2003-07-04 Benjamin Kosnik <bkoz@redhat.com>
[official-gcc.git] / libstdc++-v3 / include / bits / stl_algobase.h
blob57faf234fd18c3c2d32afb2eb471bcff42480331
1 // Bits and pieces used in algorithms -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996-1998
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_algobase.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _ALGOBASE_H
62 #define _ALGOBASE_H 1
64 #include <bits/c++config.h>
65 #include <cstring>
66 #include <climits>
67 #include <cstdlib>
68 #include <cstddef>
69 #include <new>
70 #include <iosfwd>
71 #include <bits/stl_pair.h>
72 #include <bits/type_traits.h>
73 #include <bits/stl_iterator_base_types.h>
74 #include <bits/stl_iterator_base_funcs.h>
75 #include <bits/stl_iterator.h>
76 #include <bits/concept_check.h>
78 namespace std
80 /**
81 * @brief Swaps the contents of two iterators.
82 * @param a An iterator.
83 * @param b Another iterator.
84 * @return Nothing.
86 * This function swaps the values pointed to by two iterators, not the
87 * iterators themselves.
89 template<typename _ForwardIterator1, typename _ForwardIterator2>
90 inline void
91 iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
93 typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1;
94 typedef typename iterator_traits<_ForwardIterator2>::value_type _ValueType2;
96 // concept requirements
97 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator1>)
98 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator2>)
99 __glibcxx_function_requires(_ConvertibleConcept<_ValueType1, _ValueType2>)
100 __glibcxx_function_requires(_ConvertibleConcept<_ValueType2, _ValueType1>)
102 _ValueType1 __tmp = *__a;
103 *__a = *__b;
104 *__b = __tmp;
108 * @brief Swaps two values.
109 * @param a A thing of arbitrary type.
110 * @param b Another thing of arbitrary type.
111 * @return Nothing.
113 * This is the simple classic generic implementation. It will work on
114 * any type which has a copy constructor and an assignment operator.
116 template<typename _Tp>
117 inline void
118 swap(_Tp& __a, _Tp& __b)
120 // concept requirements
121 __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)
123 _Tp __tmp = __a;
124 __a = __b;
125 __b = __tmp;
128 #undef min
129 #undef max
132 * @brief This does what you think it does.
133 * @param a A thing of arbitrary type.
134 * @param b Another thing of arbitrary type.
135 * @return The lesser of the parameters.
137 * This is the simple classic generic implementation. It will work on
138 * temporary expressions, since they are only evaluated once, unlike a
139 * preprocessor macro.
141 template<typename _Tp>
142 inline const _Tp&
143 min(const _Tp& __a, const _Tp& __b)
145 // concept requirements
146 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
147 //return __b < __a ? __b : __a;
148 if (__b < __a) return __b; return __a;
152 * @brief This does what you think it does.
153 * @param a A thing of arbitrary type.
154 * @param b Another thing of arbitrary type.
155 * @return The greater of the parameters.
157 * This is the simple classic generic implementation. It will work on
158 * temporary expressions, since they are only evaluated once, unlike a
159 * preprocessor macro.
161 template<typename _Tp>
162 inline const _Tp&
163 max(const _Tp& __a, const _Tp& __b)
165 // concept requirements
166 __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
167 //return __a < __b ? __b : __a;
168 if (__a < __b) return __b; return __a;
172 * @brief This does what you think it does.
173 * @param a A thing of arbitrary type.
174 * @param b Another thing of arbitrary type.
175 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
176 * @return The lesser of the parameters.
178 * This will work on temporary expressions, since they are only evaluated
179 * once, unlike a preprocessor macro.
181 template<typename _Tp, typename _Compare>
182 inline const _Tp&
183 min(const _Tp& __a, const _Tp& __b, _Compare __comp)
185 //return __comp(__b, __a) ? __b : __a;
186 if (__comp(__b, __a)) return __b; return __a;
190 * @brief This does what you think it does.
191 * @param a A thing of arbitrary type.
192 * @param b Another thing of arbitrary type.
193 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
194 * @return The greater of the parameters.
196 * This will work on temporary expressions, since they are only evaluated
197 * once, unlike a preprocessor macro.
199 template<typename _Tp, typename _Compare>
200 inline const _Tp&
201 max(const _Tp& __a, const _Tp& __b, _Compare __comp)
203 //return __comp(__a, __b) ? __b : __a;
204 if (__comp(__a, __b)) return __b; return __a;
207 // All of these auxiliary functions serve two purposes. (1) Replace
208 // calls to copy with memmove whenever possible. (Memmove, not memcpy,
209 // because the input and output ranges are permitted to overlap.)
210 // (2) If we're using random access iterators, then write the loop as
211 // a for loop with an explicit count.
213 template<typename _InputIterator, typename _OutputIterator>
214 inline _OutputIterator
215 __copy(_InputIterator __first, _InputIterator __last,
216 _OutputIterator __result, input_iterator_tag)
218 for (; __first != __last; ++__result, ++__first)
219 *__result = *__first;
220 return __result;
223 template<typename _RandomAccessIterator, typename _OutputIterator>
224 inline _OutputIterator
225 __copy(_RandomAccessIterator __first, _RandomAccessIterator __last,
226 _OutputIterator __result, random_access_iterator_tag)
228 typedef typename iterator_traits<_RandomAccessIterator>::difference_type
229 _Distance;
230 for (_Distance __n = __last - __first; __n > 0; --__n)
232 *__result = *__first;
233 ++__first;
234 ++__result;
236 return __result;
239 template<typename _Tp>
240 inline _Tp*
241 __copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result)
243 std::memmove(__result, __first, sizeof(_Tp) * (__last - __first));
244 return __result + (__last - __first);
247 template<typename _InputIterator, typename _OutputIterator>
248 inline _OutputIterator
249 __copy_aux2(_InputIterator __first, _InputIterator __last,
250 _OutputIterator __result, __false_type)
251 { return std::__copy(__first, __last, __result, std::__iterator_category(__first)); }
253 template<typename _InputIterator, typename _OutputIterator>
254 inline _OutputIterator
255 __copy_aux2(_InputIterator __first, _InputIterator __last,
256 _OutputIterator __result, __true_type)
257 { return std::__copy(__first, __last, __result, std::__iterator_category(__first)); }
259 template<typename _Tp>
260 inline _Tp*
261 __copy_aux2(_Tp* __first, _Tp* __last, _Tp* __result, __true_type)
262 { return std::__copy_trivial(__first, __last, __result); }
264 template<typename _Tp>
265 inline _Tp*
266 __copy_aux2(const _Tp* __first, const _Tp* __last, _Tp* __result,
267 __true_type)
268 { return std::__copy_trivial(__first, __last, __result); }
270 template<typename _InputIterator, typename _OutputIterator>
271 inline _OutputIterator
272 __copy_ni2(_InputIterator __first, _InputIterator __last,
273 _OutputIterator __result, __true_type)
275 typedef typename iterator_traits<_InputIterator>::value_type
276 _ValueType;
277 typedef typename __type_traits<_ValueType>::has_trivial_assignment_operator
278 _Trivial;
279 return _OutputIterator(std::__copy_aux2(__first, __last, __result.base(),
280 _Trivial()));
283 template<typename _InputIterator, typename _OutputIterator>
284 inline _OutputIterator
285 __copy_ni2(_InputIterator __first, _InputIterator __last,
286 _OutputIterator __result, __false_type)
288 typedef typename iterator_traits<_InputIterator>::value_type _ValueType;
289 typedef typename __type_traits<_ValueType>::has_trivial_assignment_operator
290 _Trivial;
291 return std::__copy_aux2(__first, __last, __result, _Trivial());
294 template<typename _InputIterator, typename _OutputIterator>
295 inline _OutputIterator
296 __copy_ni1(_InputIterator __first, _InputIterator __last,
297 _OutputIterator __result, __true_type)
299 typedef typename _Is_normal_iterator<_OutputIterator>::_Normal __Normal;
300 return std::__copy_ni2(__first.base(), __last.base(), __result, __Normal());
303 template<typename _InputIterator, typename _OutputIterator>
304 inline _OutputIterator
305 __copy_ni1(_InputIterator __first, _InputIterator __last,
306 _OutputIterator __result, __false_type)
308 typedef typename _Is_normal_iterator<_OutputIterator>::_Normal __Normal;
309 return std::__copy_ni2(__first, __last, __result, __Normal());
313 * @brief Copies the range [first,last) into result.
314 * @param first An input iterator.
315 * @param last An input iterator.
316 * @param result An output iterator.
317 * @return result + (first - last)
319 * This inline function will boil down to a call to @c memmove whenever
320 * possible. Failing that, if random access iterators are passed, then the
321 * loop count will be known (and therefore a candidate for compiler
322 * optimizations such as unrolling). If the input range and the output
323 * range overlap, then the copy_backward function should be used instead.
325 template<typename _InputIterator, typename _OutputIterator>
326 inline _OutputIterator
327 copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result)
329 // concept requirements
330 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
331 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
332 typename iterator_traits<_InputIterator>::value_type>)
334 typedef typename _Is_normal_iterator<_InputIterator>::_Normal __Normal;
335 return std::__copy_ni1(__first, __last, __result, __Normal());
338 template<typename _BidirectionalIterator1, typename _BidirectionalIterator2>
339 inline _BidirectionalIterator2
340 __copy_backward(_BidirectionalIterator1 __first, _BidirectionalIterator1 __last,
341 _BidirectionalIterator2 __result, bidirectional_iterator_tag)
343 while (__first != __last)
344 *--__result = *--__last;
345 return __result;
348 template<typename _RandomAccessIterator, typename _BidirectionalIterator>
349 inline _BidirectionalIterator
350 __copy_backward(_RandomAccessIterator __first, _RandomAccessIterator __last,
351 _BidirectionalIterator __result, random_access_iterator_tag)
353 typename iterator_traits<_RandomAccessIterator>::difference_type __n;
354 for (__n = __last - __first; __n > 0; --__n)
355 *--__result = *--__last;
356 return __result;
360 // This dispatch class is a workaround for compilers that do not
361 // have partial ordering of function templates. All we're doing is
362 // creating a specialization so that we can turn a call to copy_backward
363 // into a memmove whenever possible.
364 template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
365 typename _BoolType>
366 struct __copy_backward_dispatch
368 static _BidirectionalIterator2
369 copy(_BidirectionalIterator1 __first, _BidirectionalIterator1 __last,
370 _BidirectionalIterator2 __result)
372 return std::__copy_backward(__first, __last, __result,
373 std::__iterator_category(__first));
377 template<typename _Tp>
378 struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
380 static _Tp*
381 copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
383 const ptrdiff_t _Num = __last - __first;
384 std::memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
385 return __result - _Num;
389 template<typename _Tp>
390 struct __copy_backward_dispatch<const _Tp*, _Tp*, __true_type>
392 static _Tp*
393 copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
395 return std::__copy_backward_dispatch<_Tp*, _Tp*, __true_type>
396 ::copy(__first, __last, __result);
400 template<typename _BI1, typename _BI2>
401 inline _BI2
402 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result)
404 typedef typename __type_traits<typename iterator_traits<_BI2>::value_type>
405 ::has_trivial_assignment_operator _Trivial;
406 return std::__copy_backward_dispatch<_BI1, _BI2, _Trivial>::copy(__first,
407 __last,
408 __result);
411 template <typename _BI1, typename _BI2>
412 inline _BI2
413 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
414 _BI2 __result, __true_type)
415 { return _BI2(std::__copy_backward_aux(__first, __last, __result.base())); }
417 template <typename _BI1, typename _BI2>
418 inline _BI2
419 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
420 _BI2 __result, __false_type)
421 { return std::__copy_backward_aux(__first, __last, __result); }
423 template <typename _BI1, typename _BI2>
424 inline _BI2
425 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
426 _BI2 __result, __true_type)
428 typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
429 return std::__copy_backward_output_normal_iterator(__first.base(),
430 __last.base(), __result,
431 __Normal());
434 template <typename _BI1, typename _BI2>
435 inline _BI2
436 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
437 _BI2 __result, __false_type)
439 typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
440 return std::__copy_backward_output_normal_iterator(__first, __last, __result,
441 __Normal());
445 * @brief Copies the range [first,last) into result.
446 * @param first An input iterator.
447 * @param last An input iterator.
448 * @param result An output iterator.
449 * @return result - (first - last)
451 * The function has the same effect as copy, but starts at the end of the
452 * range and works its way to the start, returning the start of the result.
453 * This inline function will boil down to a call to @c memmove whenever
454 * possible. Failing that, if random access iterators are passed, then the
455 * loop count will be known (and therefore a candidate for compiler
456 * optimizations such as unrolling).
458 template <typename _BI1, typename _BI2>
459 inline _BI2
460 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
462 // concept requirements
463 __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>)
464 __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>)
465 __glibcxx_function_requires(_ConvertibleConcept<
466 typename iterator_traits<_BI1>::value_type,
467 typename iterator_traits<_BI2>::value_type>)
469 typedef typename _Is_normal_iterator<_BI1>::_Normal __Normal;
470 return std::__copy_backward_input_normal_iterator(__first, __last, __result,
471 __Normal());
476 * @brief Fills the range [first,last) with copies of value.
477 * @param first A forward iterator.
478 * @param last A forward iterator.
479 * @param value A reference-to-const of arbitrary type.
480 * @return Nothing.
482 * This function fills a range with copies of the same value. For one-byte
483 * types filling contiguous areas of memory, this becomes an inline call to
484 * @c memset.
486 template<typename _ForwardIterator, typename _Tp>
487 void
488 fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
490 // concept requirements
491 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<_ForwardIterator>)
493 for ( ; __first != __last; ++__first)
494 *__first = __value;
498 * @brief Fills the range [first,first+n) with copies of value.
499 * @param first An output iterator.
500 * @param n The count of copies to perform.
501 * @param value A reference-to-const of arbitrary type.
502 * @return The iterator at first+n.
504 * This function fills a range with copies of the same value. For one-byte
505 * types filling contiguous areas of memory, this becomes an inline call to
506 * @c memset.
508 template<typename _OutputIterator, typename _Size, typename _Tp>
509 _OutputIterator
510 fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
512 // concept requirements
513 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,_Tp>)
515 for ( ; __n > 0; --__n, ++__first)
516 *__first = __value;
517 return __first;
520 // Specialization: for one-byte types we can use memset.
521 inline void
522 fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c)
524 unsigned char __tmp = __c;
525 std::memset(__first, __tmp, __last - __first);
528 inline void
529 fill(signed char* __first, signed char* __last, const signed char& __c)
531 signed char __tmp = __c;
532 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
535 inline void
536 fill(char* __first, char* __last, const char& __c)
538 char __tmp = __c;
539 std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
542 template<typename _Size>
543 inline unsigned char*
544 fill_n(unsigned char* __first, _Size __n, const unsigned char& __c)
546 std::fill(__first, __first + __n, __c);
547 return __first + __n;
550 template<typename _Size>
551 inline signed char*
552 fill_n(char* __first, _Size __n, const signed char& __c)
554 std::fill(__first, __first + __n, __c);
555 return __first + __n;
558 template<typename _Size>
559 inline char*
560 fill_n(char* __first, _Size __n, const char& __c)
562 std::fill(__first, __first + __n, __c);
563 return __first + __n;
568 * @brief Finds the places in ranges which don't match.
569 * @param first1 An input iterator.
570 * @param last1 An input iterator.
571 * @param first2 An input iterator.
572 * @return A pair of iterators pointing to the first mismatch.
574 * This compares the elements of two ranges using @c == and returns a pair
575 * of iterators. The first iterator points into the first range, the
576 * second iterator points into the second range, and the elements pointed
577 * to by the iterators are not equal.
579 template<typename _InputIterator1, typename _InputIterator2>
580 pair<_InputIterator1, _InputIterator2>
581 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
582 _InputIterator2 __first2)
584 // concept requirements
585 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
586 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
587 __glibcxx_function_requires(_EqualityComparableConcept<
588 typename iterator_traits<_InputIterator1>::value_type>)
589 __glibcxx_function_requires(_EqualityComparableConcept<
590 typename iterator_traits<_InputIterator2>::value_type>)
592 while (__first1 != __last1 && *__first1 == *__first2)
594 ++__first1;
595 ++__first2;
597 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
601 * @brief Finds the places in ranges which don't match.
602 * @param first1 An input iterator.
603 * @param last1 An input iterator.
604 * @param first2 An input iterator.
605 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
606 * @return A pair of iterators pointing to the first mismatch.
608 * This compares the elements of two ranges using the binary_pred
609 * parameter, and returns a pair
610 * of iterators. The first iterator points into the first range, the
611 * second iterator points into the second range, and the elements pointed
612 * to by the iterators are not equal.
614 template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate>
615 pair<_InputIterator1, _InputIterator2>
616 mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
617 _InputIterator2 __first2, _BinaryPredicate __binary_pred)
619 // concept requirements
620 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
621 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
623 while (__first1 != __last1 && __binary_pred(*__first1, *__first2))
625 ++__first1;
626 ++__first2;
628 return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
632 * @brief Tests a range for element-wise equality.
633 * @param first1 An input iterator.
634 * @param last1 An input iterator.
635 * @param first2 An input iterator.
636 * @return A boolean true or false.
638 * This compares the elements of two ranges using @c == and returns true or
639 * false depending on whether all of the corresponding elements of the
640 * ranges are equal.
642 template<typename _InputIterator1, typename _InputIterator2>
643 inline bool
644 equal(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2)
646 // concept requirements
647 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
648 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
649 __glibcxx_function_requires(_EqualOpConcept<
650 typename iterator_traits<_InputIterator1>::value_type,
651 typename iterator_traits<_InputIterator2>::value_type>)
653 for ( ; __first1 != __last1; ++__first1, ++__first2)
654 if (!(*__first1 == *__first2))
655 return false;
656 return true;
660 * @brief Tests a range for element-wise equality.
661 * @param first1 An input iterator.
662 * @param last1 An input iterator.
663 * @param first2 An input iterator.
664 * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
665 * @return A boolean true or false.
667 * This compares the elements of two ranges using the binary_pred
668 * parameter, and returns true or
669 * false depending on whether all of the corresponding elements of the
670 * ranges are equal.
672 template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate>
673 inline bool
674 equal(_InputIterator1 __first1, _InputIterator1 __last1,
675 _InputIterator2 __first2,
676 _BinaryPredicate __binary_pred)
678 // concept requirements
679 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
680 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
682 for ( ; __first1 != __last1; ++__first1, ++__first2)
683 if (!__binary_pred(*__first1, *__first2))
684 return false;
685 return true;
689 * @brief Performs "dictionary" comparison on ranges.
690 * @param first1 An input iterator.
691 * @param last1 An input iterator.
692 * @param first2 An input iterator.
693 * @param last2 An input iterator.
694 * @return A boolean true or false.
696 * "Returns true if the sequence of elements defined by the range
697 * [first1,last1) is lexicographically less than the sequence of elements
698 * defined by the range [first2,last2). Returns false otherwise."
699 * (Quoted from [25.3.8]/1.) If the iterators are all character pointers,
700 * then this is an inline call to @c memcmp.
702 template<typename _InputIterator1, typename _InputIterator2>
703 bool
704 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
705 _InputIterator2 __first2, _InputIterator2 __last2)
707 // concept requirements
708 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
709 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
710 __glibcxx_function_requires(_LessThanComparableConcept<
711 typename iterator_traits<_InputIterator1>::value_type>)
712 __glibcxx_function_requires(_LessThanComparableConcept<
713 typename iterator_traits<_InputIterator2>::value_type>)
715 for (;__first1 != __last1 && __first2 != __last2; ++__first1, ++__first2)
717 if (*__first1 < *__first2)
718 return true;
719 if (*__first2 < *__first1)
720 return false;
722 return __first1 == __last1 && __first2 != __last2;
726 * @brief Performs "dictionary" comparison on ranges.
727 * @param first1 An input iterator.
728 * @param last1 An input iterator.
729 * @param first2 An input iterator.
730 * @param last2 An input iterator.
731 * @param comp A @link s20_3_3_comparisons comparison functor@endlink.
732 * @return A boolean true or false.
734 * The same as the four-parameter @c lexigraphical_compare, but uses the
735 * comp parameter instead of @c <.
737 template<typename _InputIterator1, typename _InputIterator2, typename _Compare>
738 bool
739 lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
740 _InputIterator2 __first2, _InputIterator2 __last2,
741 _Compare __comp)
743 // concept requirements
744 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
745 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
747 for ( ; __first1 != __last1 && __first2 != __last2
748 ; ++__first1, ++__first2)
750 if (__comp(*__first1, *__first2))
751 return true;
752 if (__comp(*__first2, *__first1))
753 return false;
755 return __first1 == __last1 && __first2 != __last2;
758 inline bool
759 lexicographical_compare(const unsigned char* __first1,
760 const unsigned char* __last1,
761 const unsigned char* __first2,
762 const unsigned char* __last2)
764 const size_t __len1 = __last1 - __first1;
765 const size_t __len2 = __last2 - __first2;
766 const int __result = std::memcmp(__first1, __first2, std::min(__len1, __len2));
767 return __result != 0 ? __result < 0 : __len1 < __len2;
770 inline bool
771 lexicographical_compare(const char* __first1, const char* __last1,
772 const char* __first2, const char* __last2)
774 #if CHAR_MAX == SCHAR_MAX
775 return std::lexicographical_compare((const signed char*) __first1,
776 (const signed char*) __last1,
777 (const signed char*) __first2,
778 (const signed char*) __last2);
779 #else /* CHAR_MAX == SCHAR_MAX */
780 return std::lexicographical_compare((const unsigned char*) __first1,
781 (const unsigned char*) __last1,
782 (const unsigned char*) __first2,
783 (const unsigned char*) __last2);
784 #endif /* CHAR_MAX == SCHAR_MAX */
787 } // namespace std
789 #endif