[ARM][doc] Remove mention of Advanced RISC Machines
[official-gcc.git] / gcc / ifcvt.c
blob90586da835bbe30c63242f228f2f425cc480c150
1 /* If-conversion support.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hashtab.h"
28 #include "hash-set.h"
29 #include "vec.h"
30 #include "machmode.h"
31 #include "hard-reg-set.h"
32 #include "input.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "except.h"
38 #include "predict.h"
39 #include "dominance.h"
40 #include "cfg.h"
41 #include "cfgrtl.h"
42 #include "cfganal.h"
43 #include "cfgcleanup.h"
44 #include "basic-block.h"
45 #include "expr.h"
46 #include "output.h"
47 #include "insn-codes.h"
48 #include "optabs.h"
49 #include "diagnostic-core.h"
50 #include "tm_p.h"
51 #include "cfgloop.h"
52 #include "target.h"
53 #include "tree-pass.h"
54 #include "df.h"
55 #include "dbgcnt.h"
56 #include "shrink-wrap.h"
57 #include "ifcvt.h"
59 #ifndef HAVE_conditional_move
60 #define HAVE_conditional_move 0
61 #endif
62 #ifndef HAVE_incscc
63 #define HAVE_incscc 0
64 #endif
65 #ifndef HAVE_decscc
66 #define HAVE_decscc 0
67 #endif
68 #ifndef HAVE_trap
69 #define HAVE_trap 0
70 #endif
72 #ifndef MAX_CONDITIONAL_EXECUTE
73 #define MAX_CONDITIONAL_EXECUTE \
74 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
75 + 1)
76 #endif
78 #ifndef HAVE_cbranchcc4
79 #define HAVE_cbranchcc4 0
80 #endif
82 #define IFCVT_MULTIPLE_DUMPS 1
84 #define NULL_BLOCK ((basic_block) NULL)
86 /* True if after combine pass. */
87 static bool ifcvt_after_combine;
89 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
90 static int num_possible_if_blocks;
92 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
93 execution. */
94 static int num_updated_if_blocks;
96 /* # of changes made. */
97 static int num_true_changes;
99 /* Whether conditional execution changes were made. */
100 static int cond_exec_changed_p;
102 /* Forward references. */
103 static int count_bb_insns (const_basic_block);
104 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
105 static rtx_insn *first_active_insn (basic_block);
106 static rtx_insn *last_active_insn (basic_block, int);
107 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
108 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
109 static basic_block block_fallthru (basic_block);
110 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
111 int);
112 static rtx cond_exec_get_condition (rtx_insn *);
113 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
114 static int noce_operand_ok (const_rtx);
115 static void merge_if_block (ce_if_block *);
116 static int find_cond_trap (basic_block, edge, edge);
117 static basic_block find_if_header (basic_block, int);
118 static int block_jumps_and_fallthru_p (basic_block, basic_block);
119 static int noce_find_if_block (basic_block, edge, edge, int);
120 static int cond_exec_find_if_block (ce_if_block *);
121 static int find_if_case_1 (basic_block, edge, edge);
122 static int find_if_case_2 (basic_block, edge, edge);
123 static int dead_or_predicable (basic_block, basic_block, basic_block,
124 edge, int);
125 static void noce_emit_move_insn (rtx, rtx);
126 static rtx_insn *block_has_only_trap (basic_block);
128 /* Count the number of non-jump active insns in BB. */
130 static int
131 count_bb_insns (const_basic_block bb)
133 int count = 0;
134 rtx_insn *insn = BB_HEAD (bb);
136 while (1)
138 if (active_insn_p (insn) && !JUMP_P (insn))
139 count++;
141 if (insn == BB_END (bb))
142 break;
143 insn = NEXT_INSN (insn);
146 return count;
149 /* Determine whether the total insn_rtx_cost on non-jump insns in
150 basic block BB is less than MAX_COST. This function returns
151 false if the cost of any instruction could not be estimated.
153 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
154 as those insns are being speculated. MAX_COST is scaled with SCALE
155 plus a small fudge factor. */
157 static bool
158 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
160 int count = 0;
161 rtx_insn *insn = BB_HEAD (bb);
162 bool speed = optimize_bb_for_speed_p (bb);
164 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
165 applied to insn_rtx_cost when optimizing for size. Only do
166 this after combine because if-conversion might interfere with
167 passes before combine.
169 Use optimize_function_for_speed_p instead of the pre-defined
170 variable speed to make sure it is set to same value for all
171 basic blocks in one if-conversion transformation. */
172 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
173 scale = REG_BR_PROB_BASE;
174 /* Our branch probability/scaling factors are just estimates and don't
175 account for cases where we can get speculation for free and other
176 secondary benefits. So we fudge the scale factor to make speculating
177 appear a little more profitable when optimizing for performance. */
178 else
179 scale += REG_BR_PROB_BASE / 8;
182 max_cost *= scale;
184 while (1)
186 if (NONJUMP_INSN_P (insn))
188 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
189 if (cost == 0)
190 return false;
192 /* If this instruction is the load or set of a "stack" register,
193 such as a floating point register on x87, then the cost of
194 speculatively executing this insn may need to include
195 the additional cost of popping its result off of the
196 register stack. Unfortunately, correctly recognizing and
197 accounting for this additional overhead is tricky, so for
198 now we simply prohibit such speculative execution. */
199 #ifdef STACK_REGS
201 rtx set = single_set (insn);
202 if (set && STACK_REG_P (SET_DEST (set)))
203 return false;
205 #endif
207 count += cost;
208 if (count >= max_cost)
209 return false;
211 else if (CALL_P (insn))
212 return false;
214 if (insn == BB_END (bb))
215 break;
216 insn = NEXT_INSN (insn);
219 return true;
222 /* Return the first non-jump active insn in the basic block. */
224 static rtx_insn *
225 first_active_insn (basic_block bb)
227 rtx_insn *insn = BB_HEAD (bb);
229 if (LABEL_P (insn))
231 if (insn == BB_END (bb))
232 return NULL;
233 insn = NEXT_INSN (insn);
236 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
238 if (insn == BB_END (bb))
239 return NULL;
240 insn = NEXT_INSN (insn);
243 if (JUMP_P (insn))
244 return NULL;
246 return insn;
249 /* Return the last non-jump active (non-jump) insn in the basic block. */
251 static rtx_insn *
252 last_active_insn (basic_block bb, int skip_use_p)
254 rtx_insn *insn = BB_END (bb);
255 rtx_insn *head = BB_HEAD (bb);
257 while (NOTE_P (insn)
258 || JUMP_P (insn)
259 || DEBUG_INSN_P (insn)
260 || (skip_use_p
261 && NONJUMP_INSN_P (insn)
262 && GET_CODE (PATTERN (insn)) == USE))
264 if (insn == head)
265 return NULL;
266 insn = PREV_INSN (insn);
269 if (LABEL_P (insn))
270 return NULL;
272 return insn;
275 /* Return the active insn before INSN inside basic block CURR_BB. */
277 static rtx_insn *
278 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
280 if (!insn || insn == BB_HEAD (curr_bb))
281 return NULL;
283 while ((insn = PREV_INSN (insn)) != NULL_RTX)
285 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
286 break;
288 /* No other active insn all the way to the start of the basic block. */
289 if (insn == BB_HEAD (curr_bb))
290 return NULL;
293 return insn;
296 /* Return the active insn after INSN inside basic block CURR_BB. */
298 static rtx_insn *
299 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
301 if (!insn || insn == BB_END (curr_bb))
302 return NULL;
304 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
306 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
307 break;
309 /* No other active insn all the way to the end of the basic block. */
310 if (insn == BB_END (curr_bb))
311 return NULL;
314 return insn;
317 /* Return the basic block reached by falling though the basic block BB. */
319 static basic_block
320 block_fallthru (basic_block bb)
322 edge e = find_fallthru_edge (bb->succs);
324 return (e) ? e->dest : NULL_BLOCK;
327 /* Return true if RTXs A and B can be safely interchanged. */
329 static bool
330 rtx_interchangeable_p (const_rtx a, const_rtx b)
332 if (!rtx_equal_p (a, b))
333 return false;
335 if (GET_CODE (a) != MEM)
336 return true;
338 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
339 reference is not. Interchanging a dead type-unsafe memory reference with
340 a live type-safe one creates a live type-unsafe memory reference, in other
341 words, it makes the program illegal.
342 We check here conservatively whether the two memory references have equal
343 memory attributes. */
345 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
349 /* Go through a bunch of insns, converting them to conditional
350 execution format if possible. Return TRUE if all of the non-note
351 insns were processed. */
353 static int
354 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
355 /* if block information */rtx_insn *start,
356 /* first insn to look at */rtx end,
357 /* last insn to look at */rtx test,
358 /* conditional execution test */int prob_val,
359 /* probability of branch taken. */int mod_ok)
361 int must_be_last = FALSE;
362 rtx_insn *insn;
363 rtx xtest;
364 rtx pattern;
366 if (!start || !end)
367 return FALSE;
369 for (insn = start; ; insn = NEXT_INSN (insn))
371 /* dwarf2out can't cope with conditional prologues. */
372 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
373 return FALSE;
375 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
376 goto insn_done;
378 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
380 /* dwarf2out can't cope with conditional unwind info. */
381 if (RTX_FRAME_RELATED_P (insn))
382 return FALSE;
384 /* Remove USE insns that get in the way. */
385 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
387 /* ??? Ug. Actually unlinking the thing is problematic,
388 given what we'd have to coordinate with our callers. */
389 SET_INSN_DELETED (insn);
390 goto insn_done;
393 /* Last insn wasn't last? */
394 if (must_be_last)
395 return FALSE;
397 if (modified_in_p (test, insn))
399 if (!mod_ok)
400 return FALSE;
401 must_be_last = TRUE;
404 /* Now build the conditional form of the instruction. */
405 pattern = PATTERN (insn);
406 xtest = copy_rtx (test);
408 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
409 two conditions. */
410 if (GET_CODE (pattern) == COND_EXEC)
412 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
413 return FALSE;
415 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
416 COND_EXEC_TEST (pattern));
417 pattern = COND_EXEC_CODE (pattern);
420 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
422 /* If the machine needs to modify the insn being conditionally executed,
423 say for example to force a constant integer operand into a temp
424 register, do so here. */
425 #ifdef IFCVT_MODIFY_INSN
426 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
427 if (! pattern)
428 return FALSE;
429 #endif
431 validate_change (insn, &PATTERN (insn), pattern, 1);
433 if (CALL_P (insn) && prob_val >= 0)
434 validate_change (insn, &REG_NOTES (insn),
435 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
436 prob_val, REG_NOTES (insn)), 1);
438 insn_done:
439 if (insn == end)
440 break;
443 return TRUE;
446 /* Return the condition for a jump. Do not do any special processing. */
448 static rtx
449 cond_exec_get_condition (rtx_insn *jump)
451 rtx test_if, cond;
453 if (any_condjump_p (jump))
454 test_if = SET_SRC (pc_set (jump));
455 else
456 return NULL_RTX;
457 cond = XEXP (test_if, 0);
459 /* If this branches to JUMP_LABEL when the condition is false,
460 reverse the condition. */
461 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
462 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
464 enum rtx_code rev = reversed_comparison_code (cond, jump);
465 if (rev == UNKNOWN)
466 return NULL_RTX;
468 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
469 XEXP (cond, 1));
472 return cond;
475 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
476 to conditional execution. Return TRUE if we were successful at
477 converting the block. */
479 static int
480 cond_exec_process_if_block (ce_if_block * ce_info,
481 /* if block information */int do_multiple_p)
483 basic_block test_bb = ce_info->test_bb; /* last test block */
484 basic_block then_bb = ce_info->then_bb; /* THEN */
485 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
486 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
487 rtx_insn *then_start; /* first insn in THEN block */
488 rtx_insn *then_end; /* last insn + 1 in THEN block */
489 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
490 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
491 int max; /* max # of insns to convert. */
492 int then_mod_ok; /* whether conditional mods are ok in THEN */
493 rtx true_expr; /* test for else block insns */
494 rtx false_expr; /* test for then block insns */
495 int true_prob_val; /* probability of else block */
496 int false_prob_val; /* probability of then block */
497 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
498 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
499 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
500 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
501 int then_n_insns, else_n_insns, n_insns;
502 enum rtx_code false_code;
503 rtx note;
505 /* If test is comprised of && or || elements, and we've failed at handling
506 all of them together, just use the last test if it is the special case of
507 && elements without an ELSE block. */
508 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
510 if (else_bb || ! ce_info->and_and_p)
511 return FALSE;
513 ce_info->test_bb = test_bb = ce_info->last_test_bb;
514 ce_info->num_multiple_test_blocks = 0;
515 ce_info->num_and_and_blocks = 0;
516 ce_info->num_or_or_blocks = 0;
519 /* Find the conditional jump to the ELSE or JOIN part, and isolate
520 the test. */
521 test_expr = cond_exec_get_condition (BB_END (test_bb));
522 if (! test_expr)
523 return FALSE;
525 /* If the conditional jump is more than just a conditional jump,
526 then we can not do conditional execution conversion on this block. */
527 if (! onlyjump_p (BB_END (test_bb)))
528 return FALSE;
530 /* Collect the bounds of where we're to search, skipping any labels, jumps
531 and notes at the beginning and end of the block. Then count the total
532 number of insns and see if it is small enough to convert. */
533 then_start = first_active_insn (then_bb);
534 then_end = last_active_insn (then_bb, TRUE);
535 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
536 n_insns = then_n_insns;
537 max = MAX_CONDITIONAL_EXECUTE;
539 if (else_bb)
541 int n_matching;
543 max *= 2;
544 else_start = first_active_insn (else_bb);
545 else_end = last_active_insn (else_bb, TRUE);
546 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
547 n_insns += else_n_insns;
549 /* Look for matching sequences at the head and tail of the two blocks,
550 and limit the range of insns to be converted if possible. */
551 n_matching = flow_find_cross_jump (then_bb, else_bb,
552 &then_first_tail, &else_first_tail,
553 NULL);
554 if (then_first_tail == BB_HEAD (then_bb))
555 then_start = then_end = NULL;
556 if (else_first_tail == BB_HEAD (else_bb))
557 else_start = else_end = NULL;
559 if (n_matching > 0)
561 if (then_end)
562 then_end = find_active_insn_before (then_bb, then_first_tail);
563 if (else_end)
564 else_end = find_active_insn_before (else_bb, else_first_tail);
565 n_insns -= 2 * n_matching;
568 if (then_start
569 && else_start
570 && then_n_insns > n_matching
571 && else_n_insns > n_matching)
573 int longest_match = MIN (then_n_insns - n_matching,
574 else_n_insns - n_matching);
575 n_matching
576 = flow_find_head_matching_sequence (then_bb, else_bb,
577 &then_last_head,
578 &else_last_head,
579 longest_match);
581 if (n_matching > 0)
583 rtx_insn *insn;
585 /* We won't pass the insns in the head sequence to
586 cond_exec_process_insns, so we need to test them here
587 to make sure that they don't clobber the condition. */
588 for (insn = BB_HEAD (then_bb);
589 insn != NEXT_INSN (then_last_head);
590 insn = NEXT_INSN (insn))
591 if (!LABEL_P (insn) && !NOTE_P (insn)
592 && !DEBUG_INSN_P (insn)
593 && modified_in_p (test_expr, insn))
594 return FALSE;
597 if (then_last_head == then_end)
598 then_start = then_end = NULL;
599 if (else_last_head == else_end)
600 else_start = else_end = NULL;
602 if (n_matching > 0)
604 if (then_start)
605 then_start = find_active_insn_after (then_bb, then_last_head);
606 if (else_start)
607 else_start = find_active_insn_after (else_bb, else_last_head);
608 n_insns -= 2 * n_matching;
613 if (n_insns > max)
614 return FALSE;
616 /* Map test_expr/test_jump into the appropriate MD tests to use on
617 the conditionally executed code. */
619 true_expr = test_expr;
621 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
622 if (false_code != UNKNOWN)
623 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
624 XEXP (true_expr, 0), XEXP (true_expr, 1));
625 else
626 false_expr = NULL_RTX;
628 #ifdef IFCVT_MODIFY_TESTS
629 /* If the machine description needs to modify the tests, such as setting a
630 conditional execution register from a comparison, it can do so here. */
631 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
633 /* See if the conversion failed. */
634 if (!true_expr || !false_expr)
635 goto fail;
636 #endif
638 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
639 if (note)
641 true_prob_val = XINT (note, 0);
642 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
644 else
646 true_prob_val = -1;
647 false_prob_val = -1;
650 /* If we have && or || tests, do them here. These tests are in the adjacent
651 blocks after the first block containing the test. */
652 if (ce_info->num_multiple_test_blocks > 0)
654 basic_block bb = test_bb;
655 basic_block last_test_bb = ce_info->last_test_bb;
657 if (! false_expr)
658 goto fail;
662 rtx_insn *start, *end;
663 rtx t, f;
664 enum rtx_code f_code;
666 bb = block_fallthru (bb);
667 start = first_active_insn (bb);
668 end = last_active_insn (bb, TRUE);
669 if (start
670 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
671 false_prob_val, FALSE))
672 goto fail;
674 /* If the conditional jump is more than just a conditional jump, then
675 we can not do conditional execution conversion on this block. */
676 if (! onlyjump_p (BB_END (bb)))
677 goto fail;
679 /* Find the conditional jump and isolate the test. */
680 t = cond_exec_get_condition (BB_END (bb));
681 if (! t)
682 goto fail;
684 f_code = reversed_comparison_code (t, BB_END (bb));
685 if (f_code == UNKNOWN)
686 goto fail;
688 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
689 if (ce_info->and_and_p)
691 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
692 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
694 else
696 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
697 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
700 /* If the machine description needs to modify the tests, such as
701 setting a conditional execution register from a comparison, it can
702 do so here. */
703 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
704 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
706 /* See if the conversion failed. */
707 if (!t || !f)
708 goto fail;
709 #endif
711 true_expr = t;
712 false_expr = f;
714 while (bb != last_test_bb);
717 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
718 on then THEN block. */
719 then_mod_ok = (else_bb == NULL_BLOCK);
721 /* Go through the THEN and ELSE blocks converting the insns if possible
722 to conditional execution. */
724 if (then_end
725 && (! false_expr
726 || ! cond_exec_process_insns (ce_info, then_start, then_end,
727 false_expr, false_prob_val,
728 then_mod_ok)))
729 goto fail;
731 if (else_bb && else_end
732 && ! cond_exec_process_insns (ce_info, else_start, else_end,
733 true_expr, true_prob_val, TRUE))
734 goto fail;
736 /* If we cannot apply the changes, fail. Do not go through the normal fail
737 processing, since apply_change_group will call cancel_changes. */
738 if (! apply_change_group ())
740 #ifdef IFCVT_MODIFY_CANCEL
741 /* Cancel any machine dependent changes. */
742 IFCVT_MODIFY_CANCEL (ce_info);
743 #endif
744 return FALSE;
747 #ifdef IFCVT_MODIFY_FINAL
748 /* Do any machine dependent final modifications. */
749 IFCVT_MODIFY_FINAL (ce_info);
750 #endif
752 /* Conversion succeeded. */
753 if (dump_file)
754 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
755 n_insns, (n_insns == 1) ? " was" : "s were");
757 /* Merge the blocks! If we had matching sequences, make sure to delete one
758 copy at the appropriate location first: delete the copy in the THEN branch
759 for a tail sequence so that the remaining one is executed last for both
760 branches, and delete the copy in the ELSE branch for a head sequence so
761 that the remaining one is executed first for both branches. */
762 if (then_first_tail)
764 rtx_insn *from = then_first_tail;
765 if (!INSN_P (from))
766 from = find_active_insn_after (then_bb, from);
767 delete_insn_chain (from, BB_END (then_bb), false);
769 if (else_last_head)
770 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
772 merge_if_block (ce_info);
773 cond_exec_changed_p = TRUE;
774 return TRUE;
776 fail:
777 #ifdef IFCVT_MODIFY_CANCEL
778 /* Cancel any machine dependent changes. */
779 IFCVT_MODIFY_CANCEL (ce_info);
780 #endif
782 cancel_changes (0);
783 return FALSE;
786 /* Used by noce_process_if_block to communicate with its subroutines.
788 The subroutines know that A and B may be evaluated freely. They
789 know that X is a register. They should insert new instructions
790 before cond_earliest. */
792 struct noce_if_info
794 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
795 basic_block test_bb, then_bb, else_bb, join_bb;
797 /* The jump that ends TEST_BB. */
798 rtx_insn *jump;
800 /* The jump condition. */
801 rtx cond;
803 /* New insns should be inserted before this one. */
804 rtx_insn *cond_earliest;
806 /* Insns in the THEN and ELSE block. There is always just this
807 one insns in those blocks. The insns are single_set insns.
808 If there was no ELSE block, INSN_B is the last insn before
809 COND_EARLIEST, or NULL_RTX. In the former case, the insn
810 operands are still valid, as if INSN_B was moved down below
811 the jump. */
812 rtx_insn *insn_a, *insn_b;
814 /* The SET_SRC of INSN_A and INSN_B. */
815 rtx a, b;
817 /* The SET_DEST of INSN_A. */
818 rtx x;
820 /* True if this if block is not canonical. In the canonical form of
821 if blocks, the THEN_BB is the block reached via the fallthru edge
822 from TEST_BB. For the noce transformations, we allow the symmetric
823 form as well. */
824 bool then_else_reversed;
826 /* Estimated cost of the particular branch instruction. */
827 int branch_cost;
830 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
831 static int noce_try_move (struct noce_if_info *);
832 static int noce_try_store_flag (struct noce_if_info *);
833 static int noce_try_addcc (struct noce_if_info *);
834 static int noce_try_store_flag_constants (struct noce_if_info *);
835 static int noce_try_store_flag_mask (struct noce_if_info *);
836 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
837 rtx, rtx, rtx);
838 static int noce_try_cmove (struct noce_if_info *);
839 static int noce_try_cmove_arith (struct noce_if_info *);
840 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
841 static int noce_try_minmax (struct noce_if_info *);
842 static int noce_try_abs (struct noce_if_info *);
843 static int noce_try_sign_mask (struct noce_if_info *);
845 /* Helper function for noce_try_store_flag*. */
847 static rtx
848 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
849 int normalize)
851 rtx cond = if_info->cond;
852 int cond_complex;
853 enum rtx_code code;
855 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
856 || ! general_operand (XEXP (cond, 1), VOIDmode));
858 /* If earliest == jump, or when the condition is complex, try to
859 build the store_flag insn directly. */
861 if (cond_complex)
863 rtx set = pc_set (if_info->jump);
864 cond = XEXP (SET_SRC (set), 0);
865 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
866 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
867 reversep = !reversep;
868 if (if_info->then_else_reversed)
869 reversep = !reversep;
872 if (reversep)
873 code = reversed_comparison_code (cond, if_info->jump);
874 else
875 code = GET_CODE (cond);
877 if ((if_info->cond_earliest == if_info->jump || cond_complex)
878 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
880 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
881 XEXP (cond, 1));
882 rtx set = gen_rtx_SET (VOIDmode, x, src);
884 start_sequence ();
885 rtx_insn *insn = emit_insn (set);
887 if (recog_memoized (insn) >= 0)
889 rtx_insn *seq = get_insns ();
890 end_sequence ();
891 emit_insn (seq);
893 if_info->cond_earliest = if_info->jump;
895 return x;
898 end_sequence ();
901 /* Don't even try if the comparison operands or the mode of X are weird. */
902 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
903 return NULL_RTX;
905 return emit_store_flag (x, code, XEXP (cond, 0),
906 XEXP (cond, 1), VOIDmode,
907 (code == LTU || code == LEU
908 || code == GEU || code == GTU), normalize);
911 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
912 X is the destination/target and Y is the value to copy. */
914 static void
915 noce_emit_move_insn (rtx x, rtx y)
917 machine_mode outmode;
918 rtx outer, inner;
919 int bitpos;
921 if (GET_CODE (x) != STRICT_LOW_PART)
923 rtx_insn *seq, *insn;
924 rtx target;
925 optab ot;
927 start_sequence ();
928 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
929 otherwise construct a suitable SET pattern ourselves. */
930 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
931 ? emit_move_insn (x, y)
932 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
933 seq = get_insns ();
934 end_sequence ();
936 if (recog_memoized (insn) <= 0)
938 if (GET_CODE (x) == ZERO_EXTRACT)
940 rtx op = XEXP (x, 0);
941 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
942 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
944 /* store_bit_field expects START to be relative to
945 BYTES_BIG_ENDIAN and adjusts this value for machines with
946 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
947 invoke store_bit_field again it is necessary to have the START
948 value from the first call. */
949 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
951 if (MEM_P (op))
952 start = BITS_PER_UNIT - start - size;
953 else
955 gcc_assert (REG_P (op));
956 start = BITS_PER_WORD - start - size;
960 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
961 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
962 return;
965 switch (GET_RTX_CLASS (GET_CODE (y)))
967 case RTX_UNARY:
968 ot = code_to_optab (GET_CODE (y));
969 if (ot)
971 start_sequence ();
972 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
973 if (target != NULL_RTX)
975 if (target != x)
976 emit_move_insn (x, target);
977 seq = get_insns ();
979 end_sequence ();
981 break;
983 case RTX_BIN_ARITH:
984 case RTX_COMM_ARITH:
985 ot = code_to_optab (GET_CODE (y));
986 if (ot)
988 start_sequence ();
989 target = expand_binop (GET_MODE (y), ot,
990 XEXP (y, 0), XEXP (y, 1),
991 x, 0, OPTAB_DIRECT);
992 if (target != NULL_RTX)
994 if (target != x)
995 emit_move_insn (x, target);
996 seq = get_insns ();
998 end_sequence ();
1000 break;
1002 default:
1003 break;
1007 emit_insn (seq);
1008 return;
1011 outer = XEXP (x, 0);
1012 inner = XEXP (outer, 0);
1013 outmode = GET_MODE (outer);
1014 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1015 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1016 0, 0, outmode, y);
1019 /* Return the CC reg if it is used in COND. */
1021 static rtx
1022 cc_in_cond (rtx cond)
1024 if (HAVE_cbranchcc4 && cond
1025 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1026 return XEXP (cond, 0);
1028 return NULL_RTX;
1031 /* Return sequence of instructions generated by if conversion. This
1032 function calls end_sequence() to end the current stream, ensures
1033 that are instructions are unshared, recognizable non-jump insns.
1034 On failure, this function returns a NULL_RTX. */
1036 static rtx_insn *
1037 end_ifcvt_sequence (struct noce_if_info *if_info)
1039 rtx_insn *insn;
1040 rtx_insn *seq = get_insns ();
1041 rtx cc = cc_in_cond (if_info->cond);
1043 set_used_flags (if_info->x);
1044 set_used_flags (if_info->cond);
1045 set_used_flags (if_info->a);
1046 set_used_flags (if_info->b);
1047 unshare_all_rtl_in_chain (seq);
1048 end_sequence ();
1050 /* Make sure that all of the instructions emitted are recognizable,
1051 and that we haven't introduced a new jump instruction.
1052 As an exercise for the reader, build a general mechanism that
1053 allows proper placement of required clobbers. */
1054 for (insn = seq; insn; insn = NEXT_INSN (insn))
1055 if (JUMP_P (insn)
1056 || recog_memoized (insn) == -1
1057 /* Make sure new generated code does not clobber CC. */
1058 || (cc && set_of (cc, insn)))
1059 return NULL;
1061 return seq;
1064 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1065 "if (a == b) x = a; else x = b" into "x = b". */
1067 static int
1068 noce_try_move (struct noce_if_info *if_info)
1070 rtx cond = if_info->cond;
1071 enum rtx_code code = GET_CODE (cond);
1072 rtx y;
1073 rtx_insn *seq;
1075 if (code != NE && code != EQ)
1076 return FALSE;
1078 /* This optimization isn't valid if either A or B could be a NaN
1079 or a signed zero. */
1080 if (HONOR_NANS (if_info->x)
1081 || HONOR_SIGNED_ZEROS (if_info->x))
1082 return FALSE;
1084 /* Check whether the operands of the comparison are A and in
1085 either order. */
1086 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1087 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1088 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1089 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1091 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1092 return FALSE;
1094 y = (code == EQ) ? if_info->a : if_info->b;
1096 /* Avoid generating the move if the source is the destination. */
1097 if (! rtx_equal_p (if_info->x, y))
1099 start_sequence ();
1100 noce_emit_move_insn (if_info->x, y);
1101 seq = end_ifcvt_sequence (if_info);
1102 if (!seq)
1103 return FALSE;
1105 emit_insn_before_setloc (seq, if_info->jump,
1106 INSN_LOCATION (if_info->insn_a));
1108 return TRUE;
1110 return FALSE;
1113 /* Convert "if (test) x = 1; else x = 0".
1115 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1116 tried in noce_try_store_flag_constants after noce_try_cmove has had
1117 a go at the conversion. */
1119 static int
1120 noce_try_store_flag (struct noce_if_info *if_info)
1122 int reversep;
1123 rtx target;
1124 rtx_insn *seq;
1126 if (CONST_INT_P (if_info->b)
1127 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1128 && if_info->a == const0_rtx)
1129 reversep = 0;
1130 else if (if_info->b == const0_rtx
1131 && CONST_INT_P (if_info->a)
1132 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1133 && (reversed_comparison_code (if_info->cond, if_info->jump)
1134 != UNKNOWN))
1135 reversep = 1;
1136 else
1137 return FALSE;
1139 start_sequence ();
1141 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1142 if (target)
1144 if (target != if_info->x)
1145 noce_emit_move_insn (if_info->x, target);
1147 seq = end_ifcvt_sequence (if_info);
1148 if (! seq)
1149 return FALSE;
1151 emit_insn_before_setloc (seq, if_info->jump,
1152 INSN_LOCATION (if_info->insn_a));
1153 return TRUE;
1155 else
1157 end_sequence ();
1158 return FALSE;
1162 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1164 static int
1165 noce_try_store_flag_constants (struct noce_if_info *if_info)
1167 rtx target;
1168 rtx_insn *seq;
1169 int reversep;
1170 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1171 int normalize, can_reverse;
1172 machine_mode mode;
1174 if (CONST_INT_P (if_info->a)
1175 && CONST_INT_P (if_info->b))
1177 mode = GET_MODE (if_info->x);
1178 ifalse = INTVAL (if_info->a);
1179 itrue = INTVAL (if_info->b);
1181 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1182 /* Make sure we can represent the difference between the two values. */
1183 if ((diff > 0)
1184 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1185 return FALSE;
1187 diff = trunc_int_for_mode (diff, mode);
1189 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1190 != UNKNOWN);
1192 reversep = 0;
1193 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1194 normalize = 0;
1195 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1196 && (STORE_FLAG_VALUE == 1
1197 || if_info->branch_cost >= 2))
1198 normalize = 1;
1199 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1200 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1201 normalize = 1, reversep = 1;
1202 else if (itrue == -1
1203 && (STORE_FLAG_VALUE == -1
1204 || if_info->branch_cost >= 2))
1205 normalize = -1;
1206 else if (ifalse == -1 && can_reverse
1207 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1208 normalize = -1, reversep = 1;
1209 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1210 || if_info->branch_cost >= 3)
1211 normalize = -1;
1212 else
1213 return FALSE;
1215 if (reversep)
1217 tmp = itrue; itrue = ifalse; ifalse = tmp;
1218 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1221 start_sequence ();
1222 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1223 if (! target)
1225 end_sequence ();
1226 return FALSE;
1229 /* if (test) x = 3; else x = 4;
1230 => x = 3 + (test == 0); */
1231 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1233 target = expand_simple_binop (mode,
1234 (diff == STORE_FLAG_VALUE
1235 ? PLUS : MINUS),
1236 gen_int_mode (ifalse, mode), target,
1237 if_info->x, 0, OPTAB_WIDEN);
1240 /* if (test) x = 8; else x = 0;
1241 => x = (test != 0) << 3; */
1242 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1244 target = expand_simple_binop (mode, ASHIFT,
1245 target, GEN_INT (tmp), if_info->x, 0,
1246 OPTAB_WIDEN);
1249 /* if (test) x = -1; else x = b;
1250 => x = -(test != 0) | b; */
1251 else if (itrue == -1)
1253 target = expand_simple_binop (mode, IOR,
1254 target, gen_int_mode (ifalse, mode),
1255 if_info->x, 0, OPTAB_WIDEN);
1258 /* if (test) x = a; else x = b;
1259 => x = (-(test != 0) & (b - a)) + a; */
1260 else
1262 target = expand_simple_binop (mode, AND,
1263 target, gen_int_mode (diff, mode),
1264 if_info->x, 0, OPTAB_WIDEN);
1265 if (target)
1266 target = expand_simple_binop (mode, PLUS,
1267 target, gen_int_mode (ifalse, mode),
1268 if_info->x, 0, OPTAB_WIDEN);
1271 if (! target)
1273 end_sequence ();
1274 return FALSE;
1277 if (target != if_info->x)
1278 noce_emit_move_insn (if_info->x, target);
1280 seq = end_ifcvt_sequence (if_info);
1281 if (!seq)
1282 return FALSE;
1284 emit_insn_before_setloc (seq, if_info->jump,
1285 INSN_LOCATION (if_info->insn_a));
1286 return TRUE;
1289 return FALSE;
1292 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1293 similarly for "foo--". */
1295 static int
1296 noce_try_addcc (struct noce_if_info *if_info)
1298 rtx target;
1299 rtx_insn *seq;
1300 int subtract, normalize;
1302 if (GET_CODE (if_info->a) == PLUS
1303 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1304 && (reversed_comparison_code (if_info->cond, if_info->jump)
1305 != UNKNOWN))
1307 rtx cond = if_info->cond;
1308 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1310 /* First try to use addcc pattern. */
1311 if (general_operand (XEXP (cond, 0), VOIDmode)
1312 && general_operand (XEXP (cond, 1), VOIDmode))
1314 start_sequence ();
1315 target = emit_conditional_add (if_info->x, code,
1316 XEXP (cond, 0),
1317 XEXP (cond, 1),
1318 VOIDmode,
1319 if_info->b,
1320 XEXP (if_info->a, 1),
1321 GET_MODE (if_info->x),
1322 (code == LTU || code == GEU
1323 || code == LEU || code == GTU));
1324 if (target)
1326 if (target != if_info->x)
1327 noce_emit_move_insn (if_info->x, target);
1329 seq = end_ifcvt_sequence (if_info);
1330 if (!seq)
1331 return FALSE;
1333 emit_insn_before_setloc (seq, if_info->jump,
1334 INSN_LOCATION (if_info->insn_a));
1335 return TRUE;
1337 end_sequence ();
1340 /* If that fails, construct conditional increment or decrement using
1341 setcc. */
1342 if (if_info->branch_cost >= 2
1343 && (XEXP (if_info->a, 1) == const1_rtx
1344 || XEXP (if_info->a, 1) == constm1_rtx))
1346 start_sequence ();
1347 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1348 subtract = 0, normalize = 0;
1349 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1350 subtract = 1, normalize = 0;
1351 else
1352 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1355 target = noce_emit_store_flag (if_info,
1356 gen_reg_rtx (GET_MODE (if_info->x)),
1357 1, normalize);
1359 if (target)
1360 target = expand_simple_binop (GET_MODE (if_info->x),
1361 subtract ? MINUS : PLUS,
1362 if_info->b, target, if_info->x,
1363 0, OPTAB_WIDEN);
1364 if (target)
1366 if (target != if_info->x)
1367 noce_emit_move_insn (if_info->x, target);
1369 seq = end_ifcvt_sequence (if_info);
1370 if (!seq)
1371 return FALSE;
1373 emit_insn_before_setloc (seq, if_info->jump,
1374 INSN_LOCATION (if_info->insn_a));
1375 return TRUE;
1377 end_sequence ();
1381 return FALSE;
1384 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1386 static int
1387 noce_try_store_flag_mask (struct noce_if_info *if_info)
1389 rtx target;
1390 rtx_insn *seq;
1391 int reversep;
1393 reversep = 0;
1394 if ((if_info->branch_cost >= 2
1395 || STORE_FLAG_VALUE == -1)
1396 && ((if_info->a == const0_rtx
1397 && rtx_equal_p (if_info->b, if_info->x))
1398 || ((reversep = (reversed_comparison_code (if_info->cond,
1399 if_info->jump)
1400 != UNKNOWN))
1401 && if_info->b == const0_rtx
1402 && rtx_equal_p (if_info->a, if_info->x))))
1404 start_sequence ();
1405 target = noce_emit_store_flag (if_info,
1406 gen_reg_rtx (GET_MODE (if_info->x)),
1407 reversep, -1);
1408 if (target)
1409 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1410 if_info->x,
1411 target, if_info->x, 0,
1412 OPTAB_WIDEN);
1414 if (target)
1416 int old_cost, new_cost, insn_cost;
1417 int speed_p;
1419 if (target != if_info->x)
1420 noce_emit_move_insn (if_info->x, target);
1422 seq = end_ifcvt_sequence (if_info);
1423 if (!seq)
1424 return FALSE;
1426 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1427 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1428 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1429 new_cost = seq_cost (seq, speed_p);
1431 if (new_cost > old_cost)
1432 return FALSE;
1434 emit_insn_before_setloc (seq, if_info->jump,
1435 INSN_LOCATION (if_info->insn_a));
1436 return TRUE;
1439 end_sequence ();
1442 return FALSE;
1445 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1447 static rtx
1448 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1449 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1451 rtx target ATTRIBUTE_UNUSED;
1452 int unsignedp ATTRIBUTE_UNUSED;
1454 /* If earliest == jump, try to build the cmove insn directly.
1455 This is helpful when combine has created some complex condition
1456 (like for alpha's cmovlbs) that we can't hope to regenerate
1457 through the normal interface. */
1459 if (if_info->cond_earliest == if_info->jump)
1461 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1462 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1463 cond, vtrue, vfalse);
1464 rtx set = gen_rtx_SET (VOIDmode, x, if_then_else);
1466 start_sequence ();
1467 rtx_insn *insn = emit_insn (set);
1469 if (recog_memoized (insn) >= 0)
1471 rtx_insn *seq = get_insns ();
1472 end_sequence ();
1473 emit_insn (seq);
1475 return x;
1478 end_sequence ();
1481 /* Don't even try if the comparison operands are weird
1482 except that the target supports cbranchcc4. */
1483 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1484 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1486 if (!(HAVE_cbranchcc4)
1487 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1488 || cmp_b != const0_rtx)
1489 return NULL_RTX;
1492 #if HAVE_conditional_move
1493 unsignedp = (code == LTU || code == GEU
1494 || code == LEU || code == GTU);
1496 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1497 vtrue, vfalse, GET_MODE (x),
1498 unsignedp);
1499 if (target)
1500 return target;
1502 /* We might be faced with a situation like:
1504 x = (reg:M TARGET)
1505 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1506 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1508 We can't do a conditional move in mode M, but it's possible that we
1509 could do a conditional move in mode N instead and take a subreg of
1510 the result.
1512 If we can't create new pseudos, though, don't bother. */
1513 if (reload_completed)
1514 return NULL_RTX;
1516 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1518 rtx reg_vtrue = SUBREG_REG (vtrue);
1519 rtx reg_vfalse = SUBREG_REG (vfalse);
1520 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1521 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1522 rtx promoted_target;
1524 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1525 || byte_vtrue != byte_vfalse
1526 || (SUBREG_PROMOTED_VAR_P (vtrue)
1527 != SUBREG_PROMOTED_VAR_P (vfalse))
1528 || (SUBREG_PROMOTED_GET (vtrue)
1529 != SUBREG_PROMOTED_GET (vfalse)))
1530 return NULL_RTX;
1532 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1534 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1535 VOIDmode, reg_vtrue, reg_vfalse,
1536 GET_MODE (reg_vtrue), unsignedp);
1537 /* Nope, couldn't do it in that mode either. */
1538 if (!target)
1539 return NULL_RTX;
1541 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1542 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1543 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1544 emit_move_insn (x, target);
1545 return x;
1547 else
1548 return NULL_RTX;
1549 #else
1550 /* We'll never get here, as noce_process_if_block doesn't call the
1551 functions involved. Ifdef code, however, should be discouraged
1552 because it leads to typos in the code not selected. However,
1553 emit_conditional_move won't exist either. */
1554 return NULL_RTX;
1555 #endif
1558 /* Try only simple constants and registers here. More complex cases
1559 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1560 has had a go at it. */
1562 static int
1563 noce_try_cmove (struct noce_if_info *if_info)
1565 enum rtx_code code;
1566 rtx target;
1567 rtx_insn *seq;
1569 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1570 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1572 start_sequence ();
1574 code = GET_CODE (if_info->cond);
1575 target = noce_emit_cmove (if_info, if_info->x, code,
1576 XEXP (if_info->cond, 0),
1577 XEXP (if_info->cond, 1),
1578 if_info->a, if_info->b);
1580 if (target)
1582 if (target != if_info->x)
1583 noce_emit_move_insn (if_info->x, target);
1585 seq = end_ifcvt_sequence (if_info);
1586 if (!seq)
1587 return FALSE;
1589 emit_insn_before_setloc (seq, if_info->jump,
1590 INSN_LOCATION (if_info->insn_a));
1591 return TRUE;
1593 else
1595 end_sequence ();
1596 return FALSE;
1600 return FALSE;
1603 /* Try more complex cases involving conditional_move. */
1605 static int
1606 noce_try_cmove_arith (struct noce_if_info *if_info)
1608 rtx a = if_info->a;
1609 rtx b = if_info->b;
1610 rtx x = if_info->x;
1611 rtx orig_a, orig_b;
1612 rtx_insn *insn_a, *insn_b;
1613 rtx target;
1614 int is_mem = 0;
1615 int insn_cost;
1616 enum rtx_code code;
1617 rtx_insn *ifcvt_seq;
1619 /* A conditional move from two memory sources is equivalent to a
1620 conditional on their addresses followed by a load. Don't do this
1621 early because it'll screw alias analysis. Note that we've
1622 already checked for no side effects. */
1623 /* ??? FIXME: Magic number 5. */
1624 if (cse_not_expected
1625 && MEM_P (a) && MEM_P (b)
1626 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1627 && if_info->branch_cost >= 5)
1629 machine_mode address_mode = get_address_mode (a);
1631 a = XEXP (a, 0);
1632 b = XEXP (b, 0);
1633 x = gen_reg_rtx (address_mode);
1634 is_mem = 1;
1637 /* ??? We could handle this if we knew that a load from A or B could
1638 not trap or fault. This is also true if we've already loaded
1639 from the address along the path from ENTRY. */
1640 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1641 return FALSE;
1643 /* if (test) x = a + b; else x = c - d;
1644 => y = a + b;
1645 x = c - d;
1646 if (test)
1647 x = y;
1650 code = GET_CODE (if_info->cond);
1651 insn_a = if_info->insn_a;
1652 insn_b = if_info->insn_b;
1654 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1655 if insn_rtx_cost can't be estimated. */
1656 if (insn_a)
1658 insn_cost
1659 = insn_rtx_cost (PATTERN (insn_a),
1660 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1661 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1662 return FALSE;
1664 else
1665 insn_cost = 0;
1667 if (insn_b)
1669 insn_cost
1670 += insn_rtx_cost (PATTERN (insn_b),
1671 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1672 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1673 return FALSE;
1676 /* Possibly rearrange operands to make things come out more natural. */
1677 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1679 int reversep = 0;
1680 if (rtx_equal_p (b, x))
1681 reversep = 1;
1682 else if (general_operand (b, GET_MODE (b)))
1683 reversep = 1;
1685 if (reversep)
1687 rtx tmp;
1688 rtx_insn *tmp_insn;
1689 code = reversed_comparison_code (if_info->cond, if_info->jump);
1690 tmp = a, a = b, b = tmp;
1691 tmp_insn = insn_a, insn_a = insn_b, insn_b = tmp_insn;
1695 start_sequence ();
1697 orig_a = a;
1698 orig_b = b;
1700 /* If either operand is complex, load it into a register first.
1701 The best way to do this is to copy the original insn. In this
1702 way we preserve any clobbers etc that the insn may have had.
1703 This is of course not possible in the IS_MEM case. */
1704 if (! general_operand (a, GET_MODE (a)))
1706 rtx_insn *insn;
1708 if (is_mem)
1710 rtx reg = gen_reg_rtx (GET_MODE (a));
1711 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, a));
1713 else if (! insn_a)
1714 goto end_seq_and_fail;
1715 else
1717 a = gen_reg_rtx (GET_MODE (a));
1718 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
1719 rtx set = single_set (copy_of_a);
1720 SET_DEST (set) = a;
1721 insn = emit_insn (PATTERN (copy_of_a));
1723 if (recog_memoized (insn) < 0)
1724 goto end_seq_and_fail;
1726 if (! general_operand (b, GET_MODE (b)))
1728 rtx pat;
1729 rtx_insn *last;
1730 rtx_insn *new_insn;
1732 if (is_mem)
1734 rtx reg = gen_reg_rtx (GET_MODE (b));
1735 pat = gen_rtx_SET (VOIDmode, reg, b);
1737 else if (! insn_b)
1738 goto end_seq_and_fail;
1739 else
1741 b = gen_reg_rtx (GET_MODE (b));
1742 rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b));
1743 rtx set = single_set (copy_of_insn_b);
1744 SET_DEST (set) = b;
1745 pat = PATTERN (copy_of_insn_b);
1748 /* If insn to set up A clobbers any registers B depends on, try to
1749 swap insn that sets up A with the one that sets up B. If even
1750 that doesn't help, punt. */
1751 last = get_last_insn ();
1752 if (last && modified_in_p (orig_b, last))
1754 new_insn = emit_insn_before (pat, get_insns ());
1755 if (modified_in_p (orig_a, new_insn))
1756 goto end_seq_and_fail;
1758 else
1759 new_insn = emit_insn (pat);
1761 if (recog_memoized (new_insn) < 0)
1762 goto end_seq_and_fail;
1765 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1766 XEXP (if_info->cond, 1), a, b);
1768 if (! target)
1769 goto end_seq_and_fail;
1771 /* If we're handling a memory for above, emit the load now. */
1772 if (is_mem)
1774 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
1776 /* Copy over flags as appropriate. */
1777 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1778 MEM_VOLATILE_P (mem) = 1;
1779 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1780 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
1781 set_mem_align (mem,
1782 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1784 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1785 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
1787 noce_emit_move_insn (if_info->x, mem);
1789 else if (target != x)
1790 noce_emit_move_insn (x, target);
1792 ifcvt_seq = end_ifcvt_sequence (if_info);
1793 if (!ifcvt_seq)
1794 return FALSE;
1796 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
1797 INSN_LOCATION (if_info->insn_a));
1798 return TRUE;
1800 end_seq_and_fail:
1801 end_sequence ();
1802 return FALSE;
1805 /* For most cases, the simplified condition we found is the best
1806 choice, but this is not the case for the min/max/abs transforms.
1807 For these we wish to know that it is A or B in the condition. */
1809 static rtx
1810 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1811 rtx_insn **earliest)
1813 rtx cond, set;
1814 rtx_insn *insn;
1815 int reverse;
1817 /* If target is already mentioned in the known condition, return it. */
1818 if (reg_mentioned_p (target, if_info->cond))
1820 *earliest = if_info->cond_earliest;
1821 return if_info->cond;
1824 set = pc_set (if_info->jump);
1825 cond = XEXP (SET_SRC (set), 0);
1826 reverse
1827 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1828 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
1829 if (if_info->then_else_reversed)
1830 reverse = !reverse;
1832 /* If we're looking for a constant, try to make the conditional
1833 have that constant in it. There are two reasons why it may
1834 not have the constant we want:
1836 1. GCC may have needed to put the constant in a register, because
1837 the target can't compare directly against that constant. For
1838 this case, we look for a SET immediately before the comparison
1839 that puts a constant in that register.
1841 2. GCC may have canonicalized the conditional, for example
1842 replacing "if x < 4" with "if x <= 3". We can undo that (or
1843 make equivalent types of changes) to get the constants we need
1844 if they're off by one in the right direction. */
1846 if (CONST_INT_P (target))
1848 enum rtx_code code = GET_CODE (if_info->cond);
1849 rtx op_a = XEXP (if_info->cond, 0);
1850 rtx op_b = XEXP (if_info->cond, 1);
1851 rtx prev_insn;
1853 /* First, look to see if we put a constant in a register. */
1854 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1855 if (prev_insn
1856 && BLOCK_FOR_INSN (prev_insn)
1857 == BLOCK_FOR_INSN (if_info->cond_earliest)
1858 && INSN_P (prev_insn)
1859 && GET_CODE (PATTERN (prev_insn)) == SET)
1861 rtx src = find_reg_equal_equiv_note (prev_insn);
1862 if (!src)
1863 src = SET_SRC (PATTERN (prev_insn));
1864 if (CONST_INT_P (src))
1866 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1867 op_a = src;
1868 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1869 op_b = src;
1871 if (CONST_INT_P (op_a))
1873 rtx tmp = op_a;
1874 op_a = op_b;
1875 op_b = tmp;
1876 code = swap_condition (code);
1881 /* Now, look to see if we can get the right constant by
1882 adjusting the conditional. */
1883 if (CONST_INT_P (op_b))
1885 HOST_WIDE_INT desired_val = INTVAL (target);
1886 HOST_WIDE_INT actual_val = INTVAL (op_b);
1888 switch (code)
1890 case LT:
1891 if (actual_val == desired_val + 1)
1893 code = LE;
1894 op_b = GEN_INT (desired_val);
1896 break;
1897 case LE:
1898 if (actual_val == desired_val - 1)
1900 code = LT;
1901 op_b = GEN_INT (desired_val);
1903 break;
1904 case GT:
1905 if (actual_val == desired_val - 1)
1907 code = GE;
1908 op_b = GEN_INT (desired_val);
1910 break;
1911 case GE:
1912 if (actual_val == desired_val + 1)
1914 code = GT;
1915 op_b = GEN_INT (desired_val);
1917 break;
1918 default:
1919 break;
1923 /* If we made any changes, generate a new conditional that is
1924 equivalent to what we started with, but has the right
1925 constants in it. */
1926 if (code != GET_CODE (if_info->cond)
1927 || op_a != XEXP (if_info->cond, 0)
1928 || op_b != XEXP (if_info->cond, 1))
1930 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1931 *earliest = if_info->cond_earliest;
1932 return cond;
1936 cond = canonicalize_condition (if_info->jump, cond, reverse,
1937 earliest, target, HAVE_cbranchcc4, true);
1938 if (! cond || ! reg_mentioned_p (target, cond))
1939 return NULL;
1941 /* We almost certainly searched back to a different place.
1942 Need to re-verify correct lifetimes. */
1944 /* X may not be mentioned in the range (cond_earliest, jump]. */
1945 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1946 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1947 return NULL;
1949 /* A and B may not be modified in the range [cond_earliest, jump). */
1950 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1951 if (INSN_P (insn)
1952 && (modified_in_p (if_info->a, insn)
1953 || modified_in_p (if_info->b, insn)))
1954 return NULL;
1956 return cond;
1959 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1961 static int
1962 noce_try_minmax (struct noce_if_info *if_info)
1964 rtx cond, target;
1965 rtx_insn *earliest, *seq;
1966 enum rtx_code code, op;
1967 int unsignedp;
1969 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1970 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1971 to get the target to tell us... */
1972 if (HONOR_SIGNED_ZEROS (if_info->x)
1973 || HONOR_NANS (if_info->x))
1974 return FALSE;
1976 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1977 if (!cond)
1978 return FALSE;
1980 /* Verify the condition is of the form we expect, and canonicalize
1981 the comparison code. */
1982 code = GET_CODE (cond);
1983 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1985 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1986 return FALSE;
1988 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1990 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1991 return FALSE;
1992 code = swap_condition (code);
1994 else
1995 return FALSE;
1997 /* Determine what sort of operation this is. Note that the code is for
1998 a taken branch, so the code->operation mapping appears backwards. */
1999 switch (code)
2001 case LT:
2002 case LE:
2003 case UNLT:
2004 case UNLE:
2005 op = SMAX;
2006 unsignedp = 0;
2007 break;
2008 case GT:
2009 case GE:
2010 case UNGT:
2011 case UNGE:
2012 op = SMIN;
2013 unsignedp = 0;
2014 break;
2015 case LTU:
2016 case LEU:
2017 op = UMAX;
2018 unsignedp = 1;
2019 break;
2020 case GTU:
2021 case GEU:
2022 op = UMIN;
2023 unsignedp = 1;
2024 break;
2025 default:
2026 return FALSE;
2029 start_sequence ();
2031 target = expand_simple_binop (GET_MODE (if_info->x), op,
2032 if_info->a, if_info->b,
2033 if_info->x, unsignedp, OPTAB_WIDEN);
2034 if (! target)
2036 end_sequence ();
2037 return FALSE;
2039 if (target != if_info->x)
2040 noce_emit_move_insn (if_info->x, target);
2042 seq = end_ifcvt_sequence (if_info);
2043 if (!seq)
2044 return FALSE;
2046 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2047 if_info->cond = cond;
2048 if_info->cond_earliest = earliest;
2050 return TRUE;
2053 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2054 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2055 etc. */
2057 static int
2058 noce_try_abs (struct noce_if_info *if_info)
2060 rtx cond, target, a, b, c;
2061 rtx_insn *earliest, *seq;
2062 int negate;
2063 bool one_cmpl = false;
2065 /* Reject modes with signed zeros. */
2066 if (HONOR_SIGNED_ZEROS (if_info->x))
2067 return FALSE;
2069 /* Recognize A and B as constituting an ABS or NABS. The canonical
2070 form is a branch around the negation, taken when the object is the
2071 first operand of a comparison against 0 that evaluates to true. */
2072 a = if_info->a;
2073 b = if_info->b;
2074 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2075 negate = 0;
2076 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2078 c = a; a = b; b = c;
2079 negate = 1;
2081 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2083 negate = 0;
2084 one_cmpl = true;
2086 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2088 c = a; a = b; b = c;
2089 negate = 1;
2090 one_cmpl = true;
2092 else
2093 return FALSE;
2095 cond = noce_get_alt_condition (if_info, b, &earliest);
2096 if (!cond)
2097 return FALSE;
2099 /* Verify the condition is of the form we expect. */
2100 if (rtx_equal_p (XEXP (cond, 0), b))
2101 c = XEXP (cond, 1);
2102 else if (rtx_equal_p (XEXP (cond, 1), b))
2104 c = XEXP (cond, 0);
2105 negate = !negate;
2107 else
2108 return FALSE;
2110 /* Verify that C is zero. Search one step backward for a
2111 REG_EQUAL note or a simple source if necessary. */
2112 if (REG_P (c))
2114 rtx set;
2115 rtx_insn *insn = prev_nonnote_insn (earliest);
2116 if (insn
2117 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2118 && (set = single_set (insn))
2119 && rtx_equal_p (SET_DEST (set), c))
2121 rtx note = find_reg_equal_equiv_note (insn);
2122 if (note)
2123 c = XEXP (note, 0);
2124 else
2125 c = SET_SRC (set);
2127 else
2128 return FALSE;
2130 if (MEM_P (c)
2131 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2132 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2133 c = get_pool_constant (XEXP (c, 0));
2135 /* Work around funny ideas get_condition has wrt canonicalization.
2136 Note that these rtx constants are known to be CONST_INT, and
2137 therefore imply integer comparisons. */
2138 if (c == constm1_rtx && GET_CODE (cond) == GT)
2140 else if (c == const1_rtx && GET_CODE (cond) == LT)
2142 else if (c != CONST0_RTX (GET_MODE (b)))
2143 return FALSE;
2145 /* Determine what sort of operation this is. */
2146 switch (GET_CODE (cond))
2148 case LT:
2149 case LE:
2150 case UNLT:
2151 case UNLE:
2152 negate = !negate;
2153 break;
2154 case GT:
2155 case GE:
2156 case UNGT:
2157 case UNGE:
2158 break;
2159 default:
2160 return FALSE;
2163 start_sequence ();
2164 if (one_cmpl)
2165 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2166 if_info->x);
2167 else
2168 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2170 /* ??? It's a quandary whether cmove would be better here, especially
2171 for integers. Perhaps combine will clean things up. */
2172 if (target && negate)
2174 if (one_cmpl)
2175 target = expand_simple_unop (GET_MODE (target), NOT, target,
2176 if_info->x, 0);
2177 else
2178 target = expand_simple_unop (GET_MODE (target), NEG, target,
2179 if_info->x, 0);
2182 if (! target)
2184 end_sequence ();
2185 return FALSE;
2188 if (target != if_info->x)
2189 noce_emit_move_insn (if_info->x, target);
2191 seq = end_ifcvt_sequence (if_info);
2192 if (!seq)
2193 return FALSE;
2195 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2196 if_info->cond = cond;
2197 if_info->cond_earliest = earliest;
2199 return TRUE;
2202 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2204 static int
2205 noce_try_sign_mask (struct noce_if_info *if_info)
2207 rtx cond, t, m, c;
2208 rtx_insn *seq;
2209 machine_mode mode;
2210 enum rtx_code code;
2211 bool t_unconditional;
2213 cond = if_info->cond;
2214 code = GET_CODE (cond);
2215 m = XEXP (cond, 0);
2216 c = XEXP (cond, 1);
2218 t = NULL_RTX;
2219 if (if_info->a == const0_rtx)
2221 if ((code == LT && c == const0_rtx)
2222 || (code == LE && c == constm1_rtx))
2223 t = if_info->b;
2225 else if (if_info->b == const0_rtx)
2227 if ((code == GE && c == const0_rtx)
2228 || (code == GT && c == constm1_rtx))
2229 t = if_info->a;
2232 if (! t || side_effects_p (t))
2233 return FALSE;
2235 /* We currently don't handle different modes. */
2236 mode = GET_MODE (t);
2237 if (GET_MODE (m) != mode)
2238 return FALSE;
2240 /* This is only profitable if T is unconditionally executed/evaluated in the
2241 original insn sequence or T is cheap. The former happens if B is the
2242 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2243 INSN_B which can happen for e.g. conditional stores to memory. For the
2244 cost computation use the block TEST_BB where the evaluation will end up
2245 after the transformation. */
2246 t_unconditional =
2247 (t == if_info->b
2248 && (if_info->insn_b == NULL_RTX
2249 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2250 if (!(t_unconditional
2251 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2252 < COSTS_N_INSNS (2))))
2253 return FALSE;
2255 start_sequence ();
2256 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2257 "(signed) m >> 31" directly. This benefits targets with specialized
2258 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2259 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2260 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2261 : NULL_RTX;
2263 if (!t)
2265 end_sequence ();
2266 return FALSE;
2269 noce_emit_move_insn (if_info->x, t);
2271 seq = end_ifcvt_sequence (if_info);
2272 if (!seq)
2273 return FALSE;
2275 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2276 return TRUE;
2280 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2281 transformations. */
2283 static int
2284 noce_try_bitop (struct noce_if_info *if_info)
2286 rtx cond, x, a, result;
2287 rtx_insn *seq;
2288 machine_mode mode;
2289 enum rtx_code code;
2290 int bitnum;
2292 x = if_info->x;
2293 cond = if_info->cond;
2294 code = GET_CODE (cond);
2296 /* Check for no else condition. */
2297 if (! rtx_equal_p (x, if_info->b))
2298 return FALSE;
2300 /* Check for a suitable condition. */
2301 if (code != NE && code != EQ)
2302 return FALSE;
2303 if (XEXP (cond, 1) != const0_rtx)
2304 return FALSE;
2305 cond = XEXP (cond, 0);
2307 /* ??? We could also handle AND here. */
2308 if (GET_CODE (cond) == ZERO_EXTRACT)
2310 if (XEXP (cond, 1) != const1_rtx
2311 || !CONST_INT_P (XEXP (cond, 2))
2312 || ! rtx_equal_p (x, XEXP (cond, 0)))
2313 return FALSE;
2314 bitnum = INTVAL (XEXP (cond, 2));
2315 mode = GET_MODE (x);
2316 if (BITS_BIG_ENDIAN)
2317 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2318 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2319 return FALSE;
2321 else
2322 return FALSE;
2324 a = if_info->a;
2325 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2327 /* Check for "if (X & C) x = x op C". */
2328 if (! rtx_equal_p (x, XEXP (a, 0))
2329 || !CONST_INT_P (XEXP (a, 1))
2330 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2331 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2332 return FALSE;
2334 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2335 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2336 if (GET_CODE (a) == IOR)
2337 result = (code == NE) ? a : NULL_RTX;
2338 else if (code == NE)
2340 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2341 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2342 result = simplify_gen_binary (IOR, mode, x, result);
2344 else
2346 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2347 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2348 result = simplify_gen_binary (AND, mode, x, result);
2351 else if (GET_CODE (a) == AND)
2353 /* Check for "if (X & C) x &= ~C". */
2354 if (! rtx_equal_p (x, XEXP (a, 0))
2355 || !CONST_INT_P (XEXP (a, 1))
2356 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2357 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2358 return FALSE;
2360 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2361 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2362 result = (code == EQ) ? a : NULL_RTX;
2364 else
2365 return FALSE;
2367 if (result)
2369 start_sequence ();
2370 noce_emit_move_insn (x, result);
2371 seq = end_ifcvt_sequence (if_info);
2372 if (!seq)
2373 return FALSE;
2375 emit_insn_before_setloc (seq, if_info->jump,
2376 INSN_LOCATION (if_info->insn_a));
2378 return TRUE;
2382 /* Similar to get_condition, only the resulting condition must be
2383 valid at JUMP, instead of at EARLIEST.
2385 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2386 THEN block of the caller, and we have to reverse the condition. */
2388 static rtx
2389 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2391 rtx cond, set, tmp;
2392 bool reverse;
2394 if (! any_condjump_p (jump))
2395 return NULL_RTX;
2397 set = pc_set (jump);
2399 /* If this branches to JUMP_LABEL when the condition is false,
2400 reverse the condition. */
2401 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2402 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2404 /* We may have to reverse because the caller's if block is not canonical,
2405 i.e. the THEN block isn't the fallthrough block for the TEST block
2406 (see find_if_header). */
2407 if (then_else_reversed)
2408 reverse = !reverse;
2410 /* If the condition variable is a register and is MODE_INT, accept it. */
2412 cond = XEXP (SET_SRC (set), 0);
2413 tmp = XEXP (cond, 0);
2414 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2415 && (GET_MODE (tmp) != BImode
2416 || !targetm.small_register_classes_for_mode_p (BImode)))
2418 *earliest = jump;
2420 if (reverse)
2421 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2422 GET_MODE (cond), tmp, XEXP (cond, 1));
2423 return cond;
2426 /* Otherwise, fall back on canonicalize_condition to do the dirty
2427 work of manipulating MODE_CC values and COMPARE rtx codes. */
2428 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2429 NULL_RTX, HAVE_cbranchcc4, true);
2431 /* We don't handle side-effects in the condition, like handling
2432 REG_INC notes and making sure no duplicate conditions are emitted. */
2433 if (tmp != NULL_RTX && side_effects_p (tmp))
2434 return NULL_RTX;
2436 return tmp;
2439 /* Return true if OP is ok for if-then-else processing. */
2441 static int
2442 noce_operand_ok (const_rtx op)
2444 if (side_effects_p (op))
2445 return FALSE;
2447 /* We special-case memories, so handle any of them with
2448 no address side effects. */
2449 if (MEM_P (op))
2450 return ! side_effects_p (XEXP (op, 0));
2452 return ! may_trap_p (op);
2455 /* Return true if a write into MEM may trap or fault. */
2457 static bool
2458 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2460 rtx addr;
2462 if (MEM_READONLY_P (mem))
2463 return true;
2465 if (may_trap_or_fault_p (mem))
2466 return true;
2468 addr = XEXP (mem, 0);
2470 /* Call target hook to avoid the effects of -fpic etc.... */
2471 addr = targetm.delegitimize_address (addr);
2473 while (addr)
2474 switch (GET_CODE (addr))
2476 case CONST:
2477 case PRE_DEC:
2478 case PRE_INC:
2479 case POST_DEC:
2480 case POST_INC:
2481 case POST_MODIFY:
2482 addr = XEXP (addr, 0);
2483 break;
2484 case LO_SUM:
2485 case PRE_MODIFY:
2486 addr = XEXP (addr, 1);
2487 break;
2488 case PLUS:
2489 if (CONST_INT_P (XEXP (addr, 1)))
2490 addr = XEXP (addr, 0);
2491 else
2492 return false;
2493 break;
2494 case LABEL_REF:
2495 return true;
2496 case SYMBOL_REF:
2497 if (SYMBOL_REF_DECL (addr)
2498 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2499 return true;
2500 return false;
2501 default:
2502 return false;
2505 return false;
2508 /* Return whether we can use store speculation for MEM. TOP_BB is the
2509 basic block above the conditional block where we are considering
2510 doing the speculative store. We look for whether MEM is set
2511 unconditionally later in the function. */
2513 static bool
2514 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2516 basic_block dominator;
2518 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2519 dominator != NULL;
2520 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2522 rtx_insn *insn;
2524 FOR_BB_INSNS (dominator, insn)
2526 /* If we see something that might be a memory barrier, we
2527 have to stop looking. Even if the MEM is set later in
2528 the function, we still don't want to set it
2529 unconditionally before the barrier. */
2530 if (INSN_P (insn)
2531 && (volatile_insn_p (PATTERN (insn))
2532 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2533 return false;
2535 if (memory_must_be_modified_in_insn_p (mem, insn))
2536 return true;
2537 if (modified_in_p (XEXP (mem, 0), insn))
2538 return false;
2543 return false;
2546 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2547 it without using conditional execution. Return TRUE if we were successful
2548 at converting the block. */
2550 static int
2551 noce_process_if_block (struct noce_if_info *if_info)
2553 basic_block test_bb = if_info->test_bb; /* test block */
2554 basic_block then_bb = if_info->then_bb; /* THEN */
2555 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2556 basic_block join_bb = if_info->join_bb; /* JOIN */
2557 rtx_insn *jump = if_info->jump;
2558 rtx cond = if_info->cond;
2559 rtx_insn *insn_a, *insn_b;
2560 rtx set_a, set_b;
2561 rtx orig_x, x, a, b;
2562 rtx cc;
2564 /* We're looking for patterns of the form
2566 (1) if (...) x = a; else x = b;
2567 (2) x = b; if (...) x = a;
2568 (3) if (...) x = a; // as if with an initial x = x.
2570 The later patterns require jumps to be more expensive.
2572 ??? For future expansion, look for multiple X in such patterns. */
2574 /* Look for one of the potential sets. */
2575 insn_a = first_active_insn (then_bb);
2576 if (! insn_a
2577 || insn_a != last_active_insn (then_bb, FALSE)
2578 || (set_a = single_set (insn_a)) == NULL_RTX)
2579 return FALSE;
2581 x = SET_DEST (set_a);
2582 a = SET_SRC (set_a);
2584 /* Look for the other potential set. Make sure we've got equivalent
2585 destinations. */
2586 /* ??? This is overconservative. Storing to two different mems is
2587 as easy as conditionally computing the address. Storing to a
2588 single mem merely requires a scratch memory to use as one of the
2589 destination addresses; often the memory immediately below the
2590 stack pointer is available for this. */
2591 set_b = NULL_RTX;
2592 if (else_bb)
2594 insn_b = first_active_insn (else_bb);
2595 if (! insn_b
2596 || insn_b != last_active_insn (else_bb, FALSE)
2597 || (set_b = single_set (insn_b)) == NULL_RTX
2598 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2599 return FALSE;
2601 else
2603 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2604 /* We're going to be moving the evaluation of B down from above
2605 COND_EARLIEST to JUMP. Make sure the relevant data is still
2606 intact. */
2607 if (! insn_b
2608 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2609 || !NONJUMP_INSN_P (insn_b)
2610 || (set_b = single_set (insn_b)) == NULL_RTX
2611 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2612 || ! noce_operand_ok (SET_SRC (set_b))
2613 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2614 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2615 /* Avoid extending the lifetime of hard registers on small
2616 register class machines. */
2617 || (REG_P (SET_SRC (set_b))
2618 && HARD_REGISTER_P (SET_SRC (set_b))
2619 && targetm.small_register_classes_for_mode_p
2620 (GET_MODE (SET_SRC (set_b))))
2621 /* Likewise with X. In particular this can happen when
2622 noce_get_condition looks farther back in the instruction
2623 stream than one might expect. */
2624 || reg_overlap_mentioned_p (x, cond)
2625 || reg_overlap_mentioned_p (x, a)
2626 || modified_between_p (x, insn_b, jump))
2628 insn_b = NULL;
2629 set_b = NULL_RTX;
2633 /* If x has side effects then only the if-then-else form is safe to
2634 convert. But even in that case we would need to restore any notes
2635 (such as REG_INC) at then end. That can be tricky if
2636 noce_emit_move_insn expands to more than one insn, so disable the
2637 optimization entirely for now if there are side effects. */
2638 if (side_effects_p (x))
2639 return FALSE;
2641 b = (set_b ? SET_SRC (set_b) : x);
2643 /* Only operate on register destinations, and even then avoid extending
2644 the lifetime of hard registers on small register class machines. */
2645 orig_x = x;
2646 if (!REG_P (x)
2647 || (HARD_REGISTER_P (x)
2648 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2650 if (GET_MODE (x) == BLKmode)
2651 return FALSE;
2653 if (GET_CODE (x) == ZERO_EXTRACT
2654 && (!CONST_INT_P (XEXP (x, 1))
2655 || !CONST_INT_P (XEXP (x, 2))))
2656 return FALSE;
2658 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2659 ? XEXP (x, 0) : x));
2662 /* Don't operate on sources that may trap or are volatile. */
2663 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2664 return FALSE;
2666 retry:
2667 /* Set up the info block for our subroutines. */
2668 if_info->insn_a = insn_a;
2669 if_info->insn_b = insn_b;
2670 if_info->x = x;
2671 if_info->a = a;
2672 if_info->b = b;
2674 /* Skip it if the instruction to be moved might clobber CC. */
2675 cc = cc_in_cond (cond);
2676 if (cc
2677 && (set_of (cc, insn_a)
2678 || (insn_b && set_of (cc, insn_b))))
2679 return FALSE;
2681 /* Try optimizations in some approximation of a useful order. */
2682 /* ??? Should first look to see if X is live incoming at all. If it
2683 isn't, we don't need anything but an unconditional set. */
2685 /* Look and see if A and B are really the same. Avoid creating silly
2686 cmove constructs that no one will fix up later. */
2687 if (rtx_interchangeable_p (a, b))
2689 /* If we have an INSN_B, we don't have to create any new rtl. Just
2690 move the instruction that we already have. If we don't have an
2691 INSN_B, that means that A == X, and we've got a noop move. In
2692 that case don't do anything and let the code below delete INSN_A. */
2693 if (insn_b && else_bb)
2695 rtx note;
2697 if (else_bb && insn_b == BB_END (else_bb))
2698 BB_END (else_bb) = PREV_INSN (insn_b);
2699 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2701 /* If there was a REG_EQUAL note, delete it since it may have been
2702 true due to this insn being after a jump. */
2703 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2704 remove_note (insn_b, note);
2706 insn_b = NULL;
2708 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2709 x must be executed twice. */
2710 else if (insn_b && side_effects_p (orig_x))
2711 return FALSE;
2713 x = orig_x;
2714 goto success;
2717 if (!set_b && MEM_P (orig_x))
2719 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2720 for optimizations if writing to x may trap or fault,
2721 i.e. it's a memory other than a static var or a stack slot,
2722 is misaligned on strict aligned machines or is read-only. If
2723 x is a read-only memory, then the program is valid only if we
2724 avoid the store into it. If there are stores on both the
2725 THEN and ELSE arms, then we can go ahead with the conversion;
2726 either the program is broken, or the condition is always
2727 false such that the other memory is selected. */
2728 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2729 return FALSE;
2731 /* Avoid store speculation: given "if (...) x = a" where x is a
2732 MEM, we only want to do the store if x is always set
2733 somewhere in the function. This avoids cases like
2734 if (pthread_mutex_trylock(mutex))
2735 ++global_variable;
2736 where we only want global_variable to be changed if the mutex
2737 is held. FIXME: This should ideally be expressed directly in
2738 RTL somehow. */
2739 if (!noce_can_store_speculate_p (test_bb, orig_x))
2740 return FALSE;
2743 if (noce_try_move (if_info))
2744 goto success;
2745 if (noce_try_store_flag (if_info))
2746 goto success;
2747 if (noce_try_bitop (if_info))
2748 goto success;
2749 if (noce_try_minmax (if_info))
2750 goto success;
2751 if (noce_try_abs (if_info))
2752 goto success;
2753 if (HAVE_conditional_move
2754 && noce_try_cmove (if_info))
2755 goto success;
2756 if (! targetm.have_conditional_execution ())
2758 if (noce_try_store_flag_constants (if_info))
2759 goto success;
2760 if (noce_try_addcc (if_info))
2761 goto success;
2762 if (noce_try_store_flag_mask (if_info))
2763 goto success;
2764 if (HAVE_conditional_move
2765 && noce_try_cmove_arith (if_info))
2766 goto success;
2767 if (noce_try_sign_mask (if_info))
2768 goto success;
2771 if (!else_bb && set_b)
2773 insn_b = NULL;
2774 set_b = NULL_RTX;
2775 b = orig_x;
2776 goto retry;
2779 return FALSE;
2781 success:
2783 /* If we used a temporary, fix it up now. */
2784 if (orig_x != x)
2786 rtx_insn *seq;
2788 start_sequence ();
2789 noce_emit_move_insn (orig_x, x);
2790 seq = get_insns ();
2791 set_used_flags (orig_x);
2792 unshare_all_rtl_in_chain (seq);
2793 end_sequence ();
2795 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2798 /* The original THEN and ELSE blocks may now be removed. The test block
2799 must now jump to the join block. If the test block and the join block
2800 can be merged, do so. */
2801 if (else_bb)
2803 delete_basic_block (else_bb);
2804 num_true_changes++;
2806 else
2807 remove_edge (find_edge (test_bb, join_bb));
2809 remove_edge (find_edge (then_bb, join_bb));
2810 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2811 delete_basic_block (then_bb);
2812 num_true_changes++;
2814 if (can_merge_blocks_p (test_bb, join_bb))
2816 merge_blocks (test_bb, join_bb);
2817 num_true_changes++;
2820 num_updated_if_blocks++;
2821 return TRUE;
2824 /* Check whether a block is suitable for conditional move conversion.
2825 Every insn must be a simple set of a register to a constant or a
2826 register. For each assignment, store the value in the pointer map
2827 VALS, keyed indexed by register pointer, then store the register
2828 pointer in REGS. COND is the condition we will test. */
2830 static int
2831 check_cond_move_block (basic_block bb,
2832 hash_map<rtx, rtx> *vals,
2833 vec<rtx> *regs,
2834 rtx cond)
2836 rtx_insn *insn;
2837 rtx cc = cc_in_cond (cond);
2839 /* We can only handle simple jumps at the end of the basic block.
2840 It is almost impossible to update the CFG otherwise. */
2841 insn = BB_END (bb);
2842 if (JUMP_P (insn) && !onlyjump_p (insn))
2843 return FALSE;
2845 FOR_BB_INSNS (bb, insn)
2847 rtx set, dest, src;
2849 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2850 continue;
2851 set = single_set (insn);
2852 if (!set)
2853 return FALSE;
2855 dest = SET_DEST (set);
2856 src = SET_SRC (set);
2857 if (!REG_P (dest)
2858 || (HARD_REGISTER_P (dest)
2859 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2860 return FALSE;
2862 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2863 return FALSE;
2865 if (side_effects_p (src) || side_effects_p (dest))
2866 return FALSE;
2868 if (may_trap_p (src) || may_trap_p (dest))
2869 return FALSE;
2871 /* Don't try to handle this if the source register was
2872 modified earlier in the block. */
2873 if ((REG_P (src)
2874 && vals->get (src))
2875 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2876 && vals->get (SUBREG_REG (src))))
2877 return FALSE;
2879 /* Don't try to handle this if the destination register was
2880 modified earlier in the block. */
2881 if (vals->get (dest))
2882 return FALSE;
2884 /* Don't try to handle this if the condition uses the
2885 destination register. */
2886 if (reg_overlap_mentioned_p (dest, cond))
2887 return FALSE;
2889 /* Don't try to handle this if the source register is modified
2890 later in the block. */
2891 if (!CONSTANT_P (src)
2892 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2893 return FALSE;
2895 /* Skip it if the instruction to be moved might clobber CC. */
2896 if (cc && set_of (cc, insn))
2897 return FALSE;
2899 vals->put (dest, src);
2901 regs->safe_push (dest);
2904 return TRUE;
2907 /* Given a basic block BB suitable for conditional move conversion,
2908 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2909 the register values depending on COND, emit the insns in the block as
2910 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2911 processed. The caller has started a sequence for the conversion.
2912 Return true if successful, false if something goes wrong. */
2914 static bool
2915 cond_move_convert_if_block (struct noce_if_info *if_infop,
2916 basic_block bb, rtx cond,
2917 hash_map<rtx, rtx> *then_vals,
2918 hash_map<rtx, rtx> *else_vals,
2919 bool else_block_p)
2921 enum rtx_code code;
2922 rtx_insn *insn;
2923 rtx cond_arg0, cond_arg1;
2925 code = GET_CODE (cond);
2926 cond_arg0 = XEXP (cond, 0);
2927 cond_arg1 = XEXP (cond, 1);
2929 FOR_BB_INSNS (bb, insn)
2931 rtx set, target, dest, t, e;
2933 /* ??? Maybe emit conditional debug insn? */
2934 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2935 continue;
2936 set = single_set (insn);
2937 gcc_assert (set && REG_P (SET_DEST (set)));
2939 dest = SET_DEST (set);
2941 rtx *then_slot = then_vals->get (dest);
2942 rtx *else_slot = else_vals->get (dest);
2943 t = then_slot ? *then_slot : NULL_RTX;
2944 e = else_slot ? *else_slot : NULL_RTX;
2946 if (else_block_p)
2948 /* If this register was set in the then block, we already
2949 handled this case there. */
2950 if (t)
2951 continue;
2952 t = dest;
2953 gcc_assert (e);
2955 else
2957 gcc_assert (t);
2958 if (!e)
2959 e = dest;
2962 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2963 t, e);
2964 if (!target)
2965 return false;
2967 if (target != dest)
2968 noce_emit_move_insn (dest, target);
2971 return true;
2974 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2975 it using only conditional moves. Return TRUE if we were successful at
2976 converting the block. */
2978 static int
2979 cond_move_process_if_block (struct noce_if_info *if_info)
2981 basic_block test_bb = if_info->test_bb;
2982 basic_block then_bb = if_info->then_bb;
2983 basic_block else_bb = if_info->else_bb;
2984 basic_block join_bb = if_info->join_bb;
2985 rtx_insn *jump = if_info->jump;
2986 rtx cond = if_info->cond;
2987 rtx_insn *seq, *loc_insn;
2988 rtx reg;
2989 int c;
2990 vec<rtx> then_regs = vNULL;
2991 vec<rtx> else_regs = vNULL;
2992 unsigned int i;
2993 int success_p = FALSE;
2995 /* Build a mapping for each block to the value used for each
2996 register. */
2997 hash_map<rtx, rtx> then_vals;
2998 hash_map<rtx, rtx> else_vals;
3000 /* Make sure the blocks are suitable. */
3001 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3002 || (else_bb
3003 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3004 goto done;
3006 /* Make sure the blocks can be used together. If the same register
3007 is set in both blocks, and is not set to a constant in both
3008 cases, then both blocks must set it to the same register. We
3009 have already verified that if it is set to a register, that the
3010 source register does not change after the assignment. Also count
3011 the number of registers set in only one of the blocks. */
3012 c = 0;
3013 FOR_EACH_VEC_ELT (then_regs, i, reg)
3015 rtx *then_slot = then_vals.get (reg);
3016 rtx *else_slot = else_vals.get (reg);
3018 gcc_checking_assert (then_slot);
3019 if (!else_slot)
3020 ++c;
3021 else
3023 rtx then_val = *then_slot;
3024 rtx else_val = *else_slot;
3025 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3026 && !rtx_equal_p (then_val, else_val))
3027 goto done;
3031 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3032 FOR_EACH_VEC_ELT (else_regs, i, reg)
3034 gcc_checking_assert (else_vals.get (reg));
3035 if (!then_vals.get (reg))
3036 ++c;
3039 /* Make sure it is reasonable to convert this block. What matters
3040 is the number of assignments currently made in only one of the
3041 branches, since if we convert we are going to always execute
3042 them. */
3043 if (c > MAX_CONDITIONAL_EXECUTE)
3044 goto done;
3046 /* Try to emit the conditional moves. First do the then block,
3047 then do anything left in the else blocks. */
3048 start_sequence ();
3049 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3050 &then_vals, &else_vals, false)
3051 || (else_bb
3052 && !cond_move_convert_if_block (if_info, else_bb, cond,
3053 &then_vals, &else_vals, true)))
3055 end_sequence ();
3056 goto done;
3058 seq = end_ifcvt_sequence (if_info);
3059 if (!seq)
3060 goto done;
3062 loc_insn = first_active_insn (then_bb);
3063 if (!loc_insn)
3065 loc_insn = first_active_insn (else_bb);
3066 gcc_assert (loc_insn);
3068 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3070 if (else_bb)
3072 delete_basic_block (else_bb);
3073 num_true_changes++;
3075 else
3076 remove_edge (find_edge (test_bb, join_bb));
3078 remove_edge (find_edge (then_bb, join_bb));
3079 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3080 delete_basic_block (then_bb);
3081 num_true_changes++;
3083 if (can_merge_blocks_p (test_bb, join_bb))
3085 merge_blocks (test_bb, join_bb);
3086 num_true_changes++;
3089 num_updated_if_blocks++;
3091 success_p = TRUE;
3093 done:
3094 then_regs.release ();
3095 else_regs.release ();
3096 return success_p;
3100 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3101 IF-THEN-ELSE-JOIN block.
3103 If so, we'll try to convert the insns to not require the branch,
3104 using only transformations that do not require conditional execution.
3106 Return TRUE if we were successful at converting the block. */
3108 static int
3109 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3110 int pass)
3112 basic_block then_bb, else_bb, join_bb;
3113 bool then_else_reversed = false;
3114 rtx_insn *jump;
3115 rtx cond;
3116 rtx_insn *cond_earliest;
3117 struct noce_if_info if_info;
3119 /* We only ever should get here before reload. */
3120 gcc_assert (!reload_completed);
3122 /* Recognize an IF-THEN-ELSE-JOIN block. */
3123 if (single_pred_p (then_edge->dest)
3124 && single_succ_p (then_edge->dest)
3125 && single_pred_p (else_edge->dest)
3126 && single_succ_p (else_edge->dest)
3127 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3129 then_bb = then_edge->dest;
3130 else_bb = else_edge->dest;
3131 join_bb = single_succ (then_bb);
3133 /* Recognize an IF-THEN-JOIN block. */
3134 else if (single_pred_p (then_edge->dest)
3135 && single_succ_p (then_edge->dest)
3136 && single_succ (then_edge->dest) == else_edge->dest)
3138 then_bb = then_edge->dest;
3139 else_bb = NULL_BLOCK;
3140 join_bb = else_edge->dest;
3142 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3143 of basic blocks in cfglayout mode does not matter, so the fallthrough
3144 edge can go to any basic block (and not just to bb->next_bb, like in
3145 cfgrtl mode). */
3146 else if (single_pred_p (else_edge->dest)
3147 && single_succ_p (else_edge->dest)
3148 && single_succ (else_edge->dest) == then_edge->dest)
3150 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3151 To make this work, we have to invert the THEN and ELSE blocks
3152 and reverse the jump condition. */
3153 then_bb = else_edge->dest;
3154 else_bb = NULL_BLOCK;
3155 join_bb = single_succ (then_bb);
3156 then_else_reversed = true;
3158 else
3159 /* Not a form we can handle. */
3160 return FALSE;
3162 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3163 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3164 return FALSE;
3165 if (else_bb
3166 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3167 return FALSE;
3169 num_possible_if_blocks++;
3171 if (dump_file)
3173 fprintf (dump_file,
3174 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3175 (else_bb) ? "-ELSE" : "",
3176 pass, test_bb->index, then_bb->index);
3178 if (else_bb)
3179 fprintf (dump_file, ", else %d", else_bb->index);
3181 fprintf (dump_file, ", join %d\n", join_bb->index);
3184 /* If the conditional jump is more than just a conditional
3185 jump, then we can not do if-conversion on this block. */
3186 jump = BB_END (test_bb);
3187 if (! onlyjump_p (jump))
3188 return FALSE;
3190 /* If this is not a standard conditional jump, we can't parse it. */
3191 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3192 if (!cond)
3193 return FALSE;
3195 /* We must be comparing objects whose modes imply the size. */
3196 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3197 return FALSE;
3199 /* Initialize an IF_INFO struct to pass around. */
3200 memset (&if_info, 0, sizeof if_info);
3201 if_info.test_bb = test_bb;
3202 if_info.then_bb = then_bb;
3203 if_info.else_bb = else_bb;
3204 if_info.join_bb = join_bb;
3205 if_info.cond = cond;
3206 if_info.cond_earliest = cond_earliest;
3207 if_info.jump = jump;
3208 if_info.then_else_reversed = then_else_reversed;
3209 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3210 predictable_edge_p (then_edge));
3212 /* Do the real work. */
3214 if (noce_process_if_block (&if_info))
3215 return TRUE;
3217 if (HAVE_conditional_move
3218 && cond_move_process_if_block (&if_info))
3219 return TRUE;
3221 return FALSE;
3225 /* Merge the blocks and mark for local life update. */
3227 static void
3228 merge_if_block (struct ce_if_block * ce_info)
3230 basic_block test_bb = ce_info->test_bb; /* last test block */
3231 basic_block then_bb = ce_info->then_bb; /* THEN */
3232 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3233 basic_block join_bb = ce_info->join_bb; /* join block */
3234 basic_block combo_bb;
3236 /* All block merging is done into the lower block numbers. */
3238 combo_bb = test_bb;
3239 df_set_bb_dirty (test_bb);
3241 /* Merge any basic blocks to handle && and || subtests. Each of
3242 the blocks are on the fallthru path from the predecessor block. */
3243 if (ce_info->num_multiple_test_blocks > 0)
3245 basic_block bb = test_bb;
3246 basic_block last_test_bb = ce_info->last_test_bb;
3247 basic_block fallthru = block_fallthru (bb);
3251 bb = fallthru;
3252 fallthru = block_fallthru (bb);
3253 merge_blocks (combo_bb, bb);
3254 num_true_changes++;
3256 while (bb != last_test_bb);
3259 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3260 label, but it might if there were || tests. That label's count should be
3261 zero, and it normally should be removed. */
3263 if (then_bb)
3265 /* If THEN_BB has no successors, then there's a BARRIER after it.
3266 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3267 is no longer needed, and in fact it is incorrect to leave it in
3268 the insn stream. */
3269 if (EDGE_COUNT (then_bb->succs) == 0
3270 && EDGE_COUNT (combo_bb->succs) > 1)
3272 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3273 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3274 end = NEXT_INSN (end);
3276 if (end && BARRIER_P (end))
3277 delete_insn (end);
3279 merge_blocks (combo_bb, then_bb);
3280 num_true_changes++;
3283 /* The ELSE block, if it existed, had a label. That label count
3284 will almost always be zero, but odd things can happen when labels
3285 get their addresses taken. */
3286 if (else_bb)
3288 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3289 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3290 is no longer needed, and in fact it is incorrect to leave it in
3291 the insn stream. */
3292 if (EDGE_COUNT (else_bb->succs) == 0
3293 && EDGE_COUNT (combo_bb->succs) > 1)
3295 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3296 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3297 end = NEXT_INSN (end);
3299 if (end && BARRIER_P (end))
3300 delete_insn (end);
3302 merge_blocks (combo_bb, else_bb);
3303 num_true_changes++;
3306 /* If there was no join block reported, that means it was not adjacent
3307 to the others, and so we cannot merge them. */
3309 if (! join_bb)
3311 rtx_insn *last = BB_END (combo_bb);
3313 /* The outgoing edge for the current COMBO block should already
3314 be correct. Verify this. */
3315 if (EDGE_COUNT (combo_bb->succs) == 0)
3316 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3317 || (NONJUMP_INSN_P (last)
3318 && GET_CODE (PATTERN (last)) == TRAP_IF
3319 && (TRAP_CONDITION (PATTERN (last))
3320 == const_true_rtx)));
3322 else
3323 /* There should still be something at the end of the THEN or ELSE
3324 blocks taking us to our final destination. */
3325 gcc_assert (JUMP_P (last)
3326 || (EDGE_SUCC (combo_bb, 0)->dest
3327 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3328 && CALL_P (last)
3329 && SIBLING_CALL_P (last))
3330 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3331 && can_throw_internal (last)));
3334 /* The JOIN block may have had quite a number of other predecessors too.
3335 Since we've already merged the TEST, THEN and ELSE blocks, we should
3336 have only one remaining edge from our if-then-else diamond. If there
3337 is more than one remaining edge, it must come from elsewhere. There
3338 may be zero incoming edges if the THEN block didn't actually join
3339 back up (as with a call to a non-return function). */
3340 else if (EDGE_COUNT (join_bb->preds) < 2
3341 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3343 /* We can merge the JOIN cleanly and update the dataflow try
3344 again on this pass.*/
3345 merge_blocks (combo_bb, join_bb);
3346 num_true_changes++;
3348 else
3350 /* We cannot merge the JOIN. */
3352 /* The outgoing edge for the current COMBO block should already
3353 be correct. Verify this. */
3354 gcc_assert (single_succ_p (combo_bb)
3355 && single_succ (combo_bb) == join_bb);
3357 /* Remove the jump and cruft from the end of the COMBO block. */
3358 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3359 tidy_fallthru_edge (single_succ_edge (combo_bb));
3362 num_updated_if_blocks++;
3365 /* Find a block ending in a simple IF condition and try to transform it
3366 in some way. When converting a multi-block condition, put the new code
3367 in the first such block and delete the rest. Return a pointer to this
3368 first block if some transformation was done. Return NULL otherwise. */
3370 static basic_block
3371 find_if_header (basic_block test_bb, int pass)
3373 ce_if_block ce_info;
3374 edge then_edge;
3375 edge else_edge;
3377 /* The kind of block we're looking for has exactly two successors. */
3378 if (EDGE_COUNT (test_bb->succs) != 2)
3379 return NULL;
3381 then_edge = EDGE_SUCC (test_bb, 0);
3382 else_edge = EDGE_SUCC (test_bb, 1);
3384 if (df_get_bb_dirty (then_edge->dest))
3385 return NULL;
3386 if (df_get_bb_dirty (else_edge->dest))
3387 return NULL;
3389 /* Neither edge should be abnormal. */
3390 if ((then_edge->flags & EDGE_COMPLEX)
3391 || (else_edge->flags & EDGE_COMPLEX))
3392 return NULL;
3394 /* Nor exit the loop. */
3395 if ((then_edge->flags & EDGE_LOOP_EXIT)
3396 || (else_edge->flags & EDGE_LOOP_EXIT))
3397 return NULL;
3399 /* The THEN edge is canonically the one that falls through. */
3400 if (then_edge->flags & EDGE_FALLTHRU)
3402 else if (else_edge->flags & EDGE_FALLTHRU)
3404 edge e = else_edge;
3405 else_edge = then_edge;
3406 then_edge = e;
3408 else
3409 /* Otherwise this must be a multiway branch of some sort. */
3410 return NULL;
3412 memset (&ce_info, 0, sizeof (ce_info));
3413 ce_info.test_bb = test_bb;
3414 ce_info.then_bb = then_edge->dest;
3415 ce_info.else_bb = else_edge->dest;
3416 ce_info.pass = pass;
3418 #ifdef IFCVT_MACHDEP_INIT
3419 IFCVT_MACHDEP_INIT (&ce_info);
3420 #endif
3422 if (!reload_completed
3423 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3424 goto success;
3426 if (reload_completed
3427 && targetm.have_conditional_execution ()
3428 && cond_exec_find_if_block (&ce_info))
3429 goto success;
3431 if (HAVE_trap
3432 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3433 && find_cond_trap (test_bb, then_edge, else_edge))
3434 goto success;
3436 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3437 && (reload_completed || !targetm.have_conditional_execution ()))
3439 if (find_if_case_1 (test_bb, then_edge, else_edge))
3440 goto success;
3441 if (find_if_case_2 (test_bb, then_edge, else_edge))
3442 goto success;
3445 return NULL;
3447 success:
3448 if (dump_file)
3449 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3450 /* Set this so we continue looking. */
3451 cond_exec_changed_p = TRUE;
3452 return ce_info.test_bb;
3455 /* Return true if a block has two edges, one of which falls through to the next
3456 block, and the other jumps to a specific block, so that we can tell if the
3457 block is part of an && test or an || test. Returns either -1 or the number
3458 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3460 static int
3461 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3463 edge cur_edge;
3464 int fallthru_p = FALSE;
3465 int jump_p = FALSE;
3466 rtx_insn *insn;
3467 rtx_insn *end;
3468 int n_insns = 0;
3469 edge_iterator ei;
3471 if (!cur_bb || !target_bb)
3472 return -1;
3474 /* If no edges, obviously it doesn't jump or fallthru. */
3475 if (EDGE_COUNT (cur_bb->succs) == 0)
3476 return FALSE;
3478 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3480 if (cur_edge->flags & EDGE_COMPLEX)
3481 /* Anything complex isn't what we want. */
3482 return -1;
3484 else if (cur_edge->flags & EDGE_FALLTHRU)
3485 fallthru_p = TRUE;
3487 else if (cur_edge->dest == target_bb)
3488 jump_p = TRUE;
3490 else
3491 return -1;
3494 if ((jump_p & fallthru_p) == 0)
3495 return -1;
3497 /* Don't allow calls in the block, since this is used to group && and ||
3498 together for conditional execution support. ??? we should support
3499 conditional execution support across calls for IA-64 some day, but
3500 for now it makes the code simpler. */
3501 end = BB_END (cur_bb);
3502 insn = BB_HEAD (cur_bb);
3504 while (insn != NULL_RTX)
3506 if (CALL_P (insn))
3507 return -1;
3509 if (INSN_P (insn)
3510 && !JUMP_P (insn)
3511 && !DEBUG_INSN_P (insn)
3512 && GET_CODE (PATTERN (insn)) != USE
3513 && GET_CODE (PATTERN (insn)) != CLOBBER)
3514 n_insns++;
3516 if (insn == end)
3517 break;
3519 insn = NEXT_INSN (insn);
3522 return n_insns;
3525 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3526 block. If so, we'll try to convert the insns to not require the branch.
3527 Return TRUE if we were successful at converting the block. */
3529 static int
3530 cond_exec_find_if_block (struct ce_if_block * ce_info)
3532 basic_block test_bb = ce_info->test_bb;
3533 basic_block then_bb = ce_info->then_bb;
3534 basic_block else_bb = ce_info->else_bb;
3535 basic_block join_bb = NULL_BLOCK;
3536 edge cur_edge;
3537 basic_block next;
3538 edge_iterator ei;
3540 ce_info->last_test_bb = test_bb;
3542 /* We only ever should get here after reload,
3543 and if we have conditional execution. */
3544 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3546 /* Discover if any fall through predecessors of the current test basic block
3547 were && tests (which jump to the else block) or || tests (which jump to
3548 the then block). */
3549 if (single_pred_p (test_bb)
3550 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3552 basic_block bb = single_pred (test_bb);
3553 basic_block target_bb;
3554 int max_insns = MAX_CONDITIONAL_EXECUTE;
3555 int n_insns;
3557 /* Determine if the preceding block is an && or || block. */
3558 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3560 ce_info->and_and_p = TRUE;
3561 target_bb = else_bb;
3563 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3565 ce_info->and_and_p = FALSE;
3566 target_bb = then_bb;
3568 else
3569 target_bb = NULL_BLOCK;
3571 if (target_bb && n_insns <= max_insns)
3573 int total_insns = 0;
3574 int blocks = 0;
3576 ce_info->last_test_bb = test_bb;
3578 /* Found at least one && or || block, look for more. */
3581 ce_info->test_bb = test_bb = bb;
3582 total_insns += n_insns;
3583 blocks++;
3585 if (!single_pred_p (bb))
3586 break;
3588 bb = single_pred (bb);
3589 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3591 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3593 ce_info->num_multiple_test_blocks = blocks;
3594 ce_info->num_multiple_test_insns = total_insns;
3596 if (ce_info->and_and_p)
3597 ce_info->num_and_and_blocks = blocks;
3598 else
3599 ce_info->num_or_or_blocks = blocks;
3603 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3604 other than any || blocks which jump to the THEN block. */
3605 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3606 return FALSE;
3608 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3609 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3611 if (cur_edge->flags & EDGE_COMPLEX)
3612 return FALSE;
3615 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3617 if (cur_edge->flags & EDGE_COMPLEX)
3618 return FALSE;
3621 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3622 if (EDGE_COUNT (then_bb->succs) > 0
3623 && (!single_succ_p (then_bb)
3624 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3625 || (epilogue_completed
3626 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3627 return FALSE;
3629 /* If the THEN block has no successors, conditional execution can still
3630 make a conditional call. Don't do this unless the ELSE block has
3631 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3632 Check for the last insn of the THEN block being an indirect jump, which
3633 is listed as not having any successors, but confuses the rest of the CE
3634 code processing. ??? we should fix this in the future. */
3635 if (EDGE_COUNT (then_bb->succs) == 0)
3637 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3639 rtx_insn *last_insn = BB_END (then_bb);
3641 while (last_insn
3642 && NOTE_P (last_insn)
3643 && last_insn != BB_HEAD (then_bb))
3644 last_insn = PREV_INSN (last_insn);
3646 if (last_insn
3647 && JUMP_P (last_insn)
3648 && ! simplejump_p (last_insn))
3649 return FALSE;
3651 join_bb = else_bb;
3652 else_bb = NULL_BLOCK;
3654 else
3655 return FALSE;
3658 /* If the THEN block's successor is the other edge out of the TEST block,
3659 then we have an IF-THEN combo without an ELSE. */
3660 else if (single_succ (then_bb) == else_bb)
3662 join_bb = else_bb;
3663 else_bb = NULL_BLOCK;
3666 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3667 has exactly one predecessor and one successor, and the outgoing edge
3668 is not complex, then we have an IF-THEN-ELSE combo. */
3669 else if (single_succ_p (else_bb)
3670 && single_succ (then_bb) == single_succ (else_bb)
3671 && single_pred_p (else_bb)
3672 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3673 && !(epilogue_completed
3674 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3675 join_bb = single_succ (else_bb);
3677 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3678 else
3679 return FALSE;
3681 num_possible_if_blocks++;
3683 if (dump_file)
3685 fprintf (dump_file,
3686 "\nIF-THEN%s block found, pass %d, start block %d "
3687 "[insn %d], then %d [%d]",
3688 (else_bb) ? "-ELSE" : "",
3689 ce_info->pass,
3690 test_bb->index,
3691 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3692 then_bb->index,
3693 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3695 if (else_bb)
3696 fprintf (dump_file, ", else %d [%d]",
3697 else_bb->index,
3698 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3700 fprintf (dump_file, ", join %d [%d]",
3701 join_bb->index,
3702 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3704 if (ce_info->num_multiple_test_blocks > 0)
3705 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3706 ce_info->num_multiple_test_blocks,
3707 (ce_info->and_and_p) ? "&&" : "||",
3708 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3709 ce_info->last_test_bb->index,
3710 ((BB_HEAD (ce_info->last_test_bb))
3711 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3712 : -1));
3714 fputc ('\n', dump_file);
3717 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3718 first condition for free, since we've already asserted that there's a
3719 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3720 we checked the FALLTHRU flag, those are already adjacent to the last IF
3721 block. */
3722 /* ??? As an enhancement, move the ELSE block. Have to deal with
3723 BLOCK notes, if by no other means than backing out the merge if they
3724 exist. Sticky enough I don't want to think about it now. */
3725 next = then_bb;
3726 if (else_bb && (next = next->next_bb) != else_bb)
3727 return FALSE;
3728 if ((next = next->next_bb) != join_bb
3729 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3731 if (else_bb)
3732 join_bb = NULL;
3733 else
3734 return FALSE;
3737 /* Do the real work. */
3739 ce_info->else_bb = else_bb;
3740 ce_info->join_bb = join_bb;
3742 /* If we have && and || tests, try to first handle combining the && and ||
3743 tests into the conditional code, and if that fails, go back and handle
3744 it without the && and ||, which at present handles the && case if there
3745 was no ELSE block. */
3746 if (cond_exec_process_if_block (ce_info, TRUE))
3747 return TRUE;
3749 if (ce_info->num_multiple_test_blocks)
3751 cancel_changes (0);
3753 if (cond_exec_process_if_block (ce_info, FALSE))
3754 return TRUE;
3757 return FALSE;
3760 /* Convert a branch over a trap, or a branch
3761 to a trap, into a conditional trap. */
3763 static int
3764 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3766 basic_block then_bb = then_edge->dest;
3767 basic_block else_bb = else_edge->dest;
3768 basic_block other_bb, trap_bb;
3769 rtx_insn *trap, *jump;
3770 rtx cond, seq;
3771 rtx_insn *cond_earliest;
3772 enum rtx_code code;
3774 /* Locate the block with the trap instruction. */
3775 /* ??? While we look for no successors, we really ought to allow
3776 EH successors. Need to fix merge_if_block for that to work. */
3777 if ((trap = block_has_only_trap (then_bb)) != NULL)
3778 trap_bb = then_bb, other_bb = else_bb;
3779 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3780 trap_bb = else_bb, other_bb = then_bb;
3781 else
3782 return FALSE;
3784 if (dump_file)
3786 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3787 test_bb->index, trap_bb->index);
3790 /* If this is not a standard conditional jump, we can't parse it. */
3791 jump = BB_END (test_bb);
3792 cond = noce_get_condition (jump, &cond_earliest, false);
3793 if (! cond)
3794 return FALSE;
3796 /* If the conditional jump is more than just a conditional jump, then
3797 we can not do if-conversion on this block. */
3798 if (! onlyjump_p (jump))
3799 return FALSE;
3801 /* We must be comparing objects whose modes imply the size. */
3802 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3803 return FALSE;
3805 /* Reverse the comparison code, if necessary. */
3806 code = GET_CODE (cond);
3807 if (then_bb == trap_bb)
3809 code = reversed_comparison_code (cond, jump);
3810 if (code == UNKNOWN)
3811 return FALSE;
3814 /* Attempt to generate the conditional trap. */
3815 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3816 copy_rtx (XEXP (cond, 1)),
3817 TRAP_CODE (PATTERN (trap)));
3818 if (seq == NULL)
3819 return FALSE;
3821 /* Emit the new insns before cond_earliest. */
3822 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3824 /* Delete the trap block if possible. */
3825 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3826 df_set_bb_dirty (test_bb);
3827 df_set_bb_dirty (then_bb);
3828 df_set_bb_dirty (else_bb);
3830 if (EDGE_COUNT (trap_bb->preds) == 0)
3832 delete_basic_block (trap_bb);
3833 num_true_changes++;
3836 /* Wire together the blocks again. */
3837 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3838 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3839 else if (trap_bb == then_bb)
3841 rtx lab;
3842 rtx_insn *newjump;
3844 lab = JUMP_LABEL (jump);
3845 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3846 LABEL_NUSES (lab) += 1;
3847 JUMP_LABEL (newjump) = lab;
3848 emit_barrier_after (newjump);
3850 delete_insn (jump);
3852 if (can_merge_blocks_p (test_bb, other_bb))
3854 merge_blocks (test_bb, other_bb);
3855 num_true_changes++;
3858 num_updated_if_blocks++;
3859 return TRUE;
3862 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3863 return it. */
3865 static rtx_insn *
3866 block_has_only_trap (basic_block bb)
3868 rtx_insn *trap;
3870 /* We're not the exit block. */
3871 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3872 return NULL;
3874 /* The block must have no successors. */
3875 if (EDGE_COUNT (bb->succs) > 0)
3876 return NULL;
3878 /* The only instruction in the THEN block must be the trap. */
3879 trap = first_active_insn (bb);
3880 if (! (trap == BB_END (bb)
3881 && GET_CODE (PATTERN (trap)) == TRAP_IF
3882 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3883 return NULL;
3885 return trap;
3888 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3889 transformable, but not necessarily the other. There need be no
3890 JOIN block.
3892 Return TRUE if we were successful at converting the block.
3894 Cases we'd like to look at:
3897 if (test) goto over; // x not live
3898 x = a;
3899 goto label;
3900 over:
3902 becomes
3904 x = a;
3905 if (! test) goto label;
3908 if (test) goto E; // x not live
3909 x = big();
3910 goto L;
3912 x = b;
3913 goto M;
3915 becomes
3917 x = b;
3918 if (test) goto M;
3919 x = big();
3920 goto L;
3922 (3) // This one's really only interesting for targets that can do
3923 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3924 // it results in multiple branches on a cache line, which often
3925 // does not sit well with predictors.
3927 if (test1) goto E; // predicted not taken
3928 x = a;
3929 if (test2) goto F;
3932 x = b;
3935 becomes
3937 x = a;
3938 if (test1) goto E;
3939 if (test2) goto F;
3941 Notes:
3943 (A) Don't do (2) if the branch is predicted against the block we're
3944 eliminating. Do it anyway if we can eliminate a branch; this requires
3945 that the sole successor of the eliminated block postdominate the other
3946 side of the if.
3948 (B) With CE, on (3) we can steal from both sides of the if, creating
3950 if (test1) x = a;
3951 if (!test1) x = b;
3952 if (test1) goto J;
3953 if (test2) goto F;
3957 Again, this is most useful if J postdominates.
3959 (C) CE substitutes for helpful life information.
3961 (D) These heuristics need a lot of work. */
3963 /* Tests for case 1 above. */
3965 static int
3966 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3968 basic_block then_bb = then_edge->dest;
3969 basic_block else_bb = else_edge->dest;
3970 basic_block new_bb;
3971 int then_bb_index, then_prob;
3972 rtx else_target = NULL_RTX;
3974 /* If we are partitioning hot/cold basic blocks, we don't want to
3975 mess up unconditional or indirect jumps that cross between hot
3976 and cold sections.
3978 Basic block partitioning may result in some jumps that appear to
3979 be optimizable (or blocks that appear to be mergeable), but which really
3980 must be left untouched (they are required to make it safely across
3981 partition boundaries). See the comments at the top of
3982 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3984 if ((BB_END (then_bb)
3985 && JUMP_P (BB_END (then_bb))
3986 && CROSSING_JUMP_P (BB_END (then_bb)))
3987 || (BB_END (test_bb)
3988 && JUMP_P (BB_END (test_bb))
3989 && CROSSING_JUMP_P (BB_END (test_bb)))
3990 || (BB_END (else_bb)
3991 && JUMP_P (BB_END (else_bb))
3992 && CROSSING_JUMP_P (BB_END (else_bb))))
3993 return FALSE;
3995 /* THEN has one successor. */
3996 if (!single_succ_p (then_bb))
3997 return FALSE;
3999 /* THEN does not fall through, but is not strange either. */
4000 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4001 return FALSE;
4003 /* THEN has one predecessor. */
4004 if (!single_pred_p (then_bb))
4005 return FALSE;
4007 /* THEN must do something. */
4008 if (forwarder_block_p (then_bb))
4009 return FALSE;
4011 num_possible_if_blocks++;
4012 if (dump_file)
4013 fprintf (dump_file,
4014 "\nIF-CASE-1 found, start %d, then %d\n",
4015 test_bb->index, then_bb->index);
4017 if (then_edge->probability)
4018 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4019 else
4020 then_prob = REG_BR_PROB_BASE / 2;
4022 /* We're speculating from the THEN path, we want to make sure the cost
4023 of speculation is within reason. */
4024 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4025 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4026 predictable_edge_p (then_edge)))))
4027 return FALSE;
4029 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4031 rtx_insn *jump = BB_END (else_edge->src);
4032 gcc_assert (JUMP_P (jump));
4033 else_target = JUMP_LABEL (jump);
4036 /* Registers set are dead, or are predicable. */
4037 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4038 single_succ_edge (then_bb), 1))
4039 return FALSE;
4041 /* Conversion went ok, including moving the insns and fixing up the
4042 jump. Adjust the CFG to match. */
4044 /* We can avoid creating a new basic block if then_bb is immediately
4045 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4046 through to else_bb. */
4048 if (then_bb->next_bb == else_bb
4049 && then_bb->prev_bb == test_bb
4050 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4052 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4053 new_bb = 0;
4055 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4056 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4057 else_bb, else_target);
4058 else
4059 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4060 else_bb);
4062 df_set_bb_dirty (test_bb);
4063 df_set_bb_dirty (else_bb);
4065 then_bb_index = then_bb->index;
4066 delete_basic_block (then_bb);
4068 /* Make rest of code believe that the newly created block is the THEN_BB
4069 block we removed. */
4070 if (new_bb)
4072 df_bb_replace (then_bb_index, new_bb);
4073 /* This should have been done above via force_nonfallthru_and_redirect
4074 (possibly called from redirect_edge_and_branch_force). */
4075 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4078 num_true_changes++;
4079 num_updated_if_blocks++;
4081 return TRUE;
4084 /* Test for case 2 above. */
4086 static int
4087 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4089 basic_block then_bb = then_edge->dest;
4090 basic_block else_bb = else_edge->dest;
4091 edge else_succ;
4092 int then_prob, else_prob;
4094 /* We do not want to speculate (empty) loop latches. */
4095 if (current_loops
4096 && else_bb->loop_father->latch == else_bb)
4097 return FALSE;
4099 /* If we are partitioning hot/cold basic blocks, we don't want to
4100 mess up unconditional or indirect jumps that cross between hot
4101 and cold sections.
4103 Basic block partitioning may result in some jumps that appear to
4104 be optimizable (or blocks that appear to be mergeable), but which really
4105 must be left untouched (they are required to make it safely across
4106 partition boundaries). See the comments at the top of
4107 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4109 if ((BB_END (then_bb)
4110 && JUMP_P (BB_END (then_bb))
4111 && CROSSING_JUMP_P (BB_END (then_bb)))
4112 || (BB_END (test_bb)
4113 && JUMP_P (BB_END (test_bb))
4114 && CROSSING_JUMP_P (BB_END (test_bb)))
4115 || (BB_END (else_bb)
4116 && JUMP_P (BB_END (else_bb))
4117 && CROSSING_JUMP_P (BB_END (else_bb))))
4118 return FALSE;
4120 /* ELSE has one successor. */
4121 if (!single_succ_p (else_bb))
4122 return FALSE;
4123 else
4124 else_succ = single_succ_edge (else_bb);
4126 /* ELSE outgoing edge is not complex. */
4127 if (else_succ->flags & EDGE_COMPLEX)
4128 return FALSE;
4130 /* ELSE has one predecessor. */
4131 if (!single_pred_p (else_bb))
4132 return FALSE;
4134 /* THEN is not EXIT. */
4135 if (then_bb->index < NUM_FIXED_BLOCKS)
4136 return FALSE;
4138 if (else_edge->probability)
4140 else_prob = else_edge->probability;
4141 then_prob = REG_BR_PROB_BASE - else_prob;
4143 else
4145 else_prob = REG_BR_PROB_BASE / 2;
4146 then_prob = REG_BR_PROB_BASE / 2;
4149 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4150 if (else_prob > then_prob)
4152 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4153 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4154 else_succ->dest))
4156 else
4157 return FALSE;
4159 num_possible_if_blocks++;
4160 if (dump_file)
4161 fprintf (dump_file,
4162 "\nIF-CASE-2 found, start %d, else %d\n",
4163 test_bb->index, else_bb->index);
4165 /* We're speculating from the ELSE path, we want to make sure the cost
4166 of speculation is within reason. */
4167 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4168 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4169 predictable_edge_p (else_edge)))))
4170 return FALSE;
4172 /* Registers set are dead, or are predicable. */
4173 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4174 return FALSE;
4176 /* Conversion went ok, including moving the insns and fixing up the
4177 jump. Adjust the CFG to match. */
4179 df_set_bb_dirty (test_bb);
4180 df_set_bb_dirty (then_bb);
4181 delete_basic_block (else_bb);
4183 num_true_changes++;
4184 num_updated_if_blocks++;
4186 /* ??? We may now fallthru from one of THEN's successors into a join
4187 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4189 return TRUE;
4192 /* Used by the code above to perform the actual rtl transformations.
4193 Return TRUE if successful.
4195 TEST_BB is the block containing the conditional branch. MERGE_BB
4196 is the block containing the code to manipulate. DEST_EDGE is an
4197 edge representing a jump to the join block; after the conversion,
4198 TEST_BB should be branching to its destination.
4199 REVERSEP is true if the sense of the branch should be reversed. */
4201 static int
4202 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4203 basic_block other_bb, edge dest_edge, int reversep)
4205 basic_block new_dest = dest_edge->dest;
4206 rtx_insn *head, *end, *jump;
4207 rtx_insn *earliest = NULL;
4208 rtx old_dest;
4209 bitmap merge_set = NULL;
4210 /* Number of pending changes. */
4211 int n_validated_changes = 0;
4212 rtx new_dest_label = NULL_RTX;
4214 jump = BB_END (test_bb);
4216 /* Find the extent of the real code in the merge block. */
4217 head = BB_HEAD (merge_bb);
4218 end = BB_END (merge_bb);
4220 while (DEBUG_INSN_P (end) && end != head)
4221 end = PREV_INSN (end);
4223 /* If merge_bb ends with a tablejump, predicating/moving insn's
4224 into test_bb and then deleting merge_bb will result in the jumptable
4225 that follows merge_bb being removed along with merge_bb and then we
4226 get an unresolved reference to the jumptable. */
4227 if (tablejump_p (end, NULL, NULL))
4228 return FALSE;
4230 if (LABEL_P (head))
4231 head = NEXT_INSN (head);
4232 while (DEBUG_INSN_P (head) && head != end)
4233 head = NEXT_INSN (head);
4234 if (NOTE_P (head))
4236 if (head == end)
4238 head = end = NULL;
4239 goto no_body;
4241 head = NEXT_INSN (head);
4242 while (DEBUG_INSN_P (head) && head != end)
4243 head = NEXT_INSN (head);
4246 if (JUMP_P (end))
4248 if (!onlyjump_p (end))
4249 return FALSE;
4250 if (head == end)
4252 head = end = NULL;
4253 goto no_body;
4255 end = PREV_INSN (end);
4256 while (DEBUG_INSN_P (end) && end != head)
4257 end = PREV_INSN (end);
4260 /* Don't move frame-related insn across the conditional branch. This
4261 can lead to one of the paths of the branch having wrong unwind info. */
4262 if (epilogue_completed)
4264 rtx_insn *insn = head;
4265 while (1)
4267 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4268 return FALSE;
4269 if (insn == end)
4270 break;
4271 insn = NEXT_INSN (insn);
4275 /* Disable handling dead code by conditional execution if the machine needs
4276 to do anything funny with the tests, etc. */
4277 #ifndef IFCVT_MODIFY_TESTS
4278 if (targetm.have_conditional_execution ())
4280 /* In the conditional execution case, we have things easy. We know
4281 the condition is reversible. We don't have to check life info
4282 because we're going to conditionally execute the code anyway.
4283 All that's left is making sure the insns involved can actually
4284 be predicated. */
4286 rtx cond;
4288 cond = cond_exec_get_condition (jump);
4289 if (! cond)
4290 return FALSE;
4292 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4293 int prob_val = (note ? XINT (note, 0) : -1);
4295 if (reversep)
4297 enum rtx_code rev = reversed_comparison_code (cond, jump);
4298 if (rev == UNKNOWN)
4299 return FALSE;
4300 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4301 XEXP (cond, 1));
4302 if (prob_val >= 0)
4303 prob_val = REG_BR_PROB_BASE - prob_val;
4306 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4307 && verify_changes (0))
4308 n_validated_changes = num_validated_changes ();
4309 else
4310 cancel_changes (0);
4312 earliest = jump;
4314 #endif
4316 /* If we allocated new pseudos (e.g. in the conditional move
4317 expander called from noce_emit_cmove), we must resize the
4318 array first. */
4319 if (max_regno < max_reg_num ())
4320 max_regno = max_reg_num ();
4322 /* Try the NCE path if the CE path did not result in any changes. */
4323 if (n_validated_changes == 0)
4325 rtx cond;
4326 rtx_insn *insn;
4327 regset live;
4328 bool success;
4330 /* In the non-conditional execution case, we have to verify that there
4331 are no trapping operations, no calls, no references to memory, and
4332 that any registers modified are dead at the branch site. */
4334 if (!any_condjump_p (jump))
4335 return FALSE;
4337 /* Find the extent of the conditional. */
4338 cond = noce_get_condition (jump, &earliest, false);
4339 if (!cond)
4340 return FALSE;
4342 live = BITMAP_ALLOC (&reg_obstack);
4343 simulate_backwards_to_point (merge_bb, live, end);
4344 success = can_move_insns_across (head, end, earliest, jump,
4345 merge_bb, live,
4346 df_get_live_in (other_bb), NULL);
4347 BITMAP_FREE (live);
4348 if (!success)
4349 return FALSE;
4351 /* Collect the set of registers set in MERGE_BB. */
4352 merge_set = BITMAP_ALLOC (&reg_obstack);
4354 FOR_BB_INSNS (merge_bb, insn)
4355 if (NONDEBUG_INSN_P (insn))
4356 df_simulate_find_defs (insn, merge_set);
4358 /* If shrink-wrapping, disable this optimization when test_bb is
4359 the first basic block and merge_bb exits. The idea is to not
4360 move code setting up a return register as that may clobber a
4361 register used to pass function parameters, which then must be
4362 saved in caller-saved regs. A caller-saved reg requires the
4363 prologue, killing a shrink-wrap opportunity. */
4364 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4365 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4366 && single_succ_p (new_dest)
4367 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4368 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4370 regset return_regs;
4371 unsigned int i;
4373 return_regs = BITMAP_ALLOC (&reg_obstack);
4375 /* Start off with the intersection of regs used to pass
4376 params and regs used to return values. */
4377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4378 if (FUNCTION_ARG_REGNO_P (i)
4379 && targetm.calls.function_value_regno_p (i))
4380 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4382 bitmap_and_into (return_regs,
4383 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4384 bitmap_and_into (return_regs,
4385 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4386 if (!bitmap_empty_p (return_regs))
4388 FOR_BB_INSNS_REVERSE (new_dest, insn)
4389 if (NONDEBUG_INSN_P (insn))
4391 df_ref def;
4393 /* If this insn sets any reg in return_regs, add all
4394 reg uses to the set of regs we're interested in. */
4395 FOR_EACH_INSN_DEF (def, insn)
4396 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4398 df_simulate_uses (insn, return_regs);
4399 break;
4402 if (bitmap_intersect_p (merge_set, return_regs))
4404 BITMAP_FREE (return_regs);
4405 BITMAP_FREE (merge_set);
4406 return FALSE;
4409 BITMAP_FREE (return_regs);
4413 no_body:
4414 /* We don't want to use normal invert_jump or redirect_jump because
4415 we don't want to delete_insn called. Also, we want to do our own
4416 change group management. */
4418 old_dest = JUMP_LABEL (jump);
4419 if (other_bb != new_dest)
4421 if (!any_condjump_p (jump))
4422 goto cancel;
4424 if (JUMP_P (BB_END (dest_edge->src)))
4425 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4426 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4427 new_dest_label = ret_rtx;
4428 else
4429 new_dest_label = block_label (new_dest);
4431 if (reversep
4432 ? ! invert_jump_1 (jump, new_dest_label)
4433 : ! redirect_jump_1 (jump, new_dest_label))
4434 goto cancel;
4437 if (verify_changes (n_validated_changes))
4438 confirm_change_group ();
4439 else
4440 goto cancel;
4442 if (other_bb != new_dest)
4444 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4446 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4447 if (reversep)
4449 gcov_type count, probability;
4450 count = BRANCH_EDGE (test_bb)->count;
4451 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4452 FALLTHRU_EDGE (test_bb)->count = count;
4453 probability = BRANCH_EDGE (test_bb)->probability;
4454 BRANCH_EDGE (test_bb)->probability
4455 = FALLTHRU_EDGE (test_bb)->probability;
4456 FALLTHRU_EDGE (test_bb)->probability = probability;
4457 update_br_prob_note (test_bb);
4461 /* Move the insns out of MERGE_BB to before the branch. */
4462 if (head != NULL)
4464 rtx_insn *insn;
4466 if (end == BB_END (merge_bb))
4467 BB_END (merge_bb) = PREV_INSN (head);
4469 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4470 notes being moved might become invalid. */
4471 insn = head;
4474 rtx note;
4476 if (! INSN_P (insn))
4477 continue;
4478 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4479 if (! note)
4480 continue;
4481 remove_note (insn, note);
4482 } while (insn != end && (insn = NEXT_INSN (insn)));
4484 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4485 notes referring to the registers being set might become invalid. */
4486 if (merge_set)
4488 unsigned i;
4489 bitmap_iterator bi;
4491 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4492 remove_reg_equal_equiv_notes_for_regno (i);
4494 BITMAP_FREE (merge_set);
4497 reorder_insns (head, end, PREV_INSN (earliest));
4500 /* Remove the jump and edge if we can. */
4501 if (other_bb == new_dest)
4503 delete_insn (jump);
4504 remove_edge (BRANCH_EDGE (test_bb));
4505 /* ??? Can't merge blocks here, as then_bb is still in use.
4506 At minimum, the merge will get done just before bb-reorder. */
4509 return TRUE;
4511 cancel:
4512 cancel_changes (0);
4514 if (merge_set)
4515 BITMAP_FREE (merge_set);
4517 return FALSE;
4520 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4521 we are after combine pass. */
4523 static void
4524 if_convert (bool after_combine)
4526 basic_block bb;
4527 int pass;
4529 if (optimize == 1)
4531 df_live_add_problem ();
4532 df_live_set_all_dirty ();
4535 /* Record whether we are after combine pass. */
4536 ifcvt_after_combine = after_combine;
4537 num_possible_if_blocks = 0;
4538 num_updated_if_blocks = 0;
4539 num_true_changes = 0;
4541 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4542 mark_loop_exit_edges ();
4543 loop_optimizer_finalize ();
4544 free_dominance_info (CDI_DOMINATORS);
4546 /* Compute postdominators. */
4547 calculate_dominance_info (CDI_POST_DOMINATORS);
4549 df_set_flags (DF_LR_RUN_DCE);
4551 /* Go through each of the basic blocks looking for things to convert. If we
4552 have conditional execution, we make multiple passes to allow us to handle
4553 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4554 pass = 0;
4557 df_analyze ();
4558 /* Only need to do dce on the first pass. */
4559 df_clear_flags (DF_LR_RUN_DCE);
4560 cond_exec_changed_p = FALSE;
4561 pass++;
4563 #ifdef IFCVT_MULTIPLE_DUMPS
4564 if (dump_file && pass > 1)
4565 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4566 #endif
4568 FOR_EACH_BB_FN (bb, cfun)
4570 basic_block new_bb;
4571 while (!df_get_bb_dirty (bb)
4572 && (new_bb = find_if_header (bb, pass)) != NULL)
4573 bb = new_bb;
4576 #ifdef IFCVT_MULTIPLE_DUMPS
4577 if (dump_file && cond_exec_changed_p)
4578 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4579 #endif
4581 while (cond_exec_changed_p);
4583 #ifdef IFCVT_MULTIPLE_DUMPS
4584 if (dump_file)
4585 fprintf (dump_file, "\n\n========== no more changes\n");
4586 #endif
4588 free_dominance_info (CDI_POST_DOMINATORS);
4590 if (dump_file)
4591 fflush (dump_file);
4593 clear_aux_for_blocks ();
4595 /* If we allocated new pseudos, we must resize the array for sched1. */
4596 if (max_regno < max_reg_num ())
4597 max_regno = max_reg_num ();
4599 /* Write the final stats. */
4600 if (dump_file && num_possible_if_blocks > 0)
4602 fprintf (dump_file,
4603 "\n%d possible IF blocks searched.\n",
4604 num_possible_if_blocks);
4605 fprintf (dump_file,
4606 "%d IF blocks converted.\n",
4607 num_updated_if_blocks);
4608 fprintf (dump_file,
4609 "%d true changes made.\n\n\n",
4610 num_true_changes);
4613 if (optimize == 1)
4614 df_remove_problem (df_live);
4616 #ifdef ENABLE_CHECKING
4617 verify_flow_info ();
4618 #endif
4621 /* If-conversion and CFG cleanup. */
4622 static unsigned int
4623 rest_of_handle_if_conversion (void)
4625 if (flag_if_conversion)
4627 if (dump_file)
4629 dump_reg_info (dump_file);
4630 dump_flow_info (dump_file, dump_flags);
4632 cleanup_cfg (CLEANUP_EXPENSIVE);
4633 if_convert (false);
4636 cleanup_cfg (0);
4637 return 0;
4640 namespace {
4642 const pass_data pass_data_rtl_ifcvt =
4644 RTL_PASS, /* type */
4645 "ce1", /* name */
4646 OPTGROUP_NONE, /* optinfo_flags */
4647 TV_IFCVT, /* tv_id */
4648 0, /* properties_required */
4649 0, /* properties_provided */
4650 0, /* properties_destroyed */
4651 0, /* todo_flags_start */
4652 TODO_df_finish, /* todo_flags_finish */
4655 class pass_rtl_ifcvt : public rtl_opt_pass
4657 public:
4658 pass_rtl_ifcvt (gcc::context *ctxt)
4659 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4662 /* opt_pass methods: */
4663 virtual bool gate (function *)
4665 return (optimize > 0) && dbg_cnt (if_conversion);
4668 virtual unsigned int execute (function *)
4670 return rest_of_handle_if_conversion ();
4673 }; // class pass_rtl_ifcvt
4675 } // anon namespace
4677 rtl_opt_pass *
4678 make_pass_rtl_ifcvt (gcc::context *ctxt)
4680 return new pass_rtl_ifcvt (ctxt);
4684 /* Rerun if-conversion, as combine may have simplified things enough
4685 to now meet sequence length restrictions. */
4687 namespace {
4689 const pass_data pass_data_if_after_combine =
4691 RTL_PASS, /* type */
4692 "ce2", /* name */
4693 OPTGROUP_NONE, /* optinfo_flags */
4694 TV_IFCVT, /* tv_id */
4695 0, /* properties_required */
4696 0, /* properties_provided */
4697 0, /* properties_destroyed */
4698 0, /* todo_flags_start */
4699 TODO_df_finish, /* todo_flags_finish */
4702 class pass_if_after_combine : public rtl_opt_pass
4704 public:
4705 pass_if_after_combine (gcc::context *ctxt)
4706 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4709 /* opt_pass methods: */
4710 virtual bool gate (function *)
4712 return optimize > 0 && flag_if_conversion
4713 && dbg_cnt (if_after_combine);
4716 virtual unsigned int execute (function *)
4718 if_convert (true);
4719 return 0;
4722 }; // class pass_if_after_combine
4724 } // anon namespace
4726 rtl_opt_pass *
4727 make_pass_if_after_combine (gcc::context *ctxt)
4729 return new pass_if_after_combine (ctxt);
4733 namespace {
4735 const pass_data pass_data_if_after_reload =
4737 RTL_PASS, /* type */
4738 "ce3", /* name */
4739 OPTGROUP_NONE, /* optinfo_flags */
4740 TV_IFCVT2, /* tv_id */
4741 0, /* properties_required */
4742 0, /* properties_provided */
4743 0, /* properties_destroyed */
4744 0, /* todo_flags_start */
4745 TODO_df_finish, /* todo_flags_finish */
4748 class pass_if_after_reload : public rtl_opt_pass
4750 public:
4751 pass_if_after_reload (gcc::context *ctxt)
4752 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4755 /* opt_pass methods: */
4756 virtual bool gate (function *)
4758 return optimize > 0 && flag_if_conversion2
4759 && dbg_cnt (if_after_reload);
4762 virtual unsigned int execute (function *)
4764 if_convert (true);
4765 return 0;
4768 }; // class pass_if_after_reload
4770 } // anon namespace
4772 rtl_opt_pass *
4773 make_pass_if_after_reload (gcc::context *ctxt)
4775 return new pass_if_after_reload (ctxt);