PR target/65871
[official-gcc.git] / gcc / reload1.c
blob4c4790692568d503c9080b104a90c30b7e1e4209
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "input.h"
37 #include "function.h"
38 #include "symtab.h"
39 #include "rtl.h"
40 #include "statistics.h"
41 #include "double-int.h"
42 #include "real.h"
43 #include "fixed-value.h"
44 #include "alias.h"
45 #include "wide-int.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "expmed.h"
49 #include "dojump.h"
50 #include "explow.h"
51 #include "calls.h"
52 #include "emit-rtl.h"
53 #include "varasm.h"
54 #include "stmt.h"
55 #include "expr.h"
56 #include "insn-codes.h"
57 #include "optabs.h"
58 #include "regs.h"
59 #include "addresses.h"
60 #include "predict.h"
61 #include "dominance.h"
62 #include "cfg.h"
63 #include "cfgrtl.h"
64 #include "cfgbuild.h"
65 #include "basic-block.h"
66 #include "df.h"
67 #include "reload.h"
68 #include "recog.h"
69 #include "except.h"
70 #include "ira.h"
71 #include "target.h"
72 #include "dumpfile.h"
73 #include "rtl-iter.h"
75 /* This file contains the reload pass of the compiler, which is
76 run after register allocation has been done. It checks that
77 each insn is valid (operands required to be in registers really
78 are in registers of the proper class) and fixes up invalid ones
79 by copying values temporarily into registers for the insns
80 that need them.
82 The results of register allocation are described by the vector
83 reg_renumber; the insns still contain pseudo regs, but reg_renumber
84 can be used to find which hard reg, if any, a pseudo reg is in.
86 The technique we always use is to free up a few hard regs that are
87 called ``reload regs'', and for each place where a pseudo reg
88 must be in a hard reg, copy it temporarily into one of the reload regs.
90 Reload regs are allocated locally for every instruction that needs
91 reloads. When there are pseudos which are allocated to a register that
92 has been chosen as a reload reg, such pseudos must be ``spilled''.
93 This means that they go to other hard regs, or to stack slots if no other
94 available hard regs can be found. Spilling can invalidate more
95 insns, requiring additional need for reloads, so we must keep checking
96 until the process stabilizes.
98 For machines with different classes of registers, we must keep track
99 of the register class needed for each reload, and make sure that
100 we allocate enough reload registers of each class.
102 The file reload.c contains the code that checks one insn for
103 validity and reports the reloads that it needs. This file
104 is in charge of scanning the entire rtl code, accumulating the
105 reload needs, spilling, assigning reload registers to use for
106 fixing up each insn, and generating the new insns to copy values
107 into the reload registers. */
109 struct target_reload default_target_reload;
110 #if SWITCHABLE_TARGET
111 struct target_reload *this_target_reload = &default_target_reload;
112 #endif
114 #define spill_indirect_levels \
115 (this_target_reload->x_spill_indirect_levels)
117 /* During reload_as_needed, element N contains a REG rtx for the hard reg
118 into which reg N has been reloaded (perhaps for a previous insn). */
119 static rtx *reg_last_reload_reg;
121 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
122 for an output reload that stores into reg N. */
123 static regset_head reg_has_output_reload;
125 /* Indicates which hard regs are reload-registers for an output reload
126 in the current insn. */
127 static HARD_REG_SET reg_is_output_reload;
129 /* Widest width in which each pseudo reg is referred to (via subreg). */
130 static unsigned int *reg_max_ref_width;
132 /* Vector to remember old contents of reg_renumber before spilling. */
133 static short *reg_old_renumber;
135 /* During reload_as_needed, element N contains the last pseudo regno reloaded
136 into hard register N. If that pseudo reg occupied more than one register,
137 reg_reloaded_contents points to that pseudo for each spill register in
138 use; all of these must remain set for an inheritance to occur. */
139 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
141 /* During reload_as_needed, element N contains the insn for which
142 hard register N was last used. Its contents are significant only
143 when reg_reloaded_valid is set for this register. */
144 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
146 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
147 static HARD_REG_SET reg_reloaded_valid;
148 /* Indicate if the register was dead at the end of the reload.
149 This is only valid if reg_reloaded_contents is set and valid. */
150 static HARD_REG_SET reg_reloaded_dead;
152 /* Indicate whether the register's current value is one that is not
153 safe to retain across a call, even for registers that are normally
154 call-saved. This is only meaningful for members of reg_reloaded_valid. */
155 static HARD_REG_SET reg_reloaded_call_part_clobbered;
157 /* Number of spill-regs so far; number of valid elements of spill_regs. */
158 static int n_spills;
160 /* In parallel with spill_regs, contains REG rtx's for those regs.
161 Holds the last rtx used for any given reg, or 0 if it has never
162 been used for spilling yet. This rtx is reused, provided it has
163 the proper mode. */
164 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
166 /* In parallel with spill_regs, contains nonzero for a spill reg
167 that was stored after the last time it was used.
168 The precise value is the insn generated to do the store. */
169 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
171 /* This is the register that was stored with spill_reg_store. This is a
172 copy of reload_out / reload_out_reg when the value was stored; if
173 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
174 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
176 /* This table is the inverse mapping of spill_regs:
177 indexed by hard reg number,
178 it contains the position of that reg in spill_regs,
179 or -1 for something that is not in spill_regs.
181 ?!? This is no longer accurate. */
182 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
184 /* This reg set indicates registers that can't be used as spill registers for
185 the currently processed insn. These are the hard registers which are live
186 during the insn, but not allocated to pseudos, as well as fixed
187 registers. */
188 static HARD_REG_SET bad_spill_regs;
190 /* These are the hard registers that can't be used as spill register for any
191 insn. This includes registers used for user variables and registers that
192 we can't eliminate. A register that appears in this set also can't be used
193 to retry register allocation. */
194 static HARD_REG_SET bad_spill_regs_global;
196 /* Describes order of use of registers for reloading
197 of spilled pseudo-registers. `n_spills' is the number of
198 elements that are actually valid; new ones are added at the end.
200 Both spill_regs and spill_reg_order are used on two occasions:
201 once during find_reload_regs, where they keep track of the spill registers
202 for a single insn, but also during reload_as_needed where they show all
203 the registers ever used by reload. For the latter case, the information
204 is calculated during finish_spills. */
205 static short spill_regs[FIRST_PSEUDO_REGISTER];
207 /* This vector of reg sets indicates, for each pseudo, which hard registers
208 may not be used for retrying global allocation because the register was
209 formerly spilled from one of them. If we allowed reallocating a pseudo to
210 a register that it was already allocated to, reload might not
211 terminate. */
212 static HARD_REG_SET *pseudo_previous_regs;
214 /* This vector of reg sets indicates, for each pseudo, which hard
215 registers may not be used for retrying global allocation because they
216 are used as spill registers during one of the insns in which the
217 pseudo is live. */
218 static HARD_REG_SET *pseudo_forbidden_regs;
220 /* All hard regs that have been used as spill registers for any insn are
221 marked in this set. */
222 static HARD_REG_SET used_spill_regs;
224 /* Index of last register assigned as a spill register. We allocate in
225 a round-robin fashion. */
226 static int last_spill_reg;
228 /* Record the stack slot for each spilled hard register. */
229 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
231 /* Width allocated so far for that stack slot. */
232 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
234 /* Record which pseudos needed to be spilled. */
235 static regset_head spilled_pseudos;
237 /* Record which pseudos changed their allocation in finish_spills. */
238 static regset_head changed_allocation_pseudos;
240 /* Used for communication between order_regs_for_reload and count_pseudo.
241 Used to avoid counting one pseudo twice. */
242 static regset_head pseudos_counted;
244 /* First uid used by insns created by reload in this function.
245 Used in find_equiv_reg. */
246 int reload_first_uid;
248 /* Flag set by local-alloc or global-alloc if anything is live in
249 a call-clobbered reg across calls. */
250 int caller_save_needed;
252 /* Set to 1 while reload_as_needed is operating.
253 Required by some machines to handle any generated moves differently. */
254 int reload_in_progress = 0;
256 /* This obstack is used for allocation of rtl during register elimination.
257 The allocated storage can be freed once find_reloads has processed the
258 insn. */
259 static struct obstack reload_obstack;
261 /* Points to the beginning of the reload_obstack. All insn_chain structures
262 are allocated first. */
263 static char *reload_startobj;
265 /* The point after all insn_chain structures. Used to quickly deallocate
266 memory allocated in copy_reloads during calculate_needs_all_insns. */
267 static char *reload_firstobj;
269 /* This points before all local rtl generated by register elimination.
270 Used to quickly free all memory after processing one insn. */
271 static char *reload_insn_firstobj;
273 /* List of insn_chain instructions, one for every insn that reload needs to
274 examine. */
275 struct insn_chain *reload_insn_chain;
277 /* TRUE if we potentially left dead insns in the insn stream and want to
278 run DCE immediately after reload, FALSE otherwise. */
279 static bool need_dce;
281 /* List of all insns needing reloads. */
282 static struct insn_chain *insns_need_reload;
284 /* This structure is used to record information about register eliminations.
285 Each array entry describes one possible way of eliminating a register
286 in favor of another. If there is more than one way of eliminating a
287 particular register, the most preferred should be specified first. */
289 struct elim_table
291 int from; /* Register number to be eliminated. */
292 int to; /* Register number used as replacement. */
293 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
294 int can_eliminate; /* Nonzero if this elimination can be done. */
295 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
296 target hook in previous scan over insns
297 made by reload. */
298 HOST_WIDE_INT offset; /* Current offset between the two regs. */
299 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
300 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
301 rtx from_rtx; /* REG rtx for the register to be eliminated.
302 We cannot simply compare the number since
303 we might then spuriously replace a hard
304 register corresponding to a pseudo
305 assigned to the reg to be eliminated. */
306 rtx to_rtx; /* REG rtx for the replacement. */
309 static struct elim_table *reg_eliminate = 0;
311 /* This is an intermediate structure to initialize the table. It has
312 exactly the members provided by ELIMINABLE_REGS. */
313 static const struct elim_table_1
315 const int from;
316 const int to;
317 } reg_eliminate_1[] =
319 /* If a set of eliminable registers was specified, define the table from it.
320 Otherwise, default to the normal case of the frame pointer being
321 replaced by the stack pointer. */
323 #ifdef ELIMINABLE_REGS
324 ELIMINABLE_REGS;
325 #else
326 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
327 #endif
329 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
331 /* Record the number of pending eliminations that have an offset not equal
332 to their initial offset. If nonzero, we use a new copy of each
333 replacement result in any insns encountered. */
334 int num_not_at_initial_offset;
336 /* Count the number of registers that we may be able to eliminate. */
337 static int num_eliminable;
338 /* And the number of registers that are equivalent to a constant that
339 can be eliminated to frame_pointer / arg_pointer + constant. */
340 static int num_eliminable_invariants;
342 /* For each label, we record the offset of each elimination. If we reach
343 a label by more than one path and an offset differs, we cannot do the
344 elimination. This information is indexed by the difference of the
345 number of the label and the first label number. We can't offset the
346 pointer itself as this can cause problems on machines with segmented
347 memory. The first table is an array of flags that records whether we
348 have yet encountered a label and the second table is an array of arrays,
349 one entry in the latter array for each elimination. */
351 static int first_label_num;
352 static char *offsets_known_at;
353 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
355 vec<reg_equivs_t, va_gc> *reg_equivs;
357 /* Stack of addresses where an rtx has been changed. We can undo the
358 changes by popping items off the stack and restoring the original
359 value at each location.
361 We use this simplistic undo capability rather than copy_rtx as copy_rtx
362 will not make a deep copy of a normally sharable rtx, such as
363 (const (plus (symbol_ref) (const_int))). If such an expression appears
364 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
365 rtx expression would be changed. See PR 42431. */
367 typedef rtx *rtx_p;
368 static vec<rtx_p> substitute_stack;
370 /* Number of labels in the current function. */
372 static int num_labels;
374 static void replace_pseudos_in (rtx *, machine_mode, rtx);
375 static void maybe_fix_stack_asms (void);
376 static void copy_reloads (struct insn_chain *);
377 static void calculate_needs_all_insns (int);
378 static int find_reg (struct insn_chain *, int);
379 static void find_reload_regs (struct insn_chain *);
380 static void select_reload_regs (void);
381 static void delete_caller_save_insns (void);
383 static void spill_failure (rtx_insn *, enum reg_class);
384 static void count_spilled_pseudo (int, int, int);
385 static void delete_dead_insn (rtx_insn *);
386 static void alter_reg (int, int, bool);
387 static void set_label_offsets (rtx, rtx_insn *, int);
388 static void check_eliminable_occurrences (rtx);
389 static void elimination_effects (rtx, machine_mode);
390 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
391 static int eliminate_regs_in_insn (rtx_insn *, int);
392 static void update_eliminable_offsets (void);
393 static void mark_not_eliminable (rtx, const_rtx, void *);
394 static void set_initial_elim_offsets (void);
395 static bool verify_initial_elim_offsets (void);
396 static void set_initial_label_offsets (void);
397 static void set_offsets_for_label (rtx_insn *);
398 static void init_eliminable_invariants (rtx_insn *, bool);
399 static void init_elim_table (void);
400 static void free_reg_equiv (void);
401 static void update_eliminables (HARD_REG_SET *);
402 static bool update_eliminables_and_spill (void);
403 static void elimination_costs_in_insn (rtx_insn *);
404 static void spill_hard_reg (unsigned int, int);
405 static int finish_spills (int);
406 static void scan_paradoxical_subregs (rtx);
407 static void count_pseudo (int);
408 static void order_regs_for_reload (struct insn_chain *);
409 static void reload_as_needed (int);
410 static void forget_old_reloads_1 (rtx, const_rtx, void *);
411 static void forget_marked_reloads (regset);
412 static int reload_reg_class_lower (const void *, const void *);
413 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414 machine_mode);
415 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416 machine_mode);
417 static int reload_reg_free_p (unsigned int, int, enum reload_type);
418 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419 rtx, rtx, int, int);
420 static int free_for_value_p (int, machine_mode, int, enum reload_type,
421 rtx, rtx, int, int);
422 static int allocate_reload_reg (struct insn_chain *, int, int);
423 static int conflicts_with_override (rtx);
424 static void failed_reload (rtx_insn *, int);
425 static int set_reload_reg (int, int);
426 static void choose_reload_regs_init (struct insn_chain *, rtx *);
427 static void choose_reload_regs (struct insn_chain *);
428 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
429 rtx, int);
430 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
431 int);
432 static void do_input_reload (struct insn_chain *, struct reload *, int);
433 static void do_output_reload (struct insn_chain *, struct reload *, int);
434 static void emit_reload_insns (struct insn_chain *);
435 static void delete_output_reload (rtx_insn *, int, int, rtx);
436 static void delete_address_reloads (rtx_insn *, rtx_insn *);
437 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
438 static void inc_for_reload (rtx, rtx, rtx, int);
439 #ifdef AUTO_INC_DEC
440 static void add_auto_inc_notes (rtx_insn *, rtx);
441 #endif
442 static void substitute (rtx *, const_rtx, rtx);
443 static bool gen_reload_chain_without_interm_reg_p (int, int);
444 static int reloads_conflict (int, int);
445 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
446 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
448 /* Initialize the reload pass. This is called at the beginning of compilation
449 and may be called again if the target is reinitialized. */
451 void
452 init_reload (void)
454 int i;
456 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
457 Set spill_indirect_levels to the number of levels such addressing is
458 permitted, zero if it is not permitted at all. */
460 rtx tem
461 = gen_rtx_MEM (Pmode,
462 gen_rtx_PLUS (Pmode,
463 gen_rtx_REG (Pmode,
464 LAST_VIRTUAL_REGISTER + 1),
465 gen_int_mode (4, Pmode)));
466 spill_indirect_levels = 0;
468 while (memory_address_p (QImode, tem))
470 spill_indirect_levels++;
471 tem = gen_rtx_MEM (Pmode, tem);
474 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
476 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
477 indirect_symref_ok = memory_address_p (QImode, tem);
479 /* See if reg+reg is a valid (and offsettable) address. */
481 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 tem = gen_rtx_PLUS (Pmode,
484 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
485 gen_rtx_REG (Pmode, i));
487 /* This way, we make sure that reg+reg is an offsettable address. */
488 tem = plus_constant (Pmode, tem, 4);
490 if (memory_address_p (QImode, tem))
492 double_reg_address_ok = 1;
493 break;
497 /* Initialize obstack for our rtl allocation. */
498 if (reload_startobj == NULL)
500 gcc_obstack_init (&reload_obstack);
501 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
504 INIT_REG_SET (&spilled_pseudos);
505 INIT_REG_SET (&changed_allocation_pseudos);
506 INIT_REG_SET (&pseudos_counted);
509 /* List of insn chains that are currently unused. */
510 static struct insn_chain *unused_insn_chains = 0;
512 /* Allocate an empty insn_chain structure. */
513 struct insn_chain *
514 new_insn_chain (void)
516 struct insn_chain *c;
518 if (unused_insn_chains == 0)
520 c = XOBNEW (&reload_obstack, struct insn_chain);
521 INIT_REG_SET (&c->live_throughout);
522 INIT_REG_SET (&c->dead_or_set);
524 else
526 c = unused_insn_chains;
527 unused_insn_chains = c->next;
529 c->is_caller_save_insn = 0;
530 c->need_operand_change = 0;
531 c->need_reload = 0;
532 c->need_elim = 0;
533 return c;
536 /* Small utility function to set all regs in hard reg set TO which are
537 allocated to pseudos in regset FROM. */
539 void
540 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
542 unsigned int regno;
543 reg_set_iterator rsi;
545 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
547 int r = reg_renumber[regno];
549 if (r < 0)
551 /* reload_combine uses the information from DF_LIVE_IN,
552 which might still contain registers that have not
553 actually been allocated since they have an
554 equivalence. */
555 gcc_assert (ira_conflicts_p || reload_completed);
557 else
558 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
562 /* Replace all pseudos found in LOC with their corresponding
563 equivalences. */
565 static void
566 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
568 rtx x = *loc;
569 enum rtx_code code;
570 const char *fmt;
571 int i, j;
573 if (! x)
574 return;
576 code = GET_CODE (x);
577 if (code == REG)
579 unsigned int regno = REGNO (x);
581 if (regno < FIRST_PSEUDO_REGISTER)
582 return;
584 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
585 if (x != *loc)
587 *loc = x;
588 replace_pseudos_in (loc, mem_mode, usage);
589 return;
592 if (reg_equiv_constant (regno))
593 *loc = reg_equiv_constant (regno);
594 else if (reg_equiv_invariant (regno))
595 *loc = reg_equiv_invariant (regno);
596 else if (reg_equiv_mem (regno))
597 *loc = reg_equiv_mem (regno);
598 else if (reg_equiv_address (regno))
599 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
600 else
602 gcc_assert (!REG_P (regno_reg_rtx[regno])
603 || REGNO (regno_reg_rtx[regno]) != regno);
604 *loc = regno_reg_rtx[regno];
607 return;
609 else if (code == MEM)
611 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612 return;
615 /* Process each of our operands recursively. */
616 fmt = GET_RTX_FORMAT (code);
617 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618 if (*fmt == 'e')
619 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620 else if (*fmt == 'E')
621 for (j = 0; j < XVECLEN (x, i); j++)
622 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
625 /* Determine if the current function has an exception receiver block
626 that reaches the exit block via non-exceptional edges */
628 static bool
629 has_nonexceptional_receiver (void)
631 edge e;
632 edge_iterator ei;
633 basic_block *tos, *worklist, bb;
635 /* If we're not optimizing, then just err on the safe side. */
636 if (!optimize)
637 return true;
639 /* First determine which blocks can reach exit via normal paths. */
640 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
642 FOR_EACH_BB_FN (bb, cfun)
643 bb->flags &= ~BB_REACHABLE;
645 /* Place the exit block on our worklist. */
646 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
647 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
649 /* Iterate: find everything reachable from what we've already seen. */
650 while (tos != worklist)
652 bb = *--tos;
654 FOR_EACH_EDGE (e, ei, bb->preds)
655 if (!(e->flags & EDGE_ABNORMAL))
657 basic_block src = e->src;
659 if (!(src->flags & BB_REACHABLE))
661 src->flags |= BB_REACHABLE;
662 *tos++ = src;
666 free (worklist);
668 /* Now see if there's a reachable block with an exceptional incoming
669 edge. */
670 FOR_EACH_BB_FN (bb, cfun)
671 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
672 return true;
674 /* No exceptional block reached exit unexceptionally. */
675 return false;
678 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
679 zero elements) to MAX_REG_NUM elements.
681 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
682 void
683 grow_reg_equivs (void)
685 int old_size = vec_safe_length (reg_equivs);
686 int max_regno = max_reg_num ();
687 int i;
688 reg_equivs_t ze;
690 memset (&ze, 0, sizeof (reg_equivs_t));
691 vec_safe_reserve (reg_equivs, max_regno);
692 for (i = old_size; i < max_regno; i++)
693 reg_equivs->quick_insert (i, ze);
697 /* Global variables used by reload and its subroutines. */
699 /* The current basic block while in calculate_elim_costs_all_insns. */
700 static basic_block elim_bb;
702 /* Set during calculate_needs if an insn needs register elimination. */
703 static int something_needs_elimination;
704 /* Set during calculate_needs if an insn needs an operand changed. */
705 static int something_needs_operands_changed;
706 /* Set by alter_regs if we spilled a register to the stack. */
707 static bool something_was_spilled;
709 /* Nonzero means we couldn't get enough spill regs. */
710 static int failure;
712 /* Temporary array of pseudo-register number. */
713 static int *temp_pseudo_reg_arr;
715 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
716 If that insn didn't set the register (i.e., it copied the register to
717 memory), just delete that insn instead of the equivalencing insn plus
718 anything now dead. If we call delete_dead_insn on that insn, we may
719 delete the insn that actually sets the register if the register dies
720 there and that is incorrect. */
721 static void
722 remove_init_insns ()
724 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
726 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
728 rtx list;
729 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
731 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
733 /* If we already deleted the insn or if it may trap, we can't
734 delete it. The latter case shouldn't happen, but can
735 if an insn has a variable address, gets a REG_EH_REGION
736 note added to it, and then gets converted into a load
737 from a constant address. */
738 if (NOTE_P (equiv_insn)
739 || can_throw_internal (equiv_insn))
741 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
742 delete_dead_insn (equiv_insn);
743 else
744 SET_INSN_DELETED (equiv_insn);
750 /* Return true if remove_init_insns will delete INSN. */
751 static bool
752 will_delete_init_insn_p (rtx_insn *insn)
754 rtx set = single_set (insn);
755 if (!set || !REG_P (SET_DEST (set)))
756 return false;
757 unsigned regno = REGNO (SET_DEST (set));
759 if (can_throw_internal (insn))
760 return false;
762 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
763 return false;
765 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
767 rtx equiv_insn = XEXP (list, 0);
768 if (equiv_insn == insn)
769 return true;
771 return false;
774 /* Main entry point for the reload pass.
776 FIRST is the first insn of the function being compiled.
778 GLOBAL nonzero means we were called from global_alloc
779 and should attempt to reallocate any pseudoregs that we
780 displace from hard regs we will use for reloads.
781 If GLOBAL is zero, we do not have enough information to do that,
782 so any pseudo reg that is spilled must go to the stack.
784 Return value is TRUE if reload likely left dead insns in the
785 stream and a DCE pass should be run to elimiante them. Else the
786 return value is FALSE. */
788 bool
789 reload (rtx_insn *first, int global)
791 int i, n;
792 rtx_insn *insn;
793 struct elim_table *ep;
794 basic_block bb;
795 bool inserted;
797 /* Make sure even insns with volatile mem refs are recognizable. */
798 init_recog ();
800 failure = 0;
802 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
804 /* Make sure that the last insn in the chain
805 is not something that needs reloading. */
806 emit_note (NOTE_INSN_DELETED);
808 /* Enable find_equiv_reg to distinguish insns made by reload. */
809 reload_first_uid = get_max_uid ();
811 #ifdef SECONDARY_MEMORY_NEEDED
812 /* Initialize the secondary memory table. */
813 clear_secondary_mem ();
814 #endif
816 /* We don't have a stack slot for any spill reg yet. */
817 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
818 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
820 /* Initialize the save area information for caller-save, in case some
821 are needed. */
822 init_save_areas ();
824 /* Compute which hard registers are now in use
825 as homes for pseudo registers.
826 This is done here rather than (eg) in global_alloc
827 because this point is reached even if not optimizing. */
828 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
829 mark_home_live (i);
831 /* A function that has a nonlocal label that can reach the exit
832 block via non-exceptional paths must save all call-saved
833 registers. */
834 if (cfun->has_nonlocal_label
835 && has_nonexceptional_receiver ())
836 crtl->saves_all_registers = 1;
838 if (crtl->saves_all_registers)
839 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
840 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
841 df_set_regs_ever_live (i, true);
843 /* Find all the pseudo registers that didn't get hard regs
844 but do have known equivalent constants or memory slots.
845 These include parameters (known equivalent to parameter slots)
846 and cse'd or loop-moved constant memory addresses.
848 Record constant equivalents in reg_equiv_constant
849 so they will be substituted by find_reloads.
850 Record memory equivalents in reg_mem_equiv so they can
851 be substituted eventually by altering the REG-rtx's. */
853 grow_reg_equivs ();
854 reg_old_renumber = XCNEWVEC (short, max_regno);
855 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
856 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
857 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
859 CLEAR_HARD_REG_SET (bad_spill_regs_global);
861 init_eliminable_invariants (first, true);
862 init_elim_table ();
864 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
865 stack slots to the pseudos that lack hard regs or equivalents.
866 Do not touch virtual registers. */
868 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
869 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
870 temp_pseudo_reg_arr[n++] = i;
872 if (ira_conflicts_p)
873 /* Ask IRA to order pseudo-registers for better stack slot
874 sharing. */
875 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
877 for (i = 0; i < n; i++)
878 alter_reg (temp_pseudo_reg_arr[i], -1, false);
880 /* If we have some registers we think can be eliminated, scan all insns to
881 see if there is an insn that sets one of these registers to something
882 other than itself plus a constant. If so, the register cannot be
883 eliminated. Doing this scan here eliminates an extra pass through the
884 main reload loop in the most common case where register elimination
885 cannot be done. */
886 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
887 if (INSN_P (insn))
888 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
890 maybe_fix_stack_asms ();
892 insns_need_reload = 0;
893 something_needs_elimination = 0;
895 /* Initialize to -1, which means take the first spill register. */
896 last_spill_reg = -1;
898 /* Spill any hard regs that we know we can't eliminate. */
899 CLEAR_HARD_REG_SET (used_spill_regs);
900 /* There can be multiple ways to eliminate a register;
901 they should be listed adjacently.
902 Elimination for any register fails only if all possible ways fail. */
903 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
905 int from = ep->from;
906 int can_eliminate = 0;
909 can_eliminate |= ep->can_eliminate;
910 ep++;
912 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
913 if (! can_eliminate)
914 spill_hard_reg (from, 1);
917 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
918 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
920 finish_spills (global);
922 /* From now on, we may need to generate moves differently. We may also
923 allow modifications of insns which cause them to not be recognized.
924 Any such modifications will be cleaned up during reload itself. */
925 reload_in_progress = 1;
927 /* This loop scans the entire function each go-round
928 and repeats until one repetition spills no additional hard regs. */
929 for (;;)
931 int something_changed;
932 int did_spill;
933 HOST_WIDE_INT starting_frame_size;
935 starting_frame_size = get_frame_size ();
936 something_was_spilled = false;
938 set_initial_elim_offsets ();
939 set_initial_label_offsets ();
941 /* For each pseudo register that has an equivalent location defined,
942 try to eliminate any eliminable registers (such as the frame pointer)
943 assuming initial offsets for the replacement register, which
944 is the normal case.
946 If the resulting location is directly addressable, substitute
947 the MEM we just got directly for the old REG.
949 If it is not addressable but is a constant or the sum of a hard reg
950 and constant, it is probably not addressable because the constant is
951 out of range, in that case record the address; we will generate
952 hairy code to compute the address in a register each time it is
953 needed. Similarly if it is a hard register, but one that is not
954 valid as an address register.
956 If the location is not addressable, but does not have one of the
957 above forms, assign a stack slot. We have to do this to avoid the
958 potential of producing lots of reloads if, e.g., a location involves
959 a pseudo that didn't get a hard register and has an equivalent memory
960 location that also involves a pseudo that didn't get a hard register.
962 Perhaps at some point we will improve reload_when_needed handling
963 so this problem goes away. But that's very hairy. */
965 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
966 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
968 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
969 NULL_RTX);
971 if (strict_memory_address_addr_space_p
972 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
973 MEM_ADDR_SPACE (x)))
974 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
975 else if (CONSTANT_P (XEXP (x, 0))
976 || (REG_P (XEXP (x, 0))
977 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
978 || (GET_CODE (XEXP (x, 0)) == PLUS
979 && REG_P (XEXP (XEXP (x, 0), 0))
980 && (REGNO (XEXP (XEXP (x, 0), 0))
981 < FIRST_PSEUDO_REGISTER)
982 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
983 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
984 else
986 /* Make a new stack slot. Then indicate that something
987 changed so we go back and recompute offsets for
988 eliminable registers because the allocation of memory
989 below might change some offset. reg_equiv_{mem,address}
990 will be set up for this pseudo on the next pass around
991 the loop. */
992 reg_equiv_memory_loc (i) = 0;
993 reg_equiv_init (i) = 0;
994 alter_reg (i, -1, true);
998 if (caller_save_needed)
999 setup_save_areas ();
1001 if (starting_frame_size && crtl->stack_alignment_needed)
1003 /* If we have a stack frame, we must align it now. The
1004 stack size may be a part of the offset computation for
1005 register elimination. So if this changes the stack size,
1006 then repeat the elimination bookkeeping. We don't
1007 realign when there is no stack, as that will cause a
1008 stack frame when none is needed should
1009 STARTING_FRAME_OFFSET not be already aligned to
1010 STACK_BOUNDARY. */
1011 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1013 /* If we allocated another stack slot, redo elimination bookkeeping. */
1014 if (something_was_spilled || starting_frame_size != get_frame_size ())
1016 update_eliminables_and_spill ();
1017 continue;
1020 if (caller_save_needed)
1022 save_call_clobbered_regs ();
1023 /* That might have allocated new insn_chain structures. */
1024 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1027 calculate_needs_all_insns (global);
1029 if (! ira_conflicts_p)
1030 /* Don't do it for IRA. We need this info because we don't
1031 change live_throughout and dead_or_set for chains when IRA
1032 is used. */
1033 CLEAR_REG_SET (&spilled_pseudos);
1035 did_spill = 0;
1037 something_changed = 0;
1039 /* If we allocated any new memory locations, make another pass
1040 since it might have changed elimination offsets. */
1041 if (something_was_spilled || starting_frame_size != get_frame_size ())
1042 something_changed = 1;
1044 /* Even if the frame size remained the same, we might still have
1045 changed elimination offsets, e.g. if find_reloads called
1046 force_const_mem requiring the back end to allocate a constant
1047 pool base register that needs to be saved on the stack. */
1048 else if (!verify_initial_elim_offsets ())
1049 something_changed = 1;
1051 if (update_eliminables_and_spill ())
1053 did_spill = 1;
1054 something_changed = 1;
1057 select_reload_regs ();
1058 if (failure)
1059 goto failed;
1061 if (insns_need_reload != 0 || did_spill)
1062 something_changed |= finish_spills (global);
1064 if (! something_changed)
1065 break;
1067 if (caller_save_needed)
1068 delete_caller_save_insns ();
1070 obstack_free (&reload_obstack, reload_firstobj);
1073 /* If global-alloc was run, notify it of any register eliminations we have
1074 done. */
1075 if (global)
1076 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1077 if (ep->can_eliminate)
1078 mark_elimination (ep->from, ep->to);
1080 remove_init_insns ();
1082 /* Use the reload registers where necessary
1083 by generating move instructions to move the must-be-register
1084 values into or out of the reload registers. */
1086 if (insns_need_reload != 0 || something_needs_elimination
1087 || something_needs_operands_changed)
1089 HOST_WIDE_INT old_frame_size = get_frame_size ();
1091 reload_as_needed (global);
1093 gcc_assert (old_frame_size == get_frame_size ());
1095 gcc_assert (verify_initial_elim_offsets ());
1098 /* If we were able to eliminate the frame pointer, show that it is no
1099 longer live at the start of any basic block. If it ls live by
1100 virtue of being in a pseudo, that pseudo will be marked live
1101 and hence the frame pointer will be known to be live via that
1102 pseudo. */
1104 if (! frame_pointer_needed)
1105 FOR_EACH_BB_FN (bb, cfun)
1106 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1108 /* Come here (with failure set nonzero) if we can't get enough spill
1109 regs. */
1110 failed:
1112 CLEAR_REG_SET (&changed_allocation_pseudos);
1113 CLEAR_REG_SET (&spilled_pseudos);
1114 reload_in_progress = 0;
1116 /* Now eliminate all pseudo regs by modifying them into
1117 their equivalent memory references.
1118 The REG-rtx's for the pseudos are modified in place,
1119 so all insns that used to refer to them now refer to memory.
1121 For a reg that has a reg_equiv_address, all those insns
1122 were changed by reloading so that no insns refer to it any longer;
1123 but the DECL_RTL of a variable decl may refer to it,
1124 and if so this causes the debugging info to mention the variable. */
1126 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1128 rtx addr = 0;
1130 if (reg_equiv_mem (i))
1131 addr = XEXP (reg_equiv_mem (i), 0);
1133 if (reg_equiv_address (i))
1134 addr = reg_equiv_address (i);
1136 if (addr)
1138 if (reg_renumber[i] < 0)
1140 rtx reg = regno_reg_rtx[i];
1142 REG_USERVAR_P (reg) = 0;
1143 PUT_CODE (reg, MEM);
1144 XEXP (reg, 0) = addr;
1145 if (reg_equiv_memory_loc (i))
1146 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1147 else
1148 MEM_ATTRS (reg) = 0;
1149 MEM_NOTRAP_P (reg) = 1;
1151 else if (reg_equiv_mem (i))
1152 XEXP (reg_equiv_mem (i), 0) = addr;
1155 /* We don't want complex addressing modes in debug insns
1156 if simpler ones will do, so delegitimize equivalences
1157 in debug insns. */
1158 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1160 rtx reg = regno_reg_rtx[i];
1161 rtx equiv = 0;
1162 df_ref use, next;
1164 if (reg_equiv_constant (i))
1165 equiv = reg_equiv_constant (i);
1166 else if (reg_equiv_invariant (i))
1167 equiv = reg_equiv_invariant (i);
1168 else if (reg && MEM_P (reg))
1169 equiv = targetm.delegitimize_address (reg);
1170 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1171 equiv = reg;
1173 if (equiv == reg)
1174 continue;
1176 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1178 insn = DF_REF_INSN (use);
1180 /* Make sure the next ref is for a different instruction,
1181 so that we're not affected by the rescan. */
1182 next = DF_REF_NEXT_REG (use);
1183 while (next && DF_REF_INSN (next) == insn)
1184 next = DF_REF_NEXT_REG (next);
1186 if (DEBUG_INSN_P (insn))
1188 if (!equiv)
1190 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1191 df_insn_rescan_debug_internal (insn);
1193 else
1194 INSN_VAR_LOCATION_LOC (insn)
1195 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1196 reg, equiv);
1202 /* We must set reload_completed now since the cleanup_subreg_operands call
1203 below will re-recognize each insn and reload may have generated insns
1204 which are only valid during and after reload. */
1205 reload_completed = 1;
1207 /* Make a pass over all the insns and delete all USEs which we inserted
1208 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1209 notes. Delete all CLOBBER insns, except those that refer to the return
1210 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1211 from misarranging variable-array code, and simplify (subreg (reg))
1212 operands. Strip and regenerate REG_INC notes that may have been moved
1213 around. */
1215 for (insn = first; insn; insn = NEXT_INSN (insn))
1216 if (INSN_P (insn))
1218 rtx *pnote;
1220 if (CALL_P (insn))
1221 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1222 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1224 if ((GET_CODE (PATTERN (insn)) == USE
1225 /* We mark with QImode USEs introduced by reload itself. */
1226 && (GET_MODE (insn) == QImode
1227 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1228 || (GET_CODE (PATTERN (insn)) == CLOBBER
1229 && (!MEM_P (XEXP (PATTERN (insn), 0))
1230 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1231 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1232 && XEXP (XEXP (PATTERN (insn), 0), 0)
1233 != stack_pointer_rtx))
1234 && (!REG_P (XEXP (PATTERN (insn), 0))
1235 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1237 delete_insn (insn);
1238 continue;
1241 /* Some CLOBBERs may survive until here and still reference unassigned
1242 pseudos with const equivalent, which may in turn cause ICE in later
1243 passes if the reference remains in place. */
1244 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1245 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1246 VOIDmode, PATTERN (insn));
1248 /* Discard obvious no-ops, even without -O. This optimization
1249 is fast and doesn't interfere with debugging. */
1250 if (NONJUMP_INSN_P (insn)
1251 && GET_CODE (PATTERN (insn)) == SET
1252 && REG_P (SET_SRC (PATTERN (insn)))
1253 && REG_P (SET_DEST (PATTERN (insn)))
1254 && (REGNO (SET_SRC (PATTERN (insn)))
1255 == REGNO (SET_DEST (PATTERN (insn)))))
1257 delete_insn (insn);
1258 continue;
1261 pnote = &REG_NOTES (insn);
1262 while (*pnote != 0)
1264 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1265 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1266 || REG_NOTE_KIND (*pnote) == REG_INC)
1267 *pnote = XEXP (*pnote, 1);
1268 else
1269 pnote = &XEXP (*pnote, 1);
1272 #ifdef AUTO_INC_DEC
1273 add_auto_inc_notes (insn, PATTERN (insn));
1274 #endif
1276 /* Simplify (subreg (reg)) if it appears as an operand. */
1277 cleanup_subreg_operands (insn);
1279 /* Clean up invalid ASMs so that they don't confuse later passes.
1280 See PR 21299. */
1281 if (asm_noperands (PATTERN (insn)) >= 0)
1283 extract_insn (insn);
1284 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1286 error_for_asm (insn,
1287 "%<asm%> operand has impossible constraints");
1288 delete_insn (insn);
1289 continue;
1294 /* If we are doing generic stack checking, give a warning if this
1295 function's frame size is larger than we expect. */
1296 if (flag_stack_check == GENERIC_STACK_CHECK)
1298 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1299 static int verbose_warned = 0;
1301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1302 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1303 size += UNITS_PER_WORD;
1305 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1307 warning (0, "frame size too large for reliable stack checking");
1308 if (! verbose_warned)
1310 warning (0, "try reducing the number of local variables");
1311 verbose_warned = 1;
1316 free (temp_pseudo_reg_arr);
1318 /* Indicate that we no longer have known memory locations or constants. */
1319 free_reg_equiv ();
1321 free (reg_max_ref_width);
1322 free (reg_old_renumber);
1323 free (pseudo_previous_regs);
1324 free (pseudo_forbidden_regs);
1326 CLEAR_HARD_REG_SET (used_spill_regs);
1327 for (i = 0; i < n_spills; i++)
1328 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1330 /* Free all the insn_chain structures at once. */
1331 obstack_free (&reload_obstack, reload_startobj);
1332 unused_insn_chains = 0;
1334 inserted = fixup_abnormal_edges ();
1336 /* We've possibly turned single trapping insn into multiple ones. */
1337 if (cfun->can_throw_non_call_exceptions)
1339 sbitmap blocks;
1340 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1341 bitmap_ones (blocks);
1342 find_many_sub_basic_blocks (blocks);
1343 sbitmap_free (blocks);
1346 if (inserted)
1347 commit_edge_insertions ();
1349 /* Replacing pseudos with their memory equivalents might have
1350 created shared rtx. Subsequent passes would get confused
1351 by this, so unshare everything here. */
1352 unshare_all_rtl_again (first);
1354 #ifdef STACK_BOUNDARY
1355 /* init_emit has set the alignment of the hard frame pointer
1356 to STACK_BOUNDARY. It is very likely no longer valid if
1357 the hard frame pointer was used for register allocation. */
1358 if (!frame_pointer_needed)
1359 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1360 #endif
1362 substitute_stack.release ();
1364 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1366 reload_completed = !failure;
1368 return need_dce;
1371 /* Yet another special case. Unfortunately, reg-stack forces people to
1372 write incorrect clobbers in asm statements. These clobbers must not
1373 cause the register to appear in bad_spill_regs, otherwise we'll call
1374 fatal_insn later. We clear the corresponding regnos in the live
1375 register sets to avoid this.
1376 The whole thing is rather sick, I'm afraid. */
1378 static void
1379 maybe_fix_stack_asms (void)
1381 #ifdef STACK_REGS
1382 const char *constraints[MAX_RECOG_OPERANDS];
1383 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1384 struct insn_chain *chain;
1386 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1388 int i, noperands;
1389 HARD_REG_SET clobbered, allowed;
1390 rtx pat;
1392 if (! INSN_P (chain->insn)
1393 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1394 continue;
1395 pat = PATTERN (chain->insn);
1396 if (GET_CODE (pat) != PARALLEL)
1397 continue;
1399 CLEAR_HARD_REG_SET (clobbered);
1400 CLEAR_HARD_REG_SET (allowed);
1402 /* First, make a mask of all stack regs that are clobbered. */
1403 for (i = 0; i < XVECLEN (pat, 0); i++)
1405 rtx t = XVECEXP (pat, 0, i);
1406 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1407 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1410 /* Get the operand values and constraints out of the insn. */
1411 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1412 constraints, operand_mode, NULL);
1414 /* For every operand, see what registers are allowed. */
1415 for (i = 0; i < noperands; i++)
1417 const char *p = constraints[i];
1418 /* For every alternative, we compute the class of registers allowed
1419 for reloading in CLS, and merge its contents into the reg set
1420 ALLOWED. */
1421 int cls = (int) NO_REGS;
1423 for (;;)
1425 char c = *p;
1427 if (c == '\0' || c == ',' || c == '#')
1429 /* End of one alternative - mark the regs in the current
1430 class, and reset the class. */
1431 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1432 cls = NO_REGS;
1433 p++;
1434 if (c == '#')
1435 do {
1436 c = *p++;
1437 } while (c != '\0' && c != ',');
1438 if (c == '\0')
1439 break;
1440 continue;
1443 switch (c)
1445 case 'g':
1446 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1447 break;
1449 default:
1450 enum constraint_num cn = lookup_constraint (p);
1451 if (insn_extra_address_constraint (cn))
1452 cls = (int) reg_class_subunion[cls]
1453 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1454 ADDRESS, SCRATCH)];
1455 else
1456 cls = (int) reg_class_subunion[cls]
1457 [reg_class_for_constraint (cn)];
1458 break;
1460 p += CONSTRAINT_LEN (c, p);
1463 /* Those of the registers which are clobbered, but allowed by the
1464 constraints, must be usable as reload registers. So clear them
1465 out of the life information. */
1466 AND_HARD_REG_SET (allowed, clobbered);
1467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1468 if (TEST_HARD_REG_BIT (allowed, i))
1470 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1471 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1475 #endif
1478 /* Copy the global variables n_reloads and rld into the corresponding elts
1479 of CHAIN. */
1480 static void
1481 copy_reloads (struct insn_chain *chain)
1483 chain->n_reloads = n_reloads;
1484 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1485 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1486 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1489 /* Walk the chain of insns, and determine for each whether it needs reloads
1490 and/or eliminations. Build the corresponding insns_need_reload list, and
1491 set something_needs_elimination as appropriate. */
1492 static void
1493 calculate_needs_all_insns (int global)
1495 struct insn_chain **pprev_reload = &insns_need_reload;
1496 struct insn_chain *chain, *next = 0;
1498 something_needs_elimination = 0;
1500 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1501 for (chain = reload_insn_chain; chain != 0; chain = next)
1503 rtx_insn *insn = chain->insn;
1505 next = chain->next;
1507 /* Clear out the shortcuts. */
1508 chain->n_reloads = 0;
1509 chain->need_elim = 0;
1510 chain->need_reload = 0;
1511 chain->need_operand_change = 0;
1513 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1514 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1515 what effects this has on the known offsets at labels. */
1517 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1518 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1519 set_label_offsets (insn, insn, 0);
1521 if (INSN_P (insn))
1523 rtx old_body = PATTERN (insn);
1524 int old_code = INSN_CODE (insn);
1525 rtx old_notes = REG_NOTES (insn);
1526 int did_elimination = 0;
1527 int operands_changed = 0;
1529 /* Skip insns that only set an equivalence. */
1530 if (will_delete_init_insn_p (insn))
1531 continue;
1533 /* If needed, eliminate any eliminable registers. */
1534 if (num_eliminable || num_eliminable_invariants)
1535 did_elimination = eliminate_regs_in_insn (insn, 0);
1537 /* Analyze the instruction. */
1538 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1539 global, spill_reg_order);
1541 /* If a no-op set needs more than one reload, this is likely
1542 to be something that needs input address reloads. We
1543 can't get rid of this cleanly later, and it is of no use
1544 anyway, so discard it now.
1545 We only do this when expensive_optimizations is enabled,
1546 since this complements reload inheritance / output
1547 reload deletion, and it can make debugging harder. */
1548 if (flag_expensive_optimizations && n_reloads > 1)
1550 rtx set = single_set (insn);
1551 if (set
1553 ((SET_SRC (set) == SET_DEST (set)
1554 && REG_P (SET_SRC (set))
1555 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1556 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1557 && reg_renumber[REGNO (SET_SRC (set))] < 0
1558 && reg_renumber[REGNO (SET_DEST (set))] < 0
1559 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1560 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1561 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1562 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1564 if (ira_conflicts_p)
1565 /* Inform IRA about the insn deletion. */
1566 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1567 REGNO (SET_SRC (set)));
1568 delete_insn (insn);
1569 /* Delete it from the reload chain. */
1570 if (chain->prev)
1571 chain->prev->next = next;
1572 else
1573 reload_insn_chain = next;
1574 if (next)
1575 next->prev = chain->prev;
1576 chain->next = unused_insn_chains;
1577 unused_insn_chains = chain;
1578 continue;
1581 if (num_eliminable)
1582 update_eliminable_offsets ();
1584 /* Remember for later shortcuts which insns had any reloads or
1585 register eliminations. */
1586 chain->need_elim = did_elimination;
1587 chain->need_reload = n_reloads > 0;
1588 chain->need_operand_change = operands_changed;
1590 /* Discard any register replacements done. */
1591 if (did_elimination)
1593 obstack_free (&reload_obstack, reload_insn_firstobj);
1594 PATTERN (insn) = old_body;
1595 INSN_CODE (insn) = old_code;
1596 REG_NOTES (insn) = old_notes;
1597 something_needs_elimination = 1;
1600 something_needs_operands_changed |= operands_changed;
1602 if (n_reloads != 0)
1604 copy_reloads (chain);
1605 *pprev_reload = chain;
1606 pprev_reload = &chain->next_need_reload;
1610 *pprev_reload = 0;
1613 /* This function is called from the register allocator to set up estimates
1614 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1615 an invariant. The structure is similar to calculate_needs_all_insns. */
1617 void
1618 calculate_elim_costs_all_insns (void)
1620 int *reg_equiv_init_cost;
1621 basic_block bb;
1622 int i;
1624 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1625 init_elim_table ();
1626 init_eliminable_invariants (get_insns (), false);
1628 set_initial_elim_offsets ();
1629 set_initial_label_offsets ();
1631 FOR_EACH_BB_FN (bb, cfun)
1633 rtx_insn *insn;
1634 elim_bb = bb;
1636 FOR_BB_INSNS (bb, insn)
1638 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1639 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1640 what effects this has on the known offsets at labels. */
1642 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1643 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1644 set_label_offsets (insn, insn, 0);
1646 if (INSN_P (insn))
1648 rtx set = single_set (insn);
1650 /* Skip insns that only set an equivalence. */
1651 if (set && REG_P (SET_DEST (set))
1652 && reg_renumber[REGNO (SET_DEST (set))] < 0
1653 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1654 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1656 unsigned regno = REGNO (SET_DEST (set));
1657 rtx init = reg_equiv_init (regno);
1658 if (init)
1660 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1661 false, true);
1662 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1663 int freq = REG_FREQ_FROM_BB (bb);
1665 reg_equiv_init_cost[regno] = cost * freq;
1666 continue;
1669 /* If needed, eliminate any eliminable registers. */
1670 if (num_eliminable || num_eliminable_invariants)
1671 elimination_costs_in_insn (insn);
1673 if (num_eliminable)
1674 update_eliminable_offsets ();
1678 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1680 if (reg_equiv_invariant (i))
1682 if (reg_equiv_init (i))
1684 int cost = reg_equiv_init_cost[i];
1685 if (dump_file)
1686 fprintf (dump_file,
1687 "Reg %d has equivalence, initial gains %d\n", i, cost);
1688 if (cost != 0)
1689 ira_adjust_equiv_reg_cost (i, cost);
1691 else
1693 if (dump_file)
1694 fprintf (dump_file,
1695 "Reg %d had equivalence, but can't be eliminated\n",
1697 ira_adjust_equiv_reg_cost (i, 0);
1702 free (reg_equiv_init_cost);
1703 free (offsets_known_at);
1704 free (offsets_at);
1705 offsets_at = NULL;
1706 offsets_known_at = NULL;
1709 /* Comparison function for qsort to decide which of two reloads
1710 should be handled first. *P1 and *P2 are the reload numbers. */
1712 static int
1713 reload_reg_class_lower (const void *r1p, const void *r2p)
1715 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1716 int t;
1718 /* Consider required reloads before optional ones. */
1719 t = rld[r1].optional - rld[r2].optional;
1720 if (t != 0)
1721 return t;
1723 /* Count all solitary classes before non-solitary ones. */
1724 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1725 - (reg_class_size[(int) rld[r1].rclass] == 1));
1726 if (t != 0)
1727 return t;
1729 /* Aside from solitaires, consider all multi-reg groups first. */
1730 t = rld[r2].nregs - rld[r1].nregs;
1731 if (t != 0)
1732 return t;
1734 /* Consider reloads in order of increasing reg-class number. */
1735 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1736 if (t != 0)
1737 return t;
1739 /* If reloads are equally urgent, sort by reload number,
1740 so that the results of qsort leave nothing to chance. */
1741 return r1 - r2;
1744 /* The cost of spilling each hard reg. */
1745 static int spill_cost[FIRST_PSEUDO_REGISTER];
1747 /* When spilling multiple hard registers, we use SPILL_COST for the first
1748 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1749 only the first hard reg for a multi-reg pseudo. */
1750 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1752 /* Map of hard regno to pseudo regno currently occupying the hard
1753 reg. */
1754 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1756 /* Update the spill cost arrays, considering that pseudo REG is live. */
1758 static void
1759 count_pseudo (int reg)
1761 int freq = REG_FREQ (reg);
1762 int r = reg_renumber[reg];
1763 int nregs;
1765 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1766 if (ira_conflicts_p && r < 0)
1767 return;
1769 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1770 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1771 return;
1773 SET_REGNO_REG_SET (&pseudos_counted, reg);
1775 gcc_assert (r >= 0);
1777 spill_add_cost[r] += freq;
1778 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1779 while (nregs-- > 0)
1781 hard_regno_to_pseudo_regno[r + nregs] = reg;
1782 spill_cost[r + nregs] += freq;
1786 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1787 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1789 static void
1790 order_regs_for_reload (struct insn_chain *chain)
1792 unsigned i;
1793 HARD_REG_SET used_by_pseudos;
1794 HARD_REG_SET used_by_pseudos2;
1795 reg_set_iterator rsi;
1797 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1799 memset (spill_cost, 0, sizeof spill_cost);
1800 memset (spill_add_cost, 0, sizeof spill_add_cost);
1801 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1802 hard_regno_to_pseudo_regno[i] = -1;
1804 /* Count number of uses of each hard reg by pseudo regs allocated to it
1805 and then order them by decreasing use. First exclude hard registers
1806 that are live in or across this insn. */
1808 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1809 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1810 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1811 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1813 /* Now find out which pseudos are allocated to it, and update
1814 hard_reg_n_uses. */
1815 CLEAR_REG_SET (&pseudos_counted);
1817 EXECUTE_IF_SET_IN_REG_SET
1818 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1820 count_pseudo (i);
1822 EXECUTE_IF_SET_IN_REG_SET
1823 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1825 count_pseudo (i);
1827 CLEAR_REG_SET (&pseudos_counted);
1830 /* Vector of reload-numbers showing the order in which the reloads should
1831 be processed. */
1832 static short reload_order[MAX_RELOADS];
1834 /* This is used to keep track of the spill regs used in one insn. */
1835 static HARD_REG_SET used_spill_regs_local;
1837 /* We decided to spill hard register SPILLED, which has a size of
1838 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1839 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1840 update SPILL_COST/SPILL_ADD_COST. */
1842 static void
1843 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1845 int freq = REG_FREQ (reg);
1846 int r = reg_renumber[reg];
1847 int nregs;
1849 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1850 if (ira_conflicts_p && r < 0)
1851 return;
1853 gcc_assert (r >= 0);
1855 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1857 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1858 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1859 return;
1861 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1863 spill_add_cost[r] -= freq;
1864 while (nregs-- > 0)
1866 hard_regno_to_pseudo_regno[r + nregs] = -1;
1867 spill_cost[r + nregs] -= freq;
1871 /* Find reload register to use for reload number ORDER. */
1873 static int
1874 find_reg (struct insn_chain *chain, int order)
1876 int rnum = reload_order[order];
1877 struct reload *rl = rld + rnum;
1878 int best_cost = INT_MAX;
1879 int best_reg = -1;
1880 unsigned int i, j, n;
1881 int k;
1882 HARD_REG_SET not_usable;
1883 HARD_REG_SET used_by_other_reload;
1884 reg_set_iterator rsi;
1885 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1886 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1888 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1889 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1890 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1892 CLEAR_HARD_REG_SET (used_by_other_reload);
1893 for (k = 0; k < order; k++)
1895 int other = reload_order[k];
1897 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1898 for (j = 0; j < rld[other].nregs; j++)
1899 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1902 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1904 #ifdef REG_ALLOC_ORDER
1905 unsigned int regno = reg_alloc_order[i];
1906 #else
1907 unsigned int regno = i;
1908 #endif
1910 if (! TEST_HARD_REG_BIT (not_usable, regno)
1911 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1912 && HARD_REGNO_MODE_OK (regno, rl->mode))
1914 int this_cost = spill_cost[regno];
1915 int ok = 1;
1916 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1918 for (j = 1; j < this_nregs; j++)
1920 this_cost += spill_add_cost[regno + j];
1921 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1922 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1923 ok = 0;
1925 if (! ok)
1926 continue;
1928 if (ira_conflicts_p)
1930 /* Ask IRA to find a better pseudo-register for
1931 spilling. */
1932 for (n = j = 0; j < this_nregs; j++)
1934 int r = hard_regno_to_pseudo_regno[regno + j];
1936 if (r < 0)
1937 continue;
1938 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1939 regno_pseudo_regs[n++] = r;
1941 regno_pseudo_regs[n++] = -1;
1942 if (best_reg < 0
1943 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1944 best_regno_pseudo_regs,
1945 rl->in, rl->out,
1946 chain->insn))
1948 best_reg = regno;
1949 for (j = 0;; j++)
1951 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1952 if (regno_pseudo_regs[j] < 0)
1953 break;
1956 continue;
1959 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1960 this_cost--;
1961 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1962 this_cost--;
1963 if (this_cost < best_cost
1964 /* Among registers with equal cost, prefer caller-saved ones, or
1965 use REG_ALLOC_ORDER if it is defined. */
1966 || (this_cost == best_cost
1967 #ifdef REG_ALLOC_ORDER
1968 && (inv_reg_alloc_order[regno]
1969 < inv_reg_alloc_order[best_reg])
1970 #else
1971 && call_used_regs[regno]
1972 && ! call_used_regs[best_reg]
1973 #endif
1976 best_reg = regno;
1977 best_cost = this_cost;
1981 if (best_reg == -1)
1982 return 0;
1984 if (dump_file)
1985 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1987 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1988 rl->regno = best_reg;
1990 EXECUTE_IF_SET_IN_REG_SET
1991 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1993 count_spilled_pseudo (best_reg, rl->nregs, j);
1996 EXECUTE_IF_SET_IN_REG_SET
1997 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1999 count_spilled_pseudo (best_reg, rl->nregs, j);
2002 for (i = 0; i < rl->nregs; i++)
2004 gcc_assert (spill_cost[best_reg + i] == 0);
2005 gcc_assert (spill_add_cost[best_reg + i] == 0);
2006 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
2007 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
2009 return 1;
2012 /* Find more reload regs to satisfy the remaining need of an insn, which
2013 is given by CHAIN.
2014 Do it by ascending class number, since otherwise a reg
2015 might be spilled for a big class and might fail to count
2016 for a smaller class even though it belongs to that class. */
2018 static void
2019 find_reload_regs (struct insn_chain *chain)
2021 int i;
2023 /* In order to be certain of getting the registers we need,
2024 we must sort the reloads into order of increasing register class.
2025 Then our grabbing of reload registers will parallel the process
2026 that provided the reload registers. */
2027 for (i = 0; i < chain->n_reloads; i++)
2029 /* Show whether this reload already has a hard reg. */
2030 if (chain->rld[i].reg_rtx)
2032 int regno = REGNO (chain->rld[i].reg_rtx);
2033 chain->rld[i].regno = regno;
2034 chain->rld[i].nregs
2035 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2037 else
2038 chain->rld[i].regno = -1;
2039 reload_order[i] = i;
2042 n_reloads = chain->n_reloads;
2043 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2045 CLEAR_HARD_REG_SET (used_spill_regs_local);
2047 if (dump_file)
2048 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2050 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2052 /* Compute the order of preference for hard registers to spill. */
2054 order_regs_for_reload (chain);
2056 for (i = 0; i < n_reloads; i++)
2058 int r = reload_order[i];
2060 /* Ignore reloads that got marked inoperative. */
2061 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2062 && ! rld[r].optional
2063 && rld[r].regno == -1)
2064 if (! find_reg (chain, i))
2066 if (dump_file)
2067 fprintf (dump_file, "reload failure for reload %d\n", r);
2068 spill_failure (chain->insn, rld[r].rclass);
2069 failure = 1;
2070 return;
2074 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2075 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2077 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2080 static void
2081 select_reload_regs (void)
2083 struct insn_chain *chain;
2085 /* Try to satisfy the needs for each insn. */
2086 for (chain = insns_need_reload; chain != 0;
2087 chain = chain->next_need_reload)
2088 find_reload_regs (chain);
2091 /* Delete all insns that were inserted by emit_caller_save_insns during
2092 this iteration. */
2093 static void
2094 delete_caller_save_insns (void)
2096 struct insn_chain *c = reload_insn_chain;
2098 while (c != 0)
2100 while (c != 0 && c->is_caller_save_insn)
2102 struct insn_chain *next = c->next;
2103 rtx_insn *insn = c->insn;
2105 if (c == reload_insn_chain)
2106 reload_insn_chain = next;
2107 delete_insn (insn);
2109 if (next)
2110 next->prev = c->prev;
2111 if (c->prev)
2112 c->prev->next = next;
2113 c->next = unused_insn_chains;
2114 unused_insn_chains = c;
2115 c = next;
2117 if (c != 0)
2118 c = c->next;
2122 /* Handle the failure to find a register to spill.
2123 INSN should be one of the insns which needed this particular spill reg. */
2125 static void
2126 spill_failure (rtx_insn *insn, enum reg_class rclass)
2128 if (asm_noperands (PATTERN (insn)) >= 0)
2129 error_for_asm (insn, "can%'t find a register in class %qs while "
2130 "reloading %<asm%>",
2131 reg_class_names[rclass]);
2132 else
2134 error ("unable to find a register to spill in class %qs",
2135 reg_class_names[rclass]);
2137 if (dump_file)
2139 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2140 debug_reload_to_stream (dump_file);
2142 fatal_insn ("this is the insn:", insn);
2146 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2147 data that is dead in INSN. */
2149 static void
2150 delete_dead_insn (rtx_insn *insn)
2152 rtx_insn *prev = prev_active_insn (insn);
2153 rtx prev_dest;
2155 /* If the previous insn sets a register that dies in our insn make
2156 a note that we want to run DCE immediately after reload.
2158 We used to delete the previous insn & recurse, but that's wrong for
2159 block local equivalences. Instead of trying to figure out the exact
2160 circumstances where we can delete the potentially dead insns, just
2161 let DCE do the job. */
2162 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2163 && GET_CODE (PATTERN (prev)) == SET
2164 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2165 && reg_mentioned_p (prev_dest, PATTERN (insn))
2166 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2167 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2168 need_dce = 1;
2170 SET_INSN_DELETED (insn);
2173 /* Modify the home of pseudo-reg I.
2174 The new home is present in reg_renumber[I].
2176 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2177 or it may be -1, meaning there is none or it is not relevant.
2178 This is used so that all pseudos spilled from a given hard reg
2179 can share one stack slot. */
2181 static void
2182 alter_reg (int i, int from_reg, bool dont_share_p)
2184 /* When outputting an inline function, this can happen
2185 for a reg that isn't actually used. */
2186 if (regno_reg_rtx[i] == 0)
2187 return;
2189 /* If the reg got changed to a MEM at rtl-generation time,
2190 ignore it. */
2191 if (!REG_P (regno_reg_rtx[i]))
2192 return;
2194 /* Modify the reg-rtx to contain the new hard reg
2195 number or else to contain its pseudo reg number. */
2196 SET_REGNO (regno_reg_rtx[i],
2197 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2199 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2200 allocate a stack slot for it. */
2202 if (reg_renumber[i] < 0
2203 && REG_N_REFS (i) > 0
2204 && reg_equiv_constant (i) == 0
2205 && (reg_equiv_invariant (i) == 0
2206 || reg_equiv_init (i) == 0)
2207 && reg_equiv_memory_loc (i) == 0)
2209 rtx x = NULL_RTX;
2210 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2211 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2212 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2213 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2214 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2215 int adjust = 0;
2217 something_was_spilled = true;
2219 if (ira_conflicts_p)
2221 /* Mark the spill for IRA. */
2222 SET_REGNO_REG_SET (&spilled_pseudos, i);
2223 if (!dont_share_p)
2224 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2227 if (x)
2230 /* Each pseudo reg has an inherent size which comes from its own mode,
2231 and a total size which provides room for paradoxical subregs
2232 which refer to the pseudo reg in wider modes.
2234 We can use a slot already allocated if it provides both
2235 enough inherent space and enough total space.
2236 Otherwise, we allocate a new slot, making sure that it has no less
2237 inherent space, and no less total space, then the previous slot. */
2238 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2240 rtx stack_slot;
2242 /* No known place to spill from => no slot to reuse. */
2243 x = assign_stack_local (mode, total_size,
2244 min_align > inherent_align
2245 || total_size > inherent_size ? -1 : 0);
2247 stack_slot = x;
2249 /* Cancel the big-endian correction done in assign_stack_local.
2250 Get the address of the beginning of the slot. This is so we
2251 can do a big-endian correction unconditionally below. */
2252 if (BYTES_BIG_ENDIAN)
2254 adjust = inherent_size - total_size;
2255 if (adjust)
2256 stack_slot
2257 = adjust_address_nv (x, mode_for_size (total_size
2258 * BITS_PER_UNIT,
2259 MODE_INT, 1),
2260 adjust);
2263 if (! dont_share_p && ira_conflicts_p)
2264 /* Inform IRA about allocation a new stack slot. */
2265 ira_mark_new_stack_slot (stack_slot, i, total_size);
2268 /* Reuse a stack slot if possible. */
2269 else if (spill_stack_slot[from_reg] != 0
2270 && spill_stack_slot_width[from_reg] >= total_size
2271 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2272 >= inherent_size)
2273 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2274 x = spill_stack_slot[from_reg];
2276 /* Allocate a bigger slot. */
2277 else
2279 /* Compute maximum size needed, both for inherent size
2280 and for total size. */
2281 rtx stack_slot;
2283 if (spill_stack_slot[from_reg])
2285 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2286 > inherent_size)
2287 mode = GET_MODE (spill_stack_slot[from_reg]);
2288 if (spill_stack_slot_width[from_reg] > total_size)
2289 total_size = spill_stack_slot_width[from_reg];
2290 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2291 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2294 /* Make a slot with that size. */
2295 x = assign_stack_local (mode, total_size,
2296 min_align > inherent_align
2297 || total_size > inherent_size ? -1 : 0);
2298 stack_slot = x;
2300 /* Cancel the big-endian correction done in assign_stack_local.
2301 Get the address of the beginning of the slot. This is so we
2302 can do a big-endian correction unconditionally below. */
2303 if (BYTES_BIG_ENDIAN)
2305 adjust = GET_MODE_SIZE (mode) - total_size;
2306 if (adjust)
2307 stack_slot
2308 = adjust_address_nv (x, mode_for_size (total_size
2309 * BITS_PER_UNIT,
2310 MODE_INT, 1),
2311 adjust);
2314 spill_stack_slot[from_reg] = stack_slot;
2315 spill_stack_slot_width[from_reg] = total_size;
2318 /* On a big endian machine, the "address" of the slot
2319 is the address of the low part that fits its inherent mode. */
2320 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2321 adjust += (total_size - inherent_size);
2323 /* If we have any adjustment to make, or if the stack slot is the
2324 wrong mode, make a new stack slot. */
2325 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2327 /* Set all of the memory attributes as appropriate for a spill. */
2328 set_mem_attrs_for_spill (x);
2330 /* Save the stack slot for later. */
2331 reg_equiv_memory_loc (i) = x;
2335 /* Mark the slots in regs_ever_live for the hard regs used by
2336 pseudo-reg number REGNO, accessed in MODE. */
2338 static void
2339 mark_home_live_1 (int regno, machine_mode mode)
2341 int i, lim;
2343 i = reg_renumber[regno];
2344 if (i < 0)
2345 return;
2346 lim = end_hard_regno (mode, i);
2347 while (i < lim)
2348 df_set_regs_ever_live (i++, true);
2351 /* Mark the slots in regs_ever_live for the hard regs
2352 used by pseudo-reg number REGNO. */
2354 void
2355 mark_home_live (int regno)
2357 if (reg_renumber[regno] >= 0)
2358 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2361 /* This function handles the tracking of elimination offsets around branches.
2363 X is a piece of RTL being scanned.
2365 INSN is the insn that it came from, if any.
2367 INITIAL_P is nonzero if we are to set the offset to be the initial
2368 offset and zero if we are setting the offset of the label to be the
2369 current offset. */
2371 static void
2372 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2374 enum rtx_code code = GET_CODE (x);
2375 rtx tem;
2376 unsigned int i;
2377 struct elim_table *p;
2379 switch (code)
2381 case LABEL_REF:
2382 if (LABEL_REF_NONLOCAL_P (x))
2383 return;
2385 x = LABEL_REF_LABEL (x);
2387 /* ... fall through ... */
2389 case CODE_LABEL:
2390 /* If we know nothing about this label, set the desired offsets. Note
2391 that this sets the offset at a label to be the offset before a label
2392 if we don't know anything about the label. This is not correct for
2393 the label after a BARRIER, but is the best guess we can make. If
2394 we guessed wrong, we will suppress an elimination that might have
2395 been possible had we been able to guess correctly. */
2397 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 = (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset);
2403 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2406 /* Otherwise, if this is the definition of a label and it is
2407 preceded by a BARRIER, set our offsets to the known offset of
2408 that label. */
2410 else if (x == insn
2411 && (tem = prev_nonnote_insn (insn)) != 0
2412 && BARRIER_P (tem))
2413 set_offsets_for_label (insn);
2414 else
2415 /* If neither of the above cases is true, compare each offset
2416 with those previously recorded and suppress any eliminations
2417 where the offsets disagree. */
2419 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2420 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2421 != (initial_p ? reg_eliminate[i].initial_offset
2422 : reg_eliminate[i].offset))
2423 reg_eliminate[i].can_eliminate = 0;
2425 return;
2427 case JUMP_TABLE_DATA:
2428 set_label_offsets (PATTERN (insn), insn, initial_p);
2429 return;
2431 case JUMP_INSN:
2432 set_label_offsets (PATTERN (insn), insn, initial_p);
2434 /* ... fall through ... */
2436 case INSN:
2437 case CALL_INSN:
2438 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2439 to indirectly and hence must have all eliminations at their
2440 initial offsets. */
2441 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2442 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2443 set_label_offsets (XEXP (tem, 0), insn, 1);
2444 return;
2446 case PARALLEL:
2447 case ADDR_VEC:
2448 case ADDR_DIFF_VEC:
2449 /* Each of the labels in the parallel or address vector must be
2450 at their initial offsets. We want the first field for PARALLEL
2451 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2453 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2454 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2455 insn, initial_p);
2456 return;
2458 case SET:
2459 /* We only care about setting PC. If the source is not RETURN,
2460 IF_THEN_ELSE, or a label, disable any eliminations not at
2461 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2462 isn't one of those possibilities. For branches to a label,
2463 call ourselves recursively.
2465 Note that this can disable elimination unnecessarily when we have
2466 a non-local goto since it will look like a non-constant jump to
2467 someplace in the current function. This isn't a significant
2468 problem since such jumps will normally be when all elimination
2469 pairs are back to their initial offsets. */
2471 if (SET_DEST (x) != pc_rtx)
2472 return;
2474 switch (GET_CODE (SET_SRC (x)))
2476 case PC:
2477 case RETURN:
2478 return;
2480 case LABEL_REF:
2481 set_label_offsets (SET_SRC (x), insn, initial_p);
2482 return;
2484 case IF_THEN_ELSE:
2485 tem = XEXP (SET_SRC (x), 1);
2486 if (GET_CODE (tem) == LABEL_REF)
2487 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2488 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2489 break;
2491 tem = XEXP (SET_SRC (x), 2);
2492 if (GET_CODE (tem) == LABEL_REF)
2493 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2494 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2495 break;
2496 return;
2498 default:
2499 break;
2502 /* If we reach here, all eliminations must be at their initial
2503 offset because we are doing a jump to a variable address. */
2504 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2505 if (p->offset != p->initial_offset)
2506 p->can_eliminate = 0;
2507 break;
2509 default:
2510 break;
2514 /* This function examines every reg that occurs in X and adjusts the
2515 costs for its elimination which are gathered by IRA. INSN is the
2516 insn in which X occurs. We do not recurse into MEM expressions. */
2518 static void
2519 note_reg_elim_costly (const_rtx x, rtx insn)
2521 subrtx_iterator::array_type array;
2522 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2524 const_rtx x = *iter;
2525 if (MEM_P (x))
2526 iter.skip_subrtxes ();
2527 else if (REG_P (x)
2528 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2529 && reg_equiv_init (REGNO (x))
2530 && reg_equiv_invariant (REGNO (x)))
2532 rtx t = reg_equiv_invariant (REGNO (x));
2533 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2534 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2535 int freq = REG_FREQ_FROM_BB (elim_bb);
2537 if (cost != 0)
2538 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2543 /* Scan X and replace any eliminable registers (such as fp) with a
2544 replacement (such as sp), plus an offset.
2546 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2547 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2548 MEM, we are allowed to replace a sum of a register and the constant zero
2549 with the register, which we cannot do outside a MEM. In addition, we need
2550 to record the fact that a register is referenced outside a MEM.
2552 If INSN is an insn, it is the insn containing X. If we replace a REG
2553 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2554 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2555 the REG is being modified.
2557 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2558 That's used when we eliminate in expressions stored in notes.
2559 This means, do not set ref_outside_mem even if the reference
2560 is outside of MEMs.
2562 If FOR_COSTS is true, we are being called before reload in order to
2563 estimate the costs of keeping registers with an equivalence unallocated.
2565 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2566 replacements done assuming all offsets are at their initial values. If
2567 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2568 encounter, return the actual location so that find_reloads will do
2569 the proper thing. */
2571 static rtx
2572 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2573 bool may_use_invariant, bool for_costs)
2575 enum rtx_code code = GET_CODE (x);
2576 struct elim_table *ep;
2577 int regno;
2578 rtx new_rtx;
2579 int i, j;
2580 const char *fmt;
2581 int copied = 0;
2583 if (! current_function_decl)
2584 return x;
2586 switch (code)
2588 CASE_CONST_ANY:
2589 case CONST:
2590 case SYMBOL_REF:
2591 case CODE_LABEL:
2592 case PC:
2593 case CC0:
2594 case ASM_INPUT:
2595 case ADDR_VEC:
2596 case ADDR_DIFF_VEC:
2597 case RETURN:
2598 return x;
2600 case REG:
2601 regno = REGNO (x);
2603 /* First handle the case where we encounter a bare register that
2604 is eliminable. Replace it with a PLUS. */
2605 if (regno < FIRST_PSEUDO_REGISTER)
2607 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2608 ep++)
2609 if (ep->from_rtx == x && ep->can_eliminate)
2610 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2613 else if (reg_renumber && reg_renumber[regno] < 0
2614 && reg_equivs
2615 && reg_equiv_invariant (regno))
2617 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2618 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2619 mem_mode, insn, true, for_costs);
2620 /* There exists at least one use of REGNO that cannot be
2621 eliminated. Prevent the defining insn from being deleted. */
2622 reg_equiv_init (regno) = NULL;
2623 if (!for_costs)
2624 alter_reg (regno, -1, true);
2626 return x;
2628 /* You might think handling MINUS in a manner similar to PLUS is a
2629 good idea. It is not. It has been tried multiple times and every
2630 time the change has had to have been reverted.
2632 Other parts of reload know a PLUS is special (gen_reload for example)
2633 and require special code to handle code a reloaded PLUS operand.
2635 Also consider backends where the flags register is clobbered by a
2636 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2637 lea instruction comes to mind). If we try to reload a MINUS, we
2638 may kill the flags register that was holding a useful value.
2640 So, please before trying to handle MINUS, consider reload as a
2641 whole instead of this little section as well as the backend issues. */
2642 case PLUS:
2643 /* If this is the sum of an eliminable register and a constant, rework
2644 the sum. */
2645 if (REG_P (XEXP (x, 0))
2646 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2647 && CONSTANT_P (XEXP (x, 1)))
2649 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2650 ep++)
2651 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2653 /* The only time we want to replace a PLUS with a REG (this
2654 occurs when the constant operand of the PLUS is the negative
2655 of the offset) is when we are inside a MEM. We won't want
2656 to do so at other times because that would change the
2657 structure of the insn in a way that reload can't handle.
2658 We special-case the commonest situation in
2659 eliminate_regs_in_insn, so just replace a PLUS with a
2660 PLUS here, unless inside a MEM. */
2661 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2662 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2663 return ep->to_rtx;
2664 else
2665 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2666 plus_constant (Pmode, XEXP (x, 1),
2667 ep->previous_offset));
2670 /* If the register is not eliminable, we are done since the other
2671 operand is a constant. */
2672 return x;
2675 /* If this is part of an address, we want to bring any constant to the
2676 outermost PLUS. We will do this by doing register replacement in
2677 our operands and seeing if a constant shows up in one of them.
2679 Note that there is no risk of modifying the structure of the insn,
2680 since we only get called for its operands, thus we are either
2681 modifying the address inside a MEM, or something like an address
2682 operand of a load-address insn. */
2685 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2686 for_costs);
2687 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2688 for_costs);
2690 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2692 /* If one side is a PLUS and the other side is a pseudo that
2693 didn't get a hard register but has a reg_equiv_constant,
2694 we must replace the constant here since it may no longer
2695 be in the position of any operand. */
2696 if (GET_CODE (new0) == PLUS && REG_P (new1)
2697 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2698 && reg_renumber[REGNO (new1)] < 0
2699 && reg_equivs
2700 && reg_equiv_constant (REGNO (new1)) != 0)
2701 new1 = reg_equiv_constant (REGNO (new1));
2702 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2703 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2704 && reg_renumber[REGNO (new0)] < 0
2705 && reg_equiv_constant (REGNO (new0)) != 0)
2706 new0 = reg_equiv_constant (REGNO (new0));
2708 new_rtx = form_sum (GET_MODE (x), new0, new1);
2710 /* As above, if we are not inside a MEM we do not want to
2711 turn a PLUS into something else. We might try to do so here
2712 for an addition of 0 if we aren't optimizing. */
2713 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2714 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2715 else
2716 return new_rtx;
2719 return x;
2721 case MULT:
2722 /* If this is the product of an eliminable register and a
2723 constant, apply the distribute law and move the constant out
2724 so that we have (plus (mult ..) ..). This is needed in order
2725 to keep load-address insns valid. This case is pathological.
2726 We ignore the possibility of overflow here. */
2727 if (REG_P (XEXP (x, 0))
2728 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2729 && CONST_INT_P (XEXP (x, 1)))
2730 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2731 ep++)
2732 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2734 if (! mem_mode
2735 /* Refs inside notes or in DEBUG_INSNs don't count for
2736 this purpose. */
2737 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2738 || GET_CODE (insn) == INSN_LIST
2739 || DEBUG_INSN_P (insn))))
2740 ep->ref_outside_mem = 1;
2742 return
2743 plus_constant (Pmode,
2744 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2745 ep->previous_offset * INTVAL (XEXP (x, 1)));
2748 /* ... fall through ... */
2750 case CALL:
2751 case COMPARE:
2752 /* See comments before PLUS about handling MINUS. */
2753 case MINUS:
2754 case DIV: case UDIV:
2755 case MOD: case UMOD:
2756 case AND: case IOR: case XOR:
2757 case ROTATERT: case ROTATE:
2758 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2759 case NE: case EQ:
2760 case GE: case GT: case GEU: case GTU:
2761 case LE: case LT: case LEU: case LTU:
2763 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2764 for_costs);
2765 rtx new1 = XEXP (x, 1)
2766 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2767 for_costs) : 0;
2769 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2770 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2772 return x;
2774 case EXPR_LIST:
2775 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2776 if (XEXP (x, 0))
2778 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2779 for_costs);
2780 if (new_rtx != XEXP (x, 0))
2782 /* If this is a REG_DEAD note, it is not valid anymore.
2783 Using the eliminated version could result in creating a
2784 REG_DEAD note for the stack or frame pointer. */
2785 if (REG_NOTE_KIND (x) == REG_DEAD)
2786 return (XEXP (x, 1)
2787 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2788 for_costs)
2789 : NULL_RTX);
2791 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2795 /* ... fall through ... */
2797 case INSN_LIST:
2798 case INT_LIST:
2799 /* Now do eliminations in the rest of the chain. If this was
2800 an EXPR_LIST, this might result in allocating more memory than is
2801 strictly needed, but it simplifies the code. */
2802 if (XEXP (x, 1))
2804 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2805 for_costs);
2806 if (new_rtx != XEXP (x, 1))
2807 return
2808 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2810 return x;
2812 case PRE_INC:
2813 case POST_INC:
2814 case PRE_DEC:
2815 case POST_DEC:
2816 /* We do not support elimination of a register that is modified.
2817 elimination_effects has already make sure that this does not
2818 happen. */
2819 return x;
2821 case PRE_MODIFY:
2822 case POST_MODIFY:
2823 /* We do not support elimination of a register that is modified.
2824 elimination_effects has already make sure that this does not
2825 happen. The only remaining case we need to consider here is
2826 that the increment value may be an eliminable register. */
2827 if (GET_CODE (XEXP (x, 1)) == PLUS
2828 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2830 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2831 insn, true, for_costs);
2833 if (new_rtx != XEXP (XEXP (x, 1), 1))
2834 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2835 gen_rtx_PLUS (GET_MODE (x),
2836 XEXP (x, 0), new_rtx));
2838 return x;
2840 case STRICT_LOW_PART:
2841 case NEG: case NOT:
2842 case SIGN_EXTEND: case ZERO_EXTEND:
2843 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2844 case FLOAT: case FIX:
2845 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2846 case ABS:
2847 case SQRT:
2848 case FFS:
2849 case CLZ:
2850 case CTZ:
2851 case POPCOUNT:
2852 case PARITY:
2853 case BSWAP:
2854 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2855 for_costs);
2856 if (new_rtx != XEXP (x, 0))
2857 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2858 return x;
2860 case SUBREG:
2861 /* Similar to above processing, but preserve SUBREG_BYTE.
2862 Convert (subreg (mem)) to (mem) if not paradoxical.
2863 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2864 pseudo didn't get a hard reg, we must replace this with the
2865 eliminated version of the memory location because push_reload
2866 may do the replacement in certain circumstances. */
2867 if (REG_P (SUBREG_REG (x))
2868 && !paradoxical_subreg_p (x)
2869 && reg_equivs
2870 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2872 new_rtx = SUBREG_REG (x);
2874 else
2875 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2877 if (new_rtx != SUBREG_REG (x))
2879 int x_size = GET_MODE_SIZE (GET_MODE (x));
2880 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2882 if (MEM_P (new_rtx)
2883 && ((x_size < new_size
2884 #ifdef WORD_REGISTER_OPERATIONS
2885 /* On these machines, combine can create rtl of the form
2886 (set (subreg:m1 (reg:m2 R) 0) ...)
2887 where m1 < m2, and expects something interesting to
2888 happen to the entire word. Moreover, it will use the
2889 (reg:m2 R) later, expecting all bits to be preserved.
2890 So if the number of words is the same, preserve the
2891 subreg so that push_reload can see it. */
2892 && ! ((x_size - 1) / UNITS_PER_WORD
2893 == (new_size -1 ) / UNITS_PER_WORD)
2894 #endif
2896 || x_size == new_size)
2898 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2899 else
2900 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2903 return x;
2905 case MEM:
2906 /* Our only special processing is to pass the mode of the MEM to our
2907 recursive call and copy the flags. While we are here, handle this
2908 case more efficiently. */
2910 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2911 for_costs);
2912 if (for_costs
2913 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2914 && !memory_address_p (GET_MODE (x), new_rtx))
2915 note_reg_elim_costly (XEXP (x, 0), insn);
2917 return replace_equiv_address_nv (x, new_rtx);
2919 case USE:
2920 /* Handle insn_list USE that a call to a pure function may generate. */
2921 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2922 for_costs);
2923 if (new_rtx != XEXP (x, 0))
2924 return gen_rtx_USE (GET_MODE (x), new_rtx);
2925 return x;
2927 case CLOBBER:
2928 case ASM_OPERANDS:
2929 gcc_assert (insn && DEBUG_INSN_P (insn));
2930 break;
2932 case SET:
2933 gcc_unreachable ();
2935 default:
2936 break;
2939 /* Process each of our operands recursively. If any have changed, make a
2940 copy of the rtx. */
2941 fmt = GET_RTX_FORMAT (code);
2942 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2944 if (*fmt == 'e')
2946 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2947 for_costs);
2948 if (new_rtx != XEXP (x, i) && ! copied)
2950 x = shallow_copy_rtx (x);
2951 copied = 1;
2953 XEXP (x, i) = new_rtx;
2955 else if (*fmt == 'E')
2957 int copied_vec = 0;
2958 for (j = 0; j < XVECLEN (x, i); j++)
2960 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2961 for_costs);
2962 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2964 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2965 XVEC (x, i)->elem);
2966 if (! copied)
2968 x = shallow_copy_rtx (x);
2969 copied = 1;
2971 XVEC (x, i) = new_v;
2972 copied_vec = 1;
2974 XVECEXP (x, i, j) = new_rtx;
2979 return x;
2983 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2985 if (reg_eliminate == NULL)
2987 gcc_assert (targetm.no_register_allocation);
2988 return x;
2990 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2993 /* Scan rtx X for modifications of elimination target registers. Update
2994 the table of eliminables to reflect the changed state. MEM_MODE is
2995 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2997 static void
2998 elimination_effects (rtx x, machine_mode mem_mode)
3000 enum rtx_code code = GET_CODE (x);
3001 struct elim_table *ep;
3002 int regno;
3003 int i, j;
3004 const char *fmt;
3006 switch (code)
3008 CASE_CONST_ANY:
3009 case CONST:
3010 case SYMBOL_REF:
3011 case CODE_LABEL:
3012 case PC:
3013 case CC0:
3014 case ASM_INPUT:
3015 case ADDR_VEC:
3016 case ADDR_DIFF_VEC:
3017 case RETURN:
3018 return;
3020 case REG:
3021 regno = REGNO (x);
3023 /* First handle the case where we encounter a bare register that
3024 is eliminable. Replace it with a PLUS. */
3025 if (regno < FIRST_PSEUDO_REGISTER)
3027 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3028 ep++)
3029 if (ep->from_rtx == x && ep->can_eliminate)
3031 if (! mem_mode)
3032 ep->ref_outside_mem = 1;
3033 return;
3037 else if (reg_renumber[regno] < 0
3038 && reg_equivs
3039 && reg_equiv_constant (regno)
3040 && ! function_invariant_p (reg_equiv_constant (regno)))
3041 elimination_effects (reg_equiv_constant (regno), mem_mode);
3042 return;
3044 case PRE_INC:
3045 case POST_INC:
3046 case PRE_DEC:
3047 case POST_DEC:
3048 case POST_MODIFY:
3049 case PRE_MODIFY:
3050 /* If we modify the source of an elimination rule, disable it. */
3051 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3052 if (ep->from_rtx == XEXP (x, 0))
3053 ep->can_eliminate = 0;
3055 /* If we modify the target of an elimination rule by adding a constant,
3056 update its offset. If we modify the target in any other way, we'll
3057 have to disable the rule as well. */
3058 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3059 if (ep->to_rtx == XEXP (x, 0))
3061 int size = GET_MODE_SIZE (mem_mode);
3063 /* If more bytes than MEM_MODE are pushed, account for them. */
3064 #ifdef PUSH_ROUNDING
3065 if (ep->to_rtx == stack_pointer_rtx)
3066 size = PUSH_ROUNDING (size);
3067 #endif
3068 if (code == PRE_DEC || code == POST_DEC)
3069 ep->offset += size;
3070 else if (code == PRE_INC || code == POST_INC)
3071 ep->offset -= size;
3072 else if (code == PRE_MODIFY || code == POST_MODIFY)
3074 if (GET_CODE (XEXP (x, 1)) == PLUS
3075 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3076 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3077 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3078 else
3079 ep->can_eliminate = 0;
3083 /* These two aren't unary operators. */
3084 if (code == POST_MODIFY || code == PRE_MODIFY)
3085 break;
3087 /* Fall through to generic unary operation case. */
3088 case STRICT_LOW_PART:
3089 case NEG: case NOT:
3090 case SIGN_EXTEND: case ZERO_EXTEND:
3091 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3092 case FLOAT: case FIX:
3093 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3094 case ABS:
3095 case SQRT:
3096 case FFS:
3097 case CLZ:
3098 case CTZ:
3099 case POPCOUNT:
3100 case PARITY:
3101 case BSWAP:
3102 elimination_effects (XEXP (x, 0), mem_mode);
3103 return;
3105 case SUBREG:
3106 if (REG_P (SUBREG_REG (x))
3107 && (GET_MODE_SIZE (GET_MODE (x))
3108 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3109 && reg_equivs
3110 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3111 return;
3113 elimination_effects (SUBREG_REG (x), mem_mode);
3114 return;
3116 case USE:
3117 /* If using a register that is the source of an eliminate we still
3118 think can be performed, note it cannot be performed since we don't
3119 know how this register is used. */
3120 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3121 if (ep->from_rtx == XEXP (x, 0))
3122 ep->can_eliminate = 0;
3124 elimination_effects (XEXP (x, 0), mem_mode);
3125 return;
3127 case CLOBBER:
3128 /* If clobbering a register that is the replacement register for an
3129 elimination we still think can be performed, note that it cannot
3130 be performed. Otherwise, we need not be concerned about it. */
3131 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3132 if (ep->to_rtx == XEXP (x, 0))
3133 ep->can_eliminate = 0;
3135 elimination_effects (XEXP (x, 0), mem_mode);
3136 return;
3138 case SET:
3139 /* Check for setting a register that we know about. */
3140 if (REG_P (SET_DEST (x)))
3142 /* See if this is setting the replacement register for an
3143 elimination.
3145 If DEST is the hard frame pointer, we do nothing because we
3146 assume that all assignments to the frame pointer are for
3147 non-local gotos and are being done at a time when they are valid
3148 and do not disturb anything else. Some machines want to
3149 eliminate a fake argument pointer (or even a fake frame pointer)
3150 with either the real frame or the stack pointer. Assignments to
3151 the hard frame pointer must not prevent this elimination. */
3153 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3154 ep++)
3155 if (ep->to_rtx == SET_DEST (x)
3156 && SET_DEST (x) != hard_frame_pointer_rtx)
3158 /* If it is being incremented, adjust the offset. Otherwise,
3159 this elimination can't be done. */
3160 rtx src = SET_SRC (x);
3162 if (GET_CODE (src) == PLUS
3163 && XEXP (src, 0) == SET_DEST (x)
3164 && CONST_INT_P (XEXP (src, 1)))
3165 ep->offset -= INTVAL (XEXP (src, 1));
3166 else
3167 ep->can_eliminate = 0;
3171 elimination_effects (SET_DEST (x), VOIDmode);
3172 elimination_effects (SET_SRC (x), VOIDmode);
3173 return;
3175 case MEM:
3176 /* Our only special processing is to pass the mode of the MEM to our
3177 recursive call. */
3178 elimination_effects (XEXP (x, 0), GET_MODE (x));
3179 return;
3181 default:
3182 break;
3185 fmt = GET_RTX_FORMAT (code);
3186 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3188 if (*fmt == 'e')
3189 elimination_effects (XEXP (x, i), mem_mode);
3190 else if (*fmt == 'E')
3191 for (j = 0; j < XVECLEN (x, i); j++)
3192 elimination_effects (XVECEXP (x, i, j), mem_mode);
3196 /* Descend through rtx X and verify that no references to eliminable registers
3197 remain. If any do remain, mark the involved register as not
3198 eliminable. */
3200 static void
3201 check_eliminable_occurrences (rtx x)
3203 const char *fmt;
3204 int i;
3205 enum rtx_code code;
3207 if (x == 0)
3208 return;
3210 code = GET_CODE (x);
3212 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3214 struct elim_table *ep;
3216 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3217 if (ep->from_rtx == x)
3218 ep->can_eliminate = 0;
3219 return;
3222 fmt = GET_RTX_FORMAT (code);
3223 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3225 if (*fmt == 'e')
3226 check_eliminable_occurrences (XEXP (x, i));
3227 else if (*fmt == 'E')
3229 int j;
3230 for (j = 0; j < XVECLEN (x, i); j++)
3231 check_eliminable_occurrences (XVECEXP (x, i, j));
3236 /* Scan INSN and eliminate all eliminable registers in it.
3238 If REPLACE is nonzero, do the replacement destructively. Also
3239 delete the insn as dead it if it is setting an eliminable register.
3241 If REPLACE is zero, do all our allocations in reload_obstack.
3243 If no eliminations were done and this insn doesn't require any elimination
3244 processing (these are not identical conditions: it might be updating sp,
3245 but not referencing fp; this needs to be seen during reload_as_needed so
3246 that the offset between fp and sp can be taken into consideration), zero
3247 is returned. Otherwise, 1 is returned. */
3249 static int
3250 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3252 int icode = recog_memoized (insn);
3253 rtx old_body = PATTERN (insn);
3254 int insn_is_asm = asm_noperands (old_body) >= 0;
3255 rtx old_set = single_set (insn);
3256 rtx new_body;
3257 int val = 0;
3258 int i;
3259 rtx substed_operand[MAX_RECOG_OPERANDS];
3260 rtx orig_operand[MAX_RECOG_OPERANDS];
3261 struct elim_table *ep;
3262 rtx plus_src, plus_cst_src;
3264 if (! insn_is_asm && icode < 0)
3266 gcc_assert (DEBUG_INSN_P (insn)
3267 || GET_CODE (PATTERN (insn)) == USE
3268 || GET_CODE (PATTERN (insn)) == CLOBBER
3269 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3270 if (DEBUG_INSN_P (insn))
3271 INSN_VAR_LOCATION_LOC (insn)
3272 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3273 return 0;
3276 if (old_set != 0 && REG_P (SET_DEST (old_set))
3277 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3279 /* Check for setting an eliminable register. */
3280 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3281 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3283 /* If this is setting the frame pointer register to the
3284 hardware frame pointer register and this is an elimination
3285 that will be done (tested above), this insn is really
3286 adjusting the frame pointer downward to compensate for
3287 the adjustment done before a nonlocal goto. */
3288 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3289 && ep->from == FRAME_POINTER_REGNUM
3290 && ep->to == HARD_FRAME_POINTER_REGNUM)
3292 rtx base = SET_SRC (old_set);
3293 rtx_insn *base_insn = insn;
3294 HOST_WIDE_INT offset = 0;
3296 while (base != ep->to_rtx)
3298 rtx_insn *prev_insn;
3299 rtx prev_set;
3301 if (GET_CODE (base) == PLUS
3302 && CONST_INT_P (XEXP (base, 1)))
3304 offset += INTVAL (XEXP (base, 1));
3305 base = XEXP (base, 0);
3307 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3308 && (prev_set = single_set (prev_insn)) != 0
3309 && rtx_equal_p (SET_DEST (prev_set), base))
3311 base = SET_SRC (prev_set);
3312 base_insn = prev_insn;
3314 else
3315 break;
3318 if (base == ep->to_rtx)
3320 rtx src = plus_constant (Pmode, ep->to_rtx,
3321 offset - ep->offset);
3323 new_body = old_body;
3324 if (! replace)
3326 new_body = copy_insn (old_body);
3327 if (REG_NOTES (insn))
3328 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3330 PATTERN (insn) = new_body;
3331 old_set = single_set (insn);
3333 /* First see if this insn remains valid when we
3334 make the change. If not, keep the INSN_CODE
3335 the same and let reload fit it up. */
3336 validate_change (insn, &SET_SRC (old_set), src, 1);
3337 validate_change (insn, &SET_DEST (old_set),
3338 ep->to_rtx, 1);
3339 if (! apply_change_group ())
3341 SET_SRC (old_set) = src;
3342 SET_DEST (old_set) = ep->to_rtx;
3345 val = 1;
3346 goto done;
3350 /* In this case this insn isn't serving a useful purpose. We
3351 will delete it in reload_as_needed once we know that this
3352 elimination is, in fact, being done.
3354 If REPLACE isn't set, we can't delete this insn, but needn't
3355 process it since it won't be used unless something changes. */
3356 if (replace)
3358 delete_dead_insn (insn);
3359 return 1;
3361 val = 1;
3362 goto done;
3366 /* We allow one special case which happens to work on all machines we
3367 currently support: a single set with the source or a REG_EQUAL
3368 note being a PLUS of an eliminable register and a constant. */
3369 plus_src = plus_cst_src = 0;
3370 if (old_set && REG_P (SET_DEST (old_set)))
3372 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3373 plus_src = SET_SRC (old_set);
3374 /* First see if the source is of the form (plus (...) CST). */
3375 if (plus_src
3376 && CONST_INT_P (XEXP (plus_src, 1)))
3377 plus_cst_src = plus_src;
3378 else if (REG_P (SET_SRC (old_set))
3379 || plus_src)
3381 /* Otherwise, see if we have a REG_EQUAL note of the form
3382 (plus (...) CST). */
3383 rtx links;
3384 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3386 if ((REG_NOTE_KIND (links) == REG_EQUAL
3387 || REG_NOTE_KIND (links) == REG_EQUIV)
3388 && GET_CODE (XEXP (links, 0)) == PLUS
3389 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3391 plus_cst_src = XEXP (links, 0);
3392 break;
3397 /* Check that the first operand of the PLUS is a hard reg or
3398 the lowpart subreg of one. */
3399 if (plus_cst_src)
3401 rtx reg = XEXP (plus_cst_src, 0);
3402 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3403 reg = SUBREG_REG (reg);
3405 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3406 plus_cst_src = 0;
3409 if (plus_cst_src)
3411 rtx reg = XEXP (plus_cst_src, 0);
3412 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3414 if (GET_CODE (reg) == SUBREG)
3415 reg = SUBREG_REG (reg);
3417 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3418 if (ep->from_rtx == reg && ep->can_eliminate)
3420 rtx to_rtx = ep->to_rtx;
3421 offset += ep->offset;
3422 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3424 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3425 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3426 to_rtx);
3427 /* If we have a nonzero offset, and the source is already
3428 a simple REG, the following transformation would
3429 increase the cost of the insn by replacing a simple REG
3430 with (plus (reg sp) CST). So try only when we already
3431 had a PLUS before. */
3432 if (offset == 0 || plus_src)
3434 rtx new_src = plus_constant (GET_MODE (to_rtx),
3435 to_rtx, offset);
3437 new_body = old_body;
3438 if (! replace)
3440 new_body = copy_insn (old_body);
3441 if (REG_NOTES (insn))
3442 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3444 PATTERN (insn) = new_body;
3445 old_set = single_set (insn);
3447 /* First see if this insn remains valid when we make the
3448 change. If not, try to replace the whole pattern with
3449 a simple set (this may help if the original insn was a
3450 PARALLEL that was only recognized as single_set due to
3451 REG_UNUSED notes). If this isn't valid either, keep
3452 the INSN_CODE the same and let reload fix it up. */
3453 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3455 rtx new_pat = gen_rtx_SET (VOIDmode,
3456 SET_DEST (old_set), new_src);
3458 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3459 SET_SRC (old_set) = new_src;
3462 else
3463 break;
3465 val = 1;
3466 /* This can't have an effect on elimination offsets, so skip right
3467 to the end. */
3468 goto done;
3472 /* Determine the effects of this insn on elimination offsets. */
3473 elimination_effects (old_body, VOIDmode);
3475 /* Eliminate all eliminable registers occurring in operands that
3476 can be handled by reload. */
3477 extract_insn (insn);
3478 for (i = 0; i < recog_data.n_operands; i++)
3480 orig_operand[i] = recog_data.operand[i];
3481 substed_operand[i] = recog_data.operand[i];
3483 /* For an asm statement, every operand is eliminable. */
3484 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3486 bool is_set_src, in_plus;
3488 /* Check for setting a register that we know about. */
3489 if (recog_data.operand_type[i] != OP_IN
3490 && REG_P (orig_operand[i]))
3492 /* If we are assigning to a register that can be eliminated, it
3493 must be as part of a PARALLEL, since the code above handles
3494 single SETs. We must indicate that we can no longer
3495 eliminate this reg. */
3496 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3497 ep++)
3498 if (ep->from_rtx == orig_operand[i])
3499 ep->can_eliminate = 0;
3502 /* Companion to the above plus substitution, we can allow
3503 invariants as the source of a plain move. */
3504 is_set_src = false;
3505 if (old_set
3506 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3507 is_set_src = true;
3508 in_plus = false;
3509 if (plus_src
3510 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3511 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3512 in_plus = true;
3514 substed_operand[i]
3515 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3516 replace ? insn : NULL_RTX,
3517 is_set_src || in_plus, false);
3518 if (substed_operand[i] != orig_operand[i])
3519 val = 1;
3520 /* Terminate the search in check_eliminable_occurrences at
3521 this point. */
3522 *recog_data.operand_loc[i] = 0;
3524 /* If an output operand changed from a REG to a MEM and INSN is an
3525 insn, write a CLOBBER insn. */
3526 if (recog_data.operand_type[i] != OP_IN
3527 && REG_P (orig_operand[i])
3528 && MEM_P (substed_operand[i])
3529 && replace)
3530 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3534 for (i = 0; i < recog_data.n_dups; i++)
3535 *recog_data.dup_loc[i]
3536 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3538 /* If any eliminable remain, they aren't eliminable anymore. */
3539 check_eliminable_occurrences (old_body);
3541 /* Substitute the operands; the new values are in the substed_operand
3542 array. */
3543 for (i = 0; i < recog_data.n_operands; i++)
3544 *recog_data.operand_loc[i] = substed_operand[i];
3545 for (i = 0; i < recog_data.n_dups; i++)
3546 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3548 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3549 re-recognize the insn. We do this in case we had a simple addition
3550 but now can do this as a load-address. This saves an insn in this
3551 common case.
3552 If re-recognition fails, the old insn code number will still be used,
3553 and some register operands may have changed into PLUS expressions.
3554 These will be handled by find_reloads by loading them into a register
3555 again. */
3557 if (val)
3559 /* If we aren't replacing things permanently and we changed something,
3560 make another copy to ensure that all the RTL is new. Otherwise
3561 things can go wrong if find_reload swaps commutative operands
3562 and one is inside RTL that has been copied while the other is not. */
3563 new_body = old_body;
3564 if (! replace)
3566 new_body = copy_insn (old_body);
3567 if (REG_NOTES (insn))
3568 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3570 PATTERN (insn) = new_body;
3572 /* If we had a move insn but now we don't, rerecognize it. This will
3573 cause spurious re-recognition if the old move had a PARALLEL since
3574 the new one still will, but we can't call single_set without
3575 having put NEW_BODY into the insn and the re-recognition won't
3576 hurt in this rare case. */
3577 /* ??? Why this huge if statement - why don't we just rerecognize the
3578 thing always? */
3579 if (! insn_is_asm
3580 && old_set != 0
3581 && ((REG_P (SET_SRC (old_set))
3582 && (GET_CODE (new_body) != SET
3583 || !REG_P (SET_SRC (new_body))))
3584 /* If this was a load from or store to memory, compare
3585 the MEM in recog_data.operand to the one in the insn.
3586 If they are not equal, then rerecognize the insn. */
3587 || (old_set != 0
3588 && ((MEM_P (SET_SRC (old_set))
3589 && SET_SRC (old_set) != recog_data.operand[1])
3590 || (MEM_P (SET_DEST (old_set))
3591 && SET_DEST (old_set) != recog_data.operand[0])))
3592 /* If this was an add insn before, rerecognize. */
3593 || GET_CODE (SET_SRC (old_set)) == PLUS))
3595 int new_icode = recog (PATTERN (insn), insn, 0);
3596 if (new_icode >= 0)
3597 INSN_CODE (insn) = new_icode;
3601 /* Restore the old body. If there were any changes to it, we made a copy
3602 of it while the changes were still in place, so we'll correctly return
3603 a modified insn below. */
3604 if (! replace)
3606 /* Restore the old body. */
3607 for (i = 0; i < recog_data.n_operands; i++)
3608 /* Restoring a top-level match_parallel would clobber the new_body
3609 we installed in the insn. */
3610 if (recog_data.operand_loc[i] != &PATTERN (insn))
3611 *recog_data.operand_loc[i] = orig_operand[i];
3612 for (i = 0; i < recog_data.n_dups; i++)
3613 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3616 /* Update all elimination pairs to reflect the status after the current
3617 insn. The changes we make were determined by the earlier call to
3618 elimination_effects.
3620 We also detect cases where register elimination cannot be done,
3621 namely, if a register would be both changed and referenced outside a MEM
3622 in the resulting insn since such an insn is often undefined and, even if
3623 not, we cannot know what meaning will be given to it. Note that it is
3624 valid to have a register used in an address in an insn that changes it
3625 (presumably with a pre- or post-increment or decrement).
3627 If anything changes, return nonzero. */
3629 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3631 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3632 ep->can_eliminate = 0;
3634 ep->ref_outside_mem = 0;
3636 if (ep->previous_offset != ep->offset)
3637 val = 1;
3640 done:
3641 /* If we changed something, perform elimination in REG_NOTES. This is
3642 needed even when REPLACE is zero because a REG_DEAD note might refer
3643 to a register that we eliminate and could cause a different number
3644 of spill registers to be needed in the final reload pass than in
3645 the pre-passes. */
3646 if (val && REG_NOTES (insn) != 0)
3647 REG_NOTES (insn)
3648 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3649 false);
3651 return val;
3654 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3655 register allocator. INSN is the instruction we need to examine, we perform
3656 eliminations in its operands and record cases where eliminating a reg with
3657 an invariant equivalence would add extra cost. */
3659 static void
3660 elimination_costs_in_insn (rtx_insn *insn)
3662 int icode = recog_memoized (insn);
3663 rtx old_body = PATTERN (insn);
3664 int insn_is_asm = asm_noperands (old_body) >= 0;
3665 rtx old_set = single_set (insn);
3666 int i;
3667 rtx orig_operand[MAX_RECOG_OPERANDS];
3668 rtx orig_dup[MAX_RECOG_OPERANDS];
3669 struct elim_table *ep;
3670 rtx plus_src, plus_cst_src;
3671 bool sets_reg_p;
3673 if (! insn_is_asm && icode < 0)
3675 gcc_assert (DEBUG_INSN_P (insn)
3676 || GET_CODE (PATTERN (insn)) == USE
3677 || GET_CODE (PATTERN (insn)) == CLOBBER
3678 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3679 return;
3682 if (old_set != 0 && REG_P (SET_DEST (old_set))
3683 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3685 /* Check for setting an eliminable register. */
3686 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3687 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3688 return;
3691 /* We allow one special case which happens to work on all machines we
3692 currently support: a single set with the source or a REG_EQUAL
3693 note being a PLUS of an eliminable register and a constant. */
3694 plus_src = plus_cst_src = 0;
3695 sets_reg_p = false;
3696 if (old_set && REG_P (SET_DEST (old_set)))
3698 sets_reg_p = true;
3699 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3700 plus_src = SET_SRC (old_set);
3701 /* First see if the source is of the form (plus (...) CST). */
3702 if (plus_src
3703 && CONST_INT_P (XEXP (plus_src, 1)))
3704 plus_cst_src = plus_src;
3705 else if (REG_P (SET_SRC (old_set))
3706 || plus_src)
3708 /* Otherwise, see if we have a REG_EQUAL note of the form
3709 (plus (...) CST). */
3710 rtx links;
3711 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3713 if ((REG_NOTE_KIND (links) == REG_EQUAL
3714 || REG_NOTE_KIND (links) == REG_EQUIV)
3715 && GET_CODE (XEXP (links, 0)) == PLUS
3716 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3718 plus_cst_src = XEXP (links, 0);
3719 break;
3725 /* Determine the effects of this insn on elimination offsets. */
3726 elimination_effects (old_body, VOIDmode);
3728 /* Eliminate all eliminable registers occurring in operands that
3729 can be handled by reload. */
3730 extract_insn (insn);
3731 for (i = 0; i < recog_data.n_dups; i++)
3732 orig_dup[i] = *recog_data.dup_loc[i];
3734 for (i = 0; i < recog_data.n_operands; i++)
3736 orig_operand[i] = recog_data.operand[i];
3738 /* For an asm statement, every operand is eliminable. */
3739 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3741 bool is_set_src, in_plus;
3743 /* Check for setting a register that we know about. */
3744 if (recog_data.operand_type[i] != OP_IN
3745 && REG_P (orig_operand[i]))
3747 /* If we are assigning to a register that can be eliminated, it
3748 must be as part of a PARALLEL, since the code above handles
3749 single SETs. We must indicate that we can no longer
3750 eliminate this reg. */
3751 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3752 ep++)
3753 if (ep->from_rtx == orig_operand[i])
3754 ep->can_eliminate = 0;
3757 /* Companion to the above plus substitution, we can allow
3758 invariants as the source of a plain move. */
3759 is_set_src = false;
3760 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3761 is_set_src = true;
3762 if (is_set_src && !sets_reg_p)
3763 note_reg_elim_costly (SET_SRC (old_set), insn);
3764 in_plus = false;
3765 if (plus_src && sets_reg_p
3766 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3767 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3768 in_plus = true;
3770 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3771 NULL_RTX,
3772 is_set_src || in_plus, true);
3773 /* Terminate the search in check_eliminable_occurrences at
3774 this point. */
3775 *recog_data.operand_loc[i] = 0;
3779 for (i = 0; i < recog_data.n_dups; i++)
3780 *recog_data.dup_loc[i]
3781 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3783 /* If any eliminable remain, they aren't eliminable anymore. */
3784 check_eliminable_occurrences (old_body);
3786 /* Restore the old body. */
3787 for (i = 0; i < recog_data.n_operands; i++)
3788 *recog_data.operand_loc[i] = orig_operand[i];
3789 for (i = 0; i < recog_data.n_dups; i++)
3790 *recog_data.dup_loc[i] = orig_dup[i];
3792 /* Update all elimination pairs to reflect the status after the current
3793 insn. The changes we make were determined by the earlier call to
3794 elimination_effects. */
3796 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3798 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3799 ep->can_eliminate = 0;
3801 ep->ref_outside_mem = 0;
3804 return;
3807 /* Loop through all elimination pairs.
3808 Recalculate the number not at initial offset.
3810 Compute the maximum offset (minimum offset if the stack does not
3811 grow downward) for each elimination pair. */
3813 static void
3814 update_eliminable_offsets (void)
3816 struct elim_table *ep;
3818 num_not_at_initial_offset = 0;
3819 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3821 ep->previous_offset = ep->offset;
3822 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3823 num_not_at_initial_offset++;
3827 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3828 replacement we currently believe is valid, mark it as not eliminable if X
3829 modifies DEST in any way other than by adding a constant integer to it.
3831 If DEST is the frame pointer, we do nothing because we assume that
3832 all assignments to the hard frame pointer are nonlocal gotos and are being
3833 done at a time when they are valid and do not disturb anything else.
3834 Some machines want to eliminate a fake argument pointer with either the
3835 frame or stack pointer. Assignments to the hard frame pointer must not
3836 prevent this elimination.
3838 Called via note_stores from reload before starting its passes to scan
3839 the insns of the function. */
3841 static void
3842 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3844 unsigned int i;
3846 /* A SUBREG of a hard register here is just changing its mode. We should
3847 not see a SUBREG of an eliminable hard register, but check just in
3848 case. */
3849 if (GET_CODE (dest) == SUBREG)
3850 dest = SUBREG_REG (dest);
3852 if (dest == hard_frame_pointer_rtx)
3853 return;
3855 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3856 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3857 && (GET_CODE (x) != SET
3858 || GET_CODE (SET_SRC (x)) != PLUS
3859 || XEXP (SET_SRC (x), 0) != dest
3860 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3862 reg_eliminate[i].can_eliminate_previous
3863 = reg_eliminate[i].can_eliminate = 0;
3864 num_eliminable--;
3868 /* Verify that the initial elimination offsets did not change since the
3869 last call to set_initial_elim_offsets. This is used to catch cases
3870 where something illegal happened during reload_as_needed that could
3871 cause incorrect code to be generated if we did not check for it. */
3873 static bool
3874 verify_initial_elim_offsets (void)
3876 HOST_WIDE_INT t;
3878 if (!num_eliminable)
3879 return true;
3881 #ifdef ELIMINABLE_REGS
3883 struct elim_table *ep;
3885 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3887 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3888 if (t != ep->initial_offset)
3889 return false;
3892 #else
3893 INITIAL_FRAME_POINTER_OFFSET (t);
3894 if (t != reg_eliminate[0].initial_offset)
3895 return false;
3896 #endif
3898 return true;
3901 /* Reset all offsets on eliminable registers to their initial values. */
3903 static void
3904 set_initial_elim_offsets (void)
3906 struct elim_table *ep = reg_eliminate;
3908 #ifdef ELIMINABLE_REGS
3909 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3911 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3912 ep->previous_offset = ep->offset = ep->initial_offset;
3914 #else
3915 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3916 ep->previous_offset = ep->offset = ep->initial_offset;
3917 #endif
3919 num_not_at_initial_offset = 0;
3922 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3924 static void
3925 set_initial_eh_label_offset (rtx label)
3927 set_label_offsets (label, NULL, 1);
3930 /* Initialize the known label offsets.
3931 Set a known offset for each forced label to be at the initial offset
3932 of each elimination. We do this because we assume that all
3933 computed jumps occur from a location where each elimination is
3934 at its initial offset.
3935 For all other labels, show that we don't know the offsets. */
3937 static void
3938 set_initial_label_offsets (void)
3940 memset (offsets_known_at, 0, num_labels);
3942 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3943 if (x->insn ())
3944 set_label_offsets (x->insn (), NULL, 1);
3946 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3947 if (x->insn ())
3948 set_label_offsets (x->insn (), NULL, 1);
3950 for_each_eh_label (set_initial_eh_label_offset);
3953 /* Set all elimination offsets to the known values for the code label given
3954 by INSN. */
3956 static void
3957 set_offsets_for_label (rtx_insn *insn)
3959 unsigned int i;
3960 int label_nr = CODE_LABEL_NUMBER (insn);
3961 struct elim_table *ep;
3963 num_not_at_initial_offset = 0;
3964 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3966 ep->offset = ep->previous_offset
3967 = offsets_at[label_nr - first_label_num][i];
3968 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3969 num_not_at_initial_offset++;
3973 /* See if anything that happened changes which eliminations are valid.
3974 For example, on the SPARC, whether or not the frame pointer can
3975 be eliminated can depend on what registers have been used. We need
3976 not check some conditions again (such as flag_omit_frame_pointer)
3977 since they can't have changed. */
3979 static void
3980 update_eliminables (HARD_REG_SET *pset)
3982 int previous_frame_pointer_needed = frame_pointer_needed;
3983 struct elim_table *ep;
3985 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3986 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3987 && targetm.frame_pointer_required ())
3988 #ifdef ELIMINABLE_REGS
3989 || ! targetm.can_eliminate (ep->from, ep->to)
3990 #endif
3992 ep->can_eliminate = 0;
3994 /* Look for the case where we have discovered that we can't replace
3995 register A with register B and that means that we will now be
3996 trying to replace register A with register C. This means we can
3997 no longer replace register C with register B and we need to disable
3998 such an elimination, if it exists. This occurs often with A == ap,
3999 B == sp, and C == fp. */
4001 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4003 struct elim_table *op;
4004 int new_to = -1;
4006 if (! ep->can_eliminate && ep->can_eliminate_previous)
4008 /* Find the current elimination for ep->from, if there is a
4009 new one. */
4010 for (op = reg_eliminate;
4011 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4012 if (op->from == ep->from && op->can_eliminate)
4014 new_to = op->to;
4015 break;
4018 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
4019 disable it. */
4020 for (op = reg_eliminate;
4021 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4022 if (op->from == new_to && op->to == ep->to)
4023 op->can_eliminate = 0;
4027 /* See if any registers that we thought we could eliminate the previous
4028 time are no longer eliminable. If so, something has changed and we
4029 must spill the register. Also, recompute the number of eliminable
4030 registers and see if the frame pointer is needed; it is if there is
4031 no elimination of the frame pointer that we can perform. */
4033 frame_pointer_needed = 1;
4034 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4036 if (ep->can_eliminate
4037 && ep->from == FRAME_POINTER_REGNUM
4038 && ep->to != HARD_FRAME_POINTER_REGNUM
4039 && (! SUPPORTS_STACK_ALIGNMENT
4040 || ! crtl->stack_realign_needed))
4041 frame_pointer_needed = 0;
4043 if (! ep->can_eliminate && ep->can_eliminate_previous)
4045 ep->can_eliminate_previous = 0;
4046 SET_HARD_REG_BIT (*pset, ep->from);
4047 num_eliminable--;
4051 /* If we didn't need a frame pointer last time, but we do now, spill
4052 the hard frame pointer. */
4053 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4054 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4057 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4058 Return true iff a register was spilled. */
4060 static bool
4061 update_eliminables_and_spill (void)
4063 int i;
4064 bool did_spill = false;
4065 HARD_REG_SET to_spill;
4066 CLEAR_HARD_REG_SET (to_spill);
4067 update_eliminables (&to_spill);
4068 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4070 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4071 if (TEST_HARD_REG_BIT (to_spill, i))
4073 spill_hard_reg (i, 1);
4074 did_spill = true;
4076 /* Regardless of the state of spills, if we previously had
4077 a register that we thought we could eliminate, but now can
4078 not eliminate, we must run another pass.
4080 Consider pseudos which have an entry in reg_equiv_* which
4081 reference an eliminable register. We must make another pass
4082 to update reg_equiv_* so that we do not substitute in the
4083 old value from when we thought the elimination could be
4084 performed. */
4086 return did_spill;
4089 /* Return true if X is used as the target register of an elimination. */
4091 bool
4092 elimination_target_reg_p (rtx x)
4094 struct elim_table *ep;
4096 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4097 if (ep->to_rtx == x && ep->can_eliminate)
4098 return true;
4100 return false;
4103 /* Initialize the table of registers to eliminate.
4104 Pre-condition: global flag frame_pointer_needed has been set before
4105 calling this function. */
4107 static void
4108 init_elim_table (void)
4110 struct elim_table *ep;
4111 #ifdef ELIMINABLE_REGS
4112 const struct elim_table_1 *ep1;
4113 #endif
4115 if (!reg_eliminate)
4116 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4118 num_eliminable = 0;
4120 #ifdef ELIMINABLE_REGS
4121 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4122 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4124 ep->from = ep1->from;
4125 ep->to = ep1->to;
4126 ep->can_eliminate = ep->can_eliminate_previous
4127 = (targetm.can_eliminate (ep->from, ep->to)
4128 && ! (ep->to == STACK_POINTER_REGNUM
4129 && frame_pointer_needed
4130 && (! SUPPORTS_STACK_ALIGNMENT
4131 || ! stack_realign_fp)));
4133 #else
4134 reg_eliminate[0].from = reg_eliminate_1[0].from;
4135 reg_eliminate[0].to = reg_eliminate_1[0].to;
4136 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4137 = ! frame_pointer_needed;
4138 #endif
4140 /* Count the number of eliminable registers and build the FROM and TO
4141 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4142 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4143 We depend on this. */
4144 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4146 num_eliminable += ep->can_eliminate;
4147 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4148 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4152 /* Find all the pseudo registers that didn't get hard regs
4153 but do have known equivalent constants or memory slots.
4154 These include parameters (known equivalent to parameter slots)
4155 and cse'd or loop-moved constant memory addresses.
4157 Record constant equivalents in reg_equiv_constant
4158 so they will be substituted by find_reloads.
4159 Record memory equivalents in reg_mem_equiv so they can
4160 be substituted eventually by altering the REG-rtx's. */
4162 static void
4163 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4165 int i;
4166 rtx_insn *insn;
4168 grow_reg_equivs ();
4169 if (do_subregs)
4170 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4171 else
4172 reg_max_ref_width = NULL;
4174 num_eliminable_invariants = 0;
4176 first_label_num = get_first_label_num ();
4177 num_labels = max_label_num () - first_label_num;
4179 /* Allocate the tables used to store offset information at labels. */
4180 offsets_known_at = XNEWVEC (char, num_labels);
4181 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4183 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4184 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4185 find largest such for each pseudo. FIRST is the head of the insn
4186 list. */
4188 for (insn = first; insn; insn = NEXT_INSN (insn))
4190 rtx set = single_set (insn);
4192 /* We may introduce USEs that we want to remove at the end, so
4193 we'll mark them with QImode. Make sure there are no
4194 previously-marked insns left by say regmove. */
4195 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4196 && GET_MODE (insn) != VOIDmode)
4197 PUT_MODE (insn, VOIDmode);
4199 if (do_subregs && NONDEBUG_INSN_P (insn))
4200 scan_paradoxical_subregs (PATTERN (insn));
4202 if (set != 0 && REG_P (SET_DEST (set)))
4204 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4205 rtx x;
4207 if (! note)
4208 continue;
4210 i = REGNO (SET_DEST (set));
4211 x = XEXP (note, 0);
4213 if (i <= LAST_VIRTUAL_REGISTER)
4214 continue;
4216 /* If flag_pic and we have constant, verify it's legitimate. */
4217 if (!CONSTANT_P (x)
4218 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4220 /* It can happen that a REG_EQUIV note contains a MEM
4221 that is not a legitimate memory operand. As later
4222 stages of reload assume that all addresses found
4223 in the reg_equiv_* arrays were originally legitimate,
4224 we ignore such REG_EQUIV notes. */
4225 if (memory_operand (x, VOIDmode))
4227 /* Always unshare the equivalence, so we can
4228 substitute into this insn without touching the
4229 equivalence. */
4230 reg_equiv_memory_loc (i) = copy_rtx (x);
4232 else if (function_invariant_p (x))
4234 machine_mode mode;
4236 mode = GET_MODE (SET_DEST (set));
4237 if (GET_CODE (x) == PLUS)
4239 /* This is PLUS of frame pointer and a constant,
4240 and might be shared. Unshare it. */
4241 reg_equiv_invariant (i) = copy_rtx (x);
4242 num_eliminable_invariants++;
4244 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4246 reg_equiv_invariant (i) = x;
4247 num_eliminable_invariants++;
4249 else if (targetm.legitimate_constant_p (mode, x))
4250 reg_equiv_constant (i) = x;
4251 else
4253 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4254 if (! reg_equiv_memory_loc (i))
4255 reg_equiv_init (i) = NULL;
4258 else
4260 reg_equiv_init (i) = NULL;
4261 continue;
4264 else
4265 reg_equiv_init (i) = NULL;
4269 if (dump_file)
4270 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4271 if (reg_equiv_init (i))
4273 fprintf (dump_file, "init_insns for %u: ", i);
4274 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4275 fprintf (dump_file, "\n");
4279 /* Indicate that we no longer have known memory locations or constants.
4280 Free all data involved in tracking these. */
4282 static void
4283 free_reg_equiv (void)
4285 int i;
4287 free (offsets_known_at);
4288 free (offsets_at);
4289 offsets_at = 0;
4290 offsets_known_at = 0;
4292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4293 if (reg_equiv_alt_mem_list (i))
4294 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4295 vec_free (reg_equivs);
4298 /* Kick all pseudos out of hard register REGNO.
4300 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4301 because we found we can't eliminate some register. In the case, no pseudos
4302 are allowed to be in the register, even if they are only in a block that
4303 doesn't require spill registers, unlike the case when we are spilling this
4304 hard reg to produce another spill register.
4306 Return nonzero if any pseudos needed to be kicked out. */
4308 static void
4309 spill_hard_reg (unsigned int regno, int cant_eliminate)
4311 int i;
4313 if (cant_eliminate)
4315 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4316 df_set_regs_ever_live (regno, true);
4319 /* Spill every pseudo reg that was allocated to this reg
4320 or to something that overlaps this reg. */
4322 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4323 if (reg_renumber[i] >= 0
4324 && (unsigned int) reg_renumber[i] <= regno
4325 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4326 SET_REGNO_REG_SET (&spilled_pseudos, i);
4329 /* After find_reload_regs has been run for all insn that need reloads,
4330 and/or spill_hard_regs was called, this function is used to actually
4331 spill pseudo registers and try to reallocate them. It also sets up the
4332 spill_regs array for use by choose_reload_regs. */
4334 static int
4335 finish_spills (int global)
4337 struct insn_chain *chain;
4338 int something_changed = 0;
4339 unsigned i;
4340 reg_set_iterator rsi;
4342 /* Build the spill_regs array for the function. */
4343 /* If there are some registers still to eliminate and one of the spill regs
4344 wasn't ever used before, additional stack space may have to be
4345 allocated to store this register. Thus, we may have changed the offset
4346 between the stack and frame pointers, so mark that something has changed.
4348 One might think that we need only set VAL to 1 if this is a call-used
4349 register. However, the set of registers that must be saved by the
4350 prologue is not identical to the call-used set. For example, the
4351 register used by the call insn for the return PC is a call-used register,
4352 but must be saved by the prologue. */
4354 n_spills = 0;
4355 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4356 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4358 spill_reg_order[i] = n_spills;
4359 spill_regs[n_spills++] = i;
4360 if (num_eliminable && ! df_regs_ever_live_p (i))
4361 something_changed = 1;
4362 df_set_regs_ever_live (i, true);
4364 else
4365 spill_reg_order[i] = -1;
4367 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4368 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4370 /* Record the current hard register the pseudo is allocated to
4371 in pseudo_previous_regs so we avoid reallocating it to the
4372 same hard reg in a later pass. */
4373 gcc_assert (reg_renumber[i] >= 0);
4375 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4376 /* Mark it as no longer having a hard register home. */
4377 reg_renumber[i] = -1;
4378 if (ira_conflicts_p)
4379 /* Inform IRA about the change. */
4380 ira_mark_allocation_change (i);
4381 /* We will need to scan everything again. */
4382 something_changed = 1;
4385 /* Retry global register allocation if possible. */
4386 if (global && ira_conflicts_p)
4388 unsigned int n;
4390 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4391 /* For every insn that needs reloads, set the registers used as spill
4392 regs in pseudo_forbidden_regs for every pseudo live across the
4393 insn. */
4394 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4396 EXECUTE_IF_SET_IN_REG_SET
4397 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4399 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4400 chain->used_spill_regs);
4402 EXECUTE_IF_SET_IN_REG_SET
4403 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4405 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4406 chain->used_spill_regs);
4410 /* Retry allocating the pseudos spilled in IRA and the
4411 reload. For each reg, merge the various reg sets that
4412 indicate which hard regs can't be used, and call
4413 ira_reassign_pseudos. */
4414 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4415 if (reg_old_renumber[i] != reg_renumber[i])
4417 if (reg_renumber[i] < 0)
4418 temp_pseudo_reg_arr[n++] = i;
4419 else
4420 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4422 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4423 bad_spill_regs_global,
4424 pseudo_forbidden_regs, pseudo_previous_regs,
4425 &spilled_pseudos))
4426 something_changed = 1;
4428 /* Fix up the register information in the insn chain.
4429 This involves deleting those of the spilled pseudos which did not get
4430 a new hard register home from the live_{before,after} sets. */
4431 for (chain = reload_insn_chain; chain; chain = chain->next)
4433 HARD_REG_SET used_by_pseudos;
4434 HARD_REG_SET used_by_pseudos2;
4436 if (! ira_conflicts_p)
4438 /* Don't do it for IRA because IRA and the reload still can
4439 assign hard registers to the spilled pseudos on next
4440 reload iterations. */
4441 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4442 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4444 /* Mark any unallocated hard regs as available for spills. That
4445 makes inheritance work somewhat better. */
4446 if (chain->need_reload)
4448 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4449 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4450 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4452 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4453 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4454 /* Value of chain->used_spill_regs from previous iteration
4455 may be not included in the value calculated here because
4456 of possible removing caller-saves insns (see function
4457 delete_caller_save_insns. */
4458 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4459 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4463 CLEAR_REG_SET (&changed_allocation_pseudos);
4464 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4465 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4467 int regno = reg_renumber[i];
4468 if (reg_old_renumber[i] == regno)
4469 continue;
4471 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4473 alter_reg (i, reg_old_renumber[i], false);
4474 reg_old_renumber[i] = regno;
4475 if (dump_file)
4477 if (regno == -1)
4478 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4479 else
4480 fprintf (dump_file, " Register %d now in %d.\n\n",
4481 i, reg_renumber[i]);
4485 return something_changed;
4488 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4490 static void
4491 scan_paradoxical_subregs (rtx x)
4493 int i;
4494 const char *fmt;
4495 enum rtx_code code = GET_CODE (x);
4497 switch (code)
4499 case REG:
4500 case CONST:
4501 case SYMBOL_REF:
4502 case LABEL_REF:
4503 CASE_CONST_ANY:
4504 case CC0:
4505 case PC:
4506 case USE:
4507 case CLOBBER:
4508 return;
4510 case SUBREG:
4511 if (REG_P (SUBREG_REG (x))
4512 && (GET_MODE_SIZE (GET_MODE (x))
4513 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4515 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4516 = GET_MODE_SIZE (GET_MODE (x));
4517 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4519 return;
4521 default:
4522 break;
4525 fmt = GET_RTX_FORMAT (code);
4526 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4528 if (fmt[i] == 'e')
4529 scan_paradoxical_subregs (XEXP (x, i));
4530 else if (fmt[i] == 'E')
4532 int j;
4533 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4534 scan_paradoxical_subregs (XVECEXP (x, i, j));
4539 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4540 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4541 and apply the corresponding narrowing subreg to *OTHER_PTR.
4542 Return true if the operands were changed, false otherwise. */
4544 static bool
4545 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4547 rtx op, inner, other, tem;
4549 op = *op_ptr;
4550 if (!paradoxical_subreg_p (op))
4551 return false;
4552 inner = SUBREG_REG (op);
4554 other = *other_ptr;
4555 tem = gen_lowpart_common (GET_MODE (inner), other);
4556 if (!tem)
4557 return false;
4559 /* If the lowpart operation turned a hard register into a subreg,
4560 rather than simplifying it to another hard register, then the
4561 mode change cannot be properly represented. For example, OTHER
4562 might be valid in its current mode, but not in the new one. */
4563 if (GET_CODE (tem) == SUBREG
4564 && REG_P (other)
4565 && HARD_REGISTER_P (other))
4566 return false;
4568 *op_ptr = inner;
4569 *other_ptr = tem;
4570 return true;
4573 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4574 examine all of the reload insns between PREV and NEXT exclusive, and
4575 annotate all that may trap. */
4577 static void
4578 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4580 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4581 if (note == NULL)
4582 return;
4583 if (!insn_could_throw_p (insn))
4584 remove_note (insn, note);
4585 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4588 /* Reload pseudo-registers into hard regs around each insn as needed.
4589 Additional register load insns are output before the insn that needs it
4590 and perhaps store insns after insns that modify the reloaded pseudo reg.
4592 reg_last_reload_reg and reg_reloaded_contents keep track of
4593 which registers are already available in reload registers.
4594 We update these for the reloads that we perform,
4595 as the insns are scanned. */
4597 static void
4598 reload_as_needed (int live_known)
4600 struct insn_chain *chain;
4601 #if defined (AUTO_INC_DEC)
4602 int i;
4603 #endif
4604 rtx_note *marker;
4606 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4607 memset (spill_reg_store, 0, sizeof spill_reg_store);
4608 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4609 INIT_REG_SET (&reg_has_output_reload);
4610 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4611 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4613 set_initial_elim_offsets ();
4615 /* Generate a marker insn that we will move around. */
4616 marker = emit_note (NOTE_INSN_DELETED);
4617 unlink_insn_chain (marker, marker);
4619 for (chain = reload_insn_chain; chain; chain = chain->next)
4621 rtx_insn *prev = 0;
4622 rtx_insn *insn = chain->insn;
4623 rtx_insn *old_next = NEXT_INSN (insn);
4624 #ifdef AUTO_INC_DEC
4625 rtx_insn *old_prev = PREV_INSN (insn);
4626 #endif
4628 if (will_delete_init_insn_p (insn))
4629 continue;
4631 /* If we pass a label, copy the offsets from the label information
4632 into the current offsets of each elimination. */
4633 if (LABEL_P (insn))
4634 set_offsets_for_label (insn);
4636 else if (INSN_P (insn))
4638 regset_head regs_to_forget;
4639 INIT_REG_SET (&regs_to_forget);
4640 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4642 /* If this is a USE and CLOBBER of a MEM, ensure that any
4643 references to eliminable registers have been removed. */
4645 if ((GET_CODE (PATTERN (insn)) == USE
4646 || GET_CODE (PATTERN (insn)) == CLOBBER)
4647 && MEM_P (XEXP (PATTERN (insn), 0)))
4648 XEXP (XEXP (PATTERN (insn), 0), 0)
4649 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4650 GET_MODE (XEXP (PATTERN (insn), 0)),
4651 NULL_RTX);
4653 /* If we need to do register elimination processing, do so.
4654 This might delete the insn, in which case we are done. */
4655 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4657 eliminate_regs_in_insn (insn, 1);
4658 if (NOTE_P (insn))
4660 update_eliminable_offsets ();
4661 CLEAR_REG_SET (&regs_to_forget);
4662 continue;
4666 /* If need_elim is nonzero but need_reload is zero, one might think
4667 that we could simply set n_reloads to 0. However, find_reloads
4668 could have done some manipulation of the insn (such as swapping
4669 commutative operands), and these manipulations are lost during
4670 the first pass for every insn that needs register elimination.
4671 So the actions of find_reloads must be redone here. */
4673 if (! chain->need_elim && ! chain->need_reload
4674 && ! chain->need_operand_change)
4675 n_reloads = 0;
4676 /* First find the pseudo regs that must be reloaded for this insn.
4677 This info is returned in the tables reload_... (see reload.h).
4678 Also modify the body of INSN by substituting RELOAD
4679 rtx's for those pseudo regs. */
4680 else
4682 CLEAR_REG_SET (&reg_has_output_reload);
4683 CLEAR_HARD_REG_SET (reg_is_output_reload);
4685 find_reloads (insn, 1, spill_indirect_levels, live_known,
4686 spill_reg_order);
4689 if (n_reloads > 0)
4691 rtx_insn *next = NEXT_INSN (insn);
4693 /* ??? PREV can get deleted by reload inheritance.
4694 Work around this by emitting a marker note. */
4695 prev = PREV_INSN (insn);
4696 reorder_insns_nobb (marker, marker, prev);
4698 /* Now compute which reload regs to reload them into. Perhaps
4699 reusing reload regs from previous insns, or else output
4700 load insns to reload them. Maybe output store insns too.
4701 Record the choices of reload reg in reload_reg_rtx. */
4702 choose_reload_regs (chain);
4704 /* Generate the insns to reload operands into or out of
4705 their reload regs. */
4706 emit_reload_insns (chain);
4708 /* Substitute the chosen reload regs from reload_reg_rtx
4709 into the insn's body (or perhaps into the bodies of other
4710 load and store insn that we just made for reloading
4711 and that we moved the structure into). */
4712 subst_reloads (insn);
4714 prev = PREV_INSN (marker);
4715 unlink_insn_chain (marker, marker);
4717 /* Adjust the exception region notes for loads and stores. */
4718 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4719 fixup_eh_region_note (insn, prev, next);
4721 /* Adjust the location of REG_ARGS_SIZE. */
4722 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4723 if (p)
4725 remove_note (insn, p);
4726 fixup_args_size_notes (prev, PREV_INSN (next),
4727 INTVAL (XEXP (p, 0)));
4730 /* If this was an ASM, make sure that all the reload insns
4731 we have generated are valid. If not, give an error
4732 and delete them. */
4733 if (asm_noperands (PATTERN (insn)) >= 0)
4734 for (rtx_insn *p = NEXT_INSN (prev);
4735 p != next;
4736 p = NEXT_INSN (p))
4737 if (p != insn && INSN_P (p)
4738 && GET_CODE (PATTERN (p)) != USE
4739 && (recog_memoized (p) < 0
4740 || (extract_insn (p),
4741 !(constrain_operands (1,
4742 get_enabled_alternatives (p))))))
4744 error_for_asm (insn,
4745 "%<asm%> operand requires "
4746 "impossible reload");
4747 delete_insn (p);
4751 if (num_eliminable && chain->need_elim)
4752 update_eliminable_offsets ();
4754 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4755 is no longer validly lying around to save a future reload.
4756 Note that this does not detect pseudos that were reloaded
4757 for this insn in order to be stored in
4758 (obeying register constraints). That is correct; such reload
4759 registers ARE still valid. */
4760 forget_marked_reloads (&regs_to_forget);
4761 CLEAR_REG_SET (&regs_to_forget);
4763 /* There may have been CLOBBER insns placed after INSN. So scan
4764 between INSN and NEXT and use them to forget old reloads. */
4765 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4766 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4767 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4769 #ifdef AUTO_INC_DEC
4770 /* Likewise for regs altered by auto-increment in this insn.
4771 REG_INC notes have been changed by reloading:
4772 find_reloads_address_1 records substitutions for them,
4773 which have been performed by subst_reloads above. */
4774 for (i = n_reloads - 1; i >= 0; i--)
4776 rtx in_reg = rld[i].in_reg;
4777 if (in_reg)
4779 enum rtx_code code = GET_CODE (in_reg);
4780 /* PRE_INC / PRE_DEC will have the reload register ending up
4781 with the same value as the stack slot, but that doesn't
4782 hold true for POST_INC / POST_DEC. Either we have to
4783 convert the memory access to a true POST_INC / POST_DEC,
4784 or we can't use the reload register for inheritance. */
4785 if ((code == POST_INC || code == POST_DEC)
4786 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4787 REGNO (rld[i].reg_rtx))
4788 /* Make sure it is the inc/dec pseudo, and not
4789 some other (e.g. output operand) pseudo. */
4790 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4791 == REGNO (XEXP (in_reg, 0))))
4794 rtx reload_reg = rld[i].reg_rtx;
4795 machine_mode mode = GET_MODE (reload_reg);
4796 int n = 0;
4797 rtx_insn *p;
4799 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4801 /* We really want to ignore REG_INC notes here, so
4802 use PATTERN (p) as argument to reg_set_p . */
4803 if (reg_set_p (reload_reg, PATTERN (p)))
4804 break;
4805 n = count_occurrences (PATTERN (p), reload_reg, 0);
4806 if (! n)
4807 continue;
4808 if (n == 1)
4810 rtx replace_reg
4811 = gen_rtx_fmt_e (code, mode, reload_reg);
4813 validate_replace_rtx_group (reload_reg,
4814 replace_reg, p);
4815 n = verify_changes (0);
4817 /* We must also verify that the constraints
4818 are met after the replacement. Make sure
4819 extract_insn is only called for an insn
4820 where the replacements were found to be
4821 valid so far. */
4822 if (n)
4824 extract_insn (p);
4825 n = constrain_operands (1,
4826 get_enabled_alternatives (p));
4829 /* If the constraints were not met, then
4830 undo the replacement, else confirm it. */
4831 if (!n)
4832 cancel_changes (0);
4833 else
4834 confirm_change_group ();
4836 break;
4838 if (n == 1)
4840 add_reg_note (p, REG_INC, reload_reg);
4841 /* Mark this as having an output reload so that the
4842 REG_INC processing code below won't invalidate
4843 the reload for inheritance. */
4844 SET_HARD_REG_BIT (reg_is_output_reload,
4845 REGNO (reload_reg));
4846 SET_REGNO_REG_SET (&reg_has_output_reload,
4847 REGNO (XEXP (in_reg, 0)));
4849 else
4850 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4851 NULL);
4853 else if ((code == PRE_INC || code == PRE_DEC)
4854 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4855 REGNO (rld[i].reg_rtx))
4856 /* Make sure it is the inc/dec pseudo, and not
4857 some other (e.g. output operand) pseudo. */
4858 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4859 == REGNO (XEXP (in_reg, 0))))
4861 SET_HARD_REG_BIT (reg_is_output_reload,
4862 REGNO (rld[i].reg_rtx));
4863 SET_REGNO_REG_SET (&reg_has_output_reload,
4864 REGNO (XEXP (in_reg, 0)));
4866 else if (code == PRE_INC || code == PRE_DEC
4867 || code == POST_INC || code == POST_DEC)
4869 int in_regno = REGNO (XEXP (in_reg, 0));
4871 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4873 int in_hard_regno;
4874 bool forget_p = true;
4876 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4877 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4878 in_hard_regno))
4880 for (rtx_insn *x = (old_prev ?
4881 NEXT_INSN (old_prev) : insn);
4882 x != old_next;
4883 x = NEXT_INSN (x))
4884 if (x == reg_reloaded_insn[in_hard_regno])
4886 forget_p = false;
4887 break;
4890 /* If for some reasons, we didn't set up
4891 reg_last_reload_reg in this insn,
4892 invalidate inheritance from previous
4893 insns for the incremented/decremented
4894 register. Such registers will be not in
4895 reg_has_output_reload. Invalidate it
4896 also if the corresponding element in
4897 reg_reloaded_insn is also
4898 invalidated. */
4899 if (forget_p)
4900 forget_old_reloads_1 (XEXP (in_reg, 0),
4901 NULL_RTX, NULL);
4906 /* If a pseudo that got a hard register is auto-incremented,
4907 we must purge records of copying it into pseudos without
4908 hard registers. */
4909 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4910 if (REG_NOTE_KIND (x) == REG_INC)
4912 /* See if this pseudo reg was reloaded in this insn.
4913 If so, its last-reload info is still valid
4914 because it is based on this insn's reload. */
4915 for (i = 0; i < n_reloads; i++)
4916 if (rld[i].out == XEXP (x, 0))
4917 break;
4919 if (i == n_reloads)
4920 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4922 #endif
4924 /* A reload reg's contents are unknown after a label. */
4925 if (LABEL_P (insn))
4926 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4928 /* Don't assume a reload reg is still good after a call insn
4929 if it is a call-used reg, or if it contains a value that will
4930 be partially clobbered by the call. */
4931 else if (CALL_P (insn))
4933 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4934 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4936 /* If this is a call to a setjmp-type function, we must not
4937 reuse any reload reg contents across the call; that will
4938 just be clobbered by other uses of the register in later
4939 code, before the longjmp. */
4940 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4941 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4945 /* Clean up. */
4946 free (reg_last_reload_reg);
4947 CLEAR_REG_SET (&reg_has_output_reload);
4950 /* Discard all record of any value reloaded from X,
4951 or reloaded in X from someplace else;
4952 unless X is an output reload reg of the current insn.
4954 X may be a hard reg (the reload reg)
4955 or it may be a pseudo reg that was reloaded from.
4957 When DATA is non-NULL just mark the registers in regset
4958 to be forgotten later. */
4960 static void
4961 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4962 void *data)
4964 unsigned int regno;
4965 unsigned int nr;
4966 regset regs = (regset) data;
4968 /* note_stores does give us subregs of hard regs,
4969 subreg_regno_offset requires a hard reg. */
4970 while (GET_CODE (x) == SUBREG)
4972 /* We ignore the subreg offset when calculating the regno,
4973 because we are using the entire underlying hard register
4974 below. */
4975 x = SUBREG_REG (x);
4978 if (!REG_P (x))
4979 return;
4981 regno = REGNO (x);
4983 if (regno >= FIRST_PSEUDO_REGISTER)
4984 nr = 1;
4985 else
4987 unsigned int i;
4989 nr = hard_regno_nregs[regno][GET_MODE (x)];
4990 /* Storing into a spilled-reg invalidates its contents.
4991 This can happen if a block-local pseudo is allocated to that reg
4992 and it wasn't spilled because this block's total need is 0.
4993 Then some insn might have an optional reload and use this reg. */
4994 if (!regs)
4995 for (i = 0; i < nr; i++)
4996 /* But don't do this if the reg actually serves as an output
4997 reload reg in the current instruction. */
4998 if (n_reloads == 0
4999 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
5001 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
5002 spill_reg_store[regno + i] = 0;
5006 if (regs)
5007 while (nr-- > 0)
5008 SET_REGNO_REG_SET (regs, regno + nr);
5009 else
5011 /* Since value of X has changed,
5012 forget any value previously copied from it. */
5014 while (nr-- > 0)
5015 /* But don't forget a copy if this is the output reload
5016 that establishes the copy's validity. */
5017 if (n_reloads == 0
5018 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
5019 reg_last_reload_reg[regno + nr] = 0;
5023 /* Forget the reloads marked in regset by previous function. */
5024 static void
5025 forget_marked_reloads (regset regs)
5027 unsigned int reg;
5028 reg_set_iterator rsi;
5029 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5031 if (reg < FIRST_PSEUDO_REGISTER
5032 /* But don't do this if the reg actually serves as an output
5033 reload reg in the current instruction. */
5034 && (n_reloads == 0
5035 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5037 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5038 spill_reg_store[reg] = 0;
5040 if (n_reloads == 0
5041 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5042 reg_last_reload_reg[reg] = 0;
5046 /* The following HARD_REG_SETs indicate when each hard register is
5047 used for a reload of various parts of the current insn. */
5049 /* If reg is unavailable for all reloads. */
5050 static HARD_REG_SET reload_reg_unavailable;
5051 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5052 static HARD_REG_SET reload_reg_used;
5053 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5054 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5055 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5056 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5057 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5058 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5059 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5060 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5061 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5062 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5063 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5064 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5065 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5066 static HARD_REG_SET reload_reg_used_in_op_addr;
5067 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5068 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5069 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5070 static HARD_REG_SET reload_reg_used_in_insn;
5071 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5072 static HARD_REG_SET reload_reg_used_in_other_addr;
5074 /* If reg is in use as a reload reg for any sort of reload. */
5075 static HARD_REG_SET reload_reg_used_at_all;
5077 /* If reg is use as an inherited reload. We just mark the first register
5078 in the group. */
5079 static HARD_REG_SET reload_reg_used_for_inherit;
5081 /* Records which hard regs are used in any way, either as explicit use or
5082 by being allocated to a pseudo during any point of the current insn. */
5083 static HARD_REG_SET reg_used_in_insn;
5085 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5086 TYPE. MODE is used to indicate how many consecutive regs are
5087 actually used. */
5089 static void
5090 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5091 machine_mode mode)
5093 switch (type)
5095 case RELOAD_OTHER:
5096 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5097 break;
5099 case RELOAD_FOR_INPUT_ADDRESS:
5100 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5101 break;
5103 case RELOAD_FOR_INPADDR_ADDRESS:
5104 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5105 break;
5107 case RELOAD_FOR_OUTPUT_ADDRESS:
5108 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5109 break;
5111 case RELOAD_FOR_OUTADDR_ADDRESS:
5112 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5113 break;
5115 case RELOAD_FOR_OPERAND_ADDRESS:
5116 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5117 break;
5119 case RELOAD_FOR_OPADDR_ADDR:
5120 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5121 break;
5123 case RELOAD_FOR_OTHER_ADDRESS:
5124 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5125 break;
5127 case RELOAD_FOR_INPUT:
5128 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5129 break;
5131 case RELOAD_FOR_OUTPUT:
5132 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5133 break;
5135 case RELOAD_FOR_INSN:
5136 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5137 break;
5140 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5143 /* Similarly, but show REGNO is no longer in use for a reload. */
5145 static void
5146 clear_reload_reg_in_use (unsigned int regno, int opnum,
5147 enum reload_type type, machine_mode mode)
5149 unsigned int nregs = hard_regno_nregs[regno][mode];
5150 unsigned int start_regno, end_regno, r;
5151 int i;
5152 /* A complication is that for some reload types, inheritance might
5153 allow multiple reloads of the same types to share a reload register.
5154 We set check_opnum if we have to check only reloads with the same
5155 operand number, and check_any if we have to check all reloads. */
5156 int check_opnum = 0;
5157 int check_any = 0;
5158 HARD_REG_SET *used_in_set;
5160 switch (type)
5162 case RELOAD_OTHER:
5163 used_in_set = &reload_reg_used;
5164 break;
5166 case RELOAD_FOR_INPUT_ADDRESS:
5167 used_in_set = &reload_reg_used_in_input_addr[opnum];
5168 break;
5170 case RELOAD_FOR_INPADDR_ADDRESS:
5171 check_opnum = 1;
5172 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5173 break;
5175 case RELOAD_FOR_OUTPUT_ADDRESS:
5176 used_in_set = &reload_reg_used_in_output_addr[opnum];
5177 break;
5179 case RELOAD_FOR_OUTADDR_ADDRESS:
5180 check_opnum = 1;
5181 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5182 break;
5184 case RELOAD_FOR_OPERAND_ADDRESS:
5185 used_in_set = &reload_reg_used_in_op_addr;
5186 break;
5188 case RELOAD_FOR_OPADDR_ADDR:
5189 check_any = 1;
5190 used_in_set = &reload_reg_used_in_op_addr_reload;
5191 break;
5193 case RELOAD_FOR_OTHER_ADDRESS:
5194 used_in_set = &reload_reg_used_in_other_addr;
5195 check_any = 1;
5196 break;
5198 case RELOAD_FOR_INPUT:
5199 used_in_set = &reload_reg_used_in_input[opnum];
5200 break;
5202 case RELOAD_FOR_OUTPUT:
5203 used_in_set = &reload_reg_used_in_output[opnum];
5204 break;
5206 case RELOAD_FOR_INSN:
5207 used_in_set = &reload_reg_used_in_insn;
5208 break;
5209 default:
5210 gcc_unreachable ();
5212 /* We resolve conflicts with remaining reloads of the same type by
5213 excluding the intervals of reload registers by them from the
5214 interval of freed reload registers. Since we only keep track of
5215 one set of interval bounds, we might have to exclude somewhat
5216 more than what would be necessary if we used a HARD_REG_SET here.
5217 But this should only happen very infrequently, so there should
5218 be no reason to worry about it. */
5220 start_regno = regno;
5221 end_regno = regno + nregs;
5222 if (check_opnum || check_any)
5224 for (i = n_reloads - 1; i >= 0; i--)
5226 if (rld[i].when_needed == type
5227 && (check_any || rld[i].opnum == opnum)
5228 && rld[i].reg_rtx)
5230 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5231 unsigned int conflict_end
5232 = end_hard_regno (rld[i].mode, conflict_start);
5234 /* If there is an overlap with the first to-be-freed register,
5235 adjust the interval start. */
5236 if (conflict_start <= start_regno && conflict_end > start_regno)
5237 start_regno = conflict_end;
5238 /* Otherwise, if there is a conflict with one of the other
5239 to-be-freed registers, adjust the interval end. */
5240 if (conflict_start > start_regno && conflict_start < end_regno)
5241 end_regno = conflict_start;
5246 for (r = start_regno; r < end_regno; r++)
5247 CLEAR_HARD_REG_BIT (*used_in_set, r);
5250 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5251 specified by OPNUM and TYPE. */
5253 static int
5254 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5256 int i;
5258 /* In use for a RELOAD_OTHER means it's not available for anything. */
5259 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5260 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5261 return 0;
5263 switch (type)
5265 case RELOAD_OTHER:
5266 /* In use for anything means we can't use it for RELOAD_OTHER. */
5267 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5268 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5269 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5270 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5271 return 0;
5273 for (i = 0; i < reload_n_operands; i++)
5274 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5275 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5276 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5277 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5278 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5279 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5280 return 0;
5282 return 1;
5284 case RELOAD_FOR_INPUT:
5285 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5286 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5287 return 0;
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5290 return 0;
5292 /* If it is used for some other input, can't use it. */
5293 for (i = 0; i < reload_n_operands; i++)
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5295 return 0;
5297 /* If it is used in a later operand's address, can't use it. */
5298 for (i = opnum + 1; i < reload_n_operands; i++)
5299 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5300 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5301 return 0;
5303 return 1;
5305 case RELOAD_FOR_INPUT_ADDRESS:
5306 /* Can't use a register if it is used for an input address for this
5307 operand or used as an input in an earlier one. */
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5309 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5310 return 0;
5312 for (i = 0; i < opnum; i++)
5313 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5314 return 0;
5316 return 1;
5318 case RELOAD_FOR_INPADDR_ADDRESS:
5319 /* Can't use a register if it is used for an input address
5320 for this operand or used as an input in an earlier
5321 one. */
5322 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5323 return 0;
5325 for (i = 0; i < opnum; i++)
5326 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5327 return 0;
5329 return 1;
5331 case RELOAD_FOR_OUTPUT_ADDRESS:
5332 /* Can't use a register if it is used for an output address for this
5333 operand or used as an output in this or a later operand. Note
5334 that multiple output operands are emitted in reverse order, so
5335 the conflicting ones are those with lower indices. */
5336 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5337 return 0;
5339 for (i = 0; i <= opnum; i++)
5340 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5341 return 0;
5343 return 1;
5345 case RELOAD_FOR_OUTADDR_ADDRESS:
5346 /* Can't use a register if it is used for an output address
5347 for this operand or used as an output in this or a
5348 later operand. Note that multiple output operands are
5349 emitted in reverse order, so the conflicting ones are
5350 those with lower indices. */
5351 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5352 return 0;
5354 for (i = 0; i <= opnum; i++)
5355 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5356 return 0;
5358 return 1;
5360 case RELOAD_FOR_OPERAND_ADDRESS:
5361 for (i = 0; i < reload_n_operands; i++)
5362 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5363 return 0;
5365 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5366 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5368 case RELOAD_FOR_OPADDR_ADDR:
5369 for (i = 0; i < reload_n_operands; i++)
5370 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5371 return 0;
5373 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5375 case RELOAD_FOR_OUTPUT:
5376 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5377 outputs, or an operand address for this or an earlier output.
5378 Note that multiple output operands are emitted in reverse order,
5379 so the conflicting ones are those with higher indices. */
5380 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5381 return 0;
5383 for (i = 0; i < reload_n_operands; i++)
5384 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5385 return 0;
5387 for (i = opnum; i < reload_n_operands; i++)
5388 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5389 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5390 return 0;
5392 return 1;
5394 case RELOAD_FOR_INSN:
5395 for (i = 0; i < reload_n_operands; i++)
5396 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5398 return 0;
5400 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5401 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5403 case RELOAD_FOR_OTHER_ADDRESS:
5404 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5406 default:
5407 gcc_unreachable ();
5411 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5412 the number RELOADNUM, is still available in REGNO at the end of the insn.
5414 We can assume that the reload reg was already tested for availability
5415 at the time it is needed, and we should not check this again,
5416 in case the reg has already been marked in use. */
5418 static int
5419 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5421 int opnum = rld[reloadnum].opnum;
5422 enum reload_type type = rld[reloadnum].when_needed;
5423 int i;
5425 /* See if there is a reload with the same type for this operand, using
5426 the same register. This case is not handled by the code below. */
5427 for (i = reloadnum + 1; i < n_reloads; i++)
5429 rtx reg;
5430 int nregs;
5432 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5433 continue;
5434 reg = rld[i].reg_rtx;
5435 if (reg == NULL_RTX)
5436 continue;
5437 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5438 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5439 return 0;
5442 switch (type)
5444 case RELOAD_OTHER:
5445 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5446 its value must reach the end. */
5447 return 1;
5449 /* If this use is for part of the insn,
5450 its value reaches if no subsequent part uses the same register.
5451 Just like the above function, don't try to do this with lots
5452 of fallthroughs. */
5454 case RELOAD_FOR_OTHER_ADDRESS:
5455 /* Here we check for everything else, since these don't conflict
5456 with anything else and everything comes later. */
5458 for (i = 0; i < reload_n_operands; i++)
5459 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5462 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5463 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5464 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5465 return 0;
5467 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5468 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5469 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5470 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5472 case RELOAD_FOR_INPUT_ADDRESS:
5473 case RELOAD_FOR_INPADDR_ADDRESS:
5474 /* Similar, except that we check only for this and subsequent inputs
5475 and the address of only subsequent inputs and we do not need
5476 to check for RELOAD_OTHER objects since they are known not to
5477 conflict. */
5479 for (i = opnum; i < reload_n_operands; i++)
5480 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5481 return 0;
5483 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5484 could be killed if the register is also used by reload with type
5485 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5486 if (type == RELOAD_FOR_INPADDR_ADDRESS
5487 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5488 return 0;
5490 for (i = opnum + 1; i < reload_n_operands; i++)
5491 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5492 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5493 return 0;
5495 for (i = 0; i < reload_n_operands; i++)
5496 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5498 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5499 return 0;
5501 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5502 return 0;
5504 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5505 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5506 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5508 case RELOAD_FOR_INPUT:
5509 /* Similar to input address, except we start at the next operand for
5510 both input and input address and we do not check for
5511 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5512 would conflict. */
5514 for (i = opnum + 1; i < reload_n_operands; i++)
5515 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5516 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5517 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5518 return 0;
5520 /* ... fall through ... */
5522 case RELOAD_FOR_OPERAND_ADDRESS:
5523 /* Check outputs and their addresses. */
5525 for (i = 0; i < reload_n_operands; i++)
5526 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5527 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5528 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5529 return 0;
5531 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5533 case RELOAD_FOR_OPADDR_ADDR:
5534 for (i = 0; i < reload_n_operands; i++)
5535 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5536 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5537 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5538 return 0;
5540 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5541 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5542 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5544 case RELOAD_FOR_INSN:
5545 /* These conflict with other outputs with RELOAD_OTHER. So
5546 we need only check for output addresses. */
5548 opnum = reload_n_operands;
5550 /* ... fall through ... */
5552 case RELOAD_FOR_OUTPUT:
5553 case RELOAD_FOR_OUTPUT_ADDRESS:
5554 case RELOAD_FOR_OUTADDR_ADDRESS:
5555 /* We already know these can't conflict with a later output. So the
5556 only thing to check are later output addresses.
5557 Note that multiple output operands are emitted in reverse order,
5558 so the conflicting ones are those with lower indices. */
5559 for (i = 0; i < opnum; i++)
5560 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5561 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5562 return 0;
5564 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5565 could be killed if the register is also used by reload with type
5566 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5567 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5568 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5569 return 0;
5571 return 1;
5573 default:
5574 gcc_unreachable ();
5578 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5579 every register in REG. */
5581 static bool
5582 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5584 unsigned int i;
5586 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5587 if (!reload_reg_reaches_end_p (i, reloadnum))
5588 return false;
5589 return true;
5593 /* Returns whether R1 and R2 are uniquely chained: the value of one
5594 is used by the other, and that value is not used by any other
5595 reload for this insn. This is used to partially undo the decision
5596 made in find_reloads when in the case of multiple
5597 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5598 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5599 reloads. This code tries to avoid the conflict created by that
5600 change. It might be cleaner to explicitly keep track of which
5601 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5602 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5603 this after the fact. */
5604 static bool
5605 reloads_unique_chain_p (int r1, int r2)
5607 int i;
5609 /* We only check input reloads. */
5610 if (! rld[r1].in || ! rld[r2].in)
5611 return false;
5613 /* Avoid anything with output reloads. */
5614 if (rld[r1].out || rld[r2].out)
5615 return false;
5617 /* "chained" means one reload is a component of the other reload,
5618 not the same as the other reload. */
5619 if (rld[r1].opnum != rld[r2].opnum
5620 || rtx_equal_p (rld[r1].in, rld[r2].in)
5621 || rld[r1].optional || rld[r2].optional
5622 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5623 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5624 return false;
5626 /* The following loop assumes that r1 is the reload that feeds r2. */
5627 if (r1 > r2)
5629 int tmp = r2;
5630 r2 = r1;
5631 r1 = tmp;
5634 for (i = 0; i < n_reloads; i ++)
5635 /* Look for input reloads that aren't our two */
5636 if (i != r1 && i != r2 && rld[i].in)
5638 /* If our reload is mentioned at all, it isn't a simple chain. */
5639 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5640 return false;
5642 return true;
5645 /* The recursive function change all occurrences of WHAT in *WHERE
5646 to REPL. */
5647 static void
5648 substitute (rtx *where, const_rtx what, rtx repl)
5650 const char *fmt;
5651 int i;
5652 enum rtx_code code;
5654 if (*where == 0)
5655 return;
5657 if (*where == what || rtx_equal_p (*where, what))
5659 /* Record the location of the changed rtx. */
5660 substitute_stack.safe_push (where);
5661 *where = repl;
5662 return;
5665 code = GET_CODE (*where);
5666 fmt = GET_RTX_FORMAT (code);
5667 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5669 if (fmt[i] == 'E')
5671 int j;
5673 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5674 substitute (&XVECEXP (*where, i, j), what, repl);
5676 else if (fmt[i] == 'e')
5677 substitute (&XEXP (*where, i), what, repl);
5681 /* The function returns TRUE if chain of reload R1 and R2 (in any
5682 order) can be evaluated without usage of intermediate register for
5683 the reload containing another reload. It is important to see
5684 gen_reload to understand what the function is trying to do. As an
5685 example, let us have reload chain
5687 r2: const
5688 r1: <something> + const
5690 and reload R2 got reload reg HR. The function returns true if
5691 there is a correct insn HR = HR + <something>. Otherwise,
5692 gen_reload will use intermediate register (and this is the reload
5693 reg for R1) to reload <something>.
5695 We need this function to find a conflict for chain reloads. In our
5696 example, if HR = HR + <something> is incorrect insn, then we cannot
5697 use HR as a reload register for R2. If we do use it then we get a
5698 wrong code:
5700 HR = const
5701 HR = <something>
5702 HR = HR + HR
5705 static bool
5706 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5708 /* Assume other cases in gen_reload are not possible for
5709 chain reloads or do need an intermediate hard registers. */
5710 bool result = true;
5711 int regno, n, code;
5712 rtx out, in;
5713 rtx_insn *insn;
5714 rtx_insn *last = get_last_insn ();
5716 /* Make r2 a component of r1. */
5717 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5719 n = r1;
5720 r1 = r2;
5721 r2 = n;
5723 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5724 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5725 gcc_assert (regno >= 0);
5726 out = gen_rtx_REG (rld[r1].mode, regno);
5727 in = rld[r1].in;
5728 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5730 /* If IN is a paradoxical SUBREG, remove it and try to put the
5731 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5732 strip_paradoxical_subreg (&in, &out);
5734 if (GET_CODE (in) == PLUS
5735 && (REG_P (XEXP (in, 0))
5736 || GET_CODE (XEXP (in, 0)) == SUBREG
5737 || MEM_P (XEXP (in, 0)))
5738 && (REG_P (XEXP (in, 1))
5739 || GET_CODE (XEXP (in, 1)) == SUBREG
5740 || CONSTANT_P (XEXP (in, 1))
5741 || MEM_P (XEXP (in, 1))))
5743 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5744 code = recog_memoized (insn);
5745 result = false;
5747 if (code >= 0)
5749 extract_insn (insn);
5750 /* We want constrain operands to treat this insn strictly in
5751 its validity determination, i.e., the way it would after
5752 reload has completed. */
5753 result = constrain_operands (1, get_enabled_alternatives (insn));
5756 delete_insns_since (last);
5759 /* Restore the original value at each changed address within R1. */
5760 while (!substitute_stack.is_empty ())
5762 rtx *where = substitute_stack.pop ();
5763 *where = rld[r2].in;
5766 return result;
5769 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5770 Return 0 otherwise.
5772 This function uses the same algorithm as reload_reg_free_p above. */
5774 static int
5775 reloads_conflict (int r1, int r2)
5777 enum reload_type r1_type = rld[r1].when_needed;
5778 enum reload_type r2_type = rld[r2].when_needed;
5779 int r1_opnum = rld[r1].opnum;
5780 int r2_opnum = rld[r2].opnum;
5782 /* RELOAD_OTHER conflicts with everything. */
5783 if (r2_type == RELOAD_OTHER)
5784 return 1;
5786 /* Otherwise, check conflicts differently for each type. */
5788 switch (r1_type)
5790 case RELOAD_FOR_INPUT:
5791 return (r2_type == RELOAD_FOR_INSN
5792 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5793 || r2_type == RELOAD_FOR_OPADDR_ADDR
5794 || r2_type == RELOAD_FOR_INPUT
5795 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5796 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5797 && r2_opnum > r1_opnum));
5799 case RELOAD_FOR_INPUT_ADDRESS:
5800 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5801 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5803 case RELOAD_FOR_INPADDR_ADDRESS:
5804 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5805 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5807 case RELOAD_FOR_OUTPUT_ADDRESS:
5808 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5809 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5811 case RELOAD_FOR_OUTADDR_ADDRESS:
5812 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5813 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5815 case RELOAD_FOR_OPERAND_ADDRESS:
5816 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5817 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5818 && (!reloads_unique_chain_p (r1, r2)
5819 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5821 case RELOAD_FOR_OPADDR_ADDR:
5822 return (r2_type == RELOAD_FOR_INPUT
5823 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5825 case RELOAD_FOR_OUTPUT:
5826 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5827 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5828 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5829 && r2_opnum >= r1_opnum));
5831 case RELOAD_FOR_INSN:
5832 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5833 || r2_type == RELOAD_FOR_INSN
5834 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5836 case RELOAD_FOR_OTHER_ADDRESS:
5837 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5839 case RELOAD_OTHER:
5840 return 1;
5842 default:
5843 gcc_unreachable ();
5847 /* Indexed by reload number, 1 if incoming value
5848 inherited from previous insns. */
5849 static char reload_inherited[MAX_RELOADS];
5851 /* For an inherited reload, this is the insn the reload was inherited from,
5852 if we know it. Otherwise, this is 0. */
5853 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5855 /* If nonzero, this is a place to get the value of the reload,
5856 rather than using reload_in. */
5857 static rtx reload_override_in[MAX_RELOADS];
5859 /* For each reload, the hard register number of the register used,
5860 or -1 if we did not need a register for this reload. */
5861 static int reload_spill_index[MAX_RELOADS];
5863 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5864 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5866 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5867 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5869 /* Subroutine of free_for_value_p, used to check a single register.
5870 START_REGNO is the starting regno of the full reload register
5871 (possibly comprising multiple hard registers) that we are considering. */
5873 static int
5874 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5875 enum reload_type type, rtx value, rtx out,
5876 int reloadnum, int ignore_address_reloads)
5878 int time1;
5879 /* Set if we see an input reload that must not share its reload register
5880 with any new earlyclobber, but might otherwise share the reload
5881 register with an output or input-output reload. */
5882 int check_earlyclobber = 0;
5883 int i;
5884 int copy = 0;
5886 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5887 return 0;
5889 if (out == const0_rtx)
5891 copy = 1;
5892 out = NULL_RTX;
5895 /* We use some pseudo 'time' value to check if the lifetimes of the
5896 new register use would overlap with the one of a previous reload
5897 that is not read-only or uses a different value.
5898 The 'time' used doesn't have to be linear in any shape or form, just
5899 monotonic.
5900 Some reload types use different 'buckets' for each operand.
5901 So there are MAX_RECOG_OPERANDS different time values for each
5902 such reload type.
5903 We compute TIME1 as the time when the register for the prospective
5904 new reload ceases to be live, and TIME2 for each existing
5905 reload as the time when that the reload register of that reload
5906 becomes live.
5907 Where there is little to be gained by exact lifetime calculations,
5908 we just make conservative assumptions, i.e. a longer lifetime;
5909 this is done in the 'default:' cases. */
5910 switch (type)
5912 case RELOAD_FOR_OTHER_ADDRESS:
5913 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5914 time1 = copy ? 0 : 1;
5915 break;
5916 case RELOAD_OTHER:
5917 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5918 break;
5919 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5920 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5921 respectively, to the time values for these, we get distinct time
5922 values. To get distinct time values for each operand, we have to
5923 multiply opnum by at least three. We round that up to four because
5924 multiply by four is often cheaper. */
5925 case RELOAD_FOR_INPADDR_ADDRESS:
5926 time1 = opnum * 4 + 2;
5927 break;
5928 case RELOAD_FOR_INPUT_ADDRESS:
5929 time1 = opnum * 4 + 3;
5930 break;
5931 case RELOAD_FOR_INPUT:
5932 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5933 executes (inclusive). */
5934 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5935 break;
5936 case RELOAD_FOR_OPADDR_ADDR:
5937 /* opnum * 4 + 4
5938 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5939 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5940 break;
5941 case RELOAD_FOR_OPERAND_ADDRESS:
5942 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5943 is executed. */
5944 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5945 break;
5946 case RELOAD_FOR_OUTADDR_ADDRESS:
5947 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5948 break;
5949 case RELOAD_FOR_OUTPUT_ADDRESS:
5950 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5951 break;
5952 default:
5953 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5956 for (i = 0; i < n_reloads; i++)
5958 rtx reg = rld[i].reg_rtx;
5959 if (reg && REG_P (reg)
5960 && ((unsigned) regno - true_regnum (reg)
5961 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5962 && i != reloadnum)
5964 rtx other_input = rld[i].in;
5966 /* If the other reload loads the same input value, that
5967 will not cause a conflict only if it's loading it into
5968 the same register. */
5969 if (true_regnum (reg) != start_regno)
5970 other_input = NULL_RTX;
5971 if (! other_input || ! rtx_equal_p (other_input, value)
5972 || rld[i].out || out)
5974 int time2;
5975 switch (rld[i].when_needed)
5977 case RELOAD_FOR_OTHER_ADDRESS:
5978 time2 = 0;
5979 break;
5980 case RELOAD_FOR_INPADDR_ADDRESS:
5981 /* find_reloads makes sure that a
5982 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5983 by at most one - the first -
5984 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5985 address reload is inherited, the address address reload
5986 goes away, so we can ignore this conflict. */
5987 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5988 && ignore_address_reloads
5989 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5990 Then the address address is still needed to store
5991 back the new address. */
5992 && ! rld[reloadnum].out)
5993 continue;
5994 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5995 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5996 reloads go away. */
5997 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5998 && ignore_address_reloads
5999 /* Unless we are reloading an auto_inc expression. */
6000 && ! rld[reloadnum].out)
6001 continue;
6002 time2 = rld[i].opnum * 4 + 2;
6003 break;
6004 case RELOAD_FOR_INPUT_ADDRESS:
6005 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
6006 && ignore_address_reloads
6007 && ! rld[reloadnum].out)
6008 continue;
6009 time2 = rld[i].opnum * 4 + 3;
6010 break;
6011 case RELOAD_FOR_INPUT:
6012 time2 = rld[i].opnum * 4 + 4;
6013 check_earlyclobber = 1;
6014 break;
6015 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
6016 == MAX_RECOG_OPERAND * 4 */
6017 case RELOAD_FOR_OPADDR_ADDR:
6018 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
6019 && ignore_address_reloads
6020 && ! rld[reloadnum].out)
6021 continue;
6022 time2 = MAX_RECOG_OPERANDS * 4 + 1;
6023 break;
6024 case RELOAD_FOR_OPERAND_ADDRESS:
6025 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6026 check_earlyclobber = 1;
6027 break;
6028 case RELOAD_FOR_INSN:
6029 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6030 break;
6031 case RELOAD_FOR_OUTPUT:
6032 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6033 instruction is executed. */
6034 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6035 break;
6036 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6037 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6038 value. */
6039 case RELOAD_FOR_OUTADDR_ADDRESS:
6040 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6041 && ignore_address_reloads
6042 && ! rld[reloadnum].out)
6043 continue;
6044 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6045 break;
6046 case RELOAD_FOR_OUTPUT_ADDRESS:
6047 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6048 break;
6049 case RELOAD_OTHER:
6050 /* If there is no conflict in the input part, handle this
6051 like an output reload. */
6052 if (! rld[i].in || rtx_equal_p (other_input, value))
6054 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6055 /* Earlyclobbered outputs must conflict with inputs. */
6056 if (earlyclobber_operand_p (rld[i].out))
6057 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6059 break;
6061 time2 = 1;
6062 /* RELOAD_OTHER might be live beyond instruction execution,
6063 but this is not obvious when we set time2 = 1. So check
6064 here if there might be a problem with the new reload
6065 clobbering the register used by the RELOAD_OTHER. */
6066 if (out)
6067 return 0;
6068 break;
6069 default:
6070 return 0;
6072 if ((time1 >= time2
6073 && (! rld[i].in || rld[i].out
6074 || ! rtx_equal_p (other_input, value)))
6075 || (out && rld[reloadnum].out_reg
6076 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6077 return 0;
6082 /* Earlyclobbered outputs must conflict with inputs. */
6083 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6084 return 0;
6086 return 1;
6089 /* Return 1 if the value in reload reg REGNO, as used by a reload
6090 needed for the part of the insn specified by OPNUM and TYPE,
6091 may be used to load VALUE into it.
6093 MODE is the mode in which the register is used, this is needed to
6094 determine how many hard regs to test.
6096 Other read-only reloads with the same value do not conflict
6097 unless OUT is nonzero and these other reloads have to live while
6098 output reloads live.
6099 If OUT is CONST0_RTX, this is a special case: it means that the
6100 test should not be for using register REGNO as reload register, but
6101 for copying from register REGNO into the reload register.
6103 RELOADNUM is the number of the reload we want to load this value for;
6104 a reload does not conflict with itself.
6106 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6107 reloads that load an address for the very reload we are considering.
6109 The caller has to make sure that there is no conflict with the return
6110 register. */
6112 static int
6113 free_for_value_p (int regno, machine_mode mode, int opnum,
6114 enum reload_type type, rtx value, rtx out, int reloadnum,
6115 int ignore_address_reloads)
6117 int nregs = hard_regno_nregs[regno][mode];
6118 while (nregs-- > 0)
6119 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6120 value, out, reloadnum,
6121 ignore_address_reloads))
6122 return 0;
6123 return 1;
6126 /* Return nonzero if the rtx X is invariant over the current function. */
6127 /* ??? Actually, the places where we use this expect exactly what is
6128 tested here, and not everything that is function invariant. In
6129 particular, the frame pointer and arg pointer are special cased;
6130 pic_offset_table_rtx is not, and we must not spill these things to
6131 memory. */
6134 function_invariant_p (const_rtx x)
6136 if (CONSTANT_P (x))
6137 return 1;
6138 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6139 return 1;
6140 if (GET_CODE (x) == PLUS
6141 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6142 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6143 return 1;
6144 return 0;
6147 /* Determine whether the reload reg X overlaps any rtx'es used for
6148 overriding inheritance. Return nonzero if so. */
6150 static int
6151 conflicts_with_override (rtx x)
6153 int i;
6154 for (i = 0; i < n_reloads; i++)
6155 if (reload_override_in[i]
6156 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6157 return 1;
6158 return 0;
6161 /* Give an error message saying we failed to find a reload for INSN,
6162 and clear out reload R. */
6163 static void
6164 failed_reload (rtx_insn *insn, int r)
6166 if (asm_noperands (PATTERN (insn)) < 0)
6167 /* It's the compiler's fault. */
6168 fatal_insn ("could not find a spill register", insn);
6170 /* It's the user's fault; the operand's mode and constraint
6171 don't match. Disable this reload so we don't crash in final. */
6172 error_for_asm (insn,
6173 "%<asm%> operand constraint incompatible with operand size");
6174 rld[r].in = 0;
6175 rld[r].out = 0;
6176 rld[r].reg_rtx = 0;
6177 rld[r].optional = 1;
6178 rld[r].secondary_p = 1;
6181 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6182 for reload R. If it's valid, get an rtx for it. Return nonzero if
6183 successful. */
6184 static int
6185 set_reload_reg (int i, int r)
6187 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6188 parameter. */
6189 int regno ATTRIBUTE_UNUSED;
6190 rtx reg = spill_reg_rtx[i];
6192 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6193 spill_reg_rtx[i] = reg
6194 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6196 regno = true_regnum (reg);
6198 /* Detect when the reload reg can't hold the reload mode.
6199 This used to be one `if', but Sequent compiler can't handle that. */
6200 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6202 machine_mode test_mode = VOIDmode;
6203 if (rld[r].in)
6204 test_mode = GET_MODE (rld[r].in);
6205 /* If rld[r].in has VOIDmode, it means we will load it
6206 in whatever mode the reload reg has: to wit, rld[r].mode.
6207 We have already tested that for validity. */
6208 /* Aside from that, we need to test that the expressions
6209 to reload from or into have modes which are valid for this
6210 reload register. Otherwise the reload insns would be invalid. */
6211 if (! (rld[r].in != 0 && test_mode != VOIDmode
6212 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6213 if (! (rld[r].out != 0
6214 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6216 /* The reg is OK. */
6217 last_spill_reg = i;
6219 /* Mark as in use for this insn the reload regs we use
6220 for this. */
6221 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6222 rld[r].when_needed, rld[r].mode);
6224 rld[r].reg_rtx = reg;
6225 reload_spill_index[r] = spill_regs[i];
6226 return 1;
6229 return 0;
6232 /* Find a spill register to use as a reload register for reload R.
6233 LAST_RELOAD is nonzero if this is the last reload for the insn being
6234 processed.
6236 Set rld[R].reg_rtx to the register allocated.
6238 We return 1 if successful, or 0 if we couldn't find a spill reg and
6239 we didn't change anything. */
6241 static int
6242 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6243 int last_reload)
6245 int i, pass, count;
6247 /* If we put this reload ahead, thinking it is a group,
6248 then insist on finding a group. Otherwise we can grab a
6249 reg that some other reload needs.
6250 (That can happen when we have a 68000 DATA_OR_FP_REG
6251 which is a group of data regs or one fp reg.)
6252 We need not be so restrictive if there are no more reloads
6253 for this insn.
6255 ??? Really it would be nicer to have smarter handling
6256 for that kind of reg class, where a problem like this is normal.
6257 Perhaps those classes should be avoided for reloading
6258 by use of more alternatives. */
6260 int force_group = rld[r].nregs > 1 && ! last_reload;
6262 /* If we want a single register and haven't yet found one,
6263 take any reg in the right class and not in use.
6264 If we want a consecutive group, here is where we look for it.
6266 We use three passes so we can first look for reload regs to
6267 reuse, which are already in use for other reloads in this insn,
6268 and only then use additional registers which are not "bad", then
6269 finally any register.
6271 I think that maximizing reuse is needed to make sure we don't
6272 run out of reload regs. Suppose we have three reloads, and
6273 reloads A and B can share regs. These need two regs.
6274 Suppose A and B are given different regs.
6275 That leaves none for C. */
6276 for (pass = 0; pass < 3; pass++)
6278 /* I is the index in spill_regs.
6279 We advance it round-robin between insns to use all spill regs
6280 equally, so that inherited reloads have a chance
6281 of leapfrogging each other. */
6283 i = last_spill_reg;
6285 for (count = 0; count < n_spills; count++)
6287 int rclass = (int) rld[r].rclass;
6288 int regnum;
6290 i++;
6291 if (i >= n_spills)
6292 i -= n_spills;
6293 regnum = spill_regs[i];
6295 if ((reload_reg_free_p (regnum, rld[r].opnum,
6296 rld[r].when_needed)
6297 || (rld[r].in
6298 /* We check reload_reg_used to make sure we
6299 don't clobber the return register. */
6300 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6301 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6302 rld[r].when_needed, rld[r].in,
6303 rld[r].out, r, 1)))
6304 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6305 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6306 /* Look first for regs to share, then for unshared. But
6307 don't share regs used for inherited reloads; they are
6308 the ones we want to preserve. */
6309 && (pass
6310 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6311 regnum)
6312 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6313 regnum))))
6315 int nr = hard_regno_nregs[regnum][rld[r].mode];
6317 /* During the second pass we want to avoid reload registers
6318 which are "bad" for this reload. */
6319 if (pass == 1
6320 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6321 continue;
6323 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6324 (on 68000) got us two FP regs. If NR is 1,
6325 we would reject both of them. */
6326 if (force_group)
6327 nr = rld[r].nregs;
6328 /* If we need only one reg, we have already won. */
6329 if (nr == 1)
6331 /* But reject a single reg if we demand a group. */
6332 if (force_group)
6333 continue;
6334 break;
6336 /* Otherwise check that as many consecutive regs as we need
6337 are available here. */
6338 while (nr > 1)
6340 int regno = regnum + nr - 1;
6341 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6342 && spill_reg_order[regno] >= 0
6343 && reload_reg_free_p (regno, rld[r].opnum,
6344 rld[r].when_needed)))
6345 break;
6346 nr--;
6348 if (nr == 1)
6349 break;
6353 /* If we found something on the current pass, omit later passes. */
6354 if (count < n_spills)
6355 break;
6358 /* We should have found a spill register by now. */
6359 if (count >= n_spills)
6360 return 0;
6362 /* I is the index in SPILL_REG_RTX of the reload register we are to
6363 allocate. Get an rtx for it and find its register number. */
6365 return set_reload_reg (i, r);
6368 /* Initialize all the tables needed to allocate reload registers.
6369 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6370 is the array we use to restore the reg_rtx field for every reload. */
6372 static void
6373 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6375 int i;
6377 for (i = 0; i < n_reloads; i++)
6378 rld[i].reg_rtx = save_reload_reg_rtx[i];
6380 memset (reload_inherited, 0, MAX_RELOADS);
6381 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6382 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6384 CLEAR_HARD_REG_SET (reload_reg_used);
6385 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6386 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6387 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6388 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6389 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6391 CLEAR_HARD_REG_SET (reg_used_in_insn);
6393 HARD_REG_SET tmp;
6394 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6395 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6396 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6397 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6398 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6399 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6402 for (i = 0; i < reload_n_operands; i++)
6404 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6405 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6406 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6407 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6408 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6409 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6412 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6414 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6416 for (i = 0; i < n_reloads; i++)
6417 /* If we have already decided to use a certain register,
6418 don't use it in another way. */
6419 if (rld[i].reg_rtx)
6420 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6421 rld[i].when_needed, rld[i].mode);
6424 #ifdef SECONDARY_MEMORY_NEEDED
6425 /* If X is not a subreg, return it unmodified. If it is a subreg,
6426 look up whether we made a replacement for the SUBREG_REG. Return
6427 either the replacement or the SUBREG_REG. */
6429 static rtx
6430 replaced_subreg (rtx x)
6432 if (GET_CODE (x) == SUBREG)
6433 return find_replacement (&SUBREG_REG (x));
6434 return x;
6436 #endif
6438 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6439 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6440 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6441 otherwise it is NULL. */
6443 static int
6444 compute_reload_subreg_offset (machine_mode outermode,
6445 rtx subreg,
6446 machine_mode innermode)
6448 int outer_offset;
6449 machine_mode middlemode;
6451 if (!subreg)
6452 return subreg_lowpart_offset (outermode, innermode);
6454 outer_offset = SUBREG_BYTE (subreg);
6455 middlemode = GET_MODE (SUBREG_REG (subreg));
6457 /* If SUBREG is paradoxical then return the normal lowpart offset
6458 for OUTERMODE and INNERMODE. Our caller has already checked
6459 that OUTERMODE fits in INNERMODE. */
6460 if (outer_offset == 0
6461 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6462 return subreg_lowpart_offset (outermode, innermode);
6464 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6465 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6466 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6469 /* Assign hard reg targets for the pseudo-registers we must reload
6470 into hard regs for this insn.
6471 Also output the instructions to copy them in and out of the hard regs.
6473 For machines with register classes, we are responsible for
6474 finding a reload reg in the proper class. */
6476 static void
6477 choose_reload_regs (struct insn_chain *chain)
6479 rtx_insn *insn = chain->insn;
6480 int i, j;
6481 unsigned int max_group_size = 1;
6482 enum reg_class group_class = NO_REGS;
6483 int pass, win, inheritance;
6485 rtx save_reload_reg_rtx[MAX_RELOADS];
6487 /* In order to be certain of getting the registers we need,
6488 we must sort the reloads into order of increasing register class.
6489 Then our grabbing of reload registers will parallel the process
6490 that provided the reload registers.
6492 Also note whether any of the reloads wants a consecutive group of regs.
6493 If so, record the maximum size of the group desired and what
6494 register class contains all the groups needed by this insn. */
6496 for (j = 0; j < n_reloads; j++)
6498 reload_order[j] = j;
6499 if (rld[j].reg_rtx != NULL_RTX)
6501 gcc_assert (REG_P (rld[j].reg_rtx)
6502 && HARD_REGISTER_P (rld[j].reg_rtx));
6503 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6505 else
6506 reload_spill_index[j] = -1;
6508 if (rld[j].nregs > 1)
6510 max_group_size = MAX (rld[j].nregs, max_group_size);
6511 group_class
6512 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6515 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6518 if (n_reloads > 1)
6519 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6521 /* If -O, try first with inheritance, then turning it off.
6522 If not -O, don't do inheritance.
6523 Using inheritance when not optimizing leads to paradoxes
6524 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6525 because one side of the comparison might be inherited. */
6526 win = 0;
6527 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6529 choose_reload_regs_init (chain, save_reload_reg_rtx);
6531 /* Process the reloads in order of preference just found.
6532 Beyond this point, subregs can be found in reload_reg_rtx.
6534 This used to look for an existing reloaded home for all of the
6535 reloads, and only then perform any new reloads. But that could lose
6536 if the reloads were done out of reg-class order because a later
6537 reload with a looser constraint might have an old home in a register
6538 needed by an earlier reload with a tighter constraint.
6540 To solve this, we make two passes over the reloads, in the order
6541 described above. In the first pass we try to inherit a reload
6542 from a previous insn. If there is a later reload that needs a
6543 class that is a proper subset of the class being processed, we must
6544 also allocate a spill register during the first pass.
6546 Then make a second pass over the reloads to allocate any reloads
6547 that haven't been given registers yet. */
6549 for (j = 0; j < n_reloads; j++)
6551 int r = reload_order[j];
6552 rtx search_equiv = NULL_RTX;
6554 /* Ignore reloads that got marked inoperative. */
6555 if (rld[r].out == 0 && rld[r].in == 0
6556 && ! rld[r].secondary_p)
6557 continue;
6559 /* If find_reloads chose to use reload_in or reload_out as a reload
6560 register, we don't need to chose one. Otherwise, try even if it
6561 found one since we might save an insn if we find the value lying
6562 around.
6563 Try also when reload_in is a pseudo without a hard reg. */
6564 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6565 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6566 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6567 && !MEM_P (rld[r].in)
6568 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6569 continue;
6571 #if 0 /* No longer needed for correct operation.
6572 It might give better code, or might not; worth an experiment? */
6573 /* If this is an optional reload, we can't inherit from earlier insns
6574 until we are sure that any non-optional reloads have been allocated.
6575 The following code takes advantage of the fact that optional reloads
6576 are at the end of reload_order. */
6577 if (rld[r].optional != 0)
6578 for (i = 0; i < j; i++)
6579 if ((rld[reload_order[i]].out != 0
6580 || rld[reload_order[i]].in != 0
6581 || rld[reload_order[i]].secondary_p)
6582 && ! rld[reload_order[i]].optional
6583 && rld[reload_order[i]].reg_rtx == 0)
6584 allocate_reload_reg (chain, reload_order[i], 0);
6585 #endif
6587 /* First see if this pseudo is already available as reloaded
6588 for a previous insn. We cannot try to inherit for reloads
6589 that are smaller than the maximum number of registers needed
6590 for groups unless the register we would allocate cannot be used
6591 for the groups.
6593 We could check here to see if this is a secondary reload for
6594 an object that is already in a register of the desired class.
6595 This would avoid the need for the secondary reload register.
6596 But this is complex because we can't easily determine what
6597 objects might want to be loaded via this reload. So let a
6598 register be allocated here. In `emit_reload_insns' we suppress
6599 one of the loads in the case described above. */
6601 if (inheritance)
6603 int byte = 0;
6604 int regno = -1;
6605 machine_mode mode = VOIDmode;
6606 rtx subreg = NULL_RTX;
6608 if (rld[r].in == 0)
6610 else if (REG_P (rld[r].in))
6612 regno = REGNO (rld[r].in);
6613 mode = GET_MODE (rld[r].in);
6615 else if (REG_P (rld[r].in_reg))
6617 regno = REGNO (rld[r].in_reg);
6618 mode = GET_MODE (rld[r].in_reg);
6620 else if (GET_CODE (rld[r].in_reg) == SUBREG
6621 && REG_P (SUBREG_REG (rld[r].in_reg)))
6623 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6624 if (regno < FIRST_PSEUDO_REGISTER)
6625 regno = subreg_regno (rld[r].in_reg);
6626 else
6628 subreg = rld[r].in_reg;
6629 byte = SUBREG_BYTE (subreg);
6631 mode = GET_MODE (rld[r].in_reg);
6633 #ifdef AUTO_INC_DEC
6634 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6635 && REG_P (XEXP (rld[r].in_reg, 0)))
6637 regno = REGNO (XEXP (rld[r].in_reg, 0));
6638 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6639 rld[r].out = rld[r].in;
6641 #endif
6642 #if 0
6643 /* This won't work, since REGNO can be a pseudo reg number.
6644 Also, it takes much more hair to keep track of all the things
6645 that can invalidate an inherited reload of part of a pseudoreg. */
6646 else if (GET_CODE (rld[r].in) == SUBREG
6647 && REG_P (SUBREG_REG (rld[r].in)))
6648 regno = subreg_regno (rld[r].in);
6649 #endif
6651 if (regno >= 0
6652 && reg_last_reload_reg[regno] != 0
6653 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6654 >= GET_MODE_SIZE (mode) + byte)
6655 #ifdef CANNOT_CHANGE_MODE_CLASS
6656 /* Verify that the register it's in can be used in
6657 mode MODE. */
6658 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6659 GET_MODE (reg_last_reload_reg[regno]),
6660 mode)
6661 #endif
6664 enum reg_class rclass = rld[r].rclass, last_class;
6665 rtx last_reg = reg_last_reload_reg[regno];
6667 i = REGNO (last_reg);
6668 byte = compute_reload_subreg_offset (mode,
6669 subreg,
6670 GET_MODE (last_reg));
6671 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6672 last_class = REGNO_REG_CLASS (i);
6674 if (reg_reloaded_contents[i] == regno
6675 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6676 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6677 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6678 /* Even if we can't use this register as a reload
6679 register, we might use it for reload_override_in,
6680 if copying it to the desired class is cheap
6681 enough. */
6682 || ((register_move_cost (mode, last_class, rclass)
6683 < memory_move_cost (mode, rclass, true))
6684 && (secondary_reload_class (1, rclass, mode,
6685 last_reg)
6686 == NO_REGS)
6687 #ifdef SECONDARY_MEMORY_NEEDED
6688 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6689 mode)
6690 #endif
6693 && (rld[r].nregs == max_group_size
6694 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6696 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6697 rld[r].when_needed, rld[r].in,
6698 const0_rtx, r, 1))
6700 /* If a group is needed, verify that all the subsequent
6701 registers still have their values intact. */
6702 int nr = hard_regno_nregs[i][rld[r].mode];
6703 int k;
6705 for (k = 1; k < nr; k++)
6706 if (reg_reloaded_contents[i + k] != regno
6707 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6708 break;
6710 if (k == nr)
6712 int i1;
6713 int bad_for_class;
6715 last_reg = (GET_MODE (last_reg) == mode
6716 ? last_reg : gen_rtx_REG (mode, i));
6718 bad_for_class = 0;
6719 for (k = 0; k < nr; k++)
6720 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6721 i+k);
6723 /* We found a register that contains the
6724 value we need. If this register is the
6725 same as an `earlyclobber' operand of the
6726 current insn, just mark it as a place to
6727 reload from since we can't use it as the
6728 reload register itself. */
6730 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6731 if (reg_overlap_mentioned_for_reload_p
6732 (reg_last_reload_reg[regno],
6733 reload_earlyclobbers[i1]))
6734 break;
6736 if (i1 != n_earlyclobbers
6737 || ! (free_for_value_p (i, rld[r].mode,
6738 rld[r].opnum,
6739 rld[r].when_needed, rld[r].in,
6740 rld[r].out, r, 1))
6741 /* Don't use it if we'd clobber a pseudo reg. */
6742 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6743 && rld[r].out
6744 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6745 /* Don't clobber the frame pointer. */
6746 || (i == HARD_FRAME_POINTER_REGNUM
6747 && frame_pointer_needed
6748 && rld[r].out)
6749 /* Don't really use the inherited spill reg
6750 if we need it wider than we've got it. */
6751 || (GET_MODE_SIZE (rld[r].mode)
6752 > GET_MODE_SIZE (mode))
6753 || bad_for_class
6755 /* If find_reloads chose reload_out as reload
6756 register, stay with it - that leaves the
6757 inherited register for subsequent reloads. */
6758 || (rld[r].out && rld[r].reg_rtx
6759 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6761 if (! rld[r].optional)
6763 reload_override_in[r] = last_reg;
6764 reload_inheritance_insn[r]
6765 = reg_reloaded_insn[i];
6768 else
6770 int k;
6771 /* We can use this as a reload reg. */
6772 /* Mark the register as in use for this part of
6773 the insn. */
6774 mark_reload_reg_in_use (i,
6775 rld[r].opnum,
6776 rld[r].when_needed,
6777 rld[r].mode);
6778 rld[r].reg_rtx = last_reg;
6779 reload_inherited[r] = 1;
6780 reload_inheritance_insn[r]
6781 = reg_reloaded_insn[i];
6782 reload_spill_index[r] = i;
6783 for (k = 0; k < nr; k++)
6784 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6785 i + k);
6792 /* Here's another way to see if the value is already lying around. */
6793 if (inheritance
6794 && rld[r].in != 0
6795 && ! reload_inherited[r]
6796 && rld[r].out == 0
6797 && (CONSTANT_P (rld[r].in)
6798 || GET_CODE (rld[r].in) == PLUS
6799 || REG_P (rld[r].in)
6800 || MEM_P (rld[r].in))
6801 && (rld[r].nregs == max_group_size
6802 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6803 search_equiv = rld[r].in;
6805 if (search_equiv)
6807 rtx equiv
6808 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6809 -1, NULL, 0, rld[r].mode);
6810 int regno = 0;
6812 if (equiv != 0)
6814 if (REG_P (equiv))
6815 regno = REGNO (equiv);
6816 else
6818 /* This must be a SUBREG of a hard register.
6819 Make a new REG since this might be used in an
6820 address and not all machines support SUBREGs
6821 there. */
6822 gcc_assert (GET_CODE (equiv) == SUBREG);
6823 regno = subreg_regno (equiv);
6824 equiv = gen_rtx_REG (rld[r].mode, regno);
6825 /* If we choose EQUIV as the reload register, but the
6826 loop below decides to cancel the inheritance, we'll
6827 end up reloading EQUIV in rld[r].mode, not the mode
6828 it had originally. That isn't safe when EQUIV isn't
6829 available as a spill register since its value might
6830 still be live at this point. */
6831 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6832 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6833 equiv = 0;
6837 /* If we found a spill reg, reject it unless it is free
6838 and of the desired class. */
6839 if (equiv != 0)
6841 int regs_used = 0;
6842 int bad_for_class = 0;
6843 int max_regno = regno + rld[r].nregs;
6845 for (i = regno; i < max_regno; i++)
6847 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6849 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6853 if ((regs_used
6854 && ! free_for_value_p (regno, rld[r].mode,
6855 rld[r].opnum, rld[r].when_needed,
6856 rld[r].in, rld[r].out, r, 1))
6857 || bad_for_class)
6858 equiv = 0;
6861 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6862 equiv = 0;
6864 /* We found a register that contains the value we need.
6865 If this register is the same as an `earlyclobber' operand
6866 of the current insn, just mark it as a place to reload from
6867 since we can't use it as the reload register itself. */
6869 if (equiv != 0)
6870 for (i = 0; i < n_earlyclobbers; i++)
6871 if (reg_overlap_mentioned_for_reload_p (equiv,
6872 reload_earlyclobbers[i]))
6874 if (! rld[r].optional)
6875 reload_override_in[r] = equiv;
6876 equiv = 0;
6877 break;
6880 /* If the equiv register we have found is explicitly clobbered
6881 in the current insn, it depends on the reload type if we
6882 can use it, use it for reload_override_in, or not at all.
6883 In particular, we then can't use EQUIV for a
6884 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6886 if (equiv != 0)
6888 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6889 switch (rld[r].when_needed)
6891 case RELOAD_FOR_OTHER_ADDRESS:
6892 case RELOAD_FOR_INPADDR_ADDRESS:
6893 case RELOAD_FOR_INPUT_ADDRESS:
6894 case RELOAD_FOR_OPADDR_ADDR:
6895 break;
6896 case RELOAD_OTHER:
6897 case RELOAD_FOR_INPUT:
6898 case RELOAD_FOR_OPERAND_ADDRESS:
6899 if (! rld[r].optional)
6900 reload_override_in[r] = equiv;
6901 /* Fall through. */
6902 default:
6903 equiv = 0;
6904 break;
6906 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6907 switch (rld[r].when_needed)
6909 case RELOAD_FOR_OTHER_ADDRESS:
6910 case RELOAD_FOR_INPADDR_ADDRESS:
6911 case RELOAD_FOR_INPUT_ADDRESS:
6912 case RELOAD_FOR_OPADDR_ADDR:
6913 case RELOAD_FOR_OPERAND_ADDRESS:
6914 case RELOAD_FOR_INPUT:
6915 break;
6916 case RELOAD_OTHER:
6917 if (! rld[r].optional)
6918 reload_override_in[r] = equiv;
6919 /* Fall through. */
6920 default:
6921 equiv = 0;
6922 break;
6926 /* If we found an equivalent reg, say no code need be generated
6927 to load it, and use it as our reload reg. */
6928 if (equiv != 0
6929 && (regno != HARD_FRAME_POINTER_REGNUM
6930 || !frame_pointer_needed))
6932 int nr = hard_regno_nregs[regno][rld[r].mode];
6933 int k;
6934 rld[r].reg_rtx = equiv;
6935 reload_spill_index[r] = regno;
6936 reload_inherited[r] = 1;
6938 /* If reg_reloaded_valid is not set for this register,
6939 there might be a stale spill_reg_store lying around.
6940 We must clear it, since otherwise emit_reload_insns
6941 might delete the store. */
6942 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6943 spill_reg_store[regno] = NULL;
6944 /* If any of the hard registers in EQUIV are spill
6945 registers, mark them as in use for this insn. */
6946 for (k = 0; k < nr; k++)
6948 i = spill_reg_order[regno + k];
6949 if (i >= 0)
6951 mark_reload_reg_in_use (regno, rld[r].opnum,
6952 rld[r].when_needed,
6953 rld[r].mode);
6954 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6955 regno + k);
6961 /* If we found a register to use already, or if this is an optional
6962 reload, we are done. */
6963 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6964 continue;
6966 #if 0
6967 /* No longer needed for correct operation. Might or might
6968 not give better code on the average. Want to experiment? */
6970 /* See if there is a later reload that has a class different from our
6971 class that intersects our class or that requires less register
6972 than our reload. If so, we must allocate a register to this
6973 reload now, since that reload might inherit a previous reload
6974 and take the only available register in our class. Don't do this
6975 for optional reloads since they will force all previous reloads
6976 to be allocated. Also don't do this for reloads that have been
6977 turned off. */
6979 for (i = j + 1; i < n_reloads; i++)
6981 int s = reload_order[i];
6983 if ((rld[s].in == 0 && rld[s].out == 0
6984 && ! rld[s].secondary_p)
6985 || rld[s].optional)
6986 continue;
6988 if ((rld[s].rclass != rld[r].rclass
6989 && reg_classes_intersect_p (rld[r].rclass,
6990 rld[s].rclass))
6991 || rld[s].nregs < rld[r].nregs)
6992 break;
6995 if (i == n_reloads)
6996 continue;
6998 allocate_reload_reg (chain, r, j == n_reloads - 1);
6999 #endif
7002 /* Now allocate reload registers for anything non-optional that
7003 didn't get one yet. */
7004 for (j = 0; j < n_reloads; j++)
7006 int r = reload_order[j];
7008 /* Ignore reloads that got marked inoperative. */
7009 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
7010 continue;
7012 /* Skip reloads that already have a register allocated or are
7013 optional. */
7014 if (rld[r].reg_rtx != 0 || rld[r].optional)
7015 continue;
7017 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
7018 break;
7021 /* If that loop got all the way, we have won. */
7022 if (j == n_reloads)
7024 win = 1;
7025 break;
7028 /* Loop around and try without any inheritance. */
7031 if (! win)
7033 /* First undo everything done by the failed attempt
7034 to allocate with inheritance. */
7035 choose_reload_regs_init (chain, save_reload_reg_rtx);
7037 /* Some sanity tests to verify that the reloads found in the first
7038 pass are identical to the ones we have now. */
7039 gcc_assert (chain->n_reloads == n_reloads);
7041 for (i = 0; i < n_reloads; i++)
7043 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7044 continue;
7045 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7046 for (j = 0; j < n_spills; j++)
7047 if (spill_regs[j] == chain->rld[i].regno)
7048 if (! set_reload_reg (j, i))
7049 failed_reload (chain->insn, i);
7053 /* If we thought we could inherit a reload, because it seemed that
7054 nothing else wanted the same reload register earlier in the insn,
7055 verify that assumption, now that all reloads have been assigned.
7056 Likewise for reloads where reload_override_in has been set. */
7058 /* If doing expensive optimizations, do one preliminary pass that doesn't
7059 cancel any inheritance, but removes reloads that have been needed only
7060 for reloads that we know can be inherited. */
7061 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7063 for (j = 0; j < n_reloads; j++)
7065 int r = reload_order[j];
7066 rtx check_reg;
7067 #ifdef SECONDARY_MEMORY_NEEDED
7068 rtx tem;
7069 #endif
7070 if (reload_inherited[r] && rld[r].reg_rtx)
7071 check_reg = rld[r].reg_rtx;
7072 else if (reload_override_in[r]
7073 && (REG_P (reload_override_in[r])
7074 || GET_CODE (reload_override_in[r]) == SUBREG))
7075 check_reg = reload_override_in[r];
7076 else
7077 continue;
7078 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7079 rld[r].opnum, rld[r].when_needed, rld[r].in,
7080 (reload_inherited[r]
7081 ? rld[r].out : const0_rtx),
7082 r, 1))
7084 if (pass)
7085 continue;
7086 reload_inherited[r] = 0;
7087 reload_override_in[r] = 0;
7089 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7090 reload_override_in, then we do not need its related
7091 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7092 likewise for other reload types.
7093 We handle this by removing a reload when its only replacement
7094 is mentioned in reload_in of the reload we are going to inherit.
7095 A special case are auto_inc expressions; even if the input is
7096 inherited, we still need the address for the output. We can
7097 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7098 If we succeeded removing some reload and we are doing a preliminary
7099 pass just to remove such reloads, make another pass, since the
7100 removal of one reload might allow us to inherit another one. */
7101 else if (rld[r].in
7102 && rld[r].out != rld[r].in
7103 && remove_address_replacements (rld[r].in))
7105 if (pass)
7106 pass = 2;
7108 #ifdef SECONDARY_MEMORY_NEEDED
7109 /* If we needed a memory location for the reload, we also have to
7110 remove its related reloads. */
7111 else if (rld[r].in
7112 && rld[r].out != rld[r].in
7113 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7114 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7115 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7116 rld[r].rclass, rld[r].inmode)
7117 && remove_address_replacements
7118 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7119 rld[r].when_needed)))
7121 if (pass)
7122 pass = 2;
7124 #endif
7128 /* Now that reload_override_in is known valid,
7129 actually override reload_in. */
7130 for (j = 0; j < n_reloads; j++)
7131 if (reload_override_in[j])
7132 rld[j].in = reload_override_in[j];
7134 /* If this reload won't be done because it has been canceled or is
7135 optional and not inherited, clear reload_reg_rtx so other
7136 routines (such as subst_reloads) don't get confused. */
7137 for (j = 0; j < n_reloads; j++)
7138 if (rld[j].reg_rtx != 0
7139 && ((rld[j].optional && ! reload_inherited[j])
7140 || (rld[j].in == 0 && rld[j].out == 0
7141 && ! rld[j].secondary_p)))
7143 int regno = true_regnum (rld[j].reg_rtx);
7145 if (spill_reg_order[regno] >= 0)
7146 clear_reload_reg_in_use (regno, rld[j].opnum,
7147 rld[j].when_needed, rld[j].mode);
7148 rld[j].reg_rtx = 0;
7149 reload_spill_index[j] = -1;
7152 /* Record which pseudos and which spill regs have output reloads. */
7153 for (j = 0; j < n_reloads; j++)
7155 int r = reload_order[j];
7157 i = reload_spill_index[r];
7159 /* I is nonneg if this reload uses a register.
7160 If rld[r].reg_rtx is 0, this is an optional reload
7161 that we opted to ignore. */
7162 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7163 && rld[r].reg_rtx != 0)
7165 int nregno = REGNO (rld[r].out_reg);
7166 int nr = 1;
7168 if (nregno < FIRST_PSEUDO_REGISTER)
7169 nr = hard_regno_nregs[nregno][rld[r].mode];
7171 while (--nr >= 0)
7172 SET_REGNO_REG_SET (&reg_has_output_reload,
7173 nregno + nr);
7175 if (i >= 0)
7176 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7178 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7179 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7180 || rld[r].when_needed == RELOAD_FOR_INSN);
7185 /* Deallocate the reload register for reload R. This is called from
7186 remove_address_replacements. */
7188 void
7189 deallocate_reload_reg (int r)
7191 int regno;
7193 if (! rld[r].reg_rtx)
7194 return;
7195 regno = true_regnum (rld[r].reg_rtx);
7196 rld[r].reg_rtx = 0;
7197 if (spill_reg_order[regno] >= 0)
7198 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7199 rld[r].mode);
7200 reload_spill_index[r] = -1;
7203 /* These arrays are filled by emit_reload_insns and its subroutines. */
7204 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7205 static rtx_insn *other_input_address_reload_insns = 0;
7206 static rtx_insn *other_input_reload_insns = 0;
7207 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7208 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7209 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7210 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7211 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7212 static rtx_insn *operand_reload_insns = 0;
7213 static rtx_insn *other_operand_reload_insns = 0;
7214 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7216 /* Values to be put in spill_reg_store are put here first. Instructions
7217 must only be placed here if the associated reload register reaches
7218 the end of the instruction's reload sequence. */
7219 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7220 static HARD_REG_SET reg_reloaded_died;
7222 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7223 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7224 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7225 adjusted register, and return true. Otherwise, return false. */
7226 static bool
7227 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7228 enum reg_class new_class,
7229 machine_mode new_mode)
7232 rtx reg;
7234 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7236 unsigned regno = REGNO (reg);
7238 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7239 continue;
7240 if (GET_MODE (reg) != new_mode)
7242 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7243 continue;
7244 if (hard_regno_nregs[regno][new_mode]
7245 > hard_regno_nregs[regno][GET_MODE (reg)])
7246 continue;
7247 reg = reload_adjust_reg_for_mode (reg, new_mode);
7249 *reload_reg = reg;
7250 return true;
7252 return false;
7255 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7256 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7257 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7258 adjusted register, and return true. Otherwise, return false. */
7259 static bool
7260 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7261 enum insn_code icode)
7264 enum reg_class new_class = scratch_reload_class (icode);
7265 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7267 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7268 new_class, new_mode);
7271 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7272 has the number J. OLD contains the value to be used as input. */
7274 static void
7275 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7276 rtx old, int j)
7278 rtx_insn *insn = chain->insn;
7279 rtx reloadreg;
7280 rtx oldequiv_reg = 0;
7281 rtx oldequiv = 0;
7282 int special = 0;
7283 machine_mode mode;
7284 rtx_insn **where;
7286 /* delete_output_reload is only invoked properly if old contains
7287 the original pseudo register. Since this is replaced with a
7288 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7289 find the pseudo in RELOAD_IN_REG. This is also used to
7290 determine whether a secondary reload is needed. */
7291 if (reload_override_in[j]
7292 && (REG_P (rl->in_reg)
7293 || (GET_CODE (rl->in_reg) == SUBREG
7294 && REG_P (SUBREG_REG (rl->in_reg)))))
7296 oldequiv = old;
7297 old = rl->in_reg;
7299 if (oldequiv == 0)
7300 oldequiv = old;
7301 else if (REG_P (oldequiv))
7302 oldequiv_reg = oldequiv;
7303 else if (GET_CODE (oldequiv) == SUBREG)
7304 oldequiv_reg = SUBREG_REG (oldequiv);
7306 reloadreg = reload_reg_rtx_for_input[j];
7307 mode = GET_MODE (reloadreg);
7309 /* If we are reloading from a register that was recently stored in
7310 with an output-reload, see if we can prove there was
7311 actually no need to store the old value in it. */
7313 if (optimize && REG_P (oldequiv)
7314 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7315 && spill_reg_store[REGNO (oldequiv)]
7316 && REG_P (old)
7317 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7318 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7319 rl->out_reg)))
7320 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7322 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7323 OLDEQUIV. */
7325 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7326 oldequiv = SUBREG_REG (oldequiv);
7327 if (GET_MODE (oldequiv) != VOIDmode
7328 && mode != GET_MODE (oldequiv))
7329 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7331 /* Switch to the right place to emit the reload insns. */
7332 switch (rl->when_needed)
7334 case RELOAD_OTHER:
7335 where = &other_input_reload_insns;
7336 break;
7337 case RELOAD_FOR_INPUT:
7338 where = &input_reload_insns[rl->opnum];
7339 break;
7340 case RELOAD_FOR_INPUT_ADDRESS:
7341 where = &input_address_reload_insns[rl->opnum];
7342 break;
7343 case RELOAD_FOR_INPADDR_ADDRESS:
7344 where = &inpaddr_address_reload_insns[rl->opnum];
7345 break;
7346 case RELOAD_FOR_OUTPUT_ADDRESS:
7347 where = &output_address_reload_insns[rl->opnum];
7348 break;
7349 case RELOAD_FOR_OUTADDR_ADDRESS:
7350 where = &outaddr_address_reload_insns[rl->opnum];
7351 break;
7352 case RELOAD_FOR_OPERAND_ADDRESS:
7353 where = &operand_reload_insns;
7354 break;
7355 case RELOAD_FOR_OPADDR_ADDR:
7356 where = &other_operand_reload_insns;
7357 break;
7358 case RELOAD_FOR_OTHER_ADDRESS:
7359 where = &other_input_address_reload_insns;
7360 break;
7361 default:
7362 gcc_unreachable ();
7365 push_to_sequence (*where);
7367 /* Auto-increment addresses must be reloaded in a special way. */
7368 if (rl->out && ! rl->out_reg)
7370 /* We are not going to bother supporting the case where a
7371 incremented register can't be copied directly from
7372 OLDEQUIV since this seems highly unlikely. */
7373 gcc_assert (rl->secondary_in_reload < 0);
7375 if (reload_inherited[j])
7376 oldequiv = reloadreg;
7378 old = XEXP (rl->in_reg, 0);
7380 /* Prevent normal processing of this reload. */
7381 special = 1;
7382 /* Output a special code sequence for this case. */
7383 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7386 /* If we are reloading a pseudo-register that was set by the previous
7387 insn, see if we can get rid of that pseudo-register entirely
7388 by redirecting the previous insn into our reload register. */
7390 else if (optimize && REG_P (old)
7391 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7392 && dead_or_set_p (insn, old)
7393 /* This is unsafe if some other reload
7394 uses the same reg first. */
7395 && ! conflicts_with_override (reloadreg)
7396 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7397 rl->when_needed, old, rl->out, j, 0))
7399 rtx_insn *temp = PREV_INSN (insn);
7400 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7401 temp = PREV_INSN (temp);
7402 if (temp
7403 && NONJUMP_INSN_P (temp)
7404 && GET_CODE (PATTERN (temp)) == SET
7405 && SET_DEST (PATTERN (temp)) == old
7406 /* Make sure we can access insn_operand_constraint. */
7407 && asm_noperands (PATTERN (temp)) < 0
7408 /* This is unsafe if operand occurs more than once in current
7409 insn. Perhaps some occurrences aren't reloaded. */
7410 && count_occurrences (PATTERN (insn), old, 0) == 1)
7412 rtx old = SET_DEST (PATTERN (temp));
7413 /* Store into the reload register instead of the pseudo. */
7414 SET_DEST (PATTERN (temp)) = reloadreg;
7416 /* Verify that resulting insn is valid.
7418 Note that we have replaced the destination of TEMP with
7419 RELOADREG. If TEMP references RELOADREG within an
7420 autoincrement addressing mode, then the resulting insn
7421 is ill-formed and we must reject this optimization. */
7422 extract_insn (temp);
7423 if (constrain_operands (1, get_enabled_alternatives (temp))
7424 #ifdef AUTO_INC_DEC
7425 && ! find_reg_note (temp, REG_INC, reloadreg)
7426 #endif
7429 /* If the previous insn is an output reload, the source is
7430 a reload register, and its spill_reg_store entry will
7431 contain the previous destination. This is now
7432 invalid. */
7433 if (REG_P (SET_SRC (PATTERN (temp)))
7434 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7436 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7437 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7440 /* If these are the only uses of the pseudo reg,
7441 pretend for GDB it lives in the reload reg we used. */
7442 if (REG_N_DEATHS (REGNO (old)) == 1
7443 && REG_N_SETS (REGNO (old)) == 1)
7445 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7446 if (ira_conflicts_p)
7447 /* Inform IRA about the change. */
7448 ira_mark_allocation_change (REGNO (old));
7449 alter_reg (REGNO (old), -1, false);
7451 special = 1;
7453 /* Adjust any debug insns between temp and insn. */
7454 while ((temp = NEXT_INSN (temp)) != insn)
7455 if (DEBUG_INSN_P (temp))
7456 replace_rtx (PATTERN (temp), old, reloadreg);
7457 else
7458 gcc_assert (NOTE_P (temp));
7460 else
7462 SET_DEST (PATTERN (temp)) = old;
7467 /* We can't do that, so output an insn to load RELOADREG. */
7469 /* If we have a secondary reload, pick up the secondary register
7470 and icode, if any. If OLDEQUIV and OLD are different or
7471 if this is an in-out reload, recompute whether or not we
7472 still need a secondary register and what the icode should
7473 be. If we still need a secondary register and the class or
7474 icode is different, go back to reloading from OLD if using
7475 OLDEQUIV means that we got the wrong type of register. We
7476 cannot have different class or icode due to an in-out reload
7477 because we don't make such reloads when both the input and
7478 output need secondary reload registers. */
7480 if (! special && rl->secondary_in_reload >= 0)
7482 rtx second_reload_reg = 0;
7483 rtx third_reload_reg = 0;
7484 int secondary_reload = rl->secondary_in_reload;
7485 rtx real_oldequiv = oldequiv;
7486 rtx real_old = old;
7487 rtx tmp;
7488 enum insn_code icode;
7489 enum insn_code tertiary_icode = CODE_FOR_nothing;
7491 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7492 and similarly for OLD.
7493 See comments in get_secondary_reload in reload.c. */
7494 /* If it is a pseudo that cannot be replaced with its
7495 equivalent MEM, we must fall back to reload_in, which
7496 will have all the necessary substitutions registered.
7497 Likewise for a pseudo that can't be replaced with its
7498 equivalent constant.
7500 Take extra care for subregs of such pseudos. Note that
7501 we cannot use reg_equiv_mem in this case because it is
7502 not in the right mode. */
7504 tmp = oldequiv;
7505 if (GET_CODE (tmp) == SUBREG)
7506 tmp = SUBREG_REG (tmp);
7507 if (REG_P (tmp)
7508 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7509 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7510 || reg_equiv_constant (REGNO (tmp)) != 0))
7512 if (! reg_equiv_mem (REGNO (tmp))
7513 || num_not_at_initial_offset
7514 || GET_CODE (oldequiv) == SUBREG)
7515 real_oldequiv = rl->in;
7516 else
7517 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7520 tmp = old;
7521 if (GET_CODE (tmp) == SUBREG)
7522 tmp = SUBREG_REG (tmp);
7523 if (REG_P (tmp)
7524 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7525 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7526 || reg_equiv_constant (REGNO (tmp)) != 0))
7528 if (! reg_equiv_mem (REGNO (tmp))
7529 || num_not_at_initial_offset
7530 || GET_CODE (old) == SUBREG)
7531 real_old = rl->in;
7532 else
7533 real_old = reg_equiv_mem (REGNO (tmp));
7536 second_reload_reg = rld[secondary_reload].reg_rtx;
7537 if (rld[secondary_reload].secondary_in_reload >= 0)
7539 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7541 third_reload_reg = rld[tertiary_reload].reg_rtx;
7542 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7543 /* We'd have to add more code for quartary reloads. */
7544 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7546 icode = rl->secondary_in_icode;
7548 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7549 || (rl->in != 0 && rl->out != 0))
7551 secondary_reload_info sri, sri2;
7552 enum reg_class new_class, new_t_class;
7554 sri.icode = CODE_FOR_nothing;
7555 sri.prev_sri = NULL;
7556 new_class
7557 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7558 rl->rclass, mode,
7559 &sri);
7561 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7562 second_reload_reg = 0;
7563 else if (new_class == NO_REGS)
7565 if (reload_adjust_reg_for_icode (&second_reload_reg,
7566 third_reload_reg,
7567 (enum insn_code) sri.icode))
7569 icode = (enum insn_code) sri.icode;
7570 third_reload_reg = 0;
7572 else
7574 oldequiv = old;
7575 real_oldequiv = real_old;
7578 else if (sri.icode != CODE_FOR_nothing)
7579 /* We currently lack a way to express this in reloads. */
7580 gcc_unreachable ();
7581 else
7583 sri2.icode = CODE_FOR_nothing;
7584 sri2.prev_sri = &sri;
7585 new_t_class
7586 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7587 new_class, mode,
7588 &sri);
7589 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7591 if (reload_adjust_reg_for_temp (&second_reload_reg,
7592 third_reload_reg,
7593 new_class, mode))
7595 third_reload_reg = 0;
7596 tertiary_icode = (enum insn_code) sri2.icode;
7598 else
7600 oldequiv = old;
7601 real_oldequiv = real_old;
7604 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7606 rtx intermediate = second_reload_reg;
7608 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7609 new_class, mode)
7610 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7611 ((enum insn_code)
7612 sri2.icode)))
7614 second_reload_reg = intermediate;
7615 tertiary_icode = (enum insn_code) sri2.icode;
7617 else
7619 oldequiv = old;
7620 real_oldequiv = real_old;
7623 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7625 rtx intermediate = second_reload_reg;
7627 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7628 new_class, mode)
7629 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7630 new_t_class, mode))
7632 second_reload_reg = intermediate;
7633 tertiary_icode = (enum insn_code) sri2.icode;
7635 else
7637 oldequiv = old;
7638 real_oldequiv = real_old;
7641 else
7643 /* This could be handled more intelligently too. */
7644 oldequiv = old;
7645 real_oldequiv = real_old;
7650 /* If we still need a secondary reload register, check
7651 to see if it is being used as a scratch or intermediate
7652 register and generate code appropriately. If we need
7653 a scratch register, use REAL_OLDEQUIV since the form of
7654 the insn may depend on the actual address if it is
7655 a MEM. */
7657 if (second_reload_reg)
7659 if (icode != CODE_FOR_nothing)
7661 /* We'd have to add extra code to handle this case. */
7662 gcc_assert (!third_reload_reg);
7664 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7665 second_reload_reg));
7666 special = 1;
7668 else
7670 /* See if we need a scratch register to load the
7671 intermediate register (a tertiary reload). */
7672 if (tertiary_icode != CODE_FOR_nothing)
7674 emit_insn ((GEN_FCN (tertiary_icode)
7675 (second_reload_reg, real_oldequiv,
7676 third_reload_reg)));
7678 else if (third_reload_reg)
7680 gen_reload (third_reload_reg, real_oldequiv,
7681 rl->opnum,
7682 rl->when_needed);
7683 gen_reload (second_reload_reg, third_reload_reg,
7684 rl->opnum,
7685 rl->when_needed);
7687 else
7688 gen_reload (second_reload_reg, real_oldequiv,
7689 rl->opnum,
7690 rl->when_needed);
7692 oldequiv = second_reload_reg;
7697 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7699 rtx real_oldequiv = oldequiv;
7701 if ((REG_P (oldequiv)
7702 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7703 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7704 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7705 || (GET_CODE (oldequiv) == SUBREG
7706 && REG_P (SUBREG_REG (oldequiv))
7707 && (REGNO (SUBREG_REG (oldequiv))
7708 >= FIRST_PSEUDO_REGISTER)
7709 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7710 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7711 || (CONSTANT_P (oldequiv)
7712 && (targetm.preferred_reload_class (oldequiv,
7713 REGNO_REG_CLASS (REGNO (reloadreg)))
7714 == NO_REGS)))
7715 real_oldequiv = rl->in;
7716 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7717 rl->when_needed);
7720 if (cfun->can_throw_non_call_exceptions)
7721 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7723 /* End this sequence. */
7724 *where = get_insns ();
7725 end_sequence ();
7727 /* Update reload_override_in so that delete_address_reloads_1
7728 can see the actual register usage. */
7729 if (oldequiv_reg)
7730 reload_override_in[j] = oldequiv;
7733 /* Generate insns to for the output reload RL, which is for the insn described
7734 by CHAIN and has the number J. */
7735 static void
7736 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7737 int j)
7739 rtx reloadreg;
7740 rtx_insn *insn = chain->insn;
7741 int special = 0;
7742 rtx old = rl->out;
7743 machine_mode mode;
7744 rtx_insn *p;
7745 rtx rl_reg_rtx;
7747 if (rl->when_needed == RELOAD_OTHER)
7748 start_sequence ();
7749 else
7750 push_to_sequence (output_reload_insns[rl->opnum]);
7752 rl_reg_rtx = reload_reg_rtx_for_output[j];
7753 mode = GET_MODE (rl_reg_rtx);
7755 reloadreg = rl_reg_rtx;
7757 /* If we need two reload regs, set RELOADREG to the intermediate
7758 one, since it will be stored into OLD. We might need a secondary
7759 register only for an input reload, so check again here. */
7761 if (rl->secondary_out_reload >= 0)
7763 rtx real_old = old;
7764 int secondary_reload = rl->secondary_out_reload;
7765 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7767 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7768 && reg_equiv_mem (REGNO (old)) != 0)
7769 real_old = reg_equiv_mem (REGNO (old));
7771 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7773 rtx second_reloadreg = reloadreg;
7774 reloadreg = rld[secondary_reload].reg_rtx;
7776 /* See if RELOADREG is to be used as a scratch register
7777 or as an intermediate register. */
7778 if (rl->secondary_out_icode != CODE_FOR_nothing)
7780 /* We'd have to add extra code to handle this case. */
7781 gcc_assert (tertiary_reload < 0);
7783 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7784 (real_old, second_reloadreg, reloadreg)));
7785 special = 1;
7787 else
7789 /* See if we need both a scratch and intermediate reload
7790 register. */
7792 enum insn_code tertiary_icode
7793 = rld[secondary_reload].secondary_out_icode;
7795 /* We'd have to add more code for quartary reloads. */
7796 gcc_assert (tertiary_reload < 0
7797 || rld[tertiary_reload].secondary_out_reload < 0);
7799 if (GET_MODE (reloadreg) != mode)
7800 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7802 if (tertiary_icode != CODE_FOR_nothing)
7804 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7806 /* Copy primary reload reg to secondary reload reg.
7807 (Note that these have been swapped above, then
7808 secondary reload reg to OLD using our insn.) */
7810 /* If REAL_OLD is a paradoxical SUBREG, remove it
7811 and try to put the opposite SUBREG on
7812 RELOADREG. */
7813 strip_paradoxical_subreg (&real_old, &reloadreg);
7815 gen_reload (reloadreg, second_reloadreg,
7816 rl->opnum, rl->when_needed);
7817 emit_insn ((GEN_FCN (tertiary_icode)
7818 (real_old, reloadreg, third_reloadreg)));
7819 special = 1;
7822 else
7824 /* Copy between the reload regs here and then to
7825 OUT later. */
7827 gen_reload (reloadreg, second_reloadreg,
7828 rl->opnum, rl->when_needed);
7829 if (tertiary_reload >= 0)
7831 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7833 gen_reload (third_reloadreg, reloadreg,
7834 rl->opnum, rl->when_needed);
7835 reloadreg = third_reloadreg;
7842 /* Output the last reload insn. */
7843 if (! special)
7845 rtx set;
7847 /* Don't output the last reload if OLD is not the dest of
7848 INSN and is in the src and is clobbered by INSN. */
7849 if (! flag_expensive_optimizations
7850 || !REG_P (old)
7851 || !(set = single_set (insn))
7852 || rtx_equal_p (old, SET_DEST (set))
7853 || !reg_mentioned_p (old, SET_SRC (set))
7854 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7855 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7856 gen_reload (old, reloadreg, rl->opnum,
7857 rl->when_needed);
7860 /* Look at all insns we emitted, just to be safe. */
7861 for (p = get_insns (); p; p = NEXT_INSN (p))
7862 if (INSN_P (p))
7864 rtx pat = PATTERN (p);
7866 /* If this output reload doesn't come from a spill reg,
7867 clear any memory of reloaded copies of the pseudo reg.
7868 If this output reload comes from a spill reg,
7869 reg_has_output_reload will make this do nothing. */
7870 note_stores (pat, forget_old_reloads_1, NULL);
7872 if (reg_mentioned_p (rl_reg_rtx, pat))
7874 rtx set = single_set (insn);
7875 if (reload_spill_index[j] < 0
7876 && set
7877 && SET_SRC (set) == rl_reg_rtx)
7879 int src = REGNO (SET_SRC (set));
7881 reload_spill_index[j] = src;
7882 SET_HARD_REG_BIT (reg_is_output_reload, src);
7883 if (find_regno_note (insn, REG_DEAD, src))
7884 SET_HARD_REG_BIT (reg_reloaded_died, src);
7886 if (HARD_REGISTER_P (rl_reg_rtx))
7888 int s = rl->secondary_out_reload;
7889 set = single_set (p);
7890 /* If this reload copies only to the secondary reload
7891 register, the secondary reload does the actual
7892 store. */
7893 if (s >= 0 && set == NULL_RTX)
7894 /* We can't tell what function the secondary reload
7895 has and where the actual store to the pseudo is
7896 made; leave new_spill_reg_store alone. */
7898 else if (s >= 0
7899 && SET_SRC (set) == rl_reg_rtx
7900 && SET_DEST (set) == rld[s].reg_rtx)
7902 /* Usually the next instruction will be the
7903 secondary reload insn; if we can confirm
7904 that it is, setting new_spill_reg_store to
7905 that insn will allow an extra optimization. */
7906 rtx s_reg = rld[s].reg_rtx;
7907 rtx_insn *next = NEXT_INSN (p);
7908 rld[s].out = rl->out;
7909 rld[s].out_reg = rl->out_reg;
7910 set = single_set (next);
7911 if (set && SET_SRC (set) == s_reg
7912 && reload_reg_rtx_reaches_end_p (s_reg, s))
7914 SET_HARD_REG_BIT (reg_is_output_reload,
7915 REGNO (s_reg));
7916 new_spill_reg_store[REGNO (s_reg)] = next;
7919 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7920 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7925 if (rl->when_needed == RELOAD_OTHER)
7927 emit_insn (other_output_reload_insns[rl->opnum]);
7928 other_output_reload_insns[rl->opnum] = get_insns ();
7930 else
7931 output_reload_insns[rl->opnum] = get_insns ();
7933 if (cfun->can_throw_non_call_exceptions)
7934 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7936 end_sequence ();
7939 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7940 and has the number J. */
7941 static void
7942 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7944 rtx_insn *insn = chain->insn;
7945 rtx old = (rl->in && MEM_P (rl->in)
7946 ? rl->in_reg : rl->in);
7947 rtx reg_rtx = rl->reg_rtx;
7949 if (old && reg_rtx)
7951 machine_mode mode;
7953 /* Determine the mode to reload in.
7954 This is very tricky because we have three to choose from.
7955 There is the mode the insn operand wants (rl->inmode).
7956 There is the mode of the reload register RELOADREG.
7957 There is the intrinsic mode of the operand, which we could find
7958 by stripping some SUBREGs.
7959 It turns out that RELOADREG's mode is irrelevant:
7960 we can change that arbitrarily.
7962 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7963 then the reload reg may not support QImode moves, so use SImode.
7964 If foo is in memory due to spilling a pseudo reg, this is safe,
7965 because the QImode value is in the least significant part of a
7966 slot big enough for a SImode. If foo is some other sort of
7967 memory reference, then it is impossible to reload this case,
7968 so previous passes had better make sure this never happens.
7970 Then consider a one-word union which has SImode and one of its
7971 members is a float, being fetched as (SUBREG:SF union:SI).
7972 We must fetch that as SFmode because we could be loading into
7973 a float-only register. In this case OLD's mode is correct.
7975 Consider an immediate integer: it has VOIDmode. Here we need
7976 to get a mode from something else.
7978 In some cases, there is a fourth mode, the operand's
7979 containing mode. If the insn specifies a containing mode for
7980 this operand, it overrides all others.
7982 I am not sure whether the algorithm here is always right,
7983 but it does the right things in those cases. */
7985 mode = GET_MODE (old);
7986 if (mode == VOIDmode)
7987 mode = rl->inmode;
7989 /* We cannot use gen_lowpart_common since it can do the wrong thing
7990 when REG_RTX has a multi-word mode. Note that REG_RTX must
7991 always be a REG here. */
7992 if (GET_MODE (reg_rtx) != mode)
7993 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7995 reload_reg_rtx_for_input[j] = reg_rtx;
7997 if (old != 0
7998 /* AUTO_INC reloads need to be handled even if inherited. We got an
7999 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
8000 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
8001 && ! rtx_equal_p (reg_rtx, old)
8002 && reg_rtx != 0)
8003 emit_input_reload_insns (chain, rld + j, old, j);
8005 /* When inheriting a wider reload, we have a MEM in rl->in,
8006 e.g. inheriting a SImode output reload for
8007 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
8008 if (optimize && reload_inherited[j] && rl->in
8009 && MEM_P (rl->in)
8010 && MEM_P (rl->in_reg)
8011 && reload_spill_index[j] >= 0
8012 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
8013 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
8015 /* If we are reloading a register that was recently stored in with an
8016 output-reload, see if we can prove there was
8017 actually no need to store the old value in it. */
8019 if (optimize
8020 && (reload_inherited[j] || reload_override_in[j])
8021 && reg_rtx
8022 && REG_P (reg_rtx)
8023 && spill_reg_store[REGNO (reg_rtx)] != 0
8024 #if 0
8025 /* There doesn't seem to be any reason to restrict this to pseudos
8026 and doing so loses in the case where we are copying from a
8027 register of the wrong class. */
8028 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8029 #endif
8030 /* The insn might have already some references to stackslots
8031 replaced by MEMs, while reload_out_reg still names the
8032 original pseudo. */
8033 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8034 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8035 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8038 /* Do output reloading for reload RL, which is for the insn described by
8039 CHAIN and has the number J.
8040 ??? At some point we need to support handling output reloads of
8041 JUMP_INSNs or insns that set cc0. */
8042 static void
8043 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8045 rtx note, old;
8046 rtx_insn *insn = chain->insn;
8047 /* If this is an output reload that stores something that is
8048 not loaded in this same reload, see if we can eliminate a previous
8049 store. */
8050 rtx pseudo = rl->out_reg;
8051 rtx reg_rtx = rl->reg_rtx;
8053 if (rl->out && reg_rtx)
8055 machine_mode mode;
8057 /* Determine the mode to reload in.
8058 See comments above (for input reloading). */
8059 mode = GET_MODE (rl->out);
8060 if (mode == VOIDmode)
8062 /* VOIDmode should never happen for an output. */
8063 if (asm_noperands (PATTERN (insn)) < 0)
8064 /* It's the compiler's fault. */
8065 fatal_insn ("VOIDmode on an output", insn);
8066 error_for_asm (insn, "output operand is constant in %<asm%>");
8067 /* Prevent crash--use something we know is valid. */
8068 mode = word_mode;
8069 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8071 if (GET_MODE (reg_rtx) != mode)
8072 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8074 reload_reg_rtx_for_output[j] = reg_rtx;
8076 if (pseudo
8077 && optimize
8078 && REG_P (pseudo)
8079 && ! rtx_equal_p (rl->in_reg, pseudo)
8080 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8081 && reg_last_reload_reg[REGNO (pseudo)])
8083 int pseudo_no = REGNO (pseudo);
8084 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8086 /* We don't need to test full validity of last_regno for
8087 inherit here; we only want to know if the store actually
8088 matches the pseudo. */
8089 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8090 && reg_reloaded_contents[last_regno] == pseudo_no
8091 && spill_reg_store[last_regno]
8092 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8093 delete_output_reload (insn, j, last_regno, reg_rtx);
8096 old = rl->out_reg;
8097 if (old == 0
8098 || reg_rtx == 0
8099 || rtx_equal_p (old, reg_rtx))
8100 return;
8102 /* An output operand that dies right away does need a reload,
8103 but need not be copied from it. Show the new location in the
8104 REG_UNUSED note. */
8105 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8106 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8108 XEXP (note, 0) = reg_rtx;
8109 return;
8111 /* Likewise for a SUBREG of an operand that dies. */
8112 else if (GET_CODE (old) == SUBREG
8113 && REG_P (SUBREG_REG (old))
8114 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8115 SUBREG_REG (old))))
8117 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8118 return;
8120 else if (GET_CODE (old) == SCRATCH)
8121 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8122 but we don't want to make an output reload. */
8123 return;
8125 /* If is a JUMP_INSN, we can't support output reloads yet. */
8126 gcc_assert (NONJUMP_INSN_P (insn));
8128 emit_output_reload_insns (chain, rld + j, j);
8131 /* A reload copies values of MODE from register SRC to register DEST.
8132 Return true if it can be treated for inheritance purposes like a
8133 group of reloads, each one reloading a single hard register. The
8134 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8135 occupy the same number of hard registers. */
8137 static bool
8138 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8139 int src ATTRIBUTE_UNUSED,
8140 machine_mode mode ATTRIBUTE_UNUSED)
8142 #ifdef CANNOT_CHANGE_MODE_CLASS
8143 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8144 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8145 #else
8146 return true;
8147 #endif
8150 /* Output insns to reload values in and out of the chosen reload regs. */
8152 static void
8153 emit_reload_insns (struct insn_chain *chain)
8155 rtx_insn *insn = chain->insn;
8157 int j;
8159 CLEAR_HARD_REG_SET (reg_reloaded_died);
8161 for (j = 0; j < reload_n_operands; j++)
8162 input_reload_insns[j] = input_address_reload_insns[j]
8163 = inpaddr_address_reload_insns[j]
8164 = output_reload_insns[j] = output_address_reload_insns[j]
8165 = outaddr_address_reload_insns[j]
8166 = other_output_reload_insns[j] = 0;
8167 other_input_address_reload_insns = 0;
8168 other_input_reload_insns = 0;
8169 operand_reload_insns = 0;
8170 other_operand_reload_insns = 0;
8172 /* Dump reloads into the dump file. */
8173 if (dump_file)
8175 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8176 debug_reload_to_stream (dump_file);
8179 for (j = 0; j < n_reloads; j++)
8180 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8182 unsigned int i;
8184 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8185 new_spill_reg_store[i] = 0;
8188 /* Now output the instructions to copy the data into and out of the
8189 reload registers. Do these in the order that the reloads were reported,
8190 since reloads of base and index registers precede reloads of operands
8191 and the operands may need the base and index registers reloaded. */
8193 for (j = 0; j < n_reloads; j++)
8195 do_input_reload (chain, rld + j, j);
8196 do_output_reload (chain, rld + j, j);
8199 /* Now write all the insns we made for reloads in the order expected by
8200 the allocation functions. Prior to the insn being reloaded, we write
8201 the following reloads:
8203 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8205 RELOAD_OTHER reloads.
8207 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8208 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8209 RELOAD_FOR_INPUT reload for the operand.
8211 RELOAD_FOR_OPADDR_ADDRS reloads.
8213 RELOAD_FOR_OPERAND_ADDRESS reloads.
8215 After the insn being reloaded, we write the following:
8217 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8218 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8219 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8220 reloads for the operand. The RELOAD_OTHER output reloads are
8221 output in descending order by reload number. */
8223 emit_insn_before (other_input_address_reload_insns, insn);
8224 emit_insn_before (other_input_reload_insns, insn);
8226 for (j = 0; j < reload_n_operands; j++)
8228 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8229 emit_insn_before (input_address_reload_insns[j], insn);
8230 emit_insn_before (input_reload_insns[j], insn);
8233 emit_insn_before (other_operand_reload_insns, insn);
8234 emit_insn_before (operand_reload_insns, insn);
8236 for (j = 0; j < reload_n_operands; j++)
8238 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8239 x = emit_insn_after (output_address_reload_insns[j], x);
8240 x = emit_insn_after (output_reload_insns[j], x);
8241 emit_insn_after (other_output_reload_insns[j], x);
8244 /* For all the spill regs newly reloaded in this instruction,
8245 record what they were reloaded from, so subsequent instructions
8246 can inherit the reloads.
8248 Update spill_reg_store for the reloads of this insn.
8249 Copy the elements that were updated in the loop above. */
8251 for (j = 0; j < n_reloads; j++)
8253 int r = reload_order[j];
8254 int i = reload_spill_index[r];
8256 /* If this is a non-inherited input reload from a pseudo, we must
8257 clear any memory of a previous store to the same pseudo. Only do
8258 something if there will not be an output reload for the pseudo
8259 being reloaded. */
8260 if (rld[r].in_reg != 0
8261 && ! (reload_inherited[r] || reload_override_in[r]))
8263 rtx reg = rld[r].in_reg;
8265 if (GET_CODE (reg) == SUBREG)
8266 reg = SUBREG_REG (reg);
8268 if (REG_P (reg)
8269 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8270 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8272 int nregno = REGNO (reg);
8274 if (reg_last_reload_reg[nregno])
8276 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8278 if (reg_reloaded_contents[last_regno] == nregno)
8279 spill_reg_store[last_regno] = 0;
8284 /* I is nonneg if this reload used a register.
8285 If rld[r].reg_rtx is 0, this is an optional reload
8286 that we opted to ignore. */
8288 if (i >= 0 && rld[r].reg_rtx != 0)
8290 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8291 int k;
8293 /* For a multi register reload, we need to check if all or part
8294 of the value lives to the end. */
8295 for (k = 0; k < nr; k++)
8296 if (reload_reg_reaches_end_p (i + k, r))
8297 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8299 /* Maybe the spill reg contains a copy of reload_out. */
8300 if (rld[r].out != 0
8301 && (REG_P (rld[r].out)
8302 || (rld[r].out_reg
8303 ? REG_P (rld[r].out_reg)
8304 /* The reload value is an auto-modification of
8305 some kind. For PRE_INC, POST_INC, PRE_DEC
8306 and POST_DEC, we record an equivalence
8307 between the reload register and the operand
8308 on the optimistic assumption that we can make
8309 the equivalence hold. reload_as_needed must
8310 then either make it hold or invalidate the
8311 equivalence.
8313 PRE_MODIFY and POST_MODIFY addresses are reloaded
8314 somewhat differently, and allowing them here leads
8315 to problems. */
8316 : (GET_CODE (rld[r].out) != POST_MODIFY
8317 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8319 rtx reg;
8321 reg = reload_reg_rtx_for_output[r];
8322 if (reload_reg_rtx_reaches_end_p (reg, r))
8324 machine_mode mode = GET_MODE (reg);
8325 int regno = REGNO (reg);
8326 int nregs = hard_regno_nregs[regno][mode];
8327 rtx out = (REG_P (rld[r].out)
8328 ? rld[r].out
8329 : rld[r].out_reg
8330 ? rld[r].out_reg
8331 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8332 int out_regno = REGNO (out);
8333 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8334 : hard_regno_nregs[out_regno][mode]);
8335 bool piecemeal;
8337 spill_reg_store[regno] = new_spill_reg_store[regno];
8338 spill_reg_stored_to[regno] = out;
8339 reg_last_reload_reg[out_regno] = reg;
8341 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8342 && nregs == out_nregs
8343 && inherit_piecemeal_p (out_regno, regno, mode));
8345 /* If OUT_REGNO is a hard register, it may occupy more than
8346 one register. If it does, say what is in the
8347 rest of the registers assuming that both registers
8348 agree on how many words the object takes. If not,
8349 invalidate the subsequent registers. */
8351 if (HARD_REGISTER_NUM_P (out_regno))
8352 for (k = 1; k < out_nregs; k++)
8353 reg_last_reload_reg[out_regno + k]
8354 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8356 /* Now do the inverse operation. */
8357 for (k = 0; k < nregs; k++)
8359 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8360 reg_reloaded_contents[regno + k]
8361 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8362 ? out_regno
8363 : out_regno + k);
8364 reg_reloaded_insn[regno + k] = insn;
8365 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8366 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8367 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8368 regno + k);
8369 else
8370 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8371 regno + k);
8375 /* Maybe the spill reg contains a copy of reload_in. Only do
8376 something if there will not be an output reload for
8377 the register being reloaded. */
8378 else if (rld[r].out_reg == 0
8379 && rld[r].in != 0
8380 && ((REG_P (rld[r].in)
8381 && !HARD_REGISTER_P (rld[r].in)
8382 && !REGNO_REG_SET_P (&reg_has_output_reload,
8383 REGNO (rld[r].in)))
8384 || (REG_P (rld[r].in_reg)
8385 && !REGNO_REG_SET_P (&reg_has_output_reload,
8386 REGNO (rld[r].in_reg))))
8387 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8389 rtx reg;
8391 reg = reload_reg_rtx_for_input[r];
8392 if (reload_reg_rtx_reaches_end_p (reg, r))
8394 machine_mode mode;
8395 int regno;
8396 int nregs;
8397 int in_regno;
8398 int in_nregs;
8399 rtx in;
8400 bool piecemeal;
8402 mode = GET_MODE (reg);
8403 regno = REGNO (reg);
8404 nregs = hard_regno_nregs[regno][mode];
8405 if (REG_P (rld[r].in)
8406 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8407 in = rld[r].in;
8408 else if (REG_P (rld[r].in_reg))
8409 in = rld[r].in_reg;
8410 else
8411 in = XEXP (rld[r].in_reg, 0);
8412 in_regno = REGNO (in);
8414 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8415 : hard_regno_nregs[in_regno][mode]);
8417 reg_last_reload_reg[in_regno] = reg;
8419 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8420 && nregs == in_nregs
8421 && inherit_piecemeal_p (regno, in_regno, mode));
8423 if (HARD_REGISTER_NUM_P (in_regno))
8424 for (k = 1; k < in_nregs; k++)
8425 reg_last_reload_reg[in_regno + k]
8426 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8428 /* Unless we inherited this reload, show we haven't
8429 recently done a store.
8430 Previous stores of inherited auto_inc expressions
8431 also have to be discarded. */
8432 if (! reload_inherited[r]
8433 || (rld[r].out && ! rld[r].out_reg))
8434 spill_reg_store[regno] = 0;
8436 for (k = 0; k < nregs; k++)
8438 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8439 reg_reloaded_contents[regno + k]
8440 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8441 ? in_regno
8442 : in_regno + k);
8443 reg_reloaded_insn[regno + k] = insn;
8444 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8445 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8446 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8447 regno + k);
8448 else
8449 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8450 regno + k);
8456 /* The following if-statement was #if 0'd in 1.34 (or before...).
8457 It's reenabled in 1.35 because supposedly nothing else
8458 deals with this problem. */
8460 /* If a register gets output-reloaded from a non-spill register,
8461 that invalidates any previous reloaded copy of it.
8462 But forget_old_reloads_1 won't get to see it, because
8463 it thinks only about the original insn. So invalidate it here.
8464 Also do the same thing for RELOAD_OTHER constraints where the
8465 output is discarded. */
8466 if (i < 0
8467 && ((rld[r].out != 0
8468 && (REG_P (rld[r].out)
8469 || (MEM_P (rld[r].out)
8470 && REG_P (rld[r].out_reg))))
8471 || (rld[r].out == 0 && rld[r].out_reg
8472 && REG_P (rld[r].out_reg))))
8474 rtx out = ((rld[r].out && REG_P (rld[r].out))
8475 ? rld[r].out : rld[r].out_reg);
8476 int out_regno = REGNO (out);
8477 machine_mode mode = GET_MODE (out);
8479 /* REG_RTX is now set or clobbered by the main instruction.
8480 As the comment above explains, forget_old_reloads_1 only
8481 sees the original instruction, and there is no guarantee
8482 that the original instruction also clobbered REG_RTX.
8483 For example, if find_reloads sees that the input side of
8484 a matched operand pair dies in this instruction, it may
8485 use the input register as the reload register.
8487 Calling forget_old_reloads_1 is a waste of effort if
8488 REG_RTX is also the output register.
8490 If we know that REG_RTX holds the value of a pseudo
8491 register, the code after the call will record that fact. */
8492 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8493 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8495 if (!HARD_REGISTER_NUM_P (out_regno))
8497 rtx src_reg;
8498 rtx_insn *store_insn = NULL;
8500 reg_last_reload_reg[out_regno] = 0;
8502 /* If we can find a hard register that is stored, record
8503 the storing insn so that we may delete this insn with
8504 delete_output_reload. */
8505 src_reg = reload_reg_rtx_for_output[r];
8507 if (src_reg)
8509 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8510 store_insn = new_spill_reg_store[REGNO (src_reg)];
8511 else
8512 src_reg = NULL_RTX;
8514 else
8516 /* If this is an optional reload, try to find the
8517 source reg from an input reload. */
8518 rtx set = single_set (insn);
8519 if (set && SET_DEST (set) == rld[r].out)
8521 int k;
8523 src_reg = SET_SRC (set);
8524 store_insn = insn;
8525 for (k = 0; k < n_reloads; k++)
8527 if (rld[k].in == src_reg)
8529 src_reg = reload_reg_rtx_for_input[k];
8530 break;
8535 if (src_reg && REG_P (src_reg)
8536 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8538 int src_regno, src_nregs, k;
8539 rtx note;
8541 gcc_assert (GET_MODE (src_reg) == mode);
8542 src_regno = REGNO (src_reg);
8543 src_nregs = hard_regno_nregs[src_regno][mode];
8544 /* The place where to find a death note varies with
8545 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8546 necessarily checked exactly in the code that moves
8547 notes, so just check both locations. */
8548 note = find_regno_note (insn, REG_DEAD, src_regno);
8549 if (! note && store_insn)
8550 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8551 for (k = 0; k < src_nregs; k++)
8553 spill_reg_store[src_regno + k] = store_insn;
8554 spill_reg_stored_to[src_regno + k] = out;
8555 reg_reloaded_contents[src_regno + k] = out_regno;
8556 reg_reloaded_insn[src_regno + k] = store_insn;
8557 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8558 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8559 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8560 mode))
8561 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8562 src_regno + k);
8563 else
8564 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8565 src_regno + k);
8566 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8567 if (note)
8568 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8569 else
8570 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8572 reg_last_reload_reg[out_regno] = src_reg;
8573 /* We have to set reg_has_output_reload here, or else
8574 forget_old_reloads_1 will clear reg_last_reload_reg
8575 right away. */
8576 SET_REGNO_REG_SET (&reg_has_output_reload,
8577 out_regno);
8580 else
8582 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8584 for (k = 0; k < out_nregs; k++)
8585 reg_last_reload_reg[out_regno + k] = 0;
8589 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8592 /* Go through the motions to emit INSN and test if it is strictly valid.
8593 Return the emitted insn if valid, else return NULL. */
8595 static rtx_insn *
8596 emit_insn_if_valid_for_reload (rtx pat)
8598 rtx_insn *last = get_last_insn ();
8599 int code;
8601 rtx_insn *insn = emit_insn (pat);
8602 code = recog_memoized (insn);
8604 if (code >= 0)
8606 extract_insn (insn);
8607 /* We want constrain operands to treat this insn strictly in its
8608 validity determination, i.e., the way it would after reload has
8609 completed. */
8610 if (constrain_operands (1, get_enabled_alternatives (insn)))
8611 return insn;
8614 delete_insns_since (last);
8615 return NULL;
8618 /* Emit code to perform a reload from IN (which may be a reload register) to
8619 OUT (which may also be a reload register). IN or OUT is from operand
8620 OPNUM with reload type TYPE.
8622 Returns first insn emitted. */
8624 static rtx_insn *
8625 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8627 rtx_insn *last = get_last_insn ();
8628 rtx_insn *tem;
8629 #ifdef SECONDARY_MEMORY_NEEDED
8630 rtx tem1, tem2;
8631 #endif
8633 /* If IN is a paradoxical SUBREG, remove it and try to put the
8634 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8635 if (!strip_paradoxical_subreg (&in, &out))
8636 strip_paradoxical_subreg (&out, &in);
8638 /* How to do this reload can get quite tricky. Normally, we are being
8639 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8640 register that didn't get a hard register. In that case we can just
8641 call emit_move_insn.
8643 We can also be asked to reload a PLUS that adds a register or a MEM to
8644 another register, constant or MEM. This can occur during frame pointer
8645 elimination and while reloading addresses. This case is handled by
8646 trying to emit a single insn to perform the add. If it is not valid,
8647 we use a two insn sequence.
8649 Or we can be asked to reload an unary operand that was a fragment of
8650 an addressing mode, into a register. If it isn't recognized as-is,
8651 we try making the unop operand and the reload-register the same:
8652 (set reg:X (unop:X expr:Y))
8653 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8655 Finally, we could be called to handle an 'o' constraint by putting
8656 an address into a register. In that case, we first try to do this
8657 with a named pattern of "reload_load_address". If no such pattern
8658 exists, we just emit a SET insn and hope for the best (it will normally
8659 be valid on machines that use 'o').
8661 This entire process is made complex because reload will never
8662 process the insns we generate here and so we must ensure that
8663 they will fit their constraints and also by the fact that parts of
8664 IN might be being reloaded separately and replaced with spill registers.
8665 Because of this, we are, in some sense, just guessing the right approach
8666 here. The one listed above seems to work.
8668 ??? At some point, this whole thing needs to be rethought. */
8670 if (GET_CODE (in) == PLUS
8671 && (REG_P (XEXP (in, 0))
8672 || GET_CODE (XEXP (in, 0)) == SUBREG
8673 || MEM_P (XEXP (in, 0)))
8674 && (REG_P (XEXP (in, 1))
8675 || GET_CODE (XEXP (in, 1)) == SUBREG
8676 || CONSTANT_P (XEXP (in, 1))
8677 || MEM_P (XEXP (in, 1))))
8679 /* We need to compute the sum of a register or a MEM and another
8680 register, constant, or MEM, and put it into the reload
8681 register. The best possible way of doing this is if the machine
8682 has a three-operand ADD insn that accepts the required operands.
8684 The simplest approach is to try to generate such an insn and see if it
8685 is recognized and matches its constraints. If so, it can be used.
8687 It might be better not to actually emit the insn unless it is valid,
8688 but we need to pass the insn as an operand to `recog' and
8689 `extract_insn' and it is simpler to emit and then delete the insn if
8690 not valid than to dummy things up. */
8692 rtx op0, op1, tem;
8693 rtx_insn *insn;
8694 enum insn_code code;
8696 op0 = find_replacement (&XEXP (in, 0));
8697 op1 = find_replacement (&XEXP (in, 1));
8699 /* Since constraint checking is strict, commutativity won't be
8700 checked, so we need to do that here to avoid spurious failure
8701 if the add instruction is two-address and the second operand
8702 of the add is the same as the reload reg, which is frequently
8703 the case. If the insn would be A = B + A, rearrange it so
8704 it will be A = A + B as constrain_operands expects. */
8706 if (REG_P (XEXP (in, 1))
8707 && REGNO (out) == REGNO (XEXP (in, 1)))
8708 tem = op0, op0 = op1, op1 = tem;
8710 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8711 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8713 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8714 if (insn)
8715 return insn;
8717 /* If that failed, we must use a conservative two-insn sequence.
8719 Use a move to copy one operand into the reload register. Prefer
8720 to reload a constant, MEM or pseudo since the move patterns can
8721 handle an arbitrary operand. If OP1 is not a constant, MEM or
8722 pseudo and OP1 is not a valid operand for an add instruction, then
8723 reload OP1.
8725 After reloading one of the operands into the reload register, add
8726 the reload register to the output register.
8728 If there is another way to do this for a specific machine, a
8729 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8730 we emit below. */
8732 code = optab_handler (add_optab, GET_MODE (out));
8734 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8735 || (REG_P (op1)
8736 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8737 || (code != CODE_FOR_nothing
8738 && !insn_operand_matches (code, 2, op1)))
8739 tem = op0, op0 = op1, op1 = tem;
8741 gen_reload (out, op0, opnum, type);
8743 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8744 This fixes a problem on the 32K where the stack pointer cannot
8745 be used as an operand of an add insn. */
8747 if (rtx_equal_p (op0, op1))
8748 op1 = out;
8750 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8751 if (insn)
8753 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8754 set_dst_reg_note (insn, REG_EQUIV, in, out);
8755 return insn;
8758 /* If that failed, copy the address register to the reload register.
8759 Then add the constant to the reload register. */
8761 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8762 gen_reload (out, op1, opnum, type);
8763 insn = emit_insn (gen_add2_insn (out, op0));
8764 set_dst_reg_note (insn, REG_EQUIV, in, out);
8767 #ifdef SECONDARY_MEMORY_NEEDED
8768 /* If we need a memory location to do the move, do it that way. */
8769 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8770 (REG_P (tem1) && REG_P (tem2)))
8771 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8772 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8773 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8774 REGNO_REG_CLASS (REGNO (tem2)),
8775 GET_MODE (out)))
8777 /* Get the memory to use and rewrite both registers to its mode. */
8778 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8780 if (GET_MODE (loc) != GET_MODE (out))
8781 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8783 if (GET_MODE (loc) != GET_MODE (in))
8784 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8786 gen_reload (loc, in, opnum, type);
8787 gen_reload (out, loc, opnum, type);
8789 #endif
8790 else if (REG_P (out) && UNARY_P (in))
8792 rtx insn;
8793 rtx op1;
8794 rtx out_moded;
8795 rtx_insn *set;
8797 op1 = find_replacement (&XEXP (in, 0));
8798 if (op1 != XEXP (in, 0))
8799 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8801 /* First, try a plain SET. */
8802 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8803 if (set)
8804 return set;
8806 /* If that failed, move the inner operand to the reload
8807 register, and try the same unop with the inner expression
8808 replaced with the reload register. */
8810 if (GET_MODE (op1) != GET_MODE (out))
8811 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8812 else
8813 out_moded = out;
8815 gen_reload (out_moded, op1, opnum, type);
8817 insn
8818 = gen_rtx_SET (VOIDmode, out,
8819 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8820 out_moded));
8821 insn = emit_insn_if_valid_for_reload (insn);
8822 if (insn)
8824 set_unique_reg_note (insn, REG_EQUIV, in);
8825 return as_a <rtx_insn *> (insn);
8828 fatal_insn ("failure trying to reload:", set);
8830 /* If IN is a simple operand, use gen_move_insn. */
8831 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8833 tem = emit_insn (gen_move_insn (out, in));
8834 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8835 mark_jump_label (in, tem, 0);
8838 #ifdef HAVE_reload_load_address
8839 else if (HAVE_reload_load_address)
8840 emit_insn (gen_reload_load_address (out, in));
8841 #endif
8843 /* Otherwise, just write (set OUT IN) and hope for the best. */
8844 else
8845 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8847 /* Return the first insn emitted.
8848 We can not just return get_last_insn, because there may have
8849 been multiple instructions emitted. Also note that gen_move_insn may
8850 emit more than one insn itself, so we can not assume that there is one
8851 insn emitted per emit_insn_before call. */
8853 return last ? NEXT_INSN (last) : get_insns ();
8856 /* Delete a previously made output-reload whose result we now believe
8857 is not needed. First we double-check.
8859 INSN is the insn now being processed.
8860 LAST_RELOAD_REG is the hard register number for which we want to delete
8861 the last output reload.
8862 J is the reload-number that originally used REG. The caller has made
8863 certain that reload J doesn't use REG any longer for input.
8864 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8866 static void
8867 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8868 rtx new_reload_reg)
8870 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8871 rtx reg = spill_reg_stored_to[last_reload_reg];
8872 int k;
8873 int n_occurrences;
8874 int n_inherited = 0;
8875 rtx substed;
8876 unsigned regno;
8877 int nregs;
8879 /* It is possible that this reload has been only used to set another reload
8880 we eliminated earlier and thus deleted this instruction too. */
8881 if (output_reload_insn->deleted ())
8882 return;
8884 /* Get the raw pseudo-register referred to. */
8886 while (GET_CODE (reg) == SUBREG)
8887 reg = SUBREG_REG (reg);
8888 substed = reg_equiv_memory_loc (REGNO (reg));
8890 /* This is unsafe if the operand occurs more often in the current
8891 insn than it is inherited. */
8892 for (k = n_reloads - 1; k >= 0; k--)
8894 rtx reg2 = rld[k].in;
8895 if (! reg2)
8896 continue;
8897 if (MEM_P (reg2) || reload_override_in[k])
8898 reg2 = rld[k].in_reg;
8899 #ifdef AUTO_INC_DEC
8900 if (rld[k].out && ! rld[k].out_reg)
8901 reg2 = XEXP (rld[k].in_reg, 0);
8902 #endif
8903 while (GET_CODE (reg2) == SUBREG)
8904 reg2 = SUBREG_REG (reg2);
8905 if (rtx_equal_p (reg2, reg))
8907 if (reload_inherited[k] || reload_override_in[k] || k == j)
8908 n_inherited++;
8909 else
8910 return;
8913 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8914 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8915 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8916 reg, 0);
8917 if (substed)
8918 n_occurrences += count_occurrences (PATTERN (insn),
8919 eliminate_regs (substed, VOIDmode,
8920 NULL_RTX), 0);
8921 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8923 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8924 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8926 if (n_occurrences > n_inherited)
8927 return;
8929 regno = REGNO (reg);
8930 if (regno >= FIRST_PSEUDO_REGISTER)
8931 nregs = 1;
8932 else
8933 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8935 /* If the pseudo-reg we are reloading is no longer referenced
8936 anywhere between the store into it and here,
8937 and we're within the same basic block, then the value can only
8938 pass through the reload reg and end up here.
8939 Otherwise, give up--return. */
8940 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8941 i1 != insn; i1 = NEXT_INSN (i1))
8943 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8944 return;
8945 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8946 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8948 /* If this is USE in front of INSN, we only have to check that
8949 there are no more references than accounted for by inheritance. */
8950 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8952 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8953 i1 = NEXT_INSN (i1);
8955 if (n_occurrences <= n_inherited && i1 == insn)
8956 break;
8957 return;
8961 /* We will be deleting the insn. Remove the spill reg information. */
8962 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8964 spill_reg_store[last_reload_reg + k] = 0;
8965 spill_reg_stored_to[last_reload_reg + k] = 0;
8968 /* The caller has already checked that REG dies or is set in INSN.
8969 It has also checked that we are optimizing, and thus some
8970 inaccuracies in the debugging information are acceptable.
8971 So we could just delete output_reload_insn. But in some cases
8972 we can improve the debugging information without sacrificing
8973 optimization - maybe even improving the code: See if the pseudo
8974 reg has been completely replaced with reload regs. If so, delete
8975 the store insn and forget we had a stack slot for the pseudo. */
8976 if (rld[j].out != rld[j].in
8977 && REG_N_DEATHS (REGNO (reg)) == 1
8978 && REG_N_SETS (REGNO (reg)) == 1
8979 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8980 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8982 rtx_insn *i2;
8984 /* We know that it was used only between here and the beginning of
8985 the current basic block. (We also know that the last use before
8986 INSN was the output reload we are thinking of deleting, but never
8987 mind that.) Search that range; see if any ref remains. */
8988 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8990 rtx set = single_set (i2);
8992 /* Uses which just store in the pseudo don't count,
8993 since if they are the only uses, they are dead. */
8994 if (set != 0 && SET_DEST (set) == reg)
8995 continue;
8996 if (LABEL_P (i2) || JUMP_P (i2))
8997 break;
8998 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8999 && reg_mentioned_p (reg, PATTERN (i2)))
9001 /* Some other ref remains; just delete the output reload we
9002 know to be dead. */
9003 delete_address_reloads (output_reload_insn, insn);
9004 delete_insn (output_reload_insn);
9005 return;
9009 /* Delete the now-dead stores into this pseudo. Note that this
9010 loop also takes care of deleting output_reload_insn. */
9011 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
9013 rtx set = single_set (i2);
9015 if (set != 0 && SET_DEST (set) == reg)
9017 delete_address_reloads (i2, insn);
9018 delete_insn (i2);
9020 if (LABEL_P (i2) || JUMP_P (i2))
9021 break;
9024 /* For the debugging info, say the pseudo lives in this reload reg. */
9025 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
9026 if (ira_conflicts_p)
9027 /* Inform IRA about the change. */
9028 ira_mark_allocation_change (REGNO (reg));
9029 alter_reg (REGNO (reg), -1, false);
9031 else
9033 delete_address_reloads (output_reload_insn, insn);
9034 delete_insn (output_reload_insn);
9038 /* We are going to delete DEAD_INSN. Recursively delete loads of
9039 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9040 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9041 static void
9042 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9044 rtx set = single_set (dead_insn);
9045 rtx set2, dst;
9046 rtx_insn *prev, *next;
9047 if (set)
9049 rtx dst = SET_DEST (set);
9050 if (MEM_P (dst))
9051 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9053 /* If we deleted the store from a reloaded post_{in,de}c expression,
9054 we can delete the matching adds. */
9055 prev = PREV_INSN (dead_insn);
9056 next = NEXT_INSN (dead_insn);
9057 if (! prev || ! next)
9058 return;
9059 set = single_set (next);
9060 set2 = single_set (prev);
9061 if (! set || ! set2
9062 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9063 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9064 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9065 return;
9066 dst = SET_DEST (set);
9067 if (! rtx_equal_p (dst, SET_DEST (set2))
9068 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9069 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9070 || (INTVAL (XEXP (SET_SRC (set), 1))
9071 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9072 return;
9073 delete_related_insns (prev);
9074 delete_related_insns (next);
9077 /* Subfunction of delete_address_reloads: process registers found in X. */
9078 static void
9079 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9081 rtx_insn *prev, *i2;
9082 rtx set, dst;
9083 int i, j;
9084 enum rtx_code code = GET_CODE (x);
9086 if (code != REG)
9088 const char *fmt = GET_RTX_FORMAT (code);
9089 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9091 if (fmt[i] == 'e')
9092 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9093 else if (fmt[i] == 'E')
9095 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9096 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9097 current_insn);
9100 return;
9103 if (spill_reg_order[REGNO (x)] < 0)
9104 return;
9106 /* Scan backwards for the insn that sets x. This might be a way back due
9107 to inheritance. */
9108 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9110 code = GET_CODE (prev);
9111 if (code == CODE_LABEL || code == JUMP_INSN)
9112 return;
9113 if (!INSN_P (prev))
9114 continue;
9115 if (reg_set_p (x, PATTERN (prev)))
9116 break;
9117 if (reg_referenced_p (x, PATTERN (prev)))
9118 return;
9120 if (! prev || INSN_UID (prev) < reload_first_uid)
9121 return;
9122 /* Check that PREV only sets the reload register. */
9123 set = single_set (prev);
9124 if (! set)
9125 return;
9126 dst = SET_DEST (set);
9127 if (!REG_P (dst)
9128 || ! rtx_equal_p (dst, x))
9129 return;
9130 if (! reg_set_p (dst, PATTERN (dead_insn)))
9132 /* Check if DST was used in a later insn -
9133 it might have been inherited. */
9134 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9136 if (LABEL_P (i2))
9137 break;
9138 if (! INSN_P (i2))
9139 continue;
9140 if (reg_referenced_p (dst, PATTERN (i2)))
9142 /* If there is a reference to the register in the current insn,
9143 it might be loaded in a non-inherited reload. If no other
9144 reload uses it, that means the register is set before
9145 referenced. */
9146 if (i2 == current_insn)
9148 for (j = n_reloads - 1; j >= 0; j--)
9149 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9150 || reload_override_in[j] == dst)
9151 return;
9152 for (j = n_reloads - 1; j >= 0; j--)
9153 if (rld[j].in && rld[j].reg_rtx == dst)
9154 break;
9155 if (j >= 0)
9156 break;
9158 return;
9160 if (JUMP_P (i2))
9161 break;
9162 /* If DST is still live at CURRENT_INSN, check if it is used for
9163 any reload. Note that even if CURRENT_INSN sets DST, we still
9164 have to check the reloads. */
9165 if (i2 == current_insn)
9167 for (j = n_reloads - 1; j >= 0; j--)
9168 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9169 || reload_override_in[j] == dst)
9170 return;
9171 /* ??? We can't finish the loop here, because dst might be
9172 allocated to a pseudo in this block if no reload in this
9173 block needs any of the classes containing DST - see
9174 spill_hard_reg. There is no easy way to tell this, so we
9175 have to scan till the end of the basic block. */
9177 if (reg_set_p (dst, PATTERN (i2)))
9178 break;
9181 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9182 reg_reloaded_contents[REGNO (dst)] = -1;
9183 delete_insn (prev);
9186 /* Output reload-insns to reload VALUE into RELOADREG.
9187 VALUE is an autoincrement or autodecrement RTX whose operand
9188 is a register or memory location;
9189 so reloading involves incrementing that location.
9190 IN is either identical to VALUE, or some cheaper place to reload from.
9192 INC_AMOUNT is the number to increment or decrement by (always positive).
9193 This cannot be deduced from VALUE. */
9195 static void
9196 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9198 /* REG or MEM to be copied and incremented. */
9199 rtx incloc = find_replacement (&XEXP (value, 0));
9200 /* Nonzero if increment after copying. */
9201 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9202 || GET_CODE (value) == POST_MODIFY);
9203 rtx_insn *last;
9204 rtx inc;
9205 rtx_insn *add_insn;
9206 int code;
9207 rtx real_in = in == value ? incloc : in;
9209 /* No hard register is equivalent to this register after
9210 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9211 we could inc/dec that register as well (maybe even using it for
9212 the source), but I'm not sure it's worth worrying about. */
9213 if (REG_P (incloc))
9214 reg_last_reload_reg[REGNO (incloc)] = 0;
9216 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9218 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9219 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9221 else
9223 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9224 inc_amount = -inc_amount;
9226 inc = GEN_INT (inc_amount);
9229 /* If this is post-increment, first copy the location to the reload reg. */
9230 if (post && real_in != reloadreg)
9231 emit_insn (gen_move_insn (reloadreg, real_in));
9233 if (in == value)
9235 /* See if we can directly increment INCLOC. Use a method similar to
9236 that in gen_reload. */
9238 last = get_last_insn ();
9239 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9240 gen_rtx_PLUS (GET_MODE (incloc),
9241 incloc, inc)));
9243 code = recog_memoized (add_insn);
9244 if (code >= 0)
9246 extract_insn (add_insn);
9247 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9249 /* If this is a pre-increment and we have incremented the value
9250 where it lives, copy the incremented value to RELOADREG to
9251 be used as an address. */
9253 if (! post)
9254 emit_insn (gen_move_insn (reloadreg, incloc));
9255 return;
9258 delete_insns_since (last);
9261 /* If couldn't do the increment directly, must increment in RELOADREG.
9262 The way we do this depends on whether this is pre- or post-increment.
9263 For pre-increment, copy INCLOC to the reload register, increment it
9264 there, then save back. */
9266 if (! post)
9268 if (in != reloadreg)
9269 emit_insn (gen_move_insn (reloadreg, real_in));
9270 emit_insn (gen_add2_insn (reloadreg, inc));
9271 emit_insn (gen_move_insn (incloc, reloadreg));
9273 else
9275 /* Postincrement.
9276 Because this might be a jump insn or a compare, and because RELOADREG
9277 may not be available after the insn in an input reload, we must do
9278 the incrementation before the insn being reloaded for.
9280 We have already copied IN to RELOADREG. Increment the copy in
9281 RELOADREG, save that back, then decrement RELOADREG so it has
9282 the original value. */
9284 emit_insn (gen_add2_insn (reloadreg, inc));
9285 emit_insn (gen_move_insn (incloc, reloadreg));
9286 if (CONST_INT_P (inc))
9287 emit_insn (gen_add2_insn (reloadreg,
9288 gen_int_mode (-INTVAL (inc),
9289 GET_MODE (reloadreg))));
9290 else
9291 emit_insn (gen_sub2_insn (reloadreg, inc));
9295 #ifdef AUTO_INC_DEC
9296 static void
9297 add_auto_inc_notes (rtx_insn *insn, rtx x)
9299 enum rtx_code code = GET_CODE (x);
9300 const char *fmt;
9301 int i, j;
9303 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9305 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9306 return;
9309 /* Scan all the operand sub-expressions. */
9310 fmt = GET_RTX_FORMAT (code);
9311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9313 if (fmt[i] == 'e')
9314 add_auto_inc_notes (insn, XEXP (x, i));
9315 else if (fmt[i] == 'E')
9316 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9317 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9320 #endif