Mark as release
[official-gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
bloba81c5974d997f5729a7175ecd75480b837d86e19
1 // Vector implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
45 * Copyright (c) 1996
46 * Silicon Graphics Computer Systems, Inc.
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
57 /** @file stl_vector.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
62 #ifndef _VECTOR_H
63 #define _VECTOR_H 1
65 #include <bits/stl_iterator_base_funcs.h>
66 #include <bits/functexcept.h>
67 #include <bits/concept_check.h>
69 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
71 /**
72 * @if maint
73 * See bits/stl_deque.h's _Deque_base for an explanation.
74 * @endif
76 template<typename _Tp, typename _Alloc>
77 struct _Vector_base
79 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
81 struct _Vector_impl
82 : public _Tp_alloc_type
84 _Tp* _M_start;
85 _Tp* _M_finish;
86 _Tp* _M_end_of_storage;
87 _Vector_impl(_Tp_alloc_type const& __a)
88 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
89 { }
92 public:
93 typedef _Alloc allocator_type;
95 _Tp_alloc_type&
96 _M_get_Tp_allocator()
97 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
99 const _Tp_alloc_type&
100 _M_get_Tp_allocator() const
101 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
103 allocator_type
104 get_allocator() const
105 { return allocator_type(_M_get_Tp_allocator()); }
107 _Vector_base(const allocator_type& __a)
108 : _M_impl(__a)
111 _Vector_base(size_t __n, const allocator_type& __a)
112 : _M_impl(__a)
114 this->_M_impl._M_start = this->_M_allocate(__n);
115 this->_M_impl._M_finish = this->_M_impl._M_start;
116 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
119 ~_Vector_base()
120 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
121 - this->_M_impl._M_start); }
123 public:
124 _Vector_impl _M_impl;
126 _Tp*
127 _M_allocate(size_t __n)
128 { return _M_impl.allocate(__n); }
130 void
131 _M_deallocate(_Tp* __p, size_t __n)
133 if (__p)
134 _M_impl.deallocate(__p, __n);
140 * @brief A standard container which offers fixed time access to
141 * individual elements in any order.
143 * @ingroup Containers
144 * @ingroup Sequences
146 * Meets the requirements of a <a href="tables.html#65">container</a>, a
147 * <a href="tables.html#66">reversible container</a>, and a
148 * <a href="tables.html#67">sequence</a>, including the
149 * <a href="tables.html#68">optional sequence requirements</a> with the
150 * %exception of @c push_front and @c pop_front.
152 * In some terminology a %vector can be described as a dynamic
153 * C-style array, it offers fast and efficient access to individual
154 * elements in any order and saves the user from worrying about
155 * memory and size allocation. Subscripting ( @c [] ) access is
156 * also provided as with C-style arrays.
158 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
159 class vector : protected _Vector_base<_Tp, _Alloc>
161 // Concept requirements.
162 typedef typename _Alloc::value_type _Alloc_value_type;
163 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
164 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
166 typedef _Vector_base<_Tp, _Alloc> _Base;
167 typedef vector<_Tp, _Alloc> vector_type;
168 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
170 public:
171 typedef _Tp value_type;
172 typedef typename _Tp_alloc_type::pointer pointer;
173 typedef typename _Tp_alloc_type::const_pointer const_pointer;
174 typedef typename _Tp_alloc_type::reference reference;
175 typedef typename _Tp_alloc_type::const_reference const_reference;
176 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
177 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
178 const_iterator;
179 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
180 typedef std::reverse_iterator<iterator> reverse_iterator;
181 typedef size_t size_type;
182 typedef ptrdiff_t difference_type;
183 typedef _Alloc allocator_type;
185 protected:
186 using _Base::_M_allocate;
187 using _Base::_M_deallocate;
188 using _Base::_M_impl;
189 using _Base::_M_get_Tp_allocator;
191 public:
192 // [23.2.4.1] construct/copy/destroy
193 // (assign() and get_allocator() are also listed in this section)
195 * @brief Default constructor creates no elements.
197 explicit
198 vector(const allocator_type& __a = allocator_type())
199 : _Base(__a)
203 * @brief Create a %vector with copies of an exemplar element.
204 * @param n The number of elements to initially create.
205 * @param value An element to copy.
207 * This constructor fills the %vector with @a n copies of @a value.
209 explicit
210 vector(size_type __n, const value_type& __value = value_type(),
211 const allocator_type& __a = allocator_type())
212 : _Base(__n, __a)
214 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
215 _M_get_Tp_allocator());
216 this->_M_impl._M_finish = this->_M_impl._M_start + __n;
220 * @brief %Vector copy constructor.
221 * @param x A %vector of identical element and allocator types.
223 * The newly-created %vector uses a copy of the allocation
224 * object used by @a x. All the elements of @a x are copied,
225 * but any extra memory in
226 * @a x (for fast expansion) will not be copied.
228 vector(const vector& __x)
229 : _Base(__x.size(), __x._M_get_Tp_allocator())
230 { this->_M_impl._M_finish =
231 std::__uninitialized_copy_a(__x.begin(), __x.end(),
232 this->_M_impl._M_start,
233 _M_get_Tp_allocator());
237 * @brief Builds a %vector from a range.
238 * @param first An input iterator.
239 * @param last An input iterator.
241 * Create a %vector consisting of copies of the elements from
242 * [first,last).
244 * If the iterators are forward, bidirectional, or
245 * random-access, then this will call the elements' copy
246 * constructor N times (where N is distance(first,last)) and do
247 * no memory reallocation. But if only input iterators are
248 * used, then this will do at most 2N calls to the copy
249 * constructor, and logN memory reallocations.
251 template<typename _InputIterator>
252 vector(_InputIterator __first, _InputIterator __last,
253 const allocator_type& __a = allocator_type())
254 : _Base(__a)
256 // Check whether it's an integral type. If so, it's not an iterator.
257 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
258 _M_initialize_dispatch(__first, __last, _Integral());
262 * The dtor only erases the elements, and note that if the
263 * elements themselves are pointers, the pointed-to memory is
264 * not touched in any way. Managing the pointer is the user's
265 * responsibilty.
267 ~vector()
268 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
269 _M_get_Tp_allocator()); }
272 * @brief %Vector assignment operator.
273 * @param x A %vector of identical element and allocator types.
275 * All the elements of @a x are copied, but any extra memory in
276 * @a x (for fast expansion) will not be copied. Unlike the
277 * copy constructor, the allocator object is not copied.
279 vector&
280 operator=(const vector& __x);
283 * @brief Assigns a given value to a %vector.
284 * @param n Number of elements to be assigned.
285 * @param val Value to be assigned.
287 * This function fills a %vector with @a n copies of the given
288 * value. Note that the assignment completely changes the
289 * %vector and that the resulting %vector's size is the same as
290 * the number of elements assigned. Old data may be lost.
292 void
293 assign(size_type __n, const value_type& __val)
294 { _M_fill_assign(__n, __val); }
297 * @brief Assigns a range to a %vector.
298 * @param first An input iterator.
299 * @param last An input iterator.
301 * This function fills a %vector with copies of the elements in the
302 * range [first,last).
304 * Note that the assignment completely changes the %vector and
305 * that the resulting %vector's size is the same as the number
306 * of elements assigned. Old data may be lost.
308 template<typename _InputIterator>
309 void
310 assign(_InputIterator __first, _InputIterator __last)
312 // Check whether it's an integral type. If so, it's not an iterator.
313 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
314 _M_assign_dispatch(__first, __last, _Integral());
317 /// Get a copy of the memory allocation object.
318 using _Base::get_allocator;
320 // iterators
322 * Returns a read/write iterator that points to the first
323 * element in the %vector. Iteration is done in ordinary
324 * element order.
326 iterator
327 begin()
328 { return iterator(this->_M_impl._M_start); }
331 * Returns a read-only (constant) iterator that points to the
332 * first element in the %vector. Iteration is done in ordinary
333 * element order.
335 const_iterator
336 begin() const
337 { return const_iterator(this->_M_impl._M_start); }
340 * Returns a read/write iterator that points one past the last
341 * element in the %vector. Iteration is done in ordinary
342 * element order.
344 iterator
345 end()
346 { return iterator(this->_M_impl._M_finish); }
349 * Returns a read-only (constant) iterator that points one past
350 * the last element in the %vector. Iteration is done in
351 * ordinary element order.
353 const_iterator
354 end() const
355 { return const_iterator(this->_M_impl._M_finish); }
358 * Returns a read/write reverse iterator that points to the
359 * last element in the %vector. Iteration is done in reverse
360 * element order.
362 reverse_iterator
363 rbegin()
364 { return reverse_iterator(end()); }
367 * Returns a read-only (constant) reverse iterator that points
368 * to the last element in the %vector. Iteration is done in
369 * reverse element order.
371 const_reverse_iterator
372 rbegin() const
373 { return const_reverse_iterator(end()); }
376 * Returns a read/write reverse iterator that points to one
377 * before the first element in the %vector. Iteration is done
378 * in reverse element order.
380 reverse_iterator
381 rend()
382 { return reverse_iterator(begin()); }
385 * Returns a read-only (constant) reverse iterator that points
386 * to one before the first element in the %vector. Iteration
387 * is done in reverse element order.
389 const_reverse_iterator
390 rend() const
391 { return const_reverse_iterator(begin()); }
393 // [23.2.4.2] capacity
394 /** Returns the number of elements in the %vector. */
395 size_type
396 size() const
397 { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
399 /** Returns the size() of the largest possible %vector. */
400 size_type
401 max_size() const
402 { return _M_get_Tp_allocator().max_size(); }
405 * @brief Resizes the %vector to the specified number of elements.
406 * @param new_size Number of elements the %vector should contain.
407 * @param x Data with which new elements should be populated.
409 * This function will %resize the %vector to the specified
410 * number of elements. If the number is smaller than the
411 * %vector's current size the %vector is truncated, otherwise
412 * the %vector is extended and new elements are populated with
413 * given data.
415 void
416 resize(size_type __new_size, value_type __x = value_type())
418 if (__new_size < size())
419 _M_erase_at_end(this->_M_impl._M_start + __new_size);
420 else
421 insert(end(), __new_size - size(), __x);
425 * Returns the total number of elements that the %vector can
426 * hold before needing to allocate more memory.
428 size_type
429 capacity() const
430 { return size_type(this->_M_impl._M_end_of_storage
431 - this->_M_impl._M_start); }
434 * Returns true if the %vector is empty. (Thus begin() would
435 * equal end().)
437 bool
438 empty() const
439 { return begin() == end(); }
442 * @brief Attempt to preallocate enough memory for specified number of
443 * elements.
444 * @param n Number of elements required.
445 * @throw std::length_error If @a n exceeds @c max_size().
447 * This function attempts to reserve enough memory for the
448 * %vector to hold the specified number of elements. If the
449 * number requested is more than max_size(), length_error is
450 * thrown.
452 * The advantage of this function is that if optimal code is a
453 * necessity and the user can determine the number of elements
454 * that will be required, the user can reserve the memory in
455 * %advance, and thus prevent a possible reallocation of memory
456 * and copying of %vector data.
458 void
459 reserve(size_type __n);
461 // element access
463 * @brief Subscript access to the data contained in the %vector.
464 * @param n The index of the element for which data should be
465 * accessed.
466 * @return Read/write reference to data.
468 * This operator allows for easy, array-style, data access.
469 * Note that data access with this operator is unchecked and
470 * out_of_range lookups are not defined. (For checked lookups
471 * see at().)
473 reference
474 operator[](size_type __n)
475 { return *(this->_M_impl._M_start + __n); }
478 * @brief Subscript access to the data contained in the %vector.
479 * @param n The index of the element for which data should be
480 * accessed.
481 * @return Read-only (constant) reference to data.
483 * This operator allows for easy, array-style, data access.
484 * Note that data access with this operator is unchecked and
485 * out_of_range lookups are not defined. (For checked lookups
486 * see at().)
488 const_reference
489 operator[](size_type __n) const
490 { return *(this->_M_impl._M_start + __n); }
492 protected:
493 /// @if maint Safety check used only from at(). @endif
494 void
495 _M_range_check(size_type __n) const
497 if (__n >= this->size())
498 __throw_out_of_range(__N("vector::_M_range_check"));
501 public:
503 * @brief Provides access to the data contained in the %vector.
504 * @param n The index of the element for which data should be
505 * accessed.
506 * @return Read/write reference to data.
507 * @throw std::out_of_range If @a n is an invalid index.
509 * This function provides for safer data access. The parameter
510 * is first checked that it is in the range of the vector. The
511 * function throws out_of_range if the check fails.
513 reference
514 at(size_type __n)
516 _M_range_check(__n);
517 return (*this)[__n];
521 * @brief Provides access to the data contained in the %vector.
522 * @param n The index of the element for which data should be
523 * accessed.
524 * @return Read-only (constant) reference to data.
525 * @throw std::out_of_range If @a n is an invalid index.
527 * This function provides for safer data access. The parameter
528 * is first checked that it is in the range of the vector. The
529 * function throws out_of_range if the check fails.
531 const_reference
532 at(size_type __n) const
534 _M_range_check(__n);
535 return (*this)[__n];
539 * Returns a read/write reference to the data at the first
540 * element of the %vector.
542 reference
543 front()
544 { return *begin(); }
547 * Returns a read-only (constant) reference to the data at the first
548 * element of the %vector.
550 const_reference
551 front() const
552 { return *begin(); }
555 * Returns a read/write reference to the data at the last
556 * element of the %vector.
558 reference
559 back()
560 { return *(end() - 1); }
563 * Returns a read-only (constant) reference to the data at the
564 * last element of the %vector.
566 const_reference
567 back() const
568 { return *(end() - 1); }
570 // _GLIBCXX_RESOLVE_LIB_DEFECTS
571 // DR 464. Suggestion for new member functions in standard containers.
572 // data access
574 * Returns a pointer such that [data(), data() + size()) is a valid
575 * range. For a non-empty %vector, data() == &front().
577 pointer
578 data()
579 { return pointer(this->_M_impl._M_start); }
581 const_pointer
582 data() const
583 { return const_pointer(this->_M_impl._M_start); }
585 // [23.2.4.3] modifiers
587 * @brief Add data to the end of the %vector.
588 * @param x Data to be added.
590 * This is a typical stack operation. The function creates an
591 * element at the end of the %vector and assigns the given data
592 * to it. Due to the nature of a %vector this operation can be
593 * done in constant time if the %vector has preallocated space
594 * available.
596 void
597 push_back(const value_type& __x)
599 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
601 this->_M_impl.construct(this->_M_impl._M_finish, __x);
602 ++this->_M_impl._M_finish;
604 else
605 _M_insert_aux(end(), __x);
609 * @brief Removes last element.
611 * This is a typical stack operation. It shrinks the %vector by one.
613 * Note that no data is returned, and if the last element's
614 * data is needed, it should be retrieved before pop_back() is
615 * called.
617 void
618 pop_back()
620 --this->_M_impl._M_finish;
621 this->_M_impl.destroy(this->_M_impl._M_finish);
625 * @brief Inserts given value into %vector before specified iterator.
626 * @param position An iterator into the %vector.
627 * @param x Data to be inserted.
628 * @return An iterator that points to the inserted data.
630 * This function will insert a copy of the given value before
631 * the specified location. Note that this kind of operation
632 * could be expensive for a %vector and if it is frequently
633 * used the user should consider using std::list.
635 iterator
636 insert(iterator __position, const value_type& __x);
639 * @brief Inserts a number of copies of given data into the %vector.
640 * @param position An iterator into the %vector.
641 * @param n Number of elements to be inserted.
642 * @param x Data to be inserted.
644 * This function will insert a specified number of copies of
645 * the given data before the location specified by @a position.
647 * Note that this kind of operation could be expensive for a
648 * %vector and if it is frequently used the user should
649 * consider using std::list.
651 void
652 insert(iterator __position, size_type __n, const value_type& __x)
653 { _M_fill_insert(__position, __n, __x); }
656 * @brief Inserts a range into the %vector.
657 * @param position An iterator into the %vector.
658 * @param first An input iterator.
659 * @param last An input iterator.
661 * This function will insert copies of the data in the range
662 * [first,last) into the %vector before the location specified
663 * by @a pos.
665 * Note that this kind of operation could be expensive for a
666 * %vector and if it is frequently used the user should
667 * consider using std::list.
669 template<typename _InputIterator>
670 void
671 insert(iterator __position, _InputIterator __first,
672 _InputIterator __last)
674 // Check whether it's an integral type. If so, it's not an iterator.
675 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
676 _M_insert_dispatch(__position, __first, __last, _Integral());
680 * @brief Remove element at given position.
681 * @param position Iterator pointing to element to be erased.
682 * @return An iterator pointing to the next element (or end()).
684 * This function will erase the element at the given position and thus
685 * shorten the %vector by one.
687 * Note This operation could be expensive and if it is
688 * frequently used the user should consider using std::list.
689 * The user is also cautioned that this function only erases
690 * the element, and that if the element is itself a pointer,
691 * the pointed-to memory is not touched in any way. Managing
692 * the pointer is the user's responsibilty.
694 iterator
695 erase(iterator __position);
698 * @brief Remove a range of elements.
699 * @param first Iterator pointing to the first element to be erased.
700 * @param last Iterator pointing to one past the last element to be
701 * erased.
702 * @return An iterator pointing to the element pointed to by @a last
703 * prior to erasing (or end()).
705 * This function will erase the elements in the range [first,last) and
706 * shorten the %vector accordingly.
708 * Note This operation could be expensive and if it is
709 * frequently used the user should consider using std::list.
710 * The user is also cautioned that this function only erases
711 * the elements, and that if the elements themselves are
712 * pointers, the pointed-to memory is not touched in any way.
713 * Managing the pointer is the user's responsibilty.
715 iterator
716 erase(iterator __first, iterator __last);
719 * @brief Swaps data with another %vector.
720 * @param x A %vector of the same element and allocator types.
722 * This exchanges the elements between two vectors in constant time.
723 * (Three pointers, so it should be quite fast.)
724 * Note that the global std::swap() function is specialized such that
725 * std::swap(v1,v2) will feed to this function.
727 void
728 swap(vector& __x)
730 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
731 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
732 std::swap(this->_M_impl._M_end_of_storage,
733 __x._M_impl._M_end_of_storage);
735 // _GLIBCXX_RESOLVE_LIB_DEFECTS
736 // 431. Swapping containers with unequal allocators.
737 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
738 __x._M_get_Tp_allocator());
742 * Erases all the elements. Note that this function only erases the
743 * elements, and that if the elements themselves are pointers, the
744 * pointed-to memory is not touched in any way. Managing the pointer is
745 * the user's responsibilty.
747 void
748 clear()
749 { _M_erase_at_end(this->_M_impl._M_start); }
751 protected:
753 * @if maint
754 * Memory expansion handler. Uses the member allocation function to
755 * obtain @a n bytes of memory, and then copies [first,last) into it.
756 * @endif
758 template<typename _ForwardIterator>
759 pointer
760 _M_allocate_and_copy(size_type __n,
761 _ForwardIterator __first, _ForwardIterator __last)
763 pointer __result = this->_M_allocate(__n);
766 std::__uninitialized_copy_a(__first, __last, __result,
767 _M_get_Tp_allocator());
768 return __result;
770 catch(...)
772 _M_deallocate(__result, __n);
773 __throw_exception_again;
778 // Internal constructor functions follow.
780 // Called by the range constructor to implement [23.1.1]/9
781 template<typename _Integer>
782 void
783 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
785 this->_M_impl._M_start = _M_allocate(__n);
786 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
787 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
788 _M_get_Tp_allocator());
789 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
792 // Called by the range constructor to implement [23.1.1]/9
793 template<typename _InputIterator>
794 void
795 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
796 __false_type)
798 typedef typename std::iterator_traits<_InputIterator>::
799 iterator_category _IterCategory;
800 _M_range_initialize(__first, __last, _IterCategory());
803 // Called by the second initialize_dispatch above
804 template<typename _InputIterator>
805 void
806 _M_range_initialize(_InputIterator __first,
807 _InputIterator __last, std::input_iterator_tag)
809 for (; __first != __last; ++__first)
810 push_back(*__first);
813 // Called by the second initialize_dispatch above
814 template<typename _ForwardIterator>
815 void
816 _M_range_initialize(_ForwardIterator __first,
817 _ForwardIterator __last, std::forward_iterator_tag)
819 const size_type __n = std::distance(__first, __last);
820 this->_M_impl._M_start = this->_M_allocate(__n);
821 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
822 this->_M_impl._M_finish =
823 std::__uninitialized_copy_a(__first, __last,
824 this->_M_impl._M_start,
825 _M_get_Tp_allocator());
829 // Internal assign functions follow. The *_aux functions do the actual
830 // assignment work for the range versions.
832 // Called by the range assign to implement [23.1.1]/9
833 template<typename _Integer>
834 void
835 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
837 _M_fill_assign(static_cast<size_type>(__n),
838 static_cast<value_type>(__val));
841 // Called by the range assign to implement [23.1.1]/9
842 template<typename _InputIterator>
843 void
844 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
845 __false_type)
847 typedef typename std::iterator_traits<_InputIterator>::
848 iterator_category _IterCategory;
849 _M_assign_aux(__first, __last, _IterCategory());
852 // Called by the second assign_dispatch above
853 template<typename _InputIterator>
854 void
855 _M_assign_aux(_InputIterator __first, _InputIterator __last,
856 std::input_iterator_tag);
858 // Called by the second assign_dispatch above
859 template<typename _ForwardIterator>
860 void
861 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
862 std::forward_iterator_tag);
864 // Called by assign(n,t), and the range assign when it turns out
865 // to be the same thing.
866 void
867 _M_fill_assign(size_type __n, const value_type& __val);
870 // Internal insert functions follow.
872 // Called by the range insert to implement [23.1.1]/9
873 template<typename _Integer>
874 void
875 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
876 __true_type)
878 _M_fill_insert(__pos, static_cast<size_type>(__n),
879 static_cast<value_type>(__val));
882 // Called by the range insert to implement [23.1.1]/9
883 template<typename _InputIterator>
884 void
885 _M_insert_dispatch(iterator __pos, _InputIterator __first,
886 _InputIterator __last, __false_type)
888 typedef typename std::iterator_traits<_InputIterator>::
889 iterator_category _IterCategory;
890 _M_range_insert(__pos, __first, __last, _IterCategory());
893 // Called by the second insert_dispatch above
894 template<typename _InputIterator>
895 void
896 _M_range_insert(iterator __pos, _InputIterator __first,
897 _InputIterator __last, std::input_iterator_tag);
899 // Called by the second insert_dispatch above
900 template<typename _ForwardIterator>
901 void
902 _M_range_insert(iterator __pos, _ForwardIterator __first,
903 _ForwardIterator __last, std::forward_iterator_tag);
905 // Called by insert(p,n,x), and the range insert when it turns out to be
906 // the same thing.
907 void
908 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
910 // Called by insert(p,x)
911 void
912 _M_insert_aux(iterator __position, const value_type& __x);
914 // Internal erase functions follow.
916 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
917 // _M_assign_aux.
918 void
919 _M_erase_at_end(pointer __pos)
921 std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
922 this->_M_impl._M_finish = __pos;
928 * @brief Vector equality comparison.
929 * @param x A %vector.
930 * @param y A %vector of the same type as @a x.
931 * @return True iff the size and elements of the vectors are equal.
933 * This is an equivalence relation. It is linear in the size of the
934 * vectors. Vectors are considered equivalent if their sizes are equal,
935 * and if corresponding elements compare equal.
937 template<typename _Tp, typename _Alloc>
938 inline bool
939 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
940 { return (__x.size() == __y.size()
941 && std::equal(__x.begin(), __x.end(), __y.begin())); }
944 * @brief Vector ordering relation.
945 * @param x A %vector.
946 * @param y A %vector of the same type as @a x.
947 * @return True iff @a x is lexicographically less than @a y.
949 * This is a total ordering relation. It is linear in the size of the
950 * vectors. The elements must be comparable with @c <.
952 * See std::lexicographical_compare() for how the determination is made.
954 template<typename _Tp, typename _Alloc>
955 inline bool
956 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
957 { return std::lexicographical_compare(__x.begin(), __x.end(),
958 __y.begin(), __y.end()); }
960 /// Based on operator==
961 template<typename _Tp, typename _Alloc>
962 inline bool
963 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
964 { return !(__x == __y); }
966 /// Based on operator<
967 template<typename _Tp, typename _Alloc>
968 inline bool
969 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
970 { return __y < __x; }
972 /// Based on operator<
973 template<typename _Tp, typename _Alloc>
974 inline bool
975 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
976 { return !(__y < __x); }
978 /// Based on operator<
979 template<typename _Tp, typename _Alloc>
980 inline bool
981 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
982 { return !(__x < __y); }
984 /// See std::vector::swap().
985 template<typename _Tp, typename _Alloc>
986 inline void
987 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
988 { __x.swap(__y); }
990 _GLIBCXX_END_NESTED_NAMESPACE
992 #endif /* _VECTOR_H */