Mark as release
[official-gcc.git] / gcc / final.c
blob7a539bf37c62a2230da4506c96bbc2872365b9e0
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "timevar.h"
76 #include "cgraph.h"
77 #include "coverage.h"
79 #ifdef XCOFF_DEBUGGING_INFO
80 #include "xcoffout.h" /* Needed for external data
81 declarations for e.g. AIX 4.x. */
82 #endif
84 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
85 #include "dwarf2out.h"
86 #endif
88 #ifdef DBX_DEBUGGING_INFO
89 #include "dbxout.h"
90 #endif
92 #ifdef SDB_DEBUGGING_INFO
93 #include "sdbout.h"
94 #endif
96 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
97 null default for it to save conditionalization later. */
98 #ifndef CC_STATUS_INIT
99 #define CC_STATUS_INIT
100 #endif
102 /* How to start an assembler comment. */
103 #ifndef ASM_COMMENT_START
104 #define ASM_COMMENT_START ";#"
105 #endif
107 /* Is the given character a logical line separator for the assembler? */
108 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
109 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
110 #endif
112 #ifndef JUMP_TABLES_IN_TEXT_SECTION
113 #define JUMP_TABLES_IN_TEXT_SECTION 0
114 #endif
116 /* Bitflags used by final_scan_insn. */
117 #define SEEN_BB 1
118 #define SEEN_NOTE 2
119 #define SEEN_EMITTED 4
121 /* Last insn processed by final_scan_insn. */
122 static rtx debug_insn;
123 rtx current_output_insn;
125 /* Line number of last NOTE. */
126 static int last_linenum;
128 /* Highest line number in current block. */
129 static int high_block_linenum;
131 /* Likewise for function. */
132 static int high_function_linenum;
134 /* Filename of last NOTE. */
135 static const char *last_filename;
137 /* Whether to force emission of a line note before the next insn. */
138 static bool force_source_line = false;
140 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
142 /* Nonzero while outputting an `asm' with operands.
143 This means that inconsistencies are the user's fault, so don't die.
144 The precise value is the insn being output, to pass to error_for_asm. */
145 rtx this_is_asm_operands;
147 /* Number of operands of this insn, for an `asm' with operands. */
148 static unsigned int insn_noperands;
150 /* Compare optimization flag. */
152 static rtx last_ignored_compare = 0;
154 /* Assign a unique number to each insn that is output.
155 This can be used to generate unique local labels. */
157 static int insn_counter = 0;
159 #ifdef HAVE_cc0
160 /* This variable contains machine-dependent flags (defined in tm.h)
161 set and examined by output routines
162 that describe how to interpret the condition codes properly. */
164 CC_STATUS cc_status;
166 /* During output of an insn, this contains a copy of cc_status
167 from before the insn. */
169 CC_STATUS cc_prev_status;
170 #endif
172 /* Indexed by hardware reg number, is 1 if that register is ever
173 used in the current function.
175 In life_analysis, or in stupid_life_analysis, this is set
176 up to record the hard regs used explicitly. Reload adds
177 in the hard regs used for holding pseudo regs. Final uses
178 it to generate the code in the function prologue and epilogue
179 to save and restore registers as needed. */
181 char regs_ever_live[FIRST_PSEUDO_REGISTER];
183 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
184 Unlike regs_ever_live, elements of this array corresponding to
185 eliminable regs like the frame pointer are set if an asm sets them. */
187 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
189 /* Nonzero means current function must be given a frame pointer.
190 Initialized in function.c to 0. Set only in reload1.c as per
191 the needs of the function. */
193 int frame_pointer_needed;
195 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
197 static int block_depth;
199 /* Nonzero if have enabled APP processing of our assembler output. */
201 static int app_on;
203 /* If we are outputting an insn sequence, this contains the sequence rtx.
204 Zero otherwise. */
206 rtx final_sequence;
208 #ifdef ASSEMBLER_DIALECT
210 /* Number of the assembler dialect to use, starting at 0. */
211 static int dialect_number;
212 #endif
214 #ifdef HAVE_conditional_execution
215 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
216 rtx current_insn_predicate;
217 #endif
219 #ifdef HAVE_ATTR_length
220 static int asm_insn_count (rtx);
221 #endif
222 static void profile_function (FILE *);
223 static void profile_after_prologue (FILE *);
224 static bool notice_source_line (rtx);
225 static rtx walk_alter_subreg (rtx *);
226 static void output_asm_name (void);
227 static void output_alternate_entry_point (FILE *, rtx);
228 static tree get_mem_expr_from_op (rtx, int *);
229 static void output_asm_operand_names (rtx *, int *, int);
230 static void output_operand (rtx, int);
231 #ifdef LEAF_REGISTERS
232 static void leaf_renumber_regs (rtx);
233 #endif
234 #ifdef HAVE_cc0
235 static int alter_cond (rtx);
236 #endif
237 #ifndef ADDR_VEC_ALIGN
238 static int final_addr_vec_align (rtx);
239 #endif
240 #ifdef HAVE_ATTR_length
241 static int align_fuzz (rtx, rtx, int, unsigned);
242 #endif
244 /* Initialize data in final at the beginning of a compilation. */
246 void
247 init_final (const char *filename ATTRIBUTE_UNUSED)
249 app_on = 0;
250 final_sequence = 0;
252 #ifdef ASSEMBLER_DIALECT
253 dialect_number = ASSEMBLER_DIALECT;
254 #endif
257 /* Default target function prologue and epilogue assembler output.
259 If not overridden for epilogue code, then the function body itself
260 contains return instructions wherever needed. */
261 void
262 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
263 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
267 /* Default target hook that outputs nothing to a stream. */
268 void
269 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
273 /* Enable APP processing of subsequent output.
274 Used before the output from an `asm' statement. */
276 void
277 app_enable (void)
279 if (! app_on)
281 fputs (ASM_APP_ON, asm_out_file);
282 app_on = 1;
286 /* Disable APP processing of subsequent output.
287 Called from varasm.c before most kinds of output. */
289 void
290 app_disable (void)
292 if (app_on)
294 fputs (ASM_APP_OFF, asm_out_file);
295 app_on = 0;
299 /* Return the number of slots filled in the current
300 delayed branch sequence (we don't count the insn needing the
301 delay slot). Zero if not in a delayed branch sequence. */
303 #ifdef DELAY_SLOTS
305 dbr_sequence_length (void)
307 if (final_sequence != 0)
308 return XVECLEN (final_sequence, 0) - 1;
309 else
310 return 0;
312 #endif
314 /* The next two pages contain routines used to compute the length of an insn
315 and to shorten branches. */
317 /* Arrays for insn lengths, and addresses. The latter is referenced by
318 `insn_current_length'. */
320 static int *insn_lengths;
322 varray_type insn_addresses_;
324 /* Max uid for which the above arrays are valid. */
325 static int insn_lengths_max_uid;
327 /* Address of insn being processed. Used by `insn_current_length'. */
328 int insn_current_address;
330 /* Address of insn being processed in previous iteration. */
331 int insn_last_address;
333 /* known invariant alignment of insn being processed. */
334 int insn_current_align;
336 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
337 gives the next following alignment insn that increases the known
338 alignment, or NULL_RTX if there is no such insn.
339 For any alignment obtained this way, we can again index uid_align with
340 its uid to obtain the next following align that in turn increases the
341 alignment, till we reach NULL_RTX; the sequence obtained this way
342 for each insn we'll call the alignment chain of this insn in the following
343 comments. */
345 struct label_alignment
347 short alignment;
348 short max_skip;
351 static rtx *uid_align;
352 static int *uid_shuid;
353 static struct label_alignment *label_align;
355 /* Indicate that branch shortening hasn't yet been done. */
357 void
358 init_insn_lengths (void)
360 if (uid_shuid)
362 free (uid_shuid);
363 uid_shuid = 0;
365 if (insn_lengths)
367 free (insn_lengths);
368 insn_lengths = 0;
369 insn_lengths_max_uid = 0;
371 #ifdef HAVE_ATTR_length
372 INSN_ADDRESSES_FREE ();
373 #endif
374 if (uid_align)
376 free (uid_align);
377 uid_align = 0;
381 /* Obtain the current length of an insn. If branch shortening has been done,
382 get its actual length. Otherwise, use FALLBACK_FN to calculate the
383 length. */
384 static inline int
385 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
386 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
388 #ifdef HAVE_ATTR_length
389 rtx body;
390 int i;
391 int length = 0;
393 if (insn_lengths_max_uid > INSN_UID (insn))
394 return insn_lengths[INSN_UID (insn)];
395 else
396 switch (GET_CODE (insn))
398 case NOTE:
399 case BARRIER:
400 case CODE_LABEL:
401 return 0;
403 case CALL_INSN:
404 length = fallback_fn (insn);
405 break;
407 case JUMP_INSN:
408 body = PATTERN (insn);
409 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
411 /* Alignment is machine-dependent and should be handled by
412 ADDR_VEC_ALIGN. */
414 else
415 length = fallback_fn (insn);
416 break;
418 case INSN:
419 body = PATTERN (insn);
420 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
421 return 0;
423 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
424 length = asm_insn_count (body) * fallback_fn (insn);
425 else if (GET_CODE (body) == SEQUENCE)
426 for (i = 0; i < XVECLEN (body, 0); i++)
427 length += get_attr_length (XVECEXP (body, 0, i));
428 else
429 length = fallback_fn (insn);
430 break;
432 default:
433 break;
436 #ifdef ADJUST_INSN_LENGTH
437 ADJUST_INSN_LENGTH (insn, length);
438 #endif
439 return length;
440 #else /* not HAVE_ATTR_length */
441 return 0;
442 #define insn_default_length 0
443 #define insn_min_length 0
444 #endif /* not HAVE_ATTR_length */
447 /* Obtain the current length of an insn. If branch shortening has been done,
448 get its actual length. Otherwise, get its maximum length. */
450 get_attr_length (rtx insn)
452 return get_attr_length_1 (insn, insn_default_length);
455 /* Obtain the current length of an insn. If branch shortening has been done,
456 get its actual length. Otherwise, get its minimum length. */
458 get_attr_min_length (rtx insn)
460 return get_attr_length_1 (insn, insn_min_length);
463 /* Code to handle alignment inside shorten_branches. */
465 /* Here is an explanation how the algorithm in align_fuzz can give
466 proper results:
468 Call a sequence of instructions beginning with alignment point X
469 and continuing until the next alignment point `block X'. When `X'
470 is used in an expression, it means the alignment value of the
471 alignment point.
473 Call the distance between the start of the first insn of block X, and
474 the end of the last insn of block X `IX', for the `inner size of X'.
475 This is clearly the sum of the instruction lengths.
477 Likewise with the next alignment-delimited block following X, which we
478 shall call block Y.
480 Call the distance between the start of the first insn of block X, and
481 the start of the first insn of block Y `OX', for the `outer size of X'.
483 The estimated padding is then OX - IX.
485 OX can be safely estimated as
487 if (X >= Y)
488 OX = round_up(IX, Y)
489 else
490 OX = round_up(IX, X) + Y - X
492 Clearly est(IX) >= real(IX), because that only depends on the
493 instruction lengths, and those being overestimated is a given.
495 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
496 we needn't worry about that when thinking about OX.
498 When X >= Y, the alignment provided by Y adds no uncertainty factor
499 for branch ranges starting before X, so we can just round what we have.
500 But when X < Y, we don't know anything about the, so to speak,
501 `middle bits', so we have to assume the worst when aligning up from an
502 address mod X to one mod Y, which is Y - X. */
504 #ifndef LABEL_ALIGN
505 #define LABEL_ALIGN(LABEL) align_labels_log
506 #endif
508 #ifndef LABEL_ALIGN_MAX_SKIP
509 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
510 #endif
512 #ifndef LOOP_ALIGN
513 #define LOOP_ALIGN(LABEL) align_loops_log
514 #endif
516 #ifndef LOOP_ALIGN_MAX_SKIP
517 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
518 #endif
520 #ifndef LABEL_ALIGN_AFTER_BARRIER
521 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
522 #endif
524 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
525 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
526 #endif
528 #ifndef JUMP_ALIGN
529 #define JUMP_ALIGN(LABEL) align_jumps_log
530 #endif
532 #ifndef JUMP_ALIGN_MAX_SKIP
533 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
534 #endif
536 #ifndef ADDR_VEC_ALIGN
537 static int
538 final_addr_vec_align (rtx addr_vec)
540 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
542 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
543 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
544 return exact_log2 (align);
548 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
549 #endif
551 #ifndef INSN_LENGTH_ALIGNMENT
552 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
553 #endif
555 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
557 static int min_labelno, max_labelno;
559 #define LABEL_TO_ALIGNMENT(LABEL) \
560 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
562 #define LABEL_TO_MAX_SKIP(LABEL) \
563 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
565 /* For the benefit of port specific code do this also as a function. */
568 label_to_alignment (rtx label)
570 return LABEL_TO_ALIGNMENT (label);
573 #ifdef HAVE_ATTR_length
574 /* The differences in addresses
575 between a branch and its target might grow or shrink depending on
576 the alignment the start insn of the range (the branch for a forward
577 branch or the label for a backward branch) starts out on; if these
578 differences are used naively, they can even oscillate infinitely.
579 We therefore want to compute a 'worst case' address difference that
580 is independent of the alignment the start insn of the range end
581 up on, and that is at least as large as the actual difference.
582 The function align_fuzz calculates the amount we have to add to the
583 naively computed difference, by traversing the part of the alignment
584 chain of the start insn of the range that is in front of the end insn
585 of the range, and considering for each alignment the maximum amount
586 that it might contribute to a size increase.
588 For casesi tables, we also want to know worst case minimum amounts of
589 address difference, in case a machine description wants to introduce
590 some common offset that is added to all offsets in a table.
591 For this purpose, align_fuzz with a growth argument of 0 computes the
592 appropriate adjustment. */
594 /* Compute the maximum delta by which the difference of the addresses of
595 START and END might grow / shrink due to a different address for start
596 which changes the size of alignment insns between START and END.
597 KNOWN_ALIGN_LOG is the alignment known for START.
598 GROWTH should be ~0 if the objective is to compute potential code size
599 increase, and 0 if the objective is to compute potential shrink.
600 The return value is undefined for any other value of GROWTH. */
602 static int
603 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
605 int uid = INSN_UID (start);
606 rtx align_label;
607 int known_align = 1 << known_align_log;
608 int end_shuid = INSN_SHUID (end);
609 int fuzz = 0;
611 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
613 int align_addr, new_align;
615 uid = INSN_UID (align_label);
616 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
617 if (uid_shuid[uid] > end_shuid)
618 break;
619 known_align_log = LABEL_TO_ALIGNMENT (align_label);
620 new_align = 1 << known_align_log;
621 if (new_align < known_align)
622 continue;
623 fuzz += (-align_addr ^ growth) & (new_align - known_align);
624 known_align = new_align;
626 return fuzz;
629 /* Compute a worst-case reference address of a branch so that it
630 can be safely used in the presence of aligned labels. Since the
631 size of the branch itself is unknown, the size of the branch is
632 not included in the range. I.e. for a forward branch, the reference
633 address is the end address of the branch as known from the previous
634 branch shortening pass, minus a value to account for possible size
635 increase due to alignment. For a backward branch, it is the start
636 address of the branch as known from the current pass, plus a value
637 to account for possible size increase due to alignment.
638 NB.: Therefore, the maximum offset allowed for backward branches needs
639 to exclude the branch size. */
642 insn_current_reference_address (rtx branch)
644 rtx dest, seq;
645 int seq_uid;
647 if (! INSN_ADDRESSES_SET_P ())
648 return 0;
650 seq = NEXT_INSN (PREV_INSN (branch));
651 seq_uid = INSN_UID (seq);
652 if (!JUMP_P (branch))
653 /* This can happen for example on the PA; the objective is to know the
654 offset to address something in front of the start of the function.
655 Thus, we can treat it like a backward branch.
656 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
657 any alignment we'd encounter, so we skip the call to align_fuzz. */
658 return insn_current_address;
659 dest = JUMP_LABEL (branch);
661 /* BRANCH has no proper alignment chain set, so use SEQ.
662 BRANCH also has no INSN_SHUID. */
663 if (INSN_SHUID (seq) < INSN_SHUID (dest))
665 /* Forward branch. */
666 return (insn_last_address + insn_lengths[seq_uid]
667 - align_fuzz (seq, dest, length_unit_log, ~0));
669 else
671 /* Backward branch. */
672 return (insn_current_address
673 + align_fuzz (dest, seq, length_unit_log, ~0));
676 #endif /* HAVE_ATTR_length */
678 /* Compute branch alignments based on frequency information in the
679 CFG. */
681 static unsigned int
682 compute_alignments (void)
684 int log, max_skip, max_log;
685 basic_block bb;
687 if (label_align)
689 free (label_align);
690 label_align = 0;
693 max_labelno = max_label_num ();
694 min_labelno = get_first_label_num ();
695 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
697 /* If not optimizing or optimizing for size, don't assign any alignments. */
698 if (! optimize || optimize_size)
699 return 0;
701 FOR_EACH_BB (bb)
703 rtx label = BB_HEAD (bb);
704 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
705 edge e;
706 edge_iterator ei;
708 if (!LABEL_P (label)
709 || probably_never_executed_bb_p (bb))
710 continue;
711 max_log = LABEL_ALIGN (label);
712 max_skip = LABEL_ALIGN_MAX_SKIP;
714 FOR_EACH_EDGE (e, ei, bb->preds)
716 if (e->flags & EDGE_FALLTHRU)
717 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
718 else
719 branch_frequency += EDGE_FREQUENCY (e);
722 /* There are two purposes to align block with no fallthru incoming edge:
723 1) to avoid fetch stalls when branch destination is near cache boundary
724 2) to improve cache efficiency in case the previous block is not executed
725 (so it does not need to be in the cache).
727 We to catch first case, we align frequently executed blocks.
728 To catch the second, we align blocks that are executed more frequently
729 than the predecessor and the predecessor is likely to not be executed
730 when function is called. */
732 if (!has_fallthru
733 && (branch_frequency > BB_FREQ_MAX / 10
734 || (bb->frequency > bb->prev_bb->frequency * 10
735 && (bb->prev_bb->frequency
736 <= ENTRY_BLOCK_PTR->frequency / 2))))
738 log = JUMP_ALIGN (label);
739 if (max_log < log)
741 max_log = log;
742 max_skip = JUMP_ALIGN_MAX_SKIP;
745 /* In case block is frequent and reached mostly by non-fallthru edge,
746 align it. It is most likely a first block of loop. */
747 if (has_fallthru
748 && maybe_hot_bb_p (bb)
749 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
750 && branch_frequency > fallthru_frequency * 2)
752 log = LOOP_ALIGN (label);
753 if (max_log < log)
755 max_log = log;
756 max_skip = LOOP_ALIGN_MAX_SKIP;
759 LABEL_TO_ALIGNMENT (label) = max_log;
760 LABEL_TO_MAX_SKIP (label) = max_skip;
762 return 0;
765 struct tree_opt_pass pass_compute_alignments =
767 NULL, /* name */
768 NULL, /* gate */
769 compute_alignments, /* execute */
770 NULL, /* sub */
771 NULL, /* next */
772 0, /* static_pass_number */
773 0, /* tv_id */
774 0, /* properties_required */
775 0, /* properties_provided */
776 0, /* properties_destroyed */
777 0, /* todo_flags_start */
778 0, /* todo_flags_finish */
779 0 /* letter */
783 /* Make a pass over all insns and compute their actual lengths by shortening
784 any branches of variable length if possible. */
786 /* shorten_branches might be called multiple times: for example, the SH
787 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
788 In order to do this, it needs proper length information, which it obtains
789 by calling shorten_branches. This cannot be collapsed with
790 shorten_branches itself into a single pass unless we also want to integrate
791 reorg.c, since the branch splitting exposes new instructions with delay
792 slots. */
794 void
795 shorten_branches (rtx first ATTRIBUTE_UNUSED)
797 rtx insn;
798 int max_uid;
799 int i;
800 int max_log;
801 int max_skip;
802 #ifdef HAVE_ATTR_length
803 #define MAX_CODE_ALIGN 16
804 rtx seq;
805 int something_changed = 1;
806 char *varying_length;
807 rtx body;
808 int uid;
809 rtx align_tab[MAX_CODE_ALIGN];
811 #endif
813 /* Compute maximum UID and allocate label_align / uid_shuid. */
814 max_uid = get_max_uid ();
816 /* Free uid_shuid before reallocating it. */
817 free (uid_shuid);
819 uid_shuid = XNEWVEC (int, max_uid);
821 if (max_labelno != max_label_num ())
823 int old = max_labelno;
824 int n_labels;
825 int n_old_labels;
827 max_labelno = max_label_num ();
829 n_labels = max_labelno - min_labelno + 1;
830 n_old_labels = old - min_labelno + 1;
832 label_align = xrealloc (label_align,
833 n_labels * sizeof (struct label_alignment));
835 /* Range of labels grows monotonically in the function. Failing here
836 means that the initialization of array got lost. */
837 gcc_assert (n_old_labels <= n_labels);
839 memset (label_align + n_old_labels, 0,
840 (n_labels - n_old_labels) * sizeof (struct label_alignment));
843 /* Initialize label_align and set up uid_shuid to be strictly
844 monotonically rising with insn order. */
845 /* We use max_log here to keep track of the maximum alignment we want to
846 impose on the next CODE_LABEL (or the current one if we are processing
847 the CODE_LABEL itself). */
849 max_log = 0;
850 max_skip = 0;
852 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
854 int log;
856 INSN_SHUID (insn) = i++;
857 if (INSN_P (insn))
858 continue;
860 if (LABEL_P (insn))
862 rtx next;
864 /* Merge in alignments computed by compute_alignments. */
865 log = LABEL_TO_ALIGNMENT (insn);
866 if (max_log < log)
868 max_log = log;
869 max_skip = LABEL_TO_MAX_SKIP (insn);
872 log = LABEL_ALIGN (insn);
873 if (max_log < log)
875 max_log = log;
876 max_skip = LABEL_ALIGN_MAX_SKIP;
878 next = next_nonnote_insn (insn);
879 /* ADDR_VECs only take room if read-only data goes into the text
880 section. */
881 if (JUMP_TABLES_IN_TEXT_SECTION
882 || readonly_data_section == text_section)
883 if (next && JUMP_P (next))
885 rtx nextbody = PATTERN (next);
886 if (GET_CODE (nextbody) == ADDR_VEC
887 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
889 log = ADDR_VEC_ALIGN (next);
890 if (max_log < log)
892 max_log = log;
893 max_skip = LABEL_ALIGN_MAX_SKIP;
897 LABEL_TO_ALIGNMENT (insn) = max_log;
898 LABEL_TO_MAX_SKIP (insn) = max_skip;
899 max_log = 0;
900 max_skip = 0;
902 else if (BARRIER_P (insn))
904 rtx label;
906 for (label = insn; label && ! INSN_P (label);
907 label = NEXT_INSN (label))
908 if (LABEL_P (label))
910 log = LABEL_ALIGN_AFTER_BARRIER (insn);
911 if (max_log < log)
913 max_log = log;
914 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
916 break;
920 #ifdef HAVE_ATTR_length
922 /* Allocate the rest of the arrays. */
923 insn_lengths = XNEWVEC (int, max_uid);
924 insn_lengths_max_uid = max_uid;
925 /* Syntax errors can lead to labels being outside of the main insn stream.
926 Initialize insn_addresses, so that we get reproducible results. */
927 INSN_ADDRESSES_ALLOC (max_uid);
929 varying_length = XCNEWVEC (char, max_uid);
931 /* Initialize uid_align. We scan instructions
932 from end to start, and keep in align_tab[n] the last seen insn
933 that does an alignment of at least n+1, i.e. the successor
934 in the alignment chain for an insn that does / has a known
935 alignment of n. */
936 uid_align = XCNEWVEC (rtx, max_uid);
938 for (i = MAX_CODE_ALIGN; --i >= 0;)
939 align_tab[i] = NULL_RTX;
940 seq = get_last_insn ();
941 for (; seq; seq = PREV_INSN (seq))
943 int uid = INSN_UID (seq);
944 int log;
945 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
946 uid_align[uid] = align_tab[0];
947 if (log)
949 /* Found an alignment label. */
950 uid_align[uid] = align_tab[log];
951 for (i = log - 1; i >= 0; i--)
952 align_tab[i] = seq;
955 #ifdef CASE_VECTOR_SHORTEN_MODE
956 if (optimize)
958 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
959 label fields. */
961 int min_shuid = INSN_SHUID (get_insns ()) - 1;
962 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
963 int rel;
965 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
967 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
968 int len, i, min, max, insn_shuid;
969 int min_align;
970 addr_diff_vec_flags flags;
972 if (!JUMP_P (insn)
973 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
974 continue;
975 pat = PATTERN (insn);
976 len = XVECLEN (pat, 1);
977 gcc_assert (len > 0);
978 min_align = MAX_CODE_ALIGN;
979 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
981 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
982 int shuid = INSN_SHUID (lab);
983 if (shuid < min)
985 min = shuid;
986 min_lab = lab;
988 if (shuid > max)
990 max = shuid;
991 max_lab = lab;
993 if (min_align > LABEL_TO_ALIGNMENT (lab))
994 min_align = LABEL_TO_ALIGNMENT (lab);
996 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
997 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
998 insn_shuid = INSN_SHUID (insn);
999 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1000 memset (&flags, 0, sizeof (flags));
1001 flags.min_align = min_align;
1002 flags.base_after_vec = rel > insn_shuid;
1003 flags.min_after_vec = min > insn_shuid;
1004 flags.max_after_vec = max > insn_shuid;
1005 flags.min_after_base = min > rel;
1006 flags.max_after_base = max > rel;
1007 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1010 #endif /* CASE_VECTOR_SHORTEN_MODE */
1012 /* Compute initial lengths, addresses, and varying flags for each insn. */
1013 for (insn_current_address = 0, insn = first;
1014 insn != 0;
1015 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1017 uid = INSN_UID (insn);
1019 insn_lengths[uid] = 0;
1021 if (LABEL_P (insn))
1023 int log = LABEL_TO_ALIGNMENT (insn);
1024 if (log)
1026 int align = 1 << log;
1027 int new_address = (insn_current_address + align - 1) & -align;
1028 insn_lengths[uid] = new_address - insn_current_address;
1032 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1034 if (NOTE_P (insn) || BARRIER_P (insn)
1035 || LABEL_P (insn))
1036 continue;
1037 if (INSN_DELETED_P (insn))
1038 continue;
1040 body = PATTERN (insn);
1041 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1043 /* This only takes room if read-only data goes into the text
1044 section. */
1045 if (JUMP_TABLES_IN_TEXT_SECTION
1046 || readonly_data_section == text_section)
1047 insn_lengths[uid] = (XVECLEN (body,
1048 GET_CODE (body) == ADDR_DIFF_VEC)
1049 * GET_MODE_SIZE (GET_MODE (body)));
1050 /* Alignment is handled by ADDR_VEC_ALIGN. */
1052 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1053 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1054 else if (GET_CODE (body) == SEQUENCE)
1056 int i;
1057 int const_delay_slots;
1058 #ifdef DELAY_SLOTS
1059 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1060 #else
1061 const_delay_slots = 0;
1062 #endif
1063 /* Inside a delay slot sequence, we do not do any branch shortening
1064 if the shortening could change the number of delay slots
1065 of the branch. */
1066 for (i = 0; i < XVECLEN (body, 0); i++)
1068 rtx inner_insn = XVECEXP (body, 0, i);
1069 int inner_uid = INSN_UID (inner_insn);
1070 int inner_length;
1072 if (GET_CODE (body) == ASM_INPUT
1073 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1074 inner_length = (asm_insn_count (PATTERN (inner_insn))
1075 * insn_default_length (inner_insn));
1076 else
1077 inner_length = insn_default_length (inner_insn);
1079 insn_lengths[inner_uid] = inner_length;
1080 if (const_delay_slots)
1082 if ((varying_length[inner_uid]
1083 = insn_variable_length_p (inner_insn)) != 0)
1084 varying_length[uid] = 1;
1085 INSN_ADDRESSES (inner_uid) = (insn_current_address
1086 + insn_lengths[uid]);
1088 else
1089 varying_length[inner_uid] = 0;
1090 insn_lengths[uid] += inner_length;
1093 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1095 insn_lengths[uid] = insn_default_length (insn);
1096 varying_length[uid] = insn_variable_length_p (insn);
1099 /* If needed, do any adjustment. */
1100 #ifdef ADJUST_INSN_LENGTH
1101 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1102 if (insn_lengths[uid] < 0)
1103 fatal_insn ("negative insn length", insn);
1104 #endif
1107 /* Now loop over all the insns finding varying length insns. For each,
1108 get the current insn length. If it has changed, reflect the change.
1109 When nothing changes for a full pass, we are done. */
1111 while (something_changed)
1113 something_changed = 0;
1114 insn_current_align = MAX_CODE_ALIGN - 1;
1115 for (insn_current_address = 0, insn = first;
1116 insn != 0;
1117 insn = NEXT_INSN (insn))
1119 int new_length;
1120 #ifdef ADJUST_INSN_LENGTH
1121 int tmp_length;
1122 #endif
1123 int length_align;
1125 uid = INSN_UID (insn);
1127 if (LABEL_P (insn))
1129 int log = LABEL_TO_ALIGNMENT (insn);
1130 if (log > insn_current_align)
1132 int align = 1 << log;
1133 int new_address= (insn_current_address + align - 1) & -align;
1134 insn_lengths[uid] = new_address - insn_current_address;
1135 insn_current_align = log;
1136 insn_current_address = new_address;
1138 else
1139 insn_lengths[uid] = 0;
1140 INSN_ADDRESSES (uid) = insn_current_address;
1141 continue;
1144 length_align = INSN_LENGTH_ALIGNMENT (insn);
1145 if (length_align < insn_current_align)
1146 insn_current_align = length_align;
1148 insn_last_address = INSN_ADDRESSES (uid);
1149 INSN_ADDRESSES (uid) = insn_current_address;
1151 #ifdef CASE_VECTOR_SHORTEN_MODE
1152 if (optimize && JUMP_P (insn)
1153 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1155 rtx body = PATTERN (insn);
1156 int old_length = insn_lengths[uid];
1157 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1158 rtx min_lab = XEXP (XEXP (body, 2), 0);
1159 rtx max_lab = XEXP (XEXP (body, 3), 0);
1160 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1161 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1162 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1163 rtx prev;
1164 int rel_align = 0;
1165 addr_diff_vec_flags flags;
1167 /* Avoid automatic aggregate initialization. */
1168 flags = ADDR_DIFF_VEC_FLAGS (body);
1170 /* Try to find a known alignment for rel_lab. */
1171 for (prev = rel_lab;
1172 prev
1173 && ! insn_lengths[INSN_UID (prev)]
1174 && ! (varying_length[INSN_UID (prev)] & 1);
1175 prev = PREV_INSN (prev))
1176 if (varying_length[INSN_UID (prev)] & 2)
1178 rel_align = LABEL_TO_ALIGNMENT (prev);
1179 break;
1182 /* See the comment on addr_diff_vec_flags in rtl.h for the
1183 meaning of the flags values. base: REL_LAB vec: INSN */
1184 /* Anything after INSN has still addresses from the last
1185 pass; adjust these so that they reflect our current
1186 estimate for this pass. */
1187 if (flags.base_after_vec)
1188 rel_addr += insn_current_address - insn_last_address;
1189 if (flags.min_after_vec)
1190 min_addr += insn_current_address - insn_last_address;
1191 if (flags.max_after_vec)
1192 max_addr += insn_current_address - insn_last_address;
1193 /* We want to know the worst case, i.e. lowest possible value
1194 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1195 its offset is positive, and we have to be wary of code shrink;
1196 otherwise, it is negative, and we have to be vary of code
1197 size increase. */
1198 if (flags.min_after_base)
1200 /* If INSN is between REL_LAB and MIN_LAB, the size
1201 changes we are about to make can change the alignment
1202 within the observed offset, therefore we have to break
1203 it up into two parts that are independent. */
1204 if (! flags.base_after_vec && flags.min_after_vec)
1206 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1207 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1209 else
1210 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1212 else
1214 if (flags.base_after_vec && ! flags.min_after_vec)
1216 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1217 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1219 else
1220 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1222 /* Likewise, determine the highest lowest possible value
1223 for the offset of MAX_LAB. */
1224 if (flags.max_after_base)
1226 if (! flags.base_after_vec && flags.max_after_vec)
1228 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1229 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1231 else
1232 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1234 else
1236 if (flags.base_after_vec && ! flags.max_after_vec)
1238 max_addr += align_fuzz (max_lab, insn, 0, 0);
1239 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1241 else
1242 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1244 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1245 max_addr - rel_addr,
1246 body));
1247 if (JUMP_TABLES_IN_TEXT_SECTION
1248 || readonly_data_section == text_section)
1250 insn_lengths[uid]
1251 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1252 insn_current_address += insn_lengths[uid];
1253 if (insn_lengths[uid] != old_length)
1254 something_changed = 1;
1257 continue;
1259 #endif /* CASE_VECTOR_SHORTEN_MODE */
1261 if (! (varying_length[uid]))
1263 if (NONJUMP_INSN_P (insn)
1264 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1266 int i;
1268 body = PATTERN (insn);
1269 for (i = 0; i < XVECLEN (body, 0); i++)
1271 rtx inner_insn = XVECEXP (body, 0, i);
1272 int inner_uid = INSN_UID (inner_insn);
1274 INSN_ADDRESSES (inner_uid) = insn_current_address;
1276 insn_current_address += insn_lengths[inner_uid];
1279 else
1280 insn_current_address += insn_lengths[uid];
1282 continue;
1285 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1287 int i;
1289 body = PATTERN (insn);
1290 new_length = 0;
1291 for (i = 0; i < XVECLEN (body, 0); i++)
1293 rtx inner_insn = XVECEXP (body, 0, i);
1294 int inner_uid = INSN_UID (inner_insn);
1295 int inner_length;
1297 INSN_ADDRESSES (inner_uid) = insn_current_address;
1299 /* insn_current_length returns 0 for insns with a
1300 non-varying length. */
1301 if (! varying_length[inner_uid])
1302 inner_length = insn_lengths[inner_uid];
1303 else
1304 inner_length = insn_current_length (inner_insn);
1306 if (inner_length != insn_lengths[inner_uid])
1308 insn_lengths[inner_uid] = inner_length;
1309 something_changed = 1;
1311 insn_current_address += insn_lengths[inner_uid];
1312 new_length += inner_length;
1315 else
1317 new_length = insn_current_length (insn);
1318 insn_current_address += new_length;
1321 #ifdef ADJUST_INSN_LENGTH
1322 /* If needed, do any adjustment. */
1323 tmp_length = new_length;
1324 ADJUST_INSN_LENGTH (insn, new_length);
1325 insn_current_address += (new_length - tmp_length);
1326 #endif
1328 if (new_length != insn_lengths[uid])
1330 insn_lengths[uid] = new_length;
1331 something_changed = 1;
1334 /* For a non-optimizing compile, do only a single pass. */
1335 if (!optimize)
1336 break;
1339 free (varying_length);
1341 #endif /* HAVE_ATTR_length */
1344 #ifdef HAVE_ATTR_length
1345 /* Given the body of an INSN known to be generated by an ASM statement, return
1346 the number of machine instructions likely to be generated for this insn.
1347 This is used to compute its length. */
1349 static int
1350 asm_insn_count (rtx body)
1352 const char *template;
1353 int count = 1;
1355 if (GET_CODE (body) == ASM_INPUT)
1356 template = XSTR (body, 0);
1357 else
1358 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1360 for (; *template; template++)
1361 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1362 count++;
1364 return count;
1366 #endif
1368 /* Output assembler code for the start of a function,
1369 and initialize some of the variables in this file
1370 for the new function. The label for the function and associated
1371 assembler pseudo-ops have already been output in `assemble_start_function'.
1373 FIRST is the first insn of the rtl for the function being compiled.
1374 FILE is the file to write assembler code to.
1375 OPTIMIZE is nonzero if we should eliminate redundant
1376 test and compare insns. */
1378 void
1379 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1380 int optimize ATTRIBUTE_UNUSED)
1382 block_depth = 0;
1384 this_is_asm_operands = 0;
1386 last_filename = locator_file (prologue_locator);
1387 last_linenum = locator_line (prologue_locator);
1389 high_block_linenum = high_function_linenum = last_linenum;
1391 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1393 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1394 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1395 dwarf2out_begin_prologue (0, NULL);
1396 #endif
1398 #ifdef LEAF_REG_REMAP
1399 if (current_function_uses_only_leaf_regs)
1400 leaf_renumber_regs (first);
1401 #endif
1403 /* The Sun386i and perhaps other machines don't work right
1404 if the profiling code comes after the prologue. */
1405 #ifdef PROFILE_BEFORE_PROLOGUE
1406 if (current_function_profile)
1407 profile_function (file);
1408 #endif /* PROFILE_BEFORE_PROLOGUE */
1410 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1411 if (dwarf2out_do_frame ())
1412 dwarf2out_frame_debug (NULL_RTX, false);
1413 #endif
1415 /* If debugging, assign block numbers to all of the blocks in this
1416 function. */
1417 if (write_symbols)
1419 reemit_insn_block_notes ();
1420 number_blocks (current_function_decl);
1421 /* We never actually put out begin/end notes for the top-level
1422 block in the function. But, conceptually, that block is
1423 always needed. */
1424 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1427 /* First output the function prologue: code to set up the stack frame. */
1428 targetm.asm_out.function_prologue (file, get_frame_size ());
1430 /* If the machine represents the prologue as RTL, the profiling code must
1431 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1432 #ifdef HAVE_prologue
1433 if (! HAVE_prologue)
1434 #endif
1435 profile_after_prologue (file);
1438 static void
1439 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1441 #ifndef PROFILE_BEFORE_PROLOGUE
1442 if (current_function_profile)
1443 profile_function (file);
1444 #endif /* not PROFILE_BEFORE_PROLOGUE */
1447 static void
1448 profile_function (FILE *file ATTRIBUTE_UNUSED)
1450 #ifndef NO_PROFILE_COUNTERS
1451 # define NO_PROFILE_COUNTERS 0
1452 #endif
1453 #if defined(ASM_OUTPUT_REG_PUSH)
1454 int sval = current_function_returns_struct;
1455 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1456 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1457 int cxt = cfun->static_chain_decl != NULL;
1458 #endif
1459 #endif /* ASM_OUTPUT_REG_PUSH */
1461 if (! NO_PROFILE_COUNTERS)
1463 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1464 switch_to_section (data_section);
1465 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1466 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1467 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1470 switch_to_section (current_function_section ());
1472 #if defined(ASM_OUTPUT_REG_PUSH)
1473 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1474 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1475 #endif
1477 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1478 if (cxt)
1479 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1480 #else
1481 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1482 if (cxt)
1484 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1486 #endif
1487 #endif
1489 FUNCTION_PROFILER (file, current_function_funcdef_no);
1491 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1492 if (cxt)
1493 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1494 #else
1495 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1496 if (cxt)
1498 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1500 #endif
1501 #endif
1503 #if defined(ASM_OUTPUT_REG_PUSH)
1504 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1505 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1506 #endif
1509 /* Output assembler code for the end of a function.
1510 For clarity, args are same as those of `final_start_function'
1511 even though not all of them are needed. */
1513 void
1514 final_end_function (void)
1516 app_disable ();
1518 (*debug_hooks->end_function) (high_function_linenum);
1520 /* Finally, output the function epilogue:
1521 code to restore the stack frame and return to the caller. */
1522 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1524 /* And debug output. */
1525 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1527 #if defined (DWARF2_UNWIND_INFO)
1528 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1529 && dwarf2out_do_frame ())
1530 dwarf2out_end_epilogue (last_linenum, last_filename);
1531 #endif
1534 /* Output assembler code for some insns: all or part of a function.
1535 For description of args, see `final_start_function', above. */
1537 void
1538 final (rtx first, FILE *file, int optimize)
1540 rtx insn;
1541 int max_uid = 0;
1542 int seen = 0;
1544 last_ignored_compare = 0;
1546 #ifdef SDB_DEBUGGING_INFO
1547 /* When producing SDB debugging info, delete troublesome line number
1548 notes from inlined functions in other files as well as duplicate
1549 line number notes. */
1550 if (write_symbols == SDB_DEBUG)
1552 rtx last = 0;
1553 for (insn = first; insn; insn = NEXT_INSN (insn))
1554 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1556 if (last != 0
1557 #ifdef USE_MAPPED_LOCATION
1558 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1559 #else
1560 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1561 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1562 #endif
1565 delete_insn (insn); /* Use delete_note. */
1566 continue;
1568 last = insn;
1571 #endif
1573 for (insn = first; insn; insn = NEXT_INSN (insn))
1575 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1576 max_uid = INSN_UID (insn);
1577 #ifdef HAVE_cc0
1578 /* If CC tracking across branches is enabled, record the insn which
1579 jumps to each branch only reached from one place. */
1580 if (optimize && JUMP_P (insn))
1582 rtx lab = JUMP_LABEL (insn);
1583 if (lab && LABEL_NUSES (lab) == 1)
1585 LABEL_REFS (lab) = insn;
1588 #endif
1591 init_recog ();
1593 CC_STATUS_INIT;
1595 /* Output the insns. */
1596 for (insn = NEXT_INSN (first); insn;)
1598 #ifdef HAVE_ATTR_length
1599 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1601 /* This can be triggered by bugs elsewhere in the compiler if
1602 new insns are created after init_insn_lengths is called. */
1603 gcc_assert (NOTE_P (insn));
1604 insn_current_address = -1;
1606 else
1607 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1608 #endif /* HAVE_ATTR_length */
1610 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1614 const char *
1615 get_insn_template (int code, rtx insn)
1617 switch (insn_data[code].output_format)
1619 case INSN_OUTPUT_FORMAT_SINGLE:
1620 return insn_data[code].output.single;
1621 case INSN_OUTPUT_FORMAT_MULTI:
1622 return insn_data[code].output.multi[which_alternative];
1623 case INSN_OUTPUT_FORMAT_FUNCTION:
1624 gcc_assert (insn);
1625 return (*insn_data[code].output.function) (recog_data.operand, insn);
1627 default:
1628 gcc_unreachable ();
1632 /* Emit the appropriate declaration for an alternate-entry-point
1633 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1634 LABEL_KIND != LABEL_NORMAL.
1636 The case fall-through in this function is intentional. */
1637 static void
1638 output_alternate_entry_point (FILE *file, rtx insn)
1640 const char *name = LABEL_NAME (insn);
1642 switch (LABEL_KIND (insn))
1644 case LABEL_WEAK_ENTRY:
1645 #ifdef ASM_WEAKEN_LABEL
1646 ASM_WEAKEN_LABEL (file, name);
1647 #endif
1648 case LABEL_GLOBAL_ENTRY:
1649 targetm.asm_out.globalize_label (file, name);
1650 case LABEL_STATIC_ENTRY:
1651 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1652 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1653 #endif
1654 ASM_OUTPUT_LABEL (file, name);
1655 break;
1657 case LABEL_NORMAL:
1658 default:
1659 gcc_unreachable ();
1663 /* The final scan for one insn, INSN.
1664 Args are same as in `final', except that INSN
1665 is the insn being scanned.
1666 Value returned is the next insn to be scanned.
1668 NOPEEPHOLES is the flag to disallow peephole processing (currently
1669 used for within delayed branch sequence output).
1671 SEEN is used to track the end of the prologue, for emitting
1672 debug information. We force the emission of a line note after
1673 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1674 at the beginning of the second basic block, whichever comes
1675 first. */
1678 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1679 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1681 #ifdef HAVE_cc0
1682 rtx set;
1683 #endif
1684 rtx next;
1686 insn_counter++;
1688 /* Ignore deleted insns. These can occur when we split insns (due to a
1689 template of "#") while not optimizing. */
1690 if (INSN_DELETED_P (insn))
1691 return NEXT_INSN (insn);
1693 switch (GET_CODE (insn))
1695 case NOTE:
1696 switch (NOTE_LINE_NUMBER (insn))
1698 case NOTE_INSN_DELETED:
1699 case NOTE_INSN_FUNCTION_END:
1700 case NOTE_INSN_REPEATED_LINE_NUMBER:
1701 case NOTE_INSN_EXPECTED_VALUE:
1702 break;
1704 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1705 in_cold_section_p = !in_cold_section_p;
1706 (*debug_hooks->switch_text_section) ();
1707 switch_to_section (current_function_section ());
1708 break;
1710 case NOTE_INSN_BASIC_BLOCK:
1711 #ifdef TARGET_UNWIND_INFO
1712 targetm.asm_out.unwind_emit (asm_out_file, insn);
1713 #endif
1715 if (flag_debug_asm)
1716 fprintf (asm_out_file, "\t%s basic block %d\n",
1717 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1719 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1721 *seen |= SEEN_EMITTED;
1722 force_source_line = true;
1724 else
1725 *seen |= SEEN_BB;
1727 break;
1729 case NOTE_INSN_EH_REGION_BEG:
1730 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1731 NOTE_EH_HANDLER (insn));
1732 break;
1734 case NOTE_INSN_EH_REGION_END:
1735 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1736 NOTE_EH_HANDLER (insn));
1737 break;
1739 case NOTE_INSN_PROLOGUE_END:
1740 targetm.asm_out.function_end_prologue (file);
1741 profile_after_prologue (file);
1743 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1745 *seen |= SEEN_EMITTED;
1746 force_source_line = true;
1748 else
1749 *seen |= SEEN_NOTE;
1751 break;
1753 case NOTE_INSN_EPILOGUE_BEG:
1754 targetm.asm_out.function_begin_epilogue (file);
1755 break;
1757 case NOTE_INSN_FUNCTION_BEG:
1758 app_disable ();
1759 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1761 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1763 *seen |= SEEN_EMITTED;
1764 force_source_line = true;
1766 else
1767 *seen |= SEEN_NOTE;
1769 break;
1771 case NOTE_INSN_BLOCK_BEG:
1772 if (debug_info_level == DINFO_LEVEL_NORMAL
1773 || debug_info_level == DINFO_LEVEL_VERBOSE
1774 || write_symbols == DWARF2_DEBUG
1775 || write_symbols == VMS_AND_DWARF2_DEBUG
1776 || write_symbols == VMS_DEBUG)
1778 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1780 app_disable ();
1781 ++block_depth;
1782 high_block_linenum = last_linenum;
1784 /* Output debugging info about the symbol-block beginning. */
1785 (*debug_hooks->begin_block) (last_linenum, n);
1787 /* Mark this block as output. */
1788 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1790 break;
1792 case NOTE_INSN_BLOCK_END:
1793 if (debug_info_level == DINFO_LEVEL_NORMAL
1794 || debug_info_level == DINFO_LEVEL_VERBOSE
1795 || write_symbols == DWARF2_DEBUG
1796 || write_symbols == VMS_AND_DWARF2_DEBUG
1797 || write_symbols == VMS_DEBUG)
1799 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1801 app_disable ();
1803 /* End of a symbol-block. */
1804 --block_depth;
1805 gcc_assert (block_depth >= 0);
1807 (*debug_hooks->end_block) (high_block_linenum, n);
1809 break;
1811 case NOTE_INSN_DELETED_LABEL:
1812 /* Emit the label. We may have deleted the CODE_LABEL because
1813 the label could be proved to be unreachable, though still
1814 referenced (in the form of having its address taken. */
1815 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1816 break;
1818 case NOTE_INSN_VAR_LOCATION:
1819 (*debug_hooks->var_location) (insn);
1820 break;
1822 case 0:
1823 break;
1825 default:
1826 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1827 break;
1829 break;
1831 case BARRIER:
1832 #if defined (DWARF2_UNWIND_INFO)
1833 if (dwarf2out_do_frame ())
1834 dwarf2out_frame_debug (insn, false);
1835 #endif
1836 break;
1838 case CODE_LABEL:
1839 /* The target port might emit labels in the output function for
1840 some insn, e.g. sh.c output_branchy_insn. */
1841 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1843 int align = LABEL_TO_ALIGNMENT (insn);
1844 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1845 int max_skip = LABEL_TO_MAX_SKIP (insn);
1846 #endif
1848 if (align && NEXT_INSN (insn))
1850 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1851 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1852 #else
1853 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1854 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1855 #else
1856 ASM_OUTPUT_ALIGN (file, align);
1857 #endif
1858 #endif
1861 #ifdef HAVE_cc0
1862 CC_STATUS_INIT;
1863 /* If this label is reached from only one place, set the condition
1864 codes from the instruction just before the branch. */
1866 /* Disabled because some insns set cc_status in the C output code
1867 and NOTICE_UPDATE_CC alone can set incorrect status. */
1868 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1870 rtx jump = LABEL_REFS (insn);
1871 rtx barrier = prev_nonnote_insn (insn);
1872 rtx prev;
1873 /* If the LABEL_REFS field of this label has been set to point
1874 at a branch, the predecessor of the branch is a regular
1875 insn, and that branch is the only way to reach this label,
1876 set the condition codes based on the branch and its
1877 predecessor. */
1878 if (barrier && BARRIER_P (barrier)
1879 && jump && JUMP_P (jump)
1880 && (prev = prev_nonnote_insn (jump))
1881 && NONJUMP_INSN_P (prev))
1883 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1884 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1887 #endif
1889 if (LABEL_NAME (insn))
1890 (*debug_hooks->label) (insn);
1892 if (app_on)
1894 fputs (ASM_APP_OFF, file);
1895 app_on = 0;
1898 next = next_nonnote_insn (insn);
1899 if (next != 0 && JUMP_P (next))
1901 rtx nextbody = PATTERN (next);
1903 /* If this label is followed by a jump-table,
1904 make sure we put the label in the read-only section. Also
1905 possibly write the label and jump table together. */
1907 if (GET_CODE (nextbody) == ADDR_VEC
1908 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1910 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1911 /* In this case, the case vector is being moved by the
1912 target, so don't output the label at all. Leave that
1913 to the back end macros. */
1914 #else
1915 if (! JUMP_TABLES_IN_TEXT_SECTION)
1917 int log_align;
1919 switch_to_section (targetm.asm_out.function_rodata_section
1920 (current_function_decl));
1922 #ifdef ADDR_VEC_ALIGN
1923 log_align = ADDR_VEC_ALIGN (next);
1924 #else
1925 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1926 #endif
1927 ASM_OUTPUT_ALIGN (file, log_align);
1929 else
1930 switch_to_section (current_function_section ());
1932 #ifdef ASM_OUTPUT_CASE_LABEL
1933 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1934 next);
1935 #else
1936 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1937 #endif
1938 #endif
1939 break;
1942 if (LABEL_ALT_ENTRY_P (insn))
1943 output_alternate_entry_point (file, insn);
1944 else
1945 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1946 break;
1948 default:
1950 rtx body = PATTERN (insn);
1951 int insn_code_number;
1952 const char *template;
1954 #ifdef HAVE_conditional_execution
1955 /* Reset this early so it is correct for ASM statements. */
1956 current_insn_predicate = NULL_RTX;
1957 #endif
1958 /* An INSN, JUMP_INSN or CALL_INSN.
1959 First check for special kinds that recog doesn't recognize. */
1961 if (GET_CODE (body) == USE /* These are just declarations. */
1962 || GET_CODE (body) == CLOBBER)
1963 break;
1965 #ifdef HAVE_cc0
1967 /* If there is a REG_CC_SETTER note on this insn, it means that
1968 the setting of the condition code was done in the delay slot
1969 of the insn that branched here. So recover the cc status
1970 from the insn that set it. */
1972 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1973 if (note)
1975 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1976 cc_prev_status = cc_status;
1979 #endif
1981 /* Detect insns that are really jump-tables
1982 and output them as such. */
1984 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1986 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1987 int vlen, idx;
1988 #endif
1990 if (! JUMP_TABLES_IN_TEXT_SECTION)
1991 switch_to_section (targetm.asm_out.function_rodata_section
1992 (current_function_decl));
1993 else
1994 switch_to_section (current_function_section ());
1996 if (app_on)
1998 fputs (ASM_APP_OFF, file);
1999 app_on = 0;
2002 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2003 if (GET_CODE (body) == ADDR_VEC)
2005 #ifdef ASM_OUTPUT_ADDR_VEC
2006 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2007 #else
2008 gcc_unreachable ();
2009 #endif
2011 else
2013 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2014 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2015 #else
2016 gcc_unreachable ();
2017 #endif
2019 #else
2020 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2021 for (idx = 0; idx < vlen; idx++)
2023 if (GET_CODE (body) == ADDR_VEC)
2025 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2026 ASM_OUTPUT_ADDR_VEC_ELT
2027 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2028 #else
2029 gcc_unreachable ();
2030 #endif
2032 else
2034 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2035 ASM_OUTPUT_ADDR_DIFF_ELT
2036 (file,
2037 body,
2038 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2039 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2040 #else
2041 gcc_unreachable ();
2042 #endif
2045 #ifdef ASM_OUTPUT_CASE_END
2046 ASM_OUTPUT_CASE_END (file,
2047 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2048 insn);
2049 #endif
2050 #endif
2052 switch_to_section (current_function_section ());
2054 break;
2056 /* Output this line note if it is the first or the last line
2057 note in a row. */
2058 if (notice_source_line (insn))
2060 (*debug_hooks->source_line) (last_linenum, last_filename);
2063 if (GET_CODE (body) == ASM_INPUT)
2065 const char *string = XSTR (body, 0);
2067 /* There's no telling what that did to the condition codes. */
2068 CC_STATUS_INIT;
2070 if (string[0])
2072 if (! app_on)
2074 fputs (ASM_APP_ON, file);
2075 app_on = 1;
2077 fprintf (asm_out_file, "\t%s\n", string);
2079 break;
2082 /* Detect `asm' construct with operands. */
2083 if (asm_noperands (body) >= 0)
2085 unsigned int noperands = asm_noperands (body);
2086 rtx *ops = alloca (noperands * sizeof (rtx));
2087 const char *string;
2089 /* There's no telling what that did to the condition codes. */
2090 CC_STATUS_INIT;
2092 /* Get out the operand values. */
2093 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2094 /* Inhibit dieing on what would otherwise be compiler bugs. */
2095 insn_noperands = noperands;
2096 this_is_asm_operands = insn;
2098 #ifdef FINAL_PRESCAN_INSN
2099 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2100 #endif
2102 /* Output the insn using them. */
2103 if (string[0])
2105 if (! app_on)
2107 fputs (ASM_APP_ON, file);
2108 app_on = 1;
2110 output_asm_insn (string, ops);
2113 this_is_asm_operands = 0;
2114 break;
2117 if (app_on)
2119 fputs (ASM_APP_OFF, file);
2120 app_on = 0;
2123 if (GET_CODE (body) == SEQUENCE)
2125 /* A delayed-branch sequence */
2126 int i;
2128 final_sequence = body;
2130 /* Record the delay slots' frame information before the branch.
2131 This is needed for delayed calls: see execute_cfa_program(). */
2132 #if defined (DWARF2_UNWIND_INFO)
2133 if (dwarf2out_do_frame ())
2134 for (i = 1; i < XVECLEN (body, 0); i++)
2135 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2136 #endif
2138 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2139 force the restoration of a comparison that was previously
2140 thought unnecessary. If that happens, cancel this sequence
2141 and cause that insn to be restored. */
2143 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2144 if (next != XVECEXP (body, 0, 1))
2146 final_sequence = 0;
2147 return next;
2150 for (i = 1; i < XVECLEN (body, 0); i++)
2152 rtx insn = XVECEXP (body, 0, i);
2153 rtx next = NEXT_INSN (insn);
2154 /* We loop in case any instruction in a delay slot gets
2155 split. */
2157 insn = final_scan_insn (insn, file, 0, 1, seen);
2158 while (insn != next);
2160 #ifdef DBR_OUTPUT_SEQEND
2161 DBR_OUTPUT_SEQEND (file);
2162 #endif
2163 final_sequence = 0;
2165 /* If the insn requiring the delay slot was a CALL_INSN, the
2166 insns in the delay slot are actually executed before the
2167 called function. Hence we don't preserve any CC-setting
2168 actions in these insns and the CC must be marked as being
2169 clobbered by the function. */
2170 if (CALL_P (XVECEXP (body, 0, 0)))
2172 CC_STATUS_INIT;
2174 break;
2177 /* We have a real machine instruction as rtl. */
2179 body = PATTERN (insn);
2181 #ifdef HAVE_cc0
2182 set = single_set (insn);
2184 /* Check for redundant test and compare instructions
2185 (when the condition codes are already set up as desired).
2186 This is done only when optimizing; if not optimizing,
2187 it should be possible for the user to alter a variable
2188 with the debugger in between statements
2189 and the next statement should reexamine the variable
2190 to compute the condition codes. */
2192 if (optimize)
2194 if (set
2195 && GET_CODE (SET_DEST (set)) == CC0
2196 && insn != last_ignored_compare)
2198 if (GET_CODE (SET_SRC (set)) == SUBREG)
2199 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2200 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2202 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2203 XEXP (SET_SRC (set), 0)
2204 = alter_subreg (&XEXP (SET_SRC (set), 0));
2205 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2206 XEXP (SET_SRC (set), 1)
2207 = alter_subreg (&XEXP (SET_SRC (set), 1));
2209 if ((cc_status.value1 != 0
2210 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2211 || (cc_status.value2 != 0
2212 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2214 /* Don't delete insn if it has an addressing side-effect. */
2215 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2216 /* or if anything in it is volatile. */
2217 && ! volatile_refs_p (PATTERN (insn)))
2219 /* We don't really delete the insn; just ignore it. */
2220 last_ignored_compare = insn;
2221 break;
2226 #endif
2228 #ifdef HAVE_cc0
2229 /* If this is a conditional branch, maybe modify it
2230 if the cc's are in a nonstandard state
2231 so that it accomplishes the same thing that it would
2232 do straightforwardly if the cc's were set up normally. */
2234 if (cc_status.flags != 0
2235 && JUMP_P (insn)
2236 && GET_CODE (body) == SET
2237 && SET_DEST (body) == pc_rtx
2238 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2239 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2240 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2242 /* This function may alter the contents of its argument
2243 and clear some of the cc_status.flags bits.
2244 It may also return 1 meaning condition now always true
2245 or -1 meaning condition now always false
2246 or 2 meaning condition nontrivial but altered. */
2247 int result = alter_cond (XEXP (SET_SRC (body), 0));
2248 /* If condition now has fixed value, replace the IF_THEN_ELSE
2249 with its then-operand or its else-operand. */
2250 if (result == 1)
2251 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2252 if (result == -1)
2253 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2255 /* The jump is now either unconditional or a no-op.
2256 If it has become a no-op, don't try to output it.
2257 (It would not be recognized.) */
2258 if (SET_SRC (body) == pc_rtx)
2260 delete_insn (insn);
2261 break;
2263 else if (GET_CODE (SET_SRC (body)) == RETURN)
2264 /* Replace (set (pc) (return)) with (return). */
2265 PATTERN (insn) = body = SET_SRC (body);
2267 /* Rerecognize the instruction if it has changed. */
2268 if (result != 0)
2269 INSN_CODE (insn) = -1;
2272 /* Make same adjustments to instructions that examine the
2273 condition codes without jumping and instructions that
2274 handle conditional moves (if this machine has either one). */
2276 if (cc_status.flags != 0
2277 && set != 0)
2279 rtx cond_rtx, then_rtx, else_rtx;
2281 if (!JUMP_P (insn)
2282 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2284 cond_rtx = XEXP (SET_SRC (set), 0);
2285 then_rtx = XEXP (SET_SRC (set), 1);
2286 else_rtx = XEXP (SET_SRC (set), 2);
2288 else
2290 cond_rtx = SET_SRC (set);
2291 then_rtx = const_true_rtx;
2292 else_rtx = const0_rtx;
2295 switch (GET_CODE (cond_rtx))
2297 case GTU:
2298 case GT:
2299 case LTU:
2300 case LT:
2301 case GEU:
2302 case GE:
2303 case LEU:
2304 case LE:
2305 case EQ:
2306 case NE:
2308 int result;
2309 if (XEXP (cond_rtx, 0) != cc0_rtx)
2310 break;
2311 result = alter_cond (cond_rtx);
2312 if (result == 1)
2313 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2314 else if (result == -1)
2315 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2316 else if (result == 2)
2317 INSN_CODE (insn) = -1;
2318 if (SET_DEST (set) == SET_SRC (set))
2319 delete_insn (insn);
2321 break;
2323 default:
2324 break;
2328 #endif
2330 #ifdef HAVE_peephole
2331 /* Do machine-specific peephole optimizations if desired. */
2333 if (optimize && !flag_no_peephole && !nopeepholes)
2335 rtx next = peephole (insn);
2336 /* When peepholing, if there were notes within the peephole,
2337 emit them before the peephole. */
2338 if (next != 0 && next != NEXT_INSN (insn))
2340 rtx note, prev = PREV_INSN (insn);
2342 for (note = NEXT_INSN (insn); note != next;
2343 note = NEXT_INSN (note))
2344 final_scan_insn (note, file, optimize, nopeepholes, seen);
2346 /* Put the notes in the proper position for a later
2347 rescan. For example, the SH target can do this
2348 when generating a far jump in a delayed branch
2349 sequence. */
2350 note = NEXT_INSN (insn);
2351 PREV_INSN (note) = prev;
2352 NEXT_INSN (prev) = note;
2353 NEXT_INSN (PREV_INSN (next)) = insn;
2354 PREV_INSN (insn) = PREV_INSN (next);
2355 NEXT_INSN (insn) = next;
2356 PREV_INSN (next) = insn;
2359 /* PEEPHOLE might have changed this. */
2360 body = PATTERN (insn);
2362 #endif
2364 /* Try to recognize the instruction.
2365 If successful, verify that the operands satisfy the
2366 constraints for the instruction. Crash if they don't,
2367 since `reload' should have changed them so that they do. */
2369 insn_code_number = recog_memoized (insn);
2370 cleanup_subreg_operands (insn);
2372 /* Dump the insn in the assembly for debugging. */
2373 if (flag_dump_rtl_in_asm)
2375 print_rtx_head = ASM_COMMENT_START;
2376 print_rtl_single (asm_out_file, insn);
2377 print_rtx_head = "";
2380 if (! constrain_operands_cached (1))
2381 fatal_insn_not_found (insn);
2383 /* Some target machines need to prescan each insn before
2384 it is output. */
2386 #ifdef FINAL_PRESCAN_INSN
2387 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2388 #endif
2390 #ifdef HAVE_conditional_execution
2391 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2392 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2393 #endif
2395 #ifdef HAVE_cc0
2396 cc_prev_status = cc_status;
2398 /* Update `cc_status' for this instruction.
2399 The instruction's output routine may change it further.
2400 If the output routine for a jump insn needs to depend
2401 on the cc status, it should look at cc_prev_status. */
2403 NOTICE_UPDATE_CC (body, insn);
2404 #endif
2406 current_output_insn = debug_insn = insn;
2408 #if defined (DWARF2_UNWIND_INFO)
2409 if (CALL_P (insn) && dwarf2out_do_frame ())
2410 dwarf2out_frame_debug (insn, false);
2411 #endif
2413 /* Find the proper template for this insn. */
2414 template = get_insn_template (insn_code_number, insn);
2416 /* If the C code returns 0, it means that it is a jump insn
2417 which follows a deleted test insn, and that test insn
2418 needs to be reinserted. */
2419 if (template == 0)
2421 rtx prev;
2423 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2425 /* We have already processed the notes between the setter and
2426 the user. Make sure we don't process them again, this is
2427 particularly important if one of the notes is a block
2428 scope note or an EH note. */
2429 for (prev = insn;
2430 prev != last_ignored_compare;
2431 prev = PREV_INSN (prev))
2433 if (NOTE_P (prev))
2434 delete_insn (prev); /* Use delete_note. */
2437 return prev;
2440 /* If the template is the string "#", it means that this insn must
2441 be split. */
2442 if (template[0] == '#' && template[1] == '\0')
2444 rtx new = try_split (body, insn, 0);
2446 /* If we didn't split the insn, go away. */
2447 if (new == insn && PATTERN (new) == body)
2448 fatal_insn ("could not split insn", insn);
2450 #ifdef HAVE_ATTR_length
2451 /* This instruction should have been split in shorten_branches,
2452 to ensure that we would have valid length info for the
2453 splitees. */
2454 gcc_unreachable ();
2455 #endif
2457 return new;
2460 #ifdef TARGET_UNWIND_INFO
2461 /* ??? This will put the directives in the wrong place if
2462 get_insn_template outputs assembly directly. However calling it
2463 before get_insn_template breaks if the insns is split. */
2464 targetm.asm_out.unwind_emit (asm_out_file, insn);
2465 #endif
2467 /* Output assembler code from the template. */
2468 output_asm_insn (template, recog_data.operand);
2470 /* If necessary, report the effect that the instruction has on
2471 the unwind info. We've already done this for delay slots
2472 and call instructions. */
2473 #if defined (DWARF2_UNWIND_INFO)
2474 if (final_sequence == 0
2475 #if !defined (HAVE_prologue)
2476 && !ACCUMULATE_OUTGOING_ARGS
2477 #endif
2478 && dwarf2out_do_frame ())
2479 dwarf2out_frame_debug (insn, true);
2480 #endif
2482 current_output_insn = debug_insn = 0;
2485 return NEXT_INSN (insn);
2488 /* Return whether a source line note needs to be emitted before INSN. */
2490 static bool
2491 notice_source_line (rtx insn)
2493 const char *filename = insn_file (insn);
2494 int linenum = insn_line (insn);
2496 if (filename
2497 && (force_source_line
2498 || filename != last_filename
2499 || last_linenum != linenum))
2501 force_source_line = false;
2502 last_filename = filename;
2503 last_linenum = linenum;
2504 high_block_linenum = MAX (last_linenum, high_block_linenum);
2505 high_function_linenum = MAX (last_linenum, high_function_linenum);
2506 return true;
2508 return false;
2511 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2512 directly to the desired hard register. */
2514 void
2515 cleanup_subreg_operands (rtx insn)
2517 int i;
2518 extract_insn_cached (insn);
2519 for (i = 0; i < recog_data.n_operands; i++)
2521 /* The following test cannot use recog_data.operand when testing
2522 for a SUBREG: the underlying object might have been changed
2523 already if we are inside a match_operator expression that
2524 matches the else clause. Instead we test the underlying
2525 expression directly. */
2526 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2527 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2528 else if (GET_CODE (recog_data.operand[i]) == PLUS
2529 || GET_CODE (recog_data.operand[i]) == MULT
2530 || MEM_P (recog_data.operand[i]))
2531 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2534 for (i = 0; i < recog_data.n_dups; i++)
2536 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2537 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2538 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2539 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2540 || MEM_P (*recog_data.dup_loc[i]))
2541 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2545 /* If X is a SUBREG, replace it with a REG or a MEM,
2546 based on the thing it is a subreg of. */
2549 alter_subreg (rtx *xp)
2551 rtx x = *xp;
2552 rtx y = SUBREG_REG (x);
2554 /* simplify_subreg does not remove subreg from volatile references.
2555 We are required to. */
2556 if (MEM_P (y))
2558 int offset = SUBREG_BYTE (x);
2560 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2561 contains 0 instead of the proper offset. See simplify_subreg. */
2562 if (offset == 0
2563 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2565 int difference = GET_MODE_SIZE (GET_MODE (y))
2566 - GET_MODE_SIZE (GET_MODE (x));
2567 if (WORDS_BIG_ENDIAN)
2568 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2569 if (BYTES_BIG_ENDIAN)
2570 offset += difference % UNITS_PER_WORD;
2573 *xp = adjust_address (y, GET_MODE (x), offset);
2575 else
2577 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2578 SUBREG_BYTE (x));
2580 if (new != 0)
2581 *xp = new;
2582 else if (REG_P (y))
2584 /* Simplify_subreg can't handle some REG cases, but we have to. */
2585 unsigned int regno = subreg_regno (x);
2586 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2590 return *xp;
2593 /* Do alter_subreg on all the SUBREGs contained in X. */
2595 static rtx
2596 walk_alter_subreg (rtx *xp)
2598 rtx x = *xp;
2599 switch (GET_CODE (x))
2601 case PLUS:
2602 case MULT:
2603 case AND:
2604 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2605 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2606 break;
2608 case MEM:
2609 case ZERO_EXTEND:
2610 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2611 break;
2613 case SUBREG:
2614 return alter_subreg (xp);
2616 default:
2617 break;
2620 return *xp;
2623 #ifdef HAVE_cc0
2625 /* Given BODY, the body of a jump instruction, alter the jump condition
2626 as required by the bits that are set in cc_status.flags.
2627 Not all of the bits there can be handled at this level in all cases.
2629 The value is normally 0.
2630 1 means that the condition has become always true.
2631 -1 means that the condition has become always false.
2632 2 means that COND has been altered. */
2634 static int
2635 alter_cond (rtx cond)
2637 int value = 0;
2639 if (cc_status.flags & CC_REVERSED)
2641 value = 2;
2642 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2645 if (cc_status.flags & CC_INVERTED)
2647 value = 2;
2648 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2651 if (cc_status.flags & CC_NOT_POSITIVE)
2652 switch (GET_CODE (cond))
2654 case LE:
2655 case LEU:
2656 case GEU:
2657 /* Jump becomes unconditional. */
2658 return 1;
2660 case GT:
2661 case GTU:
2662 case LTU:
2663 /* Jump becomes no-op. */
2664 return -1;
2666 case GE:
2667 PUT_CODE (cond, EQ);
2668 value = 2;
2669 break;
2671 case LT:
2672 PUT_CODE (cond, NE);
2673 value = 2;
2674 break;
2676 default:
2677 break;
2680 if (cc_status.flags & CC_NOT_NEGATIVE)
2681 switch (GET_CODE (cond))
2683 case GE:
2684 case GEU:
2685 /* Jump becomes unconditional. */
2686 return 1;
2688 case LT:
2689 case LTU:
2690 /* Jump becomes no-op. */
2691 return -1;
2693 case LE:
2694 case LEU:
2695 PUT_CODE (cond, EQ);
2696 value = 2;
2697 break;
2699 case GT:
2700 case GTU:
2701 PUT_CODE (cond, NE);
2702 value = 2;
2703 break;
2705 default:
2706 break;
2709 if (cc_status.flags & CC_NO_OVERFLOW)
2710 switch (GET_CODE (cond))
2712 case GEU:
2713 /* Jump becomes unconditional. */
2714 return 1;
2716 case LEU:
2717 PUT_CODE (cond, EQ);
2718 value = 2;
2719 break;
2721 case GTU:
2722 PUT_CODE (cond, NE);
2723 value = 2;
2724 break;
2726 case LTU:
2727 /* Jump becomes no-op. */
2728 return -1;
2730 default:
2731 break;
2734 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2735 switch (GET_CODE (cond))
2737 default:
2738 gcc_unreachable ();
2740 case NE:
2741 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2742 value = 2;
2743 break;
2745 case EQ:
2746 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2747 value = 2;
2748 break;
2751 if (cc_status.flags & CC_NOT_SIGNED)
2752 /* The flags are valid if signed condition operators are converted
2753 to unsigned. */
2754 switch (GET_CODE (cond))
2756 case LE:
2757 PUT_CODE (cond, LEU);
2758 value = 2;
2759 break;
2761 case LT:
2762 PUT_CODE (cond, LTU);
2763 value = 2;
2764 break;
2766 case GT:
2767 PUT_CODE (cond, GTU);
2768 value = 2;
2769 break;
2771 case GE:
2772 PUT_CODE (cond, GEU);
2773 value = 2;
2774 break;
2776 default:
2777 break;
2780 return value;
2782 #endif
2784 /* Report inconsistency between the assembler template and the operands.
2785 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2787 void
2788 output_operand_lossage (const char *cmsgid, ...)
2790 char *fmt_string;
2791 char *new_message;
2792 const char *pfx_str;
2793 va_list ap;
2795 va_start (ap, cmsgid);
2797 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2798 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2799 vasprintf (&new_message, fmt_string, ap);
2801 if (this_is_asm_operands)
2802 error_for_asm (this_is_asm_operands, "%s", new_message);
2803 else
2804 internal_error ("%s", new_message);
2806 free (fmt_string);
2807 free (new_message);
2808 va_end (ap);
2811 /* Output of assembler code from a template, and its subroutines. */
2813 /* Annotate the assembly with a comment describing the pattern and
2814 alternative used. */
2816 static void
2817 output_asm_name (void)
2819 if (debug_insn)
2821 int num = INSN_CODE (debug_insn);
2822 fprintf (asm_out_file, "\t%s %d\t%s",
2823 ASM_COMMENT_START, INSN_UID (debug_insn),
2824 insn_data[num].name);
2825 if (insn_data[num].n_alternatives > 1)
2826 fprintf (asm_out_file, "/%d", which_alternative + 1);
2827 #ifdef HAVE_ATTR_length
2828 fprintf (asm_out_file, "\t[length = %d]",
2829 get_attr_length (debug_insn));
2830 #endif
2831 /* Clear this so only the first assembler insn
2832 of any rtl insn will get the special comment for -dp. */
2833 debug_insn = 0;
2837 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2838 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2839 corresponds to the address of the object and 0 if to the object. */
2841 static tree
2842 get_mem_expr_from_op (rtx op, int *paddressp)
2844 tree expr;
2845 int inner_addressp;
2847 *paddressp = 0;
2849 if (REG_P (op))
2850 return REG_EXPR (op);
2851 else if (!MEM_P (op))
2852 return 0;
2854 if (MEM_EXPR (op) != 0)
2855 return MEM_EXPR (op);
2857 /* Otherwise we have an address, so indicate it and look at the address. */
2858 *paddressp = 1;
2859 op = XEXP (op, 0);
2861 /* First check if we have a decl for the address, then look at the right side
2862 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2863 But don't allow the address to itself be indirect. */
2864 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2865 return expr;
2866 else if (GET_CODE (op) == PLUS
2867 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2868 return expr;
2870 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2871 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2872 op = XEXP (op, 0);
2874 expr = get_mem_expr_from_op (op, &inner_addressp);
2875 return inner_addressp ? 0 : expr;
2878 /* Output operand names for assembler instructions. OPERANDS is the
2879 operand vector, OPORDER is the order to write the operands, and NOPS
2880 is the number of operands to write. */
2882 static void
2883 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2885 int wrote = 0;
2886 int i;
2888 for (i = 0; i < nops; i++)
2890 int addressp;
2891 rtx op = operands[oporder[i]];
2892 tree expr = get_mem_expr_from_op (op, &addressp);
2894 fprintf (asm_out_file, "%c%s",
2895 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2896 wrote = 1;
2897 if (expr)
2899 fprintf (asm_out_file, "%s",
2900 addressp ? "*" : "");
2901 print_mem_expr (asm_out_file, expr);
2902 wrote = 1;
2904 else if (REG_P (op) && ORIGINAL_REGNO (op)
2905 && ORIGINAL_REGNO (op) != REGNO (op))
2906 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2910 /* Output text from TEMPLATE to the assembler output file,
2911 obeying %-directions to substitute operands taken from
2912 the vector OPERANDS.
2914 %N (for N a digit) means print operand N in usual manner.
2915 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2916 and print the label name with no punctuation.
2917 %cN means require operand N to be a constant
2918 and print the constant expression with no punctuation.
2919 %aN means expect operand N to be a memory address
2920 (not a memory reference!) and print a reference
2921 to that address.
2922 %nN means expect operand N to be a constant
2923 and print a constant expression for minus the value
2924 of the operand, with no other punctuation. */
2926 void
2927 output_asm_insn (const char *template, rtx *operands)
2929 const char *p;
2930 int c;
2931 #ifdef ASSEMBLER_DIALECT
2932 int dialect = 0;
2933 #endif
2934 int oporder[MAX_RECOG_OPERANDS];
2935 char opoutput[MAX_RECOG_OPERANDS];
2936 int ops = 0;
2938 /* An insn may return a null string template
2939 in a case where no assembler code is needed. */
2940 if (*template == 0)
2941 return;
2943 memset (opoutput, 0, sizeof opoutput);
2944 p = template;
2945 putc ('\t', asm_out_file);
2947 #ifdef ASM_OUTPUT_OPCODE
2948 ASM_OUTPUT_OPCODE (asm_out_file, p);
2949 #endif
2951 while ((c = *p++))
2952 switch (c)
2954 case '\n':
2955 if (flag_verbose_asm)
2956 output_asm_operand_names (operands, oporder, ops);
2957 if (flag_print_asm_name)
2958 output_asm_name ();
2960 ops = 0;
2961 memset (opoutput, 0, sizeof opoutput);
2963 putc (c, asm_out_file);
2964 #ifdef ASM_OUTPUT_OPCODE
2965 while ((c = *p) == '\t')
2967 putc (c, asm_out_file);
2968 p++;
2970 ASM_OUTPUT_OPCODE (asm_out_file, p);
2971 #endif
2972 break;
2974 #ifdef ASSEMBLER_DIALECT
2975 case '{':
2977 int i;
2979 if (dialect)
2980 output_operand_lossage ("nested assembly dialect alternatives");
2981 else
2982 dialect = 1;
2984 /* If we want the first dialect, do nothing. Otherwise, skip
2985 DIALECT_NUMBER of strings ending with '|'. */
2986 for (i = 0; i < dialect_number; i++)
2988 while (*p && *p != '}' && *p++ != '|')
2990 if (*p == '}')
2991 break;
2992 if (*p == '|')
2993 p++;
2996 if (*p == '\0')
2997 output_operand_lossage ("unterminated assembly dialect alternative");
2999 break;
3001 case '|':
3002 if (dialect)
3004 /* Skip to close brace. */
3007 if (*p == '\0')
3009 output_operand_lossage ("unterminated assembly dialect alternative");
3010 break;
3013 while (*p++ != '}');
3014 dialect = 0;
3016 else
3017 putc (c, asm_out_file);
3018 break;
3020 case '}':
3021 if (! dialect)
3022 putc (c, asm_out_file);
3023 dialect = 0;
3024 break;
3025 #endif
3027 case '%':
3028 /* %% outputs a single %. */
3029 if (*p == '%')
3031 p++;
3032 putc (c, asm_out_file);
3034 /* %= outputs a number which is unique to each insn in the entire
3035 compilation. This is useful for making local labels that are
3036 referred to more than once in a given insn. */
3037 else if (*p == '=')
3039 p++;
3040 fprintf (asm_out_file, "%d", insn_counter);
3042 /* % followed by a letter and some digits
3043 outputs an operand in a special way depending on the letter.
3044 Letters `acln' are implemented directly.
3045 Other letters are passed to `output_operand' so that
3046 the PRINT_OPERAND macro can define them. */
3047 else if (ISALPHA (*p))
3049 int letter = *p++;
3050 unsigned long opnum;
3051 char *endptr;
3053 opnum = strtoul (p, &endptr, 10);
3055 if (endptr == p)
3056 output_operand_lossage ("operand number missing "
3057 "after %%-letter");
3058 else if (this_is_asm_operands && opnum >= insn_noperands)
3059 output_operand_lossage ("operand number out of range");
3060 else if (letter == 'l')
3061 output_asm_label (operands[opnum]);
3062 else if (letter == 'a')
3063 output_address (operands[opnum]);
3064 else if (letter == 'c')
3066 if (CONSTANT_ADDRESS_P (operands[opnum]))
3067 output_addr_const (asm_out_file, operands[opnum]);
3068 else
3069 output_operand (operands[opnum], 'c');
3071 else if (letter == 'n')
3073 if (GET_CODE (operands[opnum]) == CONST_INT)
3074 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3075 - INTVAL (operands[opnum]));
3076 else
3078 putc ('-', asm_out_file);
3079 output_addr_const (asm_out_file, operands[opnum]);
3082 else
3083 output_operand (operands[opnum], letter);
3085 if (!opoutput[opnum])
3086 oporder[ops++] = opnum;
3087 opoutput[opnum] = 1;
3089 p = endptr;
3090 c = *p;
3092 /* % followed by a digit outputs an operand the default way. */
3093 else if (ISDIGIT (*p))
3095 unsigned long opnum;
3096 char *endptr;
3098 opnum = strtoul (p, &endptr, 10);
3099 if (this_is_asm_operands && opnum >= insn_noperands)
3100 output_operand_lossage ("operand number out of range");
3101 else
3102 output_operand (operands[opnum], 0);
3104 if (!opoutput[opnum])
3105 oporder[ops++] = opnum;
3106 opoutput[opnum] = 1;
3108 p = endptr;
3109 c = *p;
3111 /* % followed by punctuation: output something for that
3112 punctuation character alone, with no operand.
3113 The PRINT_OPERAND macro decides what is actually done. */
3114 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3115 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3116 output_operand (NULL_RTX, *p++);
3117 #endif
3118 else
3119 output_operand_lossage ("invalid %%-code");
3120 break;
3122 default:
3123 putc (c, asm_out_file);
3126 /* Write out the variable names for operands, if we know them. */
3127 if (flag_verbose_asm)
3128 output_asm_operand_names (operands, oporder, ops);
3129 if (flag_print_asm_name)
3130 output_asm_name ();
3132 putc ('\n', asm_out_file);
3135 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3137 void
3138 output_asm_label (rtx x)
3140 char buf[256];
3142 if (GET_CODE (x) == LABEL_REF)
3143 x = XEXP (x, 0);
3144 if (LABEL_P (x)
3145 || (NOTE_P (x)
3146 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3147 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3148 else
3149 output_operand_lossage ("'%%l' operand isn't a label");
3151 assemble_name (asm_out_file, buf);
3154 /* Print operand X using machine-dependent assembler syntax.
3155 The macro PRINT_OPERAND is defined just to control this function.
3156 CODE is a non-digit that preceded the operand-number in the % spec,
3157 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3158 between the % and the digits.
3159 When CODE is a non-letter, X is 0.
3161 The meanings of the letters are machine-dependent and controlled
3162 by PRINT_OPERAND. */
3164 static void
3165 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3167 if (x && GET_CODE (x) == SUBREG)
3168 x = alter_subreg (&x);
3170 /* X must not be a pseudo reg. */
3171 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3173 PRINT_OPERAND (asm_out_file, x, code);
3176 /* Print a memory reference operand for address X
3177 using machine-dependent assembler syntax.
3178 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3180 void
3181 output_address (rtx x)
3183 walk_alter_subreg (&x);
3184 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3187 /* Print an integer constant expression in assembler syntax.
3188 Addition and subtraction are the only arithmetic
3189 that may appear in these expressions. */
3191 void
3192 output_addr_const (FILE *file, rtx x)
3194 char buf[256];
3196 restart:
3197 switch (GET_CODE (x))
3199 case PC:
3200 putc ('.', file);
3201 break;
3203 case SYMBOL_REF:
3204 if (SYMBOL_REF_DECL (x))
3205 mark_decl_referenced (SYMBOL_REF_DECL (x));
3206 #ifdef ASM_OUTPUT_SYMBOL_REF
3207 ASM_OUTPUT_SYMBOL_REF (file, x);
3208 #else
3209 assemble_name (file, XSTR (x, 0));
3210 #endif
3211 break;
3213 case LABEL_REF:
3214 x = XEXP (x, 0);
3215 /* Fall through. */
3216 case CODE_LABEL:
3217 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3218 #ifdef ASM_OUTPUT_LABEL_REF
3219 ASM_OUTPUT_LABEL_REF (file, buf);
3220 #else
3221 assemble_name (file, buf);
3222 #endif
3223 break;
3225 case CONST_INT:
3226 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3227 break;
3229 case CONST:
3230 /* This used to output parentheses around the expression,
3231 but that does not work on the 386 (either ATT or BSD assembler). */
3232 output_addr_const (file, XEXP (x, 0));
3233 break;
3235 case CONST_DOUBLE:
3236 if (GET_MODE (x) == VOIDmode)
3238 /* We can use %d if the number is one word and positive. */
3239 if (CONST_DOUBLE_HIGH (x))
3240 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3241 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3242 else if (CONST_DOUBLE_LOW (x) < 0)
3243 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3244 else
3245 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3247 else
3248 /* We can't handle floating point constants;
3249 PRINT_OPERAND must handle them. */
3250 output_operand_lossage ("floating constant misused");
3251 break;
3253 case PLUS:
3254 /* Some assemblers need integer constants to appear last (eg masm). */
3255 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3257 output_addr_const (file, XEXP (x, 1));
3258 if (INTVAL (XEXP (x, 0)) >= 0)
3259 fprintf (file, "+");
3260 output_addr_const (file, XEXP (x, 0));
3262 else
3264 output_addr_const (file, XEXP (x, 0));
3265 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3266 || INTVAL (XEXP (x, 1)) >= 0)
3267 fprintf (file, "+");
3268 output_addr_const (file, XEXP (x, 1));
3270 break;
3272 case MINUS:
3273 /* Avoid outputting things like x-x or x+5-x,
3274 since some assemblers can't handle that. */
3275 x = simplify_subtraction (x);
3276 if (GET_CODE (x) != MINUS)
3277 goto restart;
3279 output_addr_const (file, XEXP (x, 0));
3280 fprintf (file, "-");
3281 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3282 || GET_CODE (XEXP (x, 1)) == PC
3283 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3284 output_addr_const (file, XEXP (x, 1));
3285 else
3287 fputs (targetm.asm_out.open_paren, file);
3288 output_addr_const (file, XEXP (x, 1));
3289 fputs (targetm.asm_out.close_paren, file);
3291 break;
3293 case ZERO_EXTEND:
3294 case SIGN_EXTEND:
3295 case SUBREG:
3296 output_addr_const (file, XEXP (x, 0));
3297 break;
3299 default:
3300 #ifdef OUTPUT_ADDR_CONST_EXTRA
3301 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3302 break;
3304 fail:
3305 #endif
3306 output_operand_lossage ("invalid expression as operand");
3310 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3311 %R prints the value of REGISTER_PREFIX.
3312 %L prints the value of LOCAL_LABEL_PREFIX.
3313 %U prints the value of USER_LABEL_PREFIX.
3314 %I prints the value of IMMEDIATE_PREFIX.
3315 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3316 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3318 We handle alternate assembler dialects here, just like output_asm_insn. */
3320 void
3321 asm_fprintf (FILE *file, const char *p, ...)
3323 char buf[10];
3324 char *q, c;
3325 va_list argptr;
3327 va_start (argptr, p);
3329 buf[0] = '%';
3331 while ((c = *p++))
3332 switch (c)
3334 #ifdef ASSEMBLER_DIALECT
3335 case '{':
3337 int i;
3339 /* If we want the first dialect, do nothing. Otherwise, skip
3340 DIALECT_NUMBER of strings ending with '|'. */
3341 for (i = 0; i < dialect_number; i++)
3343 while (*p && *p++ != '|')
3346 if (*p == '|')
3347 p++;
3350 break;
3352 case '|':
3353 /* Skip to close brace. */
3354 while (*p && *p++ != '}')
3356 break;
3358 case '}':
3359 break;
3360 #endif
3362 case '%':
3363 c = *p++;
3364 q = &buf[1];
3365 while (strchr ("-+ #0", c))
3367 *q++ = c;
3368 c = *p++;
3370 while (ISDIGIT (c) || c == '.')
3372 *q++ = c;
3373 c = *p++;
3375 switch (c)
3377 case '%':
3378 putc ('%', file);
3379 break;
3381 case 'd': case 'i': case 'u':
3382 case 'x': case 'X': case 'o':
3383 case 'c':
3384 *q++ = c;
3385 *q = 0;
3386 fprintf (file, buf, va_arg (argptr, int));
3387 break;
3389 case 'w':
3390 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3391 'o' cases, but we do not check for those cases. It
3392 means that the value is a HOST_WIDE_INT, which may be
3393 either `long' or `long long'. */
3394 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3395 q += strlen (HOST_WIDE_INT_PRINT);
3396 *q++ = *p++;
3397 *q = 0;
3398 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3399 break;
3401 case 'l':
3402 *q++ = c;
3403 #ifdef HAVE_LONG_LONG
3404 if (*p == 'l')
3406 *q++ = *p++;
3407 *q++ = *p++;
3408 *q = 0;
3409 fprintf (file, buf, va_arg (argptr, long long));
3411 else
3412 #endif
3414 *q++ = *p++;
3415 *q = 0;
3416 fprintf (file, buf, va_arg (argptr, long));
3419 break;
3421 case 's':
3422 *q++ = c;
3423 *q = 0;
3424 fprintf (file, buf, va_arg (argptr, char *));
3425 break;
3427 case 'O':
3428 #ifdef ASM_OUTPUT_OPCODE
3429 ASM_OUTPUT_OPCODE (asm_out_file, p);
3430 #endif
3431 break;
3433 case 'R':
3434 #ifdef REGISTER_PREFIX
3435 fprintf (file, "%s", REGISTER_PREFIX);
3436 #endif
3437 break;
3439 case 'I':
3440 #ifdef IMMEDIATE_PREFIX
3441 fprintf (file, "%s", IMMEDIATE_PREFIX);
3442 #endif
3443 break;
3445 case 'L':
3446 #ifdef LOCAL_LABEL_PREFIX
3447 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3448 #endif
3449 break;
3451 case 'U':
3452 fputs (user_label_prefix, file);
3453 break;
3455 #ifdef ASM_FPRINTF_EXTENSIONS
3456 /* Uppercase letters are reserved for general use by asm_fprintf
3457 and so are not available to target specific code. In order to
3458 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3459 they are defined here. As they get turned into real extensions
3460 to asm_fprintf they should be removed from this list. */
3461 case 'A': case 'B': case 'C': case 'D': case 'E':
3462 case 'F': case 'G': case 'H': case 'J': case 'K':
3463 case 'M': case 'N': case 'P': case 'Q': case 'S':
3464 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3465 break;
3467 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3468 #endif
3469 default:
3470 gcc_unreachable ();
3472 break;
3474 default:
3475 putc (c, file);
3477 va_end (argptr);
3480 /* Split up a CONST_DOUBLE or integer constant rtx
3481 into two rtx's for single words,
3482 storing in *FIRST the word that comes first in memory in the target
3483 and in *SECOND the other. */
3485 void
3486 split_double (rtx value, rtx *first, rtx *second)
3488 if (GET_CODE (value) == CONST_INT)
3490 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3492 /* In this case the CONST_INT holds both target words.
3493 Extract the bits from it into two word-sized pieces.
3494 Sign extend each half to HOST_WIDE_INT. */
3495 unsigned HOST_WIDE_INT low, high;
3496 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3498 /* Set sign_bit to the most significant bit of a word. */
3499 sign_bit = 1;
3500 sign_bit <<= BITS_PER_WORD - 1;
3502 /* Set mask so that all bits of the word are set. We could
3503 have used 1 << BITS_PER_WORD instead of basing the
3504 calculation on sign_bit. However, on machines where
3505 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3506 compiler warning, even though the code would never be
3507 executed. */
3508 mask = sign_bit << 1;
3509 mask--;
3511 /* Set sign_extend as any remaining bits. */
3512 sign_extend = ~mask;
3514 /* Pick the lower word and sign-extend it. */
3515 low = INTVAL (value);
3516 low &= mask;
3517 if (low & sign_bit)
3518 low |= sign_extend;
3520 /* Pick the higher word, shifted to the least significant
3521 bits, and sign-extend it. */
3522 high = INTVAL (value);
3523 high >>= BITS_PER_WORD - 1;
3524 high >>= 1;
3525 high &= mask;
3526 if (high & sign_bit)
3527 high |= sign_extend;
3529 /* Store the words in the target machine order. */
3530 if (WORDS_BIG_ENDIAN)
3532 *first = GEN_INT (high);
3533 *second = GEN_INT (low);
3535 else
3537 *first = GEN_INT (low);
3538 *second = GEN_INT (high);
3541 else
3543 /* The rule for using CONST_INT for a wider mode
3544 is that we regard the value as signed.
3545 So sign-extend it. */
3546 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3547 if (WORDS_BIG_ENDIAN)
3549 *first = high;
3550 *second = value;
3552 else
3554 *first = value;
3555 *second = high;
3559 else if (GET_CODE (value) != CONST_DOUBLE)
3561 if (WORDS_BIG_ENDIAN)
3563 *first = const0_rtx;
3564 *second = value;
3566 else
3568 *first = value;
3569 *second = const0_rtx;
3572 else if (GET_MODE (value) == VOIDmode
3573 /* This is the old way we did CONST_DOUBLE integers. */
3574 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3576 /* In an integer, the words are defined as most and least significant.
3577 So order them by the target's convention. */
3578 if (WORDS_BIG_ENDIAN)
3580 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3581 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3583 else
3585 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3586 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3589 else
3591 REAL_VALUE_TYPE r;
3592 long l[2];
3593 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3595 /* Note, this converts the REAL_VALUE_TYPE to the target's
3596 format, splits up the floating point double and outputs
3597 exactly 32 bits of it into each of l[0] and l[1] --
3598 not necessarily BITS_PER_WORD bits. */
3599 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3601 /* If 32 bits is an entire word for the target, but not for the host,
3602 then sign-extend on the host so that the number will look the same
3603 way on the host that it would on the target. See for instance
3604 simplify_unary_operation. The #if is needed to avoid compiler
3605 warnings. */
3607 #if HOST_BITS_PER_LONG > 32
3608 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3610 if (l[0] & ((long) 1 << 31))
3611 l[0] |= ((long) (-1) << 32);
3612 if (l[1] & ((long) 1 << 31))
3613 l[1] |= ((long) (-1) << 32);
3615 #endif
3617 *first = GEN_INT (l[0]);
3618 *second = GEN_INT (l[1]);
3622 /* Return nonzero if this function has no function calls. */
3625 leaf_function_p (void)
3627 rtx insn;
3628 rtx link;
3630 if (current_function_profile || profile_arc_flag)
3631 return 0;
3633 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3635 if (CALL_P (insn)
3636 && ! SIBLING_CALL_P (insn))
3637 return 0;
3638 if (NONJUMP_INSN_P (insn)
3639 && GET_CODE (PATTERN (insn)) == SEQUENCE
3640 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3641 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3642 return 0;
3644 for (link = current_function_epilogue_delay_list;
3645 link;
3646 link = XEXP (link, 1))
3648 insn = XEXP (link, 0);
3650 if (CALL_P (insn)
3651 && ! SIBLING_CALL_P (insn))
3652 return 0;
3653 if (NONJUMP_INSN_P (insn)
3654 && GET_CODE (PATTERN (insn)) == SEQUENCE
3655 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3656 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3657 return 0;
3660 return 1;
3663 /* Return 1 if branch is a forward branch.
3664 Uses insn_shuid array, so it works only in the final pass. May be used by
3665 output templates to customary add branch prediction hints.
3668 final_forward_branch_p (rtx insn)
3670 int insn_id, label_id;
3672 gcc_assert (uid_shuid);
3673 insn_id = INSN_SHUID (insn);
3674 label_id = INSN_SHUID (JUMP_LABEL (insn));
3675 /* We've hit some insns that does not have id information available. */
3676 gcc_assert (insn_id && label_id);
3677 return insn_id < label_id;
3680 /* On some machines, a function with no call insns
3681 can run faster if it doesn't create its own register window.
3682 When output, the leaf function should use only the "output"
3683 registers. Ordinarily, the function would be compiled to use
3684 the "input" registers to find its arguments; it is a candidate
3685 for leaf treatment if it uses only the "input" registers.
3686 Leaf function treatment means renumbering so the function
3687 uses the "output" registers instead. */
3689 #ifdef LEAF_REGISTERS
3691 /* Return 1 if this function uses only the registers that can be
3692 safely renumbered. */
3695 only_leaf_regs_used (void)
3697 int i;
3698 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3700 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3701 if ((regs_ever_live[i] || global_regs[i])
3702 && ! permitted_reg_in_leaf_functions[i])
3703 return 0;
3705 if (current_function_uses_pic_offset_table
3706 && pic_offset_table_rtx != 0
3707 && REG_P (pic_offset_table_rtx)
3708 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3709 return 0;
3711 return 1;
3714 /* Scan all instructions and renumber all registers into those
3715 available in leaf functions. */
3717 static void
3718 leaf_renumber_regs (rtx first)
3720 rtx insn;
3722 /* Renumber only the actual patterns.
3723 The reg-notes can contain frame pointer refs,
3724 and renumbering them could crash, and should not be needed. */
3725 for (insn = first; insn; insn = NEXT_INSN (insn))
3726 if (INSN_P (insn))
3727 leaf_renumber_regs_insn (PATTERN (insn));
3728 for (insn = current_function_epilogue_delay_list;
3729 insn;
3730 insn = XEXP (insn, 1))
3731 if (INSN_P (XEXP (insn, 0)))
3732 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3735 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3736 available in leaf functions. */
3738 void
3739 leaf_renumber_regs_insn (rtx in_rtx)
3741 int i, j;
3742 const char *format_ptr;
3744 if (in_rtx == 0)
3745 return;
3747 /* Renumber all input-registers into output-registers.
3748 renumbered_regs would be 1 for an output-register;
3749 they */
3751 if (REG_P (in_rtx))
3753 int newreg;
3755 /* Don't renumber the same reg twice. */
3756 if (in_rtx->used)
3757 return;
3759 newreg = REGNO (in_rtx);
3760 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3761 to reach here as part of a REG_NOTE. */
3762 if (newreg >= FIRST_PSEUDO_REGISTER)
3764 in_rtx->used = 1;
3765 return;
3767 newreg = LEAF_REG_REMAP (newreg);
3768 gcc_assert (newreg >= 0);
3769 regs_ever_live[REGNO (in_rtx)] = 0;
3770 regs_ever_live[newreg] = 1;
3771 REGNO (in_rtx) = newreg;
3772 in_rtx->used = 1;
3775 if (INSN_P (in_rtx))
3777 /* Inside a SEQUENCE, we find insns.
3778 Renumber just the patterns of these insns,
3779 just as we do for the top-level insns. */
3780 leaf_renumber_regs_insn (PATTERN (in_rtx));
3781 return;
3784 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3786 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3787 switch (*format_ptr++)
3789 case 'e':
3790 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3791 break;
3793 case 'E':
3794 if (NULL != XVEC (in_rtx, i))
3796 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3797 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3799 break;
3801 case 'S':
3802 case 's':
3803 case '0':
3804 case 'i':
3805 case 'w':
3806 case 'n':
3807 case 'u':
3808 break;
3810 default:
3811 gcc_unreachable ();
3814 #endif
3817 /* When -gused is used, emit debug info for only used symbols. But in
3818 addition to the standard intercepted debug_hooks there are some direct
3819 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3820 Those routines may also be called from a higher level intercepted routine. So
3821 to prevent recording data for an inner call to one of these for an intercept,
3822 we maintain an intercept nesting counter (debug_nesting). We only save the
3823 intercepted arguments if the nesting is 1. */
3824 int debug_nesting = 0;
3826 static tree *symbol_queue;
3827 int symbol_queue_index = 0;
3828 static int symbol_queue_size = 0;
3830 /* Generate the symbols for any queued up type symbols we encountered
3831 while generating the type info for some originally used symbol.
3832 This might generate additional entries in the queue. Only when
3833 the nesting depth goes to 0 is this routine called. */
3835 void
3836 debug_flush_symbol_queue (void)
3838 int i;
3840 /* Make sure that additionally queued items are not flushed
3841 prematurely. */
3843 ++debug_nesting;
3845 for (i = 0; i < symbol_queue_index; ++i)
3847 /* If we pushed queued symbols then such symbols must be
3848 output no matter what anyone else says. Specifically,
3849 we need to make sure dbxout_symbol() thinks the symbol was
3850 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3851 which may be set for outside reasons. */
3852 int saved_tree_used = TREE_USED (symbol_queue[i]);
3853 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3854 TREE_USED (symbol_queue[i]) = 1;
3855 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3857 #ifdef DBX_DEBUGGING_INFO
3858 dbxout_symbol (symbol_queue[i], 0);
3859 #endif
3861 TREE_USED (symbol_queue[i]) = saved_tree_used;
3862 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3865 symbol_queue_index = 0;
3866 --debug_nesting;
3869 /* Queue a type symbol needed as part of the definition of a decl
3870 symbol. These symbols are generated when debug_flush_symbol_queue()
3871 is called. */
3873 void
3874 debug_queue_symbol (tree decl)
3876 if (symbol_queue_index >= symbol_queue_size)
3878 symbol_queue_size += 10;
3879 symbol_queue = xrealloc (symbol_queue,
3880 symbol_queue_size * sizeof (tree));
3883 symbol_queue[symbol_queue_index++] = decl;
3886 /* Free symbol queue. */
3887 void
3888 debug_free_queue (void)
3890 if (symbol_queue)
3892 free (symbol_queue);
3893 symbol_queue = NULL;
3894 symbol_queue_size = 0;
3898 /* Turn the RTL into assembly. */
3899 static unsigned int
3900 rest_of_handle_final (void)
3902 rtx x;
3903 const char *fnname;
3905 /* Get the function's name, as described by its RTL. This may be
3906 different from the DECL_NAME name used in the source file. */
3908 x = DECL_RTL (current_function_decl);
3909 gcc_assert (MEM_P (x));
3910 x = XEXP (x, 0);
3911 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3912 fnname = XSTR (x, 0);
3914 assemble_start_function (current_function_decl, fnname);
3915 final_start_function (get_insns (), asm_out_file, optimize);
3916 final (get_insns (), asm_out_file, optimize);
3917 final_end_function ();
3919 #ifdef TARGET_UNWIND_INFO
3920 /* ??? The IA-64 ".handlerdata" directive must be issued before
3921 the ".endp" directive that closes the procedure descriptor. */
3922 output_function_exception_table ();
3923 #endif
3925 assemble_end_function (current_function_decl, fnname);
3927 #ifndef TARGET_UNWIND_INFO
3928 /* Otherwise, it feels unclean to switch sections in the middle. */
3929 output_function_exception_table ();
3930 #endif
3932 user_defined_section_attribute = false;
3934 if (! quiet_flag)
3935 fflush (asm_out_file);
3937 /* Release all memory allocated by flow. */
3938 free_basic_block_vars ();
3940 /* Write DBX symbols if requested. */
3942 /* Note that for those inline functions where we don't initially
3943 know for certain that we will be generating an out-of-line copy,
3944 the first invocation of this routine (rest_of_compilation) will
3945 skip over this code by doing a `goto exit_rest_of_compilation;'.
3946 Later on, wrapup_global_declarations will (indirectly) call
3947 rest_of_compilation again for those inline functions that need
3948 to have out-of-line copies generated. During that call, we
3949 *will* be routed past here. */
3951 timevar_push (TV_SYMOUT);
3952 (*debug_hooks->function_decl) (current_function_decl);
3953 timevar_pop (TV_SYMOUT);
3954 return 0;
3957 struct tree_opt_pass pass_final =
3959 NULL, /* name */
3960 NULL, /* gate */
3961 rest_of_handle_final, /* execute */
3962 NULL, /* sub */
3963 NULL, /* next */
3964 0, /* static_pass_number */
3965 TV_FINAL, /* tv_id */
3966 0, /* properties_required */
3967 0, /* properties_provided */
3968 0, /* properties_destroyed */
3969 0, /* todo_flags_start */
3970 TODO_ggc_collect, /* todo_flags_finish */
3971 0 /* letter */
3975 static unsigned int
3976 rest_of_handle_shorten_branches (void)
3978 /* Shorten branches. */
3979 shorten_branches (get_insns ());
3980 return 0;
3983 struct tree_opt_pass pass_shorten_branches =
3985 "shorten", /* name */
3986 NULL, /* gate */
3987 rest_of_handle_shorten_branches, /* execute */
3988 NULL, /* sub */
3989 NULL, /* next */
3990 0, /* static_pass_number */
3991 TV_FINAL, /* tv_id */
3992 0, /* properties_required */
3993 0, /* properties_provided */
3994 0, /* properties_destroyed */
3995 0, /* todo_flags_start */
3996 TODO_dump_func, /* todo_flags_finish */
3997 0 /* letter */
4001 static unsigned int
4002 rest_of_clean_state (void)
4004 rtx insn, next;
4006 /* It is very important to decompose the RTL instruction chain here:
4007 debug information keeps pointing into CODE_LABEL insns inside the function
4008 body. If these remain pointing to the other insns, we end up preserving
4009 whole RTL chain and attached detailed debug info in memory. */
4010 for (insn = get_insns (); insn; insn = next)
4012 next = NEXT_INSN (insn);
4013 NEXT_INSN (insn) = NULL;
4014 PREV_INSN (insn) = NULL;
4017 /* In case the function was not output,
4018 don't leave any temporary anonymous types
4019 queued up for sdb output. */
4020 #ifdef SDB_DEBUGGING_INFO
4021 if (write_symbols == SDB_DEBUG)
4022 sdbout_types (NULL_TREE);
4023 #endif
4025 reload_completed = 0;
4026 epilogue_completed = 0;
4027 flow2_completed = 0;
4028 no_new_pseudos = 0;
4029 #ifdef STACK_REGS
4030 regstack_completed = 0;
4031 #endif
4033 /* Clear out the insn_length contents now that they are no
4034 longer valid. */
4035 init_insn_lengths ();
4037 /* Show no temporary slots allocated. */
4038 init_temp_slots ();
4040 free_basic_block_vars ();
4041 free_bb_for_insn ();
4044 if (targetm.binds_local_p (current_function_decl))
4046 int pref = cfun->preferred_stack_boundary;
4047 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4048 pref = cfun->stack_alignment_needed;
4049 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4050 = pref;
4053 /* Make sure volatile mem refs aren't considered valid operands for
4054 arithmetic insns. We must call this here if this is a nested inline
4055 function, since the above code leaves us in the init_recog state,
4056 and the function context push/pop code does not save/restore volatile_ok.
4058 ??? Maybe it isn't necessary for expand_start_function to call this
4059 anymore if we do it here? */
4061 init_recog_no_volatile ();
4063 /* We're done with this function. Free up memory if we can. */
4064 free_after_parsing (cfun);
4065 free_after_compilation (cfun);
4066 return 0;
4069 struct tree_opt_pass pass_clean_state =
4071 NULL, /* name */
4072 NULL, /* gate */
4073 rest_of_clean_state, /* execute */
4074 NULL, /* sub */
4075 NULL, /* next */
4076 0, /* static_pass_number */
4077 TV_FINAL, /* tv_id */
4078 0, /* properties_required */
4079 0, /* properties_provided */
4080 PROP_rtl, /* properties_destroyed */
4081 0, /* todo_flags_start */
4082 0, /* todo_flags_finish */
4083 0 /* letter */