* config/sh/sh.h: Delete dead GO_IF_LEGITIMATE_INDEX macro.
[official-gcc.git] / gcc / ipa-inline.c
blobd7ccf684f646580ae92e29cc296e30dc028e64e2
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
30 on).
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
35 inlining.
37 inlining heuristics
39 The inliner itself is split into two passes:
41 pass_early_inlining
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
56 flattening.
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
61 optimizers.
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
69 pass_ipa_inline
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "tree.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
100 #include "flags.h"
101 #include "cgraph.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "timevar.h"
105 #include "params.h"
106 #include "fibheap.h"
107 #include "intl.h"
108 #include "tree-pass.h"
109 #include "coverage.h"
110 #include "ggc.h"
111 #include "rtl.h"
112 #include "tree-flow.h"
113 #include "ipa-prop.h"
114 #include "except.h"
115 #include "target.h"
116 #include "ipa-inline.h"
117 #include "ipa-utils.h"
119 /* Statistics we collect about inlining algorithm. */
120 static int overall_size;
121 static gcov_type max_count;
123 /* Return false when inlining edge E would lead to violating
124 limits on function unit growth or stack usage growth.
126 The relative function body growth limit is present generally
127 to avoid problems with non-linear behavior of the compiler.
128 To allow inlining huge functions into tiny wrapper, the limit
129 is always based on the bigger of the two functions considered.
131 For stack growth limits we always base the growth in stack usage
132 of the callers. We want to prevent applications from segfaulting
133 on stack overflow when functions with huge stack frames gets
134 inlined. */
136 static bool
137 caller_growth_limits (struct cgraph_edge *e)
139 struct cgraph_node *to = e->caller;
140 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
141 int newsize;
142 int limit = 0;
143 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
144 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
146 /* Look for function e->caller is inlined to. While doing
147 so work out the largest function body on the way. As
148 described above, we want to base our function growth
149 limits based on that. Not on the self size of the
150 outer function, not on the self size of inline code
151 we immediately inline to. This is the most relaxed
152 interpretation of the rule "do not grow large functions
153 too much in order to prevent compiler from exploding". */
154 while (true)
156 info = inline_summary (to);
157 if (limit < info->self_size)
158 limit = info->self_size;
159 if (stack_size_limit < info->estimated_self_stack_size)
160 stack_size_limit = info->estimated_self_stack_size;
161 if (to->global.inlined_to)
162 to = to->callers->caller;
163 else
164 break;
167 what_info = inline_summary (what);
169 if (limit < what_info->self_size)
170 limit = what_info->self_size;
172 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
174 /* Check the size after inlining against the function limits. But allow
175 the function to shrink if it went over the limits by forced inlining. */
176 newsize = estimate_size_after_inlining (to, e);
177 if (newsize >= info->size
178 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
179 && newsize > limit)
181 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
182 return false;
185 if (!what_info->estimated_stack_size)
186 return true;
188 /* FIXME: Stack size limit often prevents inlining in Fortran programs
189 due to large i/o datastructures used by the Fortran front-end.
190 We ought to ignore this limit when we know that the edge is executed
191 on every invocation of the caller (i.e. its call statement dominates
192 exit block). We do not track this information, yet. */
193 stack_size_limit += ((gcov_type)stack_size_limit
194 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
196 inlined_stack = (outer_info->stack_frame_offset
197 + outer_info->estimated_self_stack_size
198 + what_info->estimated_stack_size);
199 /* Check new stack consumption with stack consumption at the place
200 stack is used. */
201 if (inlined_stack > stack_size_limit
202 /* If function already has large stack usage from sibling
203 inline call, we can inline, too.
204 This bit overoptimistically assume that we are good at stack
205 packing. */
206 && inlined_stack > info->estimated_stack_size
207 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
209 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
210 return false;
212 return true;
215 /* Dump info about why inlining has failed. */
217 static void
218 report_inline_failed_reason (struct cgraph_edge *e)
220 if (dump_file)
222 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
223 cgraph_node_name (e->caller), e->caller->uid,
224 cgraph_node_name (e->callee), e->callee->uid,
225 cgraph_inline_failed_string (e->inline_failed));
229 /* Decide if we can inline the edge and possibly update
230 inline_failed reason.
231 We check whether inlining is possible at all and whether
232 caller growth limits allow doing so.
234 if REPORT is true, output reason to the dump file. */
236 static bool
237 can_inline_edge_p (struct cgraph_edge *e, bool report)
239 bool inlinable = true;
240 enum availability avail;
241 struct cgraph_node *callee
242 = cgraph_function_or_thunk_node (e->callee, &avail);
243 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
244 tree callee_tree
245 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
246 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->decl);
247 struct function *callee_cfun
248 = callee ? DECL_STRUCT_FUNCTION (callee->decl) : NULL;
250 if (!caller_cfun && e->caller->clone_of)
251 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->decl);
253 if (!callee_cfun && callee && callee->clone_of)
254 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->decl);
256 gcc_assert (e->inline_failed);
258 if (!callee || !callee->analyzed)
260 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
261 inlinable = false;
263 else if (!inline_summary (callee)->inlinable)
265 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
266 inlinable = false;
268 else if (avail <= AVAIL_OVERWRITABLE)
270 e->inline_failed = CIF_OVERWRITABLE;
271 return false;
273 else if (e->call_stmt_cannot_inline_p)
275 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
276 inlinable = false;
278 /* Don't inline if the functions have different EH personalities. */
279 else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
280 && DECL_FUNCTION_PERSONALITY (callee->decl)
281 && (DECL_FUNCTION_PERSONALITY (e->caller->decl)
282 != DECL_FUNCTION_PERSONALITY (callee->decl)))
284 e->inline_failed = CIF_EH_PERSONALITY;
285 inlinable = false;
287 /* TM pure functions should not be inlined into non-TM_pure
288 functions. */
289 else if (is_tm_pure (callee->decl)
290 && !is_tm_pure (e->caller->decl))
292 e->inline_failed = CIF_UNSPECIFIED;
293 inlinable = false;
295 /* Don't inline if the callee can throw non-call exceptions but the
296 caller cannot.
297 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
298 Move the flag into cgraph node or mirror it in the inline summary. */
299 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
300 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
302 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
303 inlinable = false;
305 /* Check compatibility of target optimization options. */
306 else if (!targetm.target_option.can_inline_p (e->caller->decl,
307 callee->decl))
309 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
310 inlinable = false;
312 /* Check if caller growth allows the inlining. */
313 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
314 && !lookup_attribute ("flatten",
315 DECL_ATTRIBUTES
316 (e->caller->global.inlined_to
317 ? e->caller->global.inlined_to->decl
318 : e->caller->decl))
319 && !caller_growth_limits (e))
320 inlinable = false;
321 /* Don't inline a function with a higher optimization level than the
322 caller. FIXME: this is really just tip of iceberg of handling
323 optimization attribute. */
324 else if (caller_tree != callee_tree)
326 struct cl_optimization *caller_opt
327 = TREE_OPTIMIZATION ((caller_tree)
328 ? caller_tree
329 : optimization_default_node);
331 struct cl_optimization *callee_opt
332 = TREE_OPTIMIZATION ((callee_tree)
333 ? callee_tree
334 : optimization_default_node);
336 if (((caller_opt->x_optimize > callee_opt->x_optimize)
337 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
338 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
339 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->decl))
341 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
342 inlinable = false;
346 if (!inlinable && report)
347 report_inline_failed_reason (e);
348 return inlinable;
352 /* Return true if the edge E is inlinable during early inlining. */
354 static bool
355 can_early_inline_edge_p (struct cgraph_edge *e)
357 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
358 NULL);
359 /* Early inliner might get called at WPA stage when IPA pass adds new
360 function. In this case we can not really do any of early inlining
361 because function bodies are missing. */
362 if (!gimple_has_body_p (callee->decl))
364 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
365 return false;
367 /* In early inliner some of callees may not be in SSA form yet
368 (i.e. the callgraph is cyclic and we did not process
369 the callee by early inliner, yet). We don't have CIF code for this
370 case; later we will re-do the decision in the real inliner. */
371 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
372 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
374 if (dump_file)
375 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
376 return false;
378 if (!can_inline_edge_p (e, true))
379 return false;
380 return true;
384 /* Return true when N is leaf function. Accept cheap builtins
385 in leaf functions. */
387 static bool
388 leaf_node_p (struct cgraph_node *n)
390 struct cgraph_edge *e;
391 for (e = n->callees; e; e = e->next_callee)
392 if (!is_inexpensive_builtin (e->callee->decl))
393 return false;
394 return true;
398 /* Return true if we are interested in inlining small function. */
400 static bool
401 want_early_inline_function_p (struct cgraph_edge *e)
403 bool want_inline = true;
404 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
406 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
408 else if (!DECL_DECLARED_INLINE_P (callee->decl)
409 && !flag_inline_small_functions)
411 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
412 report_inline_failed_reason (e);
413 want_inline = false;
415 else
417 int growth = estimate_edge_growth (e);
418 if (growth <= 0)
420 else if (!cgraph_maybe_hot_edge_p (e)
421 && growth > 0)
423 if (dump_file)
424 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
425 "call is cold and code would grow by %i\n",
426 cgraph_node_name (e->caller), e->caller->uid,
427 cgraph_node_name (callee), callee->uid,
428 growth);
429 want_inline = false;
431 else if (!leaf_node_p (callee)
432 && growth > 0)
434 if (dump_file)
435 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
436 "callee is not leaf and code would grow by %i\n",
437 cgraph_node_name (e->caller), e->caller->uid,
438 cgraph_node_name (callee), callee->uid,
439 growth);
440 want_inline = false;
442 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
444 if (dump_file)
445 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
446 "growth %i exceeds --param early-inlining-insns\n",
447 cgraph_node_name (e->caller), e->caller->uid,
448 cgraph_node_name (callee), callee->uid,
449 growth);
450 want_inline = false;
453 return want_inline;
456 /* Return true if we are interested in inlining small function.
457 When REPORT is true, report reason to dump file. */
459 static bool
460 want_inline_small_function_p (struct cgraph_edge *e, bool report)
462 bool want_inline = true;
463 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
465 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
467 else if (!DECL_DECLARED_INLINE_P (callee->decl)
468 && !flag_inline_small_functions)
470 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
471 want_inline = false;
473 else
475 int growth = estimate_edge_growth (e);
477 if (growth <= 0)
479 else if (DECL_DECLARED_INLINE_P (callee->decl)
480 && growth >= MAX_INLINE_INSNS_SINGLE)
482 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
483 want_inline = false;
485 /* Before giving up based on fact that caller size will grow, allow
486 functions that are called few times and eliminating the offline
487 copy will lead to overall code size reduction.
488 Not all of these will be handled by subsequent inlining of functions
489 called once: in particular weak functions are not handled or funcitons
490 that inline to multiple calls but a lot of bodies is optimized out.
491 Finally we want to inline earlier to allow inlining of callbacks.
493 This is slightly wrong on aggressive side: it is entirely possible
494 that function is called many times with a context where inlining
495 reduces code size and few times with a context where inlining increase
496 code size. Resoluting growth estimate will be negative even if it
497 would make more sense to keep offline copy and do not inline into the
498 call sites that makes the code size grow.
500 When badness orders the calls in a way that code reducing calls come
501 first, this situation is not a problem at all: after inlining all
502 "good" calls, we will realize that keeping the function around is
503 better. */
504 else if (growth <= MAX_INLINE_INSNS_SINGLE
505 /* Unlike for functions called once, we play unsafe with
506 COMDATs. We can allow that since we know functions
507 in consideration are small (and thus risk is small) and
508 moreover grow estimates already accounts that COMDAT
509 functions may or may not disappear when eliminated from
510 current unit. With good probability making aggressive
511 choice in all units is going to make overall program
512 smaller.
514 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
515 instead of
516 cgraph_will_be_removed_from_program_if_no_direct_calls */
517 && !DECL_EXTERNAL (callee->decl)
518 && cgraph_can_remove_if_no_direct_calls_p (callee)
519 && estimate_growth (callee) <= 0)
521 else if (!DECL_DECLARED_INLINE_P (callee->decl)
522 && !flag_inline_functions)
524 e->inline_failed = CIF_NOT_DECLARED_INLINED;
525 want_inline = false;
527 else if (!DECL_DECLARED_INLINE_P (callee->decl)
528 && growth >= MAX_INLINE_INSNS_AUTO)
530 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
531 want_inline = false;
533 /* If call is cold, do not inline when function body would grow. */
534 else if (!cgraph_maybe_hot_edge_p (e))
536 e->inline_failed = CIF_UNLIKELY_CALL;
537 want_inline = false;
540 if (!want_inline && report)
541 report_inline_failed_reason (e);
542 return want_inline;
545 /* EDGE is self recursive edge.
546 We hand two cases - when function A is inlining into itself
547 or when function A is being inlined into another inliner copy of function
548 A within function B.
550 In first case OUTER_NODE points to the toplevel copy of A, while
551 in the second case OUTER_NODE points to the outermost copy of A in B.
553 In both cases we want to be extra selective since
554 inlining the call will just introduce new recursive calls to appear. */
556 static bool
557 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
558 struct cgraph_node *outer_node,
559 bool peeling,
560 int depth)
562 char const *reason = NULL;
563 bool want_inline = true;
564 int caller_freq = CGRAPH_FREQ_BASE;
565 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
567 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
568 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
570 if (!cgraph_maybe_hot_edge_p (edge))
572 reason = "recursive call is cold";
573 want_inline = false;
575 else if (max_count && !outer_node->count)
577 reason = "not executed in profile";
578 want_inline = false;
580 else if (depth > max_depth)
582 reason = "--param max-inline-recursive-depth exceeded.";
583 want_inline = false;
586 if (outer_node->global.inlined_to)
587 caller_freq = outer_node->callers->frequency;
589 if (!want_inline)
591 /* Inlining of self recursive function into copy of itself within other function
592 is transformation similar to loop peeling.
594 Peeling is profitable if we can inline enough copies to make probability
595 of actual call to the self recursive function very small. Be sure that
596 the probability of recursion is small.
598 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
599 This way the expected number of recision is at most max_depth. */
600 else if (peeling)
602 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
603 / max_depth);
604 int i;
605 for (i = 1; i < depth; i++)
606 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
607 if (max_count
608 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
609 >= max_prob))
611 reason = "profile of recursive call is too large";
612 want_inline = false;
614 if (!max_count
615 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
616 >= max_prob))
618 reason = "frequency of recursive call is too large";
619 want_inline = false;
622 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
623 depth is large. We reduce function call overhead and increase chances that
624 things fit in hardware return predictor.
626 Recursive inlining might however increase cost of stack frame setup
627 actually slowing down functions whose recursion tree is wide rather than
628 deep.
630 Deciding reliably on when to do recursive inlining without profile feedback
631 is tricky. For now we disable recursive inlining when probability of self
632 recursion is low.
634 Recursive inlining of self recursive call within loop also results in large loop
635 depths that generally optimize badly. We may want to throttle down inlining
636 in those cases. In particular this seems to happen in one of libstdc++ rb tree
637 methods. */
638 else
640 if (max_count
641 && (edge->count * 100 / outer_node->count
642 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
644 reason = "profile of recursive call is too small";
645 want_inline = false;
647 else if (!max_count
648 && (edge->frequency * 100 / caller_freq
649 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
651 reason = "frequency of recursive call is too small";
652 want_inline = false;
655 if (!want_inline && dump_file)
656 fprintf (dump_file, " not inlining recursively: %s\n", reason);
657 return want_inline;
660 /* Return true when NODE has caller other than EDGE.
661 Worker for cgraph_for_node_and_aliases. */
663 static bool
664 check_caller_edge (struct cgraph_node *node, void *edge)
666 return (node->callers
667 && node->callers != edge);
671 /* Decide if NODE is called once inlining it would eliminate need
672 for the offline copy of function. */
674 static bool
675 want_inline_function_called_once_p (struct cgraph_node *node)
677 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
678 /* Already inlined? */
679 if (function->global.inlined_to)
680 return false;
681 /* Zero or more then one callers? */
682 if (!node->callers
683 || node->callers->next_caller)
684 return false;
685 /* Maybe other aliases has more direct calls. */
686 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
687 return false;
688 /* Recursive call makes no sense to inline. */
689 if (cgraph_edge_recursive_p (node->callers))
690 return false;
691 /* External functions are not really in the unit, so inlining
692 them when called once would just increase the program size. */
693 if (DECL_EXTERNAL (function->decl))
694 return false;
695 /* Offline body must be optimized out. */
696 if (!cgraph_will_be_removed_from_program_if_no_direct_calls (function))
697 return false;
698 if (!can_inline_edge_p (node->callers, true))
699 return false;
700 return true;
704 /* Return relative time improvement for inlining EDGE in range
705 1...2^9. */
707 static inline int
708 relative_time_benefit (struct inline_summary *callee_info,
709 struct cgraph_edge *edge,
710 int time_growth)
712 int relbenefit;
713 gcov_type uninlined_call_time;
715 uninlined_call_time =
716 ((gcov_type)
717 (callee_info->time
718 + inline_edge_summary (edge)->call_stmt_time) * edge->frequency
719 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
720 /* Compute relative time benefit, i.e. how much the call becomes faster.
721 ??? perhaps computing how much the caller+calle together become faster
722 would lead to more realistic results. */
723 if (!uninlined_call_time)
724 uninlined_call_time = 1;
725 relbenefit =
726 (uninlined_call_time - time_growth) * 256 / (uninlined_call_time);
727 relbenefit = MIN (relbenefit, 512);
728 relbenefit = MAX (relbenefit, 1);
729 return relbenefit;
733 /* A cost model driving the inlining heuristics in a way so the edges with
734 smallest badness are inlined first. After each inlining is performed
735 the costs of all caller edges of nodes affected are recomputed so the
736 metrics may accurately depend on values such as number of inlinable callers
737 of the function or function body size. */
739 static int
740 edge_badness (struct cgraph_edge *edge, bool dump)
742 gcov_type badness;
743 int growth, time_growth;
744 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
745 NULL);
746 struct inline_summary *callee_info = inline_summary (callee);
748 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
749 return INT_MIN;
751 growth = estimate_edge_growth (edge);
752 time_growth = estimate_edge_time (edge);
754 if (dump)
756 fprintf (dump_file, " Badness calculation for %s -> %s\n",
757 cgraph_node_name (edge->caller),
758 cgraph_node_name (callee));
759 fprintf (dump_file, " size growth %i, time growth %i\n",
760 growth,
761 time_growth);
764 /* Always prefer inlining saving code size. */
765 if (growth <= 0)
767 badness = INT_MIN / 2 + growth;
768 if (dump)
769 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
770 growth);
773 /* When profiling is available, compute badness as:
775 relative_edge_count * relative_time_benefit
776 goodness = -------------------------------------------
777 edge_growth
778 badness = -goodness
780 The fraction is upside down, becuase on edge counts and time beneits
781 the bounds are known. Edge growth is essentially unlimited. */
783 else if (max_count)
785 int relbenefit = relative_time_benefit (callee_info, edge, time_growth);
786 badness =
787 ((int)
788 ((double) edge->count * INT_MIN / 2 / max_count / 512) *
789 relative_time_benefit (callee_info, edge, time_growth)) / growth;
791 /* Be sure that insanity of the profile won't lead to increasing counts
792 in the scalling and thus to overflow in the computation above. */
793 gcc_assert (max_count >= edge->count);
794 if (dump)
796 fprintf (dump_file,
797 " %i (relative %f): profile info. Relative count %f"
798 " * Relative benefit %f\n",
799 (int) badness, (double) badness / INT_MIN,
800 (double) edge->count / max_count,
801 relbenefit * 100 / 256.0);
805 /* When function local profile is available. Compute badness as:
808 growth_of_callee
809 badness = -------------------------------------- + growth_for-all
810 relative_time_benefit * edge_frequency
813 else if (flag_guess_branch_prob)
815 int div = edge->frequency * (1<<10) / CGRAPH_FREQ_MAX;
817 div = MAX (div, 1);
818 gcc_checking_assert (edge->frequency <= CGRAPH_FREQ_MAX);
819 div *= relative_time_benefit (callee_info, edge, time_growth);
821 /* frequency is normalized in range 1...2^10.
822 relbenefit in range 1...2^9
823 DIV should be in range 1....2^19. */
824 gcc_checking_assert (div >= 1 && div <= (1<<19));
826 /* Result must be integer in range 0...INT_MAX.
827 Set the base of fixed point calculation so we don't lose much of
828 precision for small bandesses (those are interesting) yet we don't
829 overflow for growths that are still in interesting range.
831 Fixed point arithmetic with point at 8th bit. */
832 badness = ((gcov_type)growth) * (1<<(19+8));
833 badness = (badness + div / 2) / div;
835 /* Overall growth of inlining all calls of function matters: we want to
836 inline so offline copy of function is no longer needed.
838 Additionally functions that can be fully inlined without much of
839 effort are better inline candidates than functions that can be fully
840 inlined only after noticeable overall unit growths. The latter
841 are better in a sense compressing of code size by factoring out common
842 code into separate function shared by multiple code paths.
844 We might mix the valud into the fraction by taking into account
845 relative growth of the unit, but for now just add the number
846 into resulting fraction. */
847 if (badness > INT_MAX / 2)
849 badness = INT_MAX / 2;
850 if (dump)
851 fprintf (dump_file, "Badness overflow\n");
853 if (dump)
855 fprintf (dump_file,
856 " %i: guessed profile. frequency %f,"
857 " benefit %f%%, divisor %i\n",
858 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
859 relative_time_benefit (callee_info, edge, time_growth) * 100 / 256.0, div);
862 /* When function local profile is not available or it does not give
863 useful information (ie frequency is zero), base the cost on
864 loop nest and overall size growth, so we optimize for overall number
865 of functions fully inlined in program. */
866 else
868 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
869 badness = growth * 256;
871 /* Decrease badness if call is nested. */
872 if (badness > 0)
873 badness >>= nest;
874 else
876 badness <<= nest;
878 if (dump)
879 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
880 nest);
883 /* Ensure that we did not overflow in all the fixed point math above. */
884 gcc_assert (badness >= INT_MIN);
885 gcc_assert (badness <= INT_MAX - 1);
886 /* Make recursive inlining happen always after other inlining is done. */
887 if (cgraph_edge_recursive_p (edge))
888 return badness + 1;
889 else
890 return badness;
893 /* Recompute badness of EDGE and update its key in HEAP if needed. */
894 static inline void
895 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
897 int badness = edge_badness (edge, false);
898 if (edge->aux)
900 fibnode_t n = (fibnode_t) edge->aux;
901 gcc_checking_assert (n->data == edge);
903 /* fibheap_replace_key only decrease the keys.
904 When we increase the key we do not update heap
905 and instead re-insert the element once it becomes
906 a minimum of heap. */
907 if (badness < n->key)
909 if (dump_file && (dump_flags & TDF_DETAILS))
911 fprintf (dump_file,
912 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
913 cgraph_node_name (edge->caller), edge->caller->uid,
914 cgraph_node_name (edge->callee), edge->callee->uid,
915 (int)n->key,
916 badness);
918 fibheap_replace_key (heap, n, badness);
919 gcc_checking_assert (n->key == badness);
922 else
924 if (dump_file && (dump_flags & TDF_DETAILS))
926 fprintf (dump_file,
927 " enqueuing call %s/%i -> %s/%i, badness %i\n",
928 cgraph_node_name (edge->caller), edge->caller->uid,
929 cgraph_node_name (edge->callee), edge->callee->uid,
930 badness);
932 edge->aux = fibheap_insert (heap, badness, edge);
937 /* NODE was inlined.
938 All caller edges needs to be resetted because
939 size estimates change. Similarly callees needs reset
940 because better context may be known. */
942 static void
943 reset_edge_caches (struct cgraph_node *node)
945 struct cgraph_edge *edge;
946 struct cgraph_edge *e = node->callees;
947 struct cgraph_node *where = node;
948 int i;
949 struct ipa_ref *ref;
951 if (where->global.inlined_to)
952 where = where->global.inlined_to;
954 /* WHERE body size has changed, the cached growth is invalid. */
955 reset_node_growth_cache (where);
957 for (edge = where->callers; edge; edge = edge->next_caller)
958 if (edge->inline_failed)
959 reset_edge_growth_cache (edge);
960 for (i = 0; ipa_ref_list_refering_iterate (&where->ref_list, i, ref); i++)
961 if (ref->use == IPA_REF_ALIAS)
962 reset_edge_caches (ipa_ref_refering_node (ref));
964 if (!e)
965 return;
967 while (true)
968 if (!e->inline_failed && e->callee->callees)
969 e = e->callee->callees;
970 else
972 if (e->inline_failed)
973 reset_edge_growth_cache (e);
974 if (e->next_callee)
975 e = e->next_callee;
976 else
980 if (e->caller == node)
981 return;
982 e = e->caller->callers;
984 while (!e->next_callee);
985 e = e->next_callee;
990 /* Recompute HEAP nodes for each of caller of NODE.
991 UPDATED_NODES track nodes we already visited, to avoid redundant work.
992 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
993 it is inlinable. Otherwise check all edges. */
995 static void
996 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
997 bitmap updated_nodes,
998 struct cgraph_edge *check_inlinablity_for)
1000 struct cgraph_edge *edge;
1001 int i;
1002 struct ipa_ref *ref;
1004 if ((!node->alias && !inline_summary (node)->inlinable)
1005 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1006 || node->global.inlined_to)
1007 return;
1008 if (!bitmap_set_bit (updated_nodes, node->uid))
1009 return;
1011 for (i = 0; ipa_ref_list_refering_iterate (&node->ref_list, i, ref); i++)
1012 if (ref->use == IPA_REF_ALIAS)
1014 struct cgraph_node *alias = ipa_ref_refering_node (ref);
1015 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1018 for (edge = node->callers; edge; edge = edge->next_caller)
1019 if (edge->inline_failed)
1021 if (!check_inlinablity_for
1022 || check_inlinablity_for == edge)
1024 if (can_inline_edge_p (edge, false)
1025 && want_inline_small_function_p (edge, false))
1026 update_edge_key (heap, edge);
1027 else if (edge->aux)
1029 report_inline_failed_reason (edge);
1030 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1031 edge->aux = NULL;
1034 else if (edge->aux)
1035 update_edge_key (heap, edge);
1039 /* Recompute HEAP nodes for each uninlined call in NODE.
1040 This is used when we know that edge badnesses are going only to increase
1041 (we introduced new call site) and thus all we need is to insert newly
1042 created edges into heap. */
1044 static void
1045 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1046 bitmap updated_nodes)
1048 struct cgraph_edge *e = node->callees;
1050 if (!e)
1051 return;
1052 while (true)
1053 if (!e->inline_failed && e->callee->callees)
1054 e = e->callee->callees;
1055 else
1057 enum availability avail;
1058 struct cgraph_node *callee;
1059 /* We do not reset callee growth cache here. Since we added a new call,
1060 growth chould have just increased and consequentely badness metric
1061 don't need updating. */
1062 if (e->inline_failed
1063 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1064 && inline_summary (callee)->inlinable
1065 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1066 && !bitmap_bit_p (updated_nodes, callee->uid))
1068 if (can_inline_edge_p (e, false)
1069 && want_inline_small_function_p (e, false))
1070 update_edge_key (heap, e);
1071 else if (e->aux)
1073 report_inline_failed_reason (e);
1074 fibheap_delete_node (heap, (fibnode_t) e->aux);
1075 e->aux = NULL;
1078 if (e->next_callee)
1079 e = e->next_callee;
1080 else
1084 if (e->caller == node)
1085 return;
1086 e = e->caller->callers;
1088 while (!e->next_callee);
1089 e = e->next_callee;
1094 /* Recompute heap nodes for each of caller edges of each of callees.
1095 Walk recursively into all inline clones. */
1097 static void
1098 update_all_callee_keys (fibheap_t heap, struct cgraph_node *node,
1099 bitmap updated_nodes)
1101 struct cgraph_edge *e = node->callees;
1102 if (!e)
1103 return;
1104 while (true)
1105 if (!e->inline_failed && e->callee->callees)
1106 e = e->callee->callees;
1107 else
1109 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
1110 NULL);
1112 /* We inlined and thus callees might have different number of calls.
1113 Reset their caches */
1114 reset_node_growth_cache (callee);
1115 if (e->inline_failed)
1116 update_caller_keys (heap, callee, updated_nodes, e);
1117 if (e->next_callee)
1118 e = e->next_callee;
1119 else
1123 if (e->caller == node)
1124 return;
1125 e = e->caller->callers;
1127 while (!e->next_callee);
1128 e = e->next_callee;
1133 /* Enqueue all recursive calls from NODE into priority queue depending on
1134 how likely we want to recursively inline the call. */
1136 static void
1137 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1138 fibheap_t heap)
1140 struct cgraph_edge *e;
1141 enum availability avail;
1143 for (e = where->callees; e; e = e->next_callee)
1144 if (e->callee == node
1145 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1146 && avail > AVAIL_OVERWRITABLE))
1148 /* When profile feedback is available, prioritize by expected number
1149 of calls. */
1150 fibheap_insert (heap,
1151 !max_count ? -e->frequency
1152 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1155 for (e = where->callees; e; e = e->next_callee)
1156 if (!e->inline_failed)
1157 lookup_recursive_calls (node, e->callee, heap);
1160 /* Decide on recursive inlining: in the case function has recursive calls,
1161 inline until body size reaches given argument. If any new indirect edges
1162 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1163 is NULL. */
1165 static bool
1166 recursive_inlining (struct cgraph_edge *edge,
1167 VEC (cgraph_edge_p, heap) **new_edges)
1169 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1170 fibheap_t heap;
1171 struct cgraph_node *node;
1172 struct cgraph_edge *e;
1173 struct cgraph_node *master_clone = NULL, *next;
1174 int depth = 0;
1175 int n = 0;
1177 node = edge->caller;
1178 if (node->global.inlined_to)
1179 node = node->global.inlined_to;
1181 if (DECL_DECLARED_INLINE_P (node->decl))
1182 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1184 /* Make sure that function is small enough to be considered for inlining. */
1185 if (estimate_size_after_inlining (node, edge) >= limit)
1186 return false;
1187 heap = fibheap_new ();
1188 lookup_recursive_calls (node, node, heap);
1189 if (fibheap_empty (heap))
1191 fibheap_delete (heap);
1192 return false;
1195 if (dump_file)
1196 fprintf (dump_file,
1197 " Performing recursive inlining on %s\n",
1198 cgraph_node_name (node));
1200 /* Do the inlining and update list of recursive call during process. */
1201 while (!fibheap_empty (heap))
1203 struct cgraph_edge *curr
1204 = (struct cgraph_edge *) fibheap_extract_min (heap);
1205 struct cgraph_node *cnode;
1207 if (estimate_size_after_inlining (node, curr) > limit)
1208 break;
1210 if (!can_inline_edge_p (curr, true))
1211 continue;
1213 depth = 1;
1214 for (cnode = curr->caller;
1215 cnode->global.inlined_to; cnode = cnode->callers->caller)
1216 if (node->decl
1217 == cgraph_function_or_thunk_node (curr->callee, NULL)->decl)
1218 depth++;
1220 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1221 continue;
1223 if (dump_file)
1225 fprintf (dump_file,
1226 " Inlining call of depth %i", depth);
1227 if (node->count)
1229 fprintf (dump_file, " called approx. %.2f times per call",
1230 (double)curr->count / node->count);
1232 fprintf (dump_file, "\n");
1234 if (!master_clone)
1236 /* We need original clone to copy around. */
1237 master_clone = cgraph_clone_node (node, node->decl,
1238 node->count, CGRAPH_FREQ_BASE,
1239 false, NULL, true);
1240 for (e = master_clone->callees; e; e = e->next_callee)
1241 if (!e->inline_failed)
1242 clone_inlined_nodes (e, true, false, NULL);
1245 cgraph_redirect_edge_callee (curr, master_clone);
1246 inline_call (curr, false, new_edges, &overall_size);
1247 lookup_recursive_calls (node, curr->callee, heap);
1248 n++;
1251 if (!fibheap_empty (heap) && dump_file)
1252 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1253 fibheap_delete (heap);
1255 if (!master_clone)
1256 return false;
1258 if (dump_file)
1259 fprintf (dump_file,
1260 "\n Inlined %i times, "
1261 "body grown from size %i to %i, time %i to %i\n", n,
1262 inline_summary (master_clone)->size, inline_summary (node)->size,
1263 inline_summary (master_clone)->time, inline_summary (node)->time);
1265 /* Remove master clone we used for inlining. We rely that clones inlined
1266 into master clone gets queued just before master clone so we don't
1267 need recursion. */
1268 for (node = cgraph_nodes; node != master_clone;
1269 node = next)
1271 next = node->next;
1272 if (node->global.inlined_to == master_clone)
1273 cgraph_remove_node (node);
1275 cgraph_remove_node (master_clone);
1276 return true;
1280 /* Given whole compilation unit estimate of INSNS, compute how large we can
1281 allow the unit to grow. */
1283 static int
1284 compute_max_insns (int insns)
1286 int max_insns = insns;
1287 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1288 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1290 return ((HOST_WIDEST_INT) max_insns
1291 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1295 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1297 static void
1298 add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
1300 while (VEC_length (cgraph_edge_p, new_edges) > 0)
1302 struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
1304 gcc_assert (!edge->aux);
1305 if (edge->inline_failed
1306 && can_inline_edge_p (edge, true)
1307 && want_inline_small_function_p (edge, true))
1308 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1313 /* We use greedy algorithm for inlining of small functions:
1314 All inline candidates are put into prioritized heap ordered in
1315 increasing badness.
1317 The inlining of small functions is bounded by unit growth parameters. */
1319 static void
1320 inline_small_functions (void)
1322 struct cgraph_node *node;
1323 struct cgraph_edge *edge;
1324 fibheap_t heap = fibheap_new ();
1325 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1326 int min_size, max_size;
1327 VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
1328 int initial_size = 0;
1330 if (flag_indirect_inlining)
1331 new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
1333 if (dump_file)
1334 fprintf (dump_file,
1335 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1336 initial_size);
1338 /* Compute overall unit size and other global parameters used by badness
1339 metrics. */
1341 max_count = 0;
1342 initialize_growth_caches ();
1344 FOR_EACH_DEFINED_FUNCTION (node)
1345 if (!node->global.inlined_to)
1347 if (cgraph_function_with_gimple_body_p (node)
1348 || node->thunk.thunk_p)
1350 struct inline_summary *info = inline_summary (node);
1352 if (!DECL_EXTERNAL (node->decl))
1353 initial_size += info->size;
1356 for (edge = node->callers; edge; edge = edge->next_caller)
1357 if (max_count < edge->count)
1358 max_count = edge->count;
1361 overall_size = initial_size;
1362 max_size = compute_max_insns (overall_size);
1363 min_size = overall_size;
1365 /* Populate the heeap with all edges we might inline. */
1367 FOR_EACH_DEFINED_FUNCTION (node)
1368 if (!node->global.inlined_to)
1370 if (dump_file)
1371 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1372 cgraph_node_name (node), node->uid);
1374 for (edge = node->callers; edge; edge = edge->next_caller)
1375 if (edge->inline_failed
1376 && can_inline_edge_p (edge, true)
1377 && want_inline_small_function_p (edge, true)
1378 && edge->inline_failed)
1380 gcc_assert (!edge->aux);
1381 update_edge_key (heap, edge);
1385 gcc_assert (in_lto_p
1386 || !max_count
1387 || (profile_info && flag_branch_probabilities));
1389 while (!fibheap_empty (heap))
1391 int old_size = overall_size;
1392 struct cgraph_node *where, *callee;
1393 int badness = fibheap_min_key (heap);
1394 int current_badness;
1395 int cached_badness;
1396 int growth;
1398 edge = (struct cgraph_edge *) fibheap_extract_min (heap);
1399 gcc_assert (edge->aux);
1400 edge->aux = NULL;
1401 if (!edge->inline_failed)
1402 continue;
1404 /* Be sure that caches are maintained consistent.
1405 We can not make this ENABLE_CHECKING only because it cause differnt
1406 updates of the fibheap queue. */
1407 cached_badness = edge_badness (edge, false);
1408 reset_edge_growth_cache (edge);
1409 reset_node_growth_cache (edge->callee);
1411 /* When updating the edge costs, we only decrease badness in the keys.
1412 Increases of badness are handled lazilly; when we see key with out
1413 of date value on it, we re-insert it now. */
1414 current_badness = edge_badness (edge, false);
1415 gcc_assert (cached_badness == current_badness);
1416 gcc_assert (current_badness >= badness);
1417 if (current_badness != badness)
1419 edge->aux = fibheap_insert (heap, current_badness, edge);
1420 continue;
1423 if (!can_inline_edge_p (edge, true))
1424 continue;
1426 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1427 growth = estimate_edge_growth (edge);
1428 if (dump_file)
1430 fprintf (dump_file,
1431 "\nConsidering %s with %i size\n",
1432 cgraph_node_name (callee),
1433 inline_summary (callee)->size);
1434 fprintf (dump_file,
1435 " to be inlined into %s in %s:%i\n"
1436 " Estimated growth after inlined into all is %+i insns.\n"
1437 " Estimated badness is %i, frequency %.2f.\n",
1438 cgraph_node_name (edge->caller),
1439 flag_wpa ? "unknown"
1440 : gimple_filename ((const_gimple) edge->call_stmt),
1441 flag_wpa ? -1
1442 : gimple_lineno ((const_gimple) edge->call_stmt),
1443 estimate_growth (callee),
1444 badness,
1445 edge->frequency / (double)CGRAPH_FREQ_BASE);
1446 if (edge->count)
1447 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1448 edge->count);
1449 if (dump_flags & TDF_DETAILS)
1450 edge_badness (edge, true);
1453 if (overall_size + growth > max_size
1454 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1456 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1457 report_inline_failed_reason (edge);
1458 continue;
1461 if (!want_inline_small_function_p (edge, true))
1462 continue;
1464 /* Heuristics for inlining small functions works poorly for
1465 recursive calls where we do efect similar to loop unrolling.
1466 When inliing such edge seems profitable, leave decision on
1467 specific inliner. */
1468 if (cgraph_edge_recursive_p (edge))
1470 where = edge->caller;
1471 if (where->global.inlined_to)
1472 where = where->global.inlined_to;
1473 if (!recursive_inlining (edge,
1474 flag_indirect_inlining
1475 ? &new_indirect_edges : NULL))
1477 edge->inline_failed = CIF_RECURSIVE_INLINING;
1478 continue;
1480 reset_edge_caches (where);
1481 /* Recursive inliner inlines all recursive calls of the function
1482 at once. Consequently we need to update all callee keys. */
1483 if (flag_indirect_inlining)
1484 add_new_edges_to_heap (heap, new_indirect_edges);
1485 update_all_callee_keys (heap, where, updated_nodes);
1487 else
1489 struct cgraph_node *outer_node = NULL;
1490 int depth = 0;
1492 /* Consider the case where self recursive function A is inlined into B.
1493 This is desired optimization in some cases, since it leads to effect
1494 similar of loop peeling and we might completely optimize out the
1495 recursive call. However we must be extra selective. */
1497 where = edge->caller;
1498 while (where->global.inlined_to)
1500 if (where->decl == callee->decl)
1501 outer_node = where, depth++;
1502 where = where->callers->caller;
1504 if (outer_node
1505 && !want_inline_self_recursive_call_p (edge, outer_node,
1506 true, depth))
1508 edge->inline_failed
1509 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1510 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1511 continue;
1513 else if (depth && dump_file)
1514 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1516 gcc_checking_assert (!callee->global.inlined_to);
1517 inline_call (edge, true, &new_indirect_edges, &overall_size);
1518 if (flag_indirect_inlining)
1519 add_new_edges_to_heap (heap, new_indirect_edges);
1521 reset_edge_caches (edge->callee);
1522 reset_node_growth_cache (callee);
1524 /* We inlined last offline copy to the body. This might lead
1525 to callees of function having fewer call sites and thus they
1526 may need updating.
1528 FIXME: the callee size could also shrink because more information
1529 is propagated from caller. We don't track when this happen and
1530 thus we need to recompute everything all the time. Once this is
1531 solved, "|| 1" should go away. */
1532 if (callee->global.inlined_to || 1)
1533 update_all_callee_keys (heap, callee, updated_nodes);
1534 else
1535 update_callee_keys (heap, edge->callee, updated_nodes);
1537 where = edge->caller;
1538 if (where->global.inlined_to)
1539 where = where->global.inlined_to;
1541 /* Our profitability metric can depend on local properties
1542 such as number of inlinable calls and size of the function body.
1543 After inlining these properties might change for the function we
1544 inlined into (since it's body size changed) and for the functions
1545 called by function we inlined (since number of it inlinable callers
1546 might change). */
1547 update_caller_keys (heap, where, updated_nodes, NULL);
1549 /* We removed one call of the function we just inlined. If offline
1550 copy is still needed, be sure to update the keys. */
1551 if (callee != where && !callee->global.inlined_to)
1552 update_caller_keys (heap, callee, updated_nodes, NULL);
1553 bitmap_clear (updated_nodes);
1555 if (dump_file)
1557 fprintf (dump_file,
1558 " Inlined into %s which now has time %i and size %i,"
1559 "net change of %+i.\n",
1560 cgraph_node_name (edge->caller),
1561 inline_summary (edge->caller)->time,
1562 inline_summary (edge->caller)->size,
1563 overall_size - old_size);
1565 if (min_size > overall_size)
1567 min_size = overall_size;
1568 max_size = compute_max_insns (min_size);
1570 if (dump_file)
1571 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1575 free_growth_caches ();
1576 if (new_indirect_edges)
1577 VEC_free (cgraph_edge_p, heap, new_indirect_edges);
1578 fibheap_delete (heap);
1579 if (dump_file)
1580 fprintf (dump_file,
1581 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1582 initial_size, overall_size,
1583 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1584 BITMAP_FREE (updated_nodes);
1587 /* Flatten NODE. Performed both during early inlining and
1588 at IPA inlining time. */
1590 static void
1591 flatten_function (struct cgraph_node *node, bool early)
1593 struct cgraph_edge *e;
1595 /* We shouldn't be called recursively when we are being processed. */
1596 gcc_assert (node->aux == NULL);
1598 node->aux = (void *) node;
1600 for (e = node->callees; e; e = e->next_callee)
1602 struct cgraph_node *orig_callee;
1603 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1605 /* We've hit cycle? It is time to give up. */
1606 if (callee->aux)
1608 if (dump_file)
1609 fprintf (dump_file,
1610 "Not inlining %s into %s to avoid cycle.\n",
1611 cgraph_node_name (callee),
1612 cgraph_node_name (e->caller));
1613 e->inline_failed = CIF_RECURSIVE_INLINING;
1614 continue;
1617 /* When the edge is already inlined, we just need to recurse into
1618 it in order to fully flatten the leaves. */
1619 if (!e->inline_failed)
1621 flatten_function (callee, early);
1622 continue;
1625 /* Flatten attribute needs to be processed during late inlining. For
1626 extra code quality we however do flattening during early optimization,
1627 too. */
1628 if (!early
1629 ? !can_inline_edge_p (e, true)
1630 : !can_early_inline_edge_p (e))
1631 continue;
1633 if (cgraph_edge_recursive_p (e))
1635 if (dump_file)
1636 fprintf (dump_file, "Not inlining: recursive call.\n");
1637 continue;
1640 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
1641 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
1643 if (dump_file)
1644 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1645 continue;
1648 /* Inline the edge and flatten the inline clone. Avoid
1649 recursing through the original node if the node was cloned. */
1650 if (dump_file)
1651 fprintf (dump_file, " Inlining %s into %s.\n",
1652 cgraph_node_name (callee),
1653 cgraph_node_name (e->caller));
1654 orig_callee = callee;
1655 inline_call (e, true, NULL, NULL);
1656 if (e->callee != orig_callee)
1657 orig_callee->aux = (void *) node;
1658 flatten_function (e->callee, early);
1659 if (e->callee != orig_callee)
1660 orig_callee->aux = NULL;
1663 node->aux = NULL;
1666 /* Decide on the inlining. We do so in the topological order to avoid
1667 expenses on updating data structures. */
1669 static unsigned int
1670 ipa_inline (void)
1672 struct cgraph_node *node;
1673 int nnodes;
1674 struct cgraph_node **order =
1675 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1676 int i;
1678 if (in_lto_p && optimize)
1679 ipa_update_after_lto_read ();
1681 if (dump_file)
1682 dump_inline_summaries (dump_file);
1684 nnodes = ipa_reverse_postorder (order);
1686 for (node = cgraph_nodes; node; node = node->next)
1687 node->aux = 0;
1689 if (dump_file)
1690 fprintf (dump_file, "\nFlattening functions:\n");
1692 /* In the first pass handle functions to be flattened. Do this with
1693 a priority so none of our later choices will make this impossible. */
1694 for (i = nnodes - 1; i >= 0; i--)
1696 node = order[i];
1698 /* Handle nodes to be flattened.
1699 Ideally when processing callees we stop inlining at the
1700 entry of cycles, possibly cloning that entry point and
1701 try to flatten itself turning it into a self-recursive
1702 function. */
1703 if (lookup_attribute ("flatten",
1704 DECL_ATTRIBUTES (node->decl)) != NULL)
1706 if (dump_file)
1707 fprintf (dump_file,
1708 "Flattening %s\n", cgraph_node_name (node));
1709 flatten_function (node, false);
1713 inline_small_functions ();
1714 cgraph_remove_unreachable_nodes (true, dump_file);
1715 free (order);
1717 /* We already perform some inlining of functions called once during
1718 inlining small functions above. After unreachable nodes are removed,
1719 we still might do a quick check that nothing new is found. */
1720 if (flag_inline_functions_called_once)
1722 int cold;
1723 if (dump_file)
1724 fprintf (dump_file, "\nDeciding on functions called once:\n");
1726 /* Inlining one function called once has good chance of preventing
1727 inlining other function into the same callee. Ideally we should
1728 work in priority order, but probably inlining hot functions first
1729 is good cut without the extra pain of maintaining the queue.
1731 ??? this is not really fitting the bill perfectly: inlining function
1732 into callee often leads to better optimization of callee due to
1733 increased context for optimization.
1734 For example if main() function calls a function that outputs help
1735 and then function that does the main optmization, we should inline
1736 the second with priority even if both calls are cold by themselves.
1738 We probably want to implement new predicate replacing our use of
1739 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1740 to be hot. */
1741 for (cold = 0; cold <= 1; cold ++)
1743 for (node = cgraph_nodes; node; node = node->next)
1745 if (want_inline_function_called_once_p (node)
1746 && (cold
1747 || cgraph_maybe_hot_edge_p (node->callers)))
1749 struct cgraph_node *caller = node->callers->caller;
1751 if (dump_file)
1753 fprintf (dump_file,
1754 "\nInlining %s size %i.\n",
1755 cgraph_node_name (node), inline_summary (node)->size);
1756 fprintf (dump_file,
1757 " Called once from %s %i insns.\n",
1758 cgraph_node_name (node->callers->caller),
1759 inline_summary (node->callers->caller)->size);
1762 inline_call (node->callers, true, NULL, NULL);
1763 if (dump_file)
1764 fprintf (dump_file,
1765 " Inlined into %s which now has %i size\n",
1766 cgraph_node_name (caller),
1767 inline_summary (caller)->size);
1773 /* Free ipa-prop structures if they are no longer needed. */
1774 if (optimize)
1775 ipa_free_all_structures_after_iinln ();
1777 if (dump_file)
1778 fprintf (dump_file,
1779 "\nInlined %i calls, eliminated %i functions\n\n",
1780 ncalls_inlined, nfunctions_inlined);
1782 if (dump_file)
1783 dump_inline_summaries (dump_file);
1784 /* In WPA we use inline summaries for partitioning process. */
1785 if (!flag_wpa)
1786 inline_free_summary ();
1787 return 0;
1790 /* Inline always-inline function calls in NODE. */
1792 static bool
1793 inline_always_inline_functions (struct cgraph_node *node)
1795 struct cgraph_edge *e;
1796 bool inlined = false;
1798 for (e = node->callees; e; e = e->next_callee)
1800 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1801 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1802 continue;
1804 if (cgraph_edge_recursive_p (e))
1806 if (dump_file)
1807 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1808 cgraph_node_name (e->callee));
1809 e->inline_failed = CIF_RECURSIVE_INLINING;
1810 continue;
1813 if (!can_early_inline_edge_p (e))
1814 continue;
1816 if (dump_file)
1817 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1818 cgraph_node_name (e->callee),
1819 cgraph_node_name (e->caller));
1820 inline_call (e, true, NULL, NULL);
1821 inlined = true;
1824 return inlined;
1827 /* Decide on the inlining. We do so in the topological order to avoid
1828 expenses on updating data structures. */
1830 static bool
1831 early_inline_small_functions (struct cgraph_node *node)
1833 struct cgraph_edge *e;
1834 bool inlined = false;
1836 for (e = node->callees; e; e = e->next_callee)
1838 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1839 if (!inline_summary (callee)->inlinable
1840 || !e->inline_failed)
1841 continue;
1843 /* Do not consider functions not declared inline. */
1844 if (!DECL_DECLARED_INLINE_P (callee->decl)
1845 && !flag_inline_small_functions
1846 && !flag_inline_functions)
1847 continue;
1849 if (dump_file)
1850 fprintf (dump_file, "Considering inline candidate %s.\n",
1851 cgraph_node_name (callee));
1853 if (!can_early_inline_edge_p (e))
1854 continue;
1856 if (cgraph_edge_recursive_p (e))
1858 if (dump_file)
1859 fprintf (dump_file, " Not inlining: recursive call.\n");
1860 continue;
1863 if (!want_early_inline_function_p (e))
1864 continue;
1866 if (dump_file)
1867 fprintf (dump_file, " Inlining %s into %s.\n",
1868 cgraph_node_name (callee),
1869 cgraph_node_name (e->caller));
1870 inline_call (e, true, NULL, NULL);
1871 inlined = true;
1874 return inlined;
1877 /* Do inlining of small functions. Doing so early helps profiling and other
1878 passes to be somewhat more effective and avoids some code duplication in
1879 later real inlining pass for testcases with very many function calls. */
1880 static unsigned int
1881 early_inliner (void)
1883 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1884 struct cgraph_edge *edge;
1885 unsigned int todo = 0;
1886 int iterations = 0;
1887 bool inlined = false;
1889 if (seen_error ())
1890 return 0;
1892 /* Do nothing if datastructures for ipa-inliner are already computed. This
1893 happens when some pass decides to construct new function and
1894 cgraph_add_new_function calls lowering passes and early optimization on
1895 it. This may confuse ourself when early inliner decide to inline call to
1896 function clone, because function clones don't have parameter list in
1897 ipa-prop matching their signature. */
1898 if (ipa_node_params_vector)
1899 return 0;
1901 #ifdef ENABLE_CHECKING
1902 verify_cgraph_node (node);
1903 #endif
1905 /* Even when not optimizing or not inlining inline always-inline
1906 functions. */
1907 inlined = inline_always_inline_functions (node);
1909 if (!optimize
1910 || flag_no_inline
1911 || !flag_early_inlining
1912 /* Never inline regular functions into always-inline functions
1913 during incremental inlining. This sucks as functions calling
1914 always inline functions will get less optimized, but at the
1915 same time inlining of functions calling always inline
1916 function into an always inline function might introduce
1917 cycles of edges to be always inlined in the callgraph.
1919 We might want to be smarter and just avoid this type of inlining. */
1920 || DECL_DISREGARD_INLINE_LIMITS (node->decl))
1922 else if (lookup_attribute ("flatten",
1923 DECL_ATTRIBUTES (node->decl)) != NULL)
1925 /* When the function is marked to be flattened, recursively inline
1926 all calls in it. */
1927 if (dump_file)
1928 fprintf (dump_file,
1929 "Flattening %s\n", cgraph_node_name (node));
1930 flatten_function (node, true);
1931 inlined = true;
1933 else
1935 /* We iterate incremental inlining to get trivial cases of indirect
1936 inlining. */
1937 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
1938 && early_inline_small_functions (node))
1940 timevar_push (TV_INTEGRATION);
1941 todo |= optimize_inline_calls (current_function_decl);
1943 /* Technically we ought to recompute inline parameters so the new
1944 iteration of early inliner works as expected. We however have
1945 values approximately right and thus we only need to update edge
1946 info that might be cleared out for newly discovered edges. */
1947 for (edge = node->callees; edge; edge = edge->next_callee)
1949 struct inline_edge_summary *es = inline_edge_summary (edge);
1950 es->call_stmt_size
1951 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
1952 es->call_stmt_time
1953 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
1954 if (edge->callee->decl
1955 && !gimple_check_call_matching_types (edge->call_stmt,
1956 edge->callee->decl))
1957 edge->call_stmt_cannot_inline_p = true;
1959 timevar_pop (TV_INTEGRATION);
1960 iterations++;
1961 inlined = false;
1963 if (dump_file)
1964 fprintf (dump_file, "Iterations: %i\n", iterations);
1967 if (inlined)
1969 timevar_push (TV_INTEGRATION);
1970 todo |= optimize_inline_calls (current_function_decl);
1971 timevar_pop (TV_INTEGRATION);
1974 cfun->always_inline_functions_inlined = true;
1976 return todo;
1979 struct gimple_opt_pass pass_early_inline =
1982 GIMPLE_PASS,
1983 "einline", /* name */
1984 NULL, /* gate */
1985 early_inliner, /* execute */
1986 NULL, /* sub */
1987 NULL, /* next */
1988 0, /* static_pass_number */
1989 TV_INLINE_HEURISTICS, /* tv_id */
1990 PROP_ssa, /* properties_required */
1991 0, /* properties_provided */
1992 0, /* properties_destroyed */
1993 0, /* todo_flags_start */
1994 0 /* todo_flags_finish */
1999 /* When to run IPA inlining. Inlining of always-inline functions
2000 happens during early inlining.
2002 Enable inlining unconditoinally at -flto. We need size estimates to
2003 drive partitioning. */
2005 static bool
2006 gate_ipa_inline (void)
2008 return optimize || flag_lto || flag_wpa;
2011 struct ipa_opt_pass_d pass_ipa_inline =
2014 IPA_PASS,
2015 "inline", /* name */
2016 gate_ipa_inline, /* gate */
2017 ipa_inline, /* execute */
2018 NULL, /* sub */
2019 NULL, /* next */
2020 0, /* static_pass_number */
2021 TV_INLINE_HEURISTICS, /* tv_id */
2022 0, /* properties_required */
2023 0, /* properties_provided */
2024 0, /* properties_destroyed */
2025 TODO_remove_functions, /* todo_flags_finish */
2026 TODO_dump_cgraph
2027 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2029 inline_generate_summary, /* generate_summary */
2030 inline_write_summary, /* write_summary */
2031 inline_read_summary, /* read_summary */
2032 NULL, /* write_optimization_summary */
2033 NULL, /* read_optimization_summary */
2034 NULL, /* stmt_fixup */
2035 0, /* TODOs */
2036 inline_transform, /* function_transform */
2037 NULL, /* variable_transform */