Mark as release
[official-gcc.git] / gcc / dominance.c
blob8529d0f00b3b37c8f63ee371cbd6f73251ac6ffb
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "rtl.h"
40 #include "hard-reg-set.h"
41 #include "obstack.h"
42 #include "basic-block.h"
43 #include "toplev.h"
44 #include "et-forest.h"
45 #include "timevar.h"
47 /* Whether the dominators and the postdominators are available. */
48 enum dom_state dom_computed[2];
50 /* We name our nodes with integers, beginning with 1. Zero is reserved for
51 'undefined' or 'end of list'. The name of each node is given by the dfs
52 number of the corresponding basic block. Please note, that we include the
53 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
54 support multiple entry points. Its dfs number is of course 1. */
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
64 struct dom_info
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
98 /* If x is the DFS-index of a node which corresponds with a basic block,
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
104 /* This is the next free DFS number when creating the DFS tree. */
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119 static void compress (struct dom_info *, TBB);
120 static TBB eval (struct dom_info *, TBB);
121 static void link_roots (struct dom_info *, TBB, TBB);
122 static void calc_idoms (struct dom_info *, enum cdi_direction);
123 void debug_dominance_info (enum cdi_direction);
125 /* Keeps track of the*/
126 static unsigned n_bbs_in_dom_tree[2];
128 /* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130 #define init_ar(var, type, num, content) \
131 do \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
135 (var) = XCNEWVEC (type, num); \
136 else \
138 (var) = XNEWVEC (type, (num)); \
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
143 while (0)
145 /* Allocate all needed memory in a pessimistic fashion (so we round up).
146 This initializes the contents of DI, which already must be allocated. */
148 static void
149 init_dom_info (struct dom_info *di, enum cdi_direction dir)
151 unsigned int num = n_basic_blocks;
152 init_ar (di->dfs_parent, TBB, num, 0);
153 init_ar (di->path_min, TBB, num, i);
154 init_ar (di->key, TBB, num, i);
155 init_ar (di->dom, TBB, num, 0);
157 init_ar (di->bucket, TBB, num, 0);
158 init_ar (di->next_bucket, TBB, num, 0);
160 init_ar (di->set_chain, TBB, num, 0);
161 init_ar (di->set_size, unsigned int, num, 1);
162 init_ar (di->set_child, TBB, num, 0);
164 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
165 init_ar (di->dfs_to_bb, basic_block, num, 0);
167 di->dfsnum = 1;
168 di->nodes = 0;
170 di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
173 #undef init_ar
175 /* Free all allocated memory in DI, but not DI itself. */
177 static void
178 free_dom_info (struct dom_info *di)
180 free (di->dfs_parent);
181 free (di->path_min);
182 free (di->key);
183 free (di->dom);
184 free (di->bucket);
185 free (di->next_bucket);
186 free (di->set_chain);
187 free (di->set_size);
188 free (di->set_child);
189 free (di->dfs_order);
190 free (di->dfs_to_bb);
191 BITMAP_FREE (di->fake_exit_edge);
194 /* The nonrecursive variant of creating a DFS tree. DI is our working
195 structure, BB the starting basic block for this tree and REVERSE
196 is true, if predecessors should be visited instead of successors of a
197 node. After this is done all nodes reachable from BB were visited, have
198 assigned their dfs number and are linked together to form a tree. */
200 static void
201 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
202 enum cdi_direction reverse)
204 /* We call this _only_ if bb is not already visited. */
205 edge e;
206 TBB child_i, my_i = 0;
207 edge_iterator *stack;
208 edge_iterator ei, einext;
209 int sp;
210 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
211 problem). */
212 basic_block en_block;
213 /* Ending block. */
214 basic_block ex_block;
216 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
217 sp = 0;
219 /* Initialize our border blocks, and the first edge. */
220 if (reverse)
222 ei = ei_start (bb->preds);
223 en_block = EXIT_BLOCK_PTR;
224 ex_block = ENTRY_BLOCK_PTR;
226 else
228 ei = ei_start (bb->succs);
229 en_block = ENTRY_BLOCK_PTR;
230 ex_block = EXIT_BLOCK_PTR;
233 /* When the stack is empty we break out of this loop. */
234 while (1)
236 basic_block bn;
238 /* This loop traverses edges e in depth first manner, and fills the
239 stack. */
240 while (!ei_end_p (ei))
242 e = ei_edge (ei);
244 /* Deduce from E the current and the next block (BB and BN), and the
245 next edge. */
246 if (reverse)
248 bn = e->src;
250 /* If the next node BN is either already visited or a border
251 block the current edge is useless, and simply overwritten
252 with the next edge out of the current node. */
253 if (bn == ex_block || di->dfs_order[bn->index])
255 ei_next (&ei);
256 continue;
258 bb = e->dest;
259 einext = ei_start (bn->preds);
261 else
263 bn = e->dest;
264 if (bn == ex_block || di->dfs_order[bn->index])
266 ei_next (&ei);
267 continue;
269 bb = e->src;
270 einext = ei_start (bn->succs);
273 gcc_assert (bn != en_block);
275 /* Fill the DFS tree info calculatable _before_ recursing. */
276 if (bb != en_block)
277 my_i = di->dfs_order[bb->index];
278 else
279 my_i = di->dfs_order[last_basic_block];
280 child_i = di->dfs_order[bn->index] = di->dfsnum++;
281 di->dfs_to_bb[child_i] = bn;
282 di->dfs_parent[child_i] = my_i;
284 /* Save the current point in the CFG on the stack, and recurse. */
285 stack[sp++] = ei;
286 ei = einext;
289 if (!sp)
290 break;
291 ei = stack[--sp];
293 /* OK. The edge-list was exhausted, meaning normally we would
294 end the recursion. After returning from the recursive call,
295 there were (may be) other statements which were run after a
296 child node was completely considered by DFS. Here is the
297 point to do it in the non-recursive variant.
298 E.g. The block just completed is in e->dest for forward DFS,
299 the block not yet completed (the parent of the one above)
300 in e->src. This could be used e.g. for computing the number of
301 descendants or the tree depth. */
302 ei_next (&ei);
304 free (stack);
307 /* The main entry for calculating the DFS tree or forest. DI is our working
308 structure and REVERSE is true, if we are interested in the reverse flow
309 graph. In that case the result is not necessarily a tree but a forest,
310 because there may be nodes from which the EXIT_BLOCK is unreachable. */
312 static void
313 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
315 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
316 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
317 di->dfs_order[last_basic_block] = di->dfsnum;
318 di->dfs_to_bb[di->dfsnum] = begin;
319 di->dfsnum++;
321 calc_dfs_tree_nonrec (di, begin, reverse);
323 if (reverse)
325 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
326 They are reverse-unreachable. In the dom-case we disallow such
327 nodes, but in post-dom we have to deal with them.
329 There are two situations in which this occurs. First, noreturn
330 functions. Second, infinite loops. In the first case we need to
331 pretend that there is an edge to the exit block. In the second
332 case, we wind up with a forest. We need to process all noreturn
333 blocks before we know if we've got any infinite loops. */
335 basic_block b;
336 bool saw_unconnected = false;
338 FOR_EACH_BB_REVERSE (b)
340 if (EDGE_COUNT (b->succs) > 0)
342 if (di->dfs_order[b->index] == 0)
343 saw_unconnected = true;
344 continue;
346 bitmap_set_bit (di->fake_exit_edge, b->index);
347 di->dfs_order[b->index] = di->dfsnum;
348 di->dfs_to_bb[di->dfsnum] = b;
349 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
350 di->dfsnum++;
351 calc_dfs_tree_nonrec (di, b, reverse);
354 if (saw_unconnected)
356 FOR_EACH_BB_REVERSE (b)
358 if (di->dfs_order[b->index])
359 continue;
360 bitmap_set_bit (di->fake_exit_edge, b->index);
361 di->dfs_order[b->index] = di->dfsnum;
362 di->dfs_to_bb[di->dfsnum] = b;
363 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
364 di->dfsnum++;
365 calc_dfs_tree_nonrec (di, b, reverse);
370 di->nodes = di->dfsnum - 1;
372 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
373 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
376 /* Compress the path from V to the root of its set and update path_min at the
377 same time. After compress(di, V) set_chain[V] is the root of the set V is
378 in and path_min[V] is the node with the smallest key[] value on the path
379 from V to that root. */
381 static void
382 compress (struct dom_info *di, TBB v)
384 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
385 greater than 5 even for huge graphs (I've not seen call depth > 4).
386 Also performance wise compress() ranges _far_ behind eval(). */
387 TBB parent = di->set_chain[v];
388 if (di->set_chain[parent])
390 compress (di, parent);
391 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
392 di->path_min[v] = di->path_min[parent];
393 di->set_chain[v] = di->set_chain[parent];
397 /* Compress the path from V to the set root of V if needed (when the root has
398 changed since the last call). Returns the node with the smallest key[]
399 value on the path from V to the root. */
401 static inline TBB
402 eval (struct dom_info *di, TBB v)
404 /* The representant of the set V is in, also called root (as the set
405 representation is a tree). */
406 TBB rep = di->set_chain[v];
408 /* V itself is the root. */
409 if (!rep)
410 return di->path_min[v];
412 /* Compress only if necessary. */
413 if (di->set_chain[rep])
415 compress (di, v);
416 rep = di->set_chain[v];
419 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
420 return di->path_min[v];
421 else
422 return di->path_min[rep];
425 /* This essentially merges the two sets of V and W, giving a single set with
426 the new root V. The internal representation of these disjoint sets is a
427 balanced tree. Currently link(V,W) is only used with V being the parent
428 of W. */
430 static void
431 link_roots (struct dom_info *di, TBB v, TBB w)
433 TBB s = w;
435 /* Rebalance the tree. */
436 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
438 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
439 >= 2 * di->set_size[di->set_child[s]])
441 di->set_chain[di->set_child[s]] = s;
442 di->set_child[s] = di->set_child[di->set_child[s]];
444 else
446 di->set_size[di->set_child[s]] = di->set_size[s];
447 s = di->set_chain[s] = di->set_child[s];
451 di->path_min[s] = di->path_min[w];
452 di->set_size[v] += di->set_size[w];
453 if (di->set_size[v] < 2 * di->set_size[w])
455 TBB tmp = s;
456 s = di->set_child[v];
457 di->set_child[v] = tmp;
460 /* Merge all subtrees. */
461 while (s)
463 di->set_chain[s] = v;
464 s = di->set_child[s];
468 /* This calculates the immediate dominators (or post-dominators if REVERSE is
469 true). DI is our working structure and should hold the DFS forest.
470 On return the immediate dominator to node V is in di->dom[V]. */
472 static void
473 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
475 TBB v, w, k, par;
476 basic_block en_block;
477 edge_iterator ei, einext;
479 if (reverse)
480 en_block = EXIT_BLOCK_PTR;
481 else
482 en_block = ENTRY_BLOCK_PTR;
484 /* Go backwards in DFS order, to first look at the leafs. */
485 v = di->nodes;
486 while (v > 1)
488 basic_block bb = di->dfs_to_bb[v];
489 edge e;
491 par = di->dfs_parent[v];
492 k = v;
494 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
496 if (reverse)
498 /* If this block has a fake edge to exit, process that first. */
499 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
501 einext = ei;
502 einext.index = 0;
503 goto do_fake_exit_edge;
507 /* Search all direct predecessors for the smallest node with a path
508 to them. That way we have the smallest node with also a path to
509 us only over nodes behind us. In effect we search for our
510 semidominator. */
511 while (!ei_end_p (ei))
513 TBB k1;
514 basic_block b;
516 e = ei_edge (ei);
517 b = (reverse) ? e->dest : e->src;
518 einext = ei;
519 ei_next (&einext);
521 if (b == en_block)
523 do_fake_exit_edge:
524 k1 = di->dfs_order[last_basic_block];
526 else
527 k1 = di->dfs_order[b->index];
529 /* Call eval() only if really needed. If k1 is above V in DFS tree,
530 then we know, that eval(k1) == k1 and key[k1] == k1. */
531 if (k1 > v)
532 k1 = di->key[eval (di, k1)];
533 if (k1 < k)
534 k = k1;
536 ei = einext;
539 di->key[v] = k;
540 link_roots (di, par, v);
541 di->next_bucket[v] = di->bucket[k];
542 di->bucket[k] = v;
544 /* Transform semidominators into dominators. */
545 for (w = di->bucket[par]; w; w = di->next_bucket[w])
547 k = eval (di, w);
548 if (di->key[k] < di->key[w])
549 di->dom[w] = k;
550 else
551 di->dom[w] = par;
553 /* We don't need to cleanup next_bucket[]. */
554 di->bucket[par] = 0;
555 v--;
558 /* Explicitly define the dominators. */
559 di->dom[1] = 0;
560 for (v = 2; v <= di->nodes; v++)
561 if (di->dom[v] != di->key[v])
562 di->dom[v] = di->dom[di->dom[v]];
565 /* Assign dfs numbers starting from NUM to NODE and its sons. */
567 static void
568 assign_dfs_numbers (struct et_node *node, int *num)
570 struct et_node *son;
572 node->dfs_num_in = (*num)++;
574 if (node->son)
576 assign_dfs_numbers (node->son, num);
577 for (son = node->son->right; son != node->son; son = son->right)
578 assign_dfs_numbers (son, num);
581 node->dfs_num_out = (*num)++;
584 /* Compute the data necessary for fast resolving of dominator queries in a
585 static dominator tree. */
587 static void
588 compute_dom_fast_query (enum cdi_direction dir)
590 int num = 0;
591 basic_block bb;
593 gcc_assert (dom_info_available_p (dir));
595 if (dom_computed[dir] == DOM_OK)
596 return;
598 FOR_ALL_BB (bb)
600 if (!bb->dom[dir]->father)
601 assign_dfs_numbers (bb->dom[dir], &num);
604 dom_computed[dir] = DOM_OK;
607 /* The main entry point into this module. DIR is set depending on whether
608 we want to compute dominators or postdominators. */
610 void
611 calculate_dominance_info (enum cdi_direction dir)
613 struct dom_info di;
614 basic_block b;
616 if (dom_computed[dir] == DOM_OK)
617 return;
619 timevar_push (TV_DOMINANCE);
620 if (!dom_info_available_p (dir))
622 gcc_assert (!n_bbs_in_dom_tree[dir]);
624 FOR_ALL_BB (b)
626 b->dom[dir] = et_new_tree (b);
628 n_bbs_in_dom_tree[dir] = n_basic_blocks;
630 init_dom_info (&di, dir);
631 calc_dfs_tree (&di, dir);
632 calc_idoms (&di, dir);
634 FOR_EACH_BB (b)
636 TBB d = di.dom[di.dfs_order[b->index]];
638 if (di.dfs_to_bb[d])
639 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
642 free_dom_info (&di);
643 dom_computed[dir] = DOM_NO_FAST_QUERY;
646 compute_dom_fast_query (dir);
648 timevar_pop (TV_DOMINANCE);
651 /* Free dominance information for direction DIR. */
652 void
653 free_dominance_info (enum cdi_direction dir)
655 basic_block bb;
657 if (!dom_info_available_p (dir))
658 return;
660 FOR_ALL_BB (bb)
662 et_free_tree_force (bb->dom[dir]);
663 bb->dom[dir] = NULL;
665 et_free_pools ();
667 n_bbs_in_dom_tree[dir] = 0;
669 dom_computed[dir] = DOM_NONE;
672 /* Return the immediate dominator of basic block BB. */
673 basic_block
674 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
676 struct et_node *node = bb->dom[dir];
678 gcc_assert (dom_computed[dir]);
680 if (!node->father)
681 return NULL;
683 return node->father->data;
686 /* Set the immediate dominator of the block possibly removing
687 existing edge. NULL can be used to remove any edge. */
688 inline void
689 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
690 basic_block dominated_by)
692 struct et_node *node = bb->dom[dir];
694 gcc_assert (dom_computed[dir]);
696 if (node->father)
698 if (node->father->data == dominated_by)
699 return;
700 et_split (node);
703 if (dominated_by)
704 et_set_father (node, dominated_by->dom[dir]);
706 if (dom_computed[dir] == DOM_OK)
707 dom_computed[dir] = DOM_NO_FAST_QUERY;
710 /* Store all basic blocks immediately dominated by BB into BBS and return
711 their number. */
713 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
715 int n;
716 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718 gcc_assert (dom_computed[dir]);
720 if (!son)
722 *bbs = NULL;
723 return 0;
726 for (ason = son->right, n = 1; ason != son; ason = ason->right)
727 n++;
729 *bbs = XNEWVEC (basic_block, n);
730 (*bbs)[0] = son->data;
731 for (ason = son->right, n = 1; ason != son; ason = ason->right)
732 (*bbs)[n++] = ason->data;
734 return n;
737 /* Find all basic blocks that are immediately dominated (in direction DIR)
738 by some block between N_REGION ones stored in REGION, except for blocks
739 in the REGION itself. The found blocks are stored to DOMS and their number
740 is returned. */
742 unsigned
743 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
744 unsigned n_region, basic_block *doms)
746 unsigned n_doms = 0, i;
747 basic_block dom;
749 for (i = 0; i < n_region; i++)
750 region[i]->flags |= BB_DUPLICATED;
751 for (i = 0; i < n_region; i++)
752 for (dom = first_dom_son (dir, region[i]);
753 dom;
754 dom = next_dom_son (dir, dom))
755 if (!(dom->flags & BB_DUPLICATED))
756 doms[n_doms++] = dom;
757 for (i = 0; i < n_region; i++)
758 region[i]->flags &= ~BB_DUPLICATED;
760 return n_doms;
763 /* Redirect all edges pointing to BB to TO. */
764 void
765 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
766 basic_block to)
768 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770 gcc_assert (dom_computed[dir]);
772 if (!bb_node->son)
773 return;
775 while (bb_node->son)
777 son = bb_node->son;
779 et_split (son);
780 et_set_father (son, to_node);
783 if (dom_computed[dir] == DOM_OK)
784 dom_computed[dir] = DOM_NO_FAST_QUERY;
787 /* Find first basic block in the tree dominating both BB1 and BB2. */
788 basic_block
789 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
791 gcc_assert (dom_computed[dir]);
793 if (!bb1)
794 return bb2;
795 if (!bb2)
796 return bb1;
798 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
802 /* Find the nearest common dominator for the basic blocks in BLOCKS,
803 using dominance direction DIR. */
805 basic_block
806 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
808 unsigned i, first;
809 bitmap_iterator bi;
810 basic_block dom;
812 first = bitmap_first_set_bit (blocks);
813 dom = BASIC_BLOCK (first);
814 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
815 if (dom != BASIC_BLOCK (i))
816 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
818 return dom;
821 /* Given a dominator tree, we can determine whether one thing
822 dominates another in constant time by using two DFS numbers:
824 1. The number for when we visit a node on the way down the tree
825 2. The number for when we visit a node on the way back up the tree
827 You can view these as bounds for the range of dfs numbers the
828 nodes in the subtree of the dominator tree rooted at that node
829 will contain.
831 The dominator tree is always a simple acyclic tree, so there are
832 only three possible relations two nodes in the dominator tree have
833 to each other:
835 1. Node A is above Node B (and thus, Node A dominates node B)
844 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
845 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
846 because we must hit A in the dominator tree *before* B on the walk
847 down, and we will hit A *after* B on the walk back up
849 2. Node A is below node B (and thus, node B dominates node A)
858 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
859 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
861 This is because we must hit A in the dominator tree *after* B on
862 the walk down, and we will hit A *before* B on the walk back up
864 3. Node A and B are siblings (and thus, neither dominates the other)
872 In the above case, DFS_Number_In of A will *always* be <=
873 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
874 DFS_Number_Out of B. This is because we will always finish the dfs
875 walk of one of the subtrees before the other, and thus, the dfs
876 numbers for one subtree can't intersect with the range of dfs
877 numbers for the other subtree. If you swap A and B's position in
878 the dominator tree, the comparison changes direction, but the point
879 is that both comparisons will always go the same way if there is no
880 dominance relationship.
882 Thus, it is sufficient to write
884 A_Dominates_B (node A, node B)
886 return DFS_Number_In(A) <= DFS_Number_In(B)
887 && DFS_Number_Out (A) >= DFS_Number_Out(B);
890 A_Dominated_by_B (node A, node B)
892 return DFS_Number_In(A) >= DFS_Number_In(A)
893 && DFS_Number_Out (A) <= DFS_Number_Out(B);
894 } */
896 /* Return TRUE in case BB1 is dominated by BB2. */
897 bool
898 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
900 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
902 gcc_assert (dom_computed[dir]);
904 if (dom_computed[dir] == DOM_OK)
905 return (n1->dfs_num_in >= n2->dfs_num_in
906 && n1->dfs_num_out <= n2->dfs_num_out);
908 return et_below (n1, n2);
911 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
913 unsigned
914 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
916 struct et_node *n = bb->dom[dir];
918 gcc_assert (dom_computed[dir] == DOM_OK);
919 return n->dfs_num_in;
922 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
924 unsigned
925 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
927 struct et_node *n = bb->dom[dir];
929 gcc_assert (dom_computed[dir] == DOM_OK);
930 return n->dfs_num_out;
933 /* Verify invariants of dominator structure. */
934 void
935 verify_dominators (enum cdi_direction dir)
937 int err = 0;
938 basic_block bb;
940 gcc_assert (dom_info_available_p (dir));
942 FOR_EACH_BB (bb)
944 basic_block dom_bb;
945 basic_block imm_bb;
947 dom_bb = recount_dominator (dir, bb);
948 imm_bb = get_immediate_dominator (dir, bb);
949 if (dom_bb != imm_bb)
951 if ((dom_bb == NULL) || (imm_bb == NULL))
952 error ("dominator of %d status unknown", bb->index);
953 else
954 error ("dominator of %d should be %d, not %d",
955 bb->index, dom_bb->index, imm_bb->index);
956 err = 1;
960 if (dir == CDI_DOMINATORS)
962 FOR_EACH_BB (bb)
964 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
966 error ("ENTRY does not dominate bb %d", bb->index);
967 err = 1;
972 gcc_assert (!err);
975 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
976 assuming that dominators of other blocks are correct. We also use it to
977 recompute the dominators in a restricted area, by iterating it until it
978 reaches a fixed point. */
980 basic_block
981 recount_dominator (enum cdi_direction dir, basic_block bb)
983 basic_block dom_bb = NULL;
984 edge e;
985 edge_iterator ei;
987 gcc_assert (dom_computed[dir]);
989 if (dir == CDI_DOMINATORS)
991 FOR_EACH_EDGE (e, ei, bb->preds)
993 /* Ignore the predecessors that either are not reachable from
994 the entry block, or whose dominator was not determined yet. */
995 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
996 continue;
998 if (!dominated_by_p (dir, e->src, bb))
999 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1002 else
1004 FOR_EACH_EDGE (e, ei, bb->succs)
1006 if (!dominated_by_p (dir, e->dest, bb))
1007 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1011 return dom_bb;
1014 /* Iteratively recount dominators of BBS. The change is supposed to be local
1015 and not to grow further. */
1016 void
1017 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
1019 int i, changed = 1;
1020 basic_block old_dom, new_dom;
1022 gcc_assert (dom_computed[dir]);
1024 for (i = 0; i < n; i++)
1025 set_immediate_dominator (dir, bbs[i], NULL);
1027 while (changed)
1029 changed = 0;
1030 for (i = 0; i < n; i++)
1032 old_dom = get_immediate_dominator (dir, bbs[i]);
1033 new_dom = recount_dominator (dir, bbs[i]);
1034 if (old_dom != new_dom)
1036 changed = 1;
1037 set_immediate_dominator (dir, bbs[i], new_dom);
1042 for (i = 0; i < n; i++)
1043 gcc_assert (get_immediate_dominator (dir, bbs[i]));
1046 void
1047 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1049 gcc_assert (dom_computed[dir]);
1050 gcc_assert (!bb->dom[dir]);
1052 n_bbs_in_dom_tree[dir]++;
1054 bb->dom[dir] = et_new_tree (bb);
1056 if (dom_computed[dir] == DOM_OK)
1057 dom_computed[dir] = DOM_NO_FAST_QUERY;
1060 void
1061 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1063 gcc_assert (dom_computed[dir]);
1065 et_free_tree (bb->dom[dir]);
1066 bb->dom[dir] = NULL;
1067 n_bbs_in_dom_tree[dir]--;
1069 if (dom_computed[dir] == DOM_OK)
1070 dom_computed[dir] = DOM_NO_FAST_QUERY;
1073 /* Returns the first son of BB in the dominator or postdominator tree
1074 as determined by DIR. */
1076 basic_block
1077 first_dom_son (enum cdi_direction dir, basic_block bb)
1079 struct et_node *son = bb->dom[dir]->son;
1081 return son ? son->data : NULL;
1084 /* Returns the next dominance son after BB in the dominator or postdominator
1085 tree as determined by DIR, or NULL if it was the last one. */
1087 basic_block
1088 next_dom_son (enum cdi_direction dir, basic_block bb)
1090 struct et_node *next = bb->dom[dir]->right;
1092 return next->father->son == next ? NULL : next->data;
1095 /* Returns true if dominance information for direction DIR is available. */
1097 bool
1098 dom_info_available_p (enum cdi_direction dir)
1100 return dom_computed[dir] != DOM_NONE;
1103 void
1104 debug_dominance_info (enum cdi_direction dir)
1106 basic_block bb, bb2;
1107 FOR_EACH_BB (bb)
1108 if ((bb2 = get_immediate_dominator (dir, bb)))
1109 fprintf (stderr, "%i %i\n", bb->index, bb2->index);