Import final gcc2 snapshot (990109)
[official-gcc.git] / gcc / config / h8300 / h8300.h
blob9630856646493c460a259a5f5e6393f8159b10c6
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 93, 94, 95, 96, 1998 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* Which cpu to compile for.
25 We use int for CPU_TYPE to avoid lots of casts. */
26 #if 0 /* defined in insn-attr.h, here for documentation */
27 enum attr_cpu { CPU_H8300, CPU_H8300H };
28 #endif
29 extern int cpu_type;
31 /* Various globals defined in h8300.c. */
33 extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
34 extern char **h8_reg_names;
36 /* Names to predefine in the preprocessor for this target machine. */
38 #define CPP_PREDEFINES \
39 "-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L"
41 #define CPP_SPEC \
42 "%{!mh:%{!ms:-D__H8300__}} %{mh:-D__H8300H__} %{ms:-D__H8300S__} \
43 %{!mh:%{!ms:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}} \
44 %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
45 %{ms:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
46 %{!mh:%{!ms:-Acpu(h8300) -Amachine(h8300)}} \
47 %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
48 %{ms:-Acpu(h8300s) -Amachine(h8300s)} \
49 %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"
51 #define LINK_SPEC "%{mh:-m h8300h} %{ms:-m h8300s}"
53 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
55 /* Print subsidiary information on the compiler version in use. */
57 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
59 /* Run-time compilation parameters selecting different hardware subsets. */
61 extern int target_flags;
63 /* Macros used in the machine description to test the flags. */
65 /* Make int's 32 bits. */
66 #define TARGET_INT32 (target_flags & 8)
68 /* Dump recorded insn lengths into the output file. This helps debug the
69 md file. */
70 #define TARGET_ADDRESSES (target_flags & 64)
72 /* Pass the first few arguments in registers. */
73 #define TARGET_QUICKCALL (target_flags & 128)
75 /* Pretend byte accesses are slow. */
76 #define TARGET_SLOWBYTE (target_flags & 256)
78 /* Dump each assembler insn's rtl into the output file.
79 This is for debugging the compiler only. */
80 #define TARGET_RTL_DUMP (target_flags & 2048)
82 /* Select between the h8/300 and h8/300h cpus. */
83 #define TARGET_H8300 (! TARGET_H8300H && ! TARGET_H8300S)
84 #define TARGET_H8300H (target_flags & 4096)
85 #define TARGET_H8300S (target_flags & 1)
87 /* Align all values on the h8/300h the same way as the h8/300. Specifically,
88 32 bit and larger values are aligned on 16 bit boundaries.
89 This is all the hardware requires, but the default is 32 bits for the 300h.
90 ??? Now watch someone add hardware floating point requiring 32 bit
91 alignment. */
92 #define TARGET_ALIGN_300 (target_flags & 8192)
94 /* Macro to define tables used to set the flags.
95 This is a list in braces of pairs in braces,
96 each pair being { "NAME", VALUE }
97 where VALUE is the bits to set or minus the bits to clear.
98 An empty string NAME is used to identify the default VALUE. */
100 #define TARGET_SWITCHES \
101 { {"s",1 }, \
102 {"no-s",-1}, \
103 {"int32",8}, \
104 {"addresses",64 }, \
105 {"quickcall",128}, \
106 {"no-quickcall",-128}, \
107 {"slowbyte",256}, \
108 {"relax",1024}, \
109 {"rtl-dump",2048}, \
110 {"h",4096}, \
111 {"no-h",-4096}, \
112 {"align-300",8192}, \
113 { "", TARGET_DEFAULT}}
115 /* Do things that must be done once at start up. */
117 #define OVERRIDE_OPTIONS \
118 do { \
119 h8300_init_once (); \
120 } while (0)
122 /* Default target_flags if no switches specified. */
124 #ifndef TARGET_DEFAULT
125 #define TARGET_DEFAULT (128) /* quickcall */
126 #endif
128 /* Show we can debug even without a frame pointer. */
129 /* #define CAN_DEBUG_WITHOUT_FP */
131 /* Define this if addresses of constant functions
132 shouldn't be put through pseudo regs where they can be cse'd.
133 Desirable on machines where ordinary constants are expensive
134 but a CALL with constant address is cheap.
136 Calls through a register are cheaper than calls to named
137 functions; however, the register pressure this causes makes
138 CSEing of function addresses generally a lose. */
139 #define NO_FUNCTION_CSE
141 /* Target machine storage layout */
143 /* Define to use software floating point emulator for REAL_ARITHMETIC and
144 decimal <-> binary conversion. */
145 #define REAL_ARITHMETIC
147 /* Define this if most significant bit is lowest numbered
148 in instructions that operate on numbered bit-fields.
149 This is not true on the H8/300. */
150 #define BITS_BIG_ENDIAN 0
152 /* Define this if most significant byte of a word is the lowest numbered. */
153 /* That is true on the H8/300. */
154 #define BYTES_BIG_ENDIAN 1
156 /* Define this if most significant word of a multiword number is lowest
157 numbered.
158 This is true on an H8/300 (actually we can make it up, but we choose to
159 be consistent). */
160 #define WORDS_BIG_ENDIAN 1
162 /* Number of bits in an addressable storage unit */
163 #define BITS_PER_UNIT 8
165 /* Width in bits of a "word", which is the contents of a machine register.
166 Note that this is not necessarily the width of data type `int';
167 if using 16-bit ints on a 68000, this would still be 32.
168 But on a machine with 16-bit registers, this would be 16. */
169 #define BITS_PER_WORD (TARGET_H8300H || TARGET_H8300S ? 32 : 16)
170 #define MAX_BITS_PER_WORD 32
172 /* Width of a word, in units (bytes). */
173 #define UNITS_PER_WORD (TARGET_H8300H || TARGET_H8300S ? 4 : 2)
174 #define MIN_UNITS_PER_WORD 2
176 /* Width in bits of a pointer.
177 See also the macro `Pmode' defined below. */
178 #define POINTER_SIZE (TARGET_H8300H || TARGET_H8300S ? 32 : 16)
180 #define SHORT_TYPE_SIZE 16
181 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
182 #define LONG_TYPE_SIZE 32
183 #define LONG_LONG_TYPE_SIZE 32
184 #define FLOAT_TYPE_SIZE 32
185 #define DOUBLE_TYPE_SIZE 32
186 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
188 #define MAX_FIXED_MODE_SIZE 32
190 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
191 #define PARM_BOUNDARY (TARGET_H8300H || TARGET_H8300S ? 32 : 16)
193 /* Allocation boundary (in *bits*) for the code of a function. */
194 #define FUNCTION_BOUNDARY 16
196 /* Alignment of field after `int : 0' in a structure. */
197 /* One can argue this should be 32 for -mint32, but since 32 bit ints only
198 need 16 bit alignment, this is left as is so that -mint32 doesn't change
199 structure layouts. */
200 #define EMPTY_FIELD_BOUNDARY 16
202 /* A bitfield declared as `int' forces `int' alignment for the struct. */
203 #define PCC_BITFIELD_TYPE_MATTERS 0
205 /* No data type wants to be aligned rounder than this.
206 32 bit values are aligned as such on the 300h for speed. */
207 #define BIGGEST_ALIGNMENT \
208 (((TARGET_H8300H || TARGET_H8300S) && ! TARGET_ALIGN_300) ? 32 : 16)
210 /* The stack goes in 16/32 bit lumps. */
211 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
213 /* Define this if move instructions will actually fail to work
214 when given unaligned data. */
215 /* On the H8/300, longs can be aligned on halfword boundaries, but not
216 byte boundaries. */
217 #define STRICT_ALIGNMENT 1
219 /* Standard register usage. */
221 /* Number of actual hardware registers.
222 The hardware registers are assigned numbers for the compiler
223 from 0 to just below FIRST_PSEUDO_REGISTER.
225 All registers that the compiler knows about must be given numbers,
226 even those that are not normally considered general registers.
228 Reg 9 does not correspond to any hardware register, but instead
229 appears in the RTL as an argument pointer prior to reload, and is
230 eliminated during reloading in favor of either the stack or frame
231 pointer. */
233 #define FIRST_PSEUDO_REGISTER 10
235 /* 1 for registers that have pervasive standard uses
236 and are not available for the register allocator. */
238 #define FIXED_REGISTERS \
239 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 1}
241 /* 1 for registers not available across function calls.
242 These must include the FIXED_REGISTERS and also any
243 registers that can be used without being saved.
244 The latter must include the registers where values are returned
245 and the register where structure-value addresses are passed.
246 Aside from that, you can include as many other registers as you
247 like.
249 h8 destroys r0,r1,r2,r3. */
251 #define CALL_USED_REGISTERS \
252 { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1 }
254 #define REG_ALLOC_ORDER \
255 { 2, 3, 0, 1, 4, 5, 6, 8, 7, 9}
257 #define CONDITIONAL_REGISTER_USAGE \
259 if (!TARGET_H8300S) \
260 fixed_regs[8] = call_used_regs[8] = 1;\
263 /* Return number of consecutive hard regs needed starting at reg REGNO
264 to hold something of mode MODE.
266 This is ordinarily the length in words of a value of mode MODE
267 but can be less for certain modes in special long registers.
269 We pretend the MAC register is 32bits -- we don't have any data
270 types on the H8 series to handle more than 32bits. */
272 #define HARD_REGNO_NREGS(REGNO, MODE) \
273 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
275 /* Value is 1 if hard register REGNO can hold a value of machine-mode
276 MODE.
278 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
279 or HI.
280 H8/300H: Anything goes. */
282 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
283 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
284 : REGNO == 8 ? MODE == SImode : 1)
286 /* Value is 1 if it is a good idea to tie two pseudo registers
287 when one has mode MODE1 and one has mode MODE2.
288 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
289 for any hard reg, then this must be 0 for correct output. */
290 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
292 /* Specify the registers used for certain standard purposes.
293 The values of these macros are register numbers. */
295 /* H8/300 pc is not overloaded on a register. */
297 /*#define PC_REGNUM 15*/
299 /* Register to use for pushing function arguments. */
300 #define STACK_POINTER_REGNUM 7
302 /* Base register for access to local variables of the function. */
303 #define FRAME_POINTER_REGNUM 6
305 /* Value should be nonzero if functions must have frame pointers.
306 Zero means the frame pointer need not be set up (and parms
307 may be accessed via the stack pointer) in functions that seem suitable.
308 This is computed in `reload', in reload1.c. */
309 #define FRAME_POINTER_REQUIRED 0
311 /* Base register for access to arguments of the function. */
312 #define ARG_POINTER_REGNUM 9
314 /* Register in which static-chain is passed to a function. */
315 #define STATIC_CHAIN_REGNUM 3
317 /* Define the classes of registers for register constraints in the
318 machine description. Also define ranges of constants.
320 One of the classes must always be named ALL_REGS and include all hard regs.
321 If there is more than one class, another class must be named NO_REGS
322 and contain no registers.
324 The name GENERAL_REGS must be the name of a class (or an alias for
325 another name such as ALL_REGS). This is the class of registers
326 that is allowed by "g" or "r" in a register constraint.
327 Also, registers outside this class are allocated only when
328 instructions express preferences for them.
330 The classes must be numbered in nondecreasing order; that is,
331 a larger-numbered class must never be contained completely
332 in a smaller-numbered class.
334 For any two classes, it is very desirable that there be another
335 class that represents their union. */
337 enum reg_class {
338 NO_REGS, GENERAL_REGS, MAC_REGS, ALL_REGS, LIM_REG_CLASSES
341 #define N_REG_CLASSES (int) LIM_REG_CLASSES
343 /* Give names of register classes as strings for dump file. */
345 #define REG_CLASS_NAMES \
346 { "NO_REGS", "GENERAL_REGS", "MAC_REGS", "ALL_REGS", "LIM_REGS" }
348 /* Define which registers fit in which classes.
349 This is an initializer for a vector of HARD_REG_SET
350 of length N_REG_CLASSES. */
352 #define REG_CLASS_CONTENTS \
353 { 0, /* No regs */ \
354 0x2ff, /* GENERAL_REGS */ \
355 0x100, /* MAC_REGS */ \
356 0x3ff, /* ALL_REGS */ \
359 /* The same information, inverted:
360 Return the class number of the smallest class containing
361 reg number REGNO. This could be a conditional expression
362 or could index an array. */
364 #define REGNO_REG_CLASS(REGNO) (REGNO != 8 ? GENERAL_REGS : MAC_REGS)
366 /* The class value for index registers, and the one for base regs. */
368 #define INDEX_REG_CLASS NO_REGS
369 #define BASE_REG_CLASS GENERAL_REGS
371 /* Get reg_class from a letter such as appears in the machine description.
373 'a' is the MAC register. */
375 #define REG_CLASS_FROM_LETTER(C) ((C) == 'a' ? MAC_REGS : NO_REGS)
377 /* The letters I, J, K, L, M, N, O, P in a register constraint string
378 can be used to stand for particular ranges of immediate operands.
379 This macro defines what the ranges are.
380 C is the letter, and VALUE is a constant value.
381 Return 1 if VALUE is in the range specified by C. */
383 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
384 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
385 #define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
386 #define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
387 #define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
388 #define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
389 #define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
390 #define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))
392 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
393 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
394 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
395 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
396 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
397 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
398 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
399 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
400 (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
403 /* Similar, but for floating constants, and defining letters G and H.
404 Here VALUE is the CONST_DOUBLE rtx itself.
406 `G' is a floating-point zero. */
408 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
409 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
410 : 0)
412 /* Given an rtx X being reloaded into a reg required to be
413 in class CLASS, return the class of reg to actually use.
414 In general this is just CLASS; but on some machines
415 in some cases it is preferable to use a more restrictive class. */
417 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
419 /* Return the maximum number of consecutive registers
420 needed to represent mode MODE in a register of class CLASS. */
422 /* On the H8, this is the size of MODE in words. */
424 #define CLASS_MAX_NREGS(CLASS, MODE) \
425 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
427 /* Any SI register to register move may need to be reloaded,
428 so define REGISTER_MOVE_COST to be > 2 so that reload never
429 shortcuts. */
431 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
432 (CLASS1 == MAC_REGS || CLASS2 == MAC_REGS ? 6 : 3)
434 /* Stack layout; function entry, exit and calling. */
436 /* Define this if pushing a word on the stack
437 makes the stack pointer a smaller address. */
439 #define STACK_GROWS_DOWNWARD
441 /* Define this if the nominal address of the stack frame
442 is at the high-address end of the local variables;
443 that is, each additional local variable allocated
444 goes at a more negative offset in the frame. */
446 #define FRAME_GROWS_DOWNWARD
448 /* Offset within stack frame to start allocating local variables at.
449 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
450 first local allocated. Otherwise, it is the offset to the BEGINNING
451 of the first local allocated. */
453 #define STARTING_FRAME_OFFSET 0
455 /* If we generate an insn to push BYTES bytes,
456 this says how many the stack pointer really advances by.
458 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
459 dangerous, so we claim that it always pushes a word, then we catch
460 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
462 On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
463 a similar thing. */
465 #define PUSH_ROUNDING(BYTES) \
466 (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)
468 /* Offset of first parameter from the argument pointer register value. */
469 /* Is equal to the size of the saved fp + pc, even if an fp isn't
470 saved since the value is used before we know. */
472 #define FIRST_PARM_OFFSET(FNDECL) 0
474 /* Value is the number of bytes of arguments automatically
475 popped when returning from a subroutine call.
476 FUNDECL is the declaration node of the function (as a tree),
477 FUNTYPE is the data type of the function (as a tree),
478 or for a library call it is an identifier node for the subroutine name.
479 SIZE is the number of bytes of arguments passed on the stack.
481 On the H8 the return does not pop anything. */
483 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
485 /* Definitions for register eliminations.
487 This is an array of structures. Each structure initializes one pair
488 of eliminable registers. The "from" register number is given first,
489 followed by "to". Eliminations of the same "from" register are listed
490 in order of preference.
492 We have two registers that can be eliminated on the h8300. First, the
493 frame pointer register can often be eliminated in favor of the stack
494 pointer register. Secondly, the argument pointer register can always be
495 eliminated; it is replaced with either the stack or frame pointer. */
497 #define ELIMINABLE_REGS \
498 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
499 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
500 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
502 /* Given FROM and TO register numbers, say whether this elimination is allowed.
503 Frame pointer elimination is automatically handled.
505 For the h8300, if frame pointer elimination is being done, we would like to
506 convert ap into sp, not fp.
508 All other eliminations are valid. */
510 #define CAN_ELIMINATE(FROM, TO) \
511 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
512 ? ! frame_pointer_needed \
513 : 1)
515 /* Define the offset between two registers, one to be eliminated, and the other
516 its replacement, at the start of a routine. */
518 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
519 OFFSET = initial_offset (FROM, TO)
521 /* Define how to find the value returned by a function.
522 VALTYPE is the data type of the value (as a tree).
523 If the precise function being called is known, FUNC is its FUNCTION_DECL;
524 otherwise, FUNC is 0.
526 On the H8 the return value is in R0/R1. */
528 #define FUNCTION_VALUE(VALTYPE, FUNC) \
529 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
531 /* Define how to find the value returned by a library function
532 assuming the value has mode MODE. */
534 /* On the h8 the return value is in R0/R1 */
536 #define LIBCALL_VALUE(MODE) \
537 gen_rtx_REG (MODE, 0)
539 /* 1 if N is a possible register number for a function value.
540 On the H8, R0 is the only register thus used. */
542 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
544 /* Define this if PCC uses the nonreentrant convention for returning
545 structure and union values. */
547 /*#define PCC_STATIC_STRUCT_RETURN*/
549 /* 1 if N is a possible register number for function argument passing.
550 On the H8, no registers are used in this way. */
552 #define FUNCTION_ARG_REGNO_P(N) (TARGET_QUICKCALL ? N < 3 : 0)
554 /* Register in which address to store a structure value
555 is passed to a function. */
557 #define STRUCT_VALUE 0
559 /* Return true if X should be returned in memory. */
560 #define RETURN_IN_MEMORY(X) \
561 (TYPE_MODE (X) == BLKmode || GET_MODE_SIZE (TYPE_MODE (X)) > 4)
563 /* When defined, the compiler allows registers explicitly used in the
564 rtl to be used as spill registers but prevents the compiler from
565 extending the lifetime of these registers. */
567 #define SMALL_REGISTER_CLASSES 1
569 /* Define a data type for recording info about an argument list
570 during the scan of that argument list. This data type should
571 hold all necessary information about the function itself
572 and about the args processed so far, enough to enable macros
573 such as FUNCTION_ARG to determine where the next arg should go.
575 On the H8/300, this is a two item struct, the first is the number of bytes
576 scanned so far and the second is the rtx of the called library
577 function if any. */
579 #define CUMULATIVE_ARGS struct cum_arg
580 struct cum_arg { int nbytes; struct rtx_def * libcall; };
582 /* Initialize a variable CUM of type CUMULATIVE_ARGS
583 for a call to a function whose data type is FNTYPE.
584 For a library call, FNTYPE is 0.
586 On the H8/300, the offset starts at 0. */
588 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
589 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
591 /* Update the data in CUM to advance over an argument
592 of mode MODE and data type TYPE.
593 (TYPE is null for libcalls where that information may not be available.) */
595 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
596 ((CUM).nbytes += ((MODE) != BLKmode \
597 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
598 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
600 /* Define where to put the arguments to a function.
601 Value is zero to push the argument on the stack,
602 or a hard register in which to store the argument.
604 MODE is the argument's machine mode.
605 TYPE is the data type of the argument (as a tree).
606 This is null for libcalls where that information may
607 not be available.
608 CUM is a variable of type CUMULATIVE_ARGS which gives info about
609 the preceding args and about the function being called.
610 NAMED is nonzero if this argument is a named parameter
611 (otherwise it is an extra parameter matching an ellipsis). */
613 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
614 case the first 3 arguments are passed in registers.
615 See function `function_arg'. */
617 struct rtx_def *function_arg();
618 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
619 function_arg (&CUM, MODE, TYPE, NAMED)
621 /* Generate assembly output for the start of a function. */
623 #define FUNCTION_PROLOGUE(FILE, SIZE) \
624 function_prologue (FILE, SIZE)
626 /* Output assembler code to FILE to increment profiler label # LABELNO
627 for profiling a function entry. */
629 #define FUNCTION_PROFILER(FILE, LABELNO) \
630 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
631 h8_mov_op, (LABELNO), h8_reg_names[0]);
633 /* Output assembler code to FILE to initialize this source file's
634 basic block profiling info, if that has not already been done. */
635 /* ??? @LPBX0 is moved into r0 twice. */
637 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
638 fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
639 h8_push_op, h8_reg_names[0], \
640 h8_mov_op, h8_reg_names[0], \
641 (LABELNO), \
642 h8_mov_op, h8_reg_names[0], \
643 h8_push_op, h8_reg_names[0], \
644 (LABELNO), \
645 h8_pop_op, h8_reg_names[0]);
647 /* Output assembler code to FILE to increment the entry-count for
648 the BLOCKNO'th basic block in this source file. This is a real pain in the
649 sphincter on a VAX, since we do not want to change any of the bits in the
650 processor status word. The way it is done here, it is pushed onto the stack
651 before any flags have changed, and then the stack is fixed up to account for
652 the fact that the instruction to restore the flags only reads a word.
653 It may seem a bit clumsy, but at least it works. */
654 /* ??? This one needs work. */
656 #define BLOCK_PROFILER(FILE, BLOCKNO) \
657 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
658 4 * BLOCKNO)
660 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
661 the stack pointer does not matter. The value is tested only in
662 functions that have frame pointers.
663 No definition is equivalent to always zero. */
665 #define EXIT_IGNORE_STACK 0
667 /* This macro generates the assembly code for function exit,
668 on machines that need it. If FUNCTION_EPILOGUE is not defined
669 then individual return instructions are generated for each
670 return statement. Args are same as for FUNCTION_PROLOGUE. */
672 #define FUNCTION_EPILOGUE(FILE, SIZE) \
673 function_epilogue (FILE, SIZE)
675 /* Output assembler code for a block containing the constant parts
676 of a trampoline, leaving space for the variable parts.
678 H8/300
679 vvvv context
680 1 0000 7900xxxx mov.w #0x1234,r3
681 2 0004 5A00xxxx jmp @0x1234
682 ^^^^ function
684 H8/300H
685 vvvvvvvv context
686 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
687 3 0006 5Axxxxxx jmp @0x123456
688 ^^^^^^ function
691 #define TRAMPOLINE_TEMPLATE(FILE) \
692 do { \
693 if (TARGET_H8300) \
695 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
696 fprintf (FILE, "\tjmp @0x1234\n"); \
698 else \
700 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
701 fprintf (FILE, "\tjmp @0x123456\n"); \
703 } while (0)
705 /* Length in units of the trampoline for entering a nested function. */
707 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
709 /* Emit RTL insns to initialize the variable parts of a trampoline.
710 FNADDR is an RTX for the address of the function's pure code.
711 CXT is an RTX for the static chain value for the function. */
713 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
715 enum machine_mode mode = TARGET_H8300H || TARGET_H8300S? SImode : HImode; \
716 emit_move_insn (gen_rtx_MEM (mode, plus_constant ((TRAMP), 2)), CXT); \
717 emit_move_insn (gen_rtx_MEM (mode, plus_constant ((TRAMP), 6)), FNADDR); \
718 if (TARGET_H8300H || TARGET_H8300S) \
719 emit_move_insn (gen_rtx_MEM (QImode, plus_constant ((TRAMP), 6)), \
720 GEN_INT (0x5A)); \
723 /* Addressing modes, and classification of registers for them. */
725 #define HAVE_POST_INCREMENT
726 /*#define HAVE_POST_DECREMENT */
728 #define HAVE_PRE_DECREMENT
729 /*#define HAVE_PRE_INCREMENT */
731 /* Macros to check register numbers against specific register classes. */
733 /* These assume that REGNO is a hard or pseudo reg number.
734 They give nonzero only if REGNO is a hard reg of the suitable class
735 or a pseudo reg currently allocated to a suitable hard reg.
736 Since they use reg_renumber, they are safe only once reg_renumber
737 has been allocated, which happens in local-alloc.c. */
739 #define REGNO_OK_FOR_INDEX_P(regno) 0
741 #define REGNO_OK_FOR_BASE_P(regno) \
742 (((regno) < FIRST_PSEUDO_REGISTER && regno != 8) || reg_renumber[regno] >= 0)
744 /* Maximum number of registers that can appear in a valid memory address. */
746 #define MAX_REGS_PER_ADDRESS 1
748 /* 1 if X is an rtx for a constant that is a valid address. */
750 #define CONSTANT_ADDRESS_P(X) \
751 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
752 || (GET_CODE (X) == CONST_INT \
753 /* We handle signed and unsigned offsets here. */ \
754 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
755 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
756 || ((GET_CODE (X) == HIGH || GET_CODE (X) == CONST) \
757 && TARGET_H8300))
759 /* Nonzero if the constant value X is a legitimate general operand.
760 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
762 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
764 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
765 and check its validity for a certain class.
766 We have two alternate definitions for each of them.
767 The usual definition accepts all pseudo regs; the other rejects
768 them unless they have been allocated suitable hard regs.
769 The symbol REG_OK_STRICT causes the latter definition to be used.
771 Most source files want to accept pseudo regs in the hope that
772 they will get allocated to the class that the insn wants them to be in.
773 Source files for reload pass need to be strict.
774 After reload, it makes no difference, since pseudo regs have
775 been eliminated by then. */
777 #ifndef REG_OK_STRICT
779 /* Nonzero if X is a hard reg that can be used as an index
780 or if it is a pseudo reg. */
781 #define REG_OK_FOR_INDEX_P(X) 0
782 /* Nonzero if X is a hard reg that can be used as a base reg
783 or if it is a pseudo reg. */
784 /* Don't use REGNO_OK_FOR_BASE_P here because it uses reg_renumber. */
785 #define REG_OK_FOR_BASE_P(X) \
786 (REGNO (X) >= FIRST_PSEUDO_REGISTER || REGNO (X) != 8)
787 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
788 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
789 #define STRICT 0
791 #else
793 /* Nonzero if X is a hard reg that can be used as an index. */
794 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
795 /* Nonzero if X is a hard reg that can be used as a base reg. */
796 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
797 #define STRICT 1
799 #endif
801 /* Extra constraints - 'U' if for an operand valid for a bset
802 destination; i.e. a register, register indirect, or the
803 eightbit memory region (a SYMBOL_REF with an SYMBOL_REF_FLAG set).
805 On the H8/S 'U' can also be a 16bit or 32bit absolute. */
806 #define OK_FOR_U(OP) \
807 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
808 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
809 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
810 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
811 && (TARGET_H8300S || SYMBOL_REF_FLAG (XEXP (OP, 0)))) \
812 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == CONST \
813 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == PLUS \
814 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 0)) == SYMBOL_REF \
815 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 1)) == CONST_INT) \
816 && (TARGET_H8300S || SYMBOL_REF_FLAG (XEXP (XEXP (OP, 0), 0))))
818 #define EXTRA_CONSTRAINT(OP, C) \
819 ((C) == 'U' ? OK_FOR_U (OP) : 0)
821 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
822 that is a valid memory address for an instruction.
823 The MODE argument is the machine mode for the MEM expression
824 that wants to use this address.
826 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
827 except for CONSTANT_ADDRESS_P which is actually
828 machine-independent.
830 On the H8/300, a legitimate address has the form
831 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
833 /* Accept either REG or SUBREG where a register is valid. */
835 #define RTX_OK_FOR_BASE_P(X) \
836 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
837 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
838 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
840 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
841 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
842 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
843 if (GET_CODE (X) == PLUS \
844 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
845 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
847 /* Try machine-dependent ways of modifying an illegitimate address
848 to be legitimate. If we find one, return the new, valid address.
849 This macro is used in only one place: `memory_address' in explow.c.
851 OLDX is the address as it was before break_out_memory_refs was called.
852 In some cases it is useful to look at this to decide what needs to be done.
854 MODE and WIN are passed so that this macro can use
855 GO_IF_LEGITIMATE_ADDRESS.
857 It is always safe for this macro to do nothing. It exists to recognize
858 opportunities to optimize the output.
860 For the H8/300, don't do anything. */
862 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
864 /* Go to LABEL if ADDR (a legitimate address expression)
865 has an effect that depends on the machine mode it is used for.
867 On the H8/300, the predecrement and postincrement address depend thus
868 (the amount of decrement or increment being the length of the operand). */
870 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
871 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
873 /* Specify the machine mode that this machine uses
874 for the index in the tablejump instruction. */
875 #define CASE_VECTOR_MODE Pmode
877 /* Define this if the case instruction expects the table
878 to contain offsets from the address of the table.
879 Do not define this if the table should contain absolute addresses. */
880 /*#define CASE_VECTOR_PC_RELATIVE*/
882 /* Define this if the case instruction drops through after the table
883 when the index is out of range. Don't define it if the case insn
884 jumps to the default label instead. */
885 #define CASE_DROPS_THROUGH
887 /* Specify the tree operation to be used to convert reals to integers. */
888 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
890 /* This is the kind of divide that is easiest to do in the general case. */
891 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
893 /* Define this as 1 if `char' should by default be signed; else as 0.
895 On the H8/300, sign extension is expensive, so we'll say that chars
896 are unsigned. */
897 #define DEFAULT_SIGNED_CHAR 0
899 /* This flag, if defined, says the same insns that convert to a signed fixnum
900 also convert validly to an unsigned one. */
901 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
903 /* Max number of bytes we can move from memory to memory
904 in one reasonably fast instruction. */
905 #define MOVE_MAX (TARGET_H8300H || TARGET_H8300S ? 4 : 2)
906 #define MAX_MOVE_MAX 4
908 /* Define this if zero-extension is slow (more than one real instruction). */
909 /* #define SLOW_ZERO_EXTEND */
911 /* Nonzero if access to memory by bytes is slow and undesirable. */
912 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
914 /* Define if shifts truncate the shift count
915 which implies one can omit a sign-extension or zero-extension
916 of a shift count. */
917 /* #define SHIFT_COUNT_TRUNCATED */
919 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
920 is done just by pretending it is already truncated. */
921 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
923 /* Specify the machine mode that pointers have.
924 After generation of rtl, the compiler makes no further distinction
925 between pointers and any other objects of this machine mode. */
926 #define Pmode (TARGET_H8300H || TARGET_H8300S ? SImode : HImode)
928 /* ANSI C types.
929 We use longs for the 300h because ints can be 16 or 32.
930 GCC requires SIZE_TYPE to be the same size as pointers. */
931 #define NO_BUILTIN_SIZE_TYPE
932 #define NO_BUILTIN_PTRDIFF_TYPE
933 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
934 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
936 #define WCHAR_TYPE "short unsigned int"
937 #define WCHAR_TYPE_SIZE 16
938 #define MAX_WCHAR_TYPE_SIZE 16
940 /* A function address in a call instruction
941 is a byte address (for indexing purposes)
942 so give the MEM rtx a byte's mode. */
943 #define FUNCTION_MODE QImode
945 /* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
946 is a valid machine specific attribute for DECL.
947 The attributes in ATTRIBUTES have previously been assigned to DECL. */
948 extern int h8300_valid_machine_decl_attribute ();
949 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
950 h8300_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
952 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
953 LENGTH += h8300_adjust_insn_length (INSN, LENGTH);
955 /* Compute the cost of computing a constant rtl expression RTX
956 whose rtx-code is CODE. The body of this macro is a portion
957 of a switch statement. If the code is computed here,
958 return it with a return statement. Otherwise, break from the switch. */
960 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
961 default: { int _zxy= const_costs(RTX, CODE); \
962 if(_zxy) return _zxy; break;}
964 #define BRANCH_COST 0
966 /* We say that MOD and DIV are so cheap because otherwise we'll
967 generate some really horrible code for division of a power of two. */
969 /* Provide the costs of a rtl expression. This is in the body of a
970 switch on CODE. */
971 /* ??? Shifts need to have a *much* higher cost than this. */
973 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
974 case MOD: \
975 case DIV: \
976 return 60; \
977 case MULT: \
978 return 20; \
979 case ASHIFT: \
980 case ASHIFTRT: \
981 case LSHIFTRT: \
982 case ROTATE: \
983 case ROTATERT: \
984 if (GET_MODE (RTX) == HImode) return 2; \
985 return 8;
987 /* Tell final.c how to eliminate redundant test instructions. */
989 /* Here we define machine-dependent flags and fields in cc_status
990 (see `conditions.h'). No extra ones are needed for the h8300. */
992 /* Store in cc_status the expressions
993 that the condition codes will describe
994 after execution of an instruction whose pattern is EXP.
995 Do not alter them if the instruction would not alter the cc's. */
997 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
999 /* The add insns don't set overflow in a usable way. */
1000 #define CC_OVERFLOW_UNUSABLE 01000
1001 /* The mov,and,or,xor insns don't set carry. That's ok though as the
1002 Z bit is all we need when doing unsigned comparisons on the result of
1003 these insns (since they're always with 0). However, conditions.h has
1004 CC_NO_OVERFLOW defined for this purpose. Rename it to something more
1005 understandable. */
1006 #define CC_NO_CARRY CC_NO_OVERFLOW
1008 /* Control the assembler format that we output. */
1010 #define ASM_IDENTIFY_GCC /* nothing */
1012 /* Output at beginning/end of assembler file. */
1014 #define ASM_FILE_START(FILE) asm_file_start(FILE)
1016 #define ASM_FILE_END(FILE) asm_file_end(FILE)
1018 /* Output to assembler file text saying following lines
1019 may contain character constants, extra white space, comments, etc. */
1021 #define ASM_APP_ON "; #APP\n"
1023 /* Output to assembler file text saying following lines
1024 no longer contain unusual constructs. */
1026 #define ASM_APP_OFF "; #NO_APP\n"
1028 #define FILE_ASM_OP "\t.file\n"
1029 #define IDENT_ASM_OP "\t.ident\n"
1031 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
1032 #define ASM_WORD_OP (TARGET_H8300 ? ".word" : ".long")
1034 /* We define a readonly data section solely to remove readonly data
1035 from the instruction stream. This can improve relaxing in two significant
1036 ways. First it's more likely that references to readonly data
1037 can be done with a 16bit absolute address since they'll be in low
1038 memory. Second, it's more likely that jsr instructions can be
1039 turned into bsr instructions since read-only data is not in the
1040 instruction stream. */
1041 #define READONLY_DATA_SECTION readonly_data
1043 #define TEXT_SECTION_ASM_OP "\t.section .text"
1044 #define DATA_SECTION_ASM_OP "\t.section .data"
1045 #define BSS_SECTION_ASM_OP "\t.section .bss"
1046 #define INIT_SECTION_ASM_OP "\t.section .init"
1047 #define CTORS_SECTION_ASM_OP "\t.section .ctors"
1048 #define DTORS_SECTION_ASM_OP "\t.section .dtors"
1049 #define READONLY_DATA_SECTION_ASM_OP "\t.section .rodata"
1051 #define EXTRA_SECTIONS in_ctors, in_dtors, in_readonly_data
1053 #define EXTRA_SECTION_FUNCTIONS \
1055 void \
1056 ctors_section() \
1058 if (in_section != in_ctors) \
1060 fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
1061 in_section = in_ctors; \
1065 void \
1066 dtors_section() \
1068 if (in_section != in_dtors) \
1070 fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
1071 in_section = in_dtors; \
1075 void \
1076 readonly_data() \
1078 if (in_section != in_readonly_data) \
1080 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP);\
1081 in_section = in_readonly_data; \
1087 #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1088 do { ctors_section(); \
1089 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1091 #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1092 do { dtors_section(); \
1093 fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)
1095 #undef DO_GLOBAL_CTORS_BODY
1096 #define DO_GLOBAL_CTORS_BODY \
1098 typedef (*pfunc)(); \
1099 extern pfunc __ctors[]; \
1100 extern pfunc __ctors_end[]; \
1101 pfunc *p; \
1102 for (p = __ctors_end; p > __ctors; ) \
1104 (*--p)(); \
1108 #undef DO_GLOBAL_DTORS_BODY
1109 #define DO_GLOBAL_DTORS_BODY \
1111 typedef (*pfunc)(); \
1112 extern pfunc __dtors[]; \
1113 extern pfunc __dtors_end[]; \
1114 pfunc *p; \
1115 for (p = __dtors; p < __dtors_end; p++) \
1117 (*p)(); \
1121 #define TINY_DATA_NAME_P(NAME) (*(NAME) == '*')
1123 /* If we are referencing a function that is supposed to be called
1124 through the function vector, the SYMBOL_REF_FLAG in the rtl
1125 so the call patterns can generate the correct code. */
1126 #define ENCODE_SECTION_INFO(DECL) \
1127 if (TREE_CODE (DECL) == FUNCTION_DECL \
1128 && h8300_funcvec_function_p (DECL)) \
1129 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
1130 else if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
1131 && TREE_CODE (DECL) == VAR_DECL \
1132 && h8300_eightbit_data_p (DECL)) \
1133 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
1134 else if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
1135 && TREE_CODE (DECL) == VAR_DECL \
1136 && h8300_tiny_data_p (DECL)) \
1137 h8300_encode_label (DECL);
1139 /* Store the user-specified part of SYMBOL_NAME in VAR.
1140 This is sort of inverse to ENCODE_SECTION_INFO. */
1141 #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1142 (VAR) = (SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' || (SYMBOL_NAME)[0] == '@');
1144 /* How to refer to registers in assembler output.
1145 This sequence is indexed by compiler's hard-register-number (see above). */
1147 #define REGISTER_NAMES \
1148 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "mac", "ap"}
1150 #define ADDITIONAL_REGISTER_NAMES { { "r7", 7 } }
1152 /* How to renumber registers for dbx and gdb.
1153 H8/300 needs no change in the numeration. */
1155 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1157 #define SDB_DEBUGGING_INFO
1158 #define SDB_DELIM "\n"
1160 /* Support -gstabs. */
1162 #include "dbxcoff.h"
1164 /* Override definition in dbxcoff.h. */
1165 /* Generate a blank trailing N_SO to mark the end of the .o file, since
1166 we can't depend upon the linker to mark .o file boundaries with
1167 embedded stabs. */
1169 #undef DBX_OUTPUT_MAIN_SOURCE_FILE_END
1170 #define DBX_OUTPUT_MAIN_SOURCE_FILE_END(FILE, FILENAME) \
1171 fprintf (FILE, \
1172 "\t.text\n.stabs \"\",%d,0,0,.Letext\n.Letext:\n", N_SO)
1174 /* A C statement to output something to the assembler file to switch to section
1175 NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1176 NULL_TREE. Some target formats do not support arbitrary sections. Do not
1177 define this macro in such cases. */
1179 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \
1180 fprintf (FILE, "\t.section %s\n", NAME)
1182 /* This is how to output the definition of a user-level label named NAME,
1183 such as the label on a static function or variable NAME. */
1185 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1186 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1188 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1190 /* This is how to output a command to make the user-level label named NAME
1191 defined for reference from other files. */
1193 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1194 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1196 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1197 ASM_OUTPUT_LABEL(FILE, NAME)
1199 /* The prefix to add to user-visible assembler symbols. */
1201 #define USER_LABEL_PREFIX "_"
1203 /* This is how to output an internal numbered label where
1204 PREFIX is the class of label and NUM is the number within the class. */
1206 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1207 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1209 /* This is how to store into the string LABEL
1210 the symbol_ref name of an internal numbered label where
1211 PREFIX is the class of label and NUM is the number within the class.
1212 This is suitable for output with `assemble_name'. */
1214 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1215 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1217 /* This is how to output an assembler line defining a `double' constant.
1218 It is .dfloat or .gfloat, depending. */
1220 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1221 do { char dstr[30]; \
1222 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1223 fprintf (FILE, "\t.double %s\n", dstr); \
1224 } while (0)
1227 /* This is how to output an assembler line defining a `float' constant. */
1228 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1229 do { char dstr[30]; \
1230 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1231 fprintf (FILE, "\t.float %s\n", dstr); \
1232 } while (0)
1234 /* This is how to output an assembler line defining an `int' constant. */
1236 #define ASM_OUTPUT_INT(FILE, VALUE) \
1237 ( fprintf (FILE, "\t.long "), \
1238 output_addr_const (FILE, (VALUE)), \
1239 fprintf (FILE, "\n"))
1241 /* Likewise for `char' and `short' constants. */
1243 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1244 ( fprintf (FILE, "\t.word "), \
1245 output_addr_const (FILE, (VALUE)), \
1246 fprintf (FILE, "\n"))
1248 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1249 ( fprintf (FILE, "\t.byte "), \
1250 output_addr_const (FILE, (VALUE)), \
1251 fprintf (FILE, "\n"))
1253 /* This is how to output an assembler line for a numeric constant byte. */
1254 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1255 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1257 /* This is how to output an insn to push a register on the stack.
1258 It need not be very fast code. */
1260 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1261 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1263 /* This is how to output an insn to pop a register from the stack.
1264 It need not be very fast code. */
1266 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1267 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1269 /* This is how to output an element of a case-vector that is absolute. */
1271 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1272 asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)
1274 /* This is how to output an element of a case-vector that is relative. */
1276 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1277 fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1279 /* This is how to output an assembler line
1280 that says to advance the location counter
1281 to a multiple of 2**LOG bytes. */
1283 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1284 if ((LOG) != 0) \
1285 fprintf (FILE, "\t.align %d\n", (LOG))
1287 /* This is how to output an assembler line
1288 that says to advance the location counter by SIZE bytes. */
1290 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1291 fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)
1293 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1294 fprintf (FILE, "\t.space %d\n", (SIZE))
1296 /* This says how to output an assembler line
1297 to define a global common symbol. */
1299 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1300 ( fputs ("\t.comm ", (FILE)), \
1301 assemble_name ((FILE), (NAME)), \
1302 fprintf ((FILE), ",%d\n", (SIZE)))
1304 /* This says how to output the assembler to define a global
1305 uninitialized but not common symbol.
1306 Try to use asm_output_bss to implement this macro. */
1308 #define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
1309 asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
1311 /* This says how to output an assembler line
1312 to define a local common symbol. */
1314 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1315 ( fputs ("\t.lcomm ", (FILE)), \
1316 assemble_name ((FILE), (NAME)), \
1317 fprintf ((FILE), ",%d\n", (SIZE)))
1319 /* Store in OUTPUT a string (made with alloca) containing
1320 an assembler-name for a local static variable named NAME.
1321 LABELNO is an integer which is different for each call. */
1323 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1324 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1325 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1327 /* Define the parentheses used to group arithmetic operations
1328 in assembler code. */
1330 #define ASM_OPEN_PAREN "("
1331 #define ASM_CLOSE_PAREN ")"
1333 /* Define results of standard character escape sequences. */
1334 #define TARGET_BELL 007
1335 #define TARGET_BS 010
1336 #define TARGET_TAB 011
1337 #define TARGET_NEWLINE 012
1338 #define TARGET_VT 013
1339 #define TARGET_FF 014
1340 #define TARGET_CR 015
1342 /* Print an instruction operand X on file FILE.
1343 look in h8300.c for details */
1345 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1346 ((CODE) == '#')
1348 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1350 /* Print a memory operand whose address is X, on file FILE.
1351 This uses a function in h8300.c. */
1353 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1355 /* Define this macro if you want to implement any pragmas. If defined, it
1356 should be a C expression to be executed when #pragma is seen. The
1357 argument STREAM is the stdio input stream from which the source
1358 text can be read. CH is the first character after the #pragma. The
1359 result of the expression is the terminating character found
1360 (newline or EOF). */
1361 #define HANDLE_PRAGMA(FILE, NODE) handle_pragma (FILE, NODE)
1363 #define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)
1365 /* Define this macro if GNU CC should generate calls to the System V
1366 (and ANSI C) library functions `memcpy' and `memset' rather than
1367 the BSD functions `bcopy' and `bzero'. */
1369 #define TARGET_MEM_FUNCTIONS 1
1371 #define MULHI3_LIBCALL "__mulhi3"
1372 #define DIVHI3_LIBCALL "__divhi3"
1373 #define UDIVHI3_LIBCALL "__udivhi3"
1374 #define MODHI3_LIBCALL "__modhi3"
1375 #define UMODHI3_LIBCALL "__umodhi3"
1377 /* Perform target dependent optabs initialization. */
1379 #define INIT_TARGET_OPTABS \
1380 do { \
1381 smul_optab->handlers[(int) HImode].libfunc \
1382 = gen_rtx_SYMBOL_REF (Pmode, MULHI3_LIBCALL); \
1383 sdiv_optab->handlers[(int) HImode].libfunc \
1384 = gen_rtx_SYMBOL_REF (Pmode, DIVHI3_LIBCALL); \
1385 udiv_optab->handlers[(int) HImode].libfunc \
1386 = gen_rtx_SYMBOL_REF (Pmode, UDIVHI3_LIBCALL); \
1387 smod_optab->handlers[(int) HImode].libfunc \
1388 = gen_rtx_SYMBOL_REF (Pmode, MODHI3_LIBCALL); \
1389 umod_optab->handlers[(int) HImode].libfunc \
1390 = gen_rtx_SYMBOL_REF (Pmode, UMODHI3_LIBCALL); \
1391 } while (0)
1393 #define MOVE_RATIO 3
1395 /* Declarations for functions used in insn-output.c. */
1396 char *emit_a_shift ();
1397 int h8300_funcvec_function_p ();
1398 char *output_adds_subs ();
1399 char * output_simode_bld ();