PR target/65871
[official-gcc.git] / gcc / sel-sched.c
blob7daeec3b2bf6bed892bad9d918f0b7b4016f7f51
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "vec.h"
31 #include "machmode.h"
32 #include "input.h"
33 #include "function.h"
34 #include "predict.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfgbuild.h"
38 #include "basic-block.h"
39 #include "flags.h"
40 #include "insn-config.h"
41 #include "insn-attr.h"
42 #include "except.h"
43 #include "recog.h"
44 #include "params.h"
45 #include "target.h"
46 #include "output.h"
47 #include "sched-int.h"
48 #include "ggc.h"
49 #include "symtab.h"
50 #include "wide-int.h"
51 #include "inchash.h"
52 #include "tree.h"
53 #include "langhooks.h"
54 #include "rtlhooks-def.h"
55 #include "emit-rtl.h"
56 #include "ira.h"
57 #include "rtl-iter.h"
59 #ifdef INSN_SCHEDULING
60 #include "sel-sched-ir.h"
61 #include "sel-sched-dump.h"
62 #include "sel-sched.h"
63 #include "dbgcnt.h"
65 /* Implementation of selective scheduling approach.
66 The below implementation follows the original approach with the following
67 changes:
69 o the scheduler works after register allocation (but can be also tuned
70 to work before RA);
71 o some instructions are not copied or register renamed;
72 o conditional jumps are not moved with code duplication;
73 o several jumps in one parallel group are not supported;
74 o when pipelining outer loops, code motion through inner loops
75 is not supported;
76 o control and data speculation are supported;
77 o some improvements for better compile time/performance were made.
79 Terminology
80 ===========
82 A vinsn, or virtual insn, is an insn with additional data characterizing
83 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
84 Vinsns also act as smart pointers to save memory by reusing them in
85 different expressions. A vinsn is described by vinsn_t type.
87 An expression is a vinsn with additional data characterizing its properties
88 at some point in the control flow graph. The data may be its usefulness,
89 priority, speculative status, whether it was renamed/subsituted, etc.
90 An expression is described by expr_t type.
92 Availability set (av_set) is a set of expressions at a given control flow
93 point. It is represented as av_set_t. The expressions in av sets are kept
94 sorted in the terms of expr_greater_p function. It allows to truncate
95 the set while leaving the best expressions.
97 A fence is a point through which code motion is prohibited. On each step,
98 we gather a parallel group of insns at a fence. It is possible to have
99 multiple fences. A fence is represented via fence_t.
101 A boundary is the border between the fence group and the rest of the code.
102 Currently, we never have more than one boundary per fence, as we finalize
103 the fence group when a jump is scheduled. A boundary is represented
104 via bnd_t.
106 High-level overview
107 ===================
109 The scheduler finds regions to schedule, schedules each one, and finalizes.
110 The regions are formed starting from innermost loops, so that when the inner
111 loop is pipelined, its prologue can be scheduled together with yet unprocessed
112 outer loop. The rest of acyclic regions are found using extend_rgns:
113 the blocks that are not yet allocated to any regions are traversed in top-down
114 order, and a block is added to a region to which all its predecessors belong;
115 otherwise, the block starts its own region.
117 The main scheduling loop (sel_sched_region_2) consists of just
118 scheduling on each fence and updating fences. For each fence,
119 we fill a parallel group of insns (fill_insns) until some insns can be added.
120 First, we compute available exprs (av-set) at the boundary of the current
121 group. Second, we choose the best expression from it. If the stall is
122 required to schedule any of the expressions, we advance the current cycle
123 appropriately. So, the final group does not exactly correspond to a VLIW
124 word. Third, we move the chosen expression to the boundary (move_op)
125 and update the intermediate av sets and liveness sets. We quit fill_insns
126 when either no insns left for scheduling or we have scheduled enough insns
127 so we feel like advancing a scheduling point.
129 Computing available expressions
130 ===============================
132 The computation (compute_av_set) is a bottom-up traversal. At each insn,
133 we're moving the union of its successors' sets through it via
134 moveup_expr_set. The dependent expressions are removed. Local
135 transformations (substitution, speculation) are applied to move more
136 exprs. Then the expr corresponding to the current insn is added.
137 The result is saved on each basic block header.
139 When traversing the CFG, we're moving down for no more than max_ws insns.
140 Also, we do not move down to ineligible successors (is_ineligible_successor),
141 which include moving along a back-edge, moving to already scheduled code,
142 and moving to another fence. The first two restrictions are lifted during
143 pipelining, which allows us to move insns along a back-edge. We always have
144 an acyclic region for scheduling because we forbid motion through fences.
146 Choosing the best expression
147 ============================
149 We sort the final availability set via sel_rank_for_schedule, then we remove
150 expressions which are not yet ready (tick_check_p) or which dest registers
151 cannot be used. For some of them, we choose another register via
152 find_best_reg. To do this, we run find_used_regs to calculate the set of
153 registers which cannot be used. The find_used_regs function performs
154 a traversal of code motion paths for an expr. We consider for renaming
155 only registers which are from the same regclass as the original one and
156 using which does not interfere with any live ranges. Finally, we convert
157 the resulting set to the ready list format and use max_issue and reorder*
158 hooks similarly to the Haifa scheduler.
160 Scheduling the best expression
161 ==============================
163 We run the move_op routine to perform the same type of code motion paths
164 traversal as in find_used_regs. (These are working via the same driver,
165 code_motion_path_driver.) When moving down the CFG, we look for original
166 instruction that gave birth to a chosen expression. We undo
167 the transformations performed on an expression via the history saved in it.
168 When found, we remove the instruction or leave a reg-reg copy/speculation
169 check if needed. On a way up, we insert bookkeeping copies at each join
170 point. If a copy is not needed, it will be removed later during this
171 traversal. We update the saved av sets and liveness sets on the way up, too.
173 Finalizing the schedule
174 =======================
176 When pipelining, we reschedule the blocks from which insns were pipelined
177 to get a tighter schedule. On Itanium, we also perform bundling via
178 the same routine from ia64.c.
180 Dependence analysis changes
181 ===========================
183 We augmented the sched-deps.c with hooks that get called when a particular
184 dependence is found in a particular part of an insn. Using these hooks, we
185 can do several actions such as: determine whether an insn can be moved through
186 another (has_dependence_p, moveup_expr); find out whether an insn can be
187 scheduled on the current cycle (tick_check_p); find out registers that
188 are set/used/clobbered by an insn and find out all the strange stuff that
189 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
190 init_global_and_expr_for_insn).
192 Initialization changes
193 ======================
195 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
196 reused in all of the schedulers. We have split up the initialization of data
197 of such parts into different functions prefixed with scheduler type and
198 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
199 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
200 The same splitting is done with current_sched_info structure:
201 dependence-related parts are in sched_deps_info, common part is in
202 common_sched_info, and haifa/sel/etc part is in current_sched_info.
204 Target contexts
205 ===============
207 As we now have multiple-point scheduling, this would not work with backends
208 which save some of the scheduler state to use it in the target hooks.
209 For this purpose, we introduce a concept of target contexts, which
210 encapsulate such information. The backend should implement simple routines
211 of allocating/freeing/setting such a context. The scheduler calls these
212 as target hooks and handles the target context as an opaque pointer (similar
213 to the DFA state type, state_t).
215 Various speedups
216 ================
218 As the correct data dependence graph is not supported during scheduling (which
219 is to be changed in mid-term), we cache as much of the dependence analysis
220 results as possible to avoid reanalyzing. This includes: bitmap caches on
221 each insn in stream of the region saying yes/no for a query with a pair of
222 UIDs; hashtables with the previously done transformations on each insn in
223 stream; a vector keeping a history of transformations on each expr.
225 Also, we try to minimize the dependence context used on each fence to check
226 whether the given expression is ready for scheduling by removing from it
227 insns that are definitely completed the execution. The results of
228 tick_check_p checks are also cached in a vector on each fence.
230 We keep a valid liveness set on each insn in a region to avoid the high
231 cost of recomputation on large basic blocks.
233 Finally, we try to minimize the number of needed updates to the availability
234 sets. The updates happen in two cases: when fill_insns terminates,
235 we advance all fences and increase the stage number to show that the region
236 has changed and the sets are to be recomputed; and when the next iteration
237 of a loop in fill_insns happens (but this one reuses the saved av sets
238 on bb headers.) Thus, we try to break the fill_insns loop only when
239 "significant" number of insns from the current scheduling window was
240 scheduled. This should be made a target param.
243 TODO: correctly support the data dependence graph at all stages and get rid
244 of all caches. This should speed up the scheduler.
245 TODO: implement moving cond jumps with bookkeeping copies on both targets.
246 TODO: tune the scheduler before RA so it does not create too much pseudos.
249 References:
250 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
251 selective scheduling and software pipelining.
252 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
254 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
255 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
256 for GCC. In Proceedings of GCC Developers' Summit 2006.
258 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
259 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
260 http://rogue.colorado.edu/EPIC7/.
264 /* True when pipelining is enabled. */
265 bool pipelining_p;
267 /* True if bookkeeping is enabled. */
268 bool bookkeeping_p;
270 /* Maximum number of insns that are eligible for renaming. */
271 int max_insns_to_rename;
274 /* Definitions of local types and macros. */
276 /* Represents possible outcomes of moving an expression through an insn. */
277 enum MOVEUP_EXPR_CODE
279 /* The expression is not changed. */
280 MOVEUP_EXPR_SAME,
282 /* Not changed, but requires a new destination register. */
283 MOVEUP_EXPR_AS_RHS,
285 /* Cannot be moved. */
286 MOVEUP_EXPR_NULL,
288 /* Changed (substituted or speculated). */
289 MOVEUP_EXPR_CHANGED
292 /* The container to be passed into rtx search & replace functions. */
293 struct rtx_search_arg
295 /* What we are searching for. */
296 rtx x;
298 /* The occurrence counter. */
299 int n;
302 typedef struct rtx_search_arg *rtx_search_arg_p;
304 /* This struct contains precomputed hard reg sets that are needed when
305 computing registers available for renaming. */
306 struct hard_regs_data
308 /* For every mode, this stores registers available for use with
309 that mode. */
310 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
312 /* True when regs_for_mode[mode] is initialized. */
313 bool regs_for_mode_ok[NUM_MACHINE_MODES];
315 /* For every register, it has regs that are ok to rename into it.
316 The register in question is always set. If not, this means
317 that the whole set is not computed yet. */
318 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
320 /* For every mode, this stores registers not available due to
321 call clobbering. */
322 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
324 /* All registers that are used or call used. */
325 HARD_REG_SET regs_ever_used;
327 #ifdef STACK_REGS
328 /* Stack registers. */
329 HARD_REG_SET stack_regs;
330 #endif
333 /* Holds the results of computation of available for renaming and
334 unavailable hard registers. */
335 struct reg_rename
337 /* These are unavailable due to calls crossing, globalness, etc. */
338 HARD_REG_SET unavailable_hard_regs;
340 /* These are *available* for renaming. */
341 HARD_REG_SET available_for_renaming;
343 /* Whether this code motion path crosses a call. */
344 bool crosses_call;
347 /* A global structure that contains the needed information about harg
348 regs. */
349 static struct hard_regs_data sel_hrd;
352 /* This structure holds local data used in code_motion_path_driver hooks on
353 the same or adjacent levels of recursion. Here we keep those parameters
354 that are not used in code_motion_path_driver routine itself, but only in
355 its hooks. Moreover, all parameters that can be modified in hooks are
356 in this structure, so all other parameters passed explicitly to hooks are
357 read-only. */
358 struct cmpd_local_params
360 /* Local params used in move_op_* functions. */
362 /* Edges for bookkeeping generation. */
363 edge e1, e2;
365 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
366 expr_t c_expr_merged, c_expr_local;
368 /* Local params used in fur_* functions. */
369 /* Copy of the ORIGINAL_INSN list, stores the original insns already
370 found before entering the current level of code_motion_path_driver. */
371 def_list_t old_original_insns;
373 /* Local params used in move_op_* functions. */
374 /* True when we have removed last insn in the block which was
375 also a boundary. Do not update anything or create bookkeeping copies. */
376 BOOL_BITFIELD removed_last_insn : 1;
379 /* Stores the static parameters for move_op_* calls. */
380 struct moveop_static_params
382 /* Destination register. */
383 rtx dest;
385 /* Current C_EXPR. */
386 expr_t c_expr;
388 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
389 they are to be removed. */
390 int uid;
392 #ifdef ENABLE_CHECKING
393 /* This is initialized to the insn on which the driver stopped its traversal. */
394 insn_t failed_insn;
395 #endif
397 /* True if we scheduled an insn with different register. */
398 bool was_renamed;
401 /* Stores the static parameters for fur_* calls. */
402 struct fur_static_params
404 /* Set of registers unavailable on the code motion path. */
405 regset used_regs;
407 /* Pointer to the list of original insns definitions. */
408 def_list_t *original_insns;
410 /* True if a code motion path contains a CALL insn. */
411 bool crosses_call;
414 typedef struct fur_static_params *fur_static_params_p;
415 typedef struct cmpd_local_params *cmpd_local_params_p;
416 typedef struct moveop_static_params *moveop_static_params_p;
418 /* Set of hooks and parameters that determine behaviour specific to
419 move_op or find_used_regs functions. */
420 struct code_motion_path_driver_info_def
422 /* Called on enter to the basic block. */
423 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
425 /* Called when original expr is found. */
426 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
428 /* Called while descending current basic block if current insn is not
429 the original EXPR we're searching for. */
430 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
432 /* Function to merge C_EXPRes from different successors. */
433 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
435 /* Function to finalize merge from different successors and possibly
436 deallocate temporary data structures used for merging. */
437 void (*after_merge_succs) (cmpd_local_params_p, void *);
439 /* Called on the backward stage of recursion to do moveup_expr.
440 Used only with move_op_*. */
441 void (*ascend) (insn_t, void *);
443 /* Called on the ascending pass, before returning from the current basic
444 block or from the whole traversal. */
445 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
447 /* When processing successors in move_op we need only descend into
448 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
449 int succ_flags;
451 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
452 const char *routine_name;
455 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
456 FUR_HOOKS. */
457 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
459 /* Set of hooks for performing move_op and find_used_regs routines with
460 code_motion_path_driver. */
461 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
463 /* True if/when we want to emulate Haifa scheduler in the common code.
464 This is used in sched_rgn_local_init and in various places in
465 sched-deps.c. */
466 int sched_emulate_haifa_p;
468 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
469 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
470 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
471 scheduling window. */
472 int global_level;
474 /* Current fences. */
475 flist_t fences;
477 /* True when separable insns should be scheduled as RHSes. */
478 static bool enable_schedule_as_rhs_p;
480 /* Used in verify_target_availability to assert that target reg is reported
481 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
482 we haven't scheduled anything on the previous fence.
483 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
484 have more conservative value than the one returned by the
485 find_used_regs, thus we shouldn't assert that these values are equal. */
486 static bool scheduled_something_on_previous_fence;
488 /* All newly emitted insns will have their uids greater than this value. */
489 static int first_emitted_uid;
491 /* Set of basic blocks that are forced to start new ebbs. This is a subset
492 of all the ebb heads. */
493 static bitmap_head _forced_ebb_heads;
494 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
496 /* Blocks that need to be rescheduled after pipelining. */
497 bitmap blocks_to_reschedule = NULL;
499 /* True when the first lv set should be ignored when updating liveness. */
500 static bool ignore_first = false;
502 /* Number of insns max_issue has initialized data structures for. */
503 static int max_issue_size = 0;
505 /* Whether we can issue more instructions. */
506 static int can_issue_more;
508 /* Maximum software lookahead window size, reduced when rescheduling after
509 pipelining. */
510 static int max_ws;
512 /* Number of insns scheduled in current region. */
513 static int num_insns_scheduled;
515 /* A vector of expressions is used to be able to sort them. */
516 static vec<expr_t> vec_av_set = vNULL;
518 /* A vector of vinsns is used to hold temporary lists of vinsns. */
519 typedef vec<vinsn_t> vinsn_vec_t;
521 /* This vector has the exprs which may still present in av_sets, but actually
522 can't be moved up due to bookkeeping created during code motion to another
523 fence. See comment near the call to update_and_record_unavailable_insns
524 for the detailed explanations. */
525 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
527 /* This vector has vinsns which are scheduled with renaming on the first fence
528 and then seen on the second. For expressions with such vinsns, target
529 availability information may be wrong. */
530 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
532 /* Vector to store temporary nops inserted in move_op to prevent removal
533 of empty bbs. */
534 static vec<insn_t> vec_temp_moveop_nops = vNULL;
536 /* These bitmaps record original instructions scheduled on the current
537 iteration and bookkeeping copies created by them. */
538 static bitmap current_originators = NULL;
539 static bitmap current_copies = NULL;
541 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
542 visit them afterwards. */
543 static bitmap code_motion_visited_blocks = NULL;
545 /* Variables to accumulate different statistics. */
547 /* The number of bookkeeping copies created. */
548 static int stat_bookkeeping_copies;
550 /* The number of insns that required bookkeeiping for their scheduling. */
551 static int stat_insns_needed_bookkeeping;
553 /* The number of insns that got renamed. */
554 static int stat_renamed_scheduled;
556 /* The number of substitutions made during scheduling. */
557 static int stat_substitutions_total;
560 /* Forward declarations of static functions. */
561 static bool rtx_ok_for_substitution_p (rtx, rtx);
562 static int sel_rank_for_schedule (const void *, const void *);
563 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
564 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
566 static rtx get_dest_from_orig_ops (av_set_t);
567 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
568 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
569 def_list_t *);
570 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
571 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
572 cmpd_local_params_p, void *);
573 static void sel_sched_region_1 (void);
574 static void sel_sched_region_2 (int);
575 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
577 static void debug_state (state_t);
580 /* Functions that work with fences. */
582 /* Advance one cycle on FENCE. */
583 static void
584 advance_one_cycle (fence_t fence)
586 unsigned i;
587 int cycle;
588 rtx_insn *insn;
590 advance_state (FENCE_STATE (fence));
591 cycle = ++FENCE_CYCLE (fence);
592 FENCE_ISSUED_INSNS (fence) = 0;
593 FENCE_STARTS_CYCLE_P (fence) = 1;
594 can_issue_more = issue_rate;
595 FENCE_ISSUE_MORE (fence) = can_issue_more;
597 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
599 if (INSN_READY_CYCLE (insn) < cycle)
601 remove_from_deps (FENCE_DC (fence), insn);
602 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
603 continue;
605 i++;
607 if (sched_verbose >= 2)
609 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
610 debug_state (FENCE_STATE (fence));
614 /* Returns true when SUCC in a fallthru bb of INSN, possibly
615 skipping empty basic blocks. */
616 static bool
617 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
619 basic_block bb = BLOCK_FOR_INSN (insn);
620 edge e;
622 if (bb == BLOCK_FOR_INSN (succ))
623 return true;
625 e = find_fallthru_edge_from (bb);
626 if (e)
627 bb = e->dest;
628 else
629 return false;
631 while (sel_bb_empty_p (bb))
632 bb = bb->next_bb;
634 return bb == BLOCK_FOR_INSN (succ);
637 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
638 When a successor will continue a ebb, transfer all parameters of a fence
639 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
640 of scheduling helping to distinguish between the old and the new code. */
641 static void
642 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
643 int orig_max_seqno)
645 bool was_here_p = false;
646 insn_t insn = NULL;
647 insn_t succ;
648 succ_iterator si;
649 ilist_iterator ii;
650 fence_t fence = FLIST_FENCE (old_fences);
651 basic_block bb;
653 /* Get the only element of FENCE_BNDS (fence). */
654 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
656 gcc_assert (!was_here_p);
657 was_here_p = true;
659 gcc_assert (was_here_p && insn != NULL_RTX);
661 /* When in the "middle" of the block, just move this fence
662 to the new list. */
663 bb = BLOCK_FOR_INSN (insn);
664 if (! sel_bb_end_p (insn)
665 || (single_succ_p (bb)
666 && single_pred_p (single_succ (bb))))
668 insn_t succ;
670 succ = (sel_bb_end_p (insn)
671 ? sel_bb_head (single_succ (bb))
672 : NEXT_INSN (insn));
674 if (INSN_SEQNO (succ) > 0
675 && INSN_SEQNO (succ) <= orig_max_seqno
676 && INSN_SCHED_TIMES (succ) <= 0)
678 FENCE_INSN (fence) = succ;
679 move_fence_to_fences (old_fences, new_fences);
681 if (sched_verbose >= 1)
682 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
683 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
685 return;
688 /* Otherwise copy fence's structures to (possibly) multiple successors. */
689 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
691 int seqno = INSN_SEQNO (succ);
693 if (0 < seqno && seqno <= orig_max_seqno
694 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
696 bool b = (in_same_ebb_p (insn, succ)
697 || in_fallthru_bb_p (insn, succ));
699 if (sched_verbose >= 1)
700 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
701 INSN_UID (insn), INSN_UID (succ),
702 BLOCK_NUM (succ), b ? "continue" : "reset");
704 if (b)
705 add_dirty_fence_to_fences (new_fences, succ, fence);
706 else
708 /* Mark block of the SUCC as head of the new ebb. */
709 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
710 add_clean_fence_to_fences (new_fences, succ, fence);
717 /* Functions to support substitution. */
719 /* Returns whether INSN with dependence status DS is eligible for
720 substitution, i.e. it's a copy operation x := y, and RHS that is
721 moved up through this insn should be substituted. */
722 static bool
723 can_substitute_through_p (insn_t insn, ds_t ds)
725 /* We can substitute only true dependencies. */
726 if ((ds & DEP_OUTPUT)
727 || (ds & DEP_ANTI)
728 || ! INSN_RHS (insn)
729 || ! INSN_LHS (insn))
730 return false;
732 /* Now we just need to make sure the INSN_RHS consists of only one
733 simple REG rtx. */
734 if (REG_P (INSN_LHS (insn))
735 && REG_P (INSN_RHS (insn)))
736 return true;
737 return false;
740 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
741 source (if INSN is eligible for substitution). Returns TRUE if
742 substitution was actually performed, FALSE otherwise. Substitution might
743 be not performed because it's either EXPR' vinsn doesn't contain INSN's
744 destination or the resulting insn is invalid for the target machine.
745 When UNDO is true, perform unsubstitution instead (the difference is in
746 the part of rtx on which validate_replace_rtx is called). */
747 static bool
748 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
750 rtx *where;
751 bool new_insn_valid;
752 vinsn_t *vi = &EXPR_VINSN (expr);
753 bool has_rhs = VINSN_RHS (*vi) != NULL;
754 rtx old, new_rtx;
756 /* Do not try to replace in SET_DEST. Although we'll choose new
757 register for the RHS, we don't want to change RHS' original reg.
758 If the insn is not SET, we may still be able to substitute something
759 in it, and if we're here (don't have deps), it doesn't write INSN's
760 dest. */
761 where = (has_rhs
762 ? &VINSN_RHS (*vi)
763 : &PATTERN (VINSN_INSN_RTX (*vi)));
764 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
766 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
767 if (rtx_ok_for_substitution_p (old, *where))
769 rtx_insn *new_insn;
770 rtx *where_replace;
772 /* We should copy these rtxes before substitution. */
773 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
774 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
776 /* Where we'll replace.
777 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
778 used instead of SET_SRC. */
779 where_replace = (has_rhs
780 ? &SET_SRC (PATTERN (new_insn))
781 : &PATTERN (new_insn));
783 new_insn_valid
784 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
785 new_insn);
787 /* ??? Actually, constrain_operands result depends upon choice of
788 destination register. E.g. if we allow single register to be an rhs,
789 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
790 in invalid insn dx=dx, so we'll loose this rhs here.
791 Just can't come up with significant testcase for this, so just
792 leaving it for now. */
793 if (new_insn_valid)
795 change_vinsn_in_expr (expr,
796 create_vinsn_from_insn_rtx (new_insn, false));
798 /* Do not allow clobbering the address register of speculative
799 insns. */
800 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
801 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
802 expr_dest_reg (expr)))
803 EXPR_TARGET_AVAILABLE (expr) = false;
805 return true;
807 else
808 return false;
810 else
811 return false;
814 /* Return the number of places WHAT appears within WHERE.
815 Bail out when we found a reference occupying several hard registers. */
816 static int
817 count_occurrences_equiv (const_rtx what, const_rtx where)
819 int count = 0;
820 subrtx_iterator::array_type array;
821 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
823 const_rtx x = *iter;
824 if (REG_P (x) && REGNO (x) == REGNO (what))
826 /* Bail out if mode is different or more than one register is
827 used. */
828 if (GET_MODE (x) != GET_MODE (what)
829 || (HARD_REGISTER_P (x)
830 && hard_regno_nregs[REGNO (x)][GET_MODE (x)] > 1))
831 return 0;
832 count += 1;
834 else if (GET_CODE (x) == SUBREG
835 && (!REG_P (SUBREG_REG (x))
836 || REGNO (SUBREG_REG (x)) == REGNO (what)))
837 /* ??? Do not support substituting regs inside subregs. In that case,
838 simplify_subreg will be called by validate_replace_rtx, and
839 unsubstitution will fail later. */
840 return 0;
842 return count;
845 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
846 static bool
847 rtx_ok_for_substitution_p (rtx what, rtx where)
849 return (count_occurrences_equiv (what, where) > 0);
853 /* Functions to support register renaming. */
855 /* Substitute VI's set source with REGNO. Returns newly created pattern
856 that has REGNO as its source. */
857 static rtx_insn *
858 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
860 rtx lhs_rtx;
861 rtx pattern;
862 rtx_insn *insn_rtx;
864 lhs_rtx = copy_rtx (VINSN_LHS (vi));
866 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
867 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
869 return insn_rtx;
872 /* Returns whether INSN's src can be replaced with register number
873 NEW_SRC_REG. E.g. the following insn is valid for i386:
875 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
876 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
877 (reg:SI 0 ax [orig:770 c1 ] [770]))
878 (const_int 288 [0x120])) [0 str S1 A8])
879 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
880 (nil))
882 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
883 because of operand constraints:
885 (define_insn "*movqi_1"
886 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
887 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
890 So do constrain_operands here, before choosing NEW_SRC_REG as best
891 reg for rhs. */
893 static bool
894 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
896 vinsn_t vi = INSN_VINSN (insn);
897 machine_mode mode;
898 rtx dst_loc;
899 bool res;
901 gcc_assert (VINSN_SEPARABLE_P (vi));
903 get_dest_and_mode (insn, &dst_loc, &mode);
904 gcc_assert (mode == GET_MODE (new_src_reg));
906 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
907 return true;
909 /* See whether SET_SRC can be replaced with this register. */
910 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
911 res = verify_changes (0);
912 cancel_changes (0);
914 return res;
917 /* Returns whether INSN still be valid after replacing it's DEST with
918 register NEW_REG. */
919 static bool
920 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
922 vinsn_t vi = INSN_VINSN (insn);
923 bool res;
925 /* We should deal here only with separable insns. */
926 gcc_assert (VINSN_SEPARABLE_P (vi));
927 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
929 /* See whether SET_DEST can be replaced with this register. */
930 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
931 res = verify_changes (0);
932 cancel_changes (0);
934 return res;
937 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
938 static rtx_insn *
939 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
941 rtx rhs_rtx;
942 rtx pattern;
943 rtx_insn *insn_rtx;
945 rhs_rtx = copy_rtx (VINSN_RHS (vi));
947 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
948 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
950 return insn_rtx;
953 /* Substitute lhs in the given expression EXPR for the register with number
954 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
955 static void
956 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
958 rtx_insn *insn_rtx;
959 vinsn_t vinsn;
961 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
962 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
964 change_vinsn_in_expr (expr, vinsn);
965 EXPR_WAS_RENAMED (expr) = 1;
966 EXPR_TARGET_AVAILABLE (expr) = 1;
969 /* Returns whether VI writes either one of the USED_REGS registers or,
970 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
971 static bool
972 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
973 HARD_REG_SET unavailable_hard_regs)
975 unsigned regno;
976 reg_set_iterator rsi;
978 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
980 if (REGNO_REG_SET_P (used_regs, regno))
981 return true;
982 if (HARD_REGISTER_NUM_P (regno)
983 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
984 return true;
987 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
989 if (REGNO_REG_SET_P (used_regs, regno))
990 return true;
991 if (HARD_REGISTER_NUM_P (regno)
992 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
993 return true;
996 return false;
999 /* Returns register class of the output register in INSN.
1000 Returns NO_REGS for call insns because some targets have constraints on
1001 destination register of a call insn.
1003 Code adopted from regrename.c::build_def_use. */
1004 static enum reg_class
1005 get_reg_class (rtx_insn *insn)
1007 int i, n_ops;
1009 extract_constrain_insn (insn);
1010 preprocess_constraints (insn);
1011 n_ops = recog_data.n_operands;
1013 const operand_alternative *op_alt = which_op_alt ();
1014 if (asm_noperands (PATTERN (insn)) > 0)
1016 for (i = 0; i < n_ops; i++)
1017 if (recog_data.operand_type[i] == OP_OUT)
1019 rtx *loc = recog_data.operand_loc[i];
1020 rtx op = *loc;
1021 enum reg_class cl = alternative_class (op_alt, i);
1023 if (REG_P (op)
1024 && REGNO (op) == ORIGINAL_REGNO (op))
1025 continue;
1027 return cl;
1030 else if (!CALL_P (insn))
1032 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1034 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1035 enum reg_class cl = alternative_class (op_alt, opn);
1037 if (recog_data.operand_type[opn] == OP_OUT ||
1038 recog_data.operand_type[opn] == OP_INOUT)
1039 return cl;
1043 /* Insns like
1044 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1045 may result in returning NO_REGS, cause flags is written implicitly through
1046 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1047 return NO_REGS;
1050 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1051 static void
1052 init_hard_regno_rename (int regno)
1054 int cur_reg;
1056 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1058 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1060 /* We are not interested in renaming in other regs. */
1061 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1062 continue;
1064 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1065 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1069 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1070 data first. */
1071 static inline bool
1072 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1074 /* Check whether this is all calculated. */
1075 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1076 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1078 init_hard_regno_rename (from);
1080 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1083 /* Calculate set of registers that are capable of holding MODE. */
1084 static void
1085 init_regs_for_mode (machine_mode mode)
1087 int cur_reg;
1089 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1090 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1092 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1094 int nregs;
1095 int i;
1097 /* See whether it accepts all modes that occur in
1098 original insns. */
1099 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1100 continue;
1102 nregs = hard_regno_nregs[cur_reg][mode];
1104 for (i = nregs - 1; i >= 0; --i)
1105 if (fixed_regs[cur_reg + i]
1106 || global_regs[cur_reg + i]
1107 /* Can't use regs which aren't saved by
1108 the prologue. */
1109 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1110 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1111 it affects aliasing globally and invalidates all AV sets. */
1112 || get_reg_base_value (cur_reg + i)
1113 #ifdef LEAF_REGISTERS
1114 /* We can't use a non-leaf register if we're in a
1115 leaf function. */
1116 || (crtl->is_leaf
1117 && !LEAF_REGISTERS[cur_reg + i])
1118 #endif
1120 break;
1122 if (i >= 0)
1123 continue;
1125 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1126 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1127 cur_reg);
1129 /* If the CUR_REG passed all the checks above,
1130 then it's ok. */
1131 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1134 sel_hrd.regs_for_mode_ok[mode] = true;
1137 /* Init all register sets gathered in HRD. */
1138 static void
1139 init_hard_regs_data (void)
1141 int cur_reg = 0;
1142 int cur_mode = 0;
1144 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1145 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1146 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1147 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1149 /* Initialize registers that are valid based on mode when this is
1150 really needed. */
1151 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1152 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1154 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1155 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1156 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1158 #ifdef STACK_REGS
1159 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1161 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1162 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1163 #endif
1166 /* Mark hardware regs in REG_RENAME_P that are not suitable
1167 for renaming rhs in INSN due to hardware restrictions (register class,
1168 modes compatibility etc). This doesn't affect original insn's dest reg,
1169 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1170 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1171 Registers that are in used_regs are always marked in
1172 unavailable_hard_regs as well. */
1174 static void
1175 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1176 regset used_regs ATTRIBUTE_UNUSED)
1178 machine_mode mode;
1179 enum reg_class cl = NO_REGS;
1180 rtx orig_dest;
1181 unsigned cur_reg, regno;
1182 hard_reg_set_iterator hrsi;
1184 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1185 gcc_assert (reg_rename_p);
1187 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1189 /* We have decided not to rename 'mem = something;' insns, as 'something'
1190 is usually a register. */
1191 if (!REG_P (orig_dest))
1192 return;
1194 regno = REGNO (orig_dest);
1196 /* If before reload, don't try to work with pseudos. */
1197 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1198 return;
1200 if (reload_completed)
1201 cl = get_reg_class (def->orig_insn);
1203 /* Stop if the original register is one of the fixed_regs, global_regs or
1204 frame pointer, or we could not discover its class. */
1205 if (fixed_regs[regno]
1206 || global_regs[regno]
1207 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1208 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1209 #else
1210 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1211 #endif
1212 || (reload_completed && cl == NO_REGS))
1214 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1216 /* Give a chance for original register, if it isn't in used_regs. */
1217 if (!def->crosses_call)
1218 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1220 return;
1223 /* If something allocated on stack in this function, mark frame pointer
1224 register unavailable, considering also modes.
1225 FIXME: it is enough to do this once per all original defs. */
1226 if (frame_pointer_needed)
1228 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1229 Pmode, FRAME_POINTER_REGNUM);
1231 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1232 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1233 Pmode, HARD_FRAME_POINTER_REGNUM);
1236 #ifdef STACK_REGS
1237 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1238 is equivalent to as if all stack regs were in this set.
1239 I.e. no stack register can be renamed, and even if it's an original
1240 register here we make sure it won't be lifted over it's previous def
1241 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1242 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1243 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1244 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1245 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1246 sel_hrd.stack_regs);
1247 #endif
1249 /* If there's a call on this path, make regs from call_used_reg_set
1250 unavailable. */
1251 if (def->crosses_call)
1252 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1253 call_used_reg_set);
1255 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1256 but not register classes. */
1257 if (!reload_completed)
1258 return;
1260 /* Leave regs as 'available' only from the current
1261 register class. */
1262 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1263 reg_class_contents[cl]);
1265 mode = GET_MODE (orig_dest);
1267 /* Leave only registers available for this mode. */
1268 if (!sel_hrd.regs_for_mode_ok[mode])
1269 init_regs_for_mode (mode);
1270 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1271 sel_hrd.regs_for_mode[mode]);
1273 /* Exclude registers that are partially call clobbered. */
1274 if (def->crosses_call
1275 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1276 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1277 sel_hrd.regs_for_call_clobbered[mode]);
1279 /* Leave only those that are ok to rename. */
1280 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1281 0, cur_reg, hrsi)
1283 int nregs;
1284 int i;
1286 nregs = hard_regno_nregs[cur_reg][mode];
1287 gcc_assert (nregs > 0);
1289 for (i = nregs - 1; i >= 0; --i)
1290 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1291 break;
1293 if (i >= 0)
1294 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1295 cur_reg);
1298 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1299 reg_rename_p->unavailable_hard_regs);
1301 /* Regno is always ok from the renaming part of view, but it really
1302 could be in *unavailable_hard_regs already, so set it here instead
1303 of there. */
1304 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1307 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1308 best register more recently than REG2. */
1309 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1311 /* Indicates the number of times renaming happened before the current one. */
1312 static int reg_rename_this_tick;
1314 /* Choose the register among free, that is suitable for storing
1315 the rhs value.
1317 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1318 originally appears. There could be multiple original operations
1319 for single rhs since we moving it up and merging along different
1320 paths.
1322 Some code is adapted from regrename.c (regrename_optimize).
1323 If original register is available, function returns it.
1324 Otherwise it performs the checks, so the new register should
1325 comply with the following:
1326 - it should not violate any live ranges (such registers are in
1327 REG_RENAME_P->available_for_renaming set);
1328 - it should not be in the HARD_REGS_USED regset;
1329 - it should be in the class compatible with original uses;
1330 - it should not be clobbered through reference with different mode;
1331 - if we're in the leaf function, then the new register should
1332 not be in the LEAF_REGISTERS;
1333 - etc.
1335 If several registers meet the conditions, the register with smallest
1336 tick is returned to achieve more even register allocation.
1338 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1340 If no register satisfies the above conditions, NULL_RTX is returned. */
1341 static rtx
1342 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1343 struct reg_rename *reg_rename_p,
1344 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1346 int best_new_reg;
1347 unsigned cur_reg;
1348 machine_mode mode = VOIDmode;
1349 unsigned regno, i, n;
1350 hard_reg_set_iterator hrsi;
1351 def_list_iterator di;
1352 def_t def;
1354 /* If original register is available, return it. */
1355 *is_orig_reg_p_ptr = true;
1357 FOR_EACH_DEF (def, di, original_insns)
1359 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1361 gcc_assert (REG_P (orig_dest));
1363 /* Check that all original operations have the same mode.
1364 This is done for the next loop; if we'd return from this
1365 loop, we'd check only part of them, but in this case
1366 it doesn't matter. */
1367 if (mode == VOIDmode)
1368 mode = GET_MODE (orig_dest);
1369 gcc_assert (mode == GET_MODE (orig_dest));
1371 regno = REGNO (orig_dest);
1372 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1373 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1374 break;
1376 /* All hard registers are available. */
1377 if (i == n)
1379 gcc_assert (mode != VOIDmode);
1381 /* Hard registers should not be shared. */
1382 return gen_rtx_REG (mode, regno);
1386 *is_orig_reg_p_ptr = false;
1387 best_new_reg = -1;
1389 /* Among all available regs choose the register that was
1390 allocated earliest. */
1391 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1392 0, cur_reg, hrsi)
1393 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1395 /* Check that all hard regs for mode are available. */
1396 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1397 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1398 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1399 cur_reg + i))
1400 break;
1402 if (i < n)
1403 continue;
1405 /* All hard registers are available. */
1406 if (best_new_reg < 0
1407 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1409 best_new_reg = cur_reg;
1411 /* Return immediately when we know there's no better reg. */
1412 if (! reg_rename_tick[best_new_reg])
1413 break;
1417 if (best_new_reg >= 0)
1419 /* Use the check from the above loop. */
1420 gcc_assert (mode != VOIDmode);
1421 return gen_rtx_REG (mode, best_new_reg);
1424 return NULL_RTX;
1427 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1428 assumptions about available registers in the function. */
1429 static rtx
1430 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1431 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1433 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1434 original_insns, is_orig_reg_p_ptr);
1436 /* FIXME loop over hard_regno_nregs here. */
1437 gcc_assert (best_reg == NULL_RTX
1438 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1440 return best_reg;
1443 /* Choose the pseudo register for storing rhs value. As this is supposed
1444 to work before reload, we return either the original register or make
1445 the new one. The parameters are the same that in choose_nest_reg_1
1446 functions, except that USED_REGS may contain pseudos.
1447 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1449 TODO: take into account register pressure while doing this. Up to this
1450 moment, this function would never return NULL for pseudos, but we should
1451 not rely on this. */
1452 static rtx
1453 choose_best_pseudo_reg (regset used_regs,
1454 struct reg_rename *reg_rename_p,
1455 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1457 def_list_iterator i;
1458 def_t def;
1459 machine_mode mode = VOIDmode;
1460 bool bad_hard_regs = false;
1462 /* We should not use this after reload. */
1463 gcc_assert (!reload_completed);
1465 /* If original register is available, return it. */
1466 *is_orig_reg_p_ptr = true;
1468 FOR_EACH_DEF (def, i, original_insns)
1470 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1471 int orig_regno;
1473 gcc_assert (REG_P (dest));
1475 /* Check that all original operations have the same mode. */
1476 if (mode == VOIDmode)
1477 mode = GET_MODE (dest);
1478 else
1479 gcc_assert (mode == GET_MODE (dest));
1480 orig_regno = REGNO (dest);
1482 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1484 if (orig_regno < FIRST_PSEUDO_REGISTER)
1486 gcc_assert (df_regs_ever_live_p (orig_regno));
1488 /* For hard registers, we have to check hardware imposed
1489 limitations (frame/stack registers, calls crossed). */
1490 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1491 orig_regno))
1493 /* Don't let register cross a call if it doesn't already
1494 cross one. This condition is written in accordance with
1495 that in sched-deps.c sched_analyze_reg(). */
1496 if (!reg_rename_p->crosses_call
1497 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1498 return gen_rtx_REG (mode, orig_regno);
1501 bad_hard_regs = true;
1503 else
1504 return dest;
1508 *is_orig_reg_p_ptr = false;
1510 /* We had some original hard registers that couldn't be used.
1511 Those were likely special. Don't try to create a pseudo. */
1512 if (bad_hard_regs)
1513 return NULL_RTX;
1515 /* We haven't found a register from original operations. Get a new one.
1516 FIXME: control register pressure somehow. */
1518 rtx new_reg = gen_reg_rtx (mode);
1520 gcc_assert (mode != VOIDmode);
1522 max_regno = max_reg_num ();
1523 maybe_extend_reg_info_p ();
1524 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1526 return new_reg;
1530 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1531 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1532 static void
1533 verify_target_availability (expr_t expr, regset used_regs,
1534 struct reg_rename *reg_rename_p)
1536 unsigned n, i, regno;
1537 machine_mode mode;
1538 bool target_available, live_available, hard_available;
1540 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1541 return;
1543 regno = expr_dest_regno (expr);
1544 mode = GET_MODE (EXPR_LHS (expr));
1545 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1546 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1548 live_available = hard_available = true;
1549 for (i = 0; i < n; i++)
1551 if (bitmap_bit_p (used_regs, regno + i))
1552 live_available = false;
1553 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1554 hard_available = false;
1557 /* When target is not available, it may be due to hard register
1558 restrictions, e.g. crosses calls, so we check hard_available too. */
1559 if (target_available)
1560 gcc_assert (live_available);
1561 else
1562 /* Check only if we haven't scheduled something on the previous fence,
1563 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1564 and having more than one fence, we may end having targ_un in a block
1565 in which successors target register is actually available.
1567 The last condition handles the case when a dependence from a call insn
1568 was created in sched-deps.c for insns with destination registers that
1569 never crossed a call before, but do cross one after our code motion.
1571 FIXME: in the latter case, we just uselessly called find_used_regs,
1572 because we can't move this expression with any other register
1573 as well. */
1574 gcc_assert (scheduled_something_on_previous_fence || !live_available
1575 || !hard_available
1576 || (!reload_completed && reg_rename_p->crosses_call
1577 && REG_N_CALLS_CROSSED (regno) == 0));
1580 /* Collect unavailable registers due to liveness for EXPR from BNDS
1581 into USED_REGS. Save additional information about available
1582 registers and unavailable due to hardware restriction registers
1583 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1584 list. */
1585 static void
1586 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1587 struct reg_rename *reg_rename_p,
1588 def_list_t *original_insns)
1590 for (; bnds; bnds = BLIST_NEXT (bnds))
1592 bool res;
1593 av_set_t orig_ops = NULL;
1594 bnd_t bnd = BLIST_BND (bnds);
1596 /* If the chosen best expr doesn't belong to current boundary,
1597 skip it. */
1598 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1599 continue;
1601 /* Put in ORIG_OPS all exprs from this boundary that became
1602 RES on top. */
1603 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1605 /* Compute used regs and OR it into the USED_REGS. */
1606 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1607 reg_rename_p, original_insns);
1609 /* FIXME: the assert is true until we'd have several boundaries. */
1610 gcc_assert (res);
1611 av_set_clear (&orig_ops);
1615 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1616 If BEST_REG is valid, replace LHS of EXPR with it. */
1617 static bool
1618 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1620 /* Try whether we'll be able to generate the insn
1621 'dest := best_reg' at the place of the original operation. */
1622 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1624 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1626 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1628 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1629 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1630 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1631 return false;
1634 /* Make sure that EXPR has the right destination
1635 register. */
1636 if (expr_dest_regno (expr) != REGNO (best_reg))
1637 replace_dest_with_reg_in_expr (expr, best_reg);
1638 else
1639 EXPR_TARGET_AVAILABLE (expr) = 1;
1641 return true;
1644 /* Select and assign best register to EXPR searching from BNDS.
1645 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1646 Return FALSE if no register can be chosen, which could happen when:
1647 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1648 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1649 that are used on the moving path. */
1650 static bool
1651 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1653 static struct reg_rename reg_rename_data;
1655 regset used_regs;
1656 def_list_t original_insns = NULL;
1657 bool reg_ok;
1659 *is_orig_reg_p = false;
1661 /* Don't bother to do anything if this insn doesn't set any registers. */
1662 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1663 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1664 return true;
1666 used_regs = get_clear_regset_from_pool ();
1667 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1669 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1670 &original_insns);
1672 #ifdef ENABLE_CHECKING
1673 /* If after reload, make sure we're working with hard regs here. */
1674 if (reload_completed)
1676 reg_set_iterator rsi;
1677 unsigned i;
1679 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1680 gcc_unreachable ();
1682 #endif
1684 if (EXPR_SEPARABLE_P (expr))
1686 rtx best_reg = NULL_RTX;
1687 /* Check that we have computed availability of a target register
1688 correctly. */
1689 verify_target_availability (expr, used_regs, &reg_rename_data);
1691 /* Turn everything in hard regs after reload. */
1692 if (reload_completed)
1694 HARD_REG_SET hard_regs_used;
1695 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1697 /* Join hard registers unavailable due to register class
1698 restrictions and live range intersection. */
1699 IOR_HARD_REG_SET (hard_regs_used,
1700 reg_rename_data.unavailable_hard_regs);
1702 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1703 original_insns, is_orig_reg_p);
1705 else
1706 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1707 original_insns, is_orig_reg_p);
1709 if (!best_reg)
1710 reg_ok = false;
1711 else if (*is_orig_reg_p)
1713 /* In case of unification BEST_REG may be different from EXPR's LHS
1714 when EXPR's LHS is unavailable, and there is another LHS among
1715 ORIGINAL_INSNS. */
1716 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1718 else
1720 /* Forbid renaming of low-cost insns. */
1721 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1722 reg_ok = false;
1723 else
1724 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1727 else
1729 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1730 any of the HARD_REGS_USED set. */
1731 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1732 reg_rename_data.unavailable_hard_regs))
1734 reg_ok = false;
1735 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1737 else
1739 reg_ok = true;
1740 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1744 ilist_clear (&original_insns);
1745 return_regset_to_pool (used_regs);
1747 return reg_ok;
1751 /* Return true if dependence described by DS can be overcomed. */
1752 static bool
1753 can_speculate_dep_p (ds_t ds)
1755 if (spec_info == NULL)
1756 return false;
1758 /* Leave only speculative data. */
1759 ds &= SPECULATIVE;
1761 if (ds == 0)
1762 return false;
1765 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1766 that we can overcome. */
1767 ds_t spec_mask = spec_info->mask;
1769 if ((ds & spec_mask) != ds)
1770 return false;
1773 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1774 return false;
1776 return true;
1779 /* Get a speculation check instruction.
1780 C_EXPR is a speculative expression,
1781 CHECK_DS describes speculations that should be checked,
1782 ORIG_INSN is the original non-speculative insn in the stream. */
1783 static insn_t
1784 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1786 rtx check_pattern;
1787 rtx_insn *insn_rtx;
1788 insn_t insn;
1789 basic_block recovery_block;
1790 rtx_insn *label;
1792 /* Create a recovery block if target is going to emit branchy check, or if
1793 ORIG_INSN was speculative already. */
1794 if (targetm.sched.needs_block_p (check_ds)
1795 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1797 recovery_block = sel_create_recovery_block (orig_insn);
1798 label = BB_HEAD (recovery_block);
1800 else
1802 recovery_block = NULL;
1803 label = NULL;
1806 /* Get pattern of the check. */
1807 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1808 check_ds);
1810 gcc_assert (check_pattern != NULL);
1812 /* Emit check. */
1813 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1815 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1816 INSN_SEQNO (orig_insn), orig_insn);
1818 /* Make check to be non-speculative. */
1819 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1820 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1822 /* Decrease priority of check by difference of load/check instruction
1823 latencies. */
1824 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1825 - sel_vinsn_cost (INSN_VINSN (insn)));
1827 /* Emit copy of original insn (though with replaced target register,
1828 if needed) to the recovery block. */
1829 if (recovery_block != NULL)
1831 rtx twin_rtx;
1833 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1834 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1835 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1836 INSN_EXPR (orig_insn),
1837 INSN_SEQNO (insn),
1838 bb_note (recovery_block));
1841 /* If we've generated a data speculation check, make sure
1842 that all the bookkeeping instruction we'll create during
1843 this move_op () will allocate an ALAT entry so that the
1844 check won't fail.
1845 In case of control speculation we must convert C_EXPR to control
1846 speculative mode, because failing to do so will bring us an exception
1847 thrown by the non-control-speculative load. */
1848 check_ds = ds_get_max_dep_weak (check_ds);
1849 speculate_expr (c_expr, check_ds);
1851 return insn;
1854 /* True when INSN is a "regN = regN" copy. */
1855 static bool
1856 identical_copy_p (rtx_insn *insn)
1858 rtx lhs, rhs, pat;
1860 pat = PATTERN (insn);
1862 if (GET_CODE (pat) != SET)
1863 return false;
1865 lhs = SET_DEST (pat);
1866 if (!REG_P (lhs))
1867 return false;
1869 rhs = SET_SRC (pat);
1870 if (!REG_P (rhs))
1871 return false;
1873 return REGNO (lhs) == REGNO (rhs);
1876 /* Undo all transformations on *AV_PTR that were done when
1877 moving through INSN. */
1878 static void
1879 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1881 av_set_iterator av_iter;
1882 expr_t expr;
1883 av_set_t new_set = NULL;
1885 /* First, kill any EXPR that uses registers set by an insn. This is
1886 required for correctness. */
1887 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1888 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1889 && bitmap_intersect_p (INSN_REG_SETS (insn),
1890 VINSN_REG_USES (EXPR_VINSN (expr)))
1891 /* When an insn looks like 'r1 = r1', we could substitute through
1892 it, but the above condition will still hold. This happened with
1893 gcc.c-torture/execute/961125-1.c. */
1894 && !identical_copy_p (insn))
1896 if (sched_verbose >= 6)
1897 sel_print ("Expr %d removed due to use/set conflict\n",
1898 INSN_UID (EXPR_INSN_RTX (expr)));
1899 av_set_iter_remove (&av_iter);
1902 /* Undo transformations looking at the history vector. */
1903 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1905 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1906 insn, EXPR_VINSN (expr), true);
1908 if (index >= 0)
1910 expr_history_def *phist;
1912 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1914 switch (phist->type)
1916 case TRANS_SPECULATION:
1918 ds_t old_ds, new_ds;
1920 /* Compute the difference between old and new speculative
1921 statuses: that's what we need to check.
1922 Earlier we used to assert that the status will really
1923 change. This no longer works because only the probability
1924 bits in the status may have changed during compute_av_set,
1925 and in the case of merging different probabilities of the
1926 same speculative status along different paths we do not
1927 record this in the history vector. */
1928 old_ds = phist->spec_ds;
1929 new_ds = EXPR_SPEC_DONE_DS (expr);
1931 old_ds &= SPECULATIVE;
1932 new_ds &= SPECULATIVE;
1933 new_ds &= ~old_ds;
1935 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1936 break;
1938 case TRANS_SUBSTITUTION:
1940 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1941 vinsn_t new_vi;
1942 bool add = true;
1944 new_vi = phist->old_expr_vinsn;
1946 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1947 == EXPR_SEPARABLE_P (expr));
1948 copy_expr (tmp_expr, expr);
1950 if (vinsn_equal_p (phist->new_expr_vinsn,
1951 EXPR_VINSN (tmp_expr)))
1952 change_vinsn_in_expr (tmp_expr, new_vi);
1953 else
1954 /* This happens when we're unsubstituting on a bookkeeping
1955 copy, which was in turn substituted. The history is wrong
1956 in this case. Do it the hard way. */
1957 add = substitute_reg_in_expr (tmp_expr, insn, true);
1958 if (add)
1959 av_set_add (&new_set, tmp_expr);
1960 clear_expr (tmp_expr);
1961 break;
1963 default:
1964 gcc_unreachable ();
1970 av_set_union_and_clear (av_ptr, &new_set, NULL);
1974 /* Moveup_* helpers for code motion and computing av sets. */
1976 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1977 The difference from the below function is that only substitution is
1978 performed. */
1979 static enum MOVEUP_EXPR_CODE
1980 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1982 vinsn_t vi = EXPR_VINSN (expr);
1983 ds_t *has_dep_p;
1984 ds_t full_ds;
1986 /* Do this only inside insn group. */
1987 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1989 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1990 if (full_ds == 0)
1991 return MOVEUP_EXPR_SAME;
1993 /* Substitution is the possible choice in this case. */
1994 if (has_dep_p[DEPS_IN_RHS])
1996 /* Can't substitute UNIQUE VINSNs. */
1997 gcc_assert (!VINSN_UNIQUE_P (vi));
1999 if (can_substitute_through_p (through_insn,
2000 has_dep_p[DEPS_IN_RHS])
2001 && substitute_reg_in_expr (expr, through_insn, false))
2003 EXPR_WAS_SUBSTITUTED (expr) = true;
2004 return MOVEUP_EXPR_CHANGED;
2007 /* Don't care about this, as even true dependencies may be allowed
2008 in an insn group. */
2009 return MOVEUP_EXPR_SAME;
2012 /* This can catch output dependencies in COND_EXECs. */
2013 if (has_dep_p[DEPS_IN_INSN])
2014 return MOVEUP_EXPR_NULL;
2016 /* This is either an output or an anti dependence, which usually have
2017 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2018 will fix this. */
2019 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2020 return MOVEUP_EXPR_AS_RHS;
2023 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2024 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2025 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2026 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2027 && !sel_insn_is_speculation_check (through_insn))
2029 /* True when a conflict on a target register was found during moveup_expr. */
2030 static bool was_target_conflict = false;
2032 /* Return true when moving a debug INSN across THROUGH_INSN will
2033 create a bookkeeping block. We don't want to create such blocks,
2034 for they would cause codegen differences between compilations with
2035 and without debug info. */
2037 static bool
2038 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2039 insn_t through_insn)
2041 basic_block bbi, bbt;
2042 edge e1, e2;
2043 edge_iterator ei1, ei2;
2045 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2047 if (sched_verbose >= 9)
2048 sel_print ("no bookkeeping required: ");
2049 return FALSE;
2052 bbi = BLOCK_FOR_INSN (insn);
2054 if (EDGE_COUNT (bbi->preds) == 1)
2056 if (sched_verbose >= 9)
2057 sel_print ("only one pred edge: ");
2058 return TRUE;
2061 bbt = BLOCK_FOR_INSN (through_insn);
2063 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2065 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2067 if (find_block_for_bookkeeping (e1, e2, TRUE))
2069 if (sched_verbose >= 9)
2070 sel_print ("found existing block: ");
2071 return FALSE;
2076 if (sched_verbose >= 9)
2077 sel_print ("would create bookkeeping block: ");
2079 return TRUE;
2082 /* Return true when the conflict with newly created implicit clobbers
2083 between EXPR and THROUGH_INSN is found because of renaming. */
2084 static bool
2085 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2087 HARD_REG_SET temp;
2088 rtx_insn *insn;
2089 rtx reg, rhs, pat;
2090 hard_reg_set_iterator hrsi;
2091 unsigned regno;
2092 bool valid;
2094 /* Make a new pseudo register. */
2095 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2096 max_regno = max_reg_num ();
2097 maybe_extend_reg_info_p ();
2099 /* Validate a change and bail out early. */
2100 insn = EXPR_INSN_RTX (expr);
2101 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2102 valid = verify_changes (0);
2103 cancel_changes (0);
2104 if (!valid)
2106 if (sched_verbose >= 6)
2107 sel_print ("implicit clobbers failed validation, ");
2108 return true;
2111 /* Make a new insn with it. */
2112 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2113 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2114 start_sequence ();
2115 insn = emit_insn (pat);
2116 end_sequence ();
2118 /* Calculate implicit clobbers. */
2119 extract_insn (insn);
2120 preprocess_constraints (insn);
2121 ira_implicitly_set_insn_hard_regs (&temp);
2122 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2124 /* If any implicit clobber registers intersect with regular ones in
2125 through_insn, we have a dependency and thus bail out. */
2126 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2128 vinsn_t vi = INSN_VINSN (through_insn);
2129 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2130 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2131 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2132 return true;
2135 return false;
2138 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2139 performing necessary transformations. Record the type of transformation
2140 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2141 permit all dependencies except true ones, and try to remove those
2142 too via forward substitution. All cases when a non-eliminable
2143 non-zero cost dependency exists inside an insn group will be fixed
2144 in tick_check_p instead. */
2145 static enum MOVEUP_EXPR_CODE
2146 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2147 enum local_trans_type *ptrans_type)
2149 vinsn_t vi = EXPR_VINSN (expr);
2150 insn_t insn = VINSN_INSN_RTX (vi);
2151 bool was_changed = false;
2152 bool as_rhs = false;
2153 ds_t *has_dep_p;
2154 ds_t full_ds;
2156 /* ??? We use dependencies of non-debug insns on debug insns to
2157 indicate that the debug insns need to be reset if the non-debug
2158 insn is pulled ahead of it. It's hard to figure out how to
2159 introduce such a notion in sel-sched, but it already fails to
2160 support debug insns in other ways, so we just go ahead and
2161 let the deug insns go corrupt for now. */
2162 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2163 return MOVEUP_EXPR_SAME;
2165 /* When inside_insn_group, delegate to the helper. */
2166 if (inside_insn_group)
2167 return moveup_expr_inside_insn_group (expr, through_insn);
2169 /* Deal with unique insns and control dependencies. */
2170 if (VINSN_UNIQUE_P (vi))
2172 /* We can move jumps without side-effects or jumps that are
2173 mutually exclusive with instruction THROUGH_INSN (all in cases
2174 dependencies allow to do so and jump is not speculative). */
2175 if (control_flow_insn_p (insn))
2177 basic_block fallthru_bb;
2179 /* Do not move checks and do not move jumps through other
2180 jumps. */
2181 if (control_flow_insn_p (through_insn)
2182 || sel_insn_is_speculation_check (insn))
2183 return MOVEUP_EXPR_NULL;
2185 /* Don't move jumps through CFG joins. */
2186 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2187 return MOVEUP_EXPR_NULL;
2189 /* The jump should have a clear fallthru block, and
2190 this block should be in the current region. */
2191 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2192 || ! in_current_region_p (fallthru_bb))
2193 return MOVEUP_EXPR_NULL;
2195 /* And it should be mutually exclusive with through_insn. */
2196 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2197 && ! DEBUG_INSN_P (through_insn))
2198 return MOVEUP_EXPR_NULL;
2201 /* Don't move what we can't move. */
2202 if (EXPR_CANT_MOVE (expr)
2203 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2204 return MOVEUP_EXPR_NULL;
2206 /* Don't move SCHED_GROUP instruction through anything.
2207 If we don't force this, then it will be possible to start
2208 scheduling a sched_group before all its dependencies are
2209 resolved.
2210 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2211 as late as possible through rank_for_schedule. */
2212 if (SCHED_GROUP_P (insn))
2213 return MOVEUP_EXPR_NULL;
2215 else
2216 gcc_assert (!control_flow_insn_p (insn));
2218 /* Don't move debug insns if this would require bookkeeping. */
2219 if (DEBUG_INSN_P (insn)
2220 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2221 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2222 return MOVEUP_EXPR_NULL;
2224 /* Deal with data dependencies. */
2225 was_target_conflict = false;
2226 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2227 if (full_ds == 0)
2229 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2230 return MOVEUP_EXPR_SAME;
2232 else
2234 /* We can move UNIQUE insn up only as a whole and unchanged,
2235 so it shouldn't have any dependencies. */
2236 if (VINSN_UNIQUE_P (vi))
2237 return MOVEUP_EXPR_NULL;
2240 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2242 int res;
2244 res = speculate_expr (expr, full_ds);
2245 if (res >= 0)
2247 /* Speculation was successful. */
2248 full_ds = 0;
2249 was_changed = (res > 0);
2250 if (res == 2)
2251 was_target_conflict = true;
2252 if (ptrans_type)
2253 *ptrans_type = TRANS_SPECULATION;
2254 sel_clear_has_dependence ();
2258 if (has_dep_p[DEPS_IN_INSN])
2259 /* We have some dependency that cannot be discarded. */
2260 return MOVEUP_EXPR_NULL;
2262 if (has_dep_p[DEPS_IN_LHS])
2264 /* Only separable insns can be moved up with the new register.
2265 Anyways, we should mark that the original register is
2266 unavailable. */
2267 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2268 return MOVEUP_EXPR_NULL;
2270 /* When renaming a hard register to a pseudo before reload, extra
2271 dependencies can occur from the implicit clobbers of the insn.
2272 Filter out such cases here. */
2273 if (!reload_completed && REG_P (EXPR_LHS (expr))
2274 && HARD_REGISTER_P (EXPR_LHS (expr))
2275 && implicit_clobber_conflict_p (through_insn, expr))
2277 if (sched_verbose >= 6)
2278 sel_print ("implicit clobbers conflict detected, ");
2279 return MOVEUP_EXPR_NULL;
2281 EXPR_TARGET_AVAILABLE (expr) = false;
2282 was_target_conflict = true;
2283 as_rhs = true;
2286 /* At this point we have either separable insns, that will be lifted
2287 up only as RHSes, or non-separable insns with no dependency in lhs.
2288 If dependency is in RHS, then try to perform substitution and move up
2289 substituted RHS:
2291 Ex. 1: Ex.2
2292 y = x; y = x;
2293 z = y*2; y = y*2;
2295 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2296 moved above y=x assignment as z=x*2.
2298 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2299 side can be moved because of the output dependency. The operation was
2300 cropped to its rhs above. */
2301 if (has_dep_p[DEPS_IN_RHS])
2303 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2305 /* Can't substitute UNIQUE VINSNs. */
2306 gcc_assert (!VINSN_UNIQUE_P (vi));
2308 if (can_speculate_dep_p (*rhs_dsp))
2310 int res;
2312 res = speculate_expr (expr, *rhs_dsp);
2313 if (res >= 0)
2315 /* Speculation was successful. */
2316 *rhs_dsp = 0;
2317 was_changed = (res > 0);
2318 if (res == 2)
2319 was_target_conflict = true;
2320 if (ptrans_type)
2321 *ptrans_type = TRANS_SPECULATION;
2323 else
2324 return MOVEUP_EXPR_NULL;
2326 else if (can_substitute_through_p (through_insn,
2327 *rhs_dsp)
2328 && substitute_reg_in_expr (expr, through_insn, false))
2330 /* ??? We cannot perform substitution AND speculation on the same
2331 insn. */
2332 gcc_assert (!was_changed);
2333 was_changed = true;
2334 if (ptrans_type)
2335 *ptrans_type = TRANS_SUBSTITUTION;
2336 EXPR_WAS_SUBSTITUTED (expr) = true;
2338 else
2339 return MOVEUP_EXPR_NULL;
2342 /* Don't move trapping insns through jumps.
2343 This check should be at the end to give a chance to control speculation
2344 to perform its duties. */
2345 if (CANT_MOVE_TRAPPING (expr, through_insn))
2346 return MOVEUP_EXPR_NULL;
2348 return (was_changed
2349 ? MOVEUP_EXPR_CHANGED
2350 : (as_rhs
2351 ? MOVEUP_EXPR_AS_RHS
2352 : MOVEUP_EXPR_SAME));
2355 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2356 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2357 that can exist within a parallel group. Write to RES the resulting
2358 code for moveup_expr. */
2359 static bool
2360 try_bitmap_cache (expr_t expr, insn_t insn,
2361 bool inside_insn_group,
2362 enum MOVEUP_EXPR_CODE *res)
2364 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2366 /* First check whether we've analyzed this situation already. */
2367 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2369 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2371 if (sched_verbose >= 6)
2372 sel_print ("removed (cached)\n");
2373 *res = MOVEUP_EXPR_NULL;
2374 return true;
2376 else
2378 if (sched_verbose >= 6)
2379 sel_print ("unchanged (cached)\n");
2380 *res = MOVEUP_EXPR_SAME;
2381 return true;
2384 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2386 if (inside_insn_group)
2388 if (sched_verbose >= 6)
2389 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2390 *res = MOVEUP_EXPR_SAME;
2391 return true;
2394 else
2395 EXPR_TARGET_AVAILABLE (expr) = false;
2397 /* This is the only case when propagation result can change over time,
2398 as we can dynamically switch off scheduling as RHS. In this case,
2399 just check the flag to reach the correct decision. */
2400 if (enable_schedule_as_rhs_p)
2402 if (sched_verbose >= 6)
2403 sel_print ("unchanged (as RHS, cached)\n");
2404 *res = MOVEUP_EXPR_AS_RHS;
2405 return true;
2407 else
2409 if (sched_verbose >= 6)
2410 sel_print ("removed (cached as RHS, but renaming"
2411 " is now disabled)\n");
2412 *res = MOVEUP_EXPR_NULL;
2413 return true;
2417 return false;
2420 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2421 if successful. Write to RES the resulting code for moveup_expr. */
2422 static bool
2423 try_transformation_cache (expr_t expr, insn_t insn,
2424 enum MOVEUP_EXPR_CODE *res)
2426 struct transformed_insns *pti
2427 = (struct transformed_insns *)
2428 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2429 &EXPR_VINSN (expr),
2430 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2431 if (pti)
2433 /* This EXPR was already moved through this insn and was
2434 changed as a result. Fetch the proper data from
2435 the hashtable. */
2436 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2437 INSN_UID (insn), pti->type,
2438 pti->vinsn_old, pti->vinsn_new,
2439 EXPR_SPEC_DONE_DS (expr));
2441 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2442 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2443 change_vinsn_in_expr (expr, pti->vinsn_new);
2444 if (pti->was_target_conflict)
2445 EXPR_TARGET_AVAILABLE (expr) = false;
2446 if (pti->type == TRANS_SPECULATION)
2448 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2449 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2452 if (sched_verbose >= 6)
2454 sel_print ("changed (cached): ");
2455 dump_expr (expr);
2456 sel_print ("\n");
2459 *res = MOVEUP_EXPR_CHANGED;
2460 return true;
2463 return false;
2466 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2467 static void
2468 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2469 enum MOVEUP_EXPR_CODE res)
2471 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2473 /* Do not cache result of propagating jumps through an insn group,
2474 as it is always true, which is not useful outside the group. */
2475 if (inside_insn_group)
2476 return;
2478 if (res == MOVEUP_EXPR_NULL)
2480 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2481 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2483 else if (res == MOVEUP_EXPR_SAME)
2485 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2486 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2488 else if (res == MOVEUP_EXPR_AS_RHS)
2490 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2491 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2493 else
2494 gcc_unreachable ();
2497 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2498 and transformation type TRANS_TYPE. */
2499 static void
2500 update_transformation_cache (expr_t expr, insn_t insn,
2501 bool inside_insn_group,
2502 enum local_trans_type trans_type,
2503 vinsn_t expr_old_vinsn)
2505 struct transformed_insns *pti;
2507 if (inside_insn_group)
2508 return;
2510 pti = XNEW (struct transformed_insns);
2511 pti->vinsn_old = expr_old_vinsn;
2512 pti->vinsn_new = EXPR_VINSN (expr);
2513 pti->type = trans_type;
2514 pti->was_target_conflict = was_target_conflict;
2515 pti->ds = EXPR_SPEC_DONE_DS (expr);
2516 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2517 vinsn_attach (pti->vinsn_old);
2518 vinsn_attach (pti->vinsn_new);
2519 *((struct transformed_insns **)
2520 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2521 pti, VINSN_HASH_RTX (expr_old_vinsn),
2522 INSERT)) = pti;
2525 /* Same as moveup_expr, but first looks up the result of
2526 transformation in caches. */
2527 static enum MOVEUP_EXPR_CODE
2528 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2530 enum MOVEUP_EXPR_CODE res;
2531 bool got_answer = false;
2533 if (sched_verbose >= 6)
2535 sel_print ("Moving ");
2536 dump_expr (expr);
2537 sel_print (" through %d: ", INSN_UID (insn));
2540 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2541 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2542 == EXPR_INSN_RTX (expr)))
2543 /* Don't use cached information for debug insns that are heads of
2544 basic blocks. */;
2545 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2546 /* When inside insn group, we do not want remove stores conflicting
2547 with previosly issued loads. */
2548 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2549 else if (try_transformation_cache (expr, insn, &res))
2550 got_answer = true;
2552 if (! got_answer)
2554 /* Invoke moveup_expr and record the results. */
2555 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2556 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2557 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2558 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2559 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2561 /* ??? Invent something better than this. We can't allow old_vinsn
2562 to go, we need it for the history vector. */
2563 vinsn_attach (expr_old_vinsn);
2565 res = moveup_expr (expr, insn, inside_insn_group,
2566 &trans_type);
2567 switch (res)
2569 case MOVEUP_EXPR_NULL:
2570 update_bitmap_cache (expr, insn, inside_insn_group, res);
2571 if (sched_verbose >= 6)
2572 sel_print ("removed\n");
2573 break;
2575 case MOVEUP_EXPR_SAME:
2576 update_bitmap_cache (expr, insn, inside_insn_group, res);
2577 if (sched_verbose >= 6)
2578 sel_print ("unchanged\n");
2579 break;
2581 case MOVEUP_EXPR_AS_RHS:
2582 gcc_assert (!unique_p || inside_insn_group);
2583 update_bitmap_cache (expr, insn, inside_insn_group, res);
2584 if (sched_verbose >= 6)
2585 sel_print ("unchanged (as RHS)\n");
2586 break;
2588 case MOVEUP_EXPR_CHANGED:
2589 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2590 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2591 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2592 INSN_UID (insn), trans_type,
2593 expr_old_vinsn, EXPR_VINSN (expr),
2594 expr_old_spec_ds);
2595 update_transformation_cache (expr, insn, inside_insn_group,
2596 trans_type, expr_old_vinsn);
2597 if (sched_verbose >= 6)
2599 sel_print ("changed: ");
2600 dump_expr (expr);
2601 sel_print ("\n");
2603 break;
2604 default:
2605 gcc_unreachable ();
2608 vinsn_detach (expr_old_vinsn);
2611 return res;
2614 /* Moves an av set AVP up through INSN, performing necessary
2615 transformations. */
2616 static void
2617 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2619 av_set_iterator i;
2620 expr_t expr;
2622 FOR_EACH_EXPR_1 (expr, i, avp)
2625 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2627 case MOVEUP_EXPR_SAME:
2628 case MOVEUP_EXPR_AS_RHS:
2629 break;
2631 case MOVEUP_EXPR_NULL:
2632 av_set_iter_remove (&i);
2633 break;
2635 case MOVEUP_EXPR_CHANGED:
2636 expr = merge_with_other_exprs (avp, &i, expr);
2637 break;
2639 default:
2640 gcc_unreachable ();
2645 /* Moves AVP set along PATH. */
2646 static void
2647 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2649 int last_cycle;
2651 if (sched_verbose >= 6)
2652 sel_print ("Moving expressions up in the insn group...\n");
2653 if (! path)
2654 return;
2655 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2656 while (path
2657 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2659 moveup_set_expr (avp, ILIST_INSN (path), true);
2660 path = ILIST_NEXT (path);
2664 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2665 static bool
2666 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2668 expr_def _tmp, *tmp = &_tmp;
2669 int last_cycle;
2670 bool res = true;
2672 copy_expr_onside (tmp, expr);
2673 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2674 while (path
2675 && res
2676 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2678 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2679 != MOVEUP_EXPR_NULL);
2680 path = ILIST_NEXT (path);
2683 if (res)
2685 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2686 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2688 if (tmp_vinsn != expr_vliw_vinsn)
2689 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2692 clear_expr (tmp);
2693 return res;
2697 /* Functions that compute av and lv sets. */
2699 /* Returns true if INSN is not a downward continuation of the given path P in
2700 the current stage. */
2701 static bool
2702 is_ineligible_successor (insn_t insn, ilist_t p)
2704 insn_t prev_insn;
2706 /* Check if insn is not deleted. */
2707 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2708 gcc_unreachable ();
2709 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2710 gcc_unreachable ();
2712 /* If it's the first insn visited, then the successor is ok. */
2713 if (!p)
2714 return false;
2716 prev_insn = ILIST_INSN (p);
2718 if (/* a backward edge. */
2719 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2720 /* is already visited. */
2721 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2722 && (ilist_is_in_p (p, insn)
2723 /* We can reach another fence here and still seqno of insn
2724 would be equal to seqno of prev_insn. This is possible
2725 when prev_insn is a previously created bookkeeping copy.
2726 In that case it'd get a seqno of insn. Thus, check here
2727 whether insn is in current fence too. */
2728 || IN_CURRENT_FENCE_P (insn)))
2729 /* Was already scheduled on this round. */
2730 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2731 && IN_CURRENT_FENCE_P (insn))
2732 /* An insn from another fence could also be
2733 scheduled earlier even if this insn is not in
2734 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2735 || (!pipelining_p
2736 && INSN_SCHED_TIMES (insn) > 0))
2737 return true;
2738 else
2739 return false;
2742 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2743 of handling multiple successors and properly merging its av_sets. P is
2744 the current path traversed. WS is the size of lookahead window.
2745 Return the av set computed. */
2746 static av_set_t
2747 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2749 struct succs_info *sinfo;
2750 av_set_t expr_in_all_succ_branches = NULL;
2751 int is;
2752 insn_t succ, zero_succ = NULL;
2753 av_set_t av1 = NULL;
2755 gcc_assert (sel_bb_end_p (insn));
2757 /* Find different kind of successors needed for correct computing of
2758 SPEC and TARGET_AVAILABLE attributes. */
2759 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2761 /* Debug output. */
2762 if (sched_verbose >= 6)
2764 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2765 dump_insn_vector (sinfo->succs_ok);
2766 sel_print ("\n");
2767 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2768 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2771 /* Add insn to the tail of current path. */
2772 ilist_add (&p, insn);
2774 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2776 av_set_t succ_set;
2778 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2779 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2781 av_set_split_usefulness (succ_set,
2782 sinfo->probs_ok[is],
2783 sinfo->all_prob);
2785 if (sinfo->all_succs_n > 1)
2787 /* Find EXPR'es that came from *all* successors and save them
2788 into expr_in_all_succ_branches. This set will be used later
2789 for calculating speculation attributes of EXPR'es. */
2790 if (is == 0)
2792 expr_in_all_succ_branches = av_set_copy (succ_set);
2794 /* Remember the first successor for later. */
2795 zero_succ = succ;
2797 else
2799 av_set_iterator i;
2800 expr_t expr;
2802 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2803 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2804 av_set_iter_remove (&i);
2808 /* Union the av_sets. Check liveness restrictions on target registers
2809 in special case of two successors. */
2810 if (sinfo->succs_ok_n == 2 && is == 1)
2812 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2813 basic_block bb1 = BLOCK_FOR_INSN (succ);
2815 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2816 av_set_union_and_live (&av1, &succ_set,
2817 BB_LV_SET (bb0),
2818 BB_LV_SET (bb1),
2819 insn);
2821 else
2822 av_set_union_and_clear (&av1, &succ_set, insn);
2825 /* Check liveness restrictions via hard way when there are more than
2826 two successors. */
2827 if (sinfo->succs_ok_n > 2)
2828 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2830 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2832 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2833 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2834 BB_LV_SET (succ_bb));
2837 /* Finally, check liveness restrictions on paths leaving the region. */
2838 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2839 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2840 mark_unavailable_targets
2841 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2843 if (sinfo->all_succs_n > 1)
2845 av_set_iterator i;
2846 expr_t expr;
2848 /* Increase the spec attribute of all EXPR'es that didn't come
2849 from all successors. */
2850 FOR_EACH_EXPR (expr, i, av1)
2851 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2852 EXPR_SPEC (expr)++;
2854 av_set_clear (&expr_in_all_succ_branches);
2856 /* Do not move conditional branches through other
2857 conditional branches. So, remove all conditional
2858 branches from av_set if current operator is a conditional
2859 branch. */
2860 av_set_substract_cond_branches (&av1);
2863 ilist_remove (&p);
2864 free_succs_info (sinfo);
2866 if (sched_verbose >= 6)
2868 sel_print ("av_succs (%d): ", INSN_UID (insn));
2869 dump_av_set (av1);
2870 sel_print ("\n");
2873 return av1;
2876 /* This function computes av_set for the FIRST_INSN by dragging valid
2877 av_set through all basic block insns either from the end of basic block
2878 (computed using compute_av_set_at_bb_end) or from the insn on which
2879 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2880 below the basic block and handling conditional branches.
2881 FIRST_INSN - the basic block head, P - path consisting of the insns
2882 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2883 and bb ends are added to the path), WS - current window size,
2884 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2885 static av_set_t
2886 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2887 bool need_copy_p)
2889 insn_t cur_insn;
2890 int end_ws = ws;
2891 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2892 insn_t after_bb_end = NEXT_INSN (bb_end);
2893 insn_t last_insn;
2894 av_set_t av = NULL;
2895 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2897 /* Return NULL if insn is not on the legitimate downward path. */
2898 if (is_ineligible_successor (first_insn, p))
2900 if (sched_verbose >= 6)
2901 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2903 return NULL;
2906 /* If insn already has valid av(insn) computed, just return it. */
2907 if (AV_SET_VALID_P (first_insn))
2909 av_set_t av_set;
2911 if (sel_bb_head_p (first_insn))
2912 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2913 else
2914 av_set = NULL;
2916 if (sched_verbose >= 6)
2918 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2919 dump_av_set (av_set);
2920 sel_print ("\n");
2923 return need_copy_p ? av_set_copy (av_set) : av_set;
2926 ilist_add (&p, first_insn);
2928 /* As the result after this loop have completed, in LAST_INSN we'll
2929 have the insn which has valid av_set to start backward computation
2930 from: it either will be NULL because on it the window size was exceeded
2931 or other valid av_set as returned by compute_av_set for the last insn
2932 of the basic block. */
2933 for (last_insn = first_insn; last_insn != after_bb_end;
2934 last_insn = NEXT_INSN (last_insn))
2936 /* We may encounter valid av_set not only on bb_head, but also on
2937 those insns on which previously MAX_WS was exceeded. */
2938 if (AV_SET_VALID_P (last_insn))
2940 if (sched_verbose >= 6)
2941 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2942 break;
2945 /* The special case: the last insn of the BB may be an
2946 ineligible_successor due to its SEQ_NO that was set on
2947 it as a bookkeeping. */
2948 if (last_insn != first_insn
2949 && is_ineligible_successor (last_insn, p))
2951 if (sched_verbose >= 6)
2952 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2953 break;
2956 if (DEBUG_INSN_P (last_insn))
2957 continue;
2959 if (end_ws > max_ws)
2961 /* We can reach max lookahead size at bb_header, so clean av_set
2962 first. */
2963 INSN_WS_LEVEL (last_insn) = global_level;
2965 if (sched_verbose >= 6)
2966 sel_print ("Insn %d is beyond the software lookahead window size\n",
2967 INSN_UID (last_insn));
2968 break;
2971 end_ws++;
2974 /* Get the valid av_set into AV above the LAST_INSN to start backward
2975 computation from. It either will be empty av_set or av_set computed from
2976 the successors on the last insn of the current bb. */
2977 if (last_insn != after_bb_end)
2979 av = NULL;
2981 /* This is needed only to obtain av_sets that are identical to
2982 those computed by the old compute_av_set version. */
2983 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2984 av_set_add (&av, INSN_EXPR (last_insn));
2986 else
2987 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2988 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2990 /* Compute av_set in AV starting from below the LAST_INSN up to
2991 location above the FIRST_INSN. */
2992 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2993 cur_insn = PREV_INSN (cur_insn))
2994 if (!INSN_NOP_P (cur_insn))
2996 expr_t expr;
2998 moveup_set_expr (&av, cur_insn, false);
3000 /* If the expression for CUR_INSN is already in the set,
3001 replace it by the new one. */
3002 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3003 if (expr != NULL)
3005 clear_expr (expr);
3006 copy_expr (expr, INSN_EXPR (cur_insn));
3008 else
3009 av_set_add (&av, INSN_EXPR (cur_insn));
3012 /* Clear stale bb_av_set. */
3013 if (sel_bb_head_p (first_insn))
3015 av_set_clear (&BB_AV_SET (cur_bb));
3016 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3017 BB_AV_LEVEL (cur_bb) = global_level;
3020 if (sched_verbose >= 6)
3022 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3023 dump_av_set (av);
3024 sel_print ("\n");
3027 ilist_remove (&p);
3028 return av;
3031 /* Compute av set before INSN.
3032 INSN - the current operation (actual rtx INSN)
3033 P - the current path, which is list of insns visited so far
3034 WS - software lookahead window size.
3035 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3036 if we want to save computed av_set in s_i_d, we should make a copy of it.
3038 In the resulting set we will have only expressions that don't have delay
3039 stalls and nonsubstitutable dependences. */
3040 static av_set_t
3041 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3043 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3046 /* Propagate a liveness set LV through INSN. */
3047 static void
3048 propagate_lv_set (regset lv, insn_t insn)
3050 gcc_assert (INSN_P (insn));
3052 if (INSN_NOP_P (insn))
3053 return;
3055 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3058 /* Return livness set at the end of BB. */
3059 static regset
3060 compute_live_after_bb (basic_block bb)
3062 edge e;
3063 edge_iterator ei;
3064 regset lv = get_clear_regset_from_pool ();
3066 gcc_assert (!ignore_first);
3068 FOR_EACH_EDGE (e, ei, bb->succs)
3069 if (sel_bb_empty_p (e->dest))
3071 if (! BB_LV_SET_VALID_P (e->dest))
3073 gcc_unreachable ();
3074 gcc_assert (BB_LV_SET (e->dest) == NULL);
3075 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3076 BB_LV_SET_VALID_P (e->dest) = true;
3078 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3080 else
3081 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3083 return lv;
3086 /* Compute the set of all live registers at the point before INSN and save
3087 it at INSN if INSN is bb header. */
3088 regset
3089 compute_live (insn_t insn)
3091 basic_block bb = BLOCK_FOR_INSN (insn);
3092 insn_t final, temp;
3093 regset lv;
3095 /* Return the valid set if we're already on it. */
3096 if (!ignore_first)
3098 regset src = NULL;
3100 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3101 src = BB_LV_SET (bb);
3102 else
3104 gcc_assert (in_current_region_p (bb));
3105 if (INSN_LIVE_VALID_P (insn))
3106 src = INSN_LIVE (insn);
3109 if (src)
3111 lv = get_regset_from_pool ();
3112 COPY_REG_SET (lv, src);
3114 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3116 COPY_REG_SET (BB_LV_SET (bb), lv);
3117 BB_LV_SET_VALID_P (bb) = true;
3120 return_regset_to_pool (lv);
3121 return lv;
3125 /* We've skipped the wrong lv_set. Don't skip the right one. */
3126 ignore_first = false;
3127 gcc_assert (in_current_region_p (bb));
3129 /* Find a valid LV set in this block or below, if needed.
3130 Start searching from the next insn: either ignore_first is true, or
3131 INSN doesn't have a correct live set. */
3132 temp = NEXT_INSN (insn);
3133 final = NEXT_INSN (BB_END (bb));
3134 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3135 temp = NEXT_INSN (temp);
3136 if (temp == final)
3138 lv = compute_live_after_bb (bb);
3139 temp = PREV_INSN (temp);
3141 else
3143 lv = get_regset_from_pool ();
3144 COPY_REG_SET (lv, INSN_LIVE (temp));
3147 /* Put correct lv sets on the insns which have bad sets. */
3148 final = PREV_INSN (insn);
3149 while (temp != final)
3151 propagate_lv_set (lv, temp);
3152 COPY_REG_SET (INSN_LIVE (temp), lv);
3153 INSN_LIVE_VALID_P (temp) = true;
3154 temp = PREV_INSN (temp);
3157 /* Also put it in a BB. */
3158 if (sel_bb_head_p (insn))
3160 basic_block bb = BLOCK_FOR_INSN (insn);
3162 COPY_REG_SET (BB_LV_SET (bb), lv);
3163 BB_LV_SET_VALID_P (bb) = true;
3166 /* We return LV to the pool, but will not clear it there. Thus we can
3167 legimatelly use LV till the next use of regset_pool_get (). */
3168 return_regset_to_pool (lv);
3169 return lv;
3172 /* Update liveness sets for INSN. */
3173 static inline void
3174 update_liveness_on_insn (rtx_insn *insn)
3176 ignore_first = true;
3177 compute_live (insn);
3180 /* Compute liveness below INSN and write it into REGS. */
3181 static inline void
3182 compute_live_below_insn (rtx_insn *insn, regset regs)
3184 rtx_insn *succ;
3185 succ_iterator si;
3187 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3188 IOR_REG_SET (regs, compute_live (succ));
3191 /* Update the data gathered in av and lv sets starting from INSN. */
3192 static void
3193 update_data_sets (rtx_insn *insn)
3195 update_liveness_on_insn (insn);
3196 if (sel_bb_head_p (insn))
3198 gcc_assert (AV_LEVEL (insn) != 0);
3199 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3200 compute_av_set (insn, NULL, 0, 0);
3205 /* Helper for move_op () and find_used_regs ().
3206 Return speculation type for which a check should be created on the place
3207 of INSN. EXPR is one of the original ops we are searching for. */
3208 static ds_t
3209 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3211 ds_t to_check_ds;
3212 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3214 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3216 if (targetm.sched.get_insn_checked_ds)
3217 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3219 if (spec_info != NULL
3220 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3221 already_checked_ds |= BEGIN_CONTROL;
3223 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3225 to_check_ds &= ~already_checked_ds;
3227 return to_check_ds;
3230 /* Find the set of registers that are unavailable for storing expres
3231 while moving ORIG_OPS up on the path starting from INSN due to
3232 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3234 All the original operations found during the traversal are saved in the
3235 ORIGINAL_INSNS list.
3237 REG_RENAME_P denotes the set of hardware registers that
3238 can not be used with renaming due to the register class restrictions,
3239 mode restrictions and other (the register we'll choose should be
3240 compatible class with the original uses, shouldn't be in call_used_regs,
3241 should be HARD_REGNO_RENAME_OK etc).
3243 Returns TRUE if we've found all original insns, FALSE otherwise.
3245 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3246 to traverse the code motion paths. This helper function finds registers
3247 that are not available for storing expres while moving ORIG_OPS up on the
3248 path starting from INSN. A register considered as used on the moving path,
3249 if one of the following conditions is not satisfied:
3251 (1) a register not set or read on any path from xi to an instance of
3252 the original operation,
3253 (2) not among the live registers of the point immediately following the
3254 first original operation on a given downward path, except for the
3255 original target register of the operation,
3256 (3) not live on the other path of any conditional branch that is passed
3257 by the operation, in case original operations are not present on
3258 both paths of the conditional branch.
3260 All the original operations found during the traversal are saved in the
3261 ORIGINAL_INSNS list.
3263 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3264 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3265 to unavailable hard regs at the point original operation is found. */
3267 static bool
3268 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3269 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3271 def_list_iterator i;
3272 def_t def;
3273 int res;
3274 bool needs_spec_check_p = false;
3275 expr_t expr;
3276 av_set_iterator expr_iter;
3277 struct fur_static_params sparams;
3278 struct cmpd_local_params lparams;
3280 /* We haven't visited any blocks yet. */
3281 bitmap_clear (code_motion_visited_blocks);
3283 /* Init parameters for code_motion_path_driver. */
3284 sparams.crosses_call = false;
3285 sparams.original_insns = original_insns;
3286 sparams.used_regs = used_regs;
3288 /* Set the appropriate hooks and data. */
3289 code_motion_path_driver_info = &fur_hooks;
3291 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3293 reg_rename_p->crosses_call |= sparams.crosses_call;
3295 gcc_assert (res == 1);
3296 gcc_assert (original_insns && *original_insns);
3298 /* ??? We calculate whether an expression needs a check when computing
3299 av sets. This information is not as precise as it could be due to
3300 merging this bit in merge_expr. We can do better in find_used_regs,
3301 but we want to avoid multiple traversals of the same code motion
3302 paths. */
3303 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3304 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3306 /* Mark hardware regs in REG_RENAME_P that are not suitable
3307 for renaming expr in INSN due to hardware restrictions (register class,
3308 modes compatibility etc). */
3309 FOR_EACH_DEF (def, i, *original_insns)
3311 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3313 if (VINSN_SEPARABLE_P (vinsn))
3314 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3316 /* Do not allow clobbering of ld.[sa] address in case some of the
3317 original operations need a check. */
3318 if (needs_spec_check_p)
3319 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3322 return true;
3326 /* Functions to choose the best insn from available ones. */
3328 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3329 static int
3330 sel_target_adjust_priority (expr_t expr)
3332 int priority = EXPR_PRIORITY (expr);
3333 int new_priority;
3335 if (targetm.sched.adjust_priority)
3336 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3337 else
3338 new_priority = priority;
3340 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3341 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3343 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3345 if (sched_verbose >= 4)
3346 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3347 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3348 EXPR_PRIORITY_ADJ (expr), new_priority);
3350 return new_priority;
3353 /* Rank two available exprs for schedule. Never return 0 here. */
3354 static int
3355 sel_rank_for_schedule (const void *x, const void *y)
3357 expr_t tmp = *(const expr_t *) y;
3358 expr_t tmp2 = *(const expr_t *) x;
3359 insn_t tmp_insn, tmp2_insn;
3360 vinsn_t tmp_vinsn, tmp2_vinsn;
3361 int val;
3363 tmp_vinsn = EXPR_VINSN (tmp);
3364 tmp2_vinsn = EXPR_VINSN (tmp2);
3365 tmp_insn = EXPR_INSN_RTX (tmp);
3366 tmp2_insn = EXPR_INSN_RTX (tmp2);
3368 /* Schedule debug insns as early as possible. */
3369 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3370 return -1;
3371 else if (DEBUG_INSN_P (tmp2_insn))
3372 return 1;
3374 /* Prefer SCHED_GROUP_P insns to any others. */
3375 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3377 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3378 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3380 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3381 cannot be cloned. */
3382 if (VINSN_UNIQUE_P (tmp2_vinsn))
3383 return 1;
3384 return -1;
3387 /* Discourage scheduling of speculative checks. */
3388 val = (sel_insn_is_speculation_check (tmp_insn)
3389 - sel_insn_is_speculation_check (tmp2_insn));
3390 if (val)
3391 return val;
3393 /* Prefer not scheduled insn over scheduled one. */
3394 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3396 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3397 if (val)
3398 return val;
3401 /* Prefer jump over non-jump instruction. */
3402 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3403 return -1;
3404 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3405 return 1;
3407 /* Prefer an expr with greater priority. */
3408 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3410 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3411 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3413 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3415 else
3416 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3417 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3418 if (val)
3419 return val;
3421 if (spec_info != NULL && spec_info->mask != 0)
3422 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3424 ds_t ds1, ds2;
3425 dw_t dw1, dw2;
3426 int dw;
3428 ds1 = EXPR_SPEC_DONE_DS (tmp);
3429 if (ds1)
3430 dw1 = ds_weak (ds1);
3431 else
3432 dw1 = NO_DEP_WEAK;
3434 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3435 if (ds2)
3436 dw2 = ds_weak (ds2);
3437 else
3438 dw2 = NO_DEP_WEAK;
3440 dw = dw2 - dw1;
3441 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3442 return dw;
3445 /* Prefer an old insn to a bookkeeping insn. */
3446 if (INSN_UID (tmp_insn) < first_emitted_uid
3447 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3448 return -1;
3449 if (INSN_UID (tmp_insn) >= first_emitted_uid
3450 && INSN_UID (tmp2_insn) < first_emitted_uid)
3451 return 1;
3453 /* Prefer an insn with smaller UID, as a last resort.
3454 We can't safely use INSN_LUID as it is defined only for those insns
3455 that are in the stream. */
3456 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3459 /* Filter out expressions from av set pointed to by AV_PTR
3460 that are pipelined too many times. */
3461 static void
3462 process_pipelined_exprs (av_set_t *av_ptr)
3464 expr_t expr;
3465 av_set_iterator si;
3467 /* Don't pipeline already pipelined code as that would increase
3468 number of unnecessary register moves. */
3469 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3471 if (EXPR_SCHED_TIMES (expr)
3472 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3473 av_set_iter_remove (&si);
3477 /* Filter speculative insns from AV_PTR if we don't want them. */
3478 static void
3479 process_spec_exprs (av_set_t *av_ptr)
3481 expr_t expr;
3482 av_set_iterator si;
3484 if (spec_info == NULL)
3485 return;
3487 /* Scan *AV_PTR to find out if we want to consider speculative
3488 instructions for scheduling. */
3489 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3491 ds_t ds;
3493 ds = EXPR_SPEC_DONE_DS (expr);
3495 /* The probability of a success is too low - don't speculate. */
3496 if ((ds & SPECULATIVE)
3497 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3498 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3499 || (pipelining_p && false
3500 && (ds & DATA_SPEC)
3501 && (ds & CONTROL_SPEC))))
3503 av_set_iter_remove (&si);
3504 continue;
3509 /* Search for any use-like insns in AV_PTR and decide on scheduling
3510 them. Return one when found, and NULL otherwise.
3511 Note that we check here whether a USE could be scheduled to avoid
3512 an infinite loop later. */
3513 static expr_t
3514 process_use_exprs (av_set_t *av_ptr)
3516 expr_t expr;
3517 av_set_iterator si;
3518 bool uses_present_p = false;
3519 bool try_uses_p = true;
3521 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3523 /* This will also initialize INSN_CODE for later use. */
3524 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3526 /* If we have a USE in *AV_PTR that was not scheduled yet,
3527 do so because it will do good only. */
3528 if (EXPR_SCHED_TIMES (expr) <= 0)
3530 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3531 return expr;
3533 av_set_iter_remove (&si);
3535 else
3537 gcc_assert (pipelining_p);
3539 uses_present_p = true;
3542 else
3543 try_uses_p = false;
3546 if (uses_present_p)
3548 /* If we don't want to schedule any USEs right now and we have some
3549 in *AV_PTR, remove them, else just return the first one found. */
3550 if (!try_uses_p)
3552 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3553 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3554 av_set_iter_remove (&si);
3556 else
3558 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3560 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3562 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3563 return expr;
3565 av_set_iter_remove (&si);
3570 return NULL;
3573 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3574 EXPR's history of changes. */
3575 static bool
3576 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3578 vinsn_t vinsn, expr_vinsn;
3579 int n;
3580 unsigned i;
3582 /* Start with checking expr itself and then proceed with all the old forms
3583 of expr taken from its history vector. */
3584 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3585 expr_vinsn;
3586 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3587 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3588 : NULL))
3589 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3590 if (VINSN_SEPARABLE_P (vinsn))
3592 if (vinsn_equal_p (vinsn, expr_vinsn))
3593 return true;
3595 else
3597 /* For non-separable instructions, the blocking insn can have
3598 another pattern due to substitution, and we can't choose
3599 different register as in the above case. Check all registers
3600 being written instead. */
3601 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3602 VINSN_REG_SETS (expr_vinsn)))
3603 return true;
3606 return false;
3609 #ifdef ENABLE_CHECKING
3610 /* Return true if either of expressions from ORIG_OPS can be blocked
3611 by previously created bookkeeping code. STATIC_PARAMS points to static
3612 parameters of move_op. */
3613 static bool
3614 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3616 expr_t expr;
3617 av_set_iterator iter;
3618 moveop_static_params_p sparams;
3620 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3621 created while scheduling on another fence. */
3622 FOR_EACH_EXPR (expr, iter, orig_ops)
3623 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3624 return true;
3626 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3627 sparams = (moveop_static_params_p) static_params;
3629 /* Expressions can be also blocked by bookkeeping created during current
3630 move_op. */
3631 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3632 FOR_EACH_EXPR (expr, iter, orig_ops)
3633 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3634 return true;
3636 /* Expressions in ORIG_OPS may have wrong destination register due to
3637 renaming. Check with the right register instead. */
3638 if (sparams->dest && REG_P (sparams->dest))
3640 rtx reg = sparams->dest;
3641 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3643 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3644 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3645 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3646 return true;
3649 return false;
3651 #endif
3653 /* Clear VINSN_VEC and detach vinsns. */
3654 static void
3655 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3657 unsigned len = vinsn_vec->length ();
3658 if (len > 0)
3660 vinsn_t vinsn;
3661 int n;
3663 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3664 vinsn_detach (vinsn);
3665 vinsn_vec->block_remove (0, len);
3669 /* Add the vinsn of EXPR to the VINSN_VEC. */
3670 static void
3671 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3673 vinsn_attach (EXPR_VINSN (expr));
3674 vinsn_vec->safe_push (EXPR_VINSN (expr));
3677 /* Free the vector representing blocked expressions. */
3678 static void
3679 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3681 vinsn_vec.release ();
3684 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3686 void sel_add_to_insn_priority (rtx insn, int amount)
3688 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3690 if (sched_verbose >= 2)
3691 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3692 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3693 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3696 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3697 true if there is something to schedule. BNDS and FENCE are current
3698 boundaries and fence, respectively. If we need to stall for some cycles
3699 before an expr from AV would become available, write this number to
3700 *PNEED_STALL. */
3701 static bool
3702 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3703 int *pneed_stall)
3705 av_set_iterator si;
3706 expr_t expr;
3707 int sched_next_worked = 0, stalled, n;
3708 static int av_max_prio, est_ticks_till_branch;
3709 int min_need_stall = -1;
3710 deps_t dc = BND_DC (BLIST_BND (bnds));
3712 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3713 already scheduled. */
3714 if (av == NULL)
3715 return false;
3717 /* Empty vector from the previous stuff. */
3718 if (vec_av_set.length () > 0)
3719 vec_av_set.block_remove (0, vec_av_set.length ());
3721 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3722 for each insn. */
3723 gcc_assert (vec_av_set.is_empty ());
3724 FOR_EACH_EXPR (expr, si, av)
3726 vec_av_set.safe_push (expr);
3728 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3730 /* Adjust priority using target backend hook. */
3731 sel_target_adjust_priority (expr);
3734 /* Sort the vector. */
3735 vec_av_set.qsort (sel_rank_for_schedule);
3737 /* We record maximal priority of insns in av set for current instruction
3738 group. */
3739 if (FENCE_STARTS_CYCLE_P (fence))
3740 av_max_prio = est_ticks_till_branch = INT_MIN;
3742 /* Filter out inappropriate expressions. Loop's direction is reversed to
3743 visit "best" instructions first. We assume that vec::unordered_remove
3744 moves last element in place of one being deleted. */
3745 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3747 expr_t expr = vec_av_set[n];
3748 insn_t insn = EXPR_INSN_RTX (expr);
3749 signed char target_available;
3750 bool is_orig_reg_p = true;
3751 int need_cycles, new_prio;
3752 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3754 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3755 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3757 vec_av_set.unordered_remove (n);
3758 continue;
3761 /* Set number of sched_next insns (just in case there
3762 could be several). */
3763 if (FENCE_SCHED_NEXT (fence))
3764 sched_next_worked++;
3766 /* Check all liveness requirements and try renaming.
3767 FIXME: try to minimize calls to this. */
3768 target_available = EXPR_TARGET_AVAILABLE (expr);
3770 /* If insn was already scheduled on the current fence,
3771 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3772 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3773 && !fence_insn_p)
3774 target_available = -1;
3776 /* If the availability of the EXPR is invalidated by the insertion of
3777 bookkeeping earlier, make sure that we won't choose this expr for
3778 scheduling if it's not separable, and if it is separable, then
3779 we have to recompute the set of available registers for it. */
3780 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3782 vec_av_set.unordered_remove (n);
3783 if (sched_verbose >= 4)
3784 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3785 INSN_UID (insn));
3786 continue;
3789 if (target_available == true)
3791 /* Do nothing -- we can use an existing register. */
3792 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3794 else if (/* Non-separable instruction will never
3795 get another register. */
3796 (target_available == false
3797 && !EXPR_SEPARABLE_P (expr))
3798 /* Don't try to find a register for low-priority expression. */
3799 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3800 /* ??? FIXME: Don't try to rename data speculation. */
3801 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3802 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3804 vec_av_set.unordered_remove (n);
3805 if (sched_verbose >= 4)
3806 sel_print ("Expr %d has no suitable target register\n",
3807 INSN_UID (insn));
3809 /* A fence insn should not get here. */
3810 gcc_assert (!fence_insn_p);
3811 continue;
3814 /* At this point a fence insn should always be available. */
3815 gcc_assert (!fence_insn_p
3816 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3818 /* Filter expressions that need to be renamed or speculated when
3819 pipelining, because compensating register copies or speculation
3820 checks are likely to be placed near the beginning of the loop,
3821 causing a stall. */
3822 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3823 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3825 /* Estimation of number of cycles until loop branch for
3826 renaming/speculation to be successful. */
3827 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3829 if ((int) current_loop_nest->ninsns < 9)
3831 vec_av_set.unordered_remove (n);
3832 if (sched_verbose >= 4)
3833 sel_print ("Pipelining expr %d will likely cause stall\n",
3834 INSN_UID (insn));
3835 continue;
3838 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3839 < need_n_ticks_till_branch * issue_rate / 2
3840 && est_ticks_till_branch < need_n_ticks_till_branch)
3842 vec_av_set.unordered_remove (n);
3843 if (sched_verbose >= 4)
3844 sel_print ("Pipelining expr %d will likely cause stall\n",
3845 INSN_UID (insn));
3846 continue;
3850 /* We want to schedule speculation checks as late as possible. Discard
3851 them from av set if there are instructions with higher priority. */
3852 if (sel_insn_is_speculation_check (insn)
3853 && EXPR_PRIORITY (expr) < av_max_prio)
3855 stalled++;
3856 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3857 vec_av_set.unordered_remove (n);
3858 if (sched_verbose >= 4)
3859 sel_print ("Delaying speculation check %d until its first use\n",
3860 INSN_UID (insn));
3861 continue;
3864 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3865 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3866 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3868 /* Don't allow any insns whose data is not yet ready.
3869 Check first whether we've already tried them and failed. */
3870 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3872 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3873 - FENCE_CYCLE (fence));
3874 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3875 est_ticks_till_branch = MAX (est_ticks_till_branch,
3876 EXPR_PRIORITY (expr) + need_cycles);
3878 if (need_cycles > 0)
3880 stalled++;
3881 min_need_stall = (min_need_stall < 0
3882 ? need_cycles
3883 : MIN (min_need_stall, need_cycles));
3884 vec_av_set.unordered_remove (n);
3886 if (sched_verbose >= 4)
3887 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3888 INSN_UID (insn),
3889 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3890 continue;
3894 /* Now resort to dependence analysis to find whether EXPR might be
3895 stalled due to dependencies from FENCE's context. */
3896 need_cycles = tick_check_p (expr, dc, fence);
3897 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3899 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3900 est_ticks_till_branch = MAX (est_ticks_till_branch,
3901 new_prio);
3903 if (need_cycles > 0)
3905 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3907 int new_size = INSN_UID (insn) * 3 / 2;
3909 FENCE_READY_TICKS (fence)
3910 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3911 new_size, FENCE_READY_TICKS_SIZE (fence),
3912 sizeof (int));
3914 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3915 = FENCE_CYCLE (fence) + need_cycles;
3917 stalled++;
3918 min_need_stall = (min_need_stall < 0
3919 ? need_cycles
3920 : MIN (min_need_stall, need_cycles));
3922 vec_av_set.unordered_remove (n);
3924 if (sched_verbose >= 4)
3925 sel_print ("Expr %d is not ready yet until cycle %d\n",
3926 INSN_UID (insn),
3927 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3928 continue;
3931 if (sched_verbose >= 4)
3932 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3933 min_need_stall = 0;
3936 /* Clear SCHED_NEXT. */
3937 if (FENCE_SCHED_NEXT (fence))
3939 gcc_assert (sched_next_worked == 1);
3940 FENCE_SCHED_NEXT (fence) = NULL;
3943 /* No need to stall if this variable was not initialized. */
3944 if (min_need_stall < 0)
3945 min_need_stall = 0;
3947 if (vec_av_set.is_empty ())
3949 /* We need to set *pneed_stall here, because later we skip this code
3950 when ready list is empty. */
3951 *pneed_stall = min_need_stall;
3952 return false;
3954 else
3955 gcc_assert (min_need_stall == 0);
3957 /* Sort the vector. */
3958 vec_av_set.qsort (sel_rank_for_schedule);
3960 if (sched_verbose >= 4)
3962 sel_print ("Total ready exprs: %d, stalled: %d\n",
3963 vec_av_set.length (), stalled);
3964 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3965 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3966 dump_expr (expr);
3967 sel_print ("\n");
3970 *pneed_stall = 0;
3971 return true;
3974 /* Convert a vectored and sorted av set to the ready list that
3975 the rest of the backend wants to see. */
3976 static void
3977 convert_vec_av_set_to_ready (void)
3979 int n;
3980 expr_t expr;
3982 /* Allocate and fill the ready list from the sorted vector. */
3983 ready.n_ready = vec_av_set.length ();
3984 ready.first = ready.n_ready - 1;
3986 gcc_assert (ready.n_ready > 0);
3988 if (ready.n_ready > max_issue_size)
3990 max_issue_size = ready.n_ready;
3991 sched_extend_ready_list (ready.n_ready);
3994 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3996 vinsn_t vi = EXPR_VINSN (expr);
3997 insn_t insn = VINSN_INSN_RTX (vi);
3999 ready_try[n] = 0;
4000 ready.vec[n] = insn;
4004 /* Initialize ready list from *AV_PTR for the max_issue () call.
4005 If any unrecognizable insn found in *AV_PTR, return it (and skip
4006 max_issue). BND and FENCE are current boundary and fence,
4007 respectively. If we need to stall for some cycles before an expr
4008 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4009 static expr_t
4010 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4011 int *pneed_stall)
4013 expr_t expr;
4015 /* We do not support multiple boundaries per fence. */
4016 gcc_assert (BLIST_NEXT (bnds) == NULL);
4018 /* Process expressions required special handling, i.e. pipelined,
4019 speculative and recog() < 0 expressions first. */
4020 process_pipelined_exprs (av_ptr);
4021 process_spec_exprs (av_ptr);
4023 /* A USE could be scheduled immediately. */
4024 expr = process_use_exprs (av_ptr);
4025 if (expr)
4027 *pneed_stall = 0;
4028 return expr;
4031 /* Turn the av set to a vector for sorting. */
4032 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4034 ready.n_ready = 0;
4035 return NULL;
4038 /* Build the final ready list. */
4039 convert_vec_av_set_to_ready ();
4040 return NULL;
4043 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4044 static bool
4045 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4047 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4048 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4049 : FENCE_CYCLE (fence) - 1;
4050 bool res = false;
4051 int sort_p = 0;
4053 if (!targetm.sched.dfa_new_cycle)
4054 return false;
4056 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4058 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4059 insn, last_scheduled_cycle,
4060 FENCE_CYCLE (fence), &sort_p))
4062 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4063 advance_one_cycle (fence);
4064 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4065 res = true;
4068 return res;
4071 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4072 we can issue. FENCE is the current fence. */
4073 static int
4074 invoke_reorder_hooks (fence_t fence)
4076 int issue_more;
4077 bool ran_hook = false;
4079 /* Call the reorder hook at the beginning of the cycle, and call
4080 the reorder2 hook in the middle of the cycle. */
4081 if (FENCE_ISSUED_INSNS (fence) == 0)
4083 if (targetm.sched.reorder
4084 && !SCHED_GROUP_P (ready_element (&ready, 0))
4085 && ready.n_ready > 1)
4087 /* Don't give reorder the most prioritized insn as it can break
4088 pipelining. */
4089 if (pipelining_p)
4090 --ready.n_ready;
4092 issue_more
4093 = targetm.sched.reorder (sched_dump, sched_verbose,
4094 ready_lastpos (&ready),
4095 &ready.n_ready, FENCE_CYCLE (fence));
4097 if (pipelining_p)
4098 ++ready.n_ready;
4100 ran_hook = true;
4102 else
4103 /* Initialize can_issue_more for variable_issue. */
4104 issue_more = issue_rate;
4106 else if (targetm.sched.reorder2
4107 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4109 if (ready.n_ready == 1)
4110 issue_more =
4111 targetm.sched.reorder2 (sched_dump, sched_verbose,
4112 ready_lastpos (&ready),
4113 &ready.n_ready, FENCE_CYCLE (fence));
4114 else
4116 if (pipelining_p)
4117 --ready.n_ready;
4119 issue_more =
4120 targetm.sched.reorder2 (sched_dump, sched_verbose,
4121 ready.n_ready
4122 ? ready_lastpos (&ready) : NULL,
4123 &ready.n_ready, FENCE_CYCLE (fence));
4125 if (pipelining_p)
4126 ++ready.n_ready;
4129 ran_hook = true;
4131 else
4132 issue_more = FENCE_ISSUE_MORE (fence);
4134 /* Ensure that ready list and vec_av_set are in line with each other,
4135 i.e. vec_av_set[i] == ready_element (&ready, i). */
4136 if (issue_more && ran_hook)
4138 int i, j, n;
4139 rtx_insn **arr = ready.vec;
4140 expr_t *vec = vec_av_set.address ();
4142 for (i = 0, n = ready.n_ready; i < n; i++)
4143 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4145 expr_t tmp;
4147 for (j = i; j < n; j++)
4148 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4149 break;
4150 gcc_assert (j < n);
4152 tmp = vec[i];
4153 vec[i] = vec[j];
4154 vec[j] = tmp;
4158 return issue_more;
4161 /* Return an EXPR corresponding to INDEX element of ready list, if
4162 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4163 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4164 ready.vec otherwise. */
4165 static inline expr_t
4166 find_expr_for_ready (int index, bool follow_ready_element)
4168 expr_t expr;
4169 int real_index;
4171 real_index = follow_ready_element ? ready.first - index : index;
4173 expr = vec_av_set[real_index];
4174 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4176 return expr;
4179 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4180 of such insns found. */
4181 static int
4182 invoke_dfa_lookahead_guard (void)
4184 int i, n;
4185 bool have_hook
4186 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4188 if (sched_verbose >= 2)
4189 sel_print ("ready after reorder: ");
4191 for (i = 0, n = 0; i < ready.n_ready; i++)
4193 expr_t expr;
4194 insn_t insn;
4195 int r;
4197 /* In this loop insn is Ith element of the ready list given by
4198 ready_element, not Ith element of ready.vec. */
4199 insn = ready_element (&ready, i);
4201 if (! have_hook || i == 0)
4202 r = 0;
4203 else
4204 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4206 gcc_assert (INSN_CODE (insn) >= 0);
4208 /* Only insns with ready_try = 0 can get here
4209 from fill_ready_list. */
4210 gcc_assert (ready_try [i] == 0);
4211 ready_try[i] = r;
4212 if (!r)
4213 n++;
4215 expr = find_expr_for_ready (i, true);
4217 if (sched_verbose >= 2)
4219 dump_vinsn (EXPR_VINSN (expr));
4220 sel_print (":%d; ", ready_try[i]);
4224 if (sched_verbose >= 2)
4225 sel_print ("\n");
4226 return n;
4229 /* Calculate the number of privileged insns and return it. */
4230 static int
4231 calculate_privileged_insns (void)
4233 expr_t cur_expr, min_spec_expr = NULL;
4234 int privileged_n = 0, i;
4236 for (i = 0; i < ready.n_ready; i++)
4238 if (ready_try[i])
4239 continue;
4241 if (! min_spec_expr)
4242 min_spec_expr = find_expr_for_ready (i, true);
4244 cur_expr = find_expr_for_ready (i, true);
4246 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4247 break;
4249 ++privileged_n;
4252 if (i == ready.n_ready)
4253 privileged_n = 0;
4255 if (sched_verbose >= 2)
4256 sel_print ("privileged_n: %d insns with SPEC %d\n",
4257 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4258 return privileged_n;
4261 /* Call the rest of the hooks after the choice was made. Return
4262 the number of insns that still can be issued given that the current
4263 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4264 and the insn chosen for scheduling, respectively. */
4265 static int
4266 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4268 gcc_assert (INSN_P (best_insn));
4270 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4271 sel_dfa_new_cycle (best_insn, fence);
4273 if (targetm.sched.variable_issue)
4275 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4276 issue_more =
4277 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4278 issue_more);
4279 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4281 else if (GET_CODE (PATTERN (best_insn)) != USE
4282 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4283 issue_more--;
4285 return issue_more;
4288 /* Estimate the cost of issuing INSN on DFA state STATE. */
4289 static int
4290 estimate_insn_cost (rtx_insn *insn, state_t state)
4292 static state_t temp = NULL;
4293 int cost;
4295 if (!temp)
4296 temp = xmalloc (dfa_state_size);
4298 memcpy (temp, state, dfa_state_size);
4299 cost = state_transition (temp, insn);
4301 if (cost < 0)
4302 return 0;
4303 else if (cost == 0)
4304 return 1;
4305 return cost;
4308 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4309 This function properly handles ASMs, USEs etc. */
4310 static int
4311 get_expr_cost (expr_t expr, fence_t fence)
4313 rtx_insn *insn = EXPR_INSN_RTX (expr);
4315 if (recog_memoized (insn) < 0)
4317 if (!FENCE_STARTS_CYCLE_P (fence)
4318 && INSN_ASM_P (insn))
4319 /* This is asm insn which is tryed to be issued on the
4320 cycle not first. Issue it on the next cycle. */
4321 return 1;
4322 else
4323 /* A USE insn, or something else we don't need to
4324 understand. We can't pass these directly to
4325 state_transition because it will trigger a
4326 fatal error for unrecognizable insns. */
4327 return 0;
4329 else
4330 return estimate_insn_cost (insn, FENCE_STATE (fence));
4333 /* Find the best insn for scheduling, either via max_issue or just take
4334 the most prioritized available. */
4335 static int
4336 choose_best_insn (fence_t fence, int privileged_n, int *index)
4338 int can_issue = 0;
4340 if (dfa_lookahead > 0)
4342 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4343 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4344 can_issue = max_issue (&ready, privileged_n,
4345 FENCE_STATE (fence), true, index);
4346 if (sched_verbose >= 2)
4347 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4348 can_issue, FENCE_ISSUED_INSNS (fence));
4350 else
4352 /* We can't use max_issue; just return the first available element. */
4353 int i;
4355 for (i = 0; i < ready.n_ready; i++)
4357 expr_t expr = find_expr_for_ready (i, true);
4359 if (get_expr_cost (expr, fence) < 1)
4361 can_issue = can_issue_more;
4362 *index = i;
4364 if (sched_verbose >= 2)
4365 sel_print ("using %dth insn from the ready list\n", i + 1);
4367 break;
4371 if (i == ready.n_ready)
4373 can_issue = 0;
4374 *index = -1;
4378 return can_issue;
4381 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4382 BNDS and FENCE are current boundaries and scheduling fence respectively.
4383 Return the expr found and NULL if nothing can be issued atm.
4384 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4385 static expr_t
4386 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4387 int *pneed_stall)
4389 expr_t best;
4391 /* Choose the best insn for scheduling via:
4392 1) sorting the ready list based on priority;
4393 2) calling the reorder hook;
4394 3) calling max_issue. */
4395 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4396 if (best == NULL && ready.n_ready > 0)
4398 int privileged_n, index;
4400 can_issue_more = invoke_reorder_hooks (fence);
4401 if (can_issue_more > 0)
4403 /* Try choosing the best insn until we find one that is could be
4404 scheduled due to liveness restrictions on its destination register.
4405 In the future, we'd like to choose once and then just probe insns
4406 in the order of their priority. */
4407 invoke_dfa_lookahead_guard ();
4408 privileged_n = calculate_privileged_insns ();
4409 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4410 if (can_issue_more)
4411 best = find_expr_for_ready (index, true);
4413 /* We had some available insns, so if we can't issue them,
4414 we have a stall. */
4415 if (can_issue_more == 0)
4417 best = NULL;
4418 *pneed_stall = 1;
4422 if (best != NULL)
4424 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4425 can_issue_more);
4426 if (targetm.sched.variable_issue
4427 && can_issue_more == 0)
4428 *pneed_stall = 1;
4431 if (sched_verbose >= 2)
4433 if (best != NULL)
4435 sel_print ("Best expression (vliw form): ");
4436 dump_expr (best);
4437 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4439 else
4440 sel_print ("No best expr found!\n");
4443 return best;
4447 /* Functions that implement the core of the scheduler. */
4450 /* Emit an instruction from EXPR with SEQNO and VINSN after
4451 PLACE_TO_INSERT. */
4452 static insn_t
4453 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4454 insn_t place_to_insert)
4456 /* This assert fails when we have identical instructions
4457 one of which dominates the other. In this case move_op ()
4458 finds the first instruction and doesn't search for second one.
4459 The solution would be to compute av_set after the first found
4460 insn and, if insn present in that set, continue searching.
4461 For now we workaround this issue in move_op. */
4462 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4464 if (EXPR_WAS_RENAMED (expr))
4466 unsigned regno = expr_dest_regno (expr);
4468 if (HARD_REGISTER_NUM_P (regno))
4470 df_set_regs_ever_live (regno, true);
4471 reg_rename_tick[regno] = ++reg_rename_this_tick;
4475 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4476 place_to_insert);
4479 /* Return TRUE if BB can hold bookkeeping code. */
4480 static bool
4481 block_valid_for_bookkeeping_p (basic_block bb)
4483 insn_t bb_end = BB_END (bb);
4485 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4486 return false;
4488 if (INSN_P (bb_end))
4490 if (INSN_SCHED_TIMES (bb_end) > 0)
4491 return false;
4493 else
4494 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4496 return true;
4499 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4500 into E2->dest, except from E1->src (there may be a sequence of empty basic
4501 blocks between E1->src and E2->dest). Return found block, or NULL if new
4502 one must be created. If LAX holds, don't assume there is a simple path
4503 from E1->src to E2->dest. */
4504 static basic_block
4505 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4507 basic_block candidate_block = NULL;
4508 edge e;
4510 /* Loop over edges from E1 to E2, inclusive. */
4511 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4512 EDGE_SUCC (e->dest, 0))
4514 if (EDGE_COUNT (e->dest->preds) == 2)
4516 if (candidate_block == NULL)
4517 candidate_block = (EDGE_PRED (e->dest, 0) == e
4518 ? EDGE_PRED (e->dest, 1)->src
4519 : EDGE_PRED (e->dest, 0)->src);
4520 else
4521 /* Found additional edge leading to path from e1 to e2
4522 from aside. */
4523 return NULL;
4525 else if (EDGE_COUNT (e->dest->preds) > 2)
4526 /* Several edges leading to path from e1 to e2 from aside. */
4527 return NULL;
4529 if (e == e2)
4530 return ((!lax || candidate_block)
4531 && block_valid_for_bookkeeping_p (candidate_block)
4532 ? candidate_block
4533 : NULL);
4535 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4536 return NULL;
4539 if (lax)
4540 return NULL;
4542 gcc_unreachable ();
4545 /* Create new basic block for bookkeeping code for path(s) incoming into
4546 E2->dest, except from E1->src. Return created block. */
4547 static basic_block
4548 create_block_for_bookkeeping (edge e1, edge e2)
4550 basic_block new_bb, bb = e2->dest;
4552 /* Check that we don't spoil the loop structure. */
4553 if (current_loop_nest)
4555 basic_block latch = current_loop_nest->latch;
4557 /* We do not split header. */
4558 gcc_assert (e2->dest != current_loop_nest->header);
4560 /* We do not redirect the only edge to the latch block. */
4561 gcc_assert (e1->dest != latch
4562 || !single_pred_p (latch)
4563 || e1 != single_pred_edge (latch));
4566 /* Split BB to insert BOOK_INSN there. */
4567 new_bb = sched_split_block (bb, NULL);
4569 /* Move note_list from the upper bb. */
4570 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4571 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4572 BB_NOTE_LIST (bb) = NULL;
4574 gcc_assert (e2->dest == bb);
4576 /* Skip block for bookkeeping copy when leaving E1->src. */
4577 if (e1->flags & EDGE_FALLTHRU)
4578 sel_redirect_edge_and_branch_force (e1, new_bb);
4579 else
4580 sel_redirect_edge_and_branch (e1, new_bb);
4582 gcc_assert (e1->dest == new_bb);
4583 gcc_assert (sel_bb_empty_p (bb));
4585 /* To keep basic block numbers in sync between debug and non-debug
4586 compilations, we have to rotate blocks here. Consider that we
4587 started from (a,b)->d, (c,d)->e, and d contained only debug
4588 insns. It would have been removed before if the debug insns
4589 weren't there, so we'd have split e rather than d. So what we do
4590 now is to swap the block numbers of new_bb and
4591 single_succ(new_bb) == e, so that the insns that were in e before
4592 get the new block number. */
4594 if (MAY_HAVE_DEBUG_INSNS)
4596 basic_block succ;
4597 insn_t insn = sel_bb_head (new_bb);
4598 insn_t last;
4600 if (DEBUG_INSN_P (insn)
4601 && single_succ_p (new_bb)
4602 && (succ = single_succ (new_bb))
4603 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4604 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4606 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4607 insn = NEXT_INSN (insn);
4609 if (insn == last)
4611 sel_global_bb_info_def gbi;
4612 sel_region_bb_info_def rbi;
4613 int i;
4615 if (sched_verbose >= 2)
4616 sel_print ("Swapping block ids %i and %i\n",
4617 new_bb->index, succ->index);
4619 i = new_bb->index;
4620 new_bb->index = succ->index;
4621 succ->index = i;
4623 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4624 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4626 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4627 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4628 sizeof (gbi));
4629 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4631 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4632 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4633 sizeof (rbi));
4634 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4636 i = BLOCK_TO_BB (new_bb->index);
4637 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4638 BLOCK_TO_BB (succ->index) = i;
4640 i = CONTAINING_RGN (new_bb->index);
4641 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4642 CONTAINING_RGN (succ->index) = i;
4644 for (i = 0; i < current_nr_blocks; i++)
4645 if (BB_TO_BLOCK (i) == succ->index)
4646 BB_TO_BLOCK (i) = new_bb->index;
4647 else if (BB_TO_BLOCK (i) == new_bb->index)
4648 BB_TO_BLOCK (i) = succ->index;
4650 FOR_BB_INSNS (new_bb, insn)
4651 if (INSN_P (insn))
4652 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4654 FOR_BB_INSNS (succ, insn)
4655 if (INSN_P (insn))
4656 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4658 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4659 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4661 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4662 && LABEL_P (BB_HEAD (succ)));
4664 if (sched_verbose >= 4)
4665 sel_print ("Swapping code labels %i and %i\n",
4666 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4667 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4669 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4670 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4671 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4672 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4677 return bb;
4680 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4681 into E2->dest, except from E1->src. If the returned insn immediately
4682 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4683 static insn_t
4684 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4686 insn_t place_to_insert;
4687 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4688 create new basic block, but insert bookkeeping there. */
4689 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4691 if (book_block)
4693 place_to_insert = BB_END (book_block);
4695 /* Don't use a block containing only debug insns for
4696 bookkeeping, this causes scheduling differences between debug
4697 and non-debug compilations, for the block would have been
4698 removed already. */
4699 if (DEBUG_INSN_P (place_to_insert))
4701 rtx_insn *insn = sel_bb_head (book_block);
4703 while (insn != place_to_insert &&
4704 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4705 insn = NEXT_INSN (insn);
4707 if (insn == place_to_insert)
4708 book_block = NULL;
4712 if (!book_block)
4714 book_block = create_block_for_bookkeeping (e1, e2);
4715 place_to_insert = BB_END (book_block);
4716 if (sched_verbose >= 9)
4717 sel_print ("New block is %i, split from bookkeeping block %i\n",
4718 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4720 else
4722 if (sched_verbose >= 9)
4723 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4726 *fence_to_rewind = NULL;
4727 /* If basic block ends with a jump, insert bookkeeping code right before it.
4728 Notice if we are crossing a fence when taking PREV_INSN. */
4729 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4731 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4732 place_to_insert = PREV_INSN (place_to_insert);
4735 return place_to_insert;
4738 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4739 for JOIN_POINT. */
4740 static int
4741 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4743 int seqno;
4744 rtx next;
4746 /* Check if we are about to insert bookkeeping copy before a jump, and use
4747 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4748 next = NEXT_INSN (place_to_insert);
4749 if (INSN_P (next)
4750 && JUMP_P (next)
4751 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4753 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4754 seqno = INSN_SEQNO (next);
4756 else if (INSN_SEQNO (join_point) > 0)
4757 seqno = INSN_SEQNO (join_point);
4758 else
4760 seqno = get_seqno_by_preds (place_to_insert);
4762 /* Sometimes the fences can move in such a way that there will be
4763 no instructions with positive seqno around this bookkeeping.
4764 This means that there will be no way to get to it by a regular
4765 fence movement. Never mind because we pick up such pieces for
4766 rescheduling anyways, so any positive value will do for now. */
4767 if (seqno < 0)
4769 gcc_assert (pipelining_p);
4770 seqno = 1;
4774 gcc_assert (seqno > 0);
4775 return seqno;
4778 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4779 NEW_SEQNO to it. Return created insn. */
4780 static insn_t
4781 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4783 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4785 vinsn_t new_vinsn
4786 = create_vinsn_from_insn_rtx (new_insn_rtx,
4787 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4789 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4790 place_to_insert);
4792 INSN_SCHED_TIMES (new_insn) = 0;
4793 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4795 return new_insn;
4798 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4799 E2->dest, except from E1->src (there may be a sequence of empty blocks
4800 between E1->src and E2->dest). Return block containing the copy.
4801 All scheduler data is initialized for the newly created insn. */
4802 static basic_block
4803 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4805 insn_t join_point, place_to_insert, new_insn;
4806 int new_seqno;
4807 bool need_to_exchange_data_sets;
4808 fence_t fence_to_rewind;
4810 if (sched_verbose >= 4)
4811 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4812 e2->dest->index);
4814 join_point = sel_bb_head (e2->dest);
4815 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4816 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4817 need_to_exchange_data_sets
4818 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4820 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4822 if (fence_to_rewind)
4823 FENCE_INSN (fence_to_rewind) = new_insn;
4825 /* When inserting bookkeeping insn in new block, av sets should be
4826 following: old basic block (that now holds bookkeeping) data sets are
4827 the same as was before generation of bookkeeping, and new basic block
4828 (that now hold all other insns of old basic block) data sets are
4829 invalid. So exchange data sets for these basic blocks as sel_split_block
4830 mistakenly exchanges them in this case. Cannot do it earlier because
4831 when single instruction is added to new basic block it should hold NULL
4832 lv_set. */
4833 if (need_to_exchange_data_sets)
4834 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4835 BLOCK_FOR_INSN (join_point));
4837 stat_bookkeeping_copies++;
4838 return BLOCK_FOR_INSN (new_insn);
4841 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4842 on FENCE, but we are unable to copy them. */
4843 static void
4844 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4846 expr_t expr;
4847 av_set_iterator i;
4849 /* An expression does not need bookkeeping if it is available on all paths
4850 from current block to original block and current block dominates
4851 original block. We check availability on all paths by examining
4852 EXPR_SPEC; this is not equivalent, because it may be positive even
4853 if expr is available on all paths (but if expr is not available on
4854 any path, EXPR_SPEC will be positive). */
4856 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4858 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4859 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4860 && (EXPR_SPEC (expr)
4861 || !EXPR_ORIG_BB_INDEX (expr)
4862 || !dominated_by_p (CDI_DOMINATORS,
4863 BASIC_BLOCK_FOR_FN (cfun,
4864 EXPR_ORIG_BB_INDEX (expr)),
4865 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4867 if (sched_verbose >= 4)
4868 sel_print ("Expr %d removed because it would need bookkeeping, which "
4869 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4870 av_set_iter_remove (&i);
4875 /* Moving conditional jump through some instructions.
4877 Consider example:
4879 ... <- current scheduling point
4880 NOTE BASIC BLOCK: <- bb header
4881 (p8) add r14=r14+0x9;;
4882 (p8) mov [r14]=r23
4883 (!p8) jump L1;;
4884 NOTE BASIC BLOCK:
4887 We can schedule jump one cycle earlier, than mov, because they cannot be
4888 executed together as their predicates are mutually exclusive.
4890 This is done in this way: first, new fallthrough basic block is created
4891 after jump (it is always can be done, because there already should be a
4892 fallthrough block, where control flow goes in case of predicate being true -
4893 in our example; otherwise there should be a dependence between those
4894 instructions and jump and we cannot schedule jump right now);
4895 next, all instructions between jump and current scheduling point are moved
4896 to this new block. And the result is this:
4898 NOTE BASIC BLOCK:
4899 (!p8) jump L1 <- current scheduling point
4900 NOTE BASIC BLOCK: <- bb header
4901 (p8) add r14=r14+0x9;;
4902 (p8) mov [r14]=r23
4903 NOTE BASIC BLOCK:
4906 static void
4907 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4909 edge ft_edge;
4910 basic_block block_from, block_next, block_new, block_bnd, bb;
4911 rtx_insn *next, *prev, *link, *head;
4913 block_from = BLOCK_FOR_INSN (insn);
4914 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4915 prev = BND_TO (bnd);
4917 #ifdef ENABLE_CHECKING
4918 /* Moving of jump should not cross any other jumps or beginnings of new
4919 basic blocks. The only exception is when we move a jump through
4920 mutually exclusive insns along fallthru edges. */
4921 if (block_from != block_bnd)
4923 bb = block_from;
4924 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4925 link = PREV_INSN (link))
4927 if (INSN_P (link))
4928 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4929 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4931 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4932 bb = BLOCK_FOR_INSN (link);
4936 #endif
4938 /* Jump is moved to the boundary. */
4939 next = PREV_INSN (insn);
4940 BND_TO (bnd) = insn;
4942 ft_edge = find_fallthru_edge_from (block_from);
4943 block_next = ft_edge->dest;
4944 /* There must be a fallthrough block (or where should go
4945 control flow in case of false jump predicate otherwise?). */
4946 gcc_assert (block_next);
4948 /* Create new empty basic block after source block. */
4949 block_new = sel_split_edge (ft_edge);
4950 gcc_assert (block_new->next_bb == block_next
4951 && block_from->next_bb == block_new);
4953 /* Move all instructions except INSN to BLOCK_NEW. */
4954 bb = block_bnd;
4955 head = BB_HEAD (block_new);
4956 while (bb != block_from->next_bb)
4958 rtx_insn *from, *to;
4959 from = bb == block_bnd ? prev : sel_bb_head (bb);
4960 to = bb == block_from ? next : sel_bb_end (bb);
4962 /* The jump being moved can be the first insn in the block.
4963 In this case we don't have to move anything in this block. */
4964 if (NEXT_INSN (to) != from)
4966 reorder_insns (from, to, head);
4968 for (link = to; link != head; link = PREV_INSN (link))
4969 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4970 head = to;
4973 /* Cleanup possibly empty blocks left. */
4974 block_next = bb->next_bb;
4975 if (bb != block_from)
4976 tidy_control_flow (bb, false);
4977 bb = block_next;
4980 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4981 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4983 gcc_assert (!sel_bb_empty_p (block_from)
4984 && !sel_bb_empty_p (block_new));
4986 /* Update data sets for BLOCK_NEW to represent that INSN and
4987 instructions from the other branch of INSN is no longer
4988 available at BLOCK_NEW. */
4989 BB_AV_LEVEL (block_new) = global_level;
4990 gcc_assert (BB_LV_SET (block_new) == NULL);
4991 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4992 update_data_sets (sel_bb_head (block_new));
4994 /* INSN is a new basic block header - so prepare its data
4995 structures and update availability and liveness sets. */
4996 update_data_sets (insn);
4998 if (sched_verbose >= 4)
4999 sel_print ("Moving jump %d\n", INSN_UID (insn));
5002 /* Remove nops generated during move_op for preventing removal of empty
5003 basic blocks. */
5004 static void
5005 remove_temp_moveop_nops (bool full_tidying)
5007 int i;
5008 insn_t insn;
5010 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5012 gcc_assert (INSN_NOP_P (insn));
5013 return_nop_to_pool (insn, full_tidying);
5016 /* Empty the vector. */
5017 if (vec_temp_moveop_nops.length () > 0)
5018 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5021 /* Records the maximal UID before moving up an instruction. Used for
5022 distinguishing between bookkeeping copies and original insns. */
5023 static int max_uid_before_move_op = 0;
5025 /* Remove from AV_VLIW_P all instructions but next when debug counter
5026 tells us so. Next instruction is fetched from BNDS. */
5027 static void
5028 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5030 if (! dbg_cnt (sel_sched_insn_cnt))
5031 /* Leave only the next insn in av_vliw. */
5033 av_set_iterator av_it;
5034 expr_t expr;
5035 bnd_t bnd = BLIST_BND (bnds);
5036 insn_t next = BND_TO (bnd);
5038 gcc_assert (BLIST_NEXT (bnds) == NULL);
5040 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5041 if (EXPR_INSN_RTX (expr) != next)
5042 av_set_iter_remove (&av_it);
5046 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5047 the computed set to *AV_VLIW_P. */
5048 static void
5049 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5051 if (sched_verbose >= 2)
5053 sel_print ("Boundaries: ");
5054 dump_blist (bnds);
5055 sel_print ("\n");
5058 for (; bnds; bnds = BLIST_NEXT (bnds))
5060 bnd_t bnd = BLIST_BND (bnds);
5061 av_set_t av1_copy;
5062 insn_t bnd_to = BND_TO (bnd);
5064 /* Rewind BND->TO to the basic block header in case some bookkeeping
5065 instructions were inserted before BND->TO and it needs to be
5066 adjusted. */
5067 if (sel_bb_head_p (bnd_to))
5068 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5069 else
5070 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5072 bnd_to = PREV_INSN (bnd_to);
5073 if (sel_bb_head_p (bnd_to))
5074 break;
5077 if (BND_TO (bnd) != bnd_to)
5079 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5080 FENCE_INSN (fence) = bnd_to;
5081 BND_TO (bnd) = bnd_to;
5084 av_set_clear (&BND_AV (bnd));
5085 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5087 av_set_clear (&BND_AV1 (bnd));
5088 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5090 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5092 av1_copy = av_set_copy (BND_AV1 (bnd));
5093 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5096 if (sched_verbose >= 2)
5098 sel_print ("Available exprs (vliw form): ");
5099 dump_av_set (*av_vliw_p);
5100 sel_print ("\n");
5104 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5105 expression. When FOR_MOVEOP is true, also replace the register of
5106 expressions found with the register from EXPR_VLIW. */
5107 static av_set_t
5108 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5110 av_set_t expr_seq = NULL;
5111 expr_t expr;
5112 av_set_iterator i;
5114 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5116 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5118 if (for_moveop)
5120 /* The sequential expression has the right form to pass
5121 to move_op except when renaming happened. Put the
5122 correct register in EXPR then. */
5123 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5125 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5127 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5128 stat_renamed_scheduled++;
5130 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5131 This is needed when renaming came up with original
5132 register. */
5133 else if (EXPR_TARGET_AVAILABLE (expr)
5134 != EXPR_TARGET_AVAILABLE (expr_vliw))
5136 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5137 EXPR_TARGET_AVAILABLE (expr) = 1;
5140 if (EXPR_WAS_SUBSTITUTED (expr))
5141 stat_substitutions_total++;
5144 av_set_add (&expr_seq, expr);
5146 /* With substitution inside insn group, it is possible
5147 that more than one expression in expr_seq will correspond
5148 to expr_vliw. In this case, choose one as the attempt to
5149 move both leads to miscompiles. */
5150 break;
5154 if (for_moveop && sched_verbose >= 2)
5156 sel_print ("Best expression(s) (sequential form): ");
5157 dump_av_set (expr_seq);
5158 sel_print ("\n");
5161 return expr_seq;
5165 /* Move nop to previous block. */
5166 static void ATTRIBUTE_UNUSED
5167 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5169 insn_t prev_insn, next_insn, note;
5171 gcc_assert (sel_bb_head_p (nop)
5172 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5173 note = bb_note (BLOCK_FOR_INSN (nop));
5174 prev_insn = sel_bb_end (prev_bb);
5175 next_insn = NEXT_INSN (nop);
5176 gcc_assert (prev_insn != NULL_RTX
5177 && PREV_INSN (note) == prev_insn);
5179 SET_NEXT_INSN (prev_insn) = nop;
5180 SET_PREV_INSN (nop) = prev_insn;
5182 SET_PREV_INSN (note) = nop;
5183 SET_NEXT_INSN (note) = next_insn;
5185 SET_NEXT_INSN (nop) = note;
5186 SET_PREV_INSN (next_insn) = note;
5188 BB_END (prev_bb) = nop;
5189 BLOCK_FOR_INSN (nop) = prev_bb;
5192 /* Prepare a place to insert the chosen expression on BND. */
5193 static insn_t
5194 prepare_place_to_insert (bnd_t bnd)
5196 insn_t place_to_insert;
5198 /* Init place_to_insert before calling move_op, as the later
5199 can possibly remove BND_TO (bnd). */
5200 if (/* If this is not the first insn scheduled. */
5201 BND_PTR (bnd))
5203 /* Add it after last scheduled. */
5204 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5205 if (DEBUG_INSN_P (place_to_insert))
5207 ilist_t l = BND_PTR (bnd);
5208 while ((l = ILIST_NEXT (l)) &&
5209 DEBUG_INSN_P (ILIST_INSN (l)))
5211 if (!l)
5212 place_to_insert = NULL;
5215 else
5216 place_to_insert = NULL;
5218 if (!place_to_insert)
5220 /* Add it before BND_TO. The difference is in the
5221 basic block, where INSN will be added. */
5222 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5223 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5224 == BLOCK_FOR_INSN (BND_TO (bnd)));
5227 return place_to_insert;
5230 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5231 Return the expression to emit in C_EXPR. */
5232 static bool
5233 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5234 av_set_t expr_seq, expr_t c_expr)
5236 bool b, should_move;
5237 unsigned book_uid;
5238 bitmap_iterator bi;
5239 int n_bookkeeping_copies_before_moveop;
5241 /* Make a move. This call will remove the original operation,
5242 insert all necessary bookkeeping instructions and update the
5243 data sets. After that all we have to do is add the operation
5244 at before BND_TO (BND). */
5245 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5246 max_uid_before_move_op = get_max_uid ();
5247 bitmap_clear (current_copies);
5248 bitmap_clear (current_originators);
5250 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5251 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5253 /* We should be able to find the expression we've chosen for
5254 scheduling. */
5255 gcc_assert (b);
5257 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5258 stat_insns_needed_bookkeeping++;
5260 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5262 unsigned uid;
5263 bitmap_iterator bi;
5265 /* We allocate these bitmaps lazily. */
5266 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5267 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5269 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5270 current_originators);
5272 /* Transitively add all originators' originators. */
5273 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5274 if (INSN_ORIGINATORS_BY_UID (uid))
5275 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5276 INSN_ORIGINATORS_BY_UID (uid));
5279 return should_move;
5283 /* Debug a DFA state as an array of bytes. */
5284 static void
5285 debug_state (state_t state)
5287 unsigned char *p;
5288 unsigned int i, size = dfa_state_size;
5290 sel_print ("state (%u):", size);
5291 for (i = 0, p = (unsigned char *) state; i < size; i++)
5292 sel_print (" %d", p[i]);
5293 sel_print ("\n");
5296 /* Advance state on FENCE with INSN. Return true if INSN is
5297 an ASM, and we should advance state once more. */
5298 static bool
5299 advance_state_on_fence (fence_t fence, insn_t insn)
5301 bool asm_p;
5303 if (recog_memoized (insn) >= 0)
5305 int res;
5306 state_t temp_state = alloca (dfa_state_size);
5308 gcc_assert (!INSN_ASM_P (insn));
5309 asm_p = false;
5311 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5312 res = state_transition (FENCE_STATE (fence), insn);
5313 gcc_assert (res < 0);
5315 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5317 FENCE_ISSUED_INSNS (fence)++;
5319 /* We should never issue more than issue_rate insns. */
5320 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5321 gcc_unreachable ();
5324 else
5326 /* This could be an ASM insn which we'd like to schedule
5327 on the next cycle. */
5328 asm_p = INSN_ASM_P (insn);
5329 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5330 advance_one_cycle (fence);
5333 if (sched_verbose >= 2)
5334 debug_state (FENCE_STATE (fence));
5335 if (!DEBUG_INSN_P (insn))
5336 FENCE_STARTS_CYCLE_P (fence) = 0;
5337 FENCE_ISSUE_MORE (fence) = can_issue_more;
5338 return asm_p;
5341 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5342 is nonzero if we need to stall after issuing INSN. */
5343 static void
5344 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5346 bool asm_p;
5348 /* First, reflect that something is scheduled on this fence. */
5349 asm_p = advance_state_on_fence (fence, insn);
5350 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5351 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5352 if (SCHED_GROUP_P (insn))
5354 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5355 SCHED_GROUP_P (insn) = 0;
5357 else
5358 FENCE_SCHED_NEXT (fence) = NULL;
5359 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5360 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5362 /* Set instruction scheduling info. This will be used in bundling,
5363 pipelining, tick computations etc. */
5364 ++INSN_SCHED_TIMES (insn);
5365 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5366 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5367 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5368 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5370 /* This does not account for adjust_cost hooks, just add the biggest
5371 constant the hook may add to the latency. TODO: make this
5372 a target dependent constant. */
5373 INSN_READY_CYCLE (insn)
5374 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5376 : maximal_insn_latency (insn) + 1);
5378 /* Change these fields last, as they're used above. */
5379 FENCE_AFTER_STALL_P (fence) = 0;
5380 if (asm_p || need_stall)
5381 advance_one_cycle (fence);
5383 /* Indicate that we've scheduled something on this fence. */
5384 FENCE_SCHEDULED_P (fence) = true;
5385 scheduled_something_on_previous_fence = true;
5387 /* Print debug information when insn's fields are updated. */
5388 if (sched_verbose >= 2)
5390 sel_print ("Scheduling insn: ");
5391 dump_insn_1 (insn, 1);
5392 sel_print ("\n");
5396 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5397 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5398 return it. */
5399 static blist_t *
5400 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5401 blist_t *bnds_tailp)
5403 succ_iterator si;
5404 insn_t succ;
5406 advance_deps_context (BND_DC (bnd), insn);
5407 FOR_EACH_SUCC_1 (succ, si, insn,
5408 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5410 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5412 ilist_add (&ptr, insn);
5414 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5415 && is_ineligible_successor (succ, ptr))
5417 ilist_clear (&ptr);
5418 continue;
5421 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5423 if (sched_verbose >= 9)
5424 sel_print ("Updating fence insn from %i to %i\n",
5425 INSN_UID (insn), INSN_UID (succ));
5426 FENCE_INSN (fence) = succ;
5428 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5429 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5432 blist_remove (bndsp);
5433 return bnds_tailp;
5436 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5437 static insn_t
5438 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5440 av_set_t expr_seq;
5441 expr_t c_expr = XALLOCA (expr_def);
5442 insn_t place_to_insert;
5443 insn_t insn;
5444 bool should_move;
5446 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5448 /* In case of scheduling a jump skipping some other instructions,
5449 prepare CFG. After this, jump is at the boundary and can be
5450 scheduled as usual insn by MOVE_OP. */
5451 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5453 insn = EXPR_INSN_RTX (expr_vliw);
5455 /* Speculative jumps are not handled. */
5456 if (insn != BND_TO (bnd)
5457 && !sel_insn_is_speculation_check (insn))
5458 move_cond_jump (insn, bnd);
5461 /* Find a place for C_EXPR to schedule. */
5462 place_to_insert = prepare_place_to_insert (bnd);
5463 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5464 clear_expr (c_expr);
5466 /* Add the instruction. The corner case to care about is when
5467 the expr_seq set has more than one expr, and we chose the one that
5468 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5469 we can't use it. Generate the new vinsn. */
5470 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5472 vinsn_t vinsn_new;
5474 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5475 change_vinsn_in_expr (expr_vliw, vinsn_new);
5476 should_move = false;
5478 if (should_move)
5479 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5480 else
5481 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5482 place_to_insert);
5484 /* Return the nops generated for preserving of data sets back
5485 into pool. */
5486 if (INSN_NOP_P (place_to_insert))
5487 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5488 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5490 av_set_clear (&expr_seq);
5492 /* Save the expression scheduled so to reset target availability if we'll
5493 meet it later on the same fence. */
5494 if (EXPR_WAS_RENAMED (expr_vliw))
5495 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5497 /* Check that the recent movement didn't destroyed loop
5498 structure. */
5499 gcc_assert (!pipelining_p
5500 || current_loop_nest == NULL
5501 || loop_latch_edge (current_loop_nest));
5502 return insn;
5505 /* Stall for N cycles on FENCE. */
5506 static void
5507 stall_for_cycles (fence_t fence, int n)
5509 int could_more;
5511 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5512 while (n--)
5513 advance_one_cycle (fence);
5514 if (could_more)
5515 FENCE_AFTER_STALL_P (fence) = 1;
5518 /* Gather a parallel group of insns at FENCE and assign their seqno
5519 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5520 list for later recalculation of seqnos. */
5521 static void
5522 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5524 blist_t bnds = NULL, *bnds_tailp;
5525 av_set_t av_vliw = NULL;
5526 insn_t insn = FENCE_INSN (fence);
5528 if (sched_verbose >= 2)
5529 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5530 INSN_UID (insn), FENCE_CYCLE (fence));
5532 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5533 bnds_tailp = &BLIST_NEXT (bnds);
5534 set_target_context (FENCE_TC (fence));
5535 can_issue_more = FENCE_ISSUE_MORE (fence);
5536 target_bb = INSN_BB (insn);
5538 /* Do while we can add any operation to the current group. */
5541 blist_t *bnds_tailp1, *bndsp;
5542 expr_t expr_vliw;
5543 int need_stall = false;
5544 int was_stall = 0, scheduled_insns = 0;
5545 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5546 int max_stall = pipelining_p ? 1 : 3;
5547 bool last_insn_was_debug = false;
5548 bool was_debug_bb_end_p = false;
5550 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5551 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5552 remove_insns_for_debug (bnds, &av_vliw);
5554 /* Return early if we have nothing to schedule. */
5555 if (av_vliw == NULL)
5556 break;
5558 /* Choose the best expression and, if needed, destination register
5559 for it. */
5562 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5563 if (! expr_vliw && need_stall)
5565 /* All expressions required a stall. Do not recompute av sets
5566 as we'll get the same answer (modulo the insns between
5567 the fence and its boundary, which will not be available for
5568 pipelining).
5569 If we are going to stall for too long, break to recompute av
5570 sets and bring more insns for pipelining. */
5571 was_stall++;
5572 if (need_stall <= 3)
5573 stall_for_cycles (fence, need_stall);
5574 else
5576 stall_for_cycles (fence, 1);
5577 break;
5581 while (! expr_vliw && need_stall);
5583 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5584 if (!expr_vliw)
5586 av_set_clear (&av_vliw);
5587 break;
5590 bndsp = &bnds;
5591 bnds_tailp1 = bnds_tailp;
5594 /* This code will be executed only once until we'd have several
5595 boundaries per fence. */
5597 bnd_t bnd = BLIST_BND (*bndsp);
5599 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5601 bndsp = &BLIST_NEXT (*bndsp);
5602 continue;
5605 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5606 last_insn_was_debug = DEBUG_INSN_P (insn);
5607 if (last_insn_was_debug)
5608 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5609 update_fence_and_insn (fence, insn, need_stall);
5610 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5612 /* Add insn to the list of scheduled on this cycle instructions. */
5613 ilist_add (*scheduled_insns_tailpp, insn);
5614 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5616 while (*bndsp != *bnds_tailp1);
5618 av_set_clear (&av_vliw);
5619 if (!last_insn_was_debug)
5620 scheduled_insns++;
5622 /* We currently support information about candidate blocks only for
5623 one 'target_bb' block. Hence we can't schedule after jump insn,
5624 as this will bring two boundaries and, hence, necessity to handle
5625 information for two or more blocks concurrently. */
5626 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5627 || (was_stall
5628 && (was_stall >= max_stall
5629 || scheduled_insns >= max_insns)))
5630 break;
5632 while (bnds);
5634 gcc_assert (!FENCE_BNDS (fence));
5636 /* Update boundaries of the FENCE. */
5637 while (bnds)
5639 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5641 if (ptr)
5643 insn = ILIST_INSN (ptr);
5645 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5646 ilist_add (&FENCE_BNDS (fence), insn);
5649 blist_remove (&bnds);
5652 /* Update target context on the fence. */
5653 reset_target_context (FENCE_TC (fence), false);
5656 /* All exprs in ORIG_OPS must have the same destination register or memory.
5657 Return that destination. */
5658 static rtx
5659 get_dest_from_orig_ops (av_set_t orig_ops)
5661 rtx dest = NULL_RTX;
5662 av_set_iterator av_it;
5663 expr_t expr;
5664 bool first_p = true;
5666 FOR_EACH_EXPR (expr, av_it, orig_ops)
5668 rtx x = EXPR_LHS (expr);
5670 if (first_p)
5672 first_p = false;
5673 dest = x;
5675 else
5676 gcc_assert (dest == x
5677 || (dest != NULL_RTX && x != NULL_RTX
5678 && rtx_equal_p (dest, x)));
5681 return dest;
5684 /* Update data sets for the bookkeeping block and record those expressions
5685 which become no longer available after inserting this bookkeeping. */
5686 static void
5687 update_and_record_unavailable_insns (basic_block book_block)
5689 av_set_iterator i;
5690 av_set_t old_av_set = NULL;
5691 expr_t cur_expr;
5692 rtx_insn *bb_end = sel_bb_end (book_block);
5694 /* First, get correct liveness in the bookkeeping block. The problem is
5695 the range between the bookeeping insn and the end of block. */
5696 update_liveness_on_insn (bb_end);
5697 if (control_flow_insn_p (bb_end))
5698 update_liveness_on_insn (PREV_INSN (bb_end));
5700 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5701 fence above, where we may choose to schedule an insn which is
5702 actually blocked from moving up with the bookkeeping we create here. */
5703 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5705 old_av_set = av_set_copy (BB_AV_SET (book_block));
5706 update_data_sets (sel_bb_head (book_block));
5708 /* Traverse all the expressions in the old av_set and check whether
5709 CUR_EXPR is in new AV_SET. */
5710 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5712 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5713 EXPR_VINSN (cur_expr));
5715 if (! new_expr
5716 /* In this case, we can just turn off the E_T_A bit, but we can't
5717 represent this information with the current vector. */
5718 || EXPR_TARGET_AVAILABLE (new_expr)
5719 != EXPR_TARGET_AVAILABLE (cur_expr))
5720 /* Unfortunately, the below code could be also fired up on
5721 separable insns, e.g. when moving insns through the new
5722 speculation check as in PR 53701. */
5723 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5726 av_set_clear (&old_av_set);
5730 /* The main effect of this function is that sparams->c_expr is merged
5731 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5732 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5733 lparams->c_expr_merged is copied back to sparams->c_expr after all
5734 successors has been traversed. lparams->c_expr_local is an expr allocated
5735 on stack in the caller function, and is used if there is more than one
5736 successor.
5738 SUCC is one of the SUCCS_NORMAL successors of INSN,
5739 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5740 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5741 static void
5742 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5743 insn_t succ ATTRIBUTE_UNUSED,
5744 int moveop_drv_call_res,
5745 cmpd_local_params_p lparams, void *static_params)
5747 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5749 /* Nothing to do, if original expr wasn't found below. */
5750 if (moveop_drv_call_res != 1)
5751 return;
5753 /* If this is a first successor. */
5754 if (!lparams->c_expr_merged)
5756 lparams->c_expr_merged = sparams->c_expr;
5757 sparams->c_expr = lparams->c_expr_local;
5759 else
5761 /* We must merge all found expressions to get reasonable
5762 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5763 do so then we can first find the expr with epsilon
5764 speculation success probability and only then with the
5765 good probability. As a result the insn will get epsilon
5766 probability and will never be scheduled because of
5767 weakness_cutoff in find_best_expr.
5769 We call merge_expr_data here instead of merge_expr
5770 because due to speculation C_EXPR and X may have the
5771 same insns with different speculation types. And as of
5772 now such insns are considered non-equal.
5774 However, EXPR_SCHED_TIMES is different -- we must get
5775 SCHED_TIMES from a real insn, not a bookkeeping copy.
5776 We force this here. Instead, we may consider merging
5777 SCHED_TIMES to the maximum instead of minimum in the
5778 below function. */
5779 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5781 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5782 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5783 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5785 clear_expr (sparams->c_expr);
5789 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5791 SUCC is one of the SUCCS_NORMAL successors of INSN,
5792 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5793 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5794 STATIC_PARAMS contain USED_REGS set. */
5795 static void
5796 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5797 int moveop_drv_call_res,
5798 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5799 void *static_params)
5801 regset succ_live;
5802 fur_static_params_p sparams = (fur_static_params_p) static_params;
5804 /* Here we compute live regsets only for branches that do not lie
5805 on the code motion paths. These branches correspond to value
5806 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5807 for such branches code_motion_path_driver is not called. */
5808 if (moveop_drv_call_res != 0)
5809 return;
5811 /* Mark all registers that do not meet the following condition:
5812 (3) not live on the other path of any conditional branch
5813 that is passed by the operation, in case original
5814 operations are not present on both paths of the
5815 conditional branch. */
5816 succ_live = compute_live (succ);
5817 IOR_REG_SET (sparams->used_regs, succ_live);
5820 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5821 into SP->CEXPR. */
5822 static void
5823 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5825 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5827 sp->c_expr = lp->c_expr_merged;
5830 /* Track bookkeeping copies created, insns scheduled, and blocks for
5831 rescheduling when INSN is found by move_op. */
5832 static void
5833 track_scheduled_insns_and_blocks (rtx_insn *insn)
5835 /* Even if this insn can be a copy that will be removed during current move_op,
5836 we still need to count it as an originator. */
5837 bitmap_set_bit (current_originators, INSN_UID (insn));
5839 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5841 /* Note that original block needs to be rescheduled, as we pulled an
5842 instruction out of it. */
5843 if (INSN_SCHED_TIMES (insn) > 0)
5844 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5845 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5846 num_insns_scheduled++;
5849 /* For instructions we must immediately remove insn from the
5850 stream, so subsequent update_data_sets () won't include this
5851 insn into av_set.
5852 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5853 if (INSN_UID (insn) > max_uid_before_move_op)
5854 stat_bookkeeping_copies--;
5857 /* Emit a register-register copy for INSN if needed. Return true if
5858 emitted one. PARAMS is the move_op static parameters. */
5859 static bool
5860 maybe_emit_renaming_copy (rtx_insn *insn,
5861 moveop_static_params_p params)
5863 bool insn_emitted = false;
5864 rtx cur_reg;
5866 /* Bail out early when expression can not be renamed at all. */
5867 if (!EXPR_SEPARABLE_P (params->c_expr))
5868 return false;
5870 cur_reg = expr_dest_reg (params->c_expr);
5871 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5873 /* If original operation has expr and the register chosen for
5874 that expr is not original operation's dest reg, substitute
5875 operation's right hand side with the register chosen. */
5876 if (REGNO (params->dest) != REGNO (cur_reg))
5878 insn_t reg_move_insn, reg_move_insn_rtx;
5880 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5881 params->dest);
5882 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5883 INSN_EXPR (insn),
5884 INSN_SEQNO (insn),
5885 insn);
5886 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5887 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5889 insn_emitted = true;
5890 params->was_renamed = true;
5893 return insn_emitted;
5896 /* Emit a speculative check for INSN speculated as EXPR if needed.
5897 Return true if we've emitted one. PARAMS is the move_op static
5898 parameters. */
5899 static bool
5900 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5901 moveop_static_params_p params)
5903 bool insn_emitted = false;
5904 insn_t x;
5905 ds_t check_ds;
5907 check_ds = get_spec_check_type_for_insn (insn, expr);
5908 if (check_ds != 0)
5910 /* A speculation check should be inserted. */
5911 x = create_speculation_check (params->c_expr, check_ds, insn);
5912 insn_emitted = true;
5914 else
5916 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5917 x = insn;
5920 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5921 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5922 return insn_emitted;
5925 /* Handle transformations that leave an insn in place of original
5926 insn such as renaming/speculation. Return true if one of such
5927 transformations actually happened, and we have emitted this insn. */
5928 static bool
5929 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5930 moveop_static_params_p params)
5932 bool insn_emitted = false;
5934 insn_emitted = maybe_emit_renaming_copy (insn, params);
5935 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5937 return insn_emitted;
5940 /* If INSN is the only insn in the basic block (not counting JUMP,
5941 which may be a jump to next insn, and DEBUG_INSNs), we want to
5942 leave a NOP there till the return to fill_insns. */
5944 static bool
5945 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5947 insn_t bb_head, bb_end, bb_next, in_next;
5948 basic_block bb = BLOCK_FOR_INSN (insn);
5950 bb_head = sel_bb_head (bb);
5951 bb_end = sel_bb_end (bb);
5953 if (bb_head == bb_end)
5954 return true;
5956 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5957 bb_head = NEXT_INSN (bb_head);
5959 if (bb_head == bb_end)
5960 return true;
5962 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5963 bb_end = PREV_INSN (bb_end);
5965 if (bb_head == bb_end)
5966 return true;
5968 bb_next = NEXT_INSN (bb_head);
5969 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5970 bb_next = NEXT_INSN (bb_next);
5972 if (bb_next == bb_end && JUMP_P (bb_end))
5973 return true;
5975 in_next = NEXT_INSN (insn);
5976 while (DEBUG_INSN_P (in_next))
5977 in_next = NEXT_INSN (in_next);
5979 if (IN_CURRENT_FENCE_P (in_next))
5980 return true;
5982 return false;
5985 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5986 is not removed but reused when INSN is re-emitted. */
5987 static void
5988 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5990 /* If there's only one insn in the BB, make sure that a nop is
5991 inserted into it, so the basic block won't disappear when we'll
5992 delete INSN below with sel_remove_insn. It should also survive
5993 till the return to fill_insns. */
5994 if (need_nop_to_preserve_insn_bb (insn))
5996 insn_t nop = get_nop_from_pool (insn);
5997 gcc_assert (INSN_NOP_P (nop));
5998 vec_temp_moveop_nops.safe_push (nop);
6001 sel_remove_insn (insn, only_disconnect, false);
6004 /* This function is called when original expr is found.
6005 INSN - current insn traversed, EXPR - the corresponding expr found.
6006 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6007 is static parameters of move_op. */
6008 static void
6009 move_op_orig_expr_found (insn_t insn, expr_t expr,
6010 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6011 void *static_params)
6013 bool only_disconnect;
6014 moveop_static_params_p params = (moveop_static_params_p) static_params;
6016 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6017 track_scheduled_insns_and_blocks (insn);
6018 handle_emitting_transformations (insn, expr, params);
6019 only_disconnect = params->uid == INSN_UID (insn);
6021 /* Mark that we've disconnected an insn. */
6022 if (only_disconnect)
6023 params->uid = -1;
6024 remove_insn_from_stream (insn, only_disconnect);
6027 /* The function is called when original expr is found.
6028 INSN - current insn traversed, EXPR - the corresponding expr found,
6029 crosses_call and original_insns in STATIC_PARAMS are updated. */
6030 static void
6031 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6032 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6033 void *static_params)
6035 fur_static_params_p params = (fur_static_params_p) static_params;
6036 regset tmp;
6038 if (CALL_P (insn))
6039 params->crosses_call = true;
6041 def_list_add (params->original_insns, insn, params->crosses_call);
6043 /* Mark the registers that do not meet the following condition:
6044 (2) not among the live registers of the point
6045 immediately following the first original operation on
6046 a given downward path, except for the original target
6047 register of the operation. */
6048 tmp = get_clear_regset_from_pool ();
6049 compute_live_below_insn (insn, tmp);
6050 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6051 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6052 IOR_REG_SET (params->used_regs, tmp);
6053 return_regset_to_pool (tmp);
6055 /* (*1) We need to add to USED_REGS registers that are read by
6056 INSN's lhs. This may lead to choosing wrong src register.
6057 E.g. (scheduling const expr enabled):
6059 429: ax=0x0 <- Can't use AX for this expr (0x0)
6060 433: dx=[bp-0x18]
6061 427: [ax+dx+0x1]=ax
6062 REG_DEAD: ax
6063 168: di=dx
6064 REG_DEAD: dx
6066 /* FIXME: see comment above and enable MEM_P
6067 in vinsn_separable_p. */
6068 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6069 || !MEM_P (INSN_LHS (insn)));
6072 /* This function is called on the ascending pass, before returning from
6073 current basic block. */
6074 static void
6075 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6076 void *static_params)
6078 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6079 basic_block book_block = NULL;
6081 /* When we have removed the boundary insn for scheduling, which also
6082 happened to be the end insn in its bb, we don't need to update sets. */
6083 if (!lparams->removed_last_insn
6084 && lparams->e1
6085 && sel_bb_head_p (insn))
6087 /* We should generate bookkeeping code only if we are not at the
6088 top level of the move_op. */
6089 if (sel_num_cfg_preds_gt_1 (insn))
6090 book_block = generate_bookkeeping_insn (sparams->c_expr,
6091 lparams->e1, lparams->e2);
6092 /* Update data sets for the current insn. */
6093 update_data_sets (insn);
6096 /* If bookkeeping code was inserted, we need to update av sets of basic
6097 block that received bookkeeping. After generation of bookkeeping insn,
6098 bookkeeping block does not contain valid av set because we are not following
6099 the original algorithm in every detail with regards to e.g. renaming
6100 simple reg-reg copies. Consider example:
6102 bookkeeping block scheduling fence
6104 \ join /
6105 ----------
6107 ----------
6110 r1 := r2 r1 := r3
6112 We try to schedule insn "r1 := r3" on the current
6113 scheduling fence. Also, note that av set of bookkeeping block
6114 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6115 been scheduled, the CFG is as follows:
6117 r1 := r3 r1 := r3
6118 bookkeeping block scheduling fence
6120 \ join /
6121 ----------
6123 ----------
6126 r1 := r2
6128 Here, insn "r1 := r3" was scheduled at the current scheduling point
6129 and bookkeeping code was generated at the bookeeping block. This
6130 way insn "r1 := r2" is no longer available as a whole instruction
6131 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6132 This situation is handled by calling update_data_sets.
6134 Since update_data_sets is called only on the bookkeeping block, and
6135 it also may have predecessors with av_sets, containing instructions that
6136 are no longer available, we save all such expressions that become
6137 unavailable during data sets update on the bookkeeping block in
6138 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6139 expressions for scheduling. This allows us to avoid recomputation of
6140 av_sets outside the code motion path. */
6142 if (book_block)
6143 update_and_record_unavailable_insns (book_block);
6145 /* If INSN was previously marked for deletion, it's time to do it. */
6146 if (lparams->removed_last_insn)
6147 insn = PREV_INSN (insn);
6149 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6150 kill a block with a single nop in which the insn should be emitted. */
6151 if (lparams->e1)
6152 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6155 /* This function is called on the ascending pass, before returning from the
6156 current basic block. */
6157 static void
6158 fur_at_first_insn (insn_t insn,
6159 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6160 void *static_params ATTRIBUTE_UNUSED)
6162 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6163 || AV_LEVEL (insn) == -1);
6166 /* Called on the backward stage of recursion to call moveup_expr for insn
6167 and sparams->c_expr. */
6168 static void
6169 move_op_ascend (insn_t insn, void *static_params)
6171 enum MOVEUP_EXPR_CODE res;
6172 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6174 if (! INSN_NOP_P (insn))
6176 res = moveup_expr_cached (sparams->c_expr, insn, false);
6177 gcc_assert (res != MOVEUP_EXPR_NULL);
6180 /* Update liveness for this insn as it was invalidated. */
6181 update_liveness_on_insn (insn);
6184 /* This function is called on enter to the basic block.
6185 Returns TRUE if this block already have been visited and
6186 code_motion_path_driver should return 1, FALSE otherwise. */
6187 static int
6188 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6189 void *static_params, bool visited_p)
6191 fur_static_params_p sparams = (fur_static_params_p) static_params;
6193 if (visited_p)
6195 /* If we have found something below this block, there should be at
6196 least one insn in ORIGINAL_INSNS. */
6197 gcc_assert (*sparams->original_insns);
6199 /* Adjust CROSSES_CALL, since we may have come to this block along
6200 different path. */
6201 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6202 |= sparams->crosses_call;
6204 else
6205 local_params->old_original_insns = *sparams->original_insns;
6207 return 1;
6210 /* Same as above but for move_op. */
6211 static int
6212 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6213 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6214 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6216 if (visited_p)
6217 return -1;
6218 return 1;
6221 /* This function is called while descending current basic block if current
6222 insn is not the original EXPR we're searching for.
6224 Return value: FALSE, if code_motion_path_driver should perform a local
6225 cleanup and return 0 itself;
6226 TRUE, if code_motion_path_driver should continue. */
6227 static bool
6228 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6229 void *static_params)
6231 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6233 #ifdef ENABLE_CHECKING
6234 sparams->failed_insn = insn;
6235 #endif
6237 /* If we're scheduling separate expr, in order to generate correct code
6238 we need to stop the search at bookkeeping code generated with the
6239 same destination register or memory. */
6240 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6241 return false;
6242 return true;
6245 /* This function is called while descending current basic block if current
6246 insn is not the original EXPR we're searching for.
6248 Return value: TRUE (code_motion_path_driver should continue). */
6249 static bool
6250 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6252 bool mutexed;
6253 expr_t r;
6254 av_set_iterator avi;
6255 fur_static_params_p sparams = (fur_static_params_p) static_params;
6257 if (CALL_P (insn))
6258 sparams->crosses_call = true;
6259 else if (DEBUG_INSN_P (insn))
6260 return true;
6262 /* If current insn we are looking at cannot be executed together
6263 with original insn, then we can skip it safely.
6265 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6266 INSN = (!p6) r14 = r14 + 1;
6268 Here we can schedule ORIG_OP with lhs = r14, though only
6269 looking at the set of used and set registers of INSN we must
6270 forbid it. So, add set/used in INSN registers to the
6271 untouchable set only if there is an insn in ORIG_OPS that can
6272 affect INSN. */
6273 mutexed = true;
6274 FOR_EACH_EXPR (r, avi, orig_ops)
6275 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6277 mutexed = false;
6278 break;
6281 /* Mark all registers that do not meet the following condition:
6282 (1) Not set or read on any path from xi to an instance of the
6283 original operation. */
6284 if (!mutexed)
6286 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6287 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6288 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6291 return true;
6294 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6295 struct code_motion_path_driver_info_def move_op_hooks = {
6296 move_op_on_enter,
6297 move_op_orig_expr_found,
6298 move_op_orig_expr_not_found,
6299 move_op_merge_succs,
6300 move_op_after_merge_succs,
6301 move_op_ascend,
6302 move_op_at_first_insn,
6303 SUCCS_NORMAL,
6304 "move_op"
6307 /* Hooks and data to perform find_used_regs operations
6308 with code_motion_path_driver. */
6309 struct code_motion_path_driver_info_def fur_hooks = {
6310 fur_on_enter,
6311 fur_orig_expr_found,
6312 fur_orig_expr_not_found,
6313 fur_merge_succs,
6314 NULL, /* fur_after_merge_succs */
6315 NULL, /* fur_ascend */
6316 fur_at_first_insn,
6317 SUCCS_ALL,
6318 "find_used_regs"
6321 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6322 code_motion_path_driver is called recursively. Original operation
6323 was found at least on one path that is starting with one of INSN's
6324 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6325 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6326 of either move_op or find_used_regs depending on the caller.
6328 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6329 know for sure at this point. */
6330 static int
6331 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6332 ilist_t path, void *static_params)
6334 int res = 0;
6335 succ_iterator succ_i;
6336 insn_t succ;
6337 basic_block bb;
6338 int old_index;
6339 unsigned old_succs;
6341 struct cmpd_local_params lparams;
6342 expr_def _x;
6344 lparams.c_expr_local = &_x;
6345 lparams.c_expr_merged = NULL;
6347 /* We need to process only NORMAL succs for move_op, and collect live
6348 registers from ALL branches (including those leading out of the
6349 region) for find_used_regs.
6351 In move_op, there can be a case when insn's bb number has changed
6352 due to created bookkeeping. This happens very rare, as we need to
6353 move expression from the beginning to the end of the same block.
6354 Rescan successors in this case. */
6356 rescan:
6357 bb = BLOCK_FOR_INSN (insn);
6358 old_index = bb->index;
6359 old_succs = EDGE_COUNT (bb->succs);
6361 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6363 int b;
6365 lparams.e1 = succ_i.e1;
6366 lparams.e2 = succ_i.e2;
6368 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6369 current region). */
6370 if (succ_i.current_flags == SUCCS_NORMAL)
6371 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6372 static_params);
6373 else
6374 b = 0;
6376 /* Merge c_expres found or unify live register sets from different
6377 successors. */
6378 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6379 static_params);
6380 if (b == 1)
6381 res = b;
6382 else if (b == -1 && res != 1)
6383 res = b;
6385 /* We have simplified the control flow below this point. In this case,
6386 the iterator becomes invalid. We need to try again.
6387 If we have removed the insn itself, it could be only an
6388 unconditional jump. Thus, do not rescan but break immediately --
6389 we have already visited the only successor block. */
6390 if (!BLOCK_FOR_INSN (insn))
6392 if (sched_verbose >= 6)
6393 sel_print ("Not doing rescan: already visited the only successor"
6394 " of block %d\n", old_index);
6395 break;
6397 if (BLOCK_FOR_INSN (insn)->index != old_index
6398 || EDGE_COUNT (bb->succs) != old_succs)
6400 if (sched_verbose >= 6)
6401 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6402 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6403 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6404 goto rescan;
6408 #ifdef ENABLE_CHECKING
6409 /* Here, RES==1 if original expr was found at least for one of the
6410 successors. After the loop, RES may happen to have zero value
6411 only if at some point the expr searched is present in av_set, but is
6412 not found below. In most cases, this situation is an error.
6413 The exception is when the original operation is blocked by
6414 bookkeeping generated for another fence or for another path in current
6415 move_op. */
6416 gcc_assert (res == 1
6417 || (res == 0
6418 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6419 static_params))
6420 || res == -1);
6421 #endif
6423 /* Merge data, clean up, etc. */
6424 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6425 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6427 return res;
6431 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6432 is the pointer to the av set with expressions we were looking for,
6433 PATH_P is the pointer to the traversed path. */
6434 static inline void
6435 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6437 ilist_remove (path_p);
6438 av_set_clear (orig_ops_p);
6441 /* The driver function that implements move_op or find_used_regs
6442 functionality dependent whether code_motion_path_driver_INFO is set to
6443 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6444 of code (CFG traversal etc) that are shared among both functions. INSN
6445 is the insn we're starting the search from, ORIG_OPS are the expressions
6446 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6447 parameters of the driver, and STATIC_PARAMS are static parameters of
6448 the caller.
6450 Returns whether original instructions were found. Note that top-level
6451 code_motion_path_driver always returns true. */
6452 static int
6453 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6454 cmpd_local_params_p local_params_in,
6455 void *static_params)
6457 expr_t expr = NULL;
6458 basic_block bb = BLOCK_FOR_INSN (insn);
6459 insn_t first_insn, bb_tail, before_first;
6460 bool removed_last_insn = false;
6462 if (sched_verbose >= 6)
6464 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6465 dump_insn (insn);
6466 sel_print (",");
6467 dump_av_set (orig_ops);
6468 sel_print (")\n");
6471 gcc_assert (orig_ops);
6473 /* If no original operations exist below this insn, return immediately. */
6474 if (is_ineligible_successor (insn, path))
6476 if (sched_verbose >= 6)
6477 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6478 return false;
6481 /* The block can have invalid av set, in which case it was created earlier
6482 during move_op. Return immediately. */
6483 if (sel_bb_head_p (insn))
6485 if (! AV_SET_VALID_P (insn))
6487 if (sched_verbose >= 6)
6488 sel_print ("Returned from block %d as it had invalid av set\n",
6489 bb->index);
6490 return false;
6493 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6495 /* We have already found an original operation on this branch, do not
6496 go any further and just return TRUE here. If we don't stop here,
6497 function can have exponential behaviour even on the small code
6498 with many different paths (e.g. with data speculation and
6499 recovery blocks). */
6500 if (sched_verbose >= 6)
6501 sel_print ("Block %d already visited in this traversal\n", bb->index);
6502 if (code_motion_path_driver_info->on_enter)
6503 return code_motion_path_driver_info->on_enter (insn,
6504 local_params_in,
6505 static_params,
6506 true);
6510 if (code_motion_path_driver_info->on_enter)
6511 code_motion_path_driver_info->on_enter (insn, local_params_in,
6512 static_params, false);
6513 orig_ops = av_set_copy (orig_ops);
6515 /* Filter the orig_ops set. */
6516 if (AV_SET_VALID_P (insn))
6517 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6519 /* If no more original ops, return immediately. */
6520 if (!orig_ops)
6522 if (sched_verbose >= 6)
6523 sel_print ("No intersection with av set of block %d\n", bb->index);
6524 return false;
6527 /* For non-speculative insns we have to leave only one form of the
6528 original operation, because if we don't, we may end up with
6529 different C_EXPRes and, consequently, with bookkeepings for different
6530 expression forms along the same code motion path. That may lead to
6531 generation of incorrect code. So for each code motion we stick to
6532 the single form of the instruction, except for speculative insns
6533 which we need to keep in different forms with all speculation
6534 types. */
6535 av_set_leave_one_nonspec (&orig_ops);
6537 /* It is not possible that all ORIG_OPS are filtered out. */
6538 gcc_assert (orig_ops);
6540 /* It is enough to place only heads and tails of visited basic blocks into
6541 the PATH. */
6542 ilist_add (&path, insn);
6543 first_insn = insn;
6544 bb_tail = sel_bb_end (bb);
6546 /* Descend the basic block in search of the original expr; this part
6547 corresponds to the part of the original move_op procedure executed
6548 before the recursive call. */
6549 for (;;)
6551 /* Look at the insn and decide if it could be an ancestor of currently
6552 scheduling operation. If it is so, then the insn "dest = op" could
6553 either be replaced with "dest = reg", because REG now holds the result
6554 of OP, or just removed, if we've scheduled the insn as a whole.
6556 If this insn doesn't contain currently scheduling OP, then proceed
6557 with searching and look at its successors. Operations we're searching
6558 for could have changed when moving up through this insn via
6559 substituting. In this case, perform unsubstitution on them first.
6561 When traversing the DAG below this insn is finished, insert
6562 bookkeeping code, if the insn is a joint point, and remove
6563 leftovers. */
6565 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6566 if (expr)
6568 insn_t last_insn = PREV_INSN (insn);
6570 /* We have found the original operation. */
6571 if (sched_verbose >= 6)
6572 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6574 code_motion_path_driver_info->orig_expr_found
6575 (insn, expr, local_params_in, static_params);
6577 /* Step back, so on the way back we'll start traversing from the
6578 previous insn (or we'll see that it's bb_note and skip that
6579 loop). */
6580 if (insn == first_insn)
6582 first_insn = NEXT_INSN (last_insn);
6583 removed_last_insn = sel_bb_end_p (last_insn);
6585 insn = last_insn;
6586 break;
6588 else
6590 /* We haven't found the original expr, continue descending the basic
6591 block. */
6592 if (code_motion_path_driver_info->orig_expr_not_found
6593 (insn, orig_ops, static_params))
6595 /* Av set ops could have been changed when moving through this
6596 insn. To find them below it, we have to un-substitute them. */
6597 undo_transformations (&orig_ops, insn);
6599 else
6601 /* Clean up and return, if the hook tells us to do so. It may
6602 happen if we've encountered the previously created
6603 bookkeeping. */
6604 code_motion_path_driver_cleanup (&orig_ops, &path);
6605 return -1;
6608 gcc_assert (orig_ops);
6611 /* Stop at insn if we got to the end of BB. */
6612 if (insn == bb_tail)
6613 break;
6615 insn = NEXT_INSN (insn);
6618 /* Here INSN either points to the insn before the original insn (may be
6619 bb_note, if original insn was a bb_head) or to the bb_end. */
6620 if (!expr)
6622 int res;
6623 rtx_insn *last_insn = PREV_INSN (insn);
6624 bool added_to_path;
6626 gcc_assert (insn == sel_bb_end (bb));
6628 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6629 it's already in PATH then). */
6630 if (insn != first_insn)
6632 ilist_add (&path, insn);
6633 added_to_path = true;
6635 else
6636 added_to_path = false;
6638 /* Process_successors should be able to find at least one
6639 successor for which code_motion_path_driver returns TRUE. */
6640 res = code_motion_process_successors (insn, orig_ops,
6641 path, static_params);
6643 /* Jump in the end of basic block could have been removed or replaced
6644 during code_motion_process_successors, so recompute insn as the
6645 last insn in bb. */
6646 if (NEXT_INSN (last_insn) != insn)
6648 insn = sel_bb_end (bb);
6649 first_insn = sel_bb_head (bb);
6652 /* Remove bb tail from path. */
6653 if (added_to_path)
6654 ilist_remove (&path);
6656 if (res != 1)
6658 /* This is the case when one of the original expr is no longer available
6659 due to bookkeeping created on this branch with the same register.
6660 In the original algorithm, which doesn't have update_data_sets call
6661 on a bookkeeping block, it would simply result in returning
6662 FALSE when we've encountered a previously generated bookkeeping
6663 insn in moveop_orig_expr_not_found. */
6664 code_motion_path_driver_cleanup (&orig_ops, &path);
6665 return res;
6669 /* Don't need it any more. */
6670 av_set_clear (&orig_ops);
6672 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6673 the beginning of the basic block. */
6674 before_first = PREV_INSN (first_insn);
6675 while (insn != before_first)
6677 if (code_motion_path_driver_info->ascend)
6678 code_motion_path_driver_info->ascend (insn, static_params);
6680 insn = PREV_INSN (insn);
6683 /* Now we're at the bb head. */
6684 insn = first_insn;
6685 ilist_remove (&path);
6686 local_params_in->removed_last_insn = removed_last_insn;
6687 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6689 /* This should be the very last operation as at bb head we could change
6690 the numbering by creating bookkeeping blocks. */
6691 if (removed_last_insn)
6692 insn = PREV_INSN (insn);
6694 /* If we have simplified the control flow and removed the first jump insn,
6695 there's no point in marking this block in the visited blocks bitmap. */
6696 if (BLOCK_FOR_INSN (insn))
6697 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6698 return true;
6701 /* Move up the operations from ORIG_OPS set traversing the dag starting
6702 from INSN. PATH represents the edges traversed so far.
6703 DEST is the register chosen for scheduling the current expr. Insert
6704 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6705 C_EXPR is how it looks like at the given cfg point.
6706 Set *SHOULD_MOVE to indicate whether we have only disconnected
6707 one of the insns found.
6709 Returns whether original instructions were found, which is asserted
6710 to be true in the caller. */
6711 static bool
6712 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6713 rtx dest, expr_t c_expr, bool *should_move)
6715 struct moveop_static_params sparams;
6716 struct cmpd_local_params lparams;
6717 int res;
6719 /* Init params for code_motion_path_driver. */
6720 sparams.dest = dest;
6721 sparams.c_expr = c_expr;
6722 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6723 #ifdef ENABLE_CHECKING
6724 sparams.failed_insn = NULL;
6725 #endif
6726 sparams.was_renamed = false;
6727 lparams.e1 = NULL;
6729 /* We haven't visited any blocks yet. */
6730 bitmap_clear (code_motion_visited_blocks);
6732 /* Set appropriate hooks and data. */
6733 code_motion_path_driver_info = &move_op_hooks;
6734 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6736 gcc_assert (res != -1);
6738 if (sparams.was_renamed)
6739 EXPR_WAS_RENAMED (expr_vliw) = true;
6741 *should_move = (sparams.uid == -1);
6743 return res;
6747 /* Functions that work with regions. */
6749 /* Current number of seqno used in init_seqno and init_seqno_1. */
6750 static int cur_seqno;
6752 /* A helper for init_seqno. Traverse the region starting from BB and
6753 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6754 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6755 static void
6756 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6758 int bbi = BLOCK_TO_BB (bb->index);
6759 insn_t insn, note = bb_note (bb);
6760 insn_t succ_insn;
6761 succ_iterator si;
6763 bitmap_set_bit (visited_bbs, bbi);
6764 if (blocks_to_reschedule)
6765 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6767 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6768 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6770 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6771 int succ_bbi = BLOCK_TO_BB (succ->index);
6773 gcc_assert (in_current_region_p (succ));
6775 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6777 gcc_assert (succ_bbi > bbi);
6779 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6781 else if (blocks_to_reschedule)
6782 bitmap_set_bit (forced_ebb_heads, succ->index);
6785 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6786 INSN_SEQNO (insn) = cur_seqno--;
6789 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6790 blocks on which we're rescheduling when pipelining, FROM is the block where
6791 traversing region begins (it may not be the head of the region when
6792 pipelining, but the head of the loop instead).
6794 Returns the maximal seqno found. */
6795 static int
6796 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6798 sbitmap visited_bbs;
6799 bitmap_iterator bi;
6800 unsigned bbi;
6802 visited_bbs = sbitmap_alloc (current_nr_blocks);
6804 if (blocks_to_reschedule)
6806 bitmap_ones (visited_bbs);
6807 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6809 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6810 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6813 else
6815 bitmap_clear (visited_bbs);
6816 from = EBB_FIRST_BB (0);
6819 cur_seqno = sched_max_luid - 1;
6820 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6822 /* cur_seqno may be positive if the number of instructions is less than
6823 sched_max_luid - 1 (when rescheduling or if some instructions have been
6824 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6825 gcc_assert (cur_seqno >= 0);
6827 sbitmap_free (visited_bbs);
6828 return sched_max_luid - 1;
6831 /* Initialize scheduling parameters for current region. */
6832 static void
6833 sel_setup_region_sched_flags (void)
6835 enable_schedule_as_rhs_p = 1;
6836 bookkeeping_p = 1;
6837 pipelining_p = (bookkeeping_p
6838 && (flag_sel_sched_pipelining != 0)
6839 && current_loop_nest != NULL
6840 && loop_has_exit_edges (current_loop_nest));
6841 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6842 max_ws = MAX_WS;
6845 /* Return true if all basic blocks of current region are empty. */
6846 static bool
6847 current_region_empty_p (void)
6849 int i;
6850 for (i = 0; i < current_nr_blocks; i++)
6851 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6852 return false;
6854 return true;
6857 /* Prepare and verify loop nest for pipelining. */
6858 static void
6859 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6861 current_loop_nest = get_loop_nest_for_rgn (rgn);
6863 if (!current_loop_nest)
6864 return;
6866 /* If this loop has any saved loop preheaders from nested loops,
6867 add these basic blocks to the current region. */
6868 sel_add_loop_preheaders (bbs);
6870 /* Check that we're starting with a valid information. */
6871 gcc_assert (loop_latch_edge (current_loop_nest));
6872 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6875 /* Compute instruction priorities for current region. */
6876 static void
6877 sel_compute_priorities (int rgn)
6879 sched_rgn_compute_dependencies (rgn);
6881 /* Compute insn priorities in haifa style. Then free haifa style
6882 dependencies that we've calculated for this. */
6883 compute_priorities ();
6885 if (sched_verbose >= 5)
6886 debug_rgn_dependencies (0);
6888 free_rgn_deps ();
6891 /* Init scheduling data for RGN. Returns true when this region should not
6892 be scheduled. */
6893 static bool
6894 sel_region_init (int rgn)
6896 int i;
6897 bb_vec_t bbs;
6899 rgn_setup_region (rgn);
6901 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6902 do region initialization here so the region can be bundled correctly,
6903 but we'll skip the scheduling in sel_sched_region (). */
6904 if (current_region_empty_p ())
6905 return true;
6907 bbs.create (current_nr_blocks);
6909 for (i = 0; i < current_nr_blocks; i++)
6910 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6912 sel_init_bbs (bbs);
6914 if (flag_sel_sched_pipelining)
6915 setup_current_loop_nest (rgn, &bbs);
6917 sel_setup_region_sched_flags ();
6919 /* Initialize luids and dependence analysis which both sel-sched and haifa
6920 need. */
6921 sched_init_luids (bbs);
6922 sched_deps_init (false);
6924 /* Initialize haifa data. */
6925 rgn_setup_sched_infos ();
6926 sel_set_sched_flags ();
6927 haifa_init_h_i_d (bbs);
6929 sel_compute_priorities (rgn);
6930 init_deps_global ();
6932 /* Main initialization. */
6933 sel_setup_sched_infos ();
6934 sel_init_global_and_expr (bbs);
6936 bbs.release ();
6938 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6940 /* Init correct liveness sets on each instruction of a single-block loop.
6941 This is the only situation when we can't update liveness when calling
6942 compute_live for the first insn of the loop. */
6943 if (current_loop_nest)
6945 int header =
6946 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6948 : 0);
6950 if (current_nr_blocks == header + 1)
6951 update_liveness_on_insn
6952 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6955 /* Set hooks so that no newly generated insn will go out unnoticed. */
6956 sel_register_cfg_hooks ();
6958 /* !!! We call target.sched.init () for the whole region, but we invoke
6959 targetm.sched.finish () for every ebb. */
6960 if (targetm.sched.init)
6961 /* None of the arguments are actually used in any target. */
6962 targetm.sched.init (sched_dump, sched_verbose, -1);
6964 first_emitted_uid = get_max_uid () + 1;
6965 preheader_removed = false;
6967 /* Reset register allocation ticks array. */
6968 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6969 reg_rename_this_tick = 0;
6971 bitmap_initialize (forced_ebb_heads, 0);
6972 bitmap_clear (forced_ebb_heads);
6974 setup_nop_vinsn ();
6975 current_copies = BITMAP_ALLOC (NULL);
6976 current_originators = BITMAP_ALLOC (NULL);
6977 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6979 return false;
6982 /* Simplify insns after the scheduling. */
6983 static void
6984 simplify_changed_insns (void)
6986 int i;
6988 for (i = 0; i < current_nr_blocks; i++)
6990 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6991 rtx_insn *insn;
6993 FOR_BB_INSNS (bb, insn)
6994 if (INSN_P (insn))
6996 expr_t expr = INSN_EXPR (insn);
6998 if (EXPR_WAS_SUBSTITUTED (expr))
6999 validate_simplify_insn (insn);
7004 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7005 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7006 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7007 static void
7008 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7010 rtx_insn *head, *tail;
7011 basic_block bb1 = bb;
7012 if (sched_verbose >= 2)
7013 sel_print ("Finishing schedule in bbs: ");
7017 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7019 if (sched_verbose >= 2)
7020 sel_print ("%d; ", bb1->index);
7022 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7024 if (sched_verbose >= 2)
7025 sel_print ("\n");
7027 get_ebb_head_tail (bb, bb1, &head, &tail);
7029 current_sched_info->head = head;
7030 current_sched_info->tail = tail;
7031 current_sched_info->prev_head = PREV_INSN (head);
7032 current_sched_info->next_tail = NEXT_INSN (tail);
7035 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7036 static void
7037 reset_sched_cycles_in_current_ebb (void)
7039 int last_clock = 0;
7040 int haifa_last_clock = -1;
7041 int haifa_clock = 0;
7042 int issued_insns = 0;
7043 insn_t insn;
7045 if (targetm.sched.init)
7047 /* None of the arguments are actually used in any target.
7048 NB: We should have md_reset () hook for cases like this. */
7049 targetm.sched.init (sched_dump, sched_verbose, -1);
7052 state_reset (curr_state);
7053 advance_state (curr_state);
7055 for (insn = current_sched_info->head;
7056 insn != current_sched_info->next_tail;
7057 insn = NEXT_INSN (insn))
7059 int cost, haifa_cost;
7060 int sort_p;
7061 bool asm_p, real_insn, after_stall, all_issued;
7062 int clock;
7064 if (!INSN_P (insn))
7065 continue;
7067 asm_p = false;
7068 real_insn = recog_memoized (insn) >= 0;
7069 clock = INSN_SCHED_CYCLE (insn);
7071 cost = clock - last_clock;
7073 /* Initialize HAIFA_COST. */
7074 if (! real_insn)
7076 asm_p = INSN_ASM_P (insn);
7078 if (asm_p)
7079 /* This is asm insn which *had* to be scheduled first
7080 on the cycle. */
7081 haifa_cost = 1;
7082 else
7083 /* This is a use/clobber insn. It should not change
7084 cost. */
7085 haifa_cost = 0;
7087 else
7088 haifa_cost = estimate_insn_cost (insn, curr_state);
7090 /* Stall for whatever cycles we've stalled before. */
7091 after_stall = 0;
7092 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7094 haifa_cost = cost;
7095 after_stall = 1;
7097 all_issued = issued_insns == issue_rate;
7098 if (haifa_cost == 0 && all_issued)
7099 haifa_cost = 1;
7100 if (haifa_cost > 0)
7102 int i = 0;
7104 while (haifa_cost--)
7106 advance_state (curr_state);
7107 issued_insns = 0;
7108 i++;
7110 if (sched_verbose >= 2)
7112 sel_print ("advance_state (state_transition)\n");
7113 debug_state (curr_state);
7116 /* The DFA may report that e.g. insn requires 2 cycles to be
7117 issued, but on the next cycle it says that insn is ready
7118 to go. Check this here. */
7119 if (!after_stall
7120 && real_insn
7121 && haifa_cost > 0
7122 && estimate_insn_cost (insn, curr_state) == 0)
7123 break;
7125 /* When the data dependency stall is longer than the DFA stall,
7126 and when we have issued exactly issue_rate insns and stalled,
7127 it could be that after this longer stall the insn will again
7128 become unavailable to the DFA restrictions. Looks strange
7129 but happens e.g. on x86-64. So recheck DFA on the last
7130 iteration. */
7131 if ((after_stall || all_issued)
7132 && real_insn
7133 && haifa_cost == 0)
7134 haifa_cost = estimate_insn_cost (insn, curr_state);
7137 haifa_clock += i;
7138 if (sched_verbose >= 2)
7139 sel_print ("haifa clock: %d\n", haifa_clock);
7141 else
7142 gcc_assert (haifa_cost == 0);
7144 if (sched_verbose >= 2)
7145 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7147 if (targetm.sched.dfa_new_cycle)
7148 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7149 haifa_last_clock, haifa_clock,
7150 &sort_p))
7152 advance_state (curr_state);
7153 issued_insns = 0;
7154 haifa_clock++;
7155 if (sched_verbose >= 2)
7157 sel_print ("advance_state (dfa_new_cycle)\n");
7158 debug_state (curr_state);
7159 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7163 if (real_insn)
7165 static state_t temp = NULL;
7167 if (!temp)
7168 temp = xmalloc (dfa_state_size);
7169 memcpy (temp, curr_state, dfa_state_size);
7171 cost = state_transition (curr_state, insn);
7172 if (memcmp (temp, curr_state, dfa_state_size))
7173 issued_insns++;
7175 if (sched_verbose >= 2)
7177 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7178 haifa_clock + 1);
7179 debug_state (curr_state);
7181 gcc_assert (cost < 0);
7184 if (targetm.sched.variable_issue)
7185 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7187 INSN_SCHED_CYCLE (insn) = haifa_clock;
7189 last_clock = clock;
7190 haifa_last_clock = haifa_clock;
7194 /* Put TImode markers on insns starting a new issue group. */
7195 static void
7196 put_TImodes (void)
7198 int last_clock = -1;
7199 insn_t insn;
7201 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7202 insn = NEXT_INSN (insn))
7204 int cost, clock;
7206 if (!INSN_P (insn))
7207 continue;
7209 clock = INSN_SCHED_CYCLE (insn);
7210 cost = (last_clock == -1) ? 1 : clock - last_clock;
7212 gcc_assert (cost >= 0);
7214 if (issue_rate > 1
7215 && GET_CODE (PATTERN (insn)) != USE
7216 && GET_CODE (PATTERN (insn)) != CLOBBER)
7218 if (reload_completed && cost > 0)
7219 PUT_MODE (insn, TImode);
7221 last_clock = clock;
7224 if (sched_verbose >= 2)
7225 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7229 /* Perform MD_FINISH on EBBs comprising current region. When
7230 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7231 to produce correct sched cycles on insns. */
7232 static void
7233 sel_region_target_finish (bool reset_sched_cycles_p)
7235 int i;
7236 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7238 for (i = 0; i < current_nr_blocks; i++)
7240 if (bitmap_bit_p (scheduled_blocks, i))
7241 continue;
7243 /* While pipelining outer loops, skip bundling for loop
7244 preheaders. Those will be rescheduled in the outer loop. */
7245 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7246 continue;
7248 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7250 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7251 continue;
7253 if (reset_sched_cycles_p)
7254 reset_sched_cycles_in_current_ebb ();
7256 if (targetm.sched.init)
7257 targetm.sched.init (sched_dump, sched_verbose, -1);
7259 put_TImodes ();
7261 if (targetm.sched.finish)
7263 targetm.sched.finish (sched_dump, sched_verbose);
7265 /* Extend luids so that insns generated by the target will
7266 get zero luid. */
7267 sched_extend_luids ();
7271 BITMAP_FREE (scheduled_blocks);
7274 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7275 is true, make an additional pass emulating scheduler to get correct insn
7276 cycles for md_finish calls. */
7277 static void
7278 sel_region_finish (bool reset_sched_cycles_p)
7280 simplify_changed_insns ();
7281 sched_finish_ready_list ();
7282 free_nop_pool ();
7284 /* Free the vectors. */
7285 vec_av_set.release ();
7286 BITMAP_FREE (current_copies);
7287 BITMAP_FREE (current_originators);
7288 BITMAP_FREE (code_motion_visited_blocks);
7289 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7290 vinsn_vec_free (vec_target_unavailable_vinsns);
7292 /* If LV_SET of the region head should be updated, do it now because
7293 there will be no other chance. */
7295 succ_iterator si;
7296 insn_t insn;
7298 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7299 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7301 basic_block bb = BLOCK_FOR_INSN (insn);
7303 if (!BB_LV_SET_VALID_P (bb))
7304 compute_live (insn);
7308 /* Emulate the Haifa scheduler for bundling. */
7309 if (reload_completed)
7310 sel_region_target_finish (reset_sched_cycles_p);
7312 sel_finish_global_and_expr ();
7314 bitmap_clear (forced_ebb_heads);
7316 free_nop_vinsn ();
7318 finish_deps_global ();
7319 sched_finish_luids ();
7320 h_d_i_d.release ();
7322 sel_finish_bbs ();
7323 BITMAP_FREE (blocks_to_reschedule);
7325 sel_unregister_cfg_hooks ();
7327 max_issue_size = 0;
7331 /* Functions that implement the scheduler driver. */
7333 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7334 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7335 of insns scheduled -- these would be postprocessed later. */
7336 static void
7337 schedule_on_fences (flist_t fences, int max_seqno,
7338 ilist_t **scheduled_insns_tailpp)
7340 flist_t old_fences = fences;
7342 if (sched_verbose >= 1)
7344 sel_print ("\nScheduling on fences: ");
7345 dump_flist (fences);
7346 sel_print ("\n");
7349 scheduled_something_on_previous_fence = false;
7350 for (; fences; fences = FLIST_NEXT (fences))
7352 fence_t fence = NULL;
7353 int seqno = 0;
7354 flist_t fences2;
7355 bool first_p = true;
7357 /* Choose the next fence group to schedule.
7358 The fact that insn can be scheduled only once
7359 on the cycle is guaranteed by two properties:
7360 1. seqnos of parallel groups decrease with each iteration.
7361 2. If is_ineligible_successor () sees the larger seqno, it
7362 checks if candidate insn is_in_current_fence_p (). */
7363 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7365 fence_t f = FLIST_FENCE (fences2);
7367 if (!FENCE_PROCESSED_P (f))
7369 int i = INSN_SEQNO (FENCE_INSN (f));
7371 if (first_p || i > seqno)
7373 seqno = i;
7374 fence = f;
7375 first_p = false;
7377 else
7378 /* ??? Seqnos of different groups should be different. */
7379 gcc_assert (1 || i != seqno);
7383 gcc_assert (fence);
7385 /* As FENCE is nonnull, SEQNO is initialized. */
7386 seqno -= max_seqno + 1;
7387 fill_insns (fence, seqno, scheduled_insns_tailpp);
7388 FENCE_PROCESSED_P (fence) = true;
7391 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7392 don't need to keep bookkeeping-invalidated and target-unavailable
7393 vinsns any more. */
7394 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7395 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7398 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7399 static void
7400 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7402 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7404 /* The first element is already processed. */
7405 while ((fences = FLIST_NEXT (fences)))
7407 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7409 if (*min_seqno > seqno)
7410 *min_seqno = seqno;
7411 else if (*max_seqno < seqno)
7412 *max_seqno = seqno;
7416 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7417 static flist_t
7418 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7420 flist_t old_fences = fences;
7421 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7422 int max_time = 0;
7424 flist_tail_init (new_fences);
7425 for (; fences; fences = FLIST_NEXT (fences))
7427 fence_t fence = FLIST_FENCE (fences);
7428 insn_t insn;
7430 if (!FENCE_BNDS (fence))
7432 /* This fence doesn't have any successors. */
7433 if (!FENCE_SCHEDULED_P (fence))
7435 /* Nothing was scheduled on this fence. */
7436 int seqno;
7438 insn = FENCE_INSN (fence);
7439 seqno = INSN_SEQNO (insn);
7440 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7442 if (sched_verbose >= 1)
7443 sel_print ("Fence %d[%d] has not changed\n",
7444 INSN_UID (insn),
7445 BLOCK_NUM (insn));
7446 move_fence_to_fences (fences, new_fences);
7449 else
7450 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7451 max_time = MAX (max_time, FENCE_CYCLE (fence));
7454 flist_clear (&old_fences);
7455 *ptime = max_time;
7456 return FLIST_TAIL_HEAD (new_fences);
7459 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7460 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7461 the highest seqno used in a region. Return the updated highest seqno. */
7462 static int
7463 update_seqnos_and_stage (int min_seqno, int max_seqno,
7464 int highest_seqno_in_use,
7465 ilist_t *pscheduled_insns)
7467 int new_hs;
7468 ilist_iterator ii;
7469 insn_t insn;
7471 /* Actually, new_hs is the seqno of the instruction, that was
7472 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7473 if (*pscheduled_insns)
7475 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7476 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7477 gcc_assert (new_hs > highest_seqno_in_use);
7479 else
7480 new_hs = highest_seqno_in_use;
7482 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7484 gcc_assert (INSN_SEQNO (insn) < 0);
7485 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7486 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7488 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7489 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7490 require > 1GB of memory e.g. on limit-fnargs.c. */
7491 if (! pipelining_p)
7492 free_data_for_scheduled_insn (insn);
7495 ilist_clear (pscheduled_insns);
7496 global_level++;
7498 return new_hs;
7501 /* The main driver for scheduling a region. This function is responsible
7502 for correct propagation of fences (i.e. scheduling points) and creating
7503 a group of parallel insns at each of them. It also supports
7504 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7505 of scheduling. */
7506 static void
7507 sel_sched_region_2 (int orig_max_seqno)
7509 int highest_seqno_in_use = orig_max_seqno;
7510 int max_time = 0;
7512 stat_bookkeeping_copies = 0;
7513 stat_insns_needed_bookkeeping = 0;
7514 stat_renamed_scheduled = 0;
7515 stat_substitutions_total = 0;
7516 num_insns_scheduled = 0;
7518 while (fences)
7520 int min_seqno, max_seqno;
7521 ilist_t scheduled_insns = NULL;
7522 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7524 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7525 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7526 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7527 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7528 highest_seqno_in_use,
7529 &scheduled_insns);
7532 if (sched_verbose >= 1)
7534 sel_print ("Total scheduling time: %d cycles\n", max_time);
7535 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7536 "bookkeeping, %d insns renamed, %d insns substituted\n",
7537 stat_bookkeeping_copies,
7538 stat_insns_needed_bookkeeping,
7539 stat_renamed_scheduled,
7540 stat_substitutions_total);
7544 /* Schedule a region. When pipelining, search for possibly never scheduled
7545 bookkeeping code and schedule it. Reschedule pipelined code without
7546 pipelining after. */
7547 static void
7548 sel_sched_region_1 (void)
7550 int orig_max_seqno;
7552 /* Remove empty blocks that might be in the region from the beginning. */
7553 purge_empty_blocks ();
7555 orig_max_seqno = init_seqno (NULL, NULL);
7556 gcc_assert (orig_max_seqno >= 1);
7558 /* When pipelining outer loops, create fences on the loop header,
7559 not preheader. */
7560 fences = NULL;
7561 if (current_loop_nest)
7562 init_fences (BB_END (EBB_FIRST_BB (0)));
7563 else
7564 init_fences (bb_note (EBB_FIRST_BB (0)));
7565 global_level = 1;
7567 sel_sched_region_2 (orig_max_seqno);
7569 gcc_assert (fences == NULL);
7571 if (pipelining_p)
7573 int i;
7574 basic_block bb;
7575 struct flist_tail_def _new_fences;
7576 flist_tail_t new_fences = &_new_fences;
7577 bool do_p = true;
7579 pipelining_p = false;
7580 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7581 bookkeeping_p = false;
7582 enable_schedule_as_rhs_p = false;
7584 /* Schedule newly created code, that has not been scheduled yet. */
7585 do_p = true;
7587 while (do_p)
7589 do_p = false;
7591 for (i = 0; i < current_nr_blocks; i++)
7593 basic_block bb = EBB_FIRST_BB (i);
7595 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7597 if (! bb_ends_ebb_p (bb))
7598 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7599 if (sel_bb_empty_p (bb))
7601 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7602 continue;
7604 clear_outdated_rtx_info (bb);
7605 if (sel_insn_is_speculation_check (BB_END (bb))
7606 && JUMP_P (BB_END (bb)))
7607 bitmap_set_bit (blocks_to_reschedule,
7608 BRANCH_EDGE (bb)->dest->index);
7610 else if (! sel_bb_empty_p (bb)
7611 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7612 bitmap_set_bit (blocks_to_reschedule, bb->index);
7615 for (i = 0; i < current_nr_blocks; i++)
7617 bb = EBB_FIRST_BB (i);
7619 /* While pipelining outer loops, skip bundling for loop
7620 preheaders. Those will be rescheduled in the outer
7621 loop. */
7622 if (sel_is_loop_preheader_p (bb))
7624 clear_outdated_rtx_info (bb);
7625 continue;
7628 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7630 flist_tail_init (new_fences);
7632 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7634 /* Mark BB as head of the new ebb. */
7635 bitmap_set_bit (forced_ebb_heads, bb->index);
7637 gcc_assert (fences == NULL);
7639 init_fences (bb_note (bb));
7641 sel_sched_region_2 (orig_max_seqno);
7643 do_p = true;
7644 break;
7651 /* Schedule the RGN region. */
7652 void
7653 sel_sched_region (int rgn)
7655 bool schedule_p;
7656 bool reset_sched_cycles_p;
7658 if (sel_region_init (rgn))
7659 return;
7661 if (sched_verbose >= 1)
7662 sel_print ("Scheduling region %d\n", rgn);
7664 schedule_p = (!sched_is_disabled_for_current_region_p ()
7665 && dbg_cnt (sel_sched_region_cnt));
7666 reset_sched_cycles_p = pipelining_p;
7667 if (schedule_p)
7668 sel_sched_region_1 ();
7669 else
7670 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7671 reset_sched_cycles_p = true;
7673 sel_region_finish (reset_sched_cycles_p);
7676 /* Perform global init for the scheduler. */
7677 static void
7678 sel_global_init (void)
7680 calculate_dominance_info (CDI_DOMINATORS);
7681 alloc_sched_pools ();
7683 /* Setup the infos for sched_init. */
7684 sel_setup_sched_infos ();
7685 setup_sched_dump ();
7687 sched_rgn_init (false);
7688 sched_init ();
7690 sched_init_bbs ();
7691 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7692 after_recovery = 0;
7693 can_issue_more = issue_rate;
7695 sched_extend_target ();
7696 sched_deps_init (true);
7697 setup_nop_and_exit_insns ();
7698 sel_extend_global_bb_info ();
7699 init_lv_sets ();
7700 init_hard_regs_data ();
7703 /* Free the global data of the scheduler. */
7704 static void
7705 sel_global_finish (void)
7707 free_bb_note_pool ();
7708 free_lv_sets ();
7709 sel_finish_global_bb_info ();
7711 free_regset_pool ();
7712 free_nop_and_exit_insns ();
7714 sched_rgn_finish ();
7715 sched_deps_finish ();
7716 sched_finish ();
7718 if (current_loops)
7719 sel_finish_pipelining ();
7721 free_sched_pools ();
7722 free_dominance_info (CDI_DOMINATORS);
7725 /* Return true when we need to skip selective scheduling. Used for debugging. */
7726 bool
7727 maybe_skip_selective_scheduling (void)
7729 return ! dbg_cnt (sel_sched_cnt);
7732 /* The entry point. */
7733 void
7734 run_selective_scheduling (void)
7736 int rgn;
7738 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7739 return;
7741 sel_global_init ();
7743 for (rgn = 0; rgn < nr_regions; rgn++)
7744 sel_sched_region (rgn);
7746 sel_global_finish ();
7749 #endif