PR target/65871
[official-gcc.git] / gcc / gcse.c
blobcf02bab5bff6762dadc50baa2761e0c7ce1a82b4
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "hash-set.h"
144 #include "machmode.h"
145 #include "vec.h"
146 #include "double-int.h"
147 #include "input.h"
148 #include "alias.h"
149 #include "symtab.h"
150 #include "wide-int.h"
151 #include "inchash.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "ira.h"
156 #include "flags.h"
157 #include "insn-config.h"
158 #include "recog.h"
159 #include "predict.h"
160 #include "function.h"
161 #include "dominance.h"
162 #include "cfg.h"
163 #include "cfgrtl.h"
164 #include "cfganal.h"
165 #include "lcm.h"
166 #include "cfgcleanup.h"
167 #include "basic-block.h"
168 #include "hashtab.h"
169 #include "statistics.h"
170 #include "real.h"
171 #include "fixed-value.h"
172 #include "expmed.h"
173 #include "dojump.h"
174 #include "explow.h"
175 #include "calls.h"
176 #include "emit-rtl.h"
177 #include "varasm.h"
178 #include "stmt.h"
179 #include "expr.h"
180 #include "except.h"
181 #include "ggc.h"
182 #include "params.h"
183 #include "cselib.h"
184 #include "intl.h"
185 #include "obstack.h"
186 #include "tree-pass.h"
187 #include "hash-table.h"
188 #include "df.h"
189 #include "dbgcnt.h"
190 #include "target.h"
191 #include "gcse.h"
192 #include "gcse-common.h"
194 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
195 are a superset of those done by classic GCSE.
197 Two passes of copy/constant propagation are done around PRE or hoisting
198 because the first one enables more GCSE and the second one helps to clean
199 up the copies that PRE and HOIST create. This is needed more for PRE than
200 for HOIST because code hoisting will try to use an existing register
201 containing the common subexpression rather than create a new one. This is
202 harder to do for PRE because of the code motion (which HOIST doesn't do).
204 Expressions we are interested in GCSE-ing are of the form
205 (set (pseudo-reg) (expression)).
206 Function want_to_gcse_p says what these are.
208 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
209 This allows PRE to hoist expressions that are expressed in multiple insns,
210 such as complex address calculations (e.g. for PIC code, or loads with a
211 high part and a low part).
213 PRE handles moving invariant expressions out of loops (by treating them as
214 partially redundant).
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 This study was done before expressions in REG_EQUAL notes were added as
233 candidate expressions for optimization, and before the GIMPLE optimizers
234 were added. Probably, multiple passes is even less efficient now than
235 at the time when the study was conducted.
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass.
240 **********************
242 The steps for PRE are:
244 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
246 2) Perform the data flow analysis for PRE.
248 3) Delete the redundant instructions
250 4) Insert the required copies [if any] that make the partially
251 redundant instructions fully redundant.
253 5) For other reaching expressions, insert an instruction to copy the value
254 to a newly created pseudo that will reach the redundant instruction.
256 The deletion is done first so that when we do insertions we
257 know which pseudo reg to use.
259 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
260 argue it is not. The number of iterations for the algorithm to converge
261 is typically 2-4 so I don't view it as that expensive (relatively speaking).
263 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
264 we create. To make an expression reach the place where it's redundant,
265 the result of the expression is copied to a new register, and the redundant
266 expression is deleted by replacing it with this new register. Classic GCSE
267 doesn't have this problem as much as it computes the reaching defs of
268 each register in each block and thus can try to use an existing
269 register. */
271 /* GCSE global vars. */
273 struct target_gcse default_target_gcse;
274 #if SWITCHABLE_TARGET
275 struct target_gcse *this_target_gcse = &default_target_gcse;
276 #endif
278 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
279 int flag_rerun_cse_after_global_opts;
281 /* An obstack for our working variables. */
282 static struct obstack gcse_obstack;
284 /* Hash table of expressions. */
286 struct gcse_expr
288 /* The expression. */
289 rtx expr;
290 /* Index in the available expression bitmaps. */
291 int bitmap_index;
292 /* Next entry with the same hash. */
293 struct gcse_expr *next_same_hash;
294 /* List of anticipatable occurrences in basic blocks in the function.
295 An "anticipatable occurrence" is one that is the first occurrence in the
296 basic block, the operands are not modified in the basic block prior
297 to the occurrence and the output is not used between the start of
298 the block and the occurrence. */
299 struct gcse_occr *antic_occr;
300 /* List of available occurrence in basic blocks in the function.
301 An "available occurrence" is one that is the last occurrence in the
302 basic block and the operands are not modified by following statements in
303 the basic block [including this insn]. */
304 struct gcse_occr *avail_occr;
305 /* Non-null if the computation is PRE redundant.
306 The value is the newly created pseudo-reg to record a copy of the
307 expression in all the places that reach the redundant copy. */
308 rtx reaching_reg;
309 /* Maximum distance in instructions this expression can travel.
310 We avoid moving simple expressions for more than a few instructions
311 to keep register pressure under control.
312 A value of "0" removes restrictions on how far the expression can
313 travel. */
314 int max_distance;
317 /* Occurrence of an expression.
318 There is one per basic block. If a pattern appears more than once the
319 last appearance is used [or first for anticipatable expressions]. */
321 struct gcse_occr
323 /* Next occurrence of this expression. */
324 struct gcse_occr *next;
325 /* The insn that computes the expression. */
326 rtx_insn *insn;
327 /* Nonzero if this [anticipatable] occurrence has been deleted. */
328 char deleted_p;
329 /* Nonzero if this [available] occurrence has been copied to
330 reaching_reg. */
331 /* ??? This is mutually exclusive with deleted_p, so they could share
332 the same byte. */
333 char copied_p;
336 typedef struct gcse_occr *occr_t;
338 /* Expression hash tables.
339 Each hash table is an array of buckets.
340 ??? It is known that if it were an array of entries, structure elements
341 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
342 not clear whether in the final analysis a sufficient amount of memory would
343 be saved as the size of the available expression bitmaps would be larger
344 [one could build a mapping table without holes afterwards though].
345 Someday I'll perform the computation and figure it out. */
347 struct gcse_hash_table_d
349 /* The table itself.
350 This is an array of `expr_hash_table_size' elements. */
351 struct gcse_expr **table;
353 /* Size of the hash table, in elements. */
354 unsigned int size;
356 /* Number of hash table elements. */
357 unsigned int n_elems;
360 /* Expression hash table. */
361 static struct gcse_hash_table_d expr_hash_table;
363 /* This is a list of expressions which are MEMs and will be used by load
364 or store motion.
365 Load motion tracks MEMs which aren't killed by anything except itself,
366 i.e. loads and stores to a single location.
367 We can then allow movement of these MEM refs with a little special
368 allowance. (all stores copy the same value to the reaching reg used
369 for the loads). This means all values used to store into memory must have
370 no side effects so we can re-issue the setter value. */
372 struct ls_expr
374 struct gcse_expr * expr; /* Gcse expression reference for LM. */
375 rtx pattern; /* Pattern of this mem. */
376 rtx pattern_regs; /* List of registers mentioned by the mem. */
377 rtx_insn_list *loads; /* INSN list of loads seen. */
378 rtx_insn_list *stores; /* INSN list of stores seen. */
379 struct ls_expr * next; /* Next in the list. */
380 int invalid; /* Invalid for some reason. */
381 int index; /* If it maps to a bitmap index. */
382 unsigned int hash_index; /* Index when in a hash table. */
383 rtx reaching_reg; /* Register to use when re-writing. */
386 /* Head of the list of load/store memory refs. */
387 static struct ls_expr * pre_ldst_mems = NULL;
389 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
391 typedef ls_expr *value_type;
392 typedef value_type compare_type;
393 static inline hashval_t hash (const ls_expr *);
394 static inline bool equal (const ls_expr *, const ls_expr *);
397 /* Hashtable helpers. */
398 inline hashval_t
399 pre_ldst_expr_hasher::hash (const ls_expr *x)
401 int do_not_record_p = 0;
402 return
403 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
406 static int expr_equiv_p (const_rtx, const_rtx);
408 inline bool
409 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
410 const ls_expr *ptr2)
412 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
415 /* Hashtable for the load/store memory refs. */
416 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
418 /* Bitmap containing one bit for each register in the program.
419 Used when performing GCSE to track which registers have been set since
420 the start of the basic block. */
421 static regset reg_set_bitmap;
423 /* Array, indexed by basic block number for a list of insns which modify
424 memory within that block. */
425 static vec<rtx_insn *> *modify_mem_list;
426 static bitmap modify_mem_list_set;
428 /* This array parallels modify_mem_list, except that it stores MEMs
429 being set and their canonicalized memory addresses. */
430 static vec<modify_pair> *canon_modify_mem_list;
432 /* Bitmap indexed by block numbers to record which blocks contain
433 function calls. */
434 static bitmap blocks_with_calls;
436 /* Various variables for statistics gathering. */
438 /* Memory used in a pass.
439 This isn't intended to be absolutely precise. Its intent is only
440 to keep an eye on memory usage. */
441 static int bytes_used;
443 /* GCSE substitutions made. */
444 static int gcse_subst_count;
445 /* Number of copy instructions created. */
446 static int gcse_create_count;
448 /* Doing code hoisting. */
449 static bool doing_code_hoisting_p = false;
451 /* For available exprs */
452 static sbitmap *ae_kill;
454 /* Data stored for each basic block. */
455 struct bb_data
457 /* Maximal register pressure inside basic block for given register class
458 (defined only for the pressure classes). */
459 int max_reg_pressure[N_REG_CLASSES];
460 /* Recorded register pressure of basic block before trying to hoist
461 an expression. Will be used to restore the register pressure
462 if the expression should not be hoisted. */
463 int old_pressure;
464 /* Recorded register live_in info of basic block during code hoisting
465 process. BACKUP is used to record live_in info before trying to
466 hoist an expression, and will be used to restore LIVE_IN if the
467 expression should not be hoisted. */
468 bitmap live_in, backup;
471 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
473 static basic_block curr_bb;
475 /* Current register pressure for each pressure class. */
476 static int curr_reg_pressure[N_REG_CLASSES];
479 static void compute_can_copy (void);
480 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
481 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
482 static void *gcse_alloc (unsigned long);
483 static void alloc_gcse_mem (void);
484 static void free_gcse_mem (void);
485 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
486 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
487 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
488 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
489 static int want_to_gcse_p (rtx, int *);
490 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
491 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
492 static int oprs_available_p (const_rtx, const rtx_insn *);
493 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
494 int, struct gcse_hash_table_d *);
495 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
496 static void record_last_reg_set_info (rtx, int);
497 static void record_last_mem_set_info (rtx_insn *);
498 static void record_last_set_info (rtx, const_rtx, void *);
499 static void compute_hash_table (struct gcse_hash_table_d *);
500 static void alloc_hash_table (struct gcse_hash_table_d *);
501 static void free_hash_table (struct gcse_hash_table_d *);
502 static void compute_hash_table_work (struct gcse_hash_table_d *);
503 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
504 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
505 struct gcse_hash_table_d *);
506 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
507 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
508 static void alloc_pre_mem (int, int);
509 static void free_pre_mem (void);
510 static struct edge_list *compute_pre_data (void);
511 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
512 basic_block);
513 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
514 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
515 static void pre_insert_copies (void);
516 static int pre_delete (void);
517 static int pre_gcse (struct edge_list *);
518 static int one_pre_gcse_pass (void);
519 static void add_label_notes (rtx, rtx);
520 static void alloc_code_hoist_mem (int, int);
521 static void free_code_hoist_mem (void);
522 static void compute_code_hoist_vbeinout (void);
523 static void compute_code_hoist_data (void);
524 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
525 sbitmap, int, int *, enum reg_class,
526 int *, bitmap, rtx_insn *);
527 static int hoist_code (void);
528 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
529 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
530 static int one_code_hoisting_pass (void);
531 static rtx_insn *process_insert_insn (struct gcse_expr *);
532 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
533 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
534 basic_block, char *);
535 static struct ls_expr * ldst_entry (rtx);
536 static void free_ldst_entry (struct ls_expr *);
537 static void free_ld_motion_mems (void);
538 static void print_ldst_list (FILE *);
539 static struct ls_expr * find_rtx_in_ldst (rtx);
540 static int simple_mem (const_rtx);
541 static void invalidate_any_buried_refs (rtx);
542 static void compute_ld_motion_mems (void);
543 static void trim_ld_motion_mems (void);
544 static void update_ld_motion_stores (struct gcse_expr *);
545 static void clear_modify_mem_tables (void);
546 static void free_modify_mem_tables (void);
547 static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
548 static bool is_too_expensive (const char *);
550 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
551 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
553 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
554 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
556 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
557 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
559 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
560 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
562 /* Misc. utilities. */
564 #define can_copy \
565 (this_target_gcse->x_can_copy)
566 #define can_copy_init_p \
567 (this_target_gcse->x_can_copy_init_p)
569 /* Compute which modes support reg/reg copy operations. */
571 static void
572 compute_can_copy (void)
574 int i;
575 #ifndef AVOID_CCMODE_COPIES
576 rtx reg;
577 rtx_insn *insn;
578 #endif
579 memset (can_copy, 0, NUM_MACHINE_MODES);
581 start_sequence ();
582 for (i = 0; i < NUM_MACHINE_MODES; i++)
583 if (GET_MODE_CLASS (i) == MODE_CC)
585 #ifdef AVOID_CCMODE_COPIES
586 can_copy[i] = 0;
587 #else
588 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
589 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
590 if (recog (PATTERN (insn), insn, NULL) >= 0)
591 can_copy[i] = 1;
592 #endif
594 else
595 can_copy[i] = 1;
597 end_sequence ();
600 /* Returns whether the mode supports reg/reg copy operations. */
602 bool
603 can_copy_p (machine_mode mode)
605 if (! can_copy_init_p)
607 compute_can_copy ();
608 can_copy_init_p = true;
611 return can_copy[mode] != 0;
614 /* Cover function to xmalloc to record bytes allocated. */
616 static void *
617 gmalloc (size_t size)
619 bytes_used += size;
620 return xmalloc (size);
623 /* Cover function to xcalloc to record bytes allocated. */
625 static void *
626 gcalloc (size_t nelem, size_t elsize)
628 bytes_used += nelem * elsize;
629 return xcalloc (nelem, elsize);
632 /* Cover function to obstack_alloc. */
634 static void *
635 gcse_alloc (unsigned long size)
637 bytes_used += size;
638 return obstack_alloc (&gcse_obstack, size);
641 /* Allocate memory for the reg/memory set tracking tables.
642 This is called at the start of each pass. */
644 static void
645 alloc_gcse_mem (void)
647 /* Allocate vars to track sets of regs. */
648 reg_set_bitmap = ALLOC_REG_SET (NULL);
650 /* Allocate array to keep a list of insns which modify memory in each
651 basic block. The two typedefs are needed to work around the
652 pre-processor limitation with template types in macro arguments. */
653 typedef vec<rtx_insn *> vec_rtx_heap;
654 typedef vec<modify_pair> vec_modify_pair_heap;
655 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
656 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
657 last_basic_block_for_fn (cfun));
658 modify_mem_list_set = BITMAP_ALLOC (NULL);
659 blocks_with_calls = BITMAP_ALLOC (NULL);
662 /* Free memory allocated by alloc_gcse_mem. */
664 static void
665 free_gcse_mem (void)
667 FREE_REG_SET (reg_set_bitmap);
669 free_modify_mem_tables ();
670 BITMAP_FREE (modify_mem_list_set);
671 BITMAP_FREE (blocks_with_calls);
674 /* Compute the local properties of each recorded expression.
676 Local properties are those that are defined by the block, irrespective of
677 other blocks.
679 An expression is transparent in a block if its operands are not modified
680 in the block.
682 An expression is computed (locally available) in a block if it is computed
683 at least once and expression would contain the same value if the
684 computation was moved to the end of the block.
686 An expression is locally anticipatable in a block if it is computed at
687 least once and expression would contain the same value if the computation
688 was moved to the beginning of the block.
690 We call this routine for pre and code hoisting. They all compute
691 basically the same information and thus can easily share this code.
693 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
694 properties. If NULL, then it is not necessary to compute or record that
695 particular property.
697 TABLE controls which hash table to look at. */
699 static void
700 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
701 struct gcse_hash_table_d *table)
703 unsigned int i;
705 /* Initialize any bitmaps that were passed in. */
706 if (transp)
708 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
711 if (comp)
712 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
713 if (antloc)
714 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
716 for (i = 0; i < table->size; i++)
718 struct gcse_expr *expr;
720 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
722 int indx = expr->bitmap_index;
723 struct gcse_occr *occr;
725 /* The expression is transparent in this block if it is not killed.
726 We start by assuming all are transparent [none are killed], and
727 then reset the bits for those that are. */
728 if (transp)
729 compute_transp (expr->expr, indx, transp,
730 blocks_with_calls,
731 modify_mem_list_set,
732 canon_modify_mem_list);
734 /* The occurrences recorded in antic_occr are exactly those that
735 we want to set to nonzero in ANTLOC. */
736 if (antloc)
737 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
739 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
741 /* While we're scanning the table, this is a good place to
742 initialize this. */
743 occr->deleted_p = 0;
746 /* The occurrences recorded in avail_occr are exactly those that
747 we want to set to nonzero in COMP. */
748 if (comp)
749 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
751 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
753 /* While we're scanning the table, this is a good place to
754 initialize this. */
755 occr->copied_p = 0;
758 /* While we're scanning the table, this is a good place to
759 initialize this. */
760 expr->reaching_reg = 0;
765 /* Hash table support. */
767 struct reg_avail_info
769 basic_block last_bb;
770 int first_set;
771 int last_set;
774 static struct reg_avail_info *reg_avail_info;
775 static basic_block current_bb;
777 /* See whether X, the source of a set, is something we want to consider for
778 GCSE. */
780 static int
781 want_to_gcse_p (rtx x, int *max_distance_ptr)
783 #ifdef STACK_REGS
784 /* On register stack architectures, don't GCSE constants from the
785 constant pool, as the benefits are often swamped by the overhead
786 of shuffling the register stack between basic blocks. */
787 if (IS_STACK_MODE (GET_MODE (x)))
788 x = avoid_constant_pool_reference (x);
789 #endif
791 /* GCSE'ing constants:
793 We do not specifically distinguish between constant and non-constant
794 expressions in PRE and Hoist. We use set_src_cost below to limit
795 the maximum distance simple expressions can travel.
797 Nevertheless, constants are much easier to GCSE, and, hence,
798 it is easy to overdo the optimizations. Usually, excessive PRE and
799 Hoisting of constant leads to increased register pressure.
801 RA can deal with this by rematerialing some of the constants.
802 Therefore, it is important that the back-end generates sets of constants
803 in a way that allows reload rematerialize them under high register
804 pressure, i.e., a pseudo register with REG_EQUAL to constant
805 is set only once. Failing to do so will result in IRA/reload
806 spilling such constants under high register pressure instead of
807 rematerializing them. */
809 switch (GET_CODE (x))
811 case REG:
812 case SUBREG:
813 case CALL:
814 return 0;
816 CASE_CONST_ANY:
817 if (!doing_code_hoisting_p)
818 /* Do not PRE constants. */
819 return 0;
821 /* FALLTHRU */
823 default:
824 if (doing_code_hoisting_p)
825 /* PRE doesn't implement max_distance restriction. */
827 int cost;
828 int max_distance;
830 gcc_assert (!optimize_function_for_speed_p (cfun)
831 && optimize_function_for_size_p (cfun));
832 cost = set_src_cost (x, 0);
834 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
836 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
837 if (max_distance == 0)
838 return 0;
840 gcc_assert (max_distance > 0);
842 else
843 max_distance = 0;
845 if (max_distance_ptr)
846 *max_distance_ptr = max_distance;
849 return can_assign_to_reg_without_clobbers_p (x);
853 /* Used internally by can_assign_to_reg_without_clobbers_p. */
855 static GTY(()) rtx_insn *test_insn;
857 /* Return true if we can assign X to a pseudo register such that the
858 resulting insn does not result in clobbering a hard register as a
859 side-effect.
861 Additionally, if the target requires it, check that the resulting insn
862 can be copied. If it cannot, this means that X is special and probably
863 has hidden side-effects we don't want to mess with.
865 This function is typically used by code motion passes, to verify
866 that it is safe to insert an insn without worrying about clobbering
867 maybe live hard regs. */
869 bool
870 can_assign_to_reg_without_clobbers_p (rtx x)
872 int num_clobbers = 0;
873 int icode;
874 bool can_assign = false;
876 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
877 if (general_operand (x, GET_MODE (x)))
878 return 1;
879 else if (GET_MODE (x) == VOIDmode)
880 return 0;
882 /* Otherwise, check if we can make a valid insn from it. First initialize
883 our test insn if we haven't already. */
884 if (test_insn == 0)
886 test_insn
887 = make_insn_raw (gen_rtx_SET (VOIDmode,
888 gen_rtx_REG (word_mode,
889 FIRST_PSEUDO_REGISTER * 2),
890 const0_rtx));
891 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
892 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
895 /* Now make an insn like the one we would make when GCSE'ing and see if
896 valid. */
897 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
898 SET_SRC (PATTERN (test_insn)) = x;
900 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
902 /* If the test insn is valid and doesn't need clobbers, and the target also
903 has no objections, we're good. */
904 if (icode >= 0
905 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
906 && ! (targetm.cannot_copy_insn_p
907 && targetm.cannot_copy_insn_p (test_insn)))
908 can_assign = true;
910 /* Make sure test_insn doesn't have any pointers into GC space. */
911 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
913 return can_assign;
916 /* Return nonzero if the operands of expression X are unchanged from the
917 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
918 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
920 static int
921 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
923 int i, j;
924 enum rtx_code code;
925 const char *fmt;
927 if (x == 0)
928 return 1;
930 code = GET_CODE (x);
931 switch (code)
933 case REG:
935 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
937 if (info->last_bb != current_bb)
938 return 1;
939 if (avail_p)
940 return info->last_set < DF_INSN_LUID (insn);
941 else
942 return info->first_set >= DF_INSN_LUID (insn);
945 case MEM:
946 if (! flag_gcse_lm
947 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
948 x, avail_p))
949 return 0;
950 else
951 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
953 case PRE_DEC:
954 case PRE_INC:
955 case POST_DEC:
956 case POST_INC:
957 case PRE_MODIFY:
958 case POST_MODIFY:
959 return 0;
961 case PC:
962 case CC0: /*FIXME*/
963 case CONST:
964 CASE_CONST_ANY:
965 case SYMBOL_REF:
966 case LABEL_REF:
967 case ADDR_VEC:
968 case ADDR_DIFF_VEC:
969 return 1;
971 default:
972 break;
975 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
977 if (fmt[i] == 'e')
979 /* If we are about to do the last recursive call needed at this
980 level, change it into iteration. This function is called enough
981 to be worth it. */
982 if (i == 0)
983 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
985 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
986 return 0;
988 else if (fmt[i] == 'E')
989 for (j = 0; j < XVECLEN (x, i); j++)
990 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
991 return 0;
994 return 1;
997 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
999 struct mem_conflict_info
1001 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1002 see if a memory store conflicts with this memory load. */
1003 const_rtx mem;
1005 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1006 references. */
1007 bool conflict;
1010 /* DEST is the output of an instruction. If it is a memory reference and
1011 possibly conflicts with the load found in DATA, then communicate this
1012 information back through DATA. */
1014 static void
1015 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1016 void *data)
1018 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1020 while (GET_CODE (dest) == SUBREG
1021 || GET_CODE (dest) == ZERO_EXTRACT
1022 || GET_CODE (dest) == STRICT_LOW_PART)
1023 dest = XEXP (dest, 0);
1025 /* If DEST is not a MEM, then it will not conflict with the load. Note
1026 that function calls are assumed to clobber memory, but are handled
1027 elsewhere. */
1028 if (! MEM_P (dest))
1029 return;
1031 /* If we are setting a MEM in our list of specially recognized MEMs,
1032 don't mark as killed this time. */
1033 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1035 if (!find_rtx_in_ldst (dest))
1036 mci->conflict = true;
1037 return;
1040 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1041 mci->conflict = true;
1044 /* Return nonzero if the expression in X (a memory reference) is killed
1045 in block BB before or after the insn with the LUID in UID_LIMIT.
1046 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1047 before UID_LIMIT.
1049 To check the entire block, set UID_LIMIT to max_uid + 1 and
1050 AVAIL_P to 0. */
1052 static int
1053 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1054 int avail_p)
1056 vec<rtx_insn *> list = modify_mem_list[bb->index];
1057 rtx_insn *setter;
1058 unsigned ix;
1060 /* If this is a readonly then we aren't going to be changing it. */
1061 if (MEM_READONLY_P (x))
1062 return 0;
1064 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1066 struct mem_conflict_info mci;
1068 /* Ignore entries in the list that do not apply. */
1069 if ((avail_p
1070 && DF_INSN_LUID (setter) < uid_limit)
1071 || (! avail_p
1072 && DF_INSN_LUID (setter) > uid_limit))
1073 continue;
1075 /* If SETTER is a call everything is clobbered. Note that calls
1076 to pure functions are never put on the list, so we need not
1077 worry about them. */
1078 if (CALL_P (setter))
1079 return 1;
1081 /* SETTER must be an INSN of some kind that sets memory. Call
1082 note_stores to examine each hunk of memory that is modified. */
1083 mci.mem = x;
1084 mci.conflict = false;
1085 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1086 if (mci.conflict)
1087 return 1;
1089 return 0;
1092 /* Return nonzero if the operands of expression X are unchanged from
1093 the start of INSN's basic block up to but not including INSN. */
1095 static int
1096 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1098 return oprs_unchanged_p (x, insn, 0);
1101 /* Return nonzero if the operands of expression X are unchanged from
1102 INSN to the end of INSN's basic block. */
1104 static int
1105 oprs_available_p (const_rtx x, const rtx_insn *insn)
1107 return oprs_unchanged_p (x, insn, 1);
1110 /* Hash expression X.
1112 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1113 indicating if a volatile operand is found or if the expression contains
1114 something we don't want to insert in the table. HASH_TABLE_SIZE is
1115 the current size of the hash table to be probed. */
1117 static unsigned int
1118 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1119 int hash_table_size)
1121 unsigned int hash;
1123 *do_not_record_p = 0;
1125 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1126 return hash % hash_table_size;
1129 /* Return nonzero if exp1 is equivalent to exp2. */
1131 static int
1132 expr_equiv_p (const_rtx x, const_rtx y)
1134 return exp_equiv_p (x, y, 0, true);
1137 /* Insert expression X in INSN in the hash TABLE.
1138 If it is already present, record it as the last occurrence in INSN's
1139 basic block.
1141 MODE is the mode of the value X is being stored into.
1142 It is only used if X is a CONST_INT.
1144 ANTIC_P is nonzero if X is an anticipatable expression.
1145 AVAIL_P is nonzero if X is an available expression.
1147 MAX_DISTANCE is the maximum distance in instructions this expression can
1148 be moved. */
1150 static void
1151 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1152 int antic_p,
1153 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1155 int found, do_not_record_p;
1156 unsigned int hash;
1157 struct gcse_expr *cur_expr, *last_expr = NULL;
1158 struct gcse_occr *antic_occr, *avail_occr;
1160 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1162 /* Do not insert expression in table if it contains volatile operands,
1163 or if hash_expr determines the expression is something we don't want
1164 to or can't handle. */
1165 if (do_not_record_p)
1166 return;
1168 cur_expr = table->table[hash];
1169 found = 0;
1171 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1173 /* If the expression isn't found, save a pointer to the end of
1174 the list. */
1175 last_expr = cur_expr;
1176 cur_expr = cur_expr->next_same_hash;
1179 if (! found)
1181 cur_expr = GOBNEW (struct gcse_expr);
1182 bytes_used += sizeof (struct gcse_expr);
1183 if (table->table[hash] == NULL)
1184 /* This is the first pattern that hashed to this index. */
1185 table->table[hash] = cur_expr;
1186 else
1187 /* Add EXPR to end of this hash chain. */
1188 last_expr->next_same_hash = cur_expr;
1190 /* Set the fields of the expr element. */
1191 cur_expr->expr = x;
1192 cur_expr->bitmap_index = table->n_elems++;
1193 cur_expr->next_same_hash = NULL;
1194 cur_expr->antic_occr = NULL;
1195 cur_expr->avail_occr = NULL;
1196 gcc_assert (max_distance >= 0);
1197 cur_expr->max_distance = max_distance;
1199 else
1200 gcc_assert (cur_expr->max_distance == max_distance);
1202 /* Now record the occurrence(s). */
1203 if (antic_p)
1205 antic_occr = cur_expr->antic_occr;
1207 if (antic_occr
1208 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1209 antic_occr = NULL;
1211 if (antic_occr)
1212 /* Found another instance of the expression in the same basic block.
1213 Prefer the currently recorded one. We want the first one in the
1214 block and the block is scanned from start to end. */
1215 ; /* nothing to do */
1216 else
1218 /* First occurrence of this expression in this basic block. */
1219 antic_occr = GOBNEW (struct gcse_occr);
1220 bytes_used += sizeof (struct gcse_occr);
1221 antic_occr->insn = insn;
1222 antic_occr->next = cur_expr->antic_occr;
1223 antic_occr->deleted_p = 0;
1224 cur_expr->antic_occr = antic_occr;
1228 if (avail_p)
1230 avail_occr = cur_expr->avail_occr;
1232 if (avail_occr
1233 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1235 /* Found another instance of the expression in the same basic block.
1236 Prefer this occurrence to the currently recorded one. We want
1237 the last one in the block and the block is scanned from start
1238 to end. */
1239 avail_occr->insn = insn;
1241 else
1243 /* First occurrence of this expression in this basic block. */
1244 avail_occr = GOBNEW (struct gcse_occr);
1245 bytes_used += sizeof (struct gcse_occr);
1246 avail_occr->insn = insn;
1247 avail_occr->next = cur_expr->avail_occr;
1248 avail_occr->deleted_p = 0;
1249 cur_expr->avail_occr = avail_occr;
1254 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1256 static void
1257 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1259 rtx src = SET_SRC (set);
1260 rtx dest = SET_DEST (set);
1261 rtx note;
1263 if (GET_CODE (src) == CALL)
1264 hash_scan_call (src, insn, table);
1266 else if (REG_P (dest))
1268 unsigned int regno = REGNO (dest);
1269 int max_distance = 0;
1271 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1273 This allows us to do a single GCSE pass and still eliminate
1274 redundant constants, addresses or other expressions that are
1275 constructed with multiple instructions.
1277 However, keep the original SRC if INSN is a simple reg-reg move.
1278 In this case, there will almost always be a REG_EQUAL note on the
1279 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1280 for INSN, we miss copy propagation opportunities and we perform the
1281 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1282 do more than one PRE GCSE pass.
1284 Note that this does not impede profitable constant propagations. We
1285 "look through" reg-reg sets in lookup_avail_set. */
1286 note = find_reg_equal_equiv_note (insn);
1287 if (note != 0
1288 && REG_NOTE_KIND (note) == REG_EQUAL
1289 && !REG_P (src)
1290 && want_to_gcse_p (XEXP (note, 0), NULL))
1291 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1293 /* Only record sets of pseudo-regs in the hash table. */
1294 if (regno >= FIRST_PSEUDO_REGISTER
1295 /* Don't GCSE something if we can't do a reg/reg copy. */
1296 && can_copy_p (GET_MODE (dest))
1297 /* GCSE commonly inserts instruction after the insn. We can't
1298 do that easily for EH edges so disable GCSE on these for now. */
1299 /* ??? We can now easily create new EH landing pads at the
1300 gimple level, for splitting edges; there's no reason we
1301 can't do the same thing at the rtl level. */
1302 && !can_throw_internal (insn)
1303 /* Is SET_SRC something we want to gcse? */
1304 && want_to_gcse_p (src, &max_distance)
1305 /* Don't CSE a nop. */
1306 && ! set_noop_p (set)
1307 /* Don't GCSE if it has attached REG_EQUIV note.
1308 At this point this only function parameters should have
1309 REG_EQUIV notes and if the argument slot is used somewhere
1310 explicitly, it means address of parameter has been taken,
1311 so we should not extend the lifetime of the pseudo. */
1312 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1314 /* An expression is not anticipatable if its operands are
1315 modified before this insn or if this is not the only SET in
1316 this insn. The latter condition does not have to mean that
1317 SRC itself is not anticipatable, but we just will not be
1318 able to handle code motion of insns with multiple sets. */
1319 int antic_p = oprs_anticipatable_p (src, insn)
1320 && !multiple_sets (insn);
1321 /* An expression is not available if its operands are
1322 subsequently modified, including this insn. It's also not
1323 available if this is a branch, because we can't insert
1324 a set after the branch. */
1325 int avail_p = (oprs_available_p (src, insn)
1326 && ! JUMP_P (insn));
1328 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1329 max_distance, table);
1332 /* In case of store we want to consider the memory value as available in
1333 the REG stored in that memory. This makes it possible to remove
1334 redundant loads from due to stores to the same location. */
1335 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1337 unsigned int regno = REGNO (src);
1338 int max_distance = 0;
1340 /* Only record sets of pseudo-regs in the hash table. */
1341 if (regno >= FIRST_PSEUDO_REGISTER
1342 /* Don't GCSE something if we can't do a reg/reg copy. */
1343 && can_copy_p (GET_MODE (src))
1344 /* GCSE commonly inserts instruction after the insn. We can't
1345 do that easily for EH edges so disable GCSE on these for now. */
1346 && !can_throw_internal (insn)
1347 /* Is SET_DEST something we want to gcse? */
1348 && want_to_gcse_p (dest, &max_distance)
1349 /* Don't CSE a nop. */
1350 && ! set_noop_p (set)
1351 /* Don't GCSE if it has attached REG_EQUIV note.
1352 At this point this only function parameters should have
1353 REG_EQUIV notes and if the argument slot is used somewhere
1354 explicitly, it means address of parameter has been taken,
1355 so we should not extend the lifetime of the pseudo. */
1356 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1357 || ! MEM_P (XEXP (note, 0))))
1359 /* Stores are never anticipatable. */
1360 int antic_p = 0;
1361 /* An expression is not available if its operands are
1362 subsequently modified, including this insn. It's also not
1363 available if this is a branch, because we can't insert
1364 a set after the branch. */
1365 int avail_p = oprs_available_p (dest, insn)
1366 && ! JUMP_P (insn);
1368 /* Record the memory expression (DEST) in the hash table. */
1369 insert_expr_in_table (dest, GET_MODE (dest), insn,
1370 antic_p, avail_p, max_distance, table);
1375 static void
1376 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1377 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1379 /* Currently nothing to do. */
1382 static void
1383 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1384 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1386 /* Currently nothing to do. */
1389 /* Process INSN and add hash table entries as appropriate. */
1391 static void
1392 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1394 rtx pat = PATTERN (insn);
1395 int i;
1397 /* Pick out the sets of INSN and for other forms of instructions record
1398 what's been modified. */
1400 if (GET_CODE (pat) == SET)
1401 hash_scan_set (pat, insn, table);
1403 else if (GET_CODE (pat) == CLOBBER)
1404 hash_scan_clobber (pat, insn, table);
1406 else if (GET_CODE (pat) == CALL)
1407 hash_scan_call (pat, insn, table);
1409 else if (GET_CODE (pat) == PARALLEL)
1410 for (i = 0; i < XVECLEN (pat, 0); i++)
1412 rtx x = XVECEXP (pat, 0, i);
1414 if (GET_CODE (x) == SET)
1415 hash_scan_set (x, insn, table);
1416 else if (GET_CODE (x) == CLOBBER)
1417 hash_scan_clobber (x, insn, table);
1418 else if (GET_CODE (x) == CALL)
1419 hash_scan_call (x, insn, table);
1423 /* Dump the hash table TABLE to file FILE under the name NAME. */
1425 static void
1426 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1428 int i;
1429 /* Flattened out table, so it's printed in proper order. */
1430 struct gcse_expr **flat_table;
1431 unsigned int *hash_val;
1432 struct gcse_expr *expr;
1434 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1435 hash_val = XNEWVEC (unsigned int, table->n_elems);
1437 for (i = 0; i < (int) table->size; i++)
1438 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1440 flat_table[expr->bitmap_index] = expr;
1441 hash_val[expr->bitmap_index] = i;
1444 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1445 name, table->size, table->n_elems);
1447 for (i = 0; i < (int) table->n_elems; i++)
1448 if (flat_table[i] != 0)
1450 expr = flat_table[i];
1451 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1452 expr->bitmap_index, hash_val[i], expr->max_distance);
1453 print_rtl (file, expr->expr);
1454 fprintf (file, "\n");
1457 fprintf (file, "\n");
1459 free (flat_table);
1460 free (hash_val);
1463 /* Record register first/last/block set information for REGNO in INSN.
1465 first_set records the first place in the block where the register
1466 is set and is used to compute "anticipatability".
1468 last_set records the last place in the block where the register
1469 is set and is used to compute "availability".
1471 last_bb records the block for which first_set and last_set are
1472 valid, as a quick test to invalidate them. */
1474 static void
1475 record_last_reg_set_info (rtx insn, int regno)
1477 struct reg_avail_info *info = &reg_avail_info[regno];
1478 int luid = DF_INSN_LUID (insn);
1480 info->last_set = luid;
1481 if (info->last_bb != current_bb)
1483 info->last_bb = current_bb;
1484 info->first_set = luid;
1488 /* Record memory modification information for INSN. We do not actually care
1489 about the memory location(s) that are set, or even how they are set (consider
1490 a CALL_INSN). We merely need to record which insns modify memory. */
1492 static void
1493 record_last_mem_set_info (rtx_insn *insn)
1495 if (! flag_gcse_lm)
1496 return;
1498 record_last_mem_set_info_common (insn, modify_mem_list,
1499 canon_modify_mem_list,
1500 modify_mem_list_set,
1501 blocks_with_calls);
1504 /* Called from compute_hash_table via note_stores to handle one
1505 SET or CLOBBER in an insn. DATA is really the instruction in which
1506 the SET is taking place. */
1508 static void
1509 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1511 rtx_insn *last_set_insn = (rtx_insn *) data;
1513 if (GET_CODE (dest) == SUBREG)
1514 dest = SUBREG_REG (dest);
1516 if (REG_P (dest))
1517 record_last_reg_set_info (last_set_insn, REGNO (dest));
1518 else if (MEM_P (dest)
1519 /* Ignore pushes, they clobber nothing. */
1520 && ! push_operand (dest, GET_MODE (dest)))
1521 record_last_mem_set_info (last_set_insn);
1524 /* Top level function to create an expression hash table.
1526 Expression entries are placed in the hash table if
1527 - they are of the form (set (pseudo-reg) src),
1528 - src is something we want to perform GCSE on,
1529 - none of the operands are subsequently modified in the block
1531 Currently src must be a pseudo-reg or a const_int.
1533 TABLE is the table computed. */
1535 static void
1536 compute_hash_table_work (struct gcse_hash_table_d *table)
1538 int i;
1540 /* re-Cache any INSN_LIST nodes we have allocated. */
1541 clear_modify_mem_tables ();
1542 /* Some working arrays used to track first and last set in each block. */
1543 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1545 for (i = 0; i < max_reg_num (); ++i)
1546 reg_avail_info[i].last_bb = NULL;
1548 FOR_EACH_BB_FN (current_bb, cfun)
1550 rtx_insn *insn;
1551 unsigned int regno;
1553 /* First pass over the instructions records information used to
1554 determine when registers and memory are first and last set. */
1555 FOR_BB_INSNS (current_bb, insn)
1557 if (!NONDEBUG_INSN_P (insn))
1558 continue;
1560 if (CALL_P (insn))
1562 hard_reg_set_iterator hrsi;
1563 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1564 0, regno, hrsi)
1565 record_last_reg_set_info (insn, regno);
1567 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1568 record_last_mem_set_info (insn);
1571 note_stores (PATTERN (insn), record_last_set_info, insn);
1574 /* The next pass builds the hash table. */
1575 FOR_BB_INSNS (current_bb, insn)
1576 if (NONDEBUG_INSN_P (insn))
1577 hash_scan_insn (insn, table);
1580 free (reg_avail_info);
1581 reg_avail_info = NULL;
1584 /* Allocate space for the set/expr hash TABLE.
1585 It is used to determine the number of buckets to use. */
1587 static void
1588 alloc_hash_table (struct gcse_hash_table_d *table)
1590 int n;
1592 n = get_max_insn_count ();
1594 table->size = n / 4;
1595 if (table->size < 11)
1596 table->size = 11;
1598 /* Attempt to maintain efficient use of hash table.
1599 Making it an odd number is simplest for now.
1600 ??? Later take some measurements. */
1601 table->size |= 1;
1602 n = table->size * sizeof (struct gcse_expr *);
1603 table->table = GNEWVAR (struct gcse_expr *, n);
1606 /* Free things allocated by alloc_hash_table. */
1608 static void
1609 free_hash_table (struct gcse_hash_table_d *table)
1611 free (table->table);
1614 /* Compute the expression hash table TABLE. */
1616 static void
1617 compute_hash_table (struct gcse_hash_table_d *table)
1619 /* Initialize count of number of entries in hash table. */
1620 table->n_elems = 0;
1621 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1623 compute_hash_table_work (table);
1626 /* Expression tracking support. */
1628 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1629 static void
1630 clear_modify_mem_tables (void)
1632 unsigned i;
1633 bitmap_iterator bi;
1635 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1637 modify_mem_list[i].release ();
1638 canon_modify_mem_list[i].release ();
1640 bitmap_clear (modify_mem_list_set);
1641 bitmap_clear (blocks_with_calls);
1644 /* Release memory used by modify_mem_list_set. */
1646 static void
1647 free_modify_mem_tables (void)
1649 clear_modify_mem_tables ();
1650 free (modify_mem_list);
1651 free (canon_modify_mem_list);
1652 modify_mem_list = 0;
1653 canon_modify_mem_list = 0;
1656 /* Compute PRE+LCM working variables. */
1658 /* Local properties of expressions. */
1660 /* Nonzero for expressions that are transparent in the block. */
1661 static sbitmap *transp;
1663 /* Nonzero for expressions that are computed (available) in the block. */
1664 static sbitmap *comp;
1666 /* Nonzero for expressions that are locally anticipatable in the block. */
1667 static sbitmap *antloc;
1669 /* Nonzero for expressions where this block is an optimal computation
1670 point. */
1671 static sbitmap *pre_optimal;
1673 /* Nonzero for expressions which are redundant in a particular block. */
1674 static sbitmap *pre_redundant;
1676 /* Nonzero for expressions which should be inserted on a specific edge. */
1677 static sbitmap *pre_insert_map;
1679 /* Nonzero for expressions which should be deleted in a specific block. */
1680 static sbitmap *pre_delete_map;
1682 /* Allocate vars used for PRE analysis. */
1684 static void
1685 alloc_pre_mem (int n_blocks, int n_exprs)
1687 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1688 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1689 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1691 pre_optimal = NULL;
1692 pre_redundant = NULL;
1693 pre_insert_map = NULL;
1694 pre_delete_map = NULL;
1695 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1697 /* pre_insert and pre_delete are allocated later. */
1700 /* Free vars used for PRE analysis. */
1702 static void
1703 free_pre_mem (void)
1705 sbitmap_vector_free (transp);
1706 sbitmap_vector_free (comp);
1708 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1710 if (pre_optimal)
1711 sbitmap_vector_free (pre_optimal);
1712 if (pre_redundant)
1713 sbitmap_vector_free (pre_redundant);
1714 if (pre_insert_map)
1715 sbitmap_vector_free (pre_insert_map);
1716 if (pre_delete_map)
1717 sbitmap_vector_free (pre_delete_map);
1719 transp = comp = NULL;
1720 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1723 /* Remove certain expressions from anticipatable and transparent
1724 sets of basic blocks that have incoming abnormal edge.
1725 For PRE remove potentially trapping expressions to avoid placing
1726 them on abnormal edges. For hoisting remove memory references that
1727 can be clobbered by calls. */
1729 static void
1730 prune_expressions (bool pre_p)
1732 sbitmap prune_exprs;
1733 struct gcse_expr *expr;
1734 unsigned int ui;
1735 basic_block bb;
1737 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1738 bitmap_clear (prune_exprs);
1739 for (ui = 0; ui < expr_hash_table.size; ui++)
1741 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1743 /* Note potentially trapping expressions. */
1744 if (may_trap_p (expr->expr))
1746 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1747 continue;
1750 if (!pre_p && MEM_P (expr->expr))
1751 /* Note memory references that can be clobbered by a call.
1752 We do not split abnormal edges in hoisting, so would
1753 a memory reference get hoisted along an abnormal edge,
1754 it would be placed /before/ the call. Therefore, only
1755 constant memory references can be hoisted along abnormal
1756 edges. */
1758 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1759 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1760 continue;
1762 if (MEM_READONLY_P (expr->expr)
1763 && !MEM_VOLATILE_P (expr->expr)
1764 && MEM_NOTRAP_P (expr->expr))
1765 /* Constant memory reference, e.g., a PIC address. */
1766 continue;
1768 /* ??? Optimally, we would use interprocedural alias
1769 analysis to determine if this mem is actually killed
1770 by this call. */
1772 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1777 FOR_EACH_BB_FN (bb, cfun)
1779 edge e;
1780 edge_iterator ei;
1782 /* If the current block is the destination of an abnormal edge, we
1783 kill all trapping (for PRE) and memory (for hoist) expressions
1784 because we won't be able to properly place the instruction on
1785 the edge. So make them neither anticipatable nor transparent.
1786 This is fairly conservative.
1788 ??? For hoisting it may be necessary to check for set-and-jump
1789 instructions here, not just for abnormal edges. The general problem
1790 is that when an expression cannot not be placed right at the end of
1791 a basic block we should account for any side-effects of a subsequent
1792 jump instructions that could clobber the expression. It would
1793 be best to implement this check along the lines of
1794 should_hoist_expr_to_dom where the target block is already known
1795 and, hence, there's no need to conservatively prune expressions on
1796 "intermediate" set-and-jump instructions. */
1797 FOR_EACH_EDGE (e, ei, bb->preds)
1798 if ((e->flags & EDGE_ABNORMAL)
1799 && (pre_p || CALL_P (BB_END (e->src))))
1801 bitmap_and_compl (antloc[bb->index],
1802 antloc[bb->index], prune_exprs);
1803 bitmap_and_compl (transp[bb->index],
1804 transp[bb->index], prune_exprs);
1805 break;
1809 sbitmap_free (prune_exprs);
1812 /* It may be necessary to insert a large number of insns on edges to
1813 make the existing occurrences of expressions fully redundant. This
1814 routine examines the set of insertions and deletions and if the ratio
1815 of insertions to deletions is too high for a particular expression, then
1816 the expression is removed from the insertion/deletion sets.
1818 N_ELEMS is the number of elements in the hash table. */
1820 static void
1821 prune_insertions_deletions (int n_elems)
1823 sbitmap_iterator sbi;
1824 sbitmap prune_exprs;
1826 /* We always use I to iterate over blocks/edges and J to iterate over
1827 expressions. */
1828 unsigned int i, j;
1830 /* Counts for the number of times an expression needs to be inserted and
1831 number of times an expression can be removed as a result. */
1832 int *insertions = GCNEWVEC (int, n_elems);
1833 int *deletions = GCNEWVEC (int, n_elems);
1835 /* Set of expressions which require too many insertions relative to
1836 the number of deletions achieved. We will prune these out of the
1837 insertion/deletion sets. */
1838 prune_exprs = sbitmap_alloc (n_elems);
1839 bitmap_clear (prune_exprs);
1841 /* Iterate over the edges counting the number of times each expression
1842 needs to be inserted. */
1843 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1845 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1846 insertions[j]++;
1849 /* Similarly for deletions, but those occur in blocks rather than on
1850 edges. */
1851 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1853 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1854 deletions[j]++;
1857 /* Now that we have accurate counts, iterate over the elements in the
1858 hash table and see if any need too many insertions relative to the
1859 number of evaluations that can be removed. If so, mark them in
1860 PRUNE_EXPRS. */
1861 for (j = 0; j < (unsigned) n_elems; j++)
1862 if (deletions[j]
1863 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1864 bitmap_set_bit (prune_exprs, j);
1866 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1867 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1869 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1870 bitmap_clear_bit (pre_insert_map[i], j);
1872 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1873 bitmap_clear_bit (pre_delete_map[i], j);
1876 sbitmap_free (prune_exprs);
1877 free (insertions);
1878 free (deletions);
1881 /* Top level routine to do the dataflow analysis needed by PRE. */
1883 static struct edge_list *
1884 compute_pre_data (void)
1886 struct edge_list *edge_list;
1887 basic_block bb;
1889 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1890 prune_expressions (true);
1891 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1893 /* Compute ae_kill for each basic block using:
1895 ~(TRANSP | COMP)
1898 FOR_EACH_BB_FN (bb, cfun)
1900 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1901 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1904 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1905 ae_kill, &pre_insert_map, &pre_delete_map);
1906 sbitmap_vector_free (antloc);
1907 antloc = NULL;
1908 sbitmap_vector_free (ae_kill);
1909 ae_kill = NULL;
1911 prune_insertions_deletions (expr_hash_table.n_elems);
1913 return edge_list;
1916 /* PRE utilities */
1918 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1919 block BB.
1921 VISITED is a pointer to a working buffer for tracking which BB's have
1922 been visited. It is NULL for the top-level call.
1924 We treat reaching expressions that go through blocks containing the same
1925 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1926 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1927 2 as not reaching. The intent is to improve the probability of finding
1928 only one reaching expression and to reduce register lifetimes by picking
1929 the closest such expression. */
1931 static int
1932 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1933 basic_block bb, char *visited)
1935 edge pred;
1936 edge_iterator ei;
1938 FOR_EACH_EDGE (pred, ei, bb->preds)
1940 basic_block pred_bb = pred->src;
1942 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1943 /* Has predecessor has already been visited? */
1944 || visited[pred_bb->index])
1945 ;/* Nothing to do. */
1947 /* Does this predecessor generate this expression? */
1948 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1950 /* Is this the occurrence we're looking for?
1951 Note that there's only one generating occurrence per block
1952 so we just need to check the block number. */
1953 if (occr_bb == pred_bb)
1954 return 1;
1956 visited[pred_bb->index] = 1;
1958 /* Ignore this predecessor if it kills the expression. */
1959 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1960 visited[pred_bb->index] = 1;
1962 /* Neither gen nor kill. */
1963 else
1965 visited[pred_bb->index] = 1;
1966 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1967 return 1;
1971 /* All paths have been checked. */
1972 return 0;
1975 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1976 memory allocated for that function is returned. */
1978 static int
1979 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1981 int rval;
1982 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1984 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1986 free (visited);
1987 return rval;
1990 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1992 static rtx_insn *
1993 process_insert_insn (struct gcse_expr *expr)
1995 rtx reg = expr->reaching_reg;
1996 /* Copy the expression to make sure we don't have any sharing issues. */
1997 rtx exp = copy_rtx (expr->expr);
1998 rtx_insn *pat;
2000 start_sequence ();
2002 /* If the expression is something that's an operand, like a constant,
2003 just copy it to a register. */
2004 if (general_operand (exp, GET_MODE (reg)))
2005 emit_move_insn (reg, exp);
2007 /* Otherwise, make a new insn to compute this expression and make sure the
2008 insn will be recognized (this also adds any needed CLOBBERs). */
2009 else
2011 rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2013 if (insn_invalid_p (insn, false))
2014 gcc_unreachable ();
2017 pat = get_insns ();
2018 end_sequence ();
2020 return pat;
2023 /* Add EXPR to the end of basic block BB.
2025 This is used by both the PRE and code hoisting. */
2027 static void
2028 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2030 rtx_insn *insn = BB_END (bb);
2031 rtx_insn *new_insn;
2032 rtx reg = expr->reaching_reg;
2033 int regno = REGNO (reg);
2034 rtx_insn *pat, *pat_end;
2036 pat = process_insert_insn (expr);
2037 gcc_assert (pat && INSN_P (pat));
2039 pat_end = pat;
2040 while (NEXT_INSN (pat_end) != NULL_RTX)
2041 pat_end = NEXT_INSN (pat_end);
2043 /* If the last insn is a jump, insert EXPR in front [taking care to
2044 handle cc0, etc. properly]. Similarly we need to care trapping
2045 instructions in presence of non-call exceptions. */
2047 if (JUMP_P (insn)
2048 || (NONJUMP_INSN_P (insn)
2049 && (!single_succ_p (bb)
2050 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2052 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2053 if cc0 isn't set. */
2054 if (HAVE_cc0)
2056 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2057 if (note)
2058 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2059 else
2061 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2062 if (maybe_cc0_setter
2063 && INSN_P (maybe_cc0_setter)
2064 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2065 insn = maybe_cc0_setter;
2069 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2070 new_insn = emit_insn_before_noloc (pat, insn, bb);
2073 /* Likewise if the last insn is a call, as will happen in the presence
2074 of exception handling. */
2075 else if (CALL_P (insn)
2076 && (!single_succ_p (bb)
2077 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2079 /* Keeping in mind targets with small register classes and parameters
2080 in registers, we search backward and place the instructions before
2081 the first parameter is loaded. Do this for everyone for consistency
2082 and a presumption that we'll get better code elsewhere as well. */
2084 /* Since different machines initialize their parameter registers
2085 in different orders, assume nothing. Collect the set of all
2086 parameter registers. */
2087 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2089 /* If we found all the parameter loads, then we want to insert
2090 before the first parameter load.
2092 If we did not find all the parameter loads, then we might have
2093 stopped on the head of the block, which could be a CODE_LABEL.
2094 If we inserted before the CODE_LABEL, then we would be putting
2095 the insn in the wrong basic block. In that case, put the insn
2096 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2097 while (LABEL_P (insn)
2098 || NOTE_INSN_BASIC_BLOCK_P (insn))
2099 insn = NEXT_INSN (insn);
2101 new_insn = emit_insn_before_noloc (pat, insn, bb);
2103 else
2104 new_insn = emit_insn_after_noloc (pat, insn, bb);
2106 while (1)
2108 if (INSN_P (pat))
2109 add_label_notes (PATTERN (pat), new_insn);
2110 if (pat == pat_end)
2111 break;
2112 pat = NEXT_INSN (pat);
2115 gcse_create_count++;
2117 if (dump_file)
2119 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2120 bb->index, INSN_UID (new_insn));
2121 fprintf (dump_file, "copying expression %d to reg %d\n",
2122 expr->bitmap_index, regno);
2126 /* Insert partially redundant expressions on edges in the CFG to make
2127 the expressions fully redundant. */
2129 static int
2130 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2132 int e, i, j, num_edges, set_size, did_insert = 0;
2133 sbitmap *inserted;
2135 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2136 if it reaches any of the deleted expressions. */
2138 set_size = pre_insert_map[0]->size;
2139 num_edges = NUM_EDGES (edge_list);
2140 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2141 bitmap_vector_clear (inserted, num_edges);
2143 for (e = 0; e < num_edges; e++)
2145 int indx;
2146 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2148 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2150 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2152 for (j = indx;
2153 insert && j < (int) expr_hash_table.n_elems;
2154 j++, insert >>= 1)
2155 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2157 struct gcse_expr *expr = index_map[j];
2158 struct gcse_occr *occr;
2160 /* Now look at each deleted occurrence of this expression. */
2161 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2163 if (! occr->deleted_p)
2164 continue;
2166 /* Insert this expression on this edge if it would
2167 reach the deleted occurrence in BB. */
2168 if (!bitmap_bit_p (inserted[e], j))
2170 rtx_insn *insn;
2171 edge eg = INDEX_EDGE (edge_list, e);
2173 /* We can't insert anything on an abnormal and
2174 critical edge, so we insert the insn at the end of
2175 the previous block. There are several alternatives
2176 detailed in Morgans book P277 (sec 10.5) for
2177 handling this situation. This one is easiest for
2178 now. */
2180 if (eg->flags & EDGE_ABNORMAL)
2181 insert_insn_end_basic_block (index_map[j], bb);
2182 else
2184 insn = process_insert_insn (index_map[j]);
2185 insert_insn_on_edge (insn, eg);
2188 if (dump_file)
2190 fprintf (dump_file, "PRE: edge (%d,%d), ",
2191 bb->index,
2192 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2193 fprintf (dump_file, "copy expression %d\n",
2194 expr->bitmap_index);
2197 update_ld_motion_stores (expr);
2198 bitmap_set_bit (inserted[e], j);
2199 did_insert = 1;
2200 gcse_create_count++;
2207 sbitmap_vector_free (inserted);
2208 return did_insert;
2211 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2212 Given "old_reg <- expr" (INSN), instead of adding after it
2213 reaching_reg <- old_reg
2214 it's better to do the following:
2215 reaching_reg <- expr
2216 old_reg <- reaching_reg
2217 because this way copy propagation can discover additional PRE
2218 opportunities. But if this fails, we try the old way.
2219 When "expr" is a store, i.e.
2220 given "MEM <- old_reg", instead of adding after it
2221 reaching_reg <- old_reg
2222 it's better to add it before as follows:
2223 reaching_reg <- old_reg
2224 MEM <- reaching_reg. */
2226 static void
2227 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2229 rtx reg = expr->reaching_reg;
2230 int regno = REGNO (reg);
2231 int indx = expr->bitmap_index;
2232 rtx pat = PATTERN (insn);
2233 rtx set, first_set, new_insn;
2234 rtx old_reg;
2235 int i;
2237 /* This block matches the logic in hash_scan_insn. */
2238 switch (GET_CODE (pat))
2240 case SET:
2241 set = pat;
2242 break;
2244 case PARALLEL:
2245 /* Search through the parallel looking for the set whose
2246 source was the expression that we're interested in. */
2247 first_set = NULL_RTX;
2248 set = NULL_RTX;
2249 for (i = 0; i < XVECLEN (pat, 0); i++)
2251 rtx x = XVECEXP (pat, 0, i);
2252 if (GET_CODE (x) == SET)
2254 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2255 may not find an equivalent expression, but in this
2256 case the PARALLEL will have a single set. */
2257 if (first_set == NULL_RTX)
2258 first_set = x;
2259 if (expr_equiv_p (SET_SRC (x), expr->expr))
2261 set = x;
2262 break;
2267 gcc_assert (first_set);
2268 if (set == NULL_RTX)
2269 set = first_set;
2270 break;
2272 default:
2273 gcc_unreachable ();
2276 if (REG_P (SET_DEST (set)))
2278 old_reg = SET_DEST (set);
2279 /* Check if we can modify the set destination in the original insn. */
2280 if (validate_change (insn, &SET_DEST (set), reg, 0))
2282 new_insn = gen_move_insn (old_reg, reg);
2283 new_insn = emit_insn_after (new_insn, insn);
2285 else
2287 new_insn = gen_move_insn (reg, old_reg);
2288 new_insn = emit_insn_after (new_insn, insn);
2291 else /* This is possible only in case of a store to memory. */
2293 old_reg = SET_SRC (set);
2294 new_insn = gen_move_insn (reg, old_reg);
2296 /* Check if we can modify the set source in the original insn. */
2297 if (validate_change (insn, &SET_SRC (set), reg, 0))
2298 new_insn = emit_insn_before (new_insn, insn);
2299 else
2300 new_insn = emit_insn_after (new_insn, insn);
2303 gcse_create_count++;
2305 if (dump_file)
2306 fprintf (dump_file,
2307 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2308 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2309 INSN_UID (insn), regno);
2312 /* Copy available expressions that reach the redundant expression
2313 to `reaching_reg'. */
2315 static void
2316 pre_insert_copies (void)
2318 unsigned int i, added_copy;
2319 struct gcse_expr *expr;
2320 struct gcse_occr *occr;
2321 struct gcse_occr *avail;
2323 /* For each available expression in the table, copy the result to
2324 `reaching_reg' if the expression reaches a deleted one.
2326 ??? The current algorithm is rather brute force.
2327 Need to do some profiling. */
2329 for (i = 0; i < expr_hash_table.size; i++)
2330 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2332 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2333 we don't want to insert a copy here because the expression may not
2334 really be redundant. So only insert an insn if the expression was
2335 deleted. This test also avoids further processing if the
2336 expression wasn't deleted anywhere. */
2337 if (expr->reaching_reg == NULL)
2338 continue;
2340 /* Set when we add a copy for that expression. */
2341 added_copy = 0;
2343 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2345 if (! occr->deleted_p)
2346 continue;
2348 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2350 rtx_insn *insn = avail->insn;
2352 /* No need to handle this one if handled already. */
2353 if (avail->copied_p)
2354 continue;
2356 /* Don't handle this one if it's a redundant one. */
2357 if (insn->deleted ())
2358 continue;
2360 /* Or if the expression doesn't reach the deleted one. */
2361 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2362 expr,
2363 BLOCK_FOR_INSN (occr->insn)))
2364 continue;
2366 added_copy = 1;
2368 /* Copy the result of avail to reaching_reg. */
2369 pre_insert_copy_insn (expr, insn);
2370 avail->copied_p = 1;
2374 if (added_copy)
2375 update_ld_motion_stores (expr);
2379 struct set_data
2381 rtx_insn *insn;
2382 const_rtx set;
2383 int nsets;
2386 /* Increment number of sets and record set in DATA. */
2388 static void
2389 record_set_data (rtx dest, const_rtx set, void *data)
2391 struct set_data *s = (struct set_data *)data;
2393 if (GET_CODE (set) == SET)
2395 /* We allow insns having multiple sets, where all but one are
2396 dead as single set insns. In the common case only a single
2397 set is present, so we want to avoid checking for REG_UNUSED
2398 notes unless necessary. */
2399 if (s->nsets == 1
2400 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2401 && !side_effects_p (s->set))
2402 s->nsets = 0;
2404 if (!s->nsets)
2406 /* Record this set. */
2407 s->nsets += 1;
2408 s->set = set;
2410 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2411 || side_effects_p (set))
2412 s->nsets += 1;
2416 static const_rtx
2417 single_set_gcse (rtx_insn *insn)
2419 struct set_data s;
2420 rtx pattern;
2422 gcc_assert (INSN_P (insn));
2424 /* Optimize common case. */
2425 pattern = PATTERN (insn);
2426 if (GET_CODE (pattern) == SET)
2427 return pattern;
2429 s.insn = insn;
2430 s.nsets = 0;
2431 note_stores (pattern, record_set_data, &s);
2433 /* Considered invariant insns have exactly one set. */
2434 gcc_assert (s.nsets == 1);
2435 return s.set;
2438 /* Emit move from SRC to DEST noting the equivalence with expression computed
2439 in INSN. */
2441 static rtx
2442 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2444 rtx_insn *new_rtx;
2445 const_rtx set = single_set_gcse (insn);
2446 rtx set2;
2447 rtx note;
2448 rtx eqv = NULL_RTX;
2450 /* This should never fail since we're creating a reg->reg copy
2451 we've verified to be valid. */
2453 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2455 /* Note the equivalence for local CSE pass. Take the note from the old
2456 set if there was one. Otherwise record the SET_SRC from the old set
2457 unless DEST is also an operand of the SET_SRC. */
2458 set2 = single_set (new_rtx);
2459 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2460 return new_rtx;
2461 if ((note = find_reg_equal_equiv_note (insn)))
2462 eqv = XEXP (note, 0);
2463 else if (! REG_P (dest)
2464 || ! reg_mentioned_p (dest, SET_SRC (set)))
2465 eqv = SET_SRC (set);
2467 if (eqv != NULL_RTX)
2468 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2470 return new_rtx;
2473 /* Delete redundant computations.
2474 Deletion is done by changing the insn to copy the `reaching_reg' of
2475 the expression into the result of the SET. It is left to later passes
2476 to propagate the copy or eliminate it.
2478 Return nonzero if a change is made. */
2480 static int
2481 pre_delete (void)
2483 unsigned int i;
2484 int changed;
2485 struct gcse_expr *expr;
2486 struct gcse_occr *occr;
2488 changed = 0;
2489 for (i = 0; i < expr_hash_table.size; i++)
2490 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2492 int indx = expr->bitmap_index;
2494 /* We only need to search antic_occr since we require ANTLOC != 0. */
2495 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2497 rtx_insn *insn = occr->insn;
2498 rtx set;
2499 basic_block bb = BLOCK_FOR_INSN (insn);
2501 /* We only delete insns that have a single_set. */
2502 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2503 && (set = single_set (insn)) != 0
2504 && dbg_cnt (pre_insn))
2506 /* Create a pseudo-reg to store the result of reaching
2507 expressions into. Get the mode for the new pseudo from
2508 the mode of the original destination pseudo. */
2509 if (expr->reaching_reg == NULL)
2510 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2512 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2513 delete_insn (insn);
2514 occr->deleted_p = 1;
2515 changed = 1;
2516 gcse_subst_count++;
2518 if (dump_file)
2520 fprintf (dump_file,
2521 "PRE: redundant insn %d (expression %d) in ",
2522 INSN_UID (insn), indx);
2523 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2524 bb->index, REGNO (expr->reaching_reg));
2530 return changed;
2533 /* Perform GCSE optimizations using PRE.
2534 This is called by one_pre_gcse_pass after all the dataflow analysis
2535 has been done.
2537 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2538 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2539 Compiler Design and Implementation.
2541 ??? A new pseudo reg is created to hold the reaching expression. The nice
2542 thing about the classical approach is that it would try to use an existing
2543 reg. If the register can't be adequately optimized [i.e. we introduce
2544 reload problems], one could add a pass here to propagate the new register
2545 through the block.
2547 ??? We don't handle single sets in PARALLELs because we're [currently] not
2548 able to copy the rest of the parallel when we insert copies to create full
2549 redundancies from partial redundancies. However, there's no reason why we
2550 can't handle PARALLELs in the cases where there are no partial
2551 redundancies. */
2553 static int
2554 pre_gcse (struct edge_list *edge_list)
2556 unsigned int i;
2557 int did_insert, changed;
2558 struct gcse_expr **index_map;
2559 struct gcse_expr *expr;
2561 /* Compute a mapping from expression number (`bitmap_index') to
2562 hash table entry. */
2564 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2565 for (i = 0; i < expr_hash_table.size; i++)
2566 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2567 index_map[expr->bitmap_index] = expr;
2569 /* Delete the redundant insns first so that
2570 - we know what register to use for the new insns and for the other
2571 ones with reaching expressions
2572 - we know which insns are redundant when we go to create copies */
2574 changed = pre_delete ();
2575 did_insert = pre_edge_insert (edge_list, index_map);
2577 /* In other places with reaching expressions, copy the expression to the
2578 specially allocated pseudo-reg that reaches the redundant expr. */
2579 pre_insert_copies ();
2580 if (did_insert)
2582 commit_edge_insertions ();
2583 changed = 1;
2586 free (index_map);
2587 return changed;
2590 /* Top level routine to perform one PRE GCSE pass.
2592 Return nonzero if a change was made. */
2594 static int
2595 one_pre_gcse_pass (void)
2597 int changed = 0;
2599 gcse_subst_count = 0;
2600 gcse_create_count = 0;
2602 /* Return if there's nothing to do, or it is too expensive. */
2603 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2604 || is_too_expensive (_("PRE disabled")))
2605 return 0;
2607 /* We need alias. */
2608 init_alias_analysis ();
2610 bytes_used = 0;
2611 gcc_obstack_init (&gcse_obstack);
2612 alloc_gcse_mem ();
2614 alloc_hash_table (&expr_hash_table);
2615 add_noreturn_fake_exit_edges ();
2616 if (flag_gcse_lm)
2617 compute_ld_motion_mems ();
2619 compute_hash_table (&expr_hash_table);
2620 if (flag_gcse_lm)
2621 trim_ld_motion_mems ();
2622 if (dump_file)
2623 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2625 if (expr_hash_table.n_elems > 0)
2627 struct edge_list *edge_list;
2628 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2629 edge_list = compute_pre_data ();
2630 changed |= pre_gcse (edge_list);
2631 free_edge_list (edge_list);
2632 free_pre_mem ();
2635 if (flag_gcse_lm)
2636 free_ld_motion_mems ();
2637 remove_fake_exit_edges ();
2638 free_hash_table (&expr_hash_table);
2640 free_gcse_mem ();
2641 obstack_free (&gcse_obstack, NULL);
2643 /* We are finished with alias. */
2644 end_alias_analysis ();
2646 if (dump_file)
2648 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2649 current_function_name (), n_basic_blocks_for_fn (cfun),
2650 bytes_used);
2651 fprintf (dump_file, "%d substs, %d insns created\n",
2652 gcse_subst_count, gcse_create_count);
2655 return changed;
2658 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2659 to INSN. If such notes are added to an insn which references a
2660 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2661 that note, because the following loop optimization pass requires
2662 them. */
2664 /* ??? If there was a jump optimization pass after gcse and before loop,
2665 then we would not need to do this here, because jump would add the
2666 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2668 static void
2669 add_label_notes (rtx x, rtx insn)
2671 enum rtx_code code = GET_CODE (x);
2672 int i, j;
2673 const char *fmt;
2675 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2677 /* This code used to ignore labels that referred to dispatch tables to
2678 avoid flow generating (slightly) worse code.
2680 We no longer ignore such label references (see LABEL_REF handling in
2681 mark_jump_label for additional information). */
2683 /* There's no reason for current users to emit jump-insns with
2684 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2685 notes. */
2686 gcc_assert (!JUMP_P (insn));
2687 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2689 if (LABEL_P (LABEL_REF_LABEL (x)))
2690 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2692 return;
2695 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2697 if (fmt[i] == 'e')
2698 add_label_notes (XEXP (x, i), insn);
2699 else if (fmt[i] == 'E')
2700 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2701 add_label_notes (XVECEXP (x, i, j), insn);
2705 /* Code Hoisting variables and subroutines. */
2707 /* Very busy expressions. */
2708 static sbitmap *hoist_vbein;
2709 static sbitmap *hoist_vbeout;
2711 /* ??? We could compute post dominators and run this algorithm in
2712 reverse to perform tail merging, doing so would probably be
2713 more effective than the tail merging code in jump.c.
2715 It's unclear if tail merging could be run in parallel with
2716 code hoisting. It would be nice. */
2718 /* Allocate vars used for code hoisting analysis. */
2720 static void
2721 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2723 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2724 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2725 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2727 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2728 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2731 /* Free vars used for code hoisting analysis. */
2733 static void
2734 free_code_hoist_mem (void)
2736 sbitmap_vector_free (antloc);
2737 sbitmap_vector_free (transp);
2738 sbitmap_vector_free (comp);
2740 sbitmap_vector_free (hoist_vbein);
2741 sbitmap_vector_free (hoist_vbeout);
2743 free_dominance_info (CDI_DOMINATORS);
2746 /* Compute the very busy expressions at entry/exit from each block.
2748 An expression is very busy if all paths from a given point
2749 compute the expression. */
2751 static void
2752 compute_code_hoist_vbeinout (void)
2754 int changed, passes;
2755 basic_block bb;
2757 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2758 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2760 passes = 0;
2761 changed = 1;
2763 while (changed)
2765 changed = 0;
2767 /* We scan the blocks in the reverse order to speed up
2768 the convergence. */
2769 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2771 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2773 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2774 hoist_vbein, bb);
2776 /* Include expressions in VBEout that are calculated
2777 in BB and available at its end. */
2778 bitmap_ior (hoist_vbeout[bb->index],
2779 hoist_vbeout[bb->index], comp[bb->index]);
2782 changed |= bitmap_or_and (hoist_vbein[bb->index],
2783 antloc[bb->index],
2784 hoist_vbeout[bb->index],
2785 transp[bb->index]);
2788 passes++;
2791 if (dump_file)
2793 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2795 FOR_EACH_BB_FN (bb, cfun)
2797 fprintf (dump_file, "vbein (%d): ", bb->index);
2798 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2799 fprintf (dump_file, "vbeout(%d): ", bb->index);
2800 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2805 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2807 static void
2808 compute_code_hoist_data (void)
2810 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2811 prune_expressions (false);
2812 compute_code_hoist_vbeinout ();
2813 calculate_dominance_info (CDI_DOMINATORS);
2814 if (dump_file)
2815 fprintf (dump_file, "\n");
2818 /* Update register pressure for BB when hoisting an expression from
2819 instruction FROM, if live ranges of inputs are shrunk. Also
2820 maintain live_in information if live range of register referred
2821 in FROM is shrunk.
2823 Return 0 if register pressure doesn't change, otherwise return
2824 the number by which register pressure is decreased.
2826 NOTE: Register pressure won't be increased in this function. */
2828 static int
2829 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2831 rtx dreg;
2832 rtx_insn *insn;
2833 basic_block succ_bb;
2834 df_ref use, op_ref;
2835 edge succ;
2836 edge_iterator ei;
2837 int decreased_pressure = 0;
2838 int nregs;
2839 enum reg_class pressure_class;
2841 FOR_EACH_INSN_USE (use, from)
2843 dreg = DF_REF_REAL_REG (use);
2844 /* The live range of register is shrunk only if it isn't:
2845 1. referred on any path from the end of this block to EXIT, or
2846 2. referred by insns other than FROM in this block. */
2847 FOR_EACH_EDGE (succ, ei, bb->succs)
2849 succ_bb = succ->dest;
2850 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2851 continue;
2853 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2854 break;
2856 if (succ != NULL)
2857 continue;
2859 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2860 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2862 if (!DF_REF_INSN_INFO (op_ref))
2863 continue;
2865 insn = DF_REF_INSN (op_ref);
2866 if (BLOCK_FOR_INSN (insn) == bb
2867 && NONDEBUG_INSN_P (insn) && insn != from)
2868 break;
2871 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2872 /* Decrease register pressure and update live_in information for
2873 this block. */
2874 if (!op_ref && pressure_class != NO_REGS)
2876 decreased_pressure += nregs;
2877 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2878 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2881 return decreased_pressure;
2884 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2885 flow graph, if it can reach BB unimpared. Stop the search if the
2886 expression would need to be moved more than DISTANCE instructions.
2888 DISTANCE is the number of instructions through which EXPR can be
2889 hoisted up in flow graph.
2891 BB_SIZE points to an array which contains the number of instructions
2892 for each basic block.
2894 PRESSURE_CLASS and NREGS are register class and number of hard registers
2895 for storing EXPR.
2897 HOISTED_BBS points to a bitmap indicating basic blocks through which
2898 EXPR is hoisted.
2900 FROM is the instruction from which EXPR is hoisted.
2902 It's unclear exactly what Muchnick meant by "unimpared". It seems
2903 to me that the expression must either be computed or transparent in
2904 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2905 would allow the expression to be hoisted out of loops, even if
2906 the expression wasn't a loop invariant.
2908 Contrast this to reachability for PRE where an expression is
2909 considered reachable if *any* path reaches instead of *all*
2910 paths. */
2912 static int
2913 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2914 basic_block bb, sbitmap visited, int distance,
2915 int *bb_size, enum reg_class pressure_class,
2916 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2918 unsigned int i;
2919 edge pred;
2920 edge_iterator ei;
2921 sbitmap_iterator sbi;
2922 int visited_allocated_locally = 0;
2923 int decreased_pressure = 0;
2925 if (flag_ira_hoist_pressure)
2927 /* Record old information of basic block BB when it is visited
2928 at the first time. */
2929 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2931 struct bb_data *data = BB_DATA (bb);
2932 bitmap_copy (data->backup, data->live_in);
2933 data->old_pressure = data->max_reg_pressure[pressure_class];
2935 decreased_pressure = update_bb_reg_pressure (bb, from);
2937 /* Terminate the search if distance, for which EXPR is allowed to move,
2938 is exhausted. */
2939 if (distance > 0)
2941 if (flag_ira_hoist_pressure)
2943 /* Prefer to hoist EXPR if register pressure is decreased. */
2944 if (decreased_pressure > *nregs)
2945 distance += bb_size[bb->index];
2946 /* Let EXPR be hoisted through basic block at no cost if one
2947 of following conditions is satisfied:
2949 1. The basic block has low register pressure.
2950 2. Register pressure won't be increases after hoisting EXPR.
2952 Constant expressions is handled conservatively, because
2953 hoisting constant expression aggressively results in worse
2954 code. This decision is made by the observation of CSiBE
2955 on ARM target, while it has no obvious effect on other
2956 targets like x86, x86_64, mips and powerpc. */
2957 else if (CONST_INT_P (expr->expr)
2958 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2959 >= ira_class_hard_regs_num[pressure_class]
2960 && decreased_pressure < *nregs))
2961 distance -= bb_size[bb->index];
2963 else
2964 distance -= bb_size[bb->index];
2966 if (distance <= 0)
2967 return 0;
2969 else
2970 gcc_assert (distance == 0);
2972 if (visited == NULL)
2974 visited_allocated_locally = 1;
2975 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2976 bitmap_clear (visited);
2979 FOR_EACH_EDGE (pred, ei, bb->preds)
2981 basic_block pred_bb = pred->src;
2983 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2984 break;
2985 else if (pred_bb == expr_bb)
2986 continue;
2987 else if (bitmap_bit_p (visited, pred_bb->index))
2988 continue;
2989 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2990 break;
2991 /* Not killed. */
2992 else
2994 bitmap_set_bit (visited, pred_bb->index);
2995 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2996 visited, distance, bb_size,
2997 pressure_class, nregs,
2998 hoisted_bbs, from))
2999 break;
3002 if (visited_allocated_locally)
3004 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3005 which EXPR is hoisted in hoisted_bbs. */
3006 if (flag_ira_hoist_pressure && !pred)
3008 /* Record the basic block from which EXPR is hoisted. */
3009 bitmap_set_bit (visited, bb->index);
3010 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3011 bitmap_set_bit (hoisted_bbs, i);
3013 sbitmap_free (visited);
3016 return (pred == NULL);
3019 /* Find occurrence in BB. */
3021 static struct gcse_occr *
3022 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3024 /* Find the right occurrence of this expression. */
3025 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3026 occr = occr->next;
3028 return occr;
3031 /* Actually perform code hoisting.
3033 The code hoisting pass can hoist multiple computations of the same
3034 expression along dominated path to a dominating basic block, like
3035 from b2/b3 to b1 as depicted below:
3037 b1 ------
3038 /\ |
3039 / \ |
3040 bx by distance
3041 / \ |
3042 / \ |
3043 b2 b3 ------
3045 Unfortunately code hoisting generally extends the live range of an
3046 output pseudo register, which increases register pressure and hurts
3047 register allocation. To address this issue, an attribute MAX_DISTANCE
3048 is computed and attached to each expression. The attribute is computed
3049 from rtx cost of the corresponding expression and it's used to control
3050 how long the expression can be hoisted up in flow graph. As the
3051 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3052 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3053 register pressure if live ranges of inputs are shrunk.
3055 Option "-fira-hoist-pressure" implements register pressure directed
3056 hoist based on upper method. The rationale is:
3057 1. Calculate register pressure for each basic block by reusing IRA
3058 facility.
3059 2. When expression is hoisted through one basic block, GCC checks
3060 the change of live ranges for inputs/output. The basic block's
3061 register pressure will be increased because of extended live
3062 range of output. However, register pressure will be decreased
3063 if the live ranges of inputs are shrunk.
3064 3. After knowing how hoisting affects register pressure, GCC prefers
3065 to hoist the expression if it can decrease register pressure, by
3066 increasing DISTANCE of the corresponding expression.
3067 4. If hoisting the expression increases register pressure, GCC checks
3068 register pressure of the basic block and decrease DISTANCE only if
3069 the register pressure is high. In other words, expression will be
3070 hoisted through at no cost if the basic block has low register
3071 pressure.
3072 5. Update register pressure information for basic blocks through
3073 which expression is hoisted. */
3075 static int
3076 hoist_code (void)
3078 basic_block bb, dominated;
3079 vec<basic_block> dom_tree_walk;
3080 unsigned int dom_tree_walk_index;
3081 vec<basic_block> domby;
3082 unsigned int i, j, k;
3083 struct gcse_expr **index_map;
3084 struct gcse_expr *expr;
3085 int *to_bb_head;
3086 int *bb_size;
3087 int changed = 0;
3088 struct bb_data *data;
3089 /* Basic blocks that have occurrences reachable from BB. */
3090 bitmap from_bbs;
3091 /* Basic blocks through which expr is hoisted. */
3092 bitmap hoisted_bbs = NULL;
3093 bitmap_iterator bi;
3095 /* Compute a mapping from expression number (`bitmap_index') to
3096 hash table entry. */
3098 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3099 for (i = 0; i < expr_hash_table.size; i++)
3100 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3101 index_map[expr->bitmap_index] = expr;
3103 /* Calculate sizes of basic blocks and note how far
3104 each instruction is from the start of its block. We then use this
3105 data to restrict distance an expression can travel. */
3107 to_bb_head = XCNEWVEC (int, get_max_uid ());
3108 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3110 FOR_EACH_BB_FN (bb, cfun)
3112 rtx_insn *insn;
3113 int to_head;
3115 to_head = 0;
3116 FOR_BB_INSNS (bb, insn)
3118 /* Don't count debug instructions to avoid them affecting
3119 decision choices. */
3120 if (NONDEBUG_INSN_P (insn))
3121 to_bb_head[INSN_UID (insn)] = to_head++;
3124 bb_size[bb->index] = to_head;
3127 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3128 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3129 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3131 from_bbs = BITMAP_ALLOC (NULL);
3132 if (flag_ira_hoist_pressure)
3133 hoisted_bbs = BITMAP_ALLOC (NULL);
3135 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3136 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3138 /* Walk over each basic block looking for potentially hoistable
3139 expressions, nothing gets hoisted from the entry block. */
3140 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3142 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3144 if (domby.length () == 0)
3145 continue;
3147 /* Examine each expression that is very busy at the exit of this
3148 block. These are the potentially hoistable expressions. */
3149 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3151 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3153 int nregs = 0;
3154 enum reg_class pressure_class = NO_REGS;
3155 /* Current expression. */
3156 struct gcse_expr *expr = index_map[i];
3157 /* Number of occurrences of EXPR that can be hoisted to BB. */
3158 int hoistable = 0;
3159 /* Occurrences reachable from BB. */
3160 vec<occr_t> occrs_to_hoist = vNULL;
3161 /* We want to insert the expression into BB only once, so
3162 note when we've inserted it. */
3163 int insn_inserted_p;
3164 occr_t occr;
3166 /* If an expression is computed in BB and is available at end of
3167 BB, hoist all occurrences dominated by BB to BB. */
3168 if (bitmap_bit_p (comp[bb->index], i))
3170 occr = find_occr_in_bb (expr->antic_occr, bb);
3172 if (occr)
3174 /* An occurrence might've been already deleted
3175 while processing a dominator of BB. */
3176 if (!occr->deleted_p)
3178 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3179 hoistable++;
3182 else
3183 hoistable++;
3186 /* We've found a potentially hoistable expression, now
3187 we look at every block BB dominates to see if it
3188 computes the expression. */
3189 FOR_EACH_VEC_ELT (domby, j, dominated)
3191 int max_distance;
3193 /* Ignore self dominance. */
3194 if (bb == dominated)
3195 continue;
3196 /* We've found a dominated block, now see if it computes
3197 the busy expression and whether or not moving that
3198 expression to the "beginning" of that block is safe. */
3199 if (!bitmap_bit_p (antloc[dominated->index], i))
3200 continue;
3202 occr = find_occr_in_bb (expr->antic_occr, dominated);
3203 gcc_assert (occr);
3205 /* An occurrence might've been already deleted
3206 while processing a dominator of BB. */
3207 if (occr->deleted_p)
3208 continue;
3209 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3211 max_distance = expr->max_distance;
3212 if (max_distance > 0)
3213 /* Adjust MAX_DISTANCE to account for the fact that
3214 OCCR won't have to travel all of DOMINATED, but
3215 only part of it. */
3216 max_distance += (bb_size[dominated->index]
3217 - to_bb_head[INSN_UID (occr->insn)]);
3219 pressure_class = get_pressure_class_and_nregs (occr->insn,
3220 &nregs);
3222 /* Note if the expression should be hoisted from the dominated
3223 block to BB if it can reach DOMINATED unimpared.
3225 Keep track of how many times this expression is hoistable
3226 from a dominated block into BB. */
3227 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3228 max_distance, bb_size,
3229 pressure_class, &nregs,
3230 hoisted_bbs, occr->insn))
3232 hoistable++;
3233 occrs_to_hoist.safe_push (occr);
3234 bitmap_set_bit (from_bbs, dominated->index);
3238 /* If we found more than one hoistable occurrence of this
3239 expression, then note it in the vector of expressions to
3240 hoist. It makes no sense to hoist things which are computed
3241 in only one BB, and doing so tends to pessimize register
3242 allocation. One could increase this value to try harder
3243 to avoid any possible code expansion due to register
3244 allocation issues; however experiments have shown that
3245 the vast majority of hoistable expressions are only movable
3246 from two successors, so raising this threshold is likely
3247 to nullify any benefit we get from code hoisting. */
3248 if (hoistable > 1 && dbg_cnt (hoist_insn))
3250 /* If (hoistable != vec::length), then there is
3251 an occurrence of EXPR in BB itself. Don't waste
3252 time looking for LCA in this case. */
3253 if ((unsigned) hoistable == occrs_to_hoist.length ())
3255 basic_block lca;
3257 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3258 from_bbs);
3259 if (lca != bb)
3260 /* Punt, it's better to hoist these occurrences to
3261 LCA. */
3262 occrs_to_hoist.release ();
3265 else
3266 /* Punt, no point hoisting a single occurrence. */
3267 occrs_to_hoist.release ();
3269 if (flag_ira_hoist_pressure
3270 && !occrs_to_hoist.is_empty ())
3272 /* Increase register pressure of basic blocks to which
3273 expr is hoisted because of extended live range of
3274 output. */
3275 data = BB_DATA (bb);
3276 data->max_reg_pressure[pressure_class] += nregs;
3277 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3279 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3280 data->max_reg_pressure[pressure_class] += nregs;
3283 else if (flag_ira_hoist_pressure)
3285 /* Restore register pressure and live_in info for basic
3286 blocks recorded in hoisted_bbs when expr will not be
3287 hoisted. */
3288 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3290 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3291 bitmap_copy (data->live_in, data->backup);
3292 data->max_reg_pressure[pressure_class]
3293 = data->old_pressure;
3297 if (flag_ira_hoist_pressure)
3298 bitmap_clear (hoisted_bbs);
3300 insn_inserted_p = 0;
3302 /* Walk through occurrences of I'th expressions we want
3303 to hoist to BB and make the transformations. */
3304 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3306 rtx_insn *insn;
3307 const_rtx set;
3309 gcc_assert (!occr->deleted_p);
3311 insn = occr->insn;
3312 set = single_set_gcse (insn);
3314 /* Create a pseudo-reg to store the result of reaching
3315 expressions into. Get the mode for the new pseudo
3316 from the mode of the original destination pseudo.
3318 It is important to use new pseudos whenever we
3319 emit a set. This will allow reload to use
3320 rematerialization for such registers. */
3321 if (!insn_inserted_p)
3322 expr->reaching_reg
3323 = gen_reg_rtx_and_attrs (SET_DEST (set));
3325 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3326 insn);
3327 delete_insn (insn);
3328 occr->deleted_p = 1;
3329 changed = 1;
3330 gcse_subst_count++;
3332 if (!insn_inserted_p)
3334 insert_insn_end_basic_block (expr, bb);
3335 insn_inserted_p = 1;
3339 occrs_to_hoist.release ();
3340 bitmap_clear (from_bbs);
3343 domby.release ();
3346 dom_tree_walk.release ();
3347 BITMAP_FREE (from_bbs);
3348 if (flag_ira_hoist_pressure)
3349 BITMAP_FREE (hoisted_bbs);
3351 free (bb_size);
3352 free (to_bb_head);
3353 free (index_map);
3355 return changed;
3358 /* Return pressure class and number of needed hard registers (through
3359 *NREGS) of register REGNO. */
3360 static enum reg_class
3361 get_regno_pressure_class (int regno, int *nregs)
3363 if (regno >= FIRST_PSEUDO_REGISTER)
3365 enum reg_class pressure_class;
3367 pressure_class = reg_allocno_class (regno);
3368 pressure_class = ira_pressure_class_translate[pressure_class];
3369 *nregs
3370 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3371 return pressure_class;
3373 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3374 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3376 *nregs = 1;
3377 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3379 else
3381 *nregs = 0;
3382 return NO_REGS;
3386 /* Return pressure class and number of hard registers (through *NREGS)
3387 for destination of INSN. */
3388 static enum reg_class
3389 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3391 rtx reg;
3392 enum reg_class pressure_class;
3393 const_rtx set = single_set_gcse (insn);
3395 reg = SET_DEST (set);
3396 if (GET_CODE (reg) == SUBREG)
3397 reg = SUBREG_REG (reg);
3398 if (MEM_P (reg))
3400 *nregs = 0;
3401 pressure_class = NO_REGS;
3403 else
3405 gcc_assert (REG_P (reg));
3406 pressure_class = reg_allocno_class (REGNO (reg));
3407 pressure_class = ira_pressure_class_translate[pressure_class];
3408 *nregs
3409 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3411 return pressure_class;
3414 /* Increase (if INCR_P) or decrease current register pressure for
3415 register REGNO. */
3416 static void
3417 change_pressure (int regno, bool incr_p)
3419 int nregs;
3420 enum reg_class pressure_class;
3422 pressure_class = get_regno_pressure_class (regno, &nregs);
3423 if (! incr_p)
3424 curr_reg_pressure[pressure_class] -= nregs;
3425 else
3427 curr_reg_pressure[pressure_class] += nregs;
3428 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3429 < curr_reg_pressure[pressure_class])
3430 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3431 = curr_reg_pressure[pressure_class];
3435 /* Calculate register pressure for each basic block by walking insns
3436 from last to first. */
3437 static void
3438 calculate_bb_reg_pressure (void)
3440 int i;
3441 unsigned int j;
3442 rtx_insn *insn;
3443 basic_block bb;
3444 bitmap curr_regs_live;
3445 bitmap_iterator bi;
3448 ira_setup_eliminable_regset ();
3449 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3450 FOR_EACH_BB_FN (bb, cfun)
3452 curr_bb = bb;
3453 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3454 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3455 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3456 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3457 for (i = 0; i < ira_pressure_classes_num; i++)
3458 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3459 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3460 change_pressure (j, true);
3462 FOR_BB_INSNS_REVERSE (bb, insn)
3464 rtx dreg;
3465 int regno;
3466 df_ref def, use;
3468 if (! NONDEBUG_INSN_P (insn))
3469 continue;
3471 FOR_EACH_INSN_DEF (def, insn)
3473 dreg = DF_REF_REAL_REG (def);
3474 gcc_assert (REG_P (dreg));
3475 regno = REGNO (dreg);
3476 if (!(DF_REF_FLAGS (def)
3477 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3479 if (bitmap_clear_bit (curr_regs_live, regno))
3480 change_pressure (regno, false);
3484 FOR_EACH_INSN_USE (use, insn)
3486 dreg = DF_REF_REAL_REG (use);
3487 gcc_assert (REG_P (dreg));
3488 regno = REGNO (dreg);
3489 if (bitmap_set_bit (curr_regs_live, regno))
3490 change_pressure (regno, true);
3494 BITMAP_FREE (curr_regs_live);
3496 if (dump_file == NULL)
3497 return;
3499 fprintf (dump_file, "\nRegister Pressure: \n");
3500 FOR_EACH_BB_FN (bb, cfun)
3502 fprintf (dump_file, " Basic block %d: \n", bb->index);
3503 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3505 enum reg_class pressure_class;
3507 pressure_class = ira_pressure_classes[i];
3508 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3509 continue;
3511 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3512 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3515 fprintf (dump_file, "\n");
3518 /* Top level routine to perform one code hoisting (aka unification) pass
3520 Return nonzero if a change was made. */
3522 static int
3523 one_code_hoisting_pass (void)
3525 int changed = 0;
3527 gcse_subst_count = 0;
3528 gcse_create_count = 0;
3530 /* Return if there's nothing to do, or it is too expensive. */
3531 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3532 || is_too_expensive (_("GCSE disabled")))
3533 return 0;
3535 doing_code_hoisting_p = true;
3537 /* Calculate register pressure for each basic block. */
3538 if (flag_ira_hoist_pressure)
3540 regstat_init_n_sets_and_refs ();
3541 ira_set_pseudo_classes (false, dump_file);
3542 alloc_aux_for_blocks (sizeof (struct bb_data));
3543 calculate_bb_reg_pressure ();
3544 regstat_free_n_sets_and_refs ();
3547 /* We need alias. */
3548 init_alias_analysis ();
3550 bytes_used = 0;
3551 gcc_obstack_init (&gcse_obstack);
3552 alloc_gcse_mem ();
3554 alloc_hash_table (&expr_hash_table);
3555 compute_hash_table (&expr_hash_table);
3556 if (dump_file)
3557 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3559 if (expr_hash_table.n_elems > 0)
3561 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3562 expr_hash_table.n_elems);
3563 compute_code_hoist_data ();
3564 changed = hoist_code ();
3565 free_code_hoist_mem ();
3568 if (flag_ira_hoist_pressure)
3570 free_aux_for_blocks ();
3571 free_reg_info ();
3573 free_hash_table (&expr_hash_table);
3574 free_gcse_mem ();
3575 obstack_free (&gcse_obstack, NULL);
3577 /* We are finished with alias. */
3578 end_alias_analysis ();
3580 if (dump_file)
3582 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3583 current_function_name (), n_basic_blocks_for_fn (cfun),
3584 bytes_used);
3585 fprintf (dump_file, "%d substs, %d insns created\n",
3586 gcse_subst_count, gcse_create_count);
3589 doing_code_hoisting_p = false;
3591 return changed;
3594 /* Here we provide the things required to do store motion towards the exit.
3595 In order for this to be effective, gcse also needed to be taught how to
3596 move a load when it is killed only by a store to itself.
3598 int i;
3599 float a[10];
3601 void foo(float scale)
3603 for (i=0; i<10; i++)
3604 a[i] *= scale;
3607 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3608 the load out since its live around the loop, and stored at the bottom
3609 of the loop.
3611 The 'Load Motion' referred to and implemented in this file is
3612 an enhancement to gcse which when using edge based LCM, recognizes
3613 this situation and allows gcse to move the load out of the loop.
3615 Once gcse has hoisted the load, store motion can then push this
3616 load towards the exit, and we end up with no loads or stores of 'i'
3617 in the loop. */
3619 /* This will search the ldst list for a matching expression. If it
3620 doesn't find one, we create one and initialize it. */
3622 static struct ls_expr *
3623 ldst_entry (rtx x)
3625 int do_not_record_p = 0;
3626 struct ls_expr * ptr;
3627 unsigned int hash;
3628 ls_expr **slot;
3629 struct ls_expr e;
3631 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3632 NULL, /*have_reg_qty=*/false);
3634 e.pattern = x;
3635 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3636 if (*slot)
3637 return *slot;
3639 ptr = XNEW (struct ls_expr);
3641 ptr->next = pre_ldst_mems;
3642 ptr->expr = NULL;
3643 ptr->pattern = x;
3644 ptr->pattern_regs = NULL_RTX;
3645 ptr->loads = NULL;
3646 ptr->stores = NULL;
3647 ptr->reaching_reg = NULL_RTX;
3648 ptr->invalid = 0;
3649 ptr->index = 0;
3650 ptr->hash_index = hash;
3651 pre_ldst_mems = ptr;
3652 *slot = ptr;
3654 return ptr;
3657 /* Free up an individual ldst entry. */
3659 static void
3660 free_ldst_entry (struct ls_expr * ptr)
3662 free_INSN_LIST_list (& ptr->loads);
3663 free_INSN_LIST_list (& ptr->stores);
3665 free (ptr);
3668 /* Free up all memory associated with the ldst list. */
3670 static void
3671 free_ld_motion_mems (void)
3673 delete pre_ldst_table;
3674 pre_ldst_table = NULL;
3676 while (pre_ldst_mems)
3678 struct ls_expr * tmp = pre_ldst_mems;
3680 pre_ldst_mems = pre_ldst_mems->next;
3682 free_ldst_entry (tmp);
3685 pre_ldst_mems = NULL;
3688 /* Dump debugging info about the ldst list. */
3690 static void
3691 print_ldst_list (FILE * file)
3693 struct ls_expr * ptr;
3695 fprintf (file, "LDST list: \n");
3697 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3699 fprintf (file, " Pattern (%3d): ", ptr->index);
3701 print_rtl (file, ptr->pattern);
3703 fprintf (file, "\n Loads : ");
3705 if (ptr->loads)
3706 print_rtl (file, ptr->loads);
3707 else
3708 fprintf (file, "(nil)");
3710 fprintf (file, "\n Stores : ");
3712 if (ptr->stores)
3713 print_rtl (file, ptr->stores);
3714 else
3715 fprintf (file, "(nil)");
3717 fprintf (file, "\n\n");
3720 fprintf (file, "\n");
3723 /* Returns 1 if X is in the list of ldst only expressions. */
3725 static struct ls_expr *
3726 find_rtx_in_ldst (rtx x)
3728 struct ls_expr e;
3729 ls_expr **slot;
3730 if (!pre_ldst_table)
3731 return NULL;
3732 e.pattern = x;
3733 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3734 if (!slot || (*slot)->invalid)
3735 return NULL;
3736 return *slot;
3739 /* Load Motion for loads which only kill themselves. */
3741 /* Return true if x, a MEM, is a simple access with no side effects.
3742 These are the types of loads we consider for the ld_motion list,
3743 otherwise we let the usual aliasing take care of it. */
3745 static int
3746 simple_mem (const_rtx x)
3748 if (MEM_VOLATILE_P (x))
3749 return 0;
3751 if (GET_MODE (x) == BLKmode)
3752 return 0;
3754 /* If we are handling exceptions, we must be careful with memory references
3755 that may trap. If we are not, the behavior is undefined, so we may just
3756 continue. */
3757 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3758 return 0;
3760 if (side_effects_p (x))
3761 return 0;
3763 /* Do not consider function arguments passed on stack. */
3764 if (reg_mentioned_p (stack_pointer_rtx, x))
3765 return 0;
3767 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3768 return 0;
3770 return 1;
3773 /* Make sure there isn't a buried reference in this pattern anywhere.
3774 If there is, invalidate the entry for it since we're not capable
3775 of fixing it up just yet.. We have to be sure we know about ALL
3776 loads since the aliasing code will allow all entries in the
3777 ld_motion list to not-alias itself. If we miss a load, we will get
3778 the wrong value since gcse might common it and we won't know to
3779 fix it up. */
3781 static void
3782 invalidate_any_buried_refs (rtx x)
3784 const char * fmt;
3785 int i, j;
3786 struct ls_expr * ptr;
3788 /* Invalidate it in the list. */
3789 if (MEM_P (x) && simple_mem (x))
3791 ptr = ldst_entry (x);
3792 ptr->invalid = 1;
3795 /* Recursively process the insn. */
3796 fmt = GET_RTX_FORMAT (GET_CODE (x));
3798 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3800 if (fmt[i] == 'e')
3801 invalidate_any_buried_refs (XEXP (x, i));
3802 else if (fmt[i] == 'E')
3803 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3804 invalidate_any_buried_refs (XVECEXP (x, i, j));
3808 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3809 being defined as MEM loads and stores to symbols, with no side effects
3810 and no registers in the expression. For a MEM destination, we also
3811 check that the insn is still valid if we replace the destination with a
3812 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3813 which don't match this criteria, they are invalidated and trimmed out
3814 later. */
3816 static void
3817 compute_ld_motion_mems (void)
3819 struct ls_expr * ptr;
3820 basic_block bb;
3821 rtx_insn *insn;
3823 pre_ldst_mems = NULL;
3824 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3826 FOR_EACH_BB_FN (bb, cfun)
3828 FOR_BB_INSNS (bb, insn)
3830 if (NONDEBUG_INSN_P (insn))
3832 if (GET_CODE (PATTERN (insn)) == SET)
3834 rtx src = SET_SRC (PATTERN (insn));
3835 rtx dest = SET_DEST (PATTERN (insn));
3836 rtx note = find_reg_equal_equiv_note (insn);
3837 rtx src_eq;
3839 /* Check for a simple LOAD... */
3840 if (MEM_P (src) && simple_mem (src))
3842 ptr = ldst_entry (src);
3843 if (REG_P (dest))
3844 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3845 else
3846 ptr->invalid = 1;
3848 else
3850 /* Make sure there isn't a buried load somewhere. */
3851 invalidate_any_buried_refs (src);
3854 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3855 src_eq = XEXP (note, 0);
3856 else
3857 src_eq = NULL_RTX;
3859 if (src_eq != NULL_RTX
3860 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3861 invalidate_any_buried_refs (src_eq);
3863 /* Check for stores. Don't worry about aliased ones, they
3864 will block any movement we might do later. We only care
3865 about this exact pattern since those are the only
3866 circumstance that we will ignore the aliasing info. */
3867 if (MEM_P (dest) && simple_mem (dest))
3869 ptr = ldst_entry (dest);
3871 if (! MEM_P (src)
3872 && GET_CODE (src) != ASM_OPERANDS
3873 /* Check for REG manually since want_to_gcse_p
3874 returns 0 for all REGs. */
3875 && can_assign_to_reg_without_clobbers_p (src))
3876 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3877 else
3878 ptr->invalid = 1;
3881 else
3882 invalidate_any_buried_refs (PATTERN (insn));
3888 /* Remove any references that have been either invalidated or are not in the
3889 expression list for pre gcse. */
3891 static void
3892 trim_ld_motion_mems (void)
3894 struct ls_expr * * last = & pre_ldst_mems;
3895 struct ls_expr * ptr = pre_ldst_mems;
3897 while (ptr != NULL)
3899 struct gcse_expr * expr;
3901 /* Delete if entry has been made invalid. */
3902 if (! ptr->invalid)
3904 /* Delete if we cannot find this mem in the expression list. */
3905 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3907 for (expr = expr_hash_table.table[hash];
3908 expr != NULL;
3909 expr = expr->next_same_hash)
3910 if (expr_equiv_p (expr->expr, ptr->pattern))
3911 break;
3913 else
3914 expr = (struct gcse_expr *) 0;
3916 if (expr)
3918 /* Set the expression field if we are keeping it. */
3919 ptr->expr = expr;
3920 last = & ptr->next;
3921 ptr = ptr->next;
3923 else
3925 *last = ptr->next;
3926 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3927 free_ldst_entry (ptr);
3928 ptr = * last;
3932 /* Show the world what we've found. */
3933 if (dump_file && pre_ldst_mems != NULL)
3934 print_ldst_list (dump_file);
3937 /* This routine will take an expression which we are replacing with
3938 a reaching register, and update any stores that are needed if
3939 that expression is in the ld_motion list. Stores are updated by
3940 copying their SRC to the reaching register, and then storing
3941 the reaching register into the store location. These keeps the
3942 correct value in the reaching register for the loads. */
3944 static void
3945 update_ld_motion_stores (struct gcse_expr * expr)
3947 struct ls_expr * mem_ptr;
3949 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3951 /* We can try to find just the REACHED stores, but is shouldn't
3952 matter to set the reaching reg everywhere... some might be
3953 dead and should be eliminated later. */
3955 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3956 where reg is the reaching reg used in the load. We checked in
3957 compute_ld_motion_mems that we can replace (set mem expr) with
3958 (set reg expr) in that insn. */
3959 rtx list = mem_ptr->stores;
3961 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3963 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3964 rtx pat = PATTERN (insn);
3965 rtx src = SET_SRC (pat);
3966 rtx reg = expr->reaching_reg;
3967 rtx copy;
3969 /* If we've already copied it, continue. */
3970 if (expr->reaching_reg == src)
3971 continue;
3973 if (dump_file)
3975 fprintf (dump_file, "PRE: store updated with reaching reg ");
3976 print_rtl (dump_file, reg);
3977 fprintf (dump_file, ":\n ");
3978 print_inline_rtx (dump_file, insn, 8);
3979 fprintf (dump_file, "\n");
3982 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3983 emit_insn_before (copy, insn);
3984 SET_SRC (pat) = reg;
3985 df_insn_rescan (insn);
3987 /* un-recognize this pattern since it's probably different now. */
3988 INSN_CODE (insn) = -1;
3989 gcse_create_count++;
3994 /* Return true if the graph is too expensive to optimize. PASS is the
3995 optimization about to be performed. */
3997 static bool
3998 is_too_expensive (const char *pass)
4000 /* Trying to perform global optimizations on flow graphs which have
4001 a high connectivity will take a long time and is unlikely to be
4002 particularly useful.
4004 In normal circumstances a cfg should have about twice as many
4005 edges as blocks. But we do not want to punish small functions
4006 which have a couple switch statements. Rather than simply
4007 threshold the number of blocks, uses something with a more
4008 graceful degradation. */
4009 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4011 warning (OPT_Wdisabled_optimization,
4012 "%s: %d basic blocks and %d edges/basic block",
4013 pass, n_basic_blocks_for_fn (cfun),
4014 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4016 return true;
4019 /* If allocating memory for the dataflow bitmaps would take up too much
4020 storage it's better just to disable the optimization. */
4021 if ((n_basic_blocks_for_fn (cfun)
4022 * SBITMAP_SET_SIZE (max_reg_num ())
4023 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4025 warning (OPT_Wdisabled_optimization,
4026 "%s: %d basic blocks and %d registers",
4027 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4029 return true;
4032 return false;
4035 static unsigned int
4036 execute_rtl_pre (void)
4038 int changed;
4039 delete_unreachable_blocks ();
4040 df_analyze ();
4041 changed = one_pre_gcse_pass ();
4042 flag_rerun_cse_after_global_opts |= changed;
4043 if (changed)
4044 cleanup_cfg (0);
4045 return 0;
4048 static unsigned int
4049 execute_rtl_hoist (void)
4051 int changed;
4052 delete_unreachable_blocks ();
4053 df_analyze ();
4054 changed = one_code_hoisting_pass ();
4055 flag_rerun_cse_after_global_opts |= changed;
4056 if (changed)
4057 cleanup_cfg (0);
4058 return 0;
4061 namespace {
4063 const pass_data pass_data_rtl_pre =
4065 RTL_PASS, /* type */
4066 "rtl pre", /* name */
4067 OPTGROUP_NONE, /* optinfo_flags */
4068 TV_PRE, /* tv_id */
4069 PROP_cfglayout, /* properties_required */
4070 0, /* properties_provided */
4071 0, /* properties_destroyed */
4072 0, /* todo_flags_start */
4073 TODO_df_finish, /* todo_flags_finish */
4076 class pass_rtl_pre : public rtl_opt_pass
4078 public:
4079 pass_rtl_pre (gcc::context *ctxt)
4080 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4083 /* opt_pass methods: */
4084 virtual bool gate (function *);
4085 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4087 }; // class pass_rtl_pre
4089 /* We do not construct an accurate cfg in functions which call
4090 setjmp, so none of these passes runs if the function calls
4091 setjmp.
4092 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4094 bool
4095 pass_rtl_pre::gate (function *fun)
4097 return optimize > 0 && flag_gcse
4098 && !fun->calls_setjmp
4099 && optimize_function_for_speed_p (fun)
4100 && dbg_cnt (pre);
4103 } // anon namespace
4105 rtl_opt_pass *
4106 make_pass_rtl_pre (gcc::context *ctxt)
4108 return new pass_rtl_pre (ctxt);
4111 namespace {
4113 const pass_data pass_data_rtl_hoist =
4115 RTL_PASS, /* type */
4116 "hoist", /* name */
4117 OPTGROUP_NONE, /* optinfo_flags */
4118 TV_HOIST, /* tv_id */
4119 PROP_cfglayout, /* properties_required */
4120 0, /* properties_provided */
4121 0, /* properties_destroyed */
4122 0, /* todo_flags_start */
4123 TODO_df_finish, /* todo_flags_finish */
4126 class pass_rtl_hoist : public rtl_opt_pass
4128 public:
4129 pass_rtl_hoist (gcc::context *ctxt)
4130 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4133 /* opt_pass methods: */
4134 virtual bool gate (function *);
4135 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4137 }; // class pass_rtl_hoist
4139 bool
4140 pass_rtl_hoist::gate (function *)
4142 return optimize > 0 && flag_gcse
4143 && !cfun->calls_setjmp
4144 /* It does not make sense to run code hoisting unless we are optimizing
4145 for code size -- it rarely makes programs faster, and can make then
4146 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4147 && optimize_function_for_size_p (cfun)
4148 && dbg_cnt (hoist);
4151 } // anon namespace
4153 rtl_opt_pass *
4154 make_pass_rtl_hoist (gcc::context *ctxt)
4156 return new pass_rtl_hoist (ctxt);
4159 /* Reset all state within gcse.c so that we can rerun the compiler
4160 within the same process. For use by toplev::finalize. */
4162 void
4163 gcse_c_finalize (void)
4165 test_insn = NULL;
4168 #include "gt-gcse.h"