_remove (expr_t, vec_av_set, n);
3746 continue;
3749 /* Set number of sched_next insns (just in case there
3750 could be several). */
3751 if (FENCE_SCHED_NEXT (fence))
3752 sched_next_worked++;
3754 /* Check all liveness requirements and try renaming.
3755 FIXME: try to minimize calls to this. */
3756 target_available = EXPR_TARGET_AVAILABLE (expr);
3758 /* If insn was already scheduled on the current fence,
3759 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3760 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3761 target_available = -1;
3763 /* If the availability of the EXPR is invalidated by the insertion of
3764 bookkeeping earlier, make sure that we won't choose this expr for
3765 scheduling if it's not separable, and if it is separable, then
3766 we have to recompute the set of available registers for it. */
3767 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3769 VEC_unordered_remove (expr_t, vec_av_set, n);
3770 if (sched_verbose >= 4)
3771 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3772 INSN_UID (insn));
3773 continue;
3776 if (target_available == true)
3778 /* Do nothing -- we can use an existing register. */
3779 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3781 else if (/* Non-separable instruction will never
3782 get another register. */
3783 (target_available == false
3784 && !EXPR_SEPARABLE_P (expr))
3785 /* Don't try to find a register for low-priority expression. */
3786 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3787 /* ??? FIXME: Don't try to rename data speculation. */
3788 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3789 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3791 VEC_unordered_remove (expr_t, vec_av_set, n);
3792 if (sched_verbose >= 4)
3793 sel_print ("Expr %d has no suitable target register\n",
3794 INSN_UID (insn));
3795 continue;
3798 /* Filter expressions that need to be renamed or speculated when
3799 pipelining, because compensating register copies or speculation
3800 checks are likely to be placed near the beginning of the loop,
3801 causing a stall. */
3802 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3803 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3805 /* Estimation of number of cycles until loop branch for
3806 renaming/speculation to be successful. */
3807 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3809 if ((int) current_loop_nest->ninsns < 9)
3811 VEC_unordered_remove (expr_t, vec_av_set, n);
3812 if (sched_verbose >= 4)
3813 sel_print ("Pipelining expr %d will likely cause stall\n",
3814 INSN_UID (insn));
3815 continue;
3818 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3819 < need_n_ticks_till_branch * issue_rate / 2
3820 && est_ticks_till_branch < need_n_ticks_till_branch)
3822 VEC_unordered_remove (expr_t, vec_av_set, n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 INSN_UID (insn));
3826 continue;
3830 /* We want to schedule speculation checks as late as possible. Discard
3831 them from av set if there are instructions with higher priority. */
3832 if (sel_insn_is_speculation_check (insn)
3833 && EXPR_PRIORITY (expr) < av_max_prio)
3835 stalled++;
3836 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3837 VEC_unordered_remove (expr_t, vec_av_set, n);
3838 if (sched_verbose >= 4)
3839 sel_print ("Delaying speculation check %d until its first use\n",
3840 INSN_UID (insn));
3841 continue;
3844 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3845 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3846 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3848 /* Don't allow any insns whose data is not yet ready.
3849 Check first whether we've already tried them and failed. */
3850 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3852 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3853 - FENCE_CYCLE (fence));
3854 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 est_ticks_till_branch = MAX (est_ticks_till_branch,
3856 EXPR_PRIORITY (expr) + need_cycles);
3858 if (need_cycles > 0)
3860 stalled++;
3861 min_need_stall = (min_need_stall < 0
3862 ? need_cycles
3863 : MIN (min_need_stall, need_cycles));
3864 VEC_unordered_remove (expr_t, vec_av_set, n);
3866 if (sched_verbose >= 4)
3867 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3868 INSN_UID (insn),
3869 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3870 continue;
3874 /* Now resort to dependence analysis to find whether EXPR might be
3875 stalled due to dependencies from FENCE's context. */
3876 need_cycles = tick_check_p (expr, dc, fence);
3877 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3879 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3880 est_ticks_till_branch = MAX (est_ticks_till_branch,
3881 new_prio);
3883 if (need_cycles > 0)
3885 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3887 int new_size = INSN_UID (insn) * 3 / 2;
3889 FENCE_READY_TICKS (fence)
3890 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3891 new_size, FENCE_READY_TICKS_SIZE (fence),
3892 sizeof (int));
3894 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3895 = FENCE_CYCLE (fence) + need_cycles;
3897 stalled++;
3898 min_need_stall = (min_need_stall < 0
3899 ? need_cycles
3900 : MIN (min_need_stall, need_cycles));
3902 VEC_unordered_remove (expr_t, vec_av_set, n);
3904 if (sched_verbose >= 4)
3905 sel_print ("Expr %d is not ready yet until cycle %d\n",
3906 INSN_UID (insn),
3907 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3908 continue;
3911 if (sched_verbose >= 4)
3912 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3913 min_need_stall = 0;
3916 /* Clear SCHED_NEXT. */
3917 if (FENCE_SCHED_NEXT (fence))
3919 gcc_assert (sched_next_worked == 1);
3920 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3923 /* No need to stall if this variable was not initialized. */
3924 if (min_need_stall < 0)
3925 min_need_stall = 0;
3927 if (VEC_empty (expr_t, vec_av_set))
3929 /* We need to set *pneed_stall here, because later we skip this code
3930 when ready list is empty. */
3931 *pneed_stall = min_need_stall;
3932 return false;
3934 else
3935 gcc_assert (min_need_stall == 0);
3937 /* Sort the vector. */
3938 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3940 if (sched_verbose >= 4)
3942 sel_print ("Total ready exprs: %d, stalled: %d\n",
3943 VEC_length (expr_t, vec_av_set), stalled);
3944 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3945 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3946 dump_expr (expr);
3947 sel_print ("\n");
3950 *pneed_stall = 0;
3951 return true;
3954 /* Convert a vectored and sorted av set to the ready list that
3955 the rest of the backend wants to see. */
3956 static void
3957 convert_vec_av_set_to_ready (void)
3959 int n;
3960 expr_t expr;
3962 /* Allocate and fill the ready list from the sorted vector. */
3963 ready.n_ready = VEC_length (expr_t, vec_av_set);
3964 ready.first = ready.n_ready - 1;
3966 gcc_assert (ready.n_ready > 0);
3968 if (ready.n_ready > max_issue_size)
3970 max_issue_size = ready.n_ready;
3971 sched_extend_ready_list (ready.n_ready);
3974 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3976 vinsn_t vi = EXPR_VINSN (expr);
3977 insn_t insn = VINSN_INSN_RTX (vi);
3979 ready_try[n] = 0;
3980 ready.vec[n] = insn;
3984 /* Initialize ready list from *AV_PTR for the max_issue () call.
3985 If any unrecognizable insn found in *AV_PTR, return it (and skip
3986 max_issue). BND and FENCE are current boundary and fence,
3987 respectively. If we need to stall for some cycles before an expr
3988 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3989 static expr_t
3990 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991 int *pneed_stall)
3993 expr_t expr;
3995 /* We do not support multiple boundaries per fence. */
3996 gcc_assert (BLIST_NEXT (bnds) == NULL);
3998 /* Process expressions required special handling, i.e. pipelined,
3999 speculative and recog() < 0 expressions first. */
4000 process_pipelined_exprs (av_ptr);
4001 process_spec_exprs (av_ptr);
4003 /* A USE could be scheduled immediately. */
4004 expr = process_use_exprs (av_ptr);
4005 if (expr)
4007 *pneed_stall = 0;
4008 return expr;
4011 /* Turn the av set to a vector for sorting. */
4012 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4014 ready.n_ready = 0;
4015 return NULL;
4018 /* Build the final ready list. */
4019 convert_vec_av_set_to_ready ();
4020 return NULL;
4023 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4024 static bool
4025 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4027 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4029 : FENCE_CYCLE (fence) - 1;
4030 bool res = false;
4031 int sort_p = 0;
4033 if (!targetm.sched.dfa_new_cycle)
4034 return false;
4036 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4038 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039 insn, last_scheduled_cycle,
4040 FENCE_CYCLE (fence), &sort_p))
4042 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043 advance_one_cycle (fence);
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045 res = true;
4048 return res;
4051 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4052 we can issue. FENCE is the current fence. */
4053 static int
4054 invoke_reorder_hooks (fence_t fence)
4056 int issue_more;
4057 bool ran_hook = false;
4059 /* Call the reorder hook at the beginning of the cycle, and call
4060 the reorder2 hook in the middle of the cycle. */
4061 if (FENCE_ISSUED_INSNS (fence) == 0)
4063 if (targetm.sched.reorder
4064 && !SCHED_GROUP_P (ready_element (&ready, 0))
4065 && ready.n_ready > 1)
4067 /* Don't give reorder the most prioritized insn as it can break
4068 pipelining. */
4069 if (pipelining_p)
4070 --ready.n_ready;
4072 issue_more
4073 = targetm.sched.reorder (sched_dump, sched_verbose,
4074 ready_lastpos (&ready),
4075 &ready.n_ready, FENCE_CYCLE (fence));
4077 if (pipelining_p)
4078 ++ready.n_ready;
4080 ran_hook = true;
4082 else
4083 /* Initialize can_issue_more for variable_issue. */
4084 issue_more = issue_rate;
4086 else if (targetm.sched.reorder2
4087 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4089 if (ready.n_ready == 1)
4090 issue_more =
4091 targetm.sched.reorder2 (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094 else
4096 if (pipelining_p)
4097 --ready.n_ready;
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready.n_ready
4102 ? ready_lastpos (&ready) : NULL,
4103 &ready.n_ready, FENCE_CYCLE (fence));
4105 if (pipelining_p)
4106 ++ready.n_ready;
4109 ran_hook = true;
4111 else
4112 issue_more = FENCE_ISSUE_MORE (fence);
4114 /* Ensure that ready list and vec_av_set are in line with each other,
4115 i.e. vec_av_set[i] == ready_element (&ready, i). */
4116 if (issue_more && ran_hook)
4118 int i, j, n;
4119 rtx *arr = ready.vec;
4120 expr_t *vec = VEC_address (expr_t, vec_av_set);
4122 for (i = 0, n = ready.n_ready; i < n; i++)
4123 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4125 expr_t tmp;
4127 for (j = i; j < n; j++)
4128 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129 break;
4130 gcc_assert (j < n);
4132 tmp = vec[i];
4133 vec[i] = vec[j];
4134 vec[j] = tmp;
4138 return issue_more;
4141 /* Return an EXPR correponding to INDEX element of ready list, if
4142 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4144 ready.vec otherwise. */
4145 static inline expr_t
4146 find_expr_for_ready (int index, bool follow_ready_element)
4148 expr_t expr;
4149 int real_index;
4151 real_index = follow_ready_element ? ready.first - index : index;
4153 expr = VEC_index (expr_t, vec_av_set, real_index);
4154 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4156 return expr;
4159 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4160 of such insns found. */
4161 static int
4162 invoke_dfa_lookahead_guard (void)
4164 int i, n;
4165 bool have_hook
4166 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4168 if (sched_verbose >= 2)
4169 sel_print ("ready after reorder: ");
4171 for (i = 0, n = 0; i < ready.n_ready; i++)
4173 expr_t expr;
4174 insn_t insn;
4175 int r;
4177 /* In this loop insn is Ith element of the ready list given by
4178 ready_element, not Ith element of ready.vec. */
4179 insn = ready_element (&ready, i);
4181 if (! have_hook || i == 0)
4182 r = 0;
4183 else
4184 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4186 gcc_assert (INSN_CODE (insn) >= 0);
4188 /* Only insns with ready_try = 0 can get here
4189 from fill_ready_list. */
4190 gcc_assert (ready_try [i] == 0);
4191 ready_try[i] = r;
4192 if (!r)
4193 n++;
4195 expr = find_expr_for_ready (i, true);
4197 if (sched_verbose >= 2)
4199 dump_vinsn (EXPR_VINSN (expr));
4200 sel_print (":%d; ", ready_try[i]);
4204 if (sched_verbose >= 2)
4205 sel_print ("\n");
4206 return n;
4209 /* Calculate the number of privileged insns and return it. */
4210 static int
4211 calculate_privileged_insns (void)
4213 expr_t cur_expr, min_spec_expr = NULL;
4214 int privileged_n = 0, i;
4216 for (i = 0; i < ready.n_ready; i++)
4218 if (ready_try[i])
4219 continue;
4221 if (! min_spec_expr)
4222 min_spec_expr = find_expr_for_ready (i, true);
4224 cur_expr = find_expr_for_ready (i, true);
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4229 ++privileged_n;
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4241 /* Call the rest of the hooks after the choice was made. Return
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245 static int
4246 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4248 gcc_assert (INSN_P (best_insn));
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
4253 if (targetm.sched.variable_issue)
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4256 issue_more =
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4265 return issue_more;
4268 /* Estimate the cost of issuing INSN on DFA state STATE. */
4269 static int
4270 estimate_insn_cost (rtx insn, state_t state)
4272 static state_t temp = NULL;
4273 int cost;
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4288 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4289 This function properly handles ASMs, USEs etc. */
4290 static int
4291 get_expr_cost (expr_t expr, fence_t fence)
4293 rtx insn = EXPR_INSN_RTX (expr);
4295 if (recog_memoized (insn) < 0)
4297 if (!FENCE_STARTS_CYCLE_P (fence)
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4309 else
4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
4313 /* Find the best insn for scheduling, either via max_issue or just take
4314 the most prioritized available. */
4315 static int
4316 choose_best_insn (fence_t fence, int privileged_n, int *index)
4318 int can_issue = 0;
4320 if (dfa_lookahead > 0)
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4324 can_issue = max_issue (&ready, privileged_n,
4325 FENCE_STATE (fence), true, index);
4326 if (sched_verbose >= 2)
4327 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4328 can_issue, FENCE_ISSUED_INSNS (fence));
4330 else
4332 /* We can't use max_issue; just return the first available element. */
4333 int i;
4335 for (i = 0; i < ready.n_ready; i++)
4337 expr_t expr = find_expr_for_ready (i, true);
4339 if (get_expr_cost (expr, fence) < 1)
4341 can_issue = can_issue_more;
4342 *index = i;
4344 if (sched_verbose >= 2)
4345 sel_print ("using %dth insn from the ready list\n", i + 1);
4347 break;
4351 if (i == ready.n_ready)
4353 can_issue = 0;
4354 *index = -1;
4358 return can_issue;
4361 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4362 BNDS and FENCE are current boundaries and scheduling fence respectively.
4363 Return the expr found and NULL if nothing can be issued atm.
4364 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4365 static expr_t
4366 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4367 int *pneed_stall)
4369 expr_t best;
4371 /* Choose the best insn for scheduling via:
4372 1) sorting the ready list based on priority;
4373 2) calling the reorder hook;
4374 3) calling max_issue. */
4375 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4376 if (best == NULL && ready.n_ready > 0)
4378 int privileged_n, index;
4380 can_issue_more = invoke_reorder_hooks (fence);
4381 if (can_issue_more > 0)
4383 /* Try choosing the best insn until we find one that is could be
4384 scheduled due to liveness restrictions on its destination register.
4385 In the future, we'd like to choose once and then just probe insns
4386 in the order of their priority. */
4387 invoke_dfa_lookahead_guard ();
4388 privileged_n = calculate_privileged_insns ();
4389 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4390 if (can_issue_more)
4391 best = find_expr_for_ready (index, true);
4393 /* We had some available insns, so if we can't issue them,
4394 we have a stall. */
4395 if (can_issue_more == 0)
4397 best = NULL;
4398 *pneed_stall = 1;
4402 if (best != NULL)
4404 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4405 can_issue_more);
4406 if (targetm.sched.variable_issue
4407 && can_issue_more == 0)
4408 *pneed_stall = 1;
4411 if (sched_verbose >= 2)
4413 if (best != NULL)
4415 sel_print ("Best expression (vliw form): ");
4416 dump_expr (best);
4417 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4419 else
4420 sel_print ("No best expr found!\n");
4423 return best;
4427 /* Functions that implement the core of the scheduler. */
4430 /* Emit an instruction from EXPR with SEQNO and VINSN after
4431 PLACE_TO_INSERT. */
4432 static insn_t
4433 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4434 insn_t place_to_insert)
4436 /* This assert fails when we have identical instructions
4437 one of which dominates the other. In this case move_op ()
4438 finds the first instruction and doesn't search for second one.
4439 The solution would be to compute av_set after the first found
4440 insn and, if insn present in that set, continue searching.
4441 For now we workaround this issue in move_op. */
4442 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4444 if (EXPR_WAS_RENAMED (expr))
4446 unsigned regno = expr_dest_regno (expr);
4448 if (HARD_REGISTER_NUM_P (regno))
4450 df_set_regs_ever_live (regno, true);
4451 reg_rename_tick[regno] = ++reg_rename_this_tick;
4455 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4456 place_to_insert);
4459 /* Return TRUE if BB can hold bookkeeping code. */
4460 static bool
4461 block_valid_for_bookkeeping_p (basic_block bb)
4463 insn_t bb_end = BB_END (bb);
4465 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4466 return false;
4468 if (INSN_P (bb_end))
4470 if (INSN_SCHED_TIMES (bb_end) > 0)
4471 return false;
4473 else
4474 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4476 return true;
4479 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4480 into E2->dest, except from E1->src (there may be a sequence of empty basic
4481 blocks between E1->src and E2->dest). Return found block, or NULL if new
4482 one must be created. If LAX holds, don't assume there is a simple path
4483 from E1->src to E2->dest. */
4484 static basic_block
4485 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4487 basic_block candidate_block = NULL;
4488 edge e;
4490 /* Loop over edges from E1 to E2, inclusive. */
4491 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4493 if (EDGE_COUNT (e->dest->preds) == 2)
4495 if (candidate_block == NULL)
4496 candidate_block = (EDGE_PRED (e->dest, 0) == e
4497 ? EDGE_PRED (e->dest, 1)->src
4498 : EDGE_PRED (e->dest, 0)->src);
4499 else
4500 /* Found additional edge leading to path from e1 to e2
4501 from aside. */
4502 return NULL;
4504 else if (EDGE_COUNT (e->dest->preds) > 2)
4505 /* Several edges leading to path from e1 to e2 from aside. */
4506 return NULL;
4508 if (e == e2)
4509 return ((!lax || candidate_block)
4510 && block_valid_for_bookkeeping_p (candidate_block)
4511 ? candidate_block
4512 : NULL);
4514 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4515 return NULL;
4518 if (lax)
4519 return NULL;
4521 gcc_unreachable ();
4524 /* Create new basic block for bookkeeping code for path(s) incoming into
4525 E2->dest, except from E1->src. Return created block. */
4526 static basic_block
4527 create_block_for_bookkeeping (edge e1, edge e2)
4529 basic_block new_bb, bb = e2->dest;
4531 /* Check that we don't spoil the loop structure. */
4532 if (current_loop_nest)
4534 basic_block latch = current_loop_nest->latch;
4536 /* We do not split header. */
4537 gcc_assert (e2->dest != current_loop_nest->header);
4539 /* We do not redirect the only edge to the latch block. */
4540 gcc_assert (e1->dest != latch
4541 || !single_pred_p (latch)
4542 || e1 != single_pred_edge (latch));
4545 /* Split BB to insert BOOK_INSN there. */
4546 new_bb = sched_split_block (bb, NULL);
4548 /* Move note_list from the upper bb. */
4549 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4550 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4551 BB_NOTE_LIST (bb) = NULL_RTX;
4553 gcc_assert (e2->dest == bb);
4555 /* Skip block for bookkeeping copy when leaving E1->src. */
4556 if (e1->flags & EDGE_FALLTHRU)
4557 sel_redirect_edge_and_branch_force (e1, new_bb);
4558 else
4559 sel_redirect_edge_and_branch (e1, new_bb);
4561 gcc_assert (e1->dest == new_bb);
4562 gcc_assert (sel_bb_empty_p (bb));
4564 /* To keep basic block numbers in sync between debug and non-debug
4565 compilations, we have to rotate blocks here. Consider that we
4566 started from (a,b)->d, (c,d)->e, and d contained only debug
4567 insns. It would have been removed before if the debug insns
4568 weren't there, so we'd have split e rather than d. So what we do
4569 now is to swap the block numbers of new_bb and
4570 single_succ(new_bb) == e, so that the insns that were in e before
4571 get the new block number. */
4573 if (MAY_HAVE_DEBUG_INSNS)
4575 basic_block succ;
4576 insn_t insn = sel_bb_head (new_bb);
4577 insn_t last;
4579 if (DEBUG_INSN_P (insn)
4580 && single_succ_p (new_bb)
4581 && (succ = single_succ (new_bb))
4582 && succ != EXIT_BLOCK_PTR
4583 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4585 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4586 insn = NEXT_INSN (insn);
4588 if (insn == last)
4590 sel_global_bb_info_def gbi;
4591 sel_region_bb_info_def rbi;
4592 int i;
4594 if (sched_verbose >= 2)
4595 sel_print ("Swapping block ids %i and %i\n",
4596 new_bb->index, succ->index);
4598 i = new_bb->index;
4599 new_bb->index = succ->index;
4600 succ->index = i;
4602 SET_BASIC_BLOCK (new_bb->index, new_bb);
4603 SET_BASIC_BLOCK (succ->index, succ);
4605 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4607 sizeof (gbi));
4608 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4610 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4612 sizeof (rbi));
4613 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4615 i = BLOCK_TO_BB (new_bb->index);
4616 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4617 BLOCK_TO_BB (succ->index) = i;
4619 i = CONTAINING_RGN (new_bb->index);
4620 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4621 CONTAINING_RGN (succ->index) = i;
4623 for (i = 0; i < current_nr_blocks; i++)
4624 if (BB_TO_BLOCK (i) == succ->index)
4625 BB_TO_BLOCK (i) = new_bb->index;
4626 else if (BB_TO_BLOCK (i) == new_bb->index)
4627 BB_TO_BLOCK (i) = succ->index;
4629 FOR_BB_INSNS (new_bb, insn)
4630 if (INSN_P (insn))
4631 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4633 FOR_BB_INSNS (succ, insn)
4634 if (INSN_P (insn))
4635 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4637 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4638 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4640 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4641 && LABEL_P (BB_HEAD (succ)));
4643 if (sched_verbose >= 4)
4644 sel_print ("Swapping code labels %i and %i\n",
4645 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4646 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4648 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4649 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4650 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4651 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4656 return bb;
4659 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4660 into E2->dest, except from E1->src. If the returned insn immediately
4661 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4662 static insn_t
4663 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4665 insn_t place_to_insert;
4666 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4667 create new basic block, but insert bookkeeping there. */
4668 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4670 if (book_block)
4672 place_to_insert = BB_END (book_block);
4674 /* Don't use a block containing only debug insns for
4675 bookkeeping, this causes scheduling differences between debug
4676 and non-debug compilations, for the block would have been
4677 removed already. */
4678 if (DEBUG_INSN_P (place_to_insert))
4680 rtx insn = sel_bb_head (book_block);
4682 while (insn != place_to_insert &&
4683 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4684 insn = NEXT_INSN (insn);
4686 if (insn == place_to_insert)
4687 book_block = NULL;
4691 if (!book_block)
4693 book_block = create_block_for_bookkeeping (e1, e2);
4694 place_to_insert = BB_END (book_block);
4695 if (sched_verbose >= 9)
4696 sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4699 else
4701 if (sched_verbose >= 9)
4702 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4705 *fence_to_rewind = NULL;
4706 /* If basic block ends with a jump, insert bookkeeping code right before it.
4707 Notice if we are crossing a fence when taking PREV_INSN. */
4708 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4710 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4711 place_to_insert = PREV_INSN (place_to_insert);
4714 return place_to_insert;
4717 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4718 for JOIN_POINT. */
4719 static int
4720 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4722 int seqno;
4723 rtx next;
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4727 next = NEXT_INSN (place_to_insert);
4728 if (INSN_P (next)
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
4739 seqno = get_seqno_by_preds (place_to_insert);
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4753 gcc_assert (seqno > 0);
4754 return seqno;
4757 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759 static insn_t
4760 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4762 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4768 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 place_to_insert);
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4774 return new_insn;
4777 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781 static basic_block
4782 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
4787 fence_t fence_to_rewind;
4789 if (sched_verbose >= 4)
4790 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4791 e2->dest->index);
4793 join_point = sel_bb_head (e2->dest);
4794 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796 need_to_exchange_data_sets
4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4801 if (fence_to_rewind)
4802 FENCE_INSN (fence_to_rewind) = new_insn;
4804 /* When inserting bookkeeping insn in new block, av sets should be
4805 following: old basic block (that now holds bookkeeping) data sets are
4806 the same as was before generation of bookkeeping, and new basic block
4807 (that now hold all other insns of old basic block) data sets are
4808 invalid. So exchange data sets for these basic blocks as sel_split_block
4809 mistakenly exchanges them in this case. Cannot do it earlier because
4810 when single instruction is added to new basic block it should hold NULL
4811 lv_set. */
4812 if (need_to_exchange_data_sets)
4813 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4814 BLOCK_FOR_INSN (join_point));
4816 stat_bookkeeping_copies++;
4817 return BLOCK_FOR_INSN (new_insn);
4820 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4821 on FENCE, but we are unable to copy them. */
4822 static void
4823 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4825 expr_t expr;
4826 av_set_iterator i;
4828 /* An expression does not need bookkeeping if it is available on all paths
4829 from current block to original block and current block dominates
4830 original block. We check availability on all paths by examining
4831 EXPR_SPEC; this is not equivalent, because it may be positive even
4832 if expr is available on all paths (but if expr is not available on
4833 any path, EXPR_SPEC will be positive). */
4835 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4837 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4838 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4839 && (EXPR_SPEC (expr)
4840 || !EXPR_ORIG_BB_INDEX (expr)
4841 || !dominated_by_p (CDI_DOMINATORS,
4842 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4843 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4845 if (sched_verbose >= 4)
4846 sel_print ("Expr %d removed because it would need bookkeeping, which "
4847 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4848 av_set_iter_remove (&i);
4853 /* Moving conditional jump through some instructions.
4855 Consider example:
4857 ... <- current scheduling point
4858 NOTE BASIC BLOCK: <- bb header
4859 (p8) add r14=r14+0x9;;
4860 (p8) mov [r14]=r23
4861 (!p8) jump L1;;
4862 NOTE BASIC BLOCK:
4865 We can schedule jump one cycle earlier, than mov, because they cannot be
4866 executed together as their predicates are mutually exclusive.
4868 This is done in this way: first, new fallthrough basic block is created
4869 after jump (it is always can be done, because there already should be a
4870 fallthrough block, where control flow goes in case of predicate being true -
4871 in our example; otherwise there should be a dependence between those
4872 instructions and jump and we cannot schedule jump right now);
4873 next, all instructions between jump and current scheduling point are moved
4874 to this new block. And the result is this:
4876 NOTE BASIC BLOCK:
4877 (!p8) jump L1 <- current scheduling point
4878 NOTE BASIC BLOCK: <- bb header
4879 (p8) add r14=r14+0x9;;
4880 (p8) mov [r14]=r23
4881 NOTE BASIC BLOCK:
4884 static void
4885 move_cond_jump (rtx insn, bnd_t bnd)
4887 edge ft_edge;
4888 basic_block block_from, block_next, block_new, block_bnd, bb;
4889 rtx next, prev, link, head;
4891 block_from = BLOCK_FOR_INSN (insn);
4892 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4893 prev = BND_TO (bnd);
4895 #ifdef ENABLE_CHECKING
4896 /* Moving of jump should not cross any other jumps or beginnings of new
4897 basic blocks. The only exception is when we move a jump through
4898 mutually exclusive insns along fallthru edges. */
4899 if (block_from != block_bnd)
4901 bb = block_from;
4902 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4903 link = PREV_INSN (link))
4905 if (INSN_P (link))
4906 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4907 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4909 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4910 bb = BLOCK_FOR_INSN (link);
4914 #endif
4916 /* Jump is moved to the boundary. */
4917 next = PREV_INSN (insn);
4918 BND_TO (bnd) = insn;
4920 ft_edge = find_fallthru_edge_from (block_from);
4921 block_next = ft_edge->dest;
4922 /* There must be a fallthrough block (or where should go
4923 control flow in case of false jump predicate otherwise?). */
4924 gcc_assert (block_next);
4926 /* Create new empty basic block after source block. */
4927 block_new = sel_split_edge (ft_edge);
4928 gcc_assert (block_new->next_bb == block_next
4929 && block_from->next_bb == block_new);
4931 /* Move all instructions except INSN to BLOCK_NEW. */
4932 bb = block_bnd;
4933 head = BB_HEAD (block_new);
4934 while (bb != block_from->next_bb)
4936 rtx from, to;
4937 from = bb == block_bnd ? prev : sel_bb_head (bb);
4938 to = bb == block_from ? next : sel_bb_end (bb);
4940 /* The jump being moved can be the first insn in the block.
4941 In this case we don't have to move anything in this block. */
4942 if (NEXT_INSN (to) != from)
4944 reorder_insns (from, to, head);
4946 for (link = to; link != head; link = PREV_INSN (link))
4947 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4948 head = to;
4951 /* Cleanup possibly empty blocks left. */
4952 block_next = bb->next_bb;
4953 if (bb != block_from)
4954 tidy_control_flow (bb, false);
4955 bb = block_next;
4958 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4959 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4961 gcc_assert (!sel_bb_empty_p (block_from)
4962 && !sel_bb_empty_p (block_new));
4964 /* Update data sets for BLOCK_NEW to represent that INSN and
4965 instructions from the other branch of INSN is no longer
4966 available at BLOCK_NEW. */
4967 BB_AV_LEVEL (block_new) = global_level;
4968 gcc_assert (BB_LV_SET (block_new) == NULL);
4969 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4970 update_data_sets (sel_bb_head (block_new));
4972 /* INSN is a new basic block header - so prepare its data
4973 structures and update availability and liveness sets. */
4974 update_data_sets (insn);
4976 if (sched_verbose >= 4)
4977 sel_print ("Moving jump %d\n", INSN_UID (insn));
4980 /* Remove nops generated during move_op for preventing removal of empty
4981 basic blocks. */
4982 static void
4983 remove_temp_moveop_nops (bool full_tidying)
4985 int i;
4986 insn_t insn;
4988 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4990 gcc_assert (INSN_NOP_P (insn));
4991 return_nop_to_pool (insn, full_tidying);
4994 /* Empty the vector. */
4995 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4996 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4997 VEC_length (insn_t, vec_temp_moveop_nops));
5000 /* Records the maximal UID before moving up an instruction. Used for
5001 distinguishing between bookkeeping copies and original insns. */
5002 static int max_uid_before_move_op = 0;
5004 /* Remove from AV_VLIW_P all instructions but next when debug counter
5005 tells us so. Next instruction is fetched from BNDS. */
5006 static void
5007 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5009 if (! dbg_cnt (sel_sched_insn_cnt))
5010 /* Leave only the next insn in av_vliw. */
5012 av_set_iterator av_it;
5013 expr_t expr;
5014 bnd_t bnd = BLIST_BND (bnds);
5015 insn_t next = BND_TO (bnd);
5017 gcc_assert (BLIST_NEXT (bnds) == NULL);
5019 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5020 if (EXPR_INSN_RTX (expr) != next)
5021 av_set_iter_remove (&av_it);
5025 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5026 the computed set to *AV_VLIW_P. */
5027 static void
5028 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5030 if (sched_verbose >= 2)
5032 sel_print ("Boundaries: ");
5033 dump_blist (bnds);
5034 sel_print ("\n");
5037 for (; bnds; bnds = BLIST_NEXT (bnds))
5039 bnd_t bnd = BLIST_BND (bnds);
5040 av_set_t av1_copy;
5041 insn_t bnd_to = BND_TO (bnd);
5043 /* Rewind BND->TO to the basic block header in case some bookkeeping
5044 instructions were inserted before BND->TO and it needs to be
5045 adjusted. */
5046 if (sel_bb_head_p (bnd_to))
5047 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5048 else
5049 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5051 bnd_to = PREV_INSN (bnd_to);
5052 if (sel_bb_head_p (bnd_to))
5053 break;
5056 if (BND_TO (bnd) != bnd_to)
5058 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5059 FENCE_INSN (fence) = bnd_to;
5060 BND_TO (bnd) = bnd_to;
5063 av_set_clear (&BND_AV (bnd));
5064 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5066 av_set_clear (&BND_AV1 (bnd));
5067 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5069 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5071 av1_copy = av_set_copy (BND_AV1 (bnd));
5072 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5075 if (sched_verbose >= 2)
5077 sel_print ("Available exprs (vliw form): ");
5078 dump_av_set (*av_vliw_p);
5079 sel_print ("\n");
5083 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5084 expression. When FOR_MOVEOP is true, also replace the register of
5085 expressions found with the register from EXPR_VLIW. */
5086 static av_set_t
5087 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5089 av_set_t expr_seq = NULL;
5090 expr_t expr;
5091 av_set_iterator i;
5093 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5095 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5097 if (for_moveop)
5099 /* The sequential expression has the right form to pass
5100 to move_op except when renaming happened. Put the
5101 correct register in EXPR then. */
5102 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5104 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5106 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5107 stat_renamed_scheduled++;
5109 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5110 This is needed when renaming came up with original
5111 register. */
5112 else if (EXPR_TARGET_AVAILABLE (expr)
5113 != EXPR_TARGET_AVAILABLE (expr_vliw))
5115 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5116 EXPR_TARGET_AVAILABLE (expr) = 1;
5119 if (EXPR_WAS_SUBSTITUTED (expr))
5120 stat_substitutions_total++;
5123 av_set_add (&expr_seq, expr);
5125 /* With substitution inside insn group, it is possible
5126 that more than one expression in expr_seq will correspond
5127 to expr_vliw. In this case, choose one as the attempt to
5128 move both leads to miscompiles. */
5129 break;
5133 if (for_moveop && sched_verbose >= 2)
5135 sel_print ("Best expression(s) (sequential form): ");
5136 dump_av_set (expr_seq);
5137 sel_print ("\n");
5140 return expr_seq;
5144 /* Move nop to previous block. */
5145 static void ATTRIBUTE_UNUSED
5146 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5148 insn_t prev_insn, next_insn, note;
5150 gcc_assert (sel_bb_head_p (nop)
5151 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5152 note = bb_note (BLOCK_FOR_INSN (nop));
5153 prev_insn = sel_bb_end (prev_bb);
5154 next_insn = NEXT_INSN (nop);
5155 gcc_assert (prev_insn != NULL_RTX
5156 && PREV_INSN (note) == prev_insn);
5158 NEXT_INSN (prev_insn) = nop;
5159 PREV_INSN (nop) = prev_insn;
5161 PREV_INSN (note) = nop;
5162 NEXT_INSN (note) = next_insn;
5164 NEXT_INSN (nop) = note;
5165 PREV_INSN (next_insn) = note;
5167 BB_END (prev_bb) = nop;
5168 BLOCK_FOR_INSN (nop) = prev_bb;
5171 /* Prepare a place to insert the chosen expression on BND. */
5172 static insn_t
5173 prepare_place_to_insert (bnd_t bnd)
5175 insn_t place_to_insert;
5177 /* Init place_to_insert before calling move_op, as the later
5178 can possibly remove BND_TO (bnd). */
5179 if (/* If this is not the first insn scheduled. */
5180 BND_PTR (bnd))
5182 /* Add it after last scheduled. */
5183 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5184 if (DEBUG_INSN_P (place_to_insert))
5186 ilist_t l = BND_PTR (bnd);
5187 while ((l = ILIST_NEXT (l)) &&
5188 DEBUG_INSN_P (ILIST_INSN (l)))
5190 if (!l)
5191 place_to_insert = NULL;
5194 else
5195 place_to_insert = NULL;
5197 if (!place_to_insert)
5199 /* Add it before BND_TO. The difference is in the
5200 basic block, where INSN will be added. */
5201 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5202 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5203 == BLOCK_FOR_INSN (BND_TO (bnd)));
5206 return place_to_insert;
5209 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5210 Return the expression to emit in C_EXPR. */
5211 static bool
5212 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5213 av_set_t expr_seq, expr_t c_expr)
5215 bool b, should_move;
5216 unsigned book_uid;
5217 bitmap_iterator bi;
5218 int n_bookkeeping_copies_before_moveop;
5220 /* Make a move. This call will remove the original operation,
5221 insert all necessary bookkeeping instructions and update the
5222 data sets. After that all we have to do is add the operation
5223 at before BND_TO (BND). */
5224 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5225 max_uid_before_move_op = get_max_uid ();
5226 bitmap_clear (current_copies);
5227 bitmap_clear (current_originators);
5229 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5230 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5232 /* We should be able to find the expression we've chosen for
5233 scheduling. */
5234 gcc_assert (b);
5236 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5237 stat_insns_needed_bookkeeping++;
5239 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5241 unsigned uid;
5242 bitmap_iterator bi;
5244 /* We allocate these bitmaps lazily. */
5245 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5246 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5248 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5249 current_originators);
5251 /* Transitively add all originators' originators. */
5252 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5253 if (INSN_ORIGINATORS_BY_UID (uid))
5254 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5255 INSN_ORIGINATORS_BY_UID (uid));
5258 return should_move;
5262 /* Debug a DFA state as an array of bytes. */
5263 static void
5264 debug_state (state_t state)
5266 unsigned char *p;
5267 unsigned int i, size = dfa_state_size;
5269 sel_print ("state (%u):", size);
5270 for (i = 0, p = (unsigned char *) state; i < size; i++)
5271 sel_print (" %d", p[i]);
5272 sel_print ("\n");
5275 /* Advance state on FENCE with INSN. Return true if INSN is
5276 an ASM, and we should advance state once more. */
5277 static bool
5278 advance_state_on_fence (fence_t fence, insn_t insn)
5280 bool asm_p;
5282 if (recog_memoized (insn) >= 0)
5284 int res;
5285 state_t temp_state = alloca (dfa_state_size);
5287 gcc_assert (!INSN_ASM_P (insn));
5288 asm_p = false;
5290 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5291 res = state_transition (FENCE_STATE (fence), insn);
5292 gcc_assert (res < 0);
5294 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5296 FENCE_ISSUED_INSNS (fence)++;
5298 /* We should never issue more than issue_rate insns. */
5299 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5300 gcc_unreachable ();
5303 else
5305 /* This could be an ASM insn which we'd like to schedule
5306 on the next cycle. */
5307 asm_p = INSN_ASM_P (insn);
5308 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5309 advance_one_cycle (fence);
5312 if (sched_verbose >= 2)
5313 debug_state (FENCE_STATE (fence));
5314 if (!DEBUG_INSN_P (insn))
5315 FENCE_STARTS_CYCLE_P (fence) = 0;
5316 FENCE_ISSUE_MORE (fence) = can_issue_more;
5317 return asm_p;
5320 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5321 is nonzero if we need to stall after issuing INSN. */
5322 static void
5323 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5325 bool asm_p;
5327 /* First, reflect that something is scheduled on this fence. */
5328 asm_p = advance_state_on_fence (fence, insn);
5329 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5330 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5331 if (SCHED_GROUP_P (insn))
5333 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5334 SCHED_GROUP_P (insn) = 0;
5336 else
5337 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5338 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5339 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5341 /* Set instruction scheduling info. This will be used in bundling,
5342 pipelining, tick computations etc. */
5343 ++INSN_SCHED_TIMES (insn);
5344 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5345 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5346 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5347 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5349 /* This does not account for adjust_cost hooks, just add the biggest
5350 constant the hook may add to the latency. TODO: make this
5351 a target dependent constant. */
5352 INSN_READY_CYCLE (insn)
5353 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5355 : maximal_insn_latency (insn) + 1);
5357 /* Change these fields last, as they're used above. */
5358 FENCE_AFTER_STALL_P (fence) = 0;
5359 if (asm_p || need_stall)
5360 advance_one_cycle (fence);
5362 /* Indicate that we've scheduled something on this fence. */
5363 FENCE_SCHEDULED_P (fence) = true;
5364 scheduled_something_on_previous_fence = true;
5366 /* Print debug information when insn's fields are updated. */
5367 if (sched_verbose >= 2)
5369 sel_print ("Scheduling insn: ");
5370 dump_insn_1 (insn, 1);
5371 sel_print ("\n");
5375 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5376 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5377 return it. */
5378 static blist_t *
5379 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5380 blist_t *bnds_tailp)
5382 succ_iterator si;
5383 insn_t succ;
5385 advance_deps_context (BND_DC (bnd), insn);
5386 FOR_EACH_SUCC_1 (succ, si, insn,
5387 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5389 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5391 ilist_add (&ptr, insn);
5393 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5394 && is_ineligible_successor (succ, ptr))
5396 ilist_clear (&ptr);
5397 continue;
5400 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5402 if (sched_verbose >= 9)
5403 sel_print ("Updating fence insn from %i to %i\n",
5404 INSN_UID (insn), INSN_UID (succ));
5405 FENCE_INSN (fence) = succ;
5407 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5408 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5411 blist_remove (bndsp);
5412 return bnds_tailp;
5415 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5416 static insn_t
5417 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5419 av_set_t expr_seq;
5420 expr_t c_expr = XALLOCA (expr_def);
5421 insn_t place_to_insert;
5422 insn_t insn;
5423 bool should_move;
5425 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5427 /* In case of scheduling a jump skipping some other instructions,
5428 prepare CFG. After this, jump is at the boundary and can be
5429 scheduled as usual insn by MOVE_OP. */
5430 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5432 insn = EXPR_INSN_RTX (expr_vliw);
5434 /* Speculative jumps are not handled. */
5435 if (insn != BND_TO (bnd)
5436 && !sel_insn_is_speculation_check (insn))
5437 move_cond_jump (insn, bnd);
5440 /* Find a place for C_EXPR to schedule. */
5441 place_to_insert = prepare_place_to_insert (bnd);
5442 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5443 clear_expr (c_expr);
5445 /* Add the instruction. The corner case to care about is when
5446 the expr_seq set has more than one expr, and we chose the one that
5447 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5448 we can't use it. Generate the new vinsn. */
5449 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5451 vinsn_t vinsn_new;
5453 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5454 change_vinsn_in_expr (expr_vliw, vinsn_new);
5455 should_move = false;
5457 if (should_move)
5458 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5459 else
5460 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5461 place_to_insert);
5463 /* Return the nops generated for preserving of data sets back
5464 into pool. */
5465 if (INSN_NOP_P (place_to_insert))
5466 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5467 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5469 av_set_clear (&expr_seq);
5471 /* Save the expression scheduled so to reset target availability if we'll
5472 meet it later on the same fence. */
5473 if (EXPR_WAS_RENAMED (expr_vliw))
5474 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5476 /* Check that the recent movement didn't destroyed loop
5477 structure. */
5478 gcc_assert (!pipelining_p
5479 || current_loop_nest == NULL
5480 || loop_latch_edge (current_loop_nest));
5481 return insn;
5484 /* Stall for N cycles on FENCE. */
5485 static void
5486 stall_for_cycles (fence_t fence, int n)
5488 int could_more;
5490 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5491 while (n--)
5492 advance_one_cycle (fence);
5493 if (could_more)
5494 FENCE_AFTER_STALL_P (fence) = 1;
5497 /* Gather a parallel group of insns at FENCE and assign their seqno
5498 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5499 list for later recalculation of seqnos. */
5500 static void
5501 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5503 blist_t bnds = NULL, *bnds_tailp;
5504 av_set_t av_vliw = NULL;
5505 insn_t insn = FENCE_INSN (fence);
5507 if (sched_verbose >= 2)
5508 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5509 INSN_UID (insn), FENCE_CYCLE (fence));
5511 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5512 bnds_tailp = &BLIST_NEXT (bnds);
5513 set_target_context (FENCE_TC (fence));
5514 can_issue_more = FENCE_ISSUE_MORE (fence);
5515 target_bb = INSN_BB (insn);
5517 /* Do while we can add any operation to the current group. */
5520 blist_t *bnds_tailp1, *bndsp;
5521 expr_t expr_vliw;
5522 int need_stall = false;
5523 int was_stall = 0, scheduled_insns = 0;
5524 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5525 int max_stall = pipelining_p ? 1 : 3;
5526 bool last_insn_was_debug = false;
5527 bool was_debug_bb_end_p = false;
5529 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5530 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5531 remove_insns_for_debug (bnds, &av_vliw);
5533 /* Return early if we have nothing to schedule. */
5534 if (av_vliw == NULL)
5535 break;
5537 /* Choose the best expression and, if needed, destination register
5538 for it. */
5541 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5542 if (! expr_vliw && need_stall)
5544 /* All expressions required a stall. Do not recompute av sets
5545 as we'll get the same answer (modulo the insns between
5546 the fence and its boundary, which will not be available for
5547 pipelining).
5548 If we are going to stall for too long, break to recompute av
5549 sets and bring more insns for pipelining. */
5550 was_stall++;
5551 if (need_stall <= 3)
5552 stall_for_cycles (fence, need_stall);
5553 else
5555 stall_for_cycles (fence, 1);
5556 break;
5560 while (! expr_vliw && need_stall);
5562 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5563 if (!expr_vliw)
5565 av_set_clear (&av_vliw);
5566 break;
5569 bndsp = &bnds;
5570 bnds_tailp1 = bnds_tailp;
5573 /* This code will be executed only once until we'd have several
5574 boundaries per fence. */
5576 bnd_t bnd = BLIST_BND (*bndsp);
5578 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5580 bndsp = &BLIST_NEXT (*bndsp);
5581 continue;
5584 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5585 last_insn_was_debug = DEBUG_INSN_P (insn);
5586 if (last_insn_was_debug)
5587 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5588 update_fence_and_insn (fence, insn, need_stall);
5589 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5591 /* Add insn to the list of scheduled on this cycle instructions. */
5592 ilist_add (*scheduled_insns_tailpp, insn);
5593 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5595 while (*bndsp != *bnds_tailp1);
5597 av_set_clear (&av_vliw);
5598 if (!last_insn_was_debug)
5599 scheduled_insns++;
5601 /* We currently support information about candidate blocks only for
5602 one 'target_bb' block. Hence we can't schedule after jump insn,
5603 as this will bring two boundaries and, hence, necessity to handle
5604 information for two or more blocks concurrently. */
5605 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5606 || (was_stall
5607 && (was_stall >= max_stall
5608 || scheduled_insns >= max_insns)))
5609 break;
5611 while (bnds);
5613 gcc_assert (!FENCE_BNDS (fence));
5615 /* Update boundaries of the FENCE. */
5616 while (bnds)
5618 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5620 if (ptr)
5622 insn = ILIST_INSN (ptr);
5624 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5625 ilist_add (&FENCE_BNDS (fence), insn);
5628 blist_remove (&bnds);
5631 /* Update target context on the fence. */
5632 reset_target_context (FENCE_TC (fence), false);
5635 /* All exprs in ORIG_OPS must have the same destination register or memory.
5636 Return that destination. */
5637 static rtx
5638 get_dest_from_orig_ops (av_set_t orig_ops)
5640 rtx dest = NULL_RTX;
5641 av_set_iterator av_it;
5642 expr_t expr;
5643 bool first_p = true;
5645 FOR_EACH_EXPR (expr, av_it, orig_ops)
5647 rtx x = EXPR_LHS (expr);
5649 if (first_p)
5651 first_p = false;
5652 dest = x;
5654 else
5655 gcc_assert (dest == x
5656 || (dest != NULL_RTX && x != NULL_RTX
5657 && rtx_equal_p (dest, x)));
5660 return dest;
5663 /* Update data sets for the bookkeeping block and record those expressions
5664 which become no longer available after inserting this bookkeeping. */
5665 static void
5666 update_and_record_unavailable_insns (basic_block book_block)
5668 av_set_iterator i;
5669 av_set_t old_av_set = NULL;
5670 expr_t cur_expr;
5671 rtx bb_end = sel_bb_end (book_block);
5673 /* First, get correct liveness in the bookkeeping block. The problem is
5674 the range between the bookeeping insn and the end of block. */
5675 update_liveness_on_insn (bb_end);
5676 if (control_flow_insn_p (bb_end))
5677 update_liveness_on_insn (PREV_INSN (bb_end));
5679 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5680 fence above, where we may choose to schedule an insn which is
5681 actually blocked from moving up with the bookkeeping we create here. */
5682 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5684 old_av_set = av_set_copy (BB_AV_SET (book_block));
5685 update_data_sets (sel_bb_head (book_block));
5687 /* Traverse all the expressions in the old av_set and check whether
5688 CUR_EXPR is in new AV_SET. */
5689 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5691 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5692 EXPR_VINSN (cur_expr));
5694 if (! new_expr
5695 /* In this case, we can just turn off the E_T_A bit, but we can't
5696 represent this information with the current vector. */
5697 || EXPR_TARGET_AVAILABLE (new_expr)
5698 != EXPR_TARGET_AVAILABLE (cur_expr))
5699 /* Unfortunately, the below code could be also fired up on
5700 separable insns.
5701 FIXME: add an example of how this could happen. */
5702 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5705 av_set_clear (&old_av_set);
5709 /* The main effect of this function is that sparams->c_expr is merged
5710 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5711 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5712 lparams->c_expr_merged is copied back to sparams->c_expr after all
5713 successors has been traversed. lparams->c_expr_local is an expr allocated
5714 on stack in the caller function, and is used if there is more than one
5715 successor.
5717 SUCC is one of the SUCCS_NORMAL successors of INSN,
5718 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5719 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5720 static void
5721 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5722 insn_t succ ATTRIBUTE_UNUSED,
5723 int moveop_drv_call_res,
5724 cmpd_local_params_p lparams, void *static_params)
5726 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5728 /* Nothing to do, if original expr wasn't found below. */
5729 if (moveop_drv_call_res != 1)
5730 return;
5732 /* If this is a first successor. */
5733 if (!lparams->c_expr_merged)
5735 lparams->c_expr_merged = sparams->c_expr;
5736 sparams->c_expr = lparams->c_expr_local;
5738 else
5740 /* We must merge all found expressions to get reasonable
5741 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5742 do so then we can first find the expr with epsilon
5743 speculation success probability and only then with the
5744 good probability. As a result the insn will get epsilon
5745 probability and will never be scheduled because of
5746 weakness_cutoff in find_best_expr.
5748 We call merge_expr_data here instead of merge_expr
5749 because due to speculation C_EXPR and X may have the
5750 same insns with different speculation types. And as of
5751 now such insns are considered non-equal.
5753 However, EXPR_SCHED_TIMES is different -- we must get
5754 SCHED_TIMES from a real insn, not a bookkeeping copy.
5755 We force this here. Instead, we may consider merging
5756 SCHED_TIMES to the maximum instead of minimum in the
5757 below function. */
5758 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5760 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5761 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5762 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5764 clear_expr (sparams->c_expr);
5768 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5770 SUCC is one of the SUCCS_NORMAL successors of INSN,
5771 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5772 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5773 STATIC_PARAMS contain USED_REGS set. */
5774 static void
5775 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5776 int moveop_drv_call_res,
5777 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5778 void *static_params)
5780 regset succ_live;
5781 fur_static_params_p sparams = (fur_static_params_p) static_params;
5783 /* Here we compute live regsets only for branches that do not lie
5784 on the code motion paths. These branches correspond to value
5785 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5786 for such branches code_motion_path_driver is not called. */
5787 if (moveop_drv_call_res != 0)
5788 return;
5790 /* Mark all registers that do not meet the following condition:
5791 (3) not live on the other path of any conditional branch
5792 that is passed by the operation, in case original
5793 operations are not present on both paths of the
5794 conditional branch. */
5795 succ_live = compute_live (succ);
5796 IOR_REG_SET (sparams->used_regs, succ_live);
5799 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5800 into SP->CEXPR. */
5801 static void
5802 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5804 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5806 sp->c_expr = lp->c_expr_merged;
5809 /* Track bookkeeping copies created, insns scheduled, and blocks for
5810 rescheduling when INSN is found by move_op. */
5811 static void
5812 track_scheduled_insns_and_blocks (rtx insn)
5814 /* Even if this insn can be a copy that will be removed during current move_op,
5815 we still need to count it as an originator. */
5816 bitmap_set_bit (current_originators, INSN_UID (insn));
5818 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5820 /* Note that original block needs to be rescheduled, as we pulled an
5821 instruction out of it. */
5822 if (INSN_SCHED_TIMES (insn) > 0)
5823 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5824 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5825 num_insns_scheduled++;
5828 /* For instructions we must immediately remove insn from the
5829 stream, so subsequent update_data_sets () won't include this
5830 insn into av_set.
5831 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5832 if (INSN_UID (insn) > max_uid_before_move_op)
5833 stat_bookkeeping_copies--;
5836 /* Emit a register-register copy for INSN if needed. Return true if
5837 emitted one. PARAMS is the move_op static parameters. */
5838 static bool
5839 maybe_emit_renaming_copy (rtx insn,
5840 moveop_static_params_p params)
5842 bool insn_emitted = false;
5843 rtx cur_reg;
5845 /* Bail out early when expression can not be renamed at all. */
5846 if (!EXPR_SEPARABLE_P (params->c_expr))
5847 return false;
5849 cur_reg = expr_dest_reg (params->c_expr);
5850 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5852 /* If original operation has expr and the register chosen for
5853 that expr is not original operation's dest reg, substitute
5854 operation's right hand side with the register chosen. */
5855 if (REGNO (params->dest) != REGNO (cur_reg))
5857 insn_t reg_move_insn, reg_move_insn_rtx;
5859 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5860 params->dest);
5861 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5862 INSN_EXPR (insn),
5863 INSN_SEQNO (insn),
5864 insn);
5865 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5866 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5868 insn_emitted = true;
5869 params->was_renamed = true;
5872 return insn_emitted;
5875 /* Emit a speculative check for INSN speculated as EXPR if needed.
5876 Return true if we've emitted one. PARAMS is the move_op static
5877 parameters. */
5878 static bool
5879 maybe_emit_speculative_check (rtx insn, expr_t expr,
5880 moveop_static_params_p params)
5882 bool insn_emitted = false;
5883 insn_t x;
5884 ds_t check_ds;
5886 check_ds = get_spec_check_type_for_insn (insn, expr);
5887 if (check_ds != 0)
5889 /* A speculation check should be inserted. */
5890 x = create_speculation_check (params->c_expr, check_ds, insn);
5891 insn_emitted = true;
5893 else
5895 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5896 x = insn;
5899 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5900 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5901 return insn_emitted;
5904 /* Handle transformations that leave an insn in place of original
5905 insn such as renaming/speculation. Return true if one of such
5906 transformations actually happened, and we have emitted this insn. */
5907 static bool
5908 handle_emitting_transformations (rtx insn, expr_t expr,
5909 moveop_static_params_p params)
5911 bool insn_emitted = false;
5913 insn_emitted = maybe_emit_renaming_copy (insn, params);
5914 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5916 return insn_emitted;
5919 /* If INSN is the only insn in the basic block (not counting JUMP,
5920 which may be a jump to next insn, and DEBUG_INSNs), we want to
5921 leave a NOP there till the return to fill_insns. */
5923 static bool
5924 need_nop_to_preserve_insn_bb (rtx insn)
5926 insn_t bb_head, bb_end, bb_next, in_next;
5927 basic_block bb = BLOCK_FOR_INSN (insn);
5929 bb_head = sel_bb_head (bb);
5930 bb_end = sel_bb_end (bb);
5932 if (bb_head == bb_end)
5933 return true;
5935 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5936 bb_head = NEXT_INSN (bb_head);
5938 if (bb_head == bb_end)
5939 return true;
5941 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5942 bb_end = PREV_INSN (bb_end);
5944 if (bb_head == bb_end)
5945 return true;
5947 bb_next = NEXT_INSN (bb_head);
5948 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5949 bb_next = NEXT_INSN (bb_next);
5951 if (bb_next == bb_end && JUMP_P (bb_end))
5952 return true;
5954 in_next = NEXT_INSN (insn);
5955 while (DEBUG_INSN_P (in_next))
5956 in_next = NEXT_INSN (in_next);
5958 if (IN_CURRENT_FENCE_P (in_next))
5959 return true;
5961 return false;
5964 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5965 is not removed but reused when INSN is re-emitted. */
5966 static void
5967 remove_insn_from_stream (rtx insn, bool only_disconnect)
5969 /* If there's only one insn in the BB, make sure that a nop is
5970 inserted into it, so the basic block won't disappear when we'll
5971 delete INSN below with sel_remove_insn. It should also survive
5972 till the return to fill_insns. */
5973 if (need_nop_to_preserve_insn_bb (insn))
5975 insn_t nop = get_nop_from_pool (insn);
5976 gcc_assert (INSN_NOP_P (nop));
5977 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5980 sel_remove_insn (insn, only_disconnect, false);
5983 /* This function is called when original expr is found.
5984 INSN - current insn traversed, EXPR - the corresponding expr found.
5985 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5986 is static parameters of move_op. */
5987 static void
5988 move_op_orig_expr_found (insn_t insn, expr_t expr,
5989 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5990 void *static_params)
5992 bool only_disconnect, insn_emitted;
5993 moveop_static_params_p params = (moveop_static_params_p) static_params;
5995 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5996 track_scheduled_insns_and_blocks (insn);
5997 insn_emitted = handle_emitting_transformations (insn, expr, params);
5998 only_disconnect = (params->uid == INSN_UID (insn)
5999 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
6001 /* Mark that we've disconnected an insn. */
6002 if (only_disconnect)
6003 params->uid = -1;
6004 remove_insn_from_stream (insn, only_disconnect);
6007 /* The function is called when original expr is found.
6008 INSN - current insn traversed, EXPR - the corresponding expr found,
6009 crosses_call and original_insns in STATIC_PARAMS are updated. */
6010 static void
6011 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6012 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6013 void *static_params)
6015 fur_static_params_p params = (fur_static_params_p) static_params;
6016 regset tmp;
6018 if (CALL_P (insn))
6019 params->crosses_call = true;
6021 def_list_add (params->original_insns, insn, params->crosses_call);
6023 /* Mark the registers that do not meet the following condition:
6024 (2) not among the live registers of the point
6025 immediately following the first original operation on
6026 a given downward path, except for the original target
6027 register of the operation. */
6028 tmp = get_clear_regset_from_pool ();
6029 compute_live_below_insn (insn, tmp);
6030 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6031 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6032 IOR_REG_SET (params->used_regs, tmp);
6033 return_regset_to_pool (tmp);
6035 /* (*1) We need to add to USED_REGS registers that are read by
6036 INSN's lhs. This may lead to choosing wrong src register.
6037 E.g. (scheduling const expr enabled):
6039 429: ax=0x0 <- Can't use AX for this expr (0x0)
6040 433: dx=[bp-0x18]
6041 427: [ax+dx+0x1]=ax
6042 REG_DEAD: ax
6043 168: di=dx
6044 REG_DEAD: dx
6046 /* FIXME: see comment above and enable MEM_P
6047 in vinsn_separable_p. */
6048 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6049 || !MEM_P (INSN_LHS (insn)));
6052 /* This function is called on the ascending pass, before returning from
6053 current basic block. */
6054 static void
6055 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6056 void *static_params)
6058 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6059 basic_block book_block = NULL;
6061 /* When we have removed the boundary insn for scheduling, which also
6062 happened to be the end insn in its bb, we don't need to update sets. */
6063 if (!lparams->removed_last_insn
6064 && lparams->e1
6065 && sel_bb_head_p (insn))
6067 /* We should generate bookkeeping code only if we are not at the
6068 top level of the move_op. */
6069 if (sel_num_cfg_preds_gt_1 (insn))
6070 book_block = generate_bookkeeping_insn (sparams->c_expr,
6071 lparams->e1, lparams->e2);
6072 /* Update data sets for the current insn. */
6073 update_data_sets (insn);
6076 /* If bookkeeping code was inserted, we need to update av sets of basic
6077 block that received bookkeeping. After generation of bookkeeping insn,
6078 bookkeeping block does not contain valid av set because we are not following
6079 the original algorithm in every detail with regards to e.g. renaming
6080 simple reg-reg copies. Consider example:
6082 bookkeeping block scheduling fence
6084 \ join /
6085 ----------
6087 ----------
6090 r1 := r2 r1 := r3
6092 We try to schedule insn "r1 := r3" on the current
6093 scheduling fence. Also, note that av set of bookkeeping block
6094 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6095 been scheduled, the CFG is as follows:
6097 r1 := r3 r1 := r3
6098 bookkeeping block scheduling fence
6100 \ join /
6101 ----------
6103 ----------
6106 r1 := r2
6108 Here, insn "r1 := r3" was scheduled at the current scheduling point
6109 and bookkeeping code was generated at the bookeeping block. This
6110 way insn "r1 := r2" is no longer available as a whole instruction
6111 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6112 This situation is handled by calling update_data_sets.
6114 Since update_data_sets is called only on the bookkeeping block, and
6115 it also may have predecessors with av_sets, containing instructions that
6116 are no longer available, we save all such expressions that become
6117 unavailable during data sets update on the bookkeeping block in
6118 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6119 expressions for scheduling. This allows us to avoid recomputation of
6120 av_sets outside the code motion path. */
6122 if (book_block)
6123 update_and_record_unavailable_insns (book_block);
6125 /* If INSN was previously marked for deletion, it's time to do it. */
6126 if (lparams->removed_last_insn)
6127 insn = PREV_INSN (insn);
6129 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6130 kill a block with a single nop in which the insn should be emitted. */
6131 if (lparams->e1)
6132 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6135 /* This function is called on the ascending pass, before returning from the
6136 current basic block. */
6137 static void
6138 fur_at_first_insn (insn_t insn,
6139 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6140 void *static_params ATTRIBUTE_UNUSED)
6142 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6143 || AV_LEVEL (insn) == -1);
6146 /* Called on the backward stage of recursion to call moveup_expr for insn
6147 and sparams->c_expr. */
6148 static void
6149 move_op_ascend (insn_t insn, void *static_params)
6151 enum MOVEUP_EXPR_CODE res;
6152 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6154 if (! INSN_NOP_P (insn))
6156 res = moveup_expr_cached (sparams->c_expr, insn, false);
6157 gcc_assert (res != MOVEUP_EXPR_NULL);
6160 /* Update liveness for this insn as it was invalidated. */
6161 update_liveness_on_insn (insn);
6164 /* This function is called on enter to the basic block.
6165 Returns TRUE if this block already have been visited and
6166 code_motion_path_driver should return 1, FALSE otherwise. */
6167 static int
6168 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6169 void *static_params, bool visited_p)
6171 fur_static_params_p sparams = (fur_static_params_p) static_params;
6173 if (visited_p)
6175 /* If we have found something below this block, there should be at
6176 least one insn in ORIGINAL_INSNS. */
6177 gcc_assert (*sparams->original_insns);
6179 /* Adjust CROSSES_CALL, since we may have come to this block along
6180 different path. */
6181 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6182 |= sparams->crosses_call;
6184 else
6185 local_params->old_original_insns = *sparams->original_insns;
6187 return 1;
6190 /* Same as above but for move_op. */
6191 static int
6192 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6193 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6194 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6196 if (visited_p)
6197 return -1;
6198 return 1;
6201 /* This function is called while descending current basic block if current
6202 insn is not the original EXPR we're searching for.
6204 Return value: FALSE, if code_motion_path_driver should perform a local
6205 cleanup and return 0 itself;
6206 TRUE, if code_motion_path_driver should continue. */
6207 static bool
6208 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6209 void *static_params)
6211 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6213 #ifdef ENABLE_CHECKING
6214 sparams->failed_insn = insn;
6215 #endif
6217 /* If we're scheduling separate expr, in order to generate correct code
6218 we need to stop the search at bookkeeping code generated with the
6219 same destination register or memory. */
6220 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6221 return false;
6222 return true;
6225 /* This function is called while descending current basic block if current
6226 insn is not the original EXPR we're searching for.
6228 Return value: TRUE (code_motion_path_driver should continue). */
6229 static bool
6230 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6232 bool mutexed;
6233 expr_t r;
6234 av_set_iterator avi;
6235 fur_static_params_p sparams = (fur_static_params_p) static_params;
6237 if (CALL_P (insn))
6238 sparams->crosses_call = true;
6239 else if (DEBUG_INSN_P (insn))
6240 return true;
6242 /* If current insn we are looking at cannot be executed together
6243 with original insn, then we can skip it safely.
6245 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6246 INSN = (!p6) r14 = r14 + 1;
6248 Here we can schedule ORIG_OP with lhs = r14, though only
6249 looking at the set of used and set registers of INSN we must
6250 forbid it. So, add set/used in INSN registers to the
6251 untouchable set only if there is an insn in ORIG_OPS that can
6252 affect INSN. */
6253 mutexed = true;
6254 FOR_EACH_EXPR (r, avi, orig_ops)
6255 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6257 mutexed = false;
6258 break;
6261 /* Mark all registers that do not meet the following condition:
6262 (1) Not set or read on any path from xi to an instance of the
6263 original operation. */
6264 if (!mutexed)
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6267 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6268 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6271 return true;
6274 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6275 struct code_motion_path_driver_info_def move_op_hooks = {
6276 move_op_on_enter,
6277 move_op_orig_expr_found,
6278 move_op_orig_expr_not_found,
6279 move_op_merge_succs,
6280 move_op_after_merge_succs,
6281 move_op_ascend,
6282 move_op_at_first_insn,
6283 SUCCS_NORMAL,
6284 "move_op"
6287 /* Hooks and data to perform find_used_regs operations
6288 with code_motion_path_driver. */
6289 struct code_motion_path_driver_info_def fur_hooks = {
6290 fur_on_enter,
6291 fur_orig_expr_found,
6292 fur_orig_expr_not_found,
6293 fur_merge_succs,
6294 NULL, /* fur_after_merge_succs */
6295 NULL, /* fur_ascend */
6296 fur_at_first_insn,
6297 SUCCS_ALL,
6298 "find_used_regs"
6301 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6302 code_motion_path_driver is called recursively. Original operation
6303 was found at least on one path that is starting with one of INSN's
6304 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6305 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6306 of either move_op or find_used_regs depending on the caller.
6308 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6309 know for sure at this point. */
6310 static int
6311 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6312 ilist_t path, void *static_params)
6314 int res = 0;
6315 succ_iterator succ_i;
6316 rtx succ;
6317 basic_block bb;
6318 int old_index;
6319 unsigned old_succs;
6321 struct cmpd_local_params lparams;
6322 expr_def _x;
6324 lparams.c_expr_local = &_x;
6325 lparams.c_expr_merged = NULL;
6327 /* We need to process only NORMAL succs for move_op, and collect live
6328 registers from ALL branches (including those leading out of the
6329 region) for find_used_regs.
6331 In move_op, there can be a case when insn's bb number has changed
6332 due to created bookkeeping. This happens very rare, as we need to
6333 move expression from the beginning to the end of the same block.
6334 Rescan successors in this case. */
6336 rescan:
6337 bb = BLOCK_FOR_INSN (insn);
6338 old_index = bb->index;
6339 old_succs = EDGE_COUNT (bb->succs);
6341 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6343 int b;
6345 lparams.e1 = succ_i.e1;
6346 lparams.e2 = succ_i.e2;
6348 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6349 current region). */
6350 if (succ_i.current_flags == SUCCS_NORMAL)
6351 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6352 static_params);
6353 else
6354 b = 0;
6356 /* Merge c_expres found or unify live register sets from different
6357 successors. */
6358 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6359 static_params);
6360 if (b == 1)
6361 res = b;
6362 else if (b == -1 && res != 1)
6363 res = b;
6365 /* We have simplified the control flow below this point. In this case,
6366 the iterator becomes invalid. We need to try again. */
6367 if (BLOCK_FOR_INSN (insn)->index != old_index
6368 || EDGE_COUNT (bb->succs) != old_succs)
6370 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6371 goto rescan;
6375 #ifdef ENABLE_CHECKING
6376 /* Here, RES==1 if original expr was found at least for one of the
6377 successors. After the loop, RES may happen to have zero value
6378 only if at some point the expr searched is present in av_set, but is
6379 not found below. In most cases, this situation is an error.
6380 The exception is when the original operation is blocked by
6381 bookkeeping generated for another fence or for another path in current
6382 move_op. */
6383 gcc_assert (res == 1
6384 || (res == 0
6385 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6386 static_params))
6387 || res == -1);
6388 #endif
6390 /* Merge data, clean up, etc. */
6391 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6392 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6394 return res;
6398 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6399 is the pointer to the av set with expressions we were looking for,
6400 PATH_P is the pointer to the traversed path. */
6401 static inline void
6402 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6404 ilist_remove (path_p);
6405 av_set_clear (orig_ops_p);
6408 /* The driver function that implements move_op or find_used_regs
6409 functionality dependent whether code_motion_path_driver_INFO is set to
6410 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6411 of code (CFG traversal etc) that are shared among both functions. INSN
6412 is the insn we're starting the search from, ORIG_OPS are the expressions
6413 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6414 parameters of the driver, and STATIC_PARAMS are static parameters of
6415 the caller.
6417 Returns whether original instructions were found. Note that top-level
6418 code_motion_path_driver always returns true. */
6419 static int
6420 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6421 cmpd_local_params_p local_params_in,
6422 void *static_params)
6424 expr_t expr = NULL;
6425 basic_block bb = BLOCK_FOR_INSN (insn);
6426 insn_t first_insn, bb_tail, before_first;
6427 bool removed_last_insn = false;
6429 if (sched_verbose >= 6)
6431 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6432 dump_insn (insn);
6433 sel_print (",");
6434 dump_av_set (orig_ops);
6435 sel_print (")\n");
6438 gcc_assert (orig_ops);
6440 /* If no original operations exist below this insn, return immediately. */
6441 if (is_ineligible_successor (insn, path))
6443 if (sched_verbose >= 6)
6444 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6445 return false;
6448 /* The block can have invalid av set, in which case it was created earlier
6449 during move_op. Return immediately. */
6450 if (sel_bb_head_p (insn))
6452 if (! AV_SET_VALID_P (insn))
6454 if (sched_verbose >= 6)
6455 sel_print ("Returned from block %d as it had invalid av set\n",
6456 bb->index);
6457 return false;
6460 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6462 /* We have already found an original operation on this branch, do not
6463 go any further and just return TRUE here. If we don't stop here,
6464 function can have exponential behaviour even on the small code
6465 with many different paths (e.g. with data speculation and
6466 recovery blocks). */
6467 if (sched_verbose >= 6)
6468 sel_print ("Block %d already visited in this traversal\n", bb->index);
6469 if (code_motion_path_driver_info->on_enter)
6470 return code_motion_path_driver_info->on_enter (insn,
6471 local_params_in,
6472 static_params,
6473 true);
6477 if (code_motion_path_driver_info->on_enter)
6478 code_motion_path_driver_info->on_enter (insn, local_params_in,
6479 static_params, false);
6480 orig_ops = av_set_copy (orig_ops);
6482 /* Filter the orig_ops set. */
6483 if (AV_SET_VALID_P (insn))
6484 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6486 /* If no more original ops, return immediately. */
6487 if (!orig_ops)
6489 if (sched_verbose >= 6)
6490 sel_print ("No intersection with av set of block %d\n", bb->index);
6491 return false;
6494 /* For non-speculative insns we have to leave only one form of the
6495 original operation, because if we don't, we may end up with
6496 different C_EXPRes and, consequently, with bookkeepings for different
6497 expression forms along the same code motion path. That may lead to
6498 generation of incorrect code. So for each code motion we stick to
6499 the single form of the instruction, except for speculative insns
6500 which we need to keep in different forms with all speculation
6501 types. */
6502 av_set_leave_one_nonspec (&orig_ops);
6504 /* It is not possible that all ORIG_OPS are filtered out. */
6505 gcc_assert (orig_ops);
6507 /* It is enough to place only heads and tails of visited basic blocks into
6508 the PATH. */
6509 ilist_add (&path, insn);
6510 first_insn = insn;
6511 bb_tail = sel_bb_end (bb);
6513 /* Descend the basic block in search of the original expr; this part
6514 corresponds to the part of the original move_op procedure executed
6515 before the recursive call. */
6516 for (;;)
6518 /* Look at the insn and decide if it could be an ancestor of currently
6519 scheduling operation. If it is so, then the insn "dest = op" could
6520 either be replaced with "dest = reg", because REG now holds the result
6521 of OP, or just removed, if we've scheduled the insn as a whole.
6523 If this insn doesn't contain currently scheduling OP, then proceed
6524 with searching and look at its successors. Operations we're searching
6525 for could have changed when moving up through this insn via
6526 substituting. In this case, perform unsubstitution on them first.
6528 When traversing the DAG below this insn is finished, insert
6529 bookkeeping code, if the insn is a joint point, and remove
6530 leftovers. */
6532 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6533 if (expr)
6535 insn_t last_insn = PREV_INSN (insn);
6537 /* We have found the original operation. */
6538 if (sched_verbose >= 6)
6539 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6541 code_motion_path_driver_info->orig_expr_found
6542 (insn, expr, local_params_in, static_params);
6544 /* Step back, so on the way back we'll start traversing from the
6545 previous insn (or we'll see that it's bb_note and skip that
6546 loop). */
6547 if (insn == first_insn)
6549 first_insn = NEXT_INSN (last_insn);
6550 removed_last_insn = sel_bb_end_p (last_insn);
6552 insn = last_insn;
6553 break;
6555 else
6557 /* We haven't found the original expr, continue descending the basic
6558 block. */
6559 if (code_motion_path_driver_info->orig_expr_not_found
6560 (insn, orig_ops, static_params))
6562 /* Av set ops could have been changed when moving through this
6563 insn. To find them below it, we have to un-substitute them. */
6564 undo_transformations (&orig_ops, insn);
6566 else
6568 /* Clean up and return, if the hook tells us to do so. It may
6569 happen if we've encountered the previously created
6570 bookkeeping. */
6571 code_motion_path_driver_cleanup (&orig_ops, &path);
6572 return -1;
6575 gcc_assert (orig_ops);
6578 /* Stop at insn if we got to the end of BB. */
6579 if (insn == bb_tail)
6580 break;
6582 insn = NEXT_INSN (insn);
6585 /* Here INSN either points to the insn before the original insn (may be
6586 bb_note, if original insn was a bb_head) or to the bb_end. */
6587 if (!expr)
6589 int res;
6590 rtx last_insn = PREV_INSN (insn);
6591 bool added_to_path;
6593 gcc_assert (insn == sel_bb_end (bb));
6595 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6596 it's already in PATH then). */
6597 if (insn != first_insn)
6599 ilist_add (&path, insn);
6600 added_to_path = true;
6602 else
6603 added_to_path = false;
6605 /* Process_successors should be able to find at least one
6606 successor for which code_motion_path_driver returns TRUE. */
6607 res = code_motion_process_successors (insn, orig_ops,
6608 path, static_params);
6610 /* Jump in the end of basic block could have been removed or replaced
6611 during code_motion_process_successors, so recompute insn as the
6612 last insn in bb. */
6613 if (NEXT_INSN (last_insn) != insn)
6615 insn = sel_bb_end (bb);
6616 first_insn = sel_bb_head (bb);
6619 /* Remove bb tail from path. */
6620 if (added_to_path)
6621 ilist_remove (&path);
6623 if (res != 1)
6625 /* This is the case when one of the original expr is no longer available
6626 due to bookkeeping created on this branch with the same register.
6627 In the original algorithm, which doesn't have update_data_sets call
6628 on a bookkeeping block, it would simply result in returning
6629 FALSE when we've encountered a previously generated bookkeeping
6630 insn in moveop_orig_expr_not_found. */
6631 code_motion_path_driver_cleanup (&orig_ops, &path);
6632 return res;
6636 /* Don't need it any more. */
6637 av_set_clear (&orig_ops);
6639 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6640 the beginning of the basic block. */
6641 before_first = PREV_INSN (first_insn);
6642 while (insn != before_first)
6644 if (code_motion_path_driver_info->ascend)
6645 code_motion_path_driver_info->ascend (insn, static_params);
6647 insn = PREV_INSN (insn);
6650 /* Now we're at the bb head. */
6651 insn = first_insn;
6652 ilist_remove (&path);
6653 local_params_in->removed_last_insn = removed_last_insn;
6654 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6656 /* This should be the very last operation as at bb head we could change
6657 the numbering by creating bookkeeping blocks. */
6658 if (removed_last_insn)
6659 insn = PREV_INSN (insn);
6660 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6661 return true;
6664 /* Move up the operations from ORIG_OPS set traversing the dag starting
6665 from INSN. PATH represents the edges traversed so far.
6666 DEST is the register chosen for scheduling the current expr. Insert
6667 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6668 C_EXPR is how it looks like at the given cfg point.
6669 Set *SHOULD_MOVE to indicate whether we have only disconnected
6670 one of the insns found.
6672 Returns whether original instructions were found, which is asserted
6673 to be true in the caller. */
6674 static bool
6675 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6676 rtx dest, expr_t c_expr, bool *should_move)
6678 struct moveop_static_params sparams;
6679 struct cmpd_local_params lparams;
6680 int res;
6682 /* Init params for code_motion_path_driver. */
6683 sparams.dest = dest;
6684 sparams.c_expr = c_expr;
6685 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6686 #ifdef ENABLE_CHECKING
6687 sparams.failed_insn = NULL;
6688 #endif
6689 sparams.was_renamed = false;
6690 lparams.e1 = NULL;
6692 /* We haven't visited any blocks yet. */
6693 bitmap_clear (code_motion_visited_blocks);
6695 /* Set appropriate hooks and data. */
6696 code_motion_path_driver_info = &move_op_hooks;
6697 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6699 gcc_assert (res != -1);
6701 if (sparams.was_renamed)
6702 EXPR_WAS_RENAMED (expr_vliw) = true;
6704 *should_move = (sparams.uid == -1);
6706 return res;
6710 /* Functions that work with regions. */
6712 /* Current number of seqno used in init_seqno and init_seqno_1. */
6713 static int cur_seqno;
6715 /* A helper for init_seqno. Traverse the region starting from BB and
6716 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6717 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6718 static void
6719 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6721 int bbi = BLOCK_TO_BB (bb->index);
6722 insn_t insn, note = bb_note (bb);
6723 insn_t succ_insn;
6724 succ_iterator si;
6726 SET_BIT (visited_bbs, bbi);
6727 if (blocks_to_reschedule)
6728 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6730 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6731 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6733 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6734 int succ_bbi = BLOCK_TO_BB (succ->index);
6736 gcc_assert (in_current_region_p (succ));
6738 if (!TEST_BIT (visited_bbs, succ_bbi))
6740 gcc_assert (succ_bbi > bbi);
6742 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6744 else if (blocks_to_reschedule)
6745 bitmap_set_bit (forced_ebb_heads, succ->index);
6748 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6749 INSN_SEQNO (insn) = cur_seqno--;
6752 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6753 blocks on which we're rescheduling when pipelining, FROM is the block where
6754 traversing region begins (it may not be the head of the region when
6755 pipelining, but the head of the loop instead).
6757 Returns the maximal seqno found. */
6758 static int
6759 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6761 sbitmap visited_bbs;
6762 bitmap_iterator bi;
6763 unsigned bbi;
6765 visited_bbs = sbitmap_alloc (current_nr_blocks);
6767 if (blocks_to_reschedule)
6769 sbitmap_ones (visited_bbs);
6770 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6772 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6773 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6776 else
6778 sbitmap_zero (visited_bbs);
6779 from = EBB_FIRST_BB (0);
6782 cur_seqno = sched_max_luid - 1;
6783 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6785 /* cur_seqno may be positive if the number of instructions is less than
6786 sched_max_luid - 1 (when rescheduling or if some instructions have been
6787 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6788 gcc_assert (cur_seqno >= 0);
6790 sbitmap_free (visited_bbs);
6791 return sched_max_luid - 1;
6794 /* Initialize scheduling parameters for current region. */
6795 static void
6796 sel_setup_region_sched_flags (void)
6798 enable_schedule_as_rhs_p = 1;
6799 bookkeeping_p = 1;
6800 pipelining_p = (bookkeeping_p
6801 && (flag_sel_sched_pipelining != 0)
6802 && current_loop_nest != NULL
6803 && loop_has_exit_edges (current_loop_nest));
6804 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6805 max_ws = MAX_WS;
6808 /* Return true if all basic blocks of current region are empty. */
6809 static bool
6810 current_region_empty_p (void)
6812 int i;
6813 for (i = 0; i < current_nr_blocks; i++)
6814 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6815 return false;
6817 return true;
6820 /* Prepare and verify loop nest for pipelining. */
6821 static void
6822 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6824 current_loop_nest = get_loop_nest_for_rgn (rgn);
6826 if (!current_loop_nest)
6827 return;
6829 /* If this loop has any saved loop preheaders from nested loops,
6830 add these basic blocks to the current region. */
6831 sel_add_loop_preheaders (bbs);
6833 /* Check that we're starting with a valid information. */
6834 gcc_assert (loop_latch_edge (current_loop_nest));
6835 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6838 /* Compute instruction priorities for current region. */
6839 static void
6840 sel_compute_priorities (int rgn)
6842 sched_rgn_compute_dependencies (rgn);
6844 /* Compute insn priorities in haifa style. Then free haifa style
6845 dependencies that we've calculated for this. */
6846 compute_priorities ();
6848 if (sched_verbose >= 5)
6849 debug_rgn_dependencies (0);
6851 free_rgn_deps ();
6854 /* Init scheduling data for RGN. Returns true when this region should not
6855 be scheduled. */
6856 static bool
6857 sel_region_init (int rgn)
6859 int i;
6860 bb_vec_t bbs;
6862 rgn_setup_region (rgn);
6864 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6865 do region initialization here so the region can be bundled correctly,
6866 but we'll skip the scheduling in sel_sched_region (). */
6867 if (current_region_empty_p ())
6868 return true;
6870 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6872 for (i = 0; i < current_nr_blocks; i++)
6873 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6875 sel_init_bbs (bbs);
6877 if (flag_sel_sched_pipelining)
6878 setup_current_loop_nest (rgn, &bbs);
6880 sel_setup_region_sched_flags ();
6882 /* Initialize luids and dependence analysis which both sel-sched and haifa
6883 need. */
6884 sched_init_luids (bbs);
6885 sched_deps_init (false);
6887 /* Initialize haifa data. */
6888 rgn_setup_sched_infos ();
6889 sel_set_sched_flags ();
6890 haifa_init_h_i_d (bbs);
6892 sel_compute_priorities (rgn);
6893 init_deps_global ();
6895 /* Main initialization. */
6896 sel_setup_sched_infos ();
6897 sel_init_global_and_expr (bbs);
6899 VEC_free (basic_block, heap, bbs);
6901 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6903 /* Init correct liveness sets on each instruction of a single-block loop.
6904 This is the only situation when we can't update liveness when calling
6905 compute_live for the first insn of the loop. */
6906 if (current_loop_nest)
6908 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6910 : 0);
6912 if (current_nr_blocks == header + 1)
6913 update_liveness_on_insn
6914 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6917 /* Set hooks so that no newly generated insn will go out unnoticed. */
6918 sel_register_cfg_hooks ();
6920 /* !!! We call target.sched.init () for the whole region, but we invoke
6921 targetm.sched.finish () for every ebb. */
6922 if (targetm.sched.init)
6923 /* None of the arguments are actually used in any target. */
6924 targetm.sched.init (sched_dump, sched_verbose, -1);
6926 first_emitted_uid = get_max_uid () + 1;
6927 preheader_removed = false;
6929 /* Reset register allocation ticks array. */
6930 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6931 reg_rename_this_tick = 0;
6933 bitmap_initialize (forced_ebb_heads, 0);
6934 bitmap_clear (forced_ebb_heads);
6936 setup_nop_vinsn ();
6937 current_copies = BITMAP_ALLOC (NULL);
6938 current_originators = BITMAP_ALLOC (NULL);
6939 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6941 return false;
6944 /* Simplify insns after the scheduling. */
6945 static void
6946 simplify_changed_insns (void)
6948 int i;
6950 for (i = 0; i < current_nr_blocks; i++)
6952 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6953 rtx insn;
6955 FOR_BB_INSNS (bb, insn)
6956 if (INSN_P (insn))
6958 expr_t expr = INSN_EXPR (insn);
6960 if (EXPR_WAS_SUBSTITUTED (expr))
6961 validate_simplify_insn (insn);
6966 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6967 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6968 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6969 static void
6970 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6972 insn_t head, tail;
6973 basic_block bb1 = bb;
6974 if (sched_verbose >= 2)
6975 sel_print ("Finishing schedule in bbs: ");
6979 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6981 if (sched_verbose >= 2)
6982 sel_print ("%d; ", bb1->index);
6984 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6986 if (sched_verbose >= 2)
6987 sel_print ("\n");
6989 get_ebb_head_tail (bb, bb1, &head, &tail);
6991 current_sched_info->head = head;
6992 current_sched_info->tail = tail;
6993 current_sched_info->prev_head = PREV_INSN (head);
6994 current_sched_info->next_tail = NEXT_INSN (tail);
6997 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6998 static void
6999 reset_sched_cycles_in_current_ebb (void)
7001 int last_clock = 0;
7002 int haifa_last_clock = -1;
7003 int haifa_clock = 0;
7004 int issued_insns = 0;
7005 insn_t insn;
7007 if (targetm.sched.init)
7009 /* None of the arguments are actually used in any target.
7010 NB: We should have md_reset () hook for cases like this. */
7011 targetm.sched.init (sched_dump, sched_verbose, -1);
7014 state_reset (curr_state);
7015 advance_state (curr_state);
7017 for (insn = current_sched_info->head;
7018 insn != current_sched_info->next_tail;
7019 insn = NEXT_INSN (insn))
7021 int cost, haifa_cost;
7022 int sort_p;
7023 bool asm_p, real_insn, after_stall, all_issued;
7024 int clock;
7026 if (!INSN_P (insn))
7027 continue;
7029 asm_p = false;
7030 real_insn = recog_memoized (insn) >= 0;
7031 clock = INSN_SCHED_CYCLE (insn);
7033 cost = clock - last_clock;
7035 /* Initialize HAIFA_COST. */
7036 if (! real_insn)
7038 asm_p = INSN_ASM_P (insn);
7040 if (asm_p)
7041 /* This is asm insn which *had* to be scheduled first
7042 on the cycle. */
7043 haifa_cost = 1;
7044 else
7045 /* This is a use/clobber insn. It should not change
7046 cost. */
7047 haifa_cost = 0;
7049 else
7050 haifa_cost = estimate_insn_cost (insn, curr_state);
7052 /* Stall for whatever cycles we've stalled before. */
7053 after_stall = 0;
7054 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7056 haifa_cost = cost;
7057 after_stall = 1;
7059 all_issued = issued_insns == issue_rate;
7060 if (haifa_cost == 0 && all_issued)
7061 haifa_cost = 1;
7062 if (haifa_cost > 0)
7064 int i = 0;
7066 while (haifa_cost--)
7068 advance_state (curr_state);
7069 issued_insns = 0;
7070 i++;
7072 if (sched_verbose >= 2)
7074 sel_print ("advance_state (state_transition)\n");
7075 debug_state (curr_state);
7078 /* The DFA may report that e.g. insn requires 2 cycles to be
7079 issued, but on the next cycle it says that insn is ready
7080 to go. Check this here. */
7081 if (!after_stall
7082 && real_insn
7083 && haifa_cost > 0
7084 && estimate_insn_cost (insn, curr_state) == 0)
7085 break;
7087 /* When the data dependency stall is longer than the DFA stall,
7088 and when we have issued exactly issue_rate insns and stalled,
7089 it could be that after this longer stall the insn will again
7090 become unavailable to the DFA restrictions. Looks strange
7091 but happens e.g. on x86-64. So recheck DFA on the last
7092 iteration. */
7093 if ((after_stall || all_issued)
7094 && real_insn
7095 && haifa_cost == 0)
7096 haifa_cost = estimate_insn_cost (insn, curr_state);
7099 haifa_clock += i;
7100 if (sched_verbose >= 2)
7101 sel_print ("haifa clock: %d\n", haifa_clock);
7103 else
7104 gcc_assert (haifa_cost == 0);
7106 if (sched_verbose >= 2)
7107 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7109 if (targetm.sched.dfa_new_cycle)
7110 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7111 haifa_last_clock, haifa_clock,
7112 &sort_p))
7114 advance_state (curr_state);
7115 issued_insns = 0;
7116 haifa_clock++;
7117 if (sched_verbose >= 2)
7119 sel_print ("advance_state (dfa_new_cycle)\n");
7120 debug_state (curr_state);
7121 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7125 if (real_insn)
7127 cost = state_transition (curr_state, insn);
7128 issued_insns++;
7130 if (sched_verbose >= 2)
7132 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7133 haifa_clock + 1);
7134 debug_state (curr_state);
7136 gcc_assert (cost < 0);
7139 if (targetm.sched.variable_issue)
7140 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7142 INSN_SCHED_CYCLE (insn) = haifa_clock;
7144 last_clock = clock;
7145 haifa_last_clock = haifa_clock;
7149 /* Put TImode markers on insns starting a new issue group. */
7150 static void
7151 put_TImodes (void)
7153 int last_clock = -1;
7154 insn_t insn;
7156 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7157 insn = NEXT_INSN (insn))
7159 int cost, clock;
7161 if (!INSN_P (insn))
7162 continue;
7164 clock = INSN_SCHED_CYCLE (insn);
7165 cost = (last_clock == -1) ? 1 : clock - last_clock;
7167 gcc_assert (cost >= 0);
7169 if (issue_rate > 1
7170 && GET_CODE (PATTERN (insn)) != USE
7171 && GET_CODE (PATTERN (insn)) != CLOBBER)
7173 if (reload_completed && cost > 0)
7174 PUT_MODE (insn, TImode);
7176 last_clock = clock;
7179 if (sched_verbose >= 2)
7180 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7184 /* Perform MD_FINISH on EBBs comprising current region. When
7185 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7186 to produce correct sched cycles on insns. */
7187 static void
7188 sel_region_target_finish (bool reset_sched_cycles_p)
7190 int i;
7191 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7193 for (i = 0; i < current_nr_blocks; i++)
7195 if (bitmap_bit_p (scheduled_blocks, i))
7196 continue;
7198 /* While pipelining outer loops, skip bundling for loop
7199 preheaders. Those will be rescheduled in the outer loop. */
7200 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7201 continue;
7203 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7205 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7206 continue;
7208 if (reset_sched_cycles_p)
7209 reset_sched_cycles_in_current_ebb ();
7211 if (targetm.sched.init)
7212 targetm.sched.init (sched_dump, sched_verbose, -1);
7214 put_TImodes ();
7216 if (targetm.sched.finish)
7218 targetm.sched.finish (sched_dump, sched_verbose);
7220 /* Extend luids so that insns generated by the target will
7221 get zero luid. */
7222 sched_extend_luids ();
7226 BITMAP_FREE (scheduled_blocks);
7229 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7230 is true, make an additional pass emulating scheduler to get correct insn
7231 cycles for md_finish calls. */
7232 static void
7233 sel_region_finish (bool reset_sched_cycles_p)
7235 simplify_changed_insns ();
7236 sched_finish_ready_list ();
7237 free_nop_pool ();
7239 /* Free the vectors. */
7240 if (vec_av_set)
7241 VEC_free (expr_t, heap, vec_av_set);
7242 BITMAP_FREE (current_copies);
7243 BITMAP_FREE (current_originators);
7244 BITMAP_FREE (code_motion_visited_blocks);
7245 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7246 vinsn_vec_free (&vec_target_unavailable_vinsns);
7248 /* If LV_SET of the region head should be updated, do it now because
7249 there will be no other chance. */
7251 succ_iterator si;
7252 insn_t insn;
7254 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7255 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7257 basic_block bb = BLOCK_FOR_INSN (insn);
7259 if (!BB_LV_SET_VALID_P (bb))
7260 compute_live (insn);
7264 /* Emulate the Haifa scheduler for bundling. */
7265 if (reload_completed)
7266 sel_region_target_finish (reset_sched_cycles_p);
7268 sel_finish_global_and_expr ();
7270 bitmap_clear (forced_ebb_heads);
7272 free_nop_vinsn ();
7274 finish_deps_global ();
7275 sched_finish_luids ();
7276 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
7278 sel_finish_bbs ();
7279 BITMAP_FREE (blocks_to_reschedule);
7281 sel_unregister_cfg_hooks ();
7283 max_issue_size = 0;
7287 /* Functions that implement the scheduler driver. */
7289 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7290 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7291 of insns scheduled -- these would be postprocessed later. */
7292 static void
7293 schedule_on_fences (flist_t fences, int max_seqno,
7294 ilist_t **scheduled_insns_tailpp)
7296 flist_t old_fences = fences;
7298 if (sched_verbose >= 1)
7300 sel_print ("\nScheduling on fences: ");
7301 dump_flist (fences);
7302 sel_print ("\n");
7305 scheduled_something_on_previous_fence = false;
7306 for (; fences; fences = FLIST_NEXT (fences))
7308 fence_t fence = NULL;
7309 int seqno = 0;
7310 flist_t fences2;
7311 bool first_p = true;
7313 /* Choose the next fence group to schedule.
7314 The fact that insn can be scheduled only once
7315 on the cycle is guaranteed by two properties:
7316 1. seqnos of parallel groups decrease with each iteration.
7317 2. If is_ineligible_successor () sees the larger seqno, it
7318 checks if candidate insn is_in_current_fence_p (). */
7319 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7321 fence_t f = FLIST_FENCE (fences2);
7323 if (!FENCE_PROCESSED_P (f))
7325 int i = INSN_SEQNO (FENCE_INSN (f));
7327 if (first_p || i > seqno)
7329 seqno = i;
7330 fence = f;
7331 first_p = false;
7333 else
7334 /* ??? Seqnos of different groups should be different. */
7335 gcc_assert (1 || i != seqno);
7339 gcc_assert (fence);
7341 /* As FENCE is nonnull, SEQNO is initialized. */
7342 seqno -= max_seqno + 1;
7343 fill_insns (fence, seqno, scheduled_insns_tailpp);
7344 FENCE_PROCESSED_P (fence) = true;
7347 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7348 don't need to keep bookkeeping-invalidated and target-unavailable
7349 vinsns any more. */
7350 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7351 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7354 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7355 static void
7356 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7358 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7360 /* The first element is already processed. */
7361 while ((fences = FLIST_NEXT (fences)))
7363 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7365 if (*min_seqno > seqno)
7366 *min_seqno = seqno;
7367 else if (*max_seqno < seqno)
7368 *max_seqno = seqno;
7372 /* Calculate new fences from FENCES. */
7373 static flist_t
7374 calculate_new_fences (flist_t fences, int orig_max_seqno)
7376 flist_t old_fences = fences;
7377 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7379 flist_tail_init (new_fences);
7380 for (; fences; fences = FLIST_NEXT (fences))
7382 fence_t fence = FLIST_FENCE (fences);
7383 insn_t insn;
7385 if (!FENCE_BNDS (fence))
7387 /* This fence doesn't have any successors. */
7388 if (!FENCE_SCHEDULED_P (fence))
7390 /* Nothing was scheduled on this fence. */
7391 int seqno;
7393 insn = FENCE_INSN (fence);
7394 seqno = INSN_SEQNO (insn);
7395 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7397 if (sched_verbose >= 1)
7398 sel_print ("Fence %d[%d] has not changed\n",
7399 INSN_UID (insn),
7400 BLOCK_NUM (insn));
7401 move_fence_to_fences (fences, new_fences);
7404 else
7405 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7408 flist_clear (&old_fences);
7409 return FLIST_TAIL_HEAD (new_fences);
7412 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7413 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7414 the highest seqno used in a region. Return the updated highest seqno. */
7415 static int
7416 update_seqnos_and_stage (int min_seqno, int max_seqno,
7417 int highest_seqno_in_use,
7418 ilist_t *pscheduled_insns)
7420 int new_hs;
7421 ilist_iterator ii;
7422 insn_t insn;
7424 /* Actually, new_hs is the seqno of the instruction, that was
7425 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7426 if (*pscheduled_insns)
7428 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7429 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7430 gcc_assert (new_hs > highest_seqno_in_use);
7432 else
7433 new_hs = highest_seqno_in_use;
7435 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7437 gcc_assert (INSN_SEQNO (insn) < 0);
7438 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7439 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7441 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7442 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7443 require > 1GB of memory e.g. on limit-fnargs.c. */
7444 if (! pipelining_p)
7445 free_data_for_scheduled_insn (insn);
7448 ilist_clear (pscheduled_insns);
7449 global_level++;
7451 return new_hs;
7454 /* The main driver for scheduling a region. This function is responsible
7455 for correct propagation of fences (i.e. scheduling points) and creating
7456 a group of parallel insns at each of them. It also supports
7457 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7458 of scheduling. */
7459 static void
7460 sel_sched_region_2 (int orig_max_seqno)
7462 int highest_seqno_in_use = orig_max_seqno;
7464 stat_bookkeeping_copies = 0;
7465 stat_insns_needed_bookkeeping = 0;
7466 stat_renamed_scheduled = 0;
7467 stat_substitutions_total = 0;
7468 num_insns_scheduled = 0;
7470 while (fences)
7472 int min_seqno, max_seqno;
7473 ilist_t scheduled_insns = NULL;
7474 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7476 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7477 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7478 fences = calculate_new_fences (fences, orig_max_seqno);
7479 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7480 highest_seqno_in_use,
7481 &scheduled_insns);
7484 if (sched_verbose >= 1)
7485 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7486 "bookkeeping, %d insns renamed, %d insns substituted\n",
7487 stat_bookkeeping_copies,
7488 stat_insns_needed_bookkeeping,
7489 stat_renamed_scheduled,
7490 stat_substitutions_total);
7493 /* Schedule a region. When pipelining, search for possibly never scheduled
7494 bookkeeping code and schedule it. Reschedule pipelined code without
7495 pipelining after. */
7496 static void
7497 sel_sched_region_1 (void)
7499 int orig_max_seqno;
7501 /* Remove empty blocks that might be in the region from the beginning. */
7502 purge_empty_blocks ();
7504 orig_max_seqno = init_seqno (NULL, NULL);
7505 gcc_assert (orig_max_seqno >= 1);
7507 /* When pipelining outer loops, create fences on the loop header,
7508 not preheader. */
7509 fences = NULL;
7510 if (current_loop_nest)
7511 init_fences (BB_END (EBB_FIRST_BB (0)));
7512 else
7513 init_fences (bb_note (EBB_FIRST_BB (0)));
7514 global_level = 1;
7516 sel_sched_region_2 (orig_max_seqno);
7518 gcc_assert (fences == NULL);
7520 if (pipelining_p)
7522 int i;
7523 basic_block bb;
7524 struct flist_tail_def _new_fences;
7525 flist_tail_t new_fences = &_new_fences;
7526 bool do_p = true;
7528 pipelining_p = false;
7529 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7530 bookkeeping_p = false;
7531 enable_schedule_as_rhs_p = false;
7533 /* Schedule newly created code, that has not been scheduled yet. */
7534 do_p = true;
7536 while (do_p)
7538 do_p = false;
7540 for (i = 0; i < current_nr_blocks; i++)
7542 basic_block bb = EBB_FIRST_BB (i);
7544 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7546 if (! bb_ends_ebb_p (bb))
7547 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7548 if (sel_bb_empty_p (bb))
7550 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7551 continue;
7553 clear_outdated_rtx_info (bb);
7554 if (sel_insn_is_speculation_check (BB_END (bb))
7555 && JUMP_P (BB_END (bb)))
7556 bitmap_set_bit (blocks_to_reschedule,
7557 BRANCH_EDGE (bb)->dest->index);
7559 else if (! sel_bb_empty_p (bb)
7560 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7561 bitmap_set_bit (blocks_to_reschedule, bb->index);
7564 for (i = 0; i < current_nr_blocks; i++)
7566 bb = EBB_FIRST_BB (i);
7568 /* While pipelining outer loops, skip bundling for loop
7569 preheaders. Those will be rescheduled in the outer
7570 loop. */
7571 if (sel_is_loop_preheader_p (bb))
7573 clear_outdated_rtx_info (bb);
7574 continue;
7577 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7579 flist_tail_init (new_fences);
7581 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7583 /* Mark BB as head of the new ebb. */
7584 bitmap_set_bit (forced_ebb_heads, bb->index);
7586 gcc_assert (fences == NULL);
7588 init_fences (bb_note (bb));
7590 sel_sched_region_2 (orig_max_seqno);
7592 do_p = true;
7593 break;
7600 /* Schedule the RGN region. */
7601 void
7602 sel_sched_region (int rgn)
7604 bool schedule_p;
7605 bool reset_sched_cycles_p;
7607 if (sel_region_init (rgn))
7608 return;
7610 if (sched_verbose >= 1)
7611 sel_print ("Scheduling region %d\n", rgn);
7613 schedule_p = (!sched_is_disabled_for_current_region_p ()
7614 && dbg_cnt (sel_sched_region_cnt));
7615 reset_sched_cycles_p = pipelining_p;
7616 if (schedule_p)
7617 sel_sched_region_1 ();
7618 else
7619 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7620 reset_sched_cycles_p = true;
7622 sel_region_finish (reset_sched_cycles_p);
7625 /* Perform global init for the scheduler. */
7626 static void
7627 sel_global_init (void)
7629 calculate_dominance_info (CDI_DOMINATORS);
7630 alloc_sched_pools ();
7632 /* Setup the infos for sched_init. */
7633 sel_setup_sched_infos ();
7634 setup_sched_dump ();
7636 sched_rgn_init (false);
7637 sched_init ();
7639 sched_init_bbs ();
7640 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7641 after_recovery = 0;
7642 can_issue_more = issue_rate;
7644 sched_extend_target ();
7645 sched_deps_init (true);
7646 setup_nop_and_exit_insns ();
7647 sel_extend_global_bb_info ();
7648 init_lv_sets ();
7649 init_hard_regs_data ();
7652 /* Free the global data of the scheduler. */
7653 static void
7654 sel_global_finish (void)
7656 free_bb_note_pool ();
7657 free_lv_sets ();
7658 sel_finish_global_bb_info ();
7660 free_regset_pool ();
7661 free_nop_and_exit_insns ();
7663 sched_rgn_finish ();
7664 sched_deps_finish ();
7665 sched_finish ();
7667 if (current_loops)
7668 sel_finish_pipelining ();
7670 free_sched_pools ();
7671 free_dominance_info (CDI_DOMINATORS);
7674 /* Return true when we need to skip selective scheduling. Used for debugging. */
7675 bool
7676 maybe_skip_selective_scheduling (void)
7678 return ! dbg_cnt (sel_sched_cnt);
7681 /* The entry point. */
7682 void
7683 run_selective_scheduling (void)
7685 int rgn;
7687 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7688 return;
7690 sel_global_init ();
7692 for (rgn = 0; rgn < nr_regions; rgn++)
7693 sel_sched_region (rgn);
7695 sel_global_finish ();
7698 #endif