* target.h (asm_out.byte_op, asm_out.aligned_op, asm_out.unaligned_op,
[official-gcc.git] / gcc / config / i960 / i960.h
blob12cf09c787ff57aba087ae191692dabe5beca600
1 /* Definitions of target machine for GNU compiler, for Intel 80960
2 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000
3 Free Software Foundation, Inc.
4 Contributed by Steven McGeady, Intel Corp.
5 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
6 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* Note that some other tm.h files may include this one and then override
26 many of the definitions that relate to assembler syntax. */
28 #define MULTILIB_DEFAULTS { "mnumerics" }
30 /* Names to predefine in the preprocessor for this target machine. */
31 #define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu=i960 -Amachine=i960"
33 /* Name to predefine in the preprocessor for processor variations. */
34 #define CPP_SPEC "%{mic*:-D__i960\
35 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
36 %{mja:-D__i960JA}%{mjd:-D__i960JD}%{mjf:-D__i960JF}\
37 %{mrp:-D__i960RP}\
38 %{msa:-D__i960SA}%{msb:-D__i960SB}\
39 %{mmc:-D__i960MC}\
40 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
41 %{mcf:-D__i960CF}}\
42 %{msoft-float:-D_SOFT_FLOAT}\
43 %{mka:-D__i960KA__ -D__i960_KA__}\
44 %{mkb:-D__i960KB__ -D__i960_KB__}\
45 %{msa:-D__i960SA__ -D__i960_SA__}\
46 %{msb:-D__i960SB__ -D__i960_SB__}\
47 %{mmc:-D__i960MC__ -D__i960_MC__}\
48 %{mca:-D__i960CA__ -D__i960_CA__}\
49 %{mcc:-D__i960CC__ -D__i960_CC__}\
50 %{mcf:-D__i960CF__ -D__i960_CF__}\
51 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
52 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}\
53 %{mlong-double-64:-D__LONG_DOUBLE_64__}"
55 /* -mic* options make characters signed by default. */
56 /* Use #if rather than ?: because MIPS C compiler rejects ?: in
57 initializers. */
58 #if DEFAULT_SIGNED_CHAR
59 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
60 #else
61 #define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
62 #endif
64 /* Specs for the compiler, to handle processor variations.
65 If the user gives an explicit -gstabs or -gcoff option, then do not
66 try to add an implicit one, as this will fail. */
67 #define CC1_SPEC \
68 "%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-mka}}}}}}}}}}}}\
69 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
70 %{mcoff:%{g*:-gcoff}}\
71 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
73 /* Specs for the assembler, to handle processor variations.
74 For compatibility with Intel's gnu960 tool chain, pass -A options to
75 the assembler. */
76 #define ASM_SPEC \
77 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
78 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
79 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
80 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-AKB}}}}}}}}}}}}\
81 %{mlink-relax:-linkrelax}"
83 /* Specs for the linker, to handle processor variations.
84 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
85 to the linker. */
86 #define LINK_SPEC \
87 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
88 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
89 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
90 %{mbout:-Fbout}%{mcoff:-Fcoff}\
91 %{mlink-relax:-relax}"
93 /* Specs for the libraries to link with, to handle processor variations.
94 Compatible with Intel's gnu960 tool chain. */
95 #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
96 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
98 /* Defining the macro shows we can debug even without a frame pointer.
99 Actually, we can debug without FP. But defining the macro results in
100 that -O means FP elimination. Addressing through sp requires
101 negative offset and more one word addressing in the most cases
102 (offsets except for 0-4095 require one more word). Therefore we've
103 not defined the macro. */
104 /*#define CAN_DEBUG_WITHOUT_FP*/
106 /* Do leaf procedure and tail call optimizations for -O2 and higher. */
107 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
109 if ((LEVEL) >= 2) \
111 target_flags |= TARGET_FLAG_LEAFPROC; \
112 target_flags |= TARGET_FLAG_TAILCALL; \
116 /* Print subsidiary information on the compiler version in use. */
117 #define TARGET_VERSION fprintf (stderr," (intel 80960)");
119 /* Generate DBX debugging information. */
120 #define DBX_DEBUGGING_INFO
122 /* Generate SDB style debugging information. */
123 #define SDB_DEBUGGING_INFO
124 #define EXTENDED_SDB_BASIC_TYPES
126 /* Generate DBX_DEBUGGING_INFO by default. */
127 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
129 /* Redefine this to print in hex. No value adjustment is necessary
130 anymore. */
131 #define PUT_SDB_TYPE(A) \
132 fprintf (asm_out_file, "\t.type\t0x%x;", A)
134 /* Handle pragmas for compatibility with Intel's compilers. */
136 extern int i960_maxbitalignment;
137 extern int i960_last_maxbitalignment;
139 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
140 cpp_register_pragma (PFILE, 0, "align", i960_pr_align); \
141 cpp_register_pragma (PFILE, 0, "noalign", i960_pr_noalign); \
142 } while (0)
144 /* Run-time compilation parameters selecting different hardware subsets. */
146 /* 960 architecture with floating-point. */
147 #define TARGET_FLAG_NUMERICS 0x01
148 #define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
150 /* 960 architecture with memory management. */
151 /* ??? Not used currently. */
152 #define TARGET_FLAG_PROTECTED 0x02
153 #define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
155 /* The following three are mainly used to provide a little sanity checking
156 against the -mARCH flags given. The Jx series, for the purposes of
157 gcc, is a Kx with a data cache. */
159 /* Nonzero if we should generate code for the KA and similar processors.
160 No FPU, no microcode instructions. */
161 #define TARGET_FLAG_K_SERIES 0x04
162 #define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
164 /* Nonzero if we should generate code for the MC processor.
165 Not really different from KB for our purposes. */
166 #define TARGET_FLAG_MC 0x08
167 #define TARGET_MC (target_flags & TARGET_FLAG_MC)
169 /* Nonzero if we should generate code for the CA processor.
170 Enables different optimization strategies. */
171 #define TARGET_FLAG_C_SERIES 0x10
172 #define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
174 /* Nonzero if we should generate leaf-procedures when we find them.
175 You may not want to do this because leaf-proc entries are
176 slower when not entered via BAL - this would be true when
177 a linker not supporting the optimization is used. */
178 #define TARGET_FLAG_LEAFPROC 0x20
179 #define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
181 /* Nonzero if we should perform tail-call optimizations when we find them.
182 You may not want to do this because the detection of cases where
183 this is not valid is not totally complete. */
184 #define TARGET_FLAG_TAILCALL 0x40
185 #define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
187 /* Nonzero if use of a complex addressing mode is a win on this implementation.
188 Complex addressing modes are probably not worthwhile on the K-series,
189 but they definitely are on the C-series. */
190 #define TARGET_FLAG_COMPLEX_ADDR 0x80
191 #define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
193 /* Align code to 8 byte boundaries for faster fetching. */
194 #define TARGET_FLAG_CODE_ALIGN 0x100
195 #define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
197 /* Append branch prediction suffixes to branch opcodes. */
198 /* ??? Not used currently. */
199 #define TARGET_FLAG_BRANCH_PREDICT 0x200
200 #define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
202 /* Forces prototype and return promotions. */
203 /* ??? This does not work. */
204 #define TARGET_FLAG_CLEAN_LINKAGE 0x400
205 #define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
207 /* For compatibility with iC960 v3.0. */
208 #define TARGET_FLAG_IC_COMPAT3_0 0x800
209 #define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
211 /* For compatibility with iC960 v2.0. */
212 #define TARGET_FLAG_IC_COMPAT2_0 0x1000
213 #define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
215 /* If no unaligned accesses are to be permitted. */
216 #define TARGET_FLAG_STRICT_ALIGN 0x2000
217 #define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
219 /* For compatibility with iC960 assembler. */
220 #define TARGET_FLAG_ASM_COMPAT 0x4000
221 #define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
223 /* For compatibility with the gcc960 v1.2 compiler. Use the old structure
224 alignment rules. Also, turns on STRICT_ALIGNMENT. */
225 #define TARGET_FLAG_OLD_ALIGN 0x8000
226 #define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
228 /* Nonzero if long doubles are to be 64 bits. Useful for soft-float targets
229 if 80 bit long double support is missing. */
230 #define TARGET_FLAG_LONG_DOUBLE_64 0x10000
231 #define TARGET_LONG_DOUBLE_64 (target_flags & TARGET_FLAG_LONG_DOUBLE_64)
233 extern int target_flags;
235 /* Macro to define tables used to set the flags.
236 This is a list in braces of pairs in braces,
237 each pair being { "NAME", VALUE }
238 where VALUE is the bits to set or minus the bits to clear.
239 An empty string NAME is used to identify the default VALUE. */
241 /* ??? Not all ten of these architecture variations actually exist, but I
242 am not sure which are real and which aren't. */
244 #define TARGET_SWITCHES \
245 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
246 N_("Generate SA code")}, \
247 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
248 TARGET_FLAG_COMPLEX_ADDR), \
249 N_("Generate SB code")}, \
250 /* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
251 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
252 N_("Generate SC code")}, */ \
253 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
254 N_("Generate KA code")}, \
255 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
256 TARGET_FLAG_COMPLEX_ADDR), \
257 N_("Generate KB code")}, \
258 /* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
259 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
260 N_("Generate KC code")}, */ \
261 {"ja", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
262 N_("Generate JA code")}, \
263 {"jd", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
264 N_("Generate JD code")}, \
265 {"jf", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
266 TARGET_FLAG_COMPLEX_ADDR), \
267 N_("Generate JF code")}, \
268 {"rp", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
269 N_("generate RP code")}, \
270 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
271 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
272 N_("Generate MC code")}, \
273 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
274 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
275 N_("Generate CA code")}, \
276 /* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES| \
277 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN),\
278 N_("Generate CB code")}, \
279 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
280 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
281 TARGET_FLAG_CODE_ALIGN), \
282 N_("Generate CC code")}, */ \
283 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
284 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
285 N_("Generate CF code")}, \
286 {"numerics", (TARGET_FLAG_NUMERICS), \
287 N_("Use hardware floating point instructions")}, \
288 {"soft-float", -(TARGET_FLAG_NUMERICS), \
289 N_("Use software floating point")}, \
290 {"leaf-procedures", TARGET_FLAG_LEAFPROC, \
291 N_("Use alternate leaf function entries")}, \
292 {"no-leaf-procedures", -(TARGET_FLAG_LEAFPROC), \
293 N_("Do not use alternate leaf function entries")}, \
294 {"tail-call", TARGET_FLAG_TAILCALL, \
295 N_("Perform tail call optimization")}, \
296 {"no-tail-call", -(TARGET_FLAG_TAILCALL), \
297 N_("Do not perform tail call optimization")}, \
298 {"complex-addr", TARGET_FLAG_COMPLEX_ADDR, \
299 N_("Use complex addressing modes")}, \
300 {"no-complex-addr", -(TARGET_FLAG_COMPLEX_ADDR), \
301 N_("Do not use complex addressing modes")}, \
302 {"code-align", TARGET_FLAG_CODE_ALIGN, \
303 N_("Align code to 8 byte boundary")}, \
304 {"no-code-align", -(TARGET_FLAG_CODE_ALIGN), \
305 N_("Do not align code to 8 byte boundary")}, \
306 /* {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE), \
307 N_("Force use of prototypes")}, \
308 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE), \
309 N_("Do not force use of prototypes")}, */ \
310 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0, \
311 N_("Enable compatibility with iC960 v2.0")}, \
312 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0, \
313 N_("Enable compatibility with iC960 v2.0")}, \
314 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0, \
315 N_("Enable compatibility with iC960 v3.0")}, \
316 {"asm-compat", TARGET_FLAG_ASM_COMPAT, \
317 N_("Enable compatibility with ic960 assembler")}, \
318 {"intel-asm", TARGET_FLAG_ASM_COMPAT, \
319 N_("Enable compatibility with ic960 assembler")}, \
320 {"strict-align", TARGET_FLAG_STRICT_ALIGN, \
321 N_("Do not permit unaligned accesses")}, \
322 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN), \
323 N_("Permit unaligned accesses")}, \
324 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
325 N_("Layout types like Intel's v1.3 gcc")}, \
326 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
327 N_("Do not layout types like Intel's v1.3 gcc")}, \
328 {"long-double-64", TARGET_FLAG_LONG_DOUBLE_64, \
329 N_("Use 64 bit long doubles")}, \
330 {"link-relax", 0, \
331 N_("Enable linker relaxation")}, \
332 {"no-link-relax", 0, \
333 N_("Do not enable linker relaxation")}, \
334 SUBTARGET_SWITCHES \
335 { "", TARGET_DEFAULT, \
336 NULL}}
338 /* This are meant to be redefined in the host dependent files */
339 #define SUBTARGET_SWITCHES
341 /* Override conflicting target switch options.
342 Doesn't actually detect if more than one -mARCH option is given, but
343 does handle the case of two blatantly conflicting -mARCH options. */
344 #define OVERRIDE_OPTIONS \
346 if (TARGET_K_SERIES && TARGET_C_SERIES) \
348 warning ("conflicting architectures defined - using C series"); \
349 target_flags &= ~TARGET_FLAG_K_SERIES; \
351 if (TARGET_K_SERIES && TARGET_MC) \
353 warning ("conflicting architectures defined - using K series"); \
354 target_flags &= ~TARGET_FLAG_MC; \
356 if (TARGET_C_SERIES && TARGET_MC) \
358 warning ("conflicting architectures defined - using C series");\
359 target_flags &= ~TARGET_FLAG_MC; \
361 if (TARGET_IC_COMPAT3_0) \
363 flag_short_enums = 1; \
364 flag_signed_char = 1; \
365 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
366 if (TARGET_IC_COMPAT2_0) \
368 warning ("iC2.0 and iC3.0 are incompatible - using iC3.0"); \
369 target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
372 if (TARGET_IC_COMPAT2_0) \
374 flag_signed_char = 1; \
375 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
377 /* ??? See the LONG_DOUBLE_TYPE_SIZE definition below. */ \
378 if (TARGET_LONG_DOUBLE_64) \
379 warning ("the -mlong-double-64 option does not work yet");\
380 i960_initialize (); \
383 /* Don't enable anything by default. The user is expected to supply a -mARCH
384 option. If none is given, then -mka is added by CC1_SPEC. */
385 #define TARGET_DEFAULT 0
387 /* Target machine storage layout. */
389 /* Define for cross-compilation from a host with a different float format
390 or endianness, as well as to support 80 bit long doubles on the i960. */
391 #define REAL_ARITHMETIC
393 /* Define this if most significant bit is lowest numbered
394 in instructions that operate on numbered bit-fields. */
395 #define BITS_BIG_ENDIAN 0
397 /* Define this if most significant byte of a word is the lowest numbered.
398 The i960 case be either big endian or little endian. We only support
399 little endian, which is the most common. */
400 #define BYTES_BIG_ENDIAN 0
402 /* Define this if most significant word of a multiword number is lowest
403 numbered. */
404 #define WORDS_BIG_ENDIAN 0
406 /* Number of bits in an addressable storage unit. */
407 #define BITS_PER_UNIT 8
409 /* Bitfields cannot cross word boundaries. */
410 #define BITFIELD_NBYTES_LIMITED 1
412 /* Width in bits of a "word", which is the contents of a machine register.
413 Note that this is not necessarily the width of data type `int';
414 if using 16-bit ints on a 68000, this would still be 32.
415 But on a machine with 16-bit registers, this would be 16. */
416 #define BITS_PER_WORD 32
418 /* Width of a word, in units (bytes). */
419 #define UNITS_PER_WORD 4
421 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
422 #define POINTER_SIZE 32
424 /* Width in bits of a long double. Define to 96, and let
425 ROUND_TYPE_ALIGN adjust the alignment for speed. */
426 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 96)
428 /* ??? This must be a constant, because real.c and real.h test it with #if. */
429 #undef LONG_DOUBLE_TYPE_SIZE
430 #define LONG_DOUBLE_TYPE_SIZE 96
432 /* Define this to set long double type size to use in libgcc2.c, which can
433 not depend on target_flags. */
434 #if defined(__LONG_DOUBLE_64__)
435 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
436 #else
437 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
438 #endif
440 /* Allocation boundary (in *bits*) for storing pointers in memory. */
441 #define POINTER_BOUNDARY 32
443 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
444 #define PARM_BOUNDARY 32
446 /* Boundary (in *bits*) on which stack pointer should be aligned. */
447 #define STACK_BOUNDARY 128
449 /* Allocation boundary (in *bits*) for the code of a function. */
450 #define FUNCTION_BOUNDARY 128
452 /* Alignment of field after `int : 0' in a structure. */
453 #define EMPTY_FIELD_BOUNDARY 32
455 /* This makes zero-length anonymous fields lay the next field
456 at a word boundary. It also makes the whole struct have
457 at least word alignment if there are any bitfields at all. */
458 #define PCC_BITFIELD_TYPE_MATTERS 1
460 /* Every structure's size must be a multiple of this. */
461 #define STRUCTURE_SIZE_BOUNDARY 8
463 /* No data type wants to be aligned rounder than this.
464 Extended precision floats gets 4-word alignment. */
465 #define BIGGEST_ALIGNMENT 128
467 /* Define this if move instructions will actually fail to work
468 when given unaligned data.
469 80960 will work even with unaligned data, but it is slow. */
470 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
472 /* Specify alignment for string literals (which might be higher than the
473 base type's minimal alignment requirement. This allows strings to be
474 aligned on word boundaries, and optimizes calls to the str* and mem*
475 library functions. */
476 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
477 (TREE_CODE (EXP) == STRING_CST \
478 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
479 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
480 : (ALIGN))
482 /* Make XFmode floating point quantities be 128 bit aligned. */
483 #define DATA_ALIGNMENT(TYPE, ALIGN) \
484 (TREE_CODE (TYPE) == ARRAY_TYPE \
485 && TYPE_MODE (TREE_TYPE (TYPE)) == XFmode \
486 && (ALIGN) < 128 ? 128 : (ALIGN))
488 /* Macros to determine size of aggregates (structures and unions
489 in C). Normally, these may be defined to simply return the maximum
490 alignment and simple rounded-up size, but on some machines (like
491 the i960), the total size of a structure is based on a non-trivial
492 rounding method. */
494 #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
495 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
496 ? 128 /* Put 80 bit floating point elements on 128 bit boundaries. */ \
497 : ((!TARGET_OLD_ALIGN && !TYPE_PACKED (TYPE) \
498 && TREE_CODE (TYPE) == RECORD_TYPE) \
499 ? i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE_SIZE (TYPE)) \
500 : MAX ((COMPUTED), (SPECIFIED))))
502 #define ROUND_TYPE_SIZE(TYPE, COMPUTED, SPECIFIED) \
503 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
504 ? bitsize_int (128) : round_up (COMPUTED, SPECIFIED))
505 #define ROUND_TYPE_SIZE_UNIT(TYPE, COMPUTED, SPECIFIED) \
506 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
507 ? size_int (16) : round_up (COMPUTED, SPECIFIED))
510 /* Standard register usage. */
512 /* Number of actual hardware registers.
513 The hardware registers are assigned numbers for the compiler
514 from 0 to just below FIRST_PSEUDO_REGISTER.
515 All registers that the compiler knows about must be given numbers,
516 even those that are not normally considered general registers.
518 Registers 0-15 are the global registers (g0-g15).
519 Registers 16-31 are the local registers (r0-r15).
520 Register 32-35 are the fp registers (fp0-fp3).
521 Register 36 is the condition code register.
522 Register 37 is unused. */
524 #define FIRST_PSEUDO_REGISTER 38
526 /* 1 for registers that have pervasive standard uses and are not available
527 for the register allocator. On 80960, this includes the frame pointer
528 (g15), the previous FP (r0), the stack pointer (r1), the return
529 instruction pointer (r2), and the argument pointer (g14). */
530 #define FIXED_REGISTERS \
531 {0, 0, 0, 0, 0, 0, 0, 0, \
532 0, 0, 0, 0, 0, 0, 1, 1, \
533 1, 1, 1, 0, 0, 0, 0, 0, \
534 0, 0, 0, 0, 0, 0, 0, 0, \
535 0, 0, 0, 0, 1, 1}
537 /* 1 for registers not available across function calls.
538 These must include the FIXED_REGISTERS and also any
539 registers that can be used without being saved.
540 The latter must include the registers where values are returned
541 and the register where structure-value addresses are passed.
542 Aside from that, you can include as many other registers as you like. */
544 /* On the 80960, note that:
545 g0..g3 are used for return values,
546 g0..g7 may always be used for parameters,
547 g8..g11 may be used for parameters, but are preserved if they aren't,
548 g12 is the static chain if needed, otherwise is preserved
549 g13 is the struct return ptr if used, or temp, but may be trashed,
550 g14 is the leaf return ptr or the arg block ptr otherwise zero,
551 must be reset to zero before returning if it was used,
552 g15 is the frame pointer,
553 r0 is the previous FP,
554 r1 is the stack pointer,
555 r2 is the return instruction pointer,
556 r3-r15 are always available,
557 r3 is clobbered by calls in functions that use the arg pointer
558 r4-r11 may be clobbered by the mcount call when profiling
559 r4-r15 if otherwise unused may be used for preserving global registers
560 fp0..fp3 are never available. */
561 #define CALL_USED_REGISTERS \
562 {1, 1, 1, 1, 1, 1, 1, 1, \
563 0, 0, 0, 0, 0, 1, 1, 1, \
564 1, 1, 1, 0, 0, 0, 0, 0, \
565 0, 0, 0, 0, 0, 0, 0, 0, \
566 1, 1, 1, 1, 1, 1}
568 /* If no fp unit, make all of the fp registers fixed so that they can't
569 be used. */
570 #define CONDITIONAL_REGISTER_USAGE \
571 if (! TARGET_NUMERICS) { \
572 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
575 /* Return number of consecutive hard regs needed starting at reg REGNO
576 to hold something of mode MODE.
577 This is ordinarily the length in words of a value of mode MODE
578 but can be less for certain modes in special long registers.
580 On 80960, ordinary registers hold 32 bits worth, but can be ganged
581 together to hold double or extended precision floating point numbers,
582 and the floating point registers hold any size floating point number */
583 #define HARD_REGNO_NREGS(REGNO, MODE) \
584 ((REGNO) < 32 \
585 ? (((MODE) == VOIDmode) \
586 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
587 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
589 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
590 On 80960, the cpu registers can hold any mode but the float registers
591 can only hold SFmode, DFmode, or XFmode. */
592 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok ((REGNO), (MODE))
594 /* Value is 1 if it is a good idea to tie two pseudo registers
595 when one has mode MODE1 and one has mode MODE2.
596 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
597 for any hard reg, then this must be 0 for correct output. */
599 #define MODES_TIEABLE_P(MODE1, MODE2) \
600 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
602 /* Specify the registers used for certain standard purposes.
603 The values of these macros are register numbers. */
605 /* 80960 pc isn't overloaded on a register that the compiler knows about. */
606 /* #define PC_REGNUM */
608 /* Register to use for pushing function arguments. */
609 #define STACK_POINTER_REGNUM 17
611 /* Actual top-of-stack address is same as
612 the contents of the stack pointer register. */
613 #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
615 /* Base register for access to local variables of the function. */
616 #define FRAME_POINTER_REGNUM 15
618 /* Value should be nonzero if functions must have frame pointers.
619 Zero means the frame pointer need not be set up (and parms
620 may be accessed via the stack pointer) in functions that seem suitable.
621 This is computed in `reload', in reload1.c. */
622 /* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
623 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
624 caused this to fail. */
625 /* ??? Must check current_function_has_nonlocal_goto, otherwise frame pointer
626 elimination messes up nonlocal goto sequences. I think this works for other
627 targets because they use indirect jumps for the return which disables fp
628 elimination. */
629 #define FRAME_POINTER_REQUIRED \
630 (! leaf_function_p () || current_function_has_nonlocal_goto)
632 /* Definitions for register eliminations.
634 This is an array of structures. Each structure initializes one pair
635 of eliminable registers. The "from" register number is given first,
636 followed by "to". Eliminations of the same "from" register are listed
637 in order of preference.. */
639 #define ELIMINABLE_REGS {{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
641 /* Given FROM and TO register numbers, say whether this elimination is allowed.
642 Frame pointer elimination is automatically handled. */
643 #define CAN_ELIMINATE(FROM, TO) 1
645 /* Define the offset between two registers, one to be eliminated, and
646 the other its replacement, at the start of a routine.
648 Since the stack grows upward on the i960, this must be a negative number.
649 This includes the 64 byte hardware register save area and the size of
650 the frame. */
652 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
653 do { (OFFSET) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
655 /* Base register for access to arguments of the function. */
656 #define ARG_POINTER_REGNUM 14
658 /* Register in which static-chain is passed to a function.
659 On i960, we use g12. We can't use any local register, because we need
660 a register that can be set before a call or before a jump. */
661 #define STATIC_CHAIN_REGNUM 12
663 /* Functions which return large structures get the address
664 to place the wanted value at in g13. */
666 #define STRUCT_VALUE_REGNUM 13
668 /* The order in which to allocate registers. */
670 #define REG_ALLOC_ORDER \
671 { 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
672 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
673 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
674 11, 12, /* g11, g12 */ \
675 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
676 /* We can't actually allocate these. */ \
677 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
679 /* Define the classes of registers for register constraints in the
680 machine description. Also define ranges of constants.
682 One of the classes must always be named ALL_REGS and include all hard regs.
683 If there is more than one class, another class must be named NO_REGS
684 and contain no registers.
686 The name GENERAL_REGS must be the name of a class (or an alias for
687 another name such as ALL_REGS). This is the class of registers
688 that is allowed by "g" or "r" in a register constraint.
689 Also, registers outside this class are allocated only when
690 instructions express preferences for them.
692 The classes must be numbered in nondecreasing order; that is,
693 a larger-numbered class must never be contained completely
694 in a smaller-numbered class.
696 For any two classes, it is very desirable that there be another
697 class that represents their union. */
699 /* The 80960 has four kinds of registers, global, local, floating point,
700 and condition code. The cc register is never allocated, so no class
701 needs to be defined for it. */
703 enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
704 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
706 /* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
707 does. */
708 #define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
710 #define N_REG_CLASSES (int) LIM_REG_CLASSES
712 /* Give names of register classes as strings for dump file. */
714 #define REG_CLASS_NAMES \
715 { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
716 "FP_REGS", "ALL_REGS" }
718 /* Define which registers fit in which classes.
719 This is an initializer for a vector of HARD_REG_SET
720 of length N_REG_CLASSES. */
722 #define REG_CLASS_CONTENTS \
723 { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
725 /* The same information, inverted:
726 Return the class number of the smallest class containing
727 reg number REGNO. This could be a conditional expression
728 or could index an array. */
730 #define REGNO_REG_CLASS(REGNO) \
731 ((REGNO) < 16 ? GLOBAL_REGS \
732 : (REGNO) < 32 ? LOCAL_REGS \
733 : (REGNO) < 36 ? FP_REGS \
734 : NO_REGS)
736 /* The class value for index registers, and the one for base regs.
737 There is currently no difference between base and index registers on the
738 i960, but this distinction may one day be useful. */
739 #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
740 #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
742 /* Get reg_class from a letter such as appears in the machine description.
743 'f' is a floating point register (fp0..fp3)
744 'l' is a local register (r0-r15)
745 'b' is a global register (g0-g15)
746 'd' is any local or global register
747 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
748 /* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
749 the same thing, since 'r' may include the fp registers. */
750 #define REG_CLASS_FROM_LETTER(C) \
751 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
752 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
754 /* The letters I, J, K, L and M in a register constraint string
755 can be used to stand for particular ranges of immediate operands.
756 This macro defines what the ranges are.
757 C is the letter, and VALUE is a constant value.
758 Return 1 if VALUE is in the range specified by C.
760 For 80960:
761 'I' is used for literal values 0..31
762 'J' means literal 0
763 'K' means 0..-31. */
765 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
766 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
767 : (C) == 'J' ? ((VALUE) == 0) \
768 : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
769 : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
770 : 0)
772 /* Similar, but for floating constants, and defining letters G and H.
773 Here VALUE is the CONST_DOUBLE rtx itself.
774 For the 80960, G is 0.0 and H is 1.0. */
776 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
777 ((TARGET_NUMERICS) && \
778 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
779 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
781 /* Given an rtx X being reloaded into a reg required to be
782 in class CLASS, return the class of reg to actually use.
783 In general this is just CLASS; but on some machines
784 in some cases it is preferable to use a more restrictive class. */
786 /* On 960, can't load constant into floating-point reg except
787 0.0 or 1.0.
789 Any hard reg is ok as a src operand of a reload insn. */
791 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
792 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
793 ? (CLASS) \
794 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
795 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
796 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
797 ? NO_REGS \
798 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
800 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
801 secondary_reload_class (CLASS, MODE, IN)
803 /* Return the maximum number of consecutive registers
804 needed to represent mode MODE in a register of class CLASS. */
805 /* On 80960, this is the size of MODE in words,
806 except in the FP regs, where a single reg is always enough. */
807 #define CLASS_MAX_NREGS(CLASS, MODE) \
808 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
810 /* Stack layout; function entry, exit and calling. */
812 /* Define this if pushing a word on the stack
813 makes the stack pointer a smaller address. */
814 /* #define STACK_GROWS_DOWNWARD */
816 /* Define this if the nominal address of the stack frame
817 is at the high-address end of the local variables;
818 that is, each additional local variable allocated
819 goes at a more negative offset in the frame. */
820 /* #define FRAME_GROWS_DOWNWARD */
822 /* Offset within stack frame to start allocating local variables at.
823 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
824 first local allocated. Otherwise, it is the offset to the BEGINNING
825 of the first local allocated.
827 The i960 has a 64 byte register save area, plus possibly some extra
828 bytes allocated for varargs functions. */
829 #define STARTING_FRAME_OFFSET 64
831 /* If we generate an insn to push BYTES bytes,
832 this says how many the stack pointer really advances by.
833 On 80960, don't define this because there are no push insns. */
834 /* #define PUSH_ROUNDING(BYTES) BYTES */
836 /* Offset of first parameter from the argument pointer register value. */
837 #define FIRST_PARM_OFFSET(FNDECL) 0
839 /* When a parameter is passed in a register, no stack space is
840 allocated for it. However, when args are passed in the
841 stack, space is allocated for every register parameter. */
842 #define MAYBE_REG_PARM_STACK_SPACE 48
843 #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
844 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
845 #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
846 #define OUTGOING_REG_PARM_STACK_SPACE
848 /* Keep the stack pointer constant throughout the function. */
849 #define ACCUMULATE_OUTGOING_ARGS 1
851 /* Value is 1 if returning from a function call automatically
852 pops the arguments described by the number-of-args field in the call.
853 FUNDECL is the declaration node of the function (as a tree),
854 FUNTYPE is the data type of the function (as a tree),
855 or for a library call it is an identifier node for the subroutine name. */
857 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
859 /* Define how to find the value returned by a library function
860 assuming the value has mode MODE. */
862 #define LIBCALL_VALUE(MODE) gen_rtx_REG ((MODE), 0)
864 /* 1 if N is a possible register number for a function value
865 as seen by the caller.
866 On 80960, returns are in g0..g3 */
868 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
870 /* 1 if N is a possible register number for function argument passing.
871 On 80960, parameters are passed in g0..g11 */
873 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
875 /* Perform any needed actions needed for a function that is receiving a
876 variable number of arguments.
878 CUM is as above.
880 MODE and TYPE are the mode and type of the current parameter.
882 PRETEND_SIZE is a variable that should be set to the amount of stack
883 that must be pushed by the prolog to pretend that our caller pushed
886 Normally, this macro will push all remaining incoming registers on the
887 stack and set PRETEND_SIZE to the length of the registers pushed. */
889 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
890 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
892 /* Define the `__builtin_va_list' type for the ABI. */
893 #define BUILD_VA_LIST_TYPE(VALIST) \
894 (VALIST) = i960_build_va_list ()
896 /* Implement `va_start' for varargs and stdarg. */
897 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
898 i960_va_start (stdarg, valist, nextarg)
900 /* Implement `va_arg'. */
901 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
902 i960_va_arg (valist, type)
904 /* Define a data type for recording info about an argument list
905 during the scan of that argument list. This data type should
906 hold all necessary information about the function itself
907 and about the args processed so far, enough to enable macros
908 such as FUNCTION_ARG to determine where the next arg should go.
910 On 80960, this is two integers, which count the number of register
911 parameters and the number of stack parameters seen so far. */
913 struct cum_args { int ca_nregparms; int ca_nstackparms; };
915 #define CUMULATIVE_ARGS struct cum_args
917 /* Define the number of registers that can hold parameters.
918 This macro is used only in macro definitions below and/or i960.c. */
919 #define NPARM_REGS 12
921 /* Define how to round to the next parameter boundary.
922 This macro is used only in macro definitions below and/or i960.c. */
923 #define ROUND_PARM(X, MULTIPLE_OF) \
924 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
926 /* Initialize a variable CUM of type CUMULATIVE_ARGS
927 for a call to a function whose data type is FNTYPE.
928 For a library call, FNTYPE is 0.
930 On 80960, the offset always starts at 0; the first parm reg is g0. */
932 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
933 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
935 /* Update the data in CUM to advance over an argument
936 of mode MODE and data type TYPE.
937 CUM should be advanced to align with the data type accessed and
938 also the size of that data type in # of regs.
939 (TYPE is null for libcalls where that information may not be available.) */
941 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
942 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
944 /* Indicate the alignment boundary for an argument of the specified mode and
945 type. */
946 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
947 (((TYPE) != 0) \
948 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
949 ? PARM_BOUNDARY \
950 : TYPE_ALIGN (TYPE)) \
951 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
952 ? PARM_BOUNDARY \
953 : GET_MODE_ALIGNMENT (MODE)))
955 /* Determine where to put an argument to a function.
956 Value is zero to push the argument on the stack,
957 or a hard register in which to store the argument.
959 MODE is the argument's machine mode.
960 TYPE is the data type of the argument (as a tree).
961 This is null for libcalls where that information may
962 not be available.
963 CUM is a variable of type CUMULATIVE_ARGS which gives info about
964 the preceding args and about the function being called.
965 NAMED is nonzero if this argument is a named parameter
966 (otherwise it is an extra parameter matching an ellipsis). */
968 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
969 i960_function_arg(&CUM, MODE, TYPE, NAMED)
971 /* Define how to find the value returned by a function.
972 VALTYPE is the data type of the value (as a tree).
973 If the precise function being called is known, FUNC is its FUNCTION_DECL;
974 otherwise, FUNC is 0. */
976 #define FUNCTION_VALUE(TYPE, FUNC) \
977 gen_rtx_REG (TYPE_MODE (TYPE), 0)
979 /* Force aggregates and objects larger than 16 bytes to be returned in memory,
980 since we only have 4 registers available for return values. */
982 #define RETURN_IN_MEMORY(TYPE) \
983 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
985 /* Don't default to pcc-struct-return, because we have already specified
986 exactly how to return structures in the RETURN_IN_MEMORY macro. */
987 #define DEFAULT_PCC_STRUCT_RETURN 0
989 /* For an arg passed partly in registers and partly in memory,
990 this is the number of registers used.
991 This never happens on 80960. */
993 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
995 /* Output the label for a function definition.
996 This handles leaf functions and a few other things for the i960. */
998 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
999 i960_function_name_declare (FILE, NAME, DECL)
1001 /* Output assembler code to FILE to increment profiler label # LABELNO
1002 for profiling a function entry. */
1004 #define FUNCTION_PROFILER(FILE, LABELNO) \
1005 output_function_profiler ((FILE), (LABELNO));
1007 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1008 the stack pointer does not matter. The value is tested only in
1009 functions that have frame pointers.
1010 No definition is equivalent to always zero. */
1012 #define EXIT_IGNORE_STACK 1
1014 /* Addressing modes, and classification of registers for them. */
1016 /* #define HAVE_POST_INCREMENT 0 */
1017 /* #define HAVE_POST_DECREMENT 0 */
1019 /* #define HAVE_PRE_DECREMENT 0 */
1020 /* #define HAVE_PRE_INCREMENT 0 */
1022 /* Macros to check register numbers against specific register classes. */
1024 /* These assume that REGNO is a hard or pseudo reg number.
1025 They give nonzero only if REGNO is a hard reg of the suitable class
1026 or a pseudo reg currently allocated to a suitable hard reg.
1027 Since they use reg_renumber, they are safe only once reg_renumber
1028 has been allocated, which happens in local-alloc.c. */
1030 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1031 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
1032 #define REGNO_OK_FOR_BASE_P(REGNO) \
1033 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
1034 #define REGNO_OK_FOR_FP_P(REGNO) \
1035 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
1037 /* Now macros that check whether X is a register and also,
1038 strictly, whether it is in a specified class.
1040 These macros are specific to the 960, and may be used only
1041 in code for printing assembler insns and in conditions for
1042 define_optimization. */
1044 /* 1 if X is an fp register. */
1046 #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
1048 /* Maximum number of registers that can appear in a valid memory address. */
1049 #define MAX_REGS_PER_ADDRESS 2
1051 #define CONSTANT_ADDRESS_P(X) \
1052 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1053 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1054 || GET_CODE (X) == HIGH)
1056 /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
1057 is a legitimate general operand.
1058 It is given that X satisfies CONSTANT_P.
1060 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
1062 ??? This probably should be defined to 1. */
1064 #define LEGITIMATE_CONSTANT_P(X) \
1065 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
1067 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1068 and check its validity for a certain class.
1069 We have two alternate definitions for each of them.
1070 The usual definition accepts all pseudo regs; the other rejects
1071 them unless they have been allocated suitable hard regs.
1072 The symbol REG_OK_STRICT causes the latter definition to be used.
1074 Most source files want to accept pseudo regs in the hope that
1075 they will get allocated to the class that the insn wants them to be in.
1076 Source files for reload pass need to be strict.
1077 After reload, it makes no difference, since pseudo regs have
1078 been eliminated by then. */
1080 #ifndef REG_OK_STRICT
1082 /* Nonzero if X is a hard reg that can be used as an index
1083 or if it is a pseudo reg. */
1084 #define REG_OK_FOR_INDEX_P(X) \
1085 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1086 /* Nonzero if X is a hard reg that can be used as a base reg
1087 or if it is a pseudo reg. */
1088 #define REG_OK_FOR_BASE_P(X) \
1089 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1091 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1092 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1094 #else
1096 /* Nonzero if X is a hard reg that can be used as an index. */
1097 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1098 /* Nonzero if X is a hard reg that can be used as a base reg. */
1099 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1101 #endif
1103 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1104 that is a valid memory address for an instruction.
1105 The MODE argument is the machine mode for the MEM expression
1106 that wants to use this address.
1108 On 80960, legitimate addresses are:
1109 base ld (g0),r0
1110 disp (12 or 32 bit) ld foo,r0
1111 base + index ld (g0)[g1*1],r0
1112 base + displ ld 0xf00(g0),r0
1113 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1114 index*scale + base ld (g0)[g1*4],r0
1115 index*scale + displ ld 0xf00[g1*4],r0
1116 index*scale ld [g1*4],r0
1117 index + base + displ ld 0xf00(g0)[g1*1],r0
1119 In each case, scale can be 1, 2, 4, 8, or 16. */
1121 /* Returns 1 if the scale factor of an index term is valid. */
1122 #define SCALE_TERM_P(X) \
1123 (GET_CODE (X) == CONST_INT \
1124 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1125 || INTVAL(X) == 8 || INTVAL (X) == 16))
1128 #ifdef REG_OK_STRICT
1129 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1130 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1131 #else
1132 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1133 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1134 #endif
1136 /* Try machine-dependent ways of modifying an illegitimate address
1137 to be legitimate. If we find one, return the new, valid address.
1138 This macro is used in only one place: `memory_address' in explow.c.
1140 OLDX is the address as it was before break_out_memory_refs was called.
1141 In some cases it is useful to look at this to decide what needs to be done.
1143 MODE and WIN are passed so that this macro can use
1144 GO_IF_LEGITIMATE_ADDRESS.
1146 It is always safe for this macro to do nothing. It exists to recognize
1147 opportunities to optimize the output. */
1149 /* On 80960, convert non-canonical addresses to canonical form. */
1151 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1152 { rtx orig_x = (X); \
1153 (X) = legitimize_address (X, OLDX, MODE); \
1154 if ((X) != orig_x && memory_address_p (MODE, X)) \
1155 goto WIN; }
1157 /* Go to LABEL if ADDR (a legitimate address expression)
1158 has an effect that depends on the machine mode it is used for.
1159 On the 960 this is never true. */
1161 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1163 /* Specify the machine mode that this machine uses
1164 for the index in the tablejump instruction. */
1165 #define CASE_VECTOR_MODE SImode
1167 /* Define as C expression which evaluates to nonzero if the tablejump
1168 instruction expects the table to contain offsets from the address of the
1169 table.
1170 Do not define this if the table should contain absolute addresses. */
1171 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1173 /* Specify the tree operation to be used to convert reals to integers. */
1174 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1176 /* This is the kind of divide that is easiest to do in the general case. */
1177 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1179 /* Define this as 1 if `char' should by default be signed; else as 0. */
1180 #define DEFAULT_SIGNED_CHAR 0
1182 /* Allow and ignore #sccs directives. */
1183 #define SCCS_DIRECTIVE
1185 /* Max number of bytes we can move from memory to memory
1186 in one reasonably fast instruction. */
1187 #define MOVE_MAX 16
1189 /* Define if operations between registers always perform the operation
1190 on the full register even if a narrower mode is specified. */
1191 #define WORD_REGISTER_OPERATIONS
1193 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1194 will either zero-extend or sign-extend. The value of this macro should
1195 be the code that says which one of the two operations is implicitly
1196 done, NIL if none. */
1197 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1199 /* Nonzero if access to memory by bytes is no faster than for words.
1200 Value changed to 1 after reports of poor bitfield code with g++.
1201 Indications are that code is usually as good, sometimes better. */
1203 #define SLOW_BYTE_ACCESS 1
1205 /* Force sizeof(bool) == 1 to maintain binary compatibility; otherwise, the
1206 change in SLOW_BYTE_ACCESS would have changed it to 4. */
1208 #define BOOL_TYPE_SIZE CHAR_TYPE_SIZE
1210 /* We assume that the store-condition-codes instructions store 0 for false
1211 and some other value for true. This is the value stored for true. */
1213 #define STORE_FLAG_VALUE 1
1215 /* Define this to be nonzero if shift instructions ignore all but the low-order
1216 few bits. */
1217 #define SHIFT_COUNT_TRUNCATED 0
1219 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1220 is done just by pretending it is already truncated. */
1221 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1223 /* Specify the machine mode that pointers have.
1224 After generation of rtl, the compiler makes no further distinction
1225 between pointers and any other objects of this machine mode. */
1226 #define Pmode SImode
1228 /* Specify the widest mode that BLKmode objects can be promoted to */
1229 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1231 /* These global variables are used to pass information between
1232 cc setter and cc user at insn emit time. */
1234 extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1236 /* Add any extra modes needed to represent the condition code.
1238 Also, signed and unsigned comparisons are distinguished, as
1239 are operations which are compatible with chkbit insns. */
1240 #define EXTRA_CC_MODES \
1241 CC(CC_UNSmode, "CC_UNS") \
1242 CC(CC_CHKmode, "CC_CHK")
1244 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1245 return the mode to be used for the comparison. For floating-point, CCFPmode
1246 should be used. CC_NOOVmode should be used when the first operand is a
1247 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1248 needed. */
1249 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
1251 /* A function address in a call instruction is a byte address
1252 (for indexing purposes) so give the MEM rtx a byte's mode. */
1253 #define FUNCTION_MODE SImode
1255 /* Define this if addresses of constant functions
1256 shouldn't be put through pseudo regs where they can be cse'd.
1257 Desirable on machines where ordinary constants are expensive
1258 but a CALL with constant address is cheap. */
1259 #define NO_FUNCTION_CSE
1261 /* Use memcpy, etc. instead of bcopy. */
1263 #ifndef WIND_RIVER
1264 #define TARGET_MEM_FUNCTIONS 1
1265 #endif
1267 /* Compute the cost of computing a constant rtl expression RTX
1268 whose rtx-code is CODE. The body of this macro is a portion
1269 of a switch statement. If the code is computed here,
1270 return it with a return statement. Otherwise, break from the switch. */
1272 /* Constants that can be (non-ldconst) insn operands are cost 0. Constants
1273 that can be non-ldconst operands in rare cases are cost 1. Other constants
1274 have higher costs. */
1276 /* Must check for OUTER_CODE of SET for power2_operand, because
1277 reload_cse_move2add calls us with OUTER_CODE of PLUS to decide when
1278 to replace set with add. */
1280 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1281 case CONST_INT: \
1282 if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
1283 || (OUTER_CODE == SET && power2_operand (RTX, VOIDmode))) \
1284 return 0; \
1285 else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
1286 return 1; \
1287 case CONST: \
1288 case LABEL_REF: \
1289 case SYMBOL_REF: \
1290 return (TARGET_C_SERIES ? 6 : 8); \
1291 case CONST_DOUBLE: \
1292 if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
1293 || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
1294 return 1; \
1295 return 12;
1297 /* The i960 offers addressing modes which are "as cheap as a register".
1298 See i960.c (or gcc.texinfo) for details. */
1300 #define ADDRESS_COST(RTX) \
1301 (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
1303 /* Control the assembler format that we output. */
1305 /* Output at beginning of assembler file. */
1307 #define ASM_FILE_START(file)
1309 /* Output to assembler file text saying following lines
1310 may contain character constants, extra white space, comments, etc. */
1312 #define ASM_APP_ON ""
1314 /* Output to assembler file text saying following lines
1315 no longer contain unusual constructs. */
1317 #define ASM_APP_OFF ""
1319 /* Output before read-only data. */
1321 #define TEXT_SECTION_ASM_OP "\t.text"
1323 /* Output before writable data. */
1325 #define DATA_SECTION_ASM_OP "\t.data"
1327 /* How to refer to registers in assembler output.
1328 This sequence is indexed by compiler's hard-register-number (see above). */
1330 #define REGISTER_NAMES { \
1331 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1332 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1333 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1334 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1335 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1337 /* How to renumber registers for dbx and gdb.
1338 In the 960 encoding, g0..g15 are registers 16..31. */
1340 #define DBX_REGISTER_NUMBER(REGNO) \
1341 (((REGNO) < 16) ? (REGNO) + 16 \
1342 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1344 /* Don't emit dbx records longer than this. This is an arbitrary value. */
1345 #define DBX_CONTIN_LENGTH 1500
1347 /* This is how to output a note to DBX telling it the line number
1348 to which the following sequence of instructions corresponds. */
1350 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1351 { if (write_symbols == SDB_DEBUG) { \
1352 fprintf ((FILE), "\t.ln %d\n", \
1353 (sdb_begin_function_line \
1354 ? (LINE) - sdb_begin_function_line : 1)); \
1355 } else if (write_symbols == DBX_DEBUG) { \
1356 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1359 /* This is how to output the definition of a user-level label named NAME,
1360 such as the label on a static function or variable NAME. */
1362 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1363 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1365 /* This is how to output a command to make the user-level label named NAME
1366 defined for reference from other files. */
1368 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1369 { fputs ("\t.globl ", FILE); \
1370 assemble_name (FILE, NAME); \
1371 fputs ("\n", FILE); }
1373 /* The prefix to add to user-visible assembler symbols. */
1375 #define USER_LABEL_PREFIX "_"
1377 /* This is how to output an internal numbered label where
1378 PREFIX is the class of label and NUM is the number within the class. */
1380 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1381 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1383 /* This is how to store into the string LABEL
1384 the symbol_ref name of an internal numbered label where
1385 PREFIX is the class of label and NUM is the number within the class.
1386 This is suitable for output with `assemble_name'. */
1388 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1389 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1391 /* This is how to output an assembler line defining a `long double'
1392 constant. */
1394 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) i960_output_long_double(FILE, VALUE)
1396 /* This is how to output an assembler line defining a `double' constant. */
1398 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) i960_output_double(FILE, VALUE)
1400 /* This is how to output an assembler line defining a `float' constant. */
1402 #define ASM_OUTPUT_FLOAT(FILE,VALUE) i960_output_float(FILE, VALUE)
1404 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1405 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1407 /* This is how to output an insn to pop a register from the stack.
1408 It need not be very fast code. */
1410 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1411 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1413 /* This is how to output an element of a case-vector that is absolute. */
1415 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1416 fprintf (FILE, "\t.word L%d\n", VALUE)
1418 /* This is how to output an element of a case-vector that is relative. */
1420 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1421 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1423 /* This is how to output an assembler line that says to advance the
1424 location counter to a multiple of 2**LOG bytes. */
1426 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1427 fprintf (FILE, "\t.align %d\n", (LOG))
1429 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1430 fprintf (FILE, "\t.space %d\n", (SIZE))
1432 /* This says how to output an assembler line
1433 to define a global common symbol. */
1435 /* For common objects, output unpadded size... gld960 & lnk960 both
1436 have code to align each common object at link time. Also, if size
1437 is 0, treat this as a declaration, not a definition - i.e.,
1438 do nothing at all. */
1440 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1441 { if ((SIZE) != 0) \
1443 fputs (".globl ", (FILE)), \
1444 assemble_name ((FILE), (NAME)), \
1445 fputs ("\n.comm ", (FILE)), \
1446 assemble_name ((FILE), (NAME)), \
1447 fprintf ((FILE), ",%d\n", (SIZE)); \
1451 /* This says how to output an assembler line to define a local common symbol.
1452 Output unpadded size, with request to linker to align as requested.
1453 0 size should not be possible here. */
1455 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1456 ( fputs (".bss\t", (FILE)), \
1457 assemble_name ((FILE), (NAME)), \
1458 fprintf ((FILE), ",%d,%d\n", (SIZE), \
1459 (floor_log2 ((ALIGN) / BITS_PER_UNIT))))
1461 /* A C statement (sans semicolon) to output to the stdio stream
1462 FILE the assembler definition of uninitialized global DECL named
1463 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1464 Try to use asm_output_aligned_bss to implement this macro. */
1466 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1467 do { \
1468 fputs (".globl ", (FILE)); \
1469 assemble_name ((FILE), (NAME)); \
1470 fputs ("\n", (FILE)); \
1471 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1472 } while (0)
1474 /* Output text for an #ident directive. */
1475 #define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1477 /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1479 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_CODE_ALIGN ? 3 : 0)
1481 /* Store in OUTPUT a string (made with alloca) containing
1482 an assembler-name for a local static variable named NAME.
1483 LABELNO is an integer which is different for each call. */
1485 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1486 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1487 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1489 /* Output assembler code to FILE to initialize this source file's
1490 basic block profiling info, if that has not already been done. */
1492 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1493 { fprintf (FILE, "\tld LPBX0,g12\n"); \
1494 fprintf (FILE, "\tcmpobne 0,g12,LPY%d\n",LABELNO);\
1495 fprintf (FILE, "\tlda LPBX0,g12\n"); \
1496 fprintf (FILE, "\tcall ___bb_init_func\n"); \
1497 fprintf (FILE, "LPY%d:\n",LABELNO); }
1499 /* Output assembler code to FILE to increment the entry-count for
1500 the BLOCKNO'th basic block in this source file. */
1502 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1503 { int blockn = (BLOCKNO); \
1504 fprintf (FILE, "\tld LPBX2+%d,g12\n", 4 * blockn); \
1505 fprintf (FILE, "\taddo g12,1,g12\n"); \
1506 fprintf (FILE, "\tst g12,LPBX2+%d\n", 4 * blockn); }
1508 /* Print operand X (an rtx) in assembler syntax to file FILE.
1509 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1510 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1512 #define PRINT_OPERAND(FILE, X, CODE) \
1513 i960_print_operand (FILE, X, CODE);
1515 /* Print a memory address as an operand to reference that memory location. */
1517 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1518 i960_print_operand_addr (FILE, ADDR)
1520 /* Determine which codes are valid without a following integer. These must
1521 not be alphabetic (the characters are chosen so that
1522 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1523 using ASCII). */
1525 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '+')
1527 /* Output assembler code for a block containing the constant parts
1528 of a trampoline, leaving space for the variable parts. */
1530 /* On the i960, the trampoline contains three instructions:
1531 ldconst _function, r4
1532 ldconst static addr, g12
1533 jump (r4) */
1535 #define TRAMPOLINE_TEMPLATE(FILE) \
1537 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8C203000)); \
1538 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1539 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8CE03000)); \
1540 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1541 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x84212000)); \
1544 /* Length in units of the trampoline for entering a nested function. */
1546 #define TRAMPOLINE_SIZE 20
1548 /* Emit RTL insns to initialize the variable parts of a trampoline.
1549 FNADDR is an RTX for the address of the function's pure code.
1550 CXT is an RTX for the static chain value for the function. */
1552 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1554 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), FNADDR); \
1555 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
1558 /* Generate RTL to flush the register windows so as to make arbitrary frames
1559 available. */
1560 #define SETUP_FRAME_ADDRESSES() \
1561 emit_insn (gen_flush_register_windows ())
1563 #define BUILTIN_SETJMP_FRAME_VALUE hard_frame_pointer_rtx
1565 #if 0
1566 /* Promote char and short arguments to ints, when want compatibility with
1567 the iC960 compilers. */
1569 /* ??? In order for this to work, all users would need to be changed
1570 to test the value of the macro at run time. */
1571 #define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1572 /* ??? This does not exist. */
1573 #define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1574 #endif
1576 /* Instruction type definitions. Used to alternate instructions types for
1577 better performance on the C series chips. */
1579 enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1581 /* Holds the insn type of the last insn output to the assembly file. */
1583 extern enum insn_types i960_last_insn_type;
1585 /* Parse opcodes, and set the insn last insn type based on them. */
1587 #define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1589 /* Table listing what rtl codes each predicate in i960.c will accept. */
1591 #define PREDICATE_CODES \
1592 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1593 LABEL_REF, SUBREG, REG, MEM}}, \
1594 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1595 {"logic_operand", {SUBREG, REG, CONST_INT}}, \
1596 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1597 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1598 {"literal", {CONST_INT}}, \
1599 {"fp_literal_one", {CONST_DOUBLE}}, \
1600 {"fp_literal_double", {CONST_DOUBLE}}, \
1601 {"fp_literal", {CONST_DOUBLE}}, \
1602 {"signed_literal", {CONST_INT}}, \
1603 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1604 {"eq_or_neq", {EQ, NE}}, \
1605 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1606 CONST_DOUBLE, CONST}}, \
1607 {"power2_operand", {CONST_INT}}, \
1608 {"cmplpower2_operand", {CONST_INT}},
1610 /* Defined in reload.c, and used in insn-recog.c. */
1612 extern int rtx_equal_function_value_matters;
1614 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1615 Used for C++ multiple inheritance. */
1616 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1617 do { \
1618 int d = (DELTA); \
1619 if (d < 0 && d > -32) \
1620 fprintf (FILE, "\tsubo %d,g0,g0\n", -d); \
1621 else if (d > 0 && d < 32) \
1622 fprintf (FILE, "\taddo %d,g0,g0\n", d); \
1623 else \
1625 fprintf (FILE, "\tldconst %d,r5\n", d); \
1626 fprintf (FILE, "\taddo r5,g0,g0\n"); \
1628 fprintf (FILE, "\tbx "); \
1629 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1630 fprintf (FILE, "\n"); \
1631 } while (0);