Import final gcc2 snapshot (990109)
[official-gcc.git] / gcc / explow.c
blobf23e85a5ffcdc1a03d788cc5f023c279a62c825a
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 91, 94-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "expr.h"
28 #include "hard-reg-set.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "insn-flags.h"
32 #include "insn-codes.h"
34 static rtx break_out_memory_refs PROTO((rtx));
35 static void emit_stack_probe PROTO((rtx));
37 /* Return an rtx for the sum of X and the integer C.
39 This function should be used via the `plus_constant' macro. */
41 rtx
42 plus_constant_wide (x, c)
43 register rtx x;
44 register HOST_WIDE_INT c;
46 register RTX_CODE code;
47 register enum machine_mode mode;
48 register rtx tem;
49 int all_constant = 0;
51 if (c == 0)
52 return x;
54 restart:
56 code = GET_CODE (x);
57 mode = GET_MODE (x);
58 switch (code)
60 case CONST_INT:
61 return GEN_INT (INTVAL (x) + c);
63 case CONST_DOUBLE:
65 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
66 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
67 HOST_WIDE_INT l2 = c;
68 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
69 HOST_WIDE_INT lv, hv;
71 add_double (l1, h1, l2, h2, &lv, &hv);
73 return immed_double_const (lv, hv, VOIDmode);
76 case MEM:
77 /* If this is a reference to the constant pool, try replacing it with
78 a reference to a new constant. If the resulting address isn't
79 valid, don't return it because we have no way to validize it. */
80 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
81 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
83 /* Any rtl we create here must go in a saveable obstack, since
84 we might have been called from within combine. */
85 push_obstacks_nochange ();
86 rtl_in_saveable_obstack ();
87 tem
88 = force_const_mem (GET_MODE (x),
89 plus_constant (get_pool_constant (XEXP (x, 0)),
90 c));
91 pop_obstacks ();
92 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
93 return tem;
95 break;
97 case CONST:
98 /* If adding to something entirely constant, set a flag
99 so that we can add a CONST around the result. */
100 x = XEXP (x, 0);
101 all_constant = 1;
102 goto restart;
104 case SYMBOL_REF:
105 case LABEL_REF:
106 all_constant = 1;
107 break;
109 case PLUS:
110 /* The interesting case is adding the integer to a sum.
111 Look for constant term in the sum and combine
112 with C. For an integer constant term, we make a combined
113 integer. For a constant term that is not an explicit integer,
114 we cannot really combine, but group them together anyway.
116 Use a recursive call in case the remaining operand is something
117 that we handle specially, such as a SYMBOL_REF. */
119 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
120 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
121 else if (CONSTANT_P (XEXP (x, 0)))
122 return gen_rtx_PLUS (mode,
123 plus_constant (XEXP (x, 0), c), XEXP (x, 1));
124 else if (CONSTANT_P (XEXP (x, 1)))
125 return gen_rtx_PLUS (mode, XEXP (x, 0),
126 plus_constant (XEXP (x, 1), c));
127 break;
129 default:
130 break;
133 if (c != 0)
134 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
136 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
137 return x;
138 else if (all_constant)
139 return gen_rtx_CONST (mode, x);
140 else
141 return x;
144 /* This is the same as `plus_constant', except that it handles LO_SUM.
146 This function should be used via the `plus_constant_for_output' macro. */
149 plus_constant_for_output_wide (x, c)
150 register rtx x;
151 register HOST_WIDE_INT c;
153 register RTX_CODE code = GET_CODE (x);
154 register enum machine_mode mode = GET_MODE (x);
155 int all_constant = 0;
157 if (GET_CODE (x) == LO_SUM)
158 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
159 plus_constant_for_output (XEXP (x, 1), c));
161 else
162 return plus_constant (x, c);
165 /* If X is a sum, return a new sum like X but lacking any constant terms.
166 Add all the removed constant terms into *CONSTPTR.
167 X itself is not altered. The result != X if and only if
168 it is not isomorphic to X. */
171 eliminate_constant_term (x, constptr)
172 rtx x;
173 rtx *constptr;
175 register rtx x0, x1;
176 rtx tem;
178 if (GET_CODE (x) != PLUS)
179 return x;
181 /* First handle constants appearing at this level explicitly. */
182 if (GET_CODE (XEXP (x, 1)) == CONST_INT
183 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
184 XEXP (x, 1)))
185 && GET_CODE (tem) == CONST_INT)
187 *constptr = tem;
188 return eliminate_constant_term (XEXP (x, 0), constptr);
191 tem = const0_rtx;
192 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
193 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
194 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
195 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
196 *constptr, tem))
197 && GET_CODE (tem) == CONST_INT)
199 *constptr = tem;
200 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
203 return x;
206 /* Returns the insn that next references REG after INSN, or 0
207 if REG is clobbered before next referenced or we cannot find
208 an insn that references REG in a straight-line piece of code. */
211 find_next_ref (reg, insn)
212 rtx reg;
213 rtx insn;
215 rtx next;
217 for (insn = NEXT_INSN (insn); insn; insn = next)
219 next = NEXT_INSN (insn);
220 if (GET_CODE (insn) == NOTE)
221 continue;
222 if (GET_CODE (insn) == CODE_LABEL
223 || GET_CODE (insn) == BARRIER)
224 return 0;
225 if (GET_CODE (insn) == INSN
226 || GET_CODE (insn) == JUMP_INSN
227 || GET_CODE (insn) == CALL_INSN)
229 if (reg_set_p (reg, insn))
230 return 0;
231 if (reg_mentioned_p (reg, PATTERN (insn)))
232 return insn;
233 if (GET_CODE (insn) == JUMP_INSN)
235 if (simplejump_p (insn))
236 next = JUMP_LABEL (insn);
237 else
238 return 0;
240 if (GET_CODE (insn) == CALL_INSN
241 && REGNO (reg) < FIRST_PSEUDO_REGISTER
242 && call_used_regs[REGNO (reg)])
243 return 0;
245 else
246 abort ();
248 return 0;
251 /* Return an rtx for the size in bytes of the value of EXP. */
254 expr_size (exp)
255 tree exp;
257 tree size = size_in_bytes (TREE_TYPE (exp));
259 if (TREE_CODE (size) != INTEGER_CST
260 && contains_placeholder_p (size))
261 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
263 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
264 EXPAND_MEMORY_USE_BAD);
267 /* Return a copy of X in which all memory references
268 and all constants that involve symbol refs
269 have been replaced with new temporary registers.
270 Also emit code to load the memory locations and constants
271 into those registers.
273 If X contains no such constants or memory references,
274 X itself (not a copy) is returned.
276 If a constant is found in the address that is not a legitimate constant
277 in an insn, it is left alone in the hope that it might be valid in the
278 address.
280 X may contain no arithmetic except addition, subtraction and multiplication.
281 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
283 static rtx
284 break_out_memory_refs (x)
285 register rtx x;
287 if (GET_CODE (x) == MEM
288 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
289 && GET_MODE (x) != VOIDmode))
290 x = force_reg (GET_MODE (x), x);
291 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
292 || GET_CODE (x) == MULT)
294 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
295 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
297 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
298 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
301 return x;
304 #ifdef POINTERS_EXTEND_UNSIGNED
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
310 used. */
313 convert_memory_address (to_mode, x)
314 enum machine_mode to_mode;
315 rtx x;
317 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
318 rtx temp;
320 /* Here we handle some special cases. If none of them apply, fall through
321 to the default case. */
322 switch (GET_CODE (x))
324 case CONST_INT:
325 case CONST_DOUBLE:
326 return x;
328 case LABEL_REF:
329 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
330 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
331 return temp;
333 case SYMBOL_REF:
334 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
335 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
336 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
337 return temp;
339 case CONST:
340 return gen_rtx_CONST (to_mode,
341 convert_memory_address (to_mode, XEXP (x, 0)));
343 case PLUS:
344 case MULT:
345 /* For addition the second operand is a small constant, we can safely
346 permute the conversion and addition operation. We can always safely
347 permute them if we are making the address narrower. In addition,
348 always permute the operations if this is a constant. */
349 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
350 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
351 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
352 || CONSTANT_P (XEXP (x, 0)))))
353 return gen_rtx (GET_CODE (x), to_mode,
354 convert_memory_address (to_mode, XEXP (x, 0)),
355 convert_memory_address (to_mode, XEXP (x, 1)));
356 break;
358 default:
359 break;
362 return convert_modes (to_mode, from_mode,
363 x, POINTERS_EXTEND_UNSIGNED);
365 #endif
367 /* Given a memory address or facsimile X, construct a new address,
368 currently equivalent, that is stable: future stores won't change it.
370 X must be composed of constants, register and memory references
371 combined with addition, subtraction and multiplication:
372 in other words, just what you can get from expand_expr if sum_ok is 1.
374 Works by making copies of all regs and memory locations used
375 by X and combining them the same way X does.
376 You could also stabilize the reference to this address
377 by copying the address to a register with copy_to_reg;
378 but then you wouldn't get indexed addressing in the reference. */
381 copy_all_regs (x)
382 register rtx x;
384 if (GET_CODE (x) == REG)
386 if (REGNO (x) != FRAME_POINTER_REGNUM
387 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
388 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
389 #endif
391 x = copy_to_reg (x);
393 else if (GET_CODE (x) == MEM)
394 x = copy_to_reg (x);
395 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
396 || GET_CODE (x) == MULT)
398 register rtx op0 = copy_all_regs (XEXP (x, 0));
399 register rtx op1 = copy_all_regs (XEXP (x, 1));
400 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
401 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
403 return x;
406 /* Return something equivalent to X but valid as a memory address
407 for something of mode MODE. When X is not itself valid, this
408 works by copying X or subexpressions of it into registers. */
411 memory_address (mode, x)
412 enum machine_mode mode;
413 register rtx x;
415 register rtx oldx = x;
417 if (GET_CODE (x) == ADDRESSOF)
418 return x;
420 #ifdef POINTERS_EXTEND_UNSIGNED
421 if (GET_MODE (x) == ptr_mode)
422 x = convert_memory_address (Pmode, x);
423 #endif
425 /* By passing constant addresses thru registers
426 we get a chance to cse them. */
427 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
428 x = force_reg (Pmode, x);
430 /* Accept a QUEUED that refers to a REG
431 even though that isn't a valid address.
432 On attempting to put this in an insn we will call protect_from_queue
433 which will turn it into a REG, which is valid. */
434 else if (GET_CODE (x) == QUEUED
435 && GET_CODE (QUEUED_VAR (x)) == REG)
438 /* We get better cse by rejecting indirect addressing at this stage.
439 Let the combiner create indirect addresses where appropriate.
440 For now, generate the code so that the subexpressions useful to share
441 are visible. But not if cse won't be done! */
442 else
444 if (! cse_not_expected && GET_CODE (x) != REG)
445 x = break_out_memory_refs (x);
447 /* At this point, any valid address is accepted. */
448 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
450 /* If it was valid before but breaking out memory refs invalidated it,
451 use it the old way. */
452 if (memory_address_p (mode, oldx))
453 goto win2;
455 /* Perform machine-dependent transformations on X
456 in certain cases. This is not necessary since the code
457 below can handle all possible cases, but machine-dependent
458 transformations can make better code. */
459 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
461 /* PLUS and MULT can appear in special ways
462 as the result of attempts to make an address usable for indexing.
463 Usually they are dealt with by calling force_operand, below.
464 But a sum containing constant terms is special
465 if removing them makes the sum a valid address:
466 then we generate that address in a register
467 and index off of it. We do this because it often makes
468 shorter code, and because the addresses thus generated
469 in registers often become common subexpressions. */
470 if (GET_CODE (x) == PLUS)
472 rtx constant_term = const0_rtx;
473 rtx y = eliminate_constant_term (x, &constant_term);
474 if (constant_term == const0_rtx
475 || ! memory_address_p (mode, y))
476 x = force_operand (x, NULL_RTX);
477 else
479 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
480 if (! memory_address_p (mode, y))
481 x = force_operand (x, NULL_RTX);
482 else
483 x = y;
487 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
488 x = force_operand (x, NULL_RTX);
490 /* If we have a register that's an invalid address,
491 it must be a hard reg of the wrong class. Copy it to a pseudo. */
492 else if (GET_CODE (x) == REG)
493 x = copy_to_reg (x);
495 /* Last resort: copy the value to a register, since
496 the register is a valid address. */
497 else
498 x = force_reg (Pmode, x);
500 goto done;
502 win2:
503 x = oldx;
504 win:
505 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
506 /* Don't copy an addr via a reg if it is one of our stack slots. */
507 && ! (GET_CODE (x) == PLUS
508 && (XEXP (x, 0) == virtual_stack_vars_rtx
509 || XEXP (x, 0) == virtual_incoming_args_rtx)))
511 if (general_operand (x, Pmode))
512 x = force_reg (Pmode, x);
513 else
514 x = force_operand (x, NULL_RTX);
518 done:
520 /* If we didn't change the address, we are done. Otherwise, mark
521 a reg as a pointer if we have REG or REG + CONST_INT. */
522 if (oldx == x)
523 return x;
524 else if (GET_CODE (x) == REG)
525 mark_reg_pointer (x, 1);
526 else if (GET_CODE (x) == PLUS
527 && GET_CODE (XEXP (x, 0)) == REG
528 && GET_CODE (XEXP (x, 1)) == CONST_INT)
529 mark_reg_pointer (XEXP (x, 0), 1);
531 /* OLDX may have been the address on a temporary. Update the address
532 to indicate that X is now used. */
533 update_temp_slot_address (oldx, x);
535 return x;
538 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
541 memory_address_noforce (mode, x)
542 enum machine_mode mode;
543 rtx x;
545 int ambient_force_addr = flag_force_addr;
546 rtx val;
548 flag_force_addr = 0;
549 val = memory_address (mode, x);
550 flag_force_addr = ambient_force_addr;
551 return val;
554 /* Convert a mem ref into one with a valid memory address.
555 Pass through anything else unchanged. */
558 validize_mem (ref)
559 rtx ref;
561 if (GET_CODE (ref) != MEM)
562 return ref;
563 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
564 return ref;
565 /* Don't alter REF itself, since that is probably a stack slot. */
566 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
569 /* Return a modified copy of X with its memory address copied
570 into a temporary register to protect it from side effects.
571 If X is not a MEM, it is returned unchanged (and not copied).
572 Perhaps even if it is a MEM, if there is no need to change it. */
575 stabilize (x)
576 rtx x;
578 register rtx addr;
579 if (GET_CODE (x) != MEM)
580 return x;
581 addr = XEXP (x, 0);
582 if (rtx_unstable_p (addr))
584 rtx temp = copy_all_regs (addr);
585 rtx mem;
586 if (GET_CODE (temp) != REG)
587 temp = copy_to_reg (temp);
588 mem = gen_rtx_MEM (GET_MODE (x), temp);
590 /* Mark returned memref with in_struct if it's in an array or
591 structure. Copy const and volatile from original memref. */
593 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
594 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
595 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
596 return mem;
598 return x;
601 /* Copy the value or contents of X to a new temp reg and return that reg. */
604 copy_to_reg (x)
605 rtx x;
607 register rtx temp = gen_reg_rtx (GET_MODE (x));
609 /* If not an operand, must be an address with PLUS and MULT so
610 do the computation. */
611 if (! general_operand (x, VOIDmode))
612 x = force_operand (x, temp);
614 if (x != temp)
615 emit_move_insn (temp, x);
617 return temp;
620 /* Like copy_to_reg but always give the new register mode Pmode
621 in case X is a constant. */
624 copy_addr_to_reg (x)
625 rtx x;
627 return copy_to_mode_reg (Pmode, x);
630 /* Like copy_to_reg but always give the new register mode MODE
631 in case X is a constant. */
634 copy_to_mode_reg (mode, x)
635 enum machine_mode mode;
636 rtx x;
638 register rtx temp = gen_reg_rtx (mode);
640 /* If not an operand, must be an address with PLUS and MULT so
641 do the computation. */
642 if (! general_operand (x, VOIDmode))
643 x = force_operand (x, temp);
645 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
646 abort ();
647 if (x != temp)
648 emit_move_insn (temp, x);
649 return temp;
652 /* Load X into a register if it is not already one.
653 Use mode MODE for the register.
654 X should be valid for mode MODE, but it may be a constant which
655 is valid for all integer modes; that's why caller must specify MODE.
657 The caller must not alter the value in the register we return,
658 since we mark it as a "constant" register. */
661 force_reg (mode, x)
662 enum machine_mode mode;
663 rtx x;
665 register rtx temp, insn, set;
667 if (GET_CODE (x) == REG)
668 return x;
669 temp = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp, x);
672 /* Let optimizers know that TEMP's value never changes
673 and that X can be substituted for it. Don't get confused
674 if INSN set something else (such as a SUBREG of TEMP). */
675 if (CONSTANT_P (x)
676 && (set = single_set (insn)) != 0
677 && SET_DEST (set) == temp)
679 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
681 if (note)
682 XEXP (note, 0) = x;
683 else
684 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
686 return temp;
689 /* If X is a memory ref, copy its contents to a new temp reg and return
690 that reg. Otherwise, return X. */
693 force_not_mem (x)
694 rtx x;
696 register rtx temp;
697 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
698 return x;
699 temp = gen_reg_rtx (GET_MODE (x));
700 emit_move_insn (temp, x);
701 return temp;
704 /* Copy X to TARGET (if it's nonzero and a reg)
705 or to a new temp reg and return that reg.
706 MODE is the mode to use for X in case it is a constant. */
709 copy_to_suggested_reg (x, target, mode)
710 rtx x, target;
711 enum machine_mode mode;
713 register rtx temp;
715 if (target && GET_CODE (target) == REG)
716 temp = target;
717 else
718 temp = gen_reg_rtx (mode);
720 emit_move_insn (temp, x);
721 return temp;
724 /* Return the mode to use to store a scalar of TYPE and MODE.
725 PUNSIGNEDP points to the signedness of the type and may be adjusted
726 to show what signedness to use on extension operations.
728 FOR_CALL is non-zero if this call is promoting args for a call. */
730 enum machine_mode
731 promote_mode (type, mode, punsignedp, for_call)
732 tree type;
733 enum machine_mode mode;
734 int *punsignedp;
735 int for_call;
737 enum tree_code code = TREE_CODE (type);
738 int unsignedp = *punsignedp;
740 #ifdef PROMOTE_FOR_CALL_ONLY
741 if (! for_call)
742 return mode;
743 #endif
745 switch (code)
747 #ifdef PROMOTE_MODE
748 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
749 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
750 PROMOTE_MODE (mode, unsignedp, type);
751 break;
752 #endif
754 #ifdef POINTERS_EXTEND_UNSIGNED
755 case REFERENCE_TYPE:
756 case POINTER_TYPE:
757 mode = Pmode;
758 unsignedp = POINTERS_EXTEND_UNSIGNED;
759 break;
760 #endif
762 default:
763 break;
766 *punsignedp = unsignedp;
767 return mode;
770 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
771 This pops when ADJUST is positive. ADJUST need not be constant. */
773 void
774 adjust_stack (adjust)
775 rtx adjust;
777 rtx temp;
778 adjust = protect_from_queue (adjust, 0);
780 if (adjust == const0_rtx)
781 return;
783 temp = expand_binop (Pmode,
784 #ifdef STACK_GROWS_DOWNWARD
785 add_optab,
786 #else
787 sub_optab,
788 #endif
789 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
790 OPTAB_LIB_WIDEN);
792 if (temp != stack_pointer_rtx)
793 emit_move_insn (stack_pointer_rtx, temp);
796 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
797 This pushes when ADJUST is positive. ADJUST need not be constant. */
799 void
800 anti_adjust_stack (adjust)
801 rtx adjust;
803 rtx temp;
804 adjust = protect_from_queue (adjust, 0);
806 if (adjust == const0_rtx)
807 return;
809 temp = expand_binop (Pmode,
810 #ifdef STACK_GROWS_DOWNWARD
811 sub_optab,
812 #else
813 add_optab,
814 #endif
815 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
816 OPTAB_LIB_WIDEN);
818 if (temp != stack_pointer_rtx)
819 emit_move_insn (stack_pointer_rtx, temp);
822 /* Round the size of a block to be pushed up to the boundary required
823 by this machine. SIZE is the desired size, which need not be constant. */
826 round_push (size)
827 rtx size;
829 #ifdef STACK_BOUNDARY
830 int align = STACK_BOUNDARY / BITS_PER_UNIT;
831 if (align == 1)
832 return size;
833 if (GET_CODE (size) == CONST_INT)
835 int new = (INTVAL (size) + align - 1) / align * align;
836 if (INTVAL (size) != new)
837 size = GEN_INT (new);
839 else
841 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
842 but we know it can't. So add ourselves and then do
843 TRUNC_DIV_EXPR. */
844 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
845 NULL_RTX, 1, OPTAB_LIB_WIDEN);
846 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
847 NULL_RTX, 1);
848 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
850 #endif /* STACK_BOUNDARY */
851 return size;
854 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
855 to a previously-created save area. If no save area has been allocated,
856 this function will allocate one. If a save area is specified, it
857 must be of the proper mode.
859 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
860 are emitted at the current position. */
862 void
863 emit_stack_save (save_level, psave, after)
864 enum save_level save_level;
865 rtx *psave;
866 rtx after;
868 rtx sa = *psave;
869 /* The default is that we use a move insn and save in a Pmode object. */
870 rtx (*fcn) () = gen_move_insn;
871 enum machine_mode mode = Pmode;
873 /* See if this machine has anything special to do for this kind of save. */
874 switch (save_level)
876 #ifdef HAVE_save_stack_block
877 case SAVE_BLOCK:
878 if (HAVE_save_stack_block)
880 fcn = gen_save_stack_block;
881 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
883 break;
884 #endif
885 #ifdef HAVE_save_stack_function
886 case SAVE_FUNCTION:
887 if (HAVE_save_stack_function)
889 fcn = gen_save_stack_function;
890 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
892 break;
893 #endif
894 #ifdef HAVE_save_stack_nonlocal
895 case SAVE_NONLOCAL:
896 if (HAVE_save_stack_nonlocal)
898 fcn = gen_save_stack_nonlocal;
899 mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
901 break;
902 #endif
903 default:
904 break;
907 #ifdef STACK_SAVEAREA_MODE
908 mode = STACK_SAVEAREA_MODE (mode, save_level);
909 #endif
911 /* If there is no save area and we have to allocate one, do so. Otherwise
912 verify the save area is the proper mode. */
914 if (sa == 0)
916 if (mode != VOIDmode)
918 if (save_level == SAVE_NONLOCAL)
919 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
920 else
921 *psave = sa = gen_reg_rtx (mode);
924 else
926 if (mode == VOIDmode || GET_MODE (sa) != mode)
927 abort ();
930 if (after)
932 rtx seq;
934 start_sequence ();
935 /* We must validize inside the sequence, to ensure that any instructions
936 created by the validize call also get moved to the right place. */
937 if (sa != 0)
938 sa = validize_mem (sa);
939 emit_insn (fcn (sa, stack_pointer_rtx));
940 seq = gen_sequence ();
941 end_sequence ();
942 emit_insn_after (seq, after);
944 else
946 if (sa != 0)
947 sa = validize_mem (sa);
948 emit_insn (fcn (sa, stack_pointer_rtx));
952 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
953 area made by emit_stack_save. If it is zero, we have nothing to do.
955 Put any emitted insns after insn AFTER, if nonzero, otherwise at
956 current position. */
958 void
959 emit_stack_restore (save_level, sa, after)
960 enum save_level save_level;
961 rtx after;
962 rtx sa;
964 /* The default is that we use a move insn. */
965 rtx (*fcn) () = gen_move_insn;
967 /* See if this machine has anything special to do for this kind of save. */
968 switch (save_level)
970 #ifdef HAVE_restore_stack_block
971 case SAVE_BLOCK:
972 if (HAVE_restore_stack_block)
973 fcn = gen_restore_stack_block;
974 break;
975 #endif
976 #ifdef HAVE_restore_stack_function
977 case SAVE_FUNCTION:
978 if (HAVE_restore_stack_function)
979 fcn = gen_restore_stack_function;
980 break;
981 #endif
982 #ifdef HAVE_restore_stack_nonlocal
984 case SAVE_NONLOCAL:
985 if (HAVE_restore_stack_nonlocal)
986 fcn = gen_restore_stack_nonlocal;
987 break;
988 #endif
989 default:
990 break;
993 if (sa != 0)
994 sa = validize_mem (sa);
996 if (after)
998 rtx seq;
1000 start_sequence ();
1001 emit_insn (fcn (stack_pointer_rtx, sa));
1002 seq = gen_sequence ();
1003 end_sequence ();
1004 emit_insn_after (seq, after);
1006 else
1007 emit_insn (fcn (stack_pointer_rtx, sa));
1010 /* Return an rtx representing the address of an area of memory dynamically
1011 pushed on the stack. This region of memory is always aligned to
1012 a multiple of BIGGEST_ALIGNMENT.
1014 Any required stack pointer alignment is preserved.
1016 SIZE is an rtx representing the size of the area.
1017 TARGET is a place in which the address can be placed.
1019 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1022 allocate_dynamic_stack_space (size, target, known_align)
1023 rtx size;
1024 rtx target;
1025 int known_align;
1027 /* If we're asking for zero bytes, it doesn't matter what we point
1028 to since we can't dereference it. But return a reasonable
1029 address anyway. */
1030 if (size == const0_rtx)
1031 return virtual_stack_dynamic_rtx;
1033 /* Otherwise, show we're calling alloca or equivalent. */
1034 current_function_calls_alloca = 1;
1036 /* Ensure the size is in the proper mode. */
1037 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1038 size = convert_to_mode (Pmode, size, 1);
1040 /* We will need to ensure that the address we return is aligned to
1041 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1042 always know its final value at this point in the compilation (it
1043 might depend on the size of the outgoing parameter lists, for
1044 example), so we must align the value to be returned in that case.
1045 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1046 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1047 We must also do an alignment operation on the returned value if
1048 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1050 If we have to align, we must leave space in SIZE for the hole
1051 that might result from the alignment operation. */
1053 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
1054 #define MUST_ALIGN 1
1055 #else
1056 #define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1057 #endif
1059 if (MUST_ALIGN)
1061 if (GET_CODE (size) == CONST_INT)
1062 size = GEN_INT (INTVAL (size)
1063 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1064 else
1065 size = expand_binop (Pmode, add_optab, size,
1066 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1067 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1070 #ifdef SETJMP_VIA_SAVE_AREA
1071 /* If setjmp restores regs from a save area in the stack frame,
1072 avoid clobbering the reg save area. Note that the offset of
1073 virtual_incoming_args_rtx includes the preallocated stack args space.
1074 It would be no problem to clobber that, but it's on the wrong side
1075 of the old save area. */
1077 rtx dynamic_offset
1078 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1079 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1080 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1081 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1083 #endif /* SETJMP_VIA_SAVE_AREA */
1085 /* Round the size to a multiple of the required stack alignment.
1086 Since the stack if presumed to be rounded before this allocation,
1087 this will maintain the required alignment.
1089 If the stack grows downward, we could save an insn by subtracting
1090 SIZE from the stack pointer and then aligning the stack pointer.
1091 The problem with this is that the stack pointer may be unaligned
1092 between the execution of the subtraction and alignment insns and
1093 some machines do not allow this. Even on those that do, some
1094 signal handlers malfunction if a signal should occur between those
1095 insns. Since this is an extremely rare event, we have no reliable
1096 way of knowing which systems have this problem. So we avoid even
1097 momentarily mis-aligning the stack. */
1099 #ifdef STACK_BOUNDARY
1100 /* If we added a variable amount to SIZE,
1101 we can no longer assume it is aligned. */
1102 #if !defined (SETJMP_VIA_SAVE_AREA)
1103 if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0)
1104 #endif
1105 size = round_push (size);
1106 #endif
1108 do_pending_stack_adjust ();
1110 /* If needed, check that we have the required amount of stack. Take into
1111 account what has already been checked. */
1112 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1113 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1115 /* Don't use a TARGET that isn't a pseudo. */
1116 if (target == 0 || GET_CODE (target) != REG
1117 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1118 target = gen_reg_rtx (Pmode);
1120 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1122 /* Perform the required allocation from the stack. Some systems do
1123 this differently than simply incrementing/decrementing from the
1124 stack pointer, such as acquiring the space by calling malloc(). */
1125 #ifdef HAVE_allocate_stack
1126 if (HAVE_allocate_stack)
1128 enum machine_mode mode;
1130 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1131 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1132 (target, Pmode)))
1133 target = copy_to_mode_reg (Pmode, target);
1134 mode = insn_operand_mode[(int) CODE_FOR_allocate_stack][1];
1135 if (mode == VOIDmode)
1136 mode = Pmode;
1138 size = convert_modes (mode, ptr_mode, size, 1);
1139 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][1]
1140 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][1])
1141 (size, mode)))
1142 size = copy_to_mode_reg (mode, size);
1144 emit_insn (gen_allocate_stack (target, size));
1146 else
1147 #endif
1149 #ifndef STACK_GROWS_DOWNWARD
1150 emit_move_insn (target, virtual_stack_dynamic_rtx);
1151 #endif
1152 size = convert_modes (Pmode, ptr_mode, size, 1);
1153 anti_adjust_stack (size);
1154 #ifdef STACK_GROWS_DOWNWARD
1155 emit_move_insn (target, virtual_stack_dynamic_rtx);
1156 #endif
1159 if (MUST_ALIGN)
1161 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1162 but we know it can't. So add ourselves and then do
1163 TRUNC_DIV_EXPR. */
1164 target = expand_binop (Pmode, add_optab, target,
1165 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1166 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1167 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1168 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1169 NULL_RTX, 1);
1170 target = expand_mult (Pmode, target,
1171 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1172 NULL_RTX, 1);
1175 /* Some systems require a particular insn to refer to the stack
1176 to make the pages exist. */
1177 #ifdef HAVE_probe
1178 if (HAVE_probe)
1179 emit_insn (gen_probe ());
1180 #endif
1182 /* Record the new stack level for nonlocal gotos. */
1183 if (nonlocal_goto_handler_slot != 0)
1184 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1186 return target;
1189 /* Emit one stack probe at ADDRESS, an address within the stack. */
1191 static void
1192 emit_stack_probe (address)
1193 rtx address;
1195 rtx memref = gen_rtx_MEM (word_mode, address);
1197 MEM_VOLATILE_P (memref) = 1;
1199 if (STACK_CHECK_PROBE_LOAD)
1200 emit_move_insn (gen_reg_rtx (word_mode), memref);
1201 else
1202 emit_move_insn (memref, const0_rtx);
1205 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1206 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1207 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1208 subtract from the stack. If SIZE is constant, this is done
1209 with a fixed number of probes. Otherwise, we must make a loop. */
1211 #ifdef STACK_GROWS_DOWNWARD
1212 #define STACK_GROW_OP MINUS
1213 #else
1214 #define STACK_GROW_OP PLUS
1215 #endif
1217 void
1218 probe_stack_range (first, size)
1219 HOST_WIDE_INT first;
1220 rtx size;
1222 /* First see if we have an insn to check the stack. Use it if so. */
1223 #ifdef HAVE_check_stack
1224 if (HAVE_check_stack)
1226 rtx last_addr = force_operand (gen_rtx (STACK_GROW_OP, Pmode,
1227 stack_pointer_rtx,
1228 plus_constant (size, first)),
1229 NULL_RTX);
1231 if (insn_operand_predicate[(int) CODE_FOR_check_stack][0]
1232 && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0])
1233 (last_address, Pmode)))
1234 last_addr = copy_to_mode_reg (Pmode, last_addr);
1236 emit_insn (gen_check_stack (last_addr));
1237 return;
1239 #endif
1241 /* If we have to generate explicit probes, see if we have a constant
1242 small number of them to generate. If so, that's the easy case. */
1243 if (GET_CODE (size) == CONST_INT
1244 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1246 HOST_WIDE_INT offset;
1248 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1249 for values of N from 1 until it exceeds LAST. If only one
1250 probe is needed, this will not generate any code. Then probe
1251 at LAST. */
1252 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1253 offset < INTVAL (size);
1254 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1255 emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode,
1256 stack_pointer_rtx, GEN_INT (offset)));
1258 emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1259 plus_constant (size, first)));
1262 /* In the variable case, do the same as above, but in a loop. We emit loop
1263 notes so that loop optimization can be done. */
1264 else
1266 rtx test_addr
1267 = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1268 GEN_INT (first
1269 + STACK_CHECK_PROBE_INTERVAL)),
1270 NULL_RTX);
1271 rtx last_addr
1272 = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1273 plus_constant (size, first)),
1274 NULL_RTX);
1275 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1276 rtx loop_lab = gen_label_rtx ();
1277 rtx test_lab = gen_label_rtx ();
1278 rtx end_lab = gen_label_rtx ();
1279 rtx temp;
1281 if (GET_CODE (test_addr) != REG
1282 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1283 test_addr = force_reg (Pmode, test_addr);
1285 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1286 emit_jump (test_lab);
1288 emit_label (loop_lab);
1289 emit_stack_probe (test_addr);
1291 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1293 #ifdef STACK_GROWS_DOWNWARD
1294 #define CMP_OPCODE GTU
1295 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1296 1, OPTAB_WIDEN);
1297 #else
1298 #define CMP_OPCODE LTU
1299 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1300 1, OPTAB_WIDEN);
1301 #endif
1303 if (temp != test_addr)
1304 abort ();
1306 emit_label (test_lab);
1307 emit_cmp_insn (test_addr, last_addr, CMP_OPCODE, NULL_RTX, Pmode, 1, 0);
1308 emit_jump_insn ((*bcc_gen_fctn[(int) CMP_OPCODE]) (loop_lab));
1309 emit_jump (end_lab);
1310 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1311 emit_label (end_lab);
1313 /* If will be doing stupid optimization, show test_addr is still live. */
1314 if (obey_regdecls)
1315 emit_insn (gen_rtx_USE (VOIDmode, test_addr));
1317 emit_stack_probe (last_addr);
1321 /* Return an rtx representing the register or memory location
1322 in which a scalar value of data type VALTYPE
1323 was returned by a function call to function FUNC.
1324 FUNC is a FUNCTION_DECL node if the precise function is known,
1325 otherwise 0. */
1328 hard_function_value (valtype, func)
1329 tree valtype;
1330 tree func;
1332 rtx val = FUNCTION_VALUE (valtype, func);
1333 if (GET_CODE (val) == REG
1334 && GET_MODE (val) == BLKmode)
1336 int bytes = int_size_in_bytes (valtype);
1337 enum machine_mode tmpmode;
1338 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1339 tmpmode != MAX_MACHINE_MODE;
1340 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1342 /* Have we found a large enough mode? */
1343 if (GET_MODE_SIZE (tmpmode) >= bytes)
1344 break;
1347 /* No suitable mode found. */
1348 if (tmpmode == MAX_MACHINE_MODE)
1349 abort ();
1351 PUT_MODE (val, tmpmode);
1353 return val;
1356 /* Return an rtx representing the register or memory location
1357 in which a scalar value of mode MODE was returned by a library call. */
1360 hard_libcall_value (mode)
1361 enum machine_mode mode;
1363 return LIBCALL_VALUE (mode);
1366 /* Look up the tree code for a given rtx code
1367 to provide the arithmetic operation for REAL_ARITHMETIC.
1368 The function returns an int because the caller may not know
1369 what `enum tree_code' means. */
1372 rtx_to_tree_code (code)
1373 enum rtx_code code;
1375 enum tree_code tcode;
1377 switch (code)
1379 case PLUS:
1380 tcode = PLUS_EXPR;
1381 break;
1382 case MINUS:
1383 tcode = MINUS_EXPR;
1384 break;
1385 case MULT:
1386 tcode = MULT_EXPR;
1387 break;
1388 case DIV:
1389 tcode = RDIV_EXPR;
1390 break;
1391 case SMIN:
1392 tcode = MIN_EXPR;
1393 break;
1394 case SMAX:
1395 tcode = MAX_EXPR;
1396 break;
1397 default:
1398 tcode = LAST_AND_UNUSED_TREE_CODE;
1399 break;
1401 return ((int) tcode);