Import final gcc2 snapshot (990109)
[official-gcc.git] / gcc / config / fx80 / fx80.h
blobaa9abf5bf1a74281d8342fbd22905b304d45c26a
1 /* Definitions of target machine for GNU compiler. Alliant FX version.
2 Copyright (C) 1989, 93, 94, 95, 96, 1998 Free Software Foundation, Inc.
3 Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu)
4 and Joe Weening (weening@gang-of-four.stanford.edu).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* This file is based on m68k.h, simplified by removing support for
25 the Sun FPA and other things not applicable to the Alliant. Some
26 remnants of these features remain. */
28 /* Names to predefine in the preprocessor for this target machine. */
30 #define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix -Asystem(unix) -Acpu(m68k) -Amachine(m68k)"
32 /* Print subsidiary information on the compiler version in use. */
34 #define TARGET_VERSION fprintf (stderr, " (Alliant)");
36 /* Run-time compilation parameters selecting different hardware
37 subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs
38 are no longer supported.) The Alliant CE is 68020-compatible, and
39 also has floating point, vector and concurrency instructions.
41 Although the IP doesn't have floating point, it emulates it in the
42 operating system. Using this generally is faster than running code
43 compiled with -msoft-float, because the soft-float code still uses
44 (simulated) FP registers and ends up emulating several fmove{s,d}
45 instructions per call. So I don't recommend using soft-float for
46 any Alliant code. -- JSW
49 extern int target_flags;
51 /* Macros used in the machine description to test the flags. */
53 /* Compile for a 68020 (not a 68000 or 68010). */
54 #define TARGET_68020 (target_flags & 1)
55 /* Compile CE insns for floating point (not library calls). */
56 #define TARGET_CE (target_flags & 2)
57 /* Compile using 68020 bitfield insns. */
58 #define TARGET_BITFIELD (target_flags & 4)
59 /* Compile with 16-bit `int'. */
60 #define TARGET_SHORT (target_flags & 040)
62 /* Default 3 means compile 68020 and CE instructions. We don't use
63 bitfield instructions because there appears to be a bug in the
64 implementation of bfins on the CE. */
66 #define TARGET_DEFAULT 3
68 /* Define __HAVE_CE__ in preprocessor according to the -m flags.
69 This will control the use of inline FP insns in certain macros.
70 Also inform the program which CPU this is for. */
72 #if TARGET_DEFAULT & 02
74 /* -mce is the default */
75 #define CPP_SPEC \
76 "%{!msoft-float:-D__HAVE_CE__ }\
77 %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
79 #else
81 /* -msoft-float is the default */
82 #define CPP_SPEC \
83 "%{mce:-D__HAVE_CE__ }\
84 %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
86 #endif
88 /* Link with libg.a when debugging, for dbx's sake. */
90 #define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} "
92 /* Make the linker remove temporary labels, since the Alliant assembler
93 doesn't. */
95 #define LINK_SPEC "-X"
97 /* Every structure or union's size must be a multiple of 2 bytes. */
99 #define STRUCTURE_SIZE_BOUNDARY 16
101 /* This is BSD, so it wants DBX format. */
103 #define DBX_DEBUGGING_INFO
105 /* Macro to define tables used to set the flags.
106 This is a list in braces of pairs in braces,
107 each pair being { "NAME", VALUE }
108 where VALUE is the bits to set or minus the bits to clear.
109 An empty string NAME is used to identify the default VALUE. */
111 #define TARGET_SWITCHES \
112 { { "68020", 5}, \
113 { "c68020", 5}, \
114 { "bitfield", 4}, \
115 { "68000", -7}, \
116 { "c68000", -7}, \
117 { "soft-float", -2}, \
118 { "nobitfield", -4}, \
119 { "short", 040}, \
120 { "noshort", -040}, \
121 { "", TARGET_DEFAULT}}
123 /* target machine storage layout */
125 /* Define this if most significant bit is lowest numbered
126 in instructions that operate on numbered bit-fields.
127 This is true for 68020 insns such as bfins and bfexts.
128 We make it true always by avoiding using the single-bit insns
129 except in special cases with constant bit numbers. */
130 #define BITS_BIG_ENDIAN 1
132 /* Define this if most significant byte of a word is the lowest numbered. */
133 /* That is true on the 68000. */
134 #define BYTES_BIG_ENDIAN 1
136 /* Define this if most significant word of a multiword number is the lowest
137 numbered. */
138 /* For 68000 we can decide arbitrarily
139 since there are no machine instructions for them. */
140 #define WORDS_BIG_ENDIAN 0
142 /* number of bits in an addressable storage unit */
143 #define BITS_PER_UNIT 8
145 /* Width in bits of a "word", which is the contents of a machine register.
146 Note that this is not necessarily the width of data type `int';
147 if using 16-bit ints on a 68000, this would still be 32.
148 But on a machine with 16-bit registers, this would be 16. */
149 #define BITS_PER_WORD 32
151 /* Width of a word, in units (bytes). */
152 #define UNITS_PER_WORD 4
154 /* Width in bits of a pointer.
155 See also the macro `Pmode' defined below. */
156 #define POINTER_SIZE 32
158 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
159 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
161 /* Boundary (in *bits*) on which stack pointer should be aligned. */
162 #define STACK_BOUNDARY 16
164 /* Allocation boundary (in *bits*) for the code of a function. */
165 #define FUNCTION_BOUNDARY 16
167 /* Alignment of field after `int : 0' in a structure. */
168 #define EMPTY_FIELD_BOUNDARY 16
170 /* No data type wants to be aligned rounder than this. */
171 #define BIGGEST_ALIGNMENT 16
173 /* Set this non-zero if move instructions will actually fail to work
174 when given unaligned data. */
175 #define STRICT_ALIGNMENT 1
177 /* Define number of bits in most basic integer type.
178 (If undefined, default is BITS_PER_WORD). */
180 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
182 /* Define these to avoid dependence on meaning of `int'.
183 Note that WCHAR_TYPE_SIZE is used in cexp.y,
184 where TARGET_SHORT is not available. */
186 #define WCHAR_TYPE "long int"
187 #define WCHAR_TYPE_SIZE 32
189 /* Standard register usage. */
191 /* Number of actual hardware registers.
192 The hardware registers are assigned numbers for the compiler
193 from 0 to just below FIRST_PSEUDO_REGISTER.
194 All registers that the compiler knows about must be given numbers,
195 even those that are not normally considered general registers.
196 For the Alliant, we give the data registers numbers 0-7,
197 the address registers numbers 010-017,
198 and the floating point registers numbers 020-027. */
199 #define FIRST_PSEUDO_REGISTER 24
201 /* 1 for registers that have pervasive standard uses
202 and are not available for the register allocator.
203 On the Alliant, these are a0 (argument pointer),
204 a6 (frame pointer) and a7 (stack pointer). */
205 #define FIXED_REGISTERS \
206 {0, 0, 0, 0, 0, 0, 0, 0, \
207 1, 0, 0, 0, 0, 0, 1, 1, \
208 0, 0, 0, 0, 0, 0, 0, 0 }
210 /* 1 for registers not available across function calls.
211 These must include the FIXED_REGISTERS and also any
212 registers that can be used without being saved.
213 The latter must include the registers where values are returned
214 and the register where structure-value addresses are passed.
215 Aside from that, you can include as many other registers as you like.
216 The Alliant calling sequence allows a function to use any register,
217 so we include them all here. */
219 #define CALL_USED_REGISTERS \
220 {1, 1, 1, 1, 1, 1, 1, 1, \
221 1, 1, 1, 1, 1, 1, 1, 1, \
222 1, 1, 1, 1, 1, 1, 1, 1 }
224 /* Return number of consecutive hard regs needed starting at reg REGNO
225 to hold something of mode MODE.
226 This is ordinarily the length in words of a value of mode MODE
227 but can be less for certain modes in special long registers.
229 On the Alliant, ordinary registers hold 32 bits worth;
230 for the FP registers, a single register is always enough for
231 any floating-point value. */
232 #define HARD_REGNO_NREGS(REGNO, MODE) \
233 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
234 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
236 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
237 On the Alliant, the cpu registers can hold any mode but the FP registers
238 can hold only floating point. */
239 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
240 ((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \
241 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
243 /* Value is 1 if it is a good idea to tie two pseudo registers
244 when one has mode MODE1 and one has mode MODE2.
245 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
246 for any hard reg, then this must be 0 for correct output. */
247 #define MODES_TIEABLE_P(MODE1, MODE2) \
248 (((MODE1) == SFmode || (MODE1) == DFmode \
249 || (MODE1) == SCmode || (MODE1) == DCmode) \
250 == ((MODE2) == SFmode || (MODE2) == DFmode \
251 || (MODE2) == SCmode || (MODE2) == DCmode))
253 /* Specify the registers used for certain standard purposes.
254 The values of these macros are register numbers. */
256 /* m68000 pc isn't overloaded on a register. */
257 /* #define PC_REGNUM */
259 /* Register to use for pushing function arguments. */
260 #define STACK_POINTER_REGNUM 15
262 /* Base register for access to local variables of the function. */
263 #define FRAME_POINTER_REGNUM 14
265 /* Value should be nonzero if functions must have frame pointers.
266 Zero means the frame pointer need not be set up (and parms
267 may be accessed via the stack pointer) in functions that seem suitable.
268 This is computed in `reload', in reload1.c. */
269 /* Set for now on Alliant until we find a way to make this work with
270 their calling sequence. */
271 #define FRAME_POINTER_REQUIRED 1
273 /* Base register for access to arguments of the function. */
274 #define ARG_POINTER_REGNUM 8
276 /* Register in which static-chain is passed to a function. */
277 #define STATIC_CHAIN_REGNUM 10
279 /* Register in which address to store a structure value
280 is passed to a function. */
281 #define STRUCT_VALUE_REGNUM 9
283 /* Define the classes of registers for register constraints in the
284 machine description. Also define ranges of constants.
286 One of the classes must always be named ALL_REGS and include all hard regs.
287 If there is more than one class, another class must be named NO_REGS
288 and contain no registers.
290 The name GENERAL_REGS must be the name of a class (or an alias for
291 another name such as ALL_REGS). This is the class of registers
292 that is allowed by "g" or "r" in a register constraint.
293 Also, registers outside this class are allocated only when
294 instructions express preferences for them.
296 The classes must be numbered in nondecreasing order; that is,
297 a larger-numbered class must never be contained completely
298 in a smaller-numbered class.
300 For any two classes, it is very desirable that there be another
301 class that represents their union. */
303 /* The Alliant has three kinds of registers, so eight classes would be
304 a complete set. One of them is not needed. */
306 enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS,
307 ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
309 #define N_REG_CLASSES (int) LIM_REG_CLASSES
311 /* Give names of register classes as strings for dump file. */
313 #define REG_CLASS_NAMES \
314 { "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \
315 "ADDR_REGS", "GENERAL_REGS", "ALL_REGS" }
317 /* Define which registers fit in which classes.
318 This is an initializer for a vector of HARD_REG_SET
319 of length N_REG_CLASSES. */
321 #define REG_CLASS_CONTENTS \
323 0, /* NO_REGS */ \
324 0x00ff0000, /* FP_REGS */ \
325 0x000000ff, /* DATA_REGS */ \
326 0x00ff00ff, /* DATA_OR_FP_REGS */ \
327 0x0000ff00, /* ADDR_REGS */ \
328 0x0000ffff, /* GENERAL_REGS */ \
329 0x00ffffff /* ALL_REGS */ \
332 /* The same information, inverted:
333 Return the class number of the smallest class containing
334 reg number REGNO. This could be a conditional expression
335 or could index an array. */
337 extern enum reg_class regno_reg_class[];
338 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
340 /* The class value for index registers, and the one for base regs. */
342 #define INDEX_REG_CLASS GENERAL_REGS
343 #define BASE_REG_CLASS ADDR_REGS
345 /* Get reg_class from a letter such as appears in the machine description. */
347 #define REG_CLASS_FROM_LETTER(C) \
348 ((C) == 'a' ? ADDR_REGS : \
349 ((C) == 'd' ? DATA_REGS : \
350 ((C) == 'f' ? FP_REGS : \
351 NO_REGS)))
353 /* The letters I, J, K, L and M in a register constraint string
354 can be used to stand for particular ranges of immediate operands.
355 This macro defines what the ranges are.
356 C is the letter, and VALUE is a constant value.
357 Return 1 if VALUE is in the range specified by C.
359 For the 68000, `I' is used for the range 1 to 8
360 allowed as immediate shift counts and in addq.
361 `J' is used for the range of signed numbers that fit in 16 bits.
362 `K' is for numbers that moveq can't handle.
363 `L' is for range -8 to -1, range of values that can be added with subq. */
365 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
366 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
367 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
368 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
369 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
371 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
373 /* Given an rtx X being reloaded into a reg required to be
374 in class CLASS, return the class of reg to actually use.
375 In general this is just CLASS; but on some machines
376 in some cases it is preferable to use a more restrictive class.
377 On the 68000 series, use a data reg if possible when the
378 value is a constant in the range where moveq could be used
379 and we ensure that QImodes are reloaded into data regs. */
381 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
382 ((GET_CODE (X) == CONST_INT \
383 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
384 && (CLASS) != ADDR_REGS) \
385 ? DATA_REGS \
386 : GET_MODE (X) == QImode \
387 ? DATA_REGS \
388 : (CLASS))
390 /* Return the maximum number of consecutive registers
391 needed to represent mode MODE in a register of class CLASS. */
392 /* On the 68000, this is the size of MODE in words,
393 except in the FP regs, where a single reg is always enough. */
394 #define CLASS_MAX_NREGS(CLASS, MODE) \
395 ((CLASS) == FP_REGS ? 1 \
396 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
398 /* Moves between fp regs and other regs are two insns. */
399 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
400 ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
401 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \
402 ? 4 : 2)
404 /* Stack layout; function entry, exit and calling. */
406 /* Define this if pushing a word on the stack
407 makes the stack pointer a smaller address. */
408 #define STACK_GROWS_DOWNWARD
410 /* Define this if the nominal address of the stack frame
411 is at the high-address end of the local variables;
412 that is, each additional local variable allocated
413 goes at a more negative offset in the frame. */
414 #define FRAME_GROWS_DOWNWARD
416 /* The Alliant uses -fcaller-saves by default. */
417 #define DEFAULT_CALLER_SAVES
419 /* Offset within stack frame to start allocating local variables at.
420 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
421 first local allocated. Otherwise, it is the offset to the BEGINNING
422 of the first local allocated. */
423 #define STARTING_FRAME_OFFSET -4
425 /* If we generate an insn to push BYTES bytes,
426 this says how many the stack pointer really advances by.
427 On the 68000, sp@- in a byte insn really pushes a word. */
428 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
430 /* Offset of first parameter from the argument pointer register value. */
431 #define FIRST_PARM_OFFSET(FNDECL) 0
433 /* Value is the number of bytes of arguments automatically
434 popped when returning from a subroutine call.
435 FUNDECL is the declaration node of the function (as a tree),
436 FUNTYPE is the data type of the function (as a tree),
437 or for a library call it is an identifier node for the subroutine name.
438 SIZE is the number of bytes of arguments passed on the stack.
440 On the Alliant we define this as SIZE and make the calling sequence
441 (in alliant.md) pop the args. This wouldn't be necessary if we
442 could add to the pending stack adjustment the size of the argument
443 descriptors that are pushed after the arguments. */
445 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
447 /* Define how to find the value returned by a function.
448 VALTYPE is the data type of the value (as a tree).
449 If the precise function being called is known, FUNC is its FUNCTION_DECL;
450 otherwise, FUNC is 0. */
452 /* On the Alliant the return value is in FP0 if real, else D0. */
454 #define FUNCTION_VALUE(VALTYPE, FUNC) \
455 (TREE_CODE (VALTYPE) == REAL_TYPE \
456 ? gen_rtx_REG (TYPE_MODE (VALTYPE), 16) \
457 : gen_rtx_REG (TYPE_MODE (VALTYPE), 0))
459 /* Define how to find the value returned by a library function
460 assuming the value has mode MODE. */
462 /* On the Alliant the return value is in FP0 if real, else D0. The
463 Alliant library functions for floating-point emulation return their
464 values both in FP0 and in D0/D1. But since not all libgcc functions
465 return the results of these directly, we cannot assume that D0/D1
466 contain the values we expect on return from a libgcc function. */
468 #define LIBCALL_VALUE(MODE) \
469 (((MODE) == DFmode || (MODE) == SFmode) \
470 ? gen_rtx_REG (MODE, 16) \
471 : gen_rtx_REG (MODE, 0))
473 /* 1 if N is a possible register number for a function value.
474 On the Alliant, D0 and FP0 are the only registers thus used.
475 (No need to mention D1 when used as a pair with D0.) */
477 #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0)
479 /* Define this if PCC uses the nonreentrant convention for returning
480 structure and union values. */
482 #define PCC_STATIC_STRUCT_RETURN
484 /* 1 if N is a possible register number for function argument passing.
485 On the Alliant, no registers are used in this way. */
487 #define FUNCTION_ARG_REGNO_P(N) 0
489 /* Define a data type for recording info about an argument list
490 during the scan of that argument list. This data type should
491 hold all necessary information about the function itself
492 and about the args processed so far, enough to enable macros
493 such as FUNCTION_ARG to determine where the next arg should go.
495 On the Alliant, this is a single integer, which is a number of bytes
496 of arguments scanned so far. */
498 #define CUMULATIVE_ARGS int
500 /* Initialize a variable CUM of type CUMULATIVE_ARGS
501 for a call to a function whose data type is FNTYPE.
502 For a library call, FNTYPE is 0.
504 On the Alliant, the offset starts at 0. */
506 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
507 ((CUM) = 0)
509 /* Update the data in CUM to advance over an argument
510 of mode MODE and data type TYPE.
511 (TYPE is null for libcalls where that information may not be available.) */
513 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
514 ((CUM) += ((MODE) != BLKmode \
515 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
516 : (int_size_in_bytes (TYPE) + 3) & ~3))
518 /* Define where to put the arguments to a function.
519 Value is zero to push the argument on the stack,
520 or a hard register in which to store the argument.
522 MODE is the argument's machine mode.
523 TYPE is the data type of the argument (as a tree).
524 This is null for libcalls where that information may
525 not be available.
526 CUM is a variable of type CUMULATIVE_ARGS which gives info about
527 the preceding args and about the function being called.
528 NAMED is nonzero if this argument is a named parameter
529 (otherwise it is an extra parameter matching an ellipsis). */
531 /* On the Alliant all args are pushed. */
533 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
535 /* For an arg passed partly in registers and partly in memory,
536 this is the number of registers used.
537 For args passed entirely in registers or entirely in memory, zero. */
539 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
541 /* This macro generates the assembly code for function entry.
542 FILE is a stdio stream to output the code to.
543 SIZE is an int: how many units of temporary storage to allocate.
544 Refer to the array `regs_ever_live' to determine which registers
545 to save; `regs_ever_live[I]' is nonzero if register number I
546 is ever used in the function. This macro is responsible for
547 knowing which registers should not be saved even if used.
548 The Alliant uses caller-saves, so this macro is very simple. */
550 #define FUNCTION_PROLOGUE(FILE, SIZE) \
551 { int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \
552 if (frame_pointer_needed) \
554 if (fsize < 0x8000) \
555 fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \
556 else if (TARGET_68020) \
557 fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \
558 else \
559 fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \
560 fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }}
562 /* Output assembler code to FILE to increment profiler label # LABELNO
563 for profiling a function entry. */
565 #define FUNCTION_PROFILER(FILE, LABELNO) \
566 fprintf (FILE, "\tjbsr __mcount_\n")
568 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
569 the stack pointer does not matter. The value is tested only in
570 functions that have frame pointers.
571 No definition is equivalent to always zero. */
573 #define EXIT_IGNORE_STACK 1
575 /* This macro generates the assembly code for function exit,
576 on machines that need it. If FUNCTION_EPILOGUE is not defined
577 then individual return instructions are generated for each
578 return statement. Args are same as for FUNCTION_PROLOGUE.
580 The function epilogue should not depend on the current stack pointer!
581 It should use the frame pointer only. This is mandatory because
582 of alloca; we also take advantage of it to omit stack adjustments
583 before returning. */
585 #define FUNCTION_EPILOGUE(FILE, SIZE) \
586 { if (frame_pointer_needed) \
587 fprintf (FILE, "\tunlk a6\n"); \
588 fprintf (FILE, "\trts\n"); }
590 /* Store in the variable DEPTH the initial difference between the
591 frame pointer reg contents and the stack pointer reg contents,
592 as of the start of the function body. This depends on the layout
593 of the fixed parts of the stack frame and on how registers are saved. */
595 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
597 int regno; \
598 int offset = -4; \
599 for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
600 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
601 offset += 12; \
602 for (regno = 0; regno < 16; regno++) \
603 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
604 offset += 4; \
605 (DEPTH) = offset - ((get_frame_size () + 3) & -4); \
608 /* Addressing modes, and classification of registers for them. */
610 #define HAVE_POST_INCREMENT
611 /* #define HAVE_POST_DECREMENT */
613 #define HAVE_PRE_DECREMENT
614 /* #define HAVE_PRE_INCREMENT */
616 /* Macros to check register numbers against specific register classes. */
618 /* These assume that REGNO is a hard or pseudo reg number.
619 They give nonzero only if REGNO is a hard reg of the suitable class
620 or a pseudo reg currently allocated to a suitable hard reg.
621 Since they use reg_renumber, they are safe only once reg_renumber
622 has been allocated, which happens in local-alloc.c. */
624 #define REGNO_OK_FOR_INDEX_P(REGNO) \
625 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
626 #define REGNO_OK_FOR_BASE_P(REGNO) \
627 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
628 #define REGNO_OK_FOR_DATA_P(REGNO) \
629 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
630 #define REGNO_OK_FOR_FP_P(REGNO) \
631 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
633 /* Now macros that check whether X is a register and also,
634 strictly, whether it is in a specified class.
636 These macros are specific to the 68000, and may be used only
637 in code for printing assembler insns and in conditions for
638 define_optimization. */
640 /* 1 if X is a data register. */
642 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
644 /* 1 if X is an fp register. */
646 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
648 /* 1 if X is an address register */
650 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
652 /* Maximum number of registers that can appear in a valid memory address. */
654 #define MAX_REGS_PER_ADDRESS 2
656 /* Recognize any constant value that is a valid address. */
658 #define CONSTANT_ADDRESS_P(X) \
659 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
660 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
661 || GET_CODE (X) == HIGH)
663 /* Nonzero if the constant value X is a legitimate general operand.
664 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
666 /* Alliant FP instructions don't take immediate operands, so this
667 forces them into memory. */
668 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
670 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
671 and check its validity for a certain class.
672 We have two alternate definitions for each of them.
673 The usual definition accepts all pseudo regs; the other rejects
674 them unless they have been allocated suitable hard regs.
675 The symbol REG_OK_STRICT causes the latter definition to be used.
677 Most source files want to accept pseudo regs in the hope that
678 they will get allocated to the class that the insn wants them to be in.
679 Source files for reload pass need to be strict.
680 After reload, it makes no difference, since pseudo regs have
681 been eliminated by then. */
683 #ifndef REG_OK_STRICT
685 /* Nonzero if X is a hard reg that can be used as an index
686 or if it is a pseudo reg. */
687 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
688 /* Nonzero if X is a hard reg that can be used as a base reg
689 or if it is a pseudo reg. */
690 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
692 #else
694 /* Nonzero if X is a hard reg that can be used as an index. */
695 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
696 /* Nonzero if X is a hard reg that can be used as a base reg. */
697 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
699 #endif
701 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
702 that is a valid memory address for an instruction.
703 The MODE argument is the machine mode for the MEM expression
704 that wants to use this address.
706 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
708 #define INDIRECTABLE_1_ADDRESS_P(X) \
709 (CONSTANT_ADDRESS_P (X) \
710 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
711 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
712 && REG_P (XEXP (X, 0)) \
713 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
714 || (GET_CODE (X) == PLUS \
715 && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
716 && GET_CODE (XEXP (X, 1)) == CONST_INT \
717 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))
719 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
720 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
722 #define GO_IF_INDEXABLE_BASE(X, ADDR) \
723 { if (GET_CODE (X) == LABEL_REF) goto ADDR; \
724 if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; }
726 #define GO_IF_INDEXING(X, ADDR) \
727 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
728 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
729 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
730 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
732 #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
733 { GO_IF_INDEXING (X, ADDR); \
734 if (GET_CODE (X) == PLUS) \
735 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
736 && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
737 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
738 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
739 && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
740 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
742 #define LEGITIMATE_INDEX_REG_P(X) \
743 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
744 || (GET_CODE (X) == SIGN_EXTEND \
745 && GET_CODE (XEXP (X, 0)) == REG \
746 && GET_MODE (XEXP (X, 0)) == HImode \
747 && REG_OK_FOR_INDEX_P (XEXP (X, 0))))
749 #define LEGITIMATE_INDEX_P(X) \
750 (LEGITIMATE_INDEX_REG_P (X) \
751 || (TARGET_68020 && GET_CODE (X) == MULT \
752 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
753 && GET_CODE (XEXP (X, 1)) == CONST_INT \
754 && (INTVAL (XEXP (X, 1)) == 2 \
755 || INTVAL (XEXP (X, 1)) == 4 \
756 || INTVAL (XEXP (X, 1)) == 8)))
758 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
759 { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
760 GO_IF_INDEXED_ADDRESS (X, ADDR); }
762 /* Try machine-dependent ways of modifying an illegitimate address
763 to be legitimate. If we find one, return the new, valid address.
764 This macro is used in only one place: `memory_address' in explow.c.
766 OLDX is the address as it was before break_out_memory_refs was called.
767 In some cases it is useful to look at this to decide what needs to be done.
769 MODE and WIN are passed so that this macro can use
770 GO_IF_LEGITIMATE_ADDRESS.
772 It is always safe for this macro to do nothing. It exists to recognize
773 opportunities to optimize the output.
775 For the 68000, we handle X+REG by loading X into a register R and
776 using R+REG. R will go in an address reg and indexing will be used.
777 However, if REG is a broken-out memory address or multiplication,
778 nothing needs to be done because REG can certainly go in an address reg. */
780 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
781 { register int ch = (X) != (OLDX); \
782 if (GET_CODE (X) == PLUS) \
783 { if (GET_CODE (XEXP (X, 0)) == MULT) \
784 ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
785 if (GET_CODE (XEXP (X, 1)) == MULT) \
786 ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
787 if (ch && GET_CODE (XEXP (X, 1)) == REG \
788 && GET_CODE (XEXP (X, 0)) == REG) \
789 goto WIN; \
790 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
791 if (GET_CODE (XEXP (X, 0)) == REG \
792 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
793 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
794 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
795 { register rtx temp = gen_reg_rtx (Pmode); \
796 register rtx val = force_operand (XEXP (X, 1), 0); \
797 emit_move_insn (temp, val); \
798 XEXP (X, 1) = temp; \
799 goto WIN; } \
800 else if (GET_CODE (XEXP (X, 1)) == REG \
801 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
802 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
803 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
804 { register rtx temp = gen_reg_rtx (Pmode); \
805 register rtx val = force_operand (XEXP (X, 0), 0); \
806 emit_move_insn (temp, val); \
807 XEXP (X, 0) = temp; \
808 goto WIN; }}}
810 /* Go to LABEL if ADDR (a legitimate address expression)
811 has an effect that depends on the machine mode it is used for.
812 On the 68000, only predecrement and postincrement address depend thus
813 (the amount of decrement or increment being the length of the operand). */
815 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
816 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
818 /* Specify the machine mode that this machine uses
819 for the index in the tablejump instruction. */
820 #define CASE_VECTOR_MODE HImode
822 /* Define this if the tablejump instruction expects the table
823 to contain offsets from the address of the table.
824 Do not define this if the table should contain absolute addresses. */
825 #define CASE_VECTOR_PC_RELATIVE
827 /* Specify the tree operation to be used to convert reals to integers. */
828 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
830 /* This is the kind of divide that is easiest to do in the general case. */
831 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
833 /* Define this as 1 if `char' should by default be signed; else as 0. */
834 #define DEFAULT_SIGNED_CHAR 1
836 /* Max number of bytes we can move from memory to memory
837 in one reasonably fast instruction. */
838 #define MOVE_MAX 4
840 /* Define this if zero-extension is slow (more than one real instruction). */
841 #define SLOW_ZERO_EXTEND
843 /* Nonzero if access to memory by bytes is slow and undesirable. */
844 #define SLOW_BYTE_ACCESS 0
846 /* Define this to be nonzero if shift instructions ignore all but the low-order
847 few bits. */
848 #define SHIFT_COUNT_TRUNCATED 1
850 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
851 is done just by pretending it is already truncated. */
852 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
854 /* We assume that the store-condition-codes instructions store 0 for false
855 and some other value for true. This is the value stored for true. */
857 #define STORE_FLAG_VALUE -1
859 /* When a prototype says `char' or `short', really pass an `int'. */
860 #define PROMOTE_PROTOTYPES
862 /* Specify the machine mode that pointers have.
863 After generation of rtl, the compiler makes no further distinction
864 between pointers and any other objects of this machine mode. */
865 #define Pmode SImode
867 /* A function address in a call instruction
868 is a byte address (for indexing purposes)
869 so give the MEM rtx a byte's mode. */
870 #define FUNCTION_MODE QImode
872 /* Compute the cost of computing a constant rtl expression RTX
873 whose rtx-code is CODE. The body of this macro is a portion
874 of a switch statement. If the code is computed here,
875 return it with a return statement. Otherwise, break from the switch. */
877 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
878 case CONST_INT: \
879 /* Constant zero is super cheap due to clr instruction. */ \
880 if (RTX == const0_rtx) return 0; \
881 if ((unsigned) INTVAL (RTX) < 077) return 1; \
882 case CONST: \
883 case LABEL_REF: \
884 case SYMBOL_REF: \
885 return 3; \
886 case CONST_DOUBLE: \
887 return 5;
889 /* Check a `double' value for validity for a particular machine mode.
890 This is defined to avoid crashes outputting certain constants. */
892 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
893 if (OVERFLOW) \
894 (D) = 3.4028234663852890e+38; \
895 else if ((MODE) == SFmode) \
897 if ((d) > 3.4028234663852890e+38) \
898 (OVERFLOW) = 1, (D) = 3.4028234663852890e+38; \
899 else if ((D) < -3.4028234663852890e+38) \
900 (OVERFLOW) = 1, (D) = -3.4028234663852890e+38; \
901 else if (((D) > 0) && ((D) < 1.1754943508222873e-38)) \
902 (OVERFLOW) = 1, (D) = 0.0; \
903 else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \
904 (OVERFLOW) = 1, (D) = 0.0; \
907 /* Tell final.c how to eliminate redundant test instructions. */
909 /* Here we define machine-dependent flags and fields in cc_status
910 (see `conditions.h'). */
912 /* On the Alliant, floating-point instructions do not modify the
913 ordinary CC register. Only fcmp and ftest instructions modify the
914 floating-point CC register. We should actually keep track of what
915 both kinds of CC registers contain, but for now we only consider
916 the most recent instruction that has set either register. */
918 /* Set if the cc value came from a floating point test, so a floating
919 point conditional branch must be output. */
920 #define CC_IN_FP 04000
922 /* Store in cc_status the expressions
923 that the condition codes will describe
924 after execution of an instruction whose pattern is EXP.
925 Do not alter them if the instruction would not alter the cc's. */
927 /* On the 68000, all the insns to store in an address register
928 fail to set the cc's. However, in some cases these instructions
929 can make it possibly invalid to use the saved cc's. In those
930 cases we clear out some or all of the saved cc's so they won't be used. */
932 #define NOTICE_UPDATE_CC(EXP, INSN) \
934 if (GET_CODE (EXP) == SET) \
935 { if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \
936 { if (cc_status.value1 \
937 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
938 cc_status.value1 = 0; \
939 if (cc_status.value2 \
940 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
941 cc_status.value2 = 0; } \
942 else if (GET_CODE (SET_SRC (EXP)) == MOD \
943 || GET_CODE (SET_SRC (EXP)) == UMOD \
944 || (GET_CODE (SET_SRC (EXP)) == TRUNCATE \
945 && (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \
946 || GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \
947 /* The swap insn produces cc's that don't correspond to the \
948 result. */ \
949 CC_STATUS_INIT; \
950 else if (SET_DEST (EXP) != cc0_rtx \
951 && (FP_REG_P (SET_SRC (EXP)) \
952 || GET_CODE (SET_SRC (EXP)) == FIX \
953 || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \
954 || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \
955 { CC_STATUS_INIT; } \
956 /* A pair of move insns doesn't produce a useful overall cc. */ \
957 else if (!FP_REG_P (SET_DEST (EXP)) \
958 && !FP_REG_P (SET_SRC (EXP)) \
959 && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \
960 && (GET_CODE (SET_SRC (EXP)) == REG \
961 || GET_CODE (SET_SRC (EXP)) == MEM \
962 || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\
963 { CC_STATUS_INIT; } \
964 else if (GET_CODE (SET_SRC (EXP)) == CALL) \
965 { CC_STATUS_INIT; } \
966 else if (XEXP (EXP, 0) != pc_rtx) \
967 { cc_status.flags = 0; \
968 cc_status.value1 = XEXP (EXP, 0); \
969 cc_status.value2 = XEXP (EXP, 1); } } \
970 else if (GET_CODE (EXP) == PARALLEL \
971 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
973 if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \
974 CC_STATUS_INIT; \
975 else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \
976 { cc_status.flags = 0; \
977 cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \
978 cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \
979 else CC_STATUS_INIT; \
980 if (cc_status.value2 != 0 \
981 && ADDRESS_REG_P (cc_status.value2) \
982 && GET_MODE (cc_status.value2) == QImode) \
983 CC_STATUS_INIT; \
984 if (cc_status.value2 != 0) \
985 switch (GET_CODE (cc_status.value2)) \
986 { case PLUS: case MINUS: case MULT: \
987 case DIV: case UDIV: case MOD: case UMOD: case NEG: \
988 case ASHIFT: case ASHIFTRT: case LSHIFTRT: \
989 case ROTATE: case ROTATERT: \
990 if (GET_MODE (cc_status.value2) != VOIDmode) \
991 cc_status.flags |= CC_NO_OVERFLOW; \
992 break; \
993 case ZERO_EXTEND: \
994 /* (SET r1 (ZERO_EXTEND r2)) on this machine
995 ends with a move insn moving r2 in r2's mode.
996 Thus, the cc's are set for r2.
997 This can set N bit spuriously. */ \
998 cc_status.flags |= CC_NOT_NEGATIVE; } \
999 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
1000 && cc_status.value2 \
1001 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1002 cc_status.value2 = 0; \
1003 if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \
1004 || (cc_status.value2 && FP_REG_P (cc_status.value2))) \
1005 cc_status.flags = CC_IN_FP; }
1007 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1008 { if (cc_prev_status.flags & CC_IN_FP) \
1009 return FLOAT; \
1010 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1011 return NO_OV; \
1012 return NORMAL; }
1014 /* Control the assembler format that we output. */
1016 /* Output at beginning of assembler file. */
1018 #define ASM_FILE_START(FILE) \
1019 fprintf (FILE, "#NO_APP\n");
1021 /* Output to assembler file text saying following lines
1022 may contain character constants, extra white space, comments, etc. */
1024 #define ASM_APP_ON "#APP\n"
1026 /* Output to assembler file text saying following lines
1027 no longer contain unusual constructs. */
1029 #define ASM_APP_OFF "#NO_APP\n"
1031 /* Output before read-only data. */
1033 #define TEXT_SECTION_ASM_OP ".text"
1035 /* Output before writable data. */
1037 #define DATA_SECTION_ASM_OP ".data"
1039 /* How to refer to registers in assembler output.
1040 This sequence is indexed by compiler's hard-register-number (see above). */
1042 #define REGISTER_NAMES \
1043 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1044 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1045 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1047 /* How to renumber registers for dbx and gdb.
1048 On the Sun-3, the floating point registers have numbers
1049 18 to 25, not 16 to 23 as they do in the compiler. */
1050 /* (On the Alliant, dbx isn't working yet at all. */
1052 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1054 /* This is how to output the definition of a user-level label named NAME,
1055 such as the label on a static function or variable NAME. */
1057 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1058 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1060 /* This is how to output a command to make the user-level label named NAME
1061 defined for reference from other files. */
1063 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1064 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1066 /* The prefix to add to user-visible assembler symbols. */
1068 #define USER_LABEL_PREFIX "_"
1070 /* This is how to output an internal numbered label where
1071 PREFIX is the class of label and NUM is the number within the class. */
1073 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1074 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1076 /* This is how to store into the string LABEL
1077 the symbol_ref name of an internal numbered label where
1078 PREFIX is the class of label and NUM is the number within the class.
1079 This is suitable for output with `assemble_name'. */
1081 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1082 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1084 /* This is how to output an assembler line defining a `double' constant. */
1086 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1087 do { union { double d; long v[2];} tem; \
1088 tem.d = (VALUE); \
1089 fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \
1090 } while (0)
1092 /* This is how to output an assembler line defining a `float' constant. */
1094 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1095 do { union { float f; long l;} tem; \
1096 tem.f = (VALUE); \
1097 fprintf (FILE, "\t.long 0x%x\n", tem.l); \
1098 } while (0)
1100 /* This is how to output an assembler line defining an `int' constant. */
1102 #define ASM_OUTPUT_INT(FILE,VALUE) \
1103 ( fprintf (FILE, "\t.long "), \
1104 output_addr_const (FILE, (VALUE)), \
1105 fprintf (FILE, "\n"))
1107 /* Likewise for `char' and `short' constants. */
1109 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1110 ( fprintf (FILE, "\t.word "), \
1111 output_addr_const (FILE, (VALUE)), \
1112 fprintf (FILE, "\n"))
1114 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1115 ( fprintf (FILE, "\t.byte "), \
1116 output_addr_const (FILE, (VALUE)), \
1117 fprintf (FILE, "\n"))
1119 #define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \
1120 do { int i; unsigned char *pp = (unsigned char *) (PTR); \
1121 fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \
1122 for (i = 1; i < (SIZE); ++i, ++pp) { \
1123 if ((i % 8) == 0) \
1124 fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \
1125 else \
1126 fprintf((FILE), ",%d", (unsigned int) *pp); } \
1127 fprintf ((FILE), "\n"); } while (0)
1129 /* This is how to output an assembler line for a numeric constant byte. */
1131 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1132 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1134 /* This is how to output an insn to push a register on the stack.
1135 It need not be very fast code. */
1137 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1138 fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO])
1140 /* This is how to output an insn to pop a register from the stack.
1141 It need not be very fast code. */
1143 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1144 fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO])
1146 /* This is how to output an element of a case-vector that is absolute.
1147 (The 68000 does not use such vectors,
1148 but we must define this macro anyway.) */
1150 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1151 fprintf (FILE, "\t.long L%d\n", VALUE)
1153 /* This is how to output an element of a case-vector that is relative. */
1155 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1156 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1158 /* This is how to output an assembler line
1159 that says to advance the location counter
1160 to a multiple of 2**LOG bytes. */
1162 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1163 if ((LOG) == 1) \
1164 fprintf (FILE, "\t.even\n"); \
1165 else if ((LOG) != 0) \
1166 fprintf (FILE, "\t.align %dn", (LOG));
1168 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1169 fprintf (FILE, "\t. = . + %u\n", (SIZE))
1171 /* This says how to output an assembler line
1172 to define a global common symbol. */
1174 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1175 ( fputs ("\t.comm ", (FILE)), \
1176 assemble_name ((FILE), (NAME)), \
1177 fprintf ((FILE), ",%u\n", (ROUNDED)))
1179 /* This says how to output an assembler line
1180 to define a local common symbol. */
1182 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1183 ( fputs ("\t.lcomm ", (FILE)), \
1184 assemble_name ((FILE), (NAME)), \
1185 fprintf ((FILE), ",%u\n", (ROUNDED)))
1187 /* Store in OUTPUT a string (made with alloca) containing
1188 an assembler-name for a local static variable named NAME.
1189 LABELNO is an integer which is different for each call. */
1191 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1192 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1193 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1195 /* Define the parentheses used to group arithmetic operations
1196 in assembler code. */
1198 #define ASM_OPEN_PAREN "("
1199 #define ASM_CLOSE_PAREN ")"
1201 /* Define results of standard character escape sequences. */
1202 #define TARGET_BELL 007
1203 #define TARGET_BS 010
1204 #define TARGET_TAB 011
1205 #define TARGET_NEWLINE 012
1206 #define TARGET_VT 013
1207 #define TARGET_FF 014
1208 #define TARGET_CR 015
1210 /* Print operand X (an rtx) in assembler syntax to file FILE.
1211 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1212 For `%' followed by punctuation, CODE is the punctuation and X is null.
1214 On the Alliant, we use several CODE characters:
1215 '.' for dot needed in Motorola-style opcode names.
1216 '-' for an operand pushing on the stack:
1217 sp@-, -(sp) or -(%sp) depending on the style of syntax.
1218 '+' for an operand pushing on the stack:
1219 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1220 '@' for a reference to the top word on the stack:
1221 sp@, (sp) or (%sp) depending on the style of syntax.
1222 '#' for an immediate operand prefix (# in MIT and Motorola syntax
1223 but & in SGS syntax).
1224 '!' for the cc register (used in an `and to cc' insn).
1226 'b' for byte insn (no effect, on the Sun; this is for the ISI).
1227 'd' to force memory addressing to be absolute, not relative.
1228 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1229 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1230 or print pair of registers as rx:ry. */
1232 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1233 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
1234 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!')
1236 #define PRINT_OPERAND(FILE, X, CODE) \
1237 { int i; \
1238 if (CODE == '.') ; \
1239 else if (CODE == '#') fprintf (FILE, "#"); \
1240 else if (CODE == '-') fprintf (FILE, "sp@-"); \
1241 else if (CODE == '+') fprintf (FILE, "sp@+"); \
1242 else if (CODE == '@') fprintf (FILE, "sp@"); \
1243 else if (CODE == '!') fprintf (FILE, "cc"); \
1244 else if ((X) == 0 ) ; \
1245 else if (GET_CODE (X) == REG) \
1246 { if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \
1247 fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \
1248 else \
1249 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1251 else if (GET_CODE (X) == MEM) \
1253 output_address (XEXP (X, 0)); \
1254 if (CODE == 'd' && ! TARGET_68020 \
1255 && CONSTANT_ADDRESS_P (XEXP (X, 0)) \
1256 && !(GET_CODE (XEXP (X, 0)) == CONST_INT \
1257 && INTVAL (XEXP (X, 0)) < 0x8000 \
1258 && INTVAL (XEXP (X, 0)) >= -0x8000)) \
1259 fprintf (FILE, ":l"); \
1261 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1262 { union { double d; int i[2]; } u; \
1263 union { float f; int i; } u1; \
1264 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1265 u1.f = u.d; \
1266 if (CODE == 'f') \
1267 fprintf (FILE, "#0r%.9g", u1.f); \
1268 else \
1269 fprintf (FILE, "#0x%x", u1.i); } \
1270 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \
1271 { union { double d; int i[2]; } u; \
1272 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1273 fprintf (FILE, "#0r%.20g", u.d); } \
1274 else { putc ('#', FILE); output_addr_const (FILE, X); }}
1276 /* Note that this contains a kludge that knows that the only reason
1277 we have an address (plus (label_ref...) (reg...))
1278 is in the insn before a tablejump, and we know that m68k.md
1279 generates a label LInnn: on such an insn. */
1280 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1281 { register rtx reg1, reg2, breg, ireg; \
1282 register rtx addr = ADDR; \
1283 static char *sz = ".BW.L...D"; \
1284 rtx offset; \
1285 switch (GET_CODE (addr)) \
1287 case REG: \
1288 fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \
1289 break; \
1290 case PRE_DEC: \
1291 fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \
1292 break; \
1293 case POST_INC: \
1294 fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \
1295 break; \
1296 case PLUS: \
1297 reg1 = 0; reg2 = 0; \
1298 ireg = 0; breg = 0; \
1299 offset = 0; \
1300 if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
1302 offset = XEXP (addr, 0); \
1303 addr = XEXP (addr, 1); \
1305 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
1307 offset = XEXP (addr, 1); \
1308 addr = XEXP (addr, 0); \
1310 if (GET_CODE (addr) != PLUS) ; \
1311 else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
1313 reg1 = XEXP (addr, 0); \
1314 addr = XEXP (addr, 1); \
1316 else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
1318 reg1 = XEXP (addr, 1); \
1319 addr = XEXP (addr, 0); \
1321 else if (GET_CODE (XEXP (addr, 0)) == MULT) \
1323 reg1 = XEXP (addr, 0); \
1324 addr = XEXP (addr, 1); \
1326 else if (GET_CODE (XEXP (addr, 1)) == MULT) \
1328 reg1 = XEXP (addr, 1); \
1329 addr = XEXP (addr, 0); \
1331 else if (GET_CODE (XEXP (addr, 0)) == REG) \
1333 reg1 = XEXP (addr, 0); \
1334 addr = XEXP (addr, 1); \
1336 else if (GET_CODE (XEXP (addr, 1)) == REG) \
1338 reg1 = XEXP (addr, 1); \
1339 addr = XEXP (addr, 0); \
1341 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
1342 || GET_CODE (addr) == SIGN_EXTEND) \
1343 { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
1344 /* for OLD_INDEXING \
1345 else if (GET_CODE (addr) == PLUS) \
1347 if (GET_CODE (XEXP (addr, 0)) == REG) \
1349 reg2 = XEXP (addr, 0); \
1350 addr = XEXP (addr, 1); \
1352 else if (GET_CODE (XEXP (addr, 1)) == REG) \
1354 reg2 = XEXP (addr, 1); \
1355 addr = XEXP (addr, 0); \
1358 */ \
1359 if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
1360 if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
1361 || GET_CODE (reg1) == MULT)) \
1362 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
1363 { breg = reg2; ireg = reg1; } \
1364 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
1365 { breg = reg1; ireg = reg2; } \
1366 if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
1367 { int scale = 1; \
1368 if (GET_CODE (ireg) == MULT) \
1369 { scale = INTVAL (XEXP (ireg, 1)); \
1370 ireg = XEXP (ireg, 0); } \
1371 if (GET_CODE (ireg) == SIGN_EXTEND) \
1372 fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \
1373 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1374 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1375 reg_names[REGNO (XEXP (ireg, 0))]); \
1376 else \
1377 fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \
1378 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1379 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1380 reg_names[REGNO (ireg)]); \
1381 fprintf (FILE, ":%c", sz[scale]); \
1382 putc (']', FILE); \
1383 break; } \
1384 if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \
1385 { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
1386 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1387 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1388 reg_names[REGNO (breg)]); \
1389 break; } \
1390 if (ireg != 0 || breg != 0) \
1391 { int scale = 1; \
1392 if (breg == 0) \
1393 abort (); \
1394 if (addr && GET_CODE (addr) == LABEL_REF) abort (); \
1395 fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \
1396 if (addr != 0) { \
1397 putc( '(', FILE ); \
1398 output_addr_const (FILE, addr); \
1399 if (ireg != 0) { \
1400 if (GET_CODE(addr) == CONST_INT) { \
1401 int size_of = 1, val = INTVAL(addr); \
1402 if (val < -0x8000 || val >= 0x8000) \
1403 size_of = 4; \
1404 else if (val < -0x80 || val >= 0x80) \
1405 size_of = 2; \
1406 fprintf(FILE, ":%c", sz[size_of]); \
1408 else \
1409 fprintf(FILE, ":L"); } \
1410 putc( ')', FILE ); } \
1411 if (ireg != 0) { \
1412 putc ('[', FILE); \
1413 if (ireg != 0 && GET_CODE (ireg) == MULT) \
1414 { scale = INTVAL (XEXP (ireg, 1)); \
1415 ireg = XEXP (ireg, 0); } \
1416 if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
1417 fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \
1418 else if (ireg != 0) \
1419 fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \
1420 fprintf (FILE, ":%c", sz[scale]); \
1421 putc (']', FILE); \
1423 break; \
1425 else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \
1426 { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
1427 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1428 CODE_LABEL_NUMBER (XEXP (addr, 0)), \
1429 reg_names[REGNO (reg1)]); \
1430 break; } \
1431 default: \
1432 if (GET_CODE (addr) == CONST_INT \
1433 && INTVAL (addr) < 0x8000 \
1434 && INTVAL (addr) >= -0x8000) \
1435 fprintf (FILE, "%d:W", INTVAL (addr)); \
1436 else \
1437 output_addr_const (FILE, addr); \
1441 Local variables:
1442 version-control: t
1443 End: