Mark as release
[official-gcc.git] / gcc / alias.c
blobb9d5c66732e624a51cf6ad330a0c635244b98a89
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46 #include "tree-pass.h"
47 #include "ipa-type-escape.h"
49 /* The aliasing API provided here solves related but different problems:
51 Say there exists (in c)
53 struct X {
54 struct Y y1;
55 struct Z z2;
56 } x1, *px1, *px2;
58 struct Y y2, *py;
59 struct Z z2, *pz;
62 py = &px1.y1;
63 px2 = &x1;
65 Consider the four questions:
67 Can a store to x1 interfere with px2->y1?
68 Can a store to x1 interfere with px2->z2?
69 (*px2).z2
70 Can a store to x1 change the value pointed to by with py?
71 Can a store to x1 change the value pointed to by with pz?
73 The answer to these questions can be yes, yes, yes, and maybe.
75 The first two questions can be answered with a simple examination
76 of the type system. If structure X contains a field of type Y then
77 a store thru a pointer to an X can overwrite any field that is
78 contained (recursively) in an X (unless we know that px1 != px2).
80 The last two of the questions can be solved in the same way as the
81 first two questions but this is too conservative. The observation
82 is that in some cases analysis we can know if which (if any) fields
83 are addressed and if those addresses are used in bad ways. This
84 analysis may be language specific. In C, arbitrary operations may
85 be applied to pointers. However, there is some indication that
86 this may be too conservative for some C++ types.
88 The pass ipa-type-escape does this analysis for the types whose
89 instances do not escape across the compilation boundary.
91 Historically in GCC, these two problems were combined and a single
92 data structure was used to represent the solution to these
93 problems. We now have two similar but different data structures,
94 The data structure to solve the last two question is similar to the
95 first, but does not contain have the fields in it whose address are
96 never taken. For types that do escape the compilation unit, the
97 data structures will have identical information.
100 /* The alias sets assigned to MEMs assist the back-end in determining
101 which MEMs can alias which other MEMs. In general, two MEMs in
102 different alias sets cannot alias each other, with one important
103 exception. Consider something like:
105 struct S { int i; double d; };
107 a store to an `S' can alias something of either type `int' or type
108 `double'. (However, a store to an `int' cannot alias a `double'
109 and vice versa.) We indicate this via a tree structure that looks
110 like:
111 struct S
114 |/_ _\|
115 int double
117 (The arrows are directed and point downwards.)
118 In this situation we say the alias set for `struct S' is the
119 `superset' and that those for `int' and `double' are `subsets'.
121 To see whether two alias sets can point to the same memory, we must
122 see if either alias set is a subset of the other. We need not trace
123 past immediate descendants, however, since we propagate all
124 grandchildren up one level.
126 Alias set zero is implicitly a superset of all other alias sets.
127 However, this is no actual entry for alias set zero. It is an
128 error to attempt to explicitly construct a subset of zero. */
130 struct alias_set_entry GTY(())
132 /* The alias set number, as stored in MEM_ALIAS_SET. */
133 HOST_WIDE_INT alias_set;
135 /* The children of the alias set. These are not just the immediate
136 children, but, in fact, all descendants. So, if we have:
138 struct T { struct S s; float f; }
140 continuing our example above, the children here will be all of
141 `int', `double', `float', and `struct S'. */
142 splay_tree GTY((param1_is (int), param2_is (int))) children;
144 /* Nonzero if would have a child of zero: this effectively makes this
145 alias set the same as alias set zero. */
146 int has_zero_child;
148 typedef struct alias_set_entry *alias_set_entry;
150 static int rtx_equal_for_memref_p (rtx, rtx);
151 static rtx find_symbolic_term (rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static tree find_base_decl (tree);
160 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
161 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
162 int (*) (rtx, int));
163 static int aliases_everything_p (rtx);
164 static bool nonoverlapping_component_refs_p (tree, tree);
165 static tree decl_for_component_ref (tree);
166 static rtx adjust_offset_for_component_ref (tree, rtx);
167 static int nonoverlapping_memrefs_p (rtx, rtx);
168 static int write_dependence_p (rtx, rtx, int);
170 static void memory_modified_1 (rtx, rtx, void *);
171 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
173 /* Set up all info needed to perform alias analysis on memory references. */
175 /* Returns the size in bytes of the mode of X. */
176 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
178 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
179 different alias sets. We ignore alias sets in functions making use
180 of variable arguments because the va_arg macros on some systems are
181 not legal ANSI C. */
182 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
183 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains. 10 is a completely arbitrary choice. */
187 #define MAX_ALIAS_LOOP_PASSES 10
189 /* reg_base_value[N] gives an address to which register N is related.
190 If all sets after the first add or subtract to the current value
191 or otherwise modify it so it does not point to a different top level
192 object, reg_base_value[N] is equal to the address part of the source
193 of the first set.
195 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
196 expressions represent certain special values: function arguments and
197 the stack, frame, and argument pointers.
199 The contents of an ADDRESS is not normally used, the mode of the
200 ADDRESS determines whether the ADDRESS is a function argument or some
201 other special value. Pointer equality, not rtx_equal_p, determines whether
202 two ADDRESS expressions refer to the same base address.
204 The only use of the contents of an ADDRESS is for determining if the
205 current function performs nonlocal memory memory references for the
206 purposes of marking the function as a constant function. */
208 static GTY(()) VEC(rtx,gc) *reg_base_value;
209 static rtx *new_reg_base_value;
211 /* We preserve the copy of old array around to avoid amount of garbage
212 produced. About 8% of garbage produced were attributed to this
213 array. */
214 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
216 /* Static hunks of RTL used by the aliasing code; these are initialized
217 once per function to avoid unnecessary RTL allocations. */
218 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
220 #define REG_BASE_VALUE(X) \
221 (REGNO (X) < VEC_length (rtx, reg_base_value) \
222 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
224 /* Vector indexed by N giving the initial (unchanging) value known for
225 pseudo-register N. This array is initialized in init_alias_analysis,
226 and does not change until end_alias_analysis is called. */
227 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
229 /* Indicates number of valid entries in reg_known_value. */
230 static GTY(()) unsigned int reg_known_value_size;
232 /* Vector recording for each reg_known_value whether it is due to a
233 REG_EQUIV note. Future passes (viz., reload) may replace the
234 pseudo with the equivalent expression and so we account for the
235 dependences that would be introduced if that happens.
237 The REG_EQUIV notes created in assign_parms may mention the arg
238 pointer, and there are explicit insns in the RTL that modify the
239 arg pointer. Thus we must ensure that such insns don't get
240 scheduled across each other because that would invalidate the
241 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
242 wrong, but solving the problem in the scheduler will likely give
243 better code, so we do it here. */
244 static bool *reg_known_equiv_p;
246 /* True when scanning insns from the start of the rtl to the
247 NOTE_INSN_FUNCTION_BEG note. */
248 static bool copying_arguments;
250 DEF_VEC_P(alias_set_entry);
251 DEF_VEC_ALLOC_P(alias_set_entry,gc);
253 /* The splay-tree used to store the various alias set entries. */
254 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
256 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
257 such an entry, or NULL otherwise. */
259 static inline alias_set_entry
260 get_alias_set_entry (HOST_WIDE_INT alias_set)
262 return VEC_index (alias_set_entry, alias_sets, alias_set);
265 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
266 the two MEMs cannot alias each other. */
268 static inline int
269 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
271 /* Perform a basic sanity check. Namely, that there are no alias sets
272 if we're not using strict aliasing. This helps to catch bugs
273 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
274 where a MEM is allocated in some way other than by the use of
275 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
276 use alias sets to indicate that spilled registers cannot alias each
277 other, we might need to remove this check. */
278 gcc_assert (flag_strict_aliasing
279 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
281 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
284 /* Insert the NODE into the splay tree given by DATA. Used by
285 record_alias_subset via splay_tree_foreach. */
287 static int
288 insert_subset_children (splay_tree_node node, void *data)
290 splay_tree_insert ((splay_tree) data, node->key, node->value);
292 return 0;
295 /* Return 1 if the two specified alias sets may conflict. */
298 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
300 alias_set_entry ase;
302 /* If have no alias set information for one of the operands, we have
303 to assume it can alias anything. */
304 if (set1 == 0 || set2 == 0
305 /* If the two alias sets are the same, they may alias. */
306 || set1 == set2)
307 return 1;
309 /* See if the first alias set is a subset of the second. */
310 ase = get_alias_set_entry (set1);
311 if (ase != 0
312 && (ase->has_zero_child
313 || splay_tree_lookup (ase->children,
314 (splay_tree_key) set2)))
315 return 1;
317 /* Now do the same, but with the alias sets reversed. */
318 ase = get_alias_set_entry (set2);
319 if (ase != 0
320 && (ase->has_zero_child
321 || splay_tree_lookup (ase->children,
322 (splay_tree_key) set1)))
323 return 1;
325 /* The two alias sets are distinct and neither one is the
326 child of the other. Therefore, they cannot alias. */
327 return 0;
330 /* Return 1 if the two specified alias sets might conflict, or if any subtype
331 of these alias sets might conflict. */
334 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
336 if (set1 == 0 || set2 == 0 || set1 == set2)
337 return 1;
339 return 0;
343 /* Return 1 if any MEM object of type T1 will always conflict (using the
344 dependency routines in this file) with any MEM object of type T2.
345 This is used when allocating temporary storage. If T1 and/or T2 are
346 NULL_TREE, it means we know nothing about the storage. */
349 objects_must_conflict_p (tree t1, tree t2)
351 HOST_WIDE_INT set1, set2;
353 /* If neither has a type specified, we don't know if they'll conflict
354 because we may be using them to store objects of various types, for
355 example the argument and local variables areas of inlined functions. */
356 if (t1 == 0 && t2 == 0)
357 return 0;
359 /* If they are the same type, they must conflict. */
360 if (t1 == t2
361 /* Likewise if both are volatile. */
362 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
363 return 1;
365 set1 = t1 ? get_alias_set (t1) : 0;
366 set2 = t2 ? get_alias_set (t2) : 0;
368 /* Otherwise they conflict if they have no alias set or the same. We
369 can't simply use alias_sets_conflict_p here, because we must make
370 sure that every subtype of t1 will conflict with every subtype of
371 t2 for which a pair of subobjects of these respective subtypes
372 overlaps on the stack. */
373 return set1 == 0 || set2 == 0 || set1 == set2;
376 /* T is an expression with pointer type. Find the DECL on which this
377 expression is based. (For example, in `a[i]' this would be `a'.)
378 If there is no such DECL, or a unique decl cannot be determined,
379 NULL_TREE is returned. */
381 static tree
382 find_base_decl (tree t)
384 tree d0, d1;
386 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
387 return 0;
389 /* If this is a declaration, return it. If T is based on a restrict
390 qualified decl, return that decl. */
391 if (DECL_P (t))
393 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
394 t = DECL_GET_RESTRICT_BASE (t);
395 return t;
398 /* Handle general expressions. It would be nice to deal with
399 COMPONENT_REFs here. If we could tell that `a' and `b' were the
400 same, then `a->f' and `b->f' are also the same. */
401 switch (TREE_CODE_CLASS (TREE_CODE (t)))
403 case tcc_unary:
404 return find_base_decl (TREE_OPERAND (t, 0));
406 case tcc_binary:
407 /* Return 0 if found in neither or both are the same. */
408 d0 = find_base_decl (TREE_OPERAND (t, 0));
409 d1 = find_base_decl (TREE_OPERAND (t, 1));
410 if (d0 == d1)
411 return d0;
412 else if (d0 == 0)
413 return d1;
414 else if (d1 == 0)
415 return d0;
416 else
417 return 0;
419 default:
420 return 0;
424 /* Return true if all nested component references handled by
425 get_inner_reference in T are such that we should use the alias set
426 provided by the object at the heart of T.
428 This is true for non-addressable components (which don't have their
429 own alias set), as well as components of objects in alias set zero.
430 This later point is a special case wherein we wish to override the
431 alias set used by the component, but we don't have per-FIELD_DECL
432 assignable alias sets. */
434 bool
435 component_uses_parent_alias_set (tree t)
437 while (1)
439 /* If we're at the end, it vacuously uses its own alias set. */
440 if (!handled_component_p (t))
441 return false;
443 switch (TREE_CODE (t))
445 case COMPONENT_REF:
446 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
447 return true;
448 break;
450 case ARRAY_REF:
451 case ARRAY_RANGE_REF:
452 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
453 return true;
454 break;
456 case REALPART_EXPR:
457 case IMAGPART_EXPR:
458 break;
460 default:
461 /* Bitfields and casts are never addressable. */
462 return true;
465 t = TREE_OPERAND (t, 0);
466 if (get_alias_set (TREE_TYPE (t)) == 0)
467 return true;
471 /* Return the alias set for T, which may be either a type or an
472 expression. Call language-specific routine for help, if needed. */
474 HOST_WIDE_INT
475 get_alias_set (tree t)
477 HOST_WIDE_INT set;
479 /* If we're not doing any alias analysis, just assume everything
480 aliases everything else. Also return 0 if this or its type is
481 an error. */
482 if (! flag_strict_aliasing || t == error_mark_node
483 || (! TYPE_P (t)
484 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
485 return 0;
487 /* We can be passed either an expression or a type. This and the
488 language-specific routine may make mutually-recursive calls to each other
489 to figure out what to do. At each juncture, we see if this is a tree
490 that the language may need to handle specially. First handle things that
491 aren't types. */
492 if (! TYPE_P (t))
494 tree inner = t;
496 /* Remove any nops, then give the language a chance to do
497 something with this tree before we look at it. */
498 STRIP_NOPS (t);
499 set = lang_hooks.get_alias_set (t);
500 if (set != -1)
501 return set;
503 /* First see if the actual object referenced is an INDIRECT_REF from a
504 restrict-qualified pointer or a "void *". */
505 while (handled_component_p (inner))
507 inner = TREE_OPERAND (inner, 0);
508 STRIP_NOPS (inner);
511 /* Check for accesses through restrict-qualified pointers. */
512 if (INDIRECT_REF_P (inner))
514 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
516 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
518 /* If we haven't computed the actual alias set, do it now. */
519 if (DECL_POINTER_ALIAS_SET (decl) == -2)
521 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
523 /* No two restricted pointers can point at the same thing.
524 However, a restricted pointer can point at the same thing
525 as an unrestricted pointer, if that unrestricted pointer
526 is based on the restricted pointer. So, we make the
527 alias set for the restricted pointer a subset of the
528 alias set for the type pointed to by the type of the
529 decl. */
530 HOST_WIDE_INT pointed_to_alias_set
531 = get_alias_set (pointed_to_type);
533 if (pointed_to_alias_set == 0)
534 /* It's not legal to make a subset of alias set zero. */
535 DECL_POINTER_ALIAS_SET (decl) = 0;
536 else if (AGGREGATE_TYPE_P (pointed_to_type))
537 /* For an aggregate, we must treat the restricted
538 pointer the same as an ordinary pointer. If we
539 were to make the type pointed to by the
540 restricted pointer a subset of the pointed-to
541 type, then we would believe that other subsets
542 of the pointed-to type (such as fields of that
543 type) do not conflict with the type pointed to
544 by the restricted pointer. */
545 DECL_POINTER_ALIAS_SET (decl)
546 = pointed_to_alias_set;
547 else
549 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
550 record_alias_subset (pointed_to_alias_set,
551 DECL_POINTER_ALIAS_SET (decl));
555 /* We use the alias set indicated in the declaration. */
556 return DECL_POINTER_ALIAS_SET (decl);
559 /* If we have an INDIRECT_REF via a void pointer, we don't
560 know anything about what that might alias. Likewise if the
561 pointer is marked that way. */
562 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
563 || (TYPE_REF_CAN_ALIAS_ALL
564 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
565 return 0;
568 /* Otherwise, pick up the outermost object that we could have a pointer
569 to, processing conversions as above. */
570 while (component_uses_parent_alias_set (t))
572 t = TREE_OPERAND (t, 0);
573 STRIP_NOPS (t);
576 /* If we've already determined the alias set for a decl, just return
577 it. This is necessary for C++ anonymous unions, whose component
578 variables don't look like union members (boo!). */
579 if (TREE_CODE (t) == VAR_DECL
580 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
581 return MEM_ALIAS_SET (DECL_RTL (t));
583 /* Now all we care about is the type. */
584 t = TREE_TYPE (t);
587 /* Variant qualifiers don't affect the alias set, so get the main
588 variant. If this is a type with a known alias set, return it. */
589 t = TYPE_MAIN_VARIANT (t);
590 if (TYPE_ALIAS_SET_KNOWN_P (t))
591 return TYPE_ALIAS_SET (t);
593 /* See if the language has special handling for this type. */
594 set = lang_hooks.get_alias_set (t);
595 if (set != -1)
596 return set;
598 /* There are no objects of FUNCTION_TYPE, so there's no point in
599 using up an alias set for them. (There are, of course, pointers
600 and references to functions, but that's different.) */
601 else if (TREE_CODE (t) == FUNCTION_TYPE)
602 set = 0;
604 /* Unless the language specifies otherwise, let vector types alias
605 their components. This avoids some nasty type punning issues in
606 normal usage. And indeed lets vectors be treated more like an
607 array slice. */
608 else if (TREE_CODE (t) == VECTOR_TYPE)
609 set = get_alias_set (TREE_TYPE (t));
611 else
612 /* Otherwise make a new alias set for this type. */
613 set = new_alias_set ();
615 TYPE_ALIAS_SET (t) = set;
617 /* If this is an aggregate type, we must record any component aliasing
618 information. */
619 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
620 record_component_aliases (t);
622 return set;
625 /* Return a brand-new alias set. */
627 HOST_WIDE_INT
628 new_alias_set (void)
630 if (flag_strict_aliasing)
632 if (alias_sets == 0)
633 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
634 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
635 return VEC_length (alias_set_entry, alias_sets) - 1;
637 else
638 return 0;
641 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
642 not everything that aliases SUPERSET also aliases SUBSET. For example,
643 in C, a store to an `int' can alias a load of a structure containing an
644 `int', and vice versa. But it can't alias a load of a 'double' member
645 of the same structure. Here, the structure would be the SUPERSET and
646 `int' the SUBSET. This relationship is also described in the comment at
647 the beginning of this file.
649 This function should be called only once per SUPERSET/SUBSET pair.
651 It is illegal for SUPERSET to be zero; everything is implicitly a
652 subset of alias set zero. */
654 static void
655 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
657 alias_set_entry superset_entry;
658 alias_set_entry subset_entry;
660 /* It is possible in complex type situations for both sets to be the same,
661 in which case we can ignore this operation. */
662 if (superset == subset)
663 return;
665 gcc_assert (superset);
667 superset_entry = get_alias_set_entry (superset);
668 if (superset_entry == 0)
670 /* Create an entry for the SUPERSET, so that we have a place to
671 attach the SUBSET. */
672 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
673 superset_entry->alias_set = superset;
674 superset_entry->children
675 = splay_tree_new_ggc (splay_tree_compare_ints);
676 superset_entry->has_zero_child = 0;
677 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
680 if (subset == 0)
681 superset_entry->has_zero_child = 1;
682 else
684 subset_entry = get_alias_set_entry (subset);
685 /* If there is an entry for the subset, enter all of its children
686 (if they are not already present) as children of the SUPERSET. */
687 if (subset_entry)
689 if (subset_entry->has_zero_child)
690 superset_entry->has_zero_child = 1;
692 splay_tree_foreach (subset_entry->children, insert_subset_children,
693 superset_entry->children);
696 /* Enter the SUBSET itself as a child of the SUPERSET. */
697 splay_tree_insert (superset_entry->children,
698 (splay_tree_key) subset, 0);
702 /* Record that component types of TYPE, if any, are part of that type for
703 aliasing purposes. For record types, we only record component types
704 for fields that are marked addressable. For array types, we always
705 record the component types, so the front end should not call this
706 function if the individual component aren't addressable. */
708 void
709 record_component_aliases (tree type)
711 HOST_WIDE_INT superset = get_alias_set (type);
712 tree field;
714 if (superset == 0)
715 return;
717 switch (TREE_CODE (type))
719 case ARRAY_TYPE:
720 if (! TYPE_NONALIASED_COMPONENT (type))
721 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
722 break;
724 case RECORD_TYPE:
725 case UNION_TYPE:
726 case QUAL_UNION_TYPE:
727 /* Recursively record aliases for the base classes, if there are any. */
728 if (TYPE_BINFO (type))
730 int i;
731 tree binfo, base_binfo;
733 for (binfo = TYPE_BINFO (type), i = 0;
734 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
735 record_alias_subset (superset,
736 get_alias_set (BINFO_TYPE (base_binfo)));
738 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
739 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
740 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
741 break;
743 case COMPLEX_TYPE:
744 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
745 break;
747 default:
748 break;
752 /* Allocate an alias set for use in storing and reading from the varargs
753 spill area. */
755 static GTY(()) HOST_WIDE_INT varargs_set = -1;
757 HOST_WIDE_INT
758 get_varargs_alias_set (void)
760 #if 1
761 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
762 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
763 consistently use the varargs alias set for loads from the varargs
764 area. So don't use it anywhere. */
765 return 0;
766 #else
767 if (varargs_set == -1)
768 varargs_set = new_alias_set ();
770 return varargs_set;
771 #endif
774 /* Likewise, but used for the fixed portions of the frame, e.g., register
775 save areas. */
777 static GTY(()) HOST_WIDE_INT frame_set = -1;
779 HOST_WIDE_INT
780 get_frame_alias_set (void)
782 if (frame_set == -1)
783 frame_set = new_alias_set ();
785 return frame_set;
788 /* Inside SRC, the source of a SET, find a base address. */
790 static rtx
791 find_base_value (rtx src)
793 unsigned int regno;
795 switch (GET_CODE (src))
797 case SYMBOL_REF:
798 case LABEL_REF:
799 return src;
801 case REG:
802 regno = REGNO (src);
803 /* At the start of a function, argument registers have known base
804 values which may be lost later. Returning an ADDRESS
805 expression here allows optimization based on argument values
806 even when the argument registers are used for other purposes. */
807 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
808 return new_reg_base_value[regno];
810 /* If a pseudo has a known base value, return it. Do not do this
811 for non-fixed hard regs since it can result in a circular
812 dependency chain for registers which have values at function entry.
814 The test above is not sufficient because the scheduler may move
815 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
816 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
817 && regno < VEC_length (rtx, reg_base_value))
819 /* If we're inside init_alias_analysis, use new_reg_base_value
820 to reduce the number of relaxation iterations. */
821 if (new_reg_base_value && new_reg_base_value[regno]
822 && REG_N_SETS (regno) == 1)
823 return new_reg_base_value[regno];
825 if (VEC_index (rtx, reg_base_value, regno))
826 return VEC_index (rtx, reg_base_value, regno);
829 return 0;
831 case MEM:
832 /* Check for an argument passed in memory. Only record in the
833 copying-arguments block; it is too hard to track changes
834 otherwise. */
835 if (copying_arguments
836 && (XEXP (src, 0) == arg_pointer_rtx
837 || (GET_CODE (XEXP (src, 0)) == PLUS
838 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
839 return gen_rtx_ADDRESS (VOIDmode, src);
840 return 0;
842 case CONST:
843 src = XEXP (src, 0);
844 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
845 break;
847 /* ... fall through ... */
849 case PLUS:
850 case MINUS:
852 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
854 /* If either operand is a REG that is a known pointer, then it
855 is the base. */
856 if (REG_P (src_0) && REG_POINTER (src_0))
857 return find_base_value (src_0);
858 if (REG_P (src_1) && REG_POINTER (src_1))
859 return find_base_value (src_1);
861 /* If either operand is a REG, then see if we already have
862 a known value for it. */
863 if (REG_P (src_0))
865 temp = find_base_value (src_0);
866 if (temp != 0)
867 src_0 = temp;
870 if (REG_P (src_1))
872 temp = find_base_value (src_1);
873 if (temp!= 0)
874 src_1 = temp;
877 /* If either base is named object or a special address
878 (like an argument or stack reference), then use it for the
879 base term. */
880 if (src_0 != 0
881 && (GET_CODE (src_0) == SYMBOL_REF
882 || GET_CODE (src_0) == LABEL_REF
883 || (GET_CODE (src_0) == ADDRESS
884 && GET_MODE (src_0) != VOIDmode)))
885 return src_0;
887 if (src_1 != 0
888 && (GET_CODE (src_1) == SYMBOL_REF
889 || GET_CODE (src_1) == LABEL_REF
890 || (GET_CODE (src_1) == ADDRESS
891 && GET_MODE (src_1) != VOIDmode)))
892 return src_1;
894 /* Guess which operand is the base address:
895 If either operand is a symbol, then it is the base. If
896 either operand is a CONST_INT, then the other is the base. */
897 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
898 return find_base_value (src_0);
899 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
900 return find_base_value (src_1);
902 return 0;
905 case LO_SUM:
906 /* The standard form is (lo_sum reg sym) so look only at the
907 second operand. */
908 return find_base_value (XEXP (src, 1));
910 case AND:
911 /* If the second operand is constant set the base
912 address to the first operand. */
913 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
914 return find_base_value (XEXP (src, 0));
915 return 0;
917 case TRUNCATE:
918 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
919 break;
920 /* Fall through. */
921 case HIGH:
922 case PRE_INC:
923 case PRE_DEC:
924 case POST_INC:
925 case POST_DEC:
926 case PRE_MODIFY:
927 case POST_MODIFY:
928 return find_base_value (XEXP (src, 0));
930 case ZERO_EXTEND:
931 case SIGN_EXTEND: /* used for NT/Alpha pointers */
933 rtx temp = find_base_value (XEXP (src, 0));
935 if (temp != 0 && CONSTANT_P (temp))
936 temp = convert_memory_address (Pmode, temp);
938 return temp;
941 default:
942 break;
945 return 0;
948 /* Called from init_alias_analysis indirectly through note_stores. */
950 /* While scanning insns to find base values, reg_seen[N] is nonzero if
951 register N has been set in this function. */
952 static char *reg_seen;
954 /* Addresses which are known not to alias anything else are identified
955 by a unique integer. */
956 static int unique_id;
958 static void
959 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
961 unsigned regno;
962 rtx src;
963 int n;
965 if (!REG_P (dest))
966 return;
968 regno = REGNO (dest);
970 gcc_assert (regno < VEC_length (rtx, reg_base_value));
972 /* If this spans multiple hard registers, then we must indicate that every
973 register has an unusable value. */
974 if (regno < FIRST_PSEUDO_REGISTER)
975 n = hard_regno_nregs[regno][GET_MODE (dest)];
976 else
977 n = 1;
978 if (n != 1)
980 while (--n >= 0)
982 reg_seen[regno + n] = 1;
983 new_reg_base_value[regno + n] = 0;
985 return;
988 if (set)
990 /* A CLOBBER wipes out any old value but does not prevent a previously
991 unset register from acquiring a base address (i.e. reg_seen is not
992 set). */
993 if (GET_CODE (set) == CLOBBER)
995 new_reg_base_value[regno] = 0;
996 return;
998 src = SET_SRC (set);
1000 else
1002 if (reg_seen[regno])
1004 new_reg_base_value[regno] = 0;
1005 return;
1007 reg_seen[regno] = 1;
1008 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1009 GEN_INT (unique_id++));
1010 return;
1013 /* If this is not the first set of REGNO, see whether the new value
1014 is related to the old one. There are two cases of interest:
1016 (1) The register might be assigned an entirely new value
1017 that has the same base term as the original set.
1019 (2) The set might be a simple self-modification that
1020 cannot change REGNO's base value.
1022 If neither case holds, reject the original base value as invalid.
1023 Note that the following situation is not detected:
1025 extern int x, y; int *p = &x; p += (&y-&x);
1027 ANSI C does not allow computing the difference of addresses
1028 of distinct top level objects. */
1029 if (new_reg_base_value[regno] != 0
1030 && find_base_value (src) != new_reg_base_value[regno])
1031 switch (GET_CODE (src))
1033 case LO_SUM:
1034 case MINUS:
1035 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1036 new_reg_base_value[regno] = 0;
1037 break;
1038 case PLUS:
1039 /* If the value we add in the PLUS is also a valid base value,
1040 this might be the actual base value, and the original value
1041 an index. */
1043 rtx other = NULL_RTX;
1045 if (XEXP (src, 0) == dest)
1046 other = XEXP (src, 1);
1047 else if (XEXP (src, 1) == dest)
1048 other = XEXP (src, 0);
1050 if (! other || find_base_value (other))
1051 new_reg_base_value[regno] = 0;
1052 break;
1054 case AND:
1055 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1056 new_reg_base_value[regno] = 0;
1057 break;
1058 default:
1059 new_reg_base_value[regno] = 0;
1060 break;
1062 /* If this is the first set of a register, record the value. */
1063 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1064 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1065 new_reg_base_value[regno] = find_base_value (src);
1067 reg_seen[regno] = 1;
1070 /* Clear alias info for a register. This is used if an RTL transformation
1071 changes the value of a register. This is used in flow by AUTO_INC_DEC
1072 optimizations. We don't need to clear reg_base_value, since flow only
1073 changes the offset. */
1075 void
1076 clear_reg_alias_info (rtx reg)
1078 unsigned int regno = REGNO (reg);
1080 if (regno >= FIRST_PSEUDO_REGISTER)
1082 regno -= FIRST_PSEUDO_REGISTER;
1083 if (regno < reg_known_value_size)
1085 reg_known_value[regno] = reg;
1086 reg_known_equiv_p[regno] = false;
1091 /* If a value is known for REGNO, return it. */
1094 get_reg_known_value (unsigned int regno)
1096 if (regno >= FIRST_PSEUDO_REGISTER)
1098 regno -= FIRST_PSEUDO_REGISTER;
1099 if (regno < reg_known_value_size)
1100 return reg_known_value[regno];
1102 return NULL;
1105 /* Set it. */
1107 static void
1108 set_reg_known_value (unsigned int regno, rtx val)
1110 if (regno >= FIRST_PSEUDO_REGISTER)
1112 regno -= FIRST_PSEUDO_REGISTER;
1113 if (regno < reg_known_value_size)
1114 reg_known_value[regno] = val;
1118 /* Similarly for reg_known_equiv_p. */
1120 bool
1121 get_reg_known_equiv_p (unsigned int regno)
1123 if (regno >= FIRST_PSEUDO_REGISTER)
1125 regno -= FIRST_PSEUDO_REGISTER;
1126 if (regno < reg_known_value_size)
1127 return reg_known_equiv_p[regno];
1129 return false;
1132 static void
1133 set_reg_known_equiv_p (unsigned int regno, bool val)
1135 if (regno >= FIRST_PSEUDO_REGISTER)
1137 regno -= FIRST_PSEUDO_REGISTER;
1138 if (regno < reg_known_value_size)
1139 reg_known_equiv_p[regno] = val;
1144 /* Returns a canonical version of X, from the point of view alias
1145 analysis. (For example, if X is a MEM whose address is a register,
1146 and the register has a known value (say a SYMBOL_REF), then a MEM
1147 whose address is the SYMBOL_REF is returned.) */
1150 canon_rtx (rtx x)
1152 /* Recursively look for equivalences. */
1153 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1155 rtx t = get_reg_known_value (REGNO (x));
1156 if (t == x)
1157 return x;
1158 if (t)
1159 return canon_rtx (t);
1162 if (GET_CODE (x) == PLUS)
1164 rtx x0 = canon_rtx (XEXP (x, 0));
1165 rtx x1 = canon_rtx (XEXP (x, 1));
1167 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1169 if (GET_CODE (x0) == CONST_INT)
1170 return plus_constant (x1, INTVAL (x0));
1171 else if (GET_CODE (x1) == CONST_INT)
1172 return plus_constant (x0, INTVAL (x1));
1173 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1177 /* This gives us much better alias analysis when called from
1178 the loop optimizer. Note we want to leave the original
1179 MEM alone, but need to return the canonicalized MEM with
1180 all the flags with their original values. */
1181 else if (MEM_P (x))
1182 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1184 return x;
1187 /* Return 1 if X and Y are identical-looking rtx's.
1188 Expect that X and Y has been already canonicalized.
1190 We use the data in reg_known_value above to see if two registers with
1191 different numbers are, in fact, equivalent. */
1193 static int
1194 rtx_equal_for_memref_p (rtx x, rtx y)
1196 int i;
1197 int j;
1198 enum rtx_code code;
1199 const char *fmt;
1201 if (x == 0 && y == 0)
1202 return 1;
1203 if (x == 0 || y == 0)
1204 return 0;
1206 if (x == y)
1207 return 1;
1209 code = GET_CODE (x);
1210 /* Rtx's of different codes cannot be equal. */
1211 if (code != GET_CODE (y))
1212 return 0;
1214 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1215 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1217 if (GET_MODE (x) != GET_MODE (y))
1218 return 0;
1220 /* Some RTL can be compared without a recursive examination. */
1221 switch (code)
1223 case REG:
1224 return REGNO (x) == REGNO (y);
1226 case LABEL_REF:
1227 return XEXP (x, 0) == XEXP (y, 0);
1229 case SYMBOL_REF:
1230 return XSTR (x, 0) == XSTR (y, 0);
1232 case VALUE:
1233 case CONST_INT:
1234 case CONST_DOUBLE:
1235 /* There's no need to compare the contents of CONST_DOUBLEs or
1236 CONST_INTs because pointer equality is a good enough
1237 comparison for these nodes. */
1238 return 0;
1240 default:
1241 break;
1244 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1245 if (code == PLUS)
1246 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1247 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1248 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1249 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1250 /* For commutative operations, the RTX match if the operand match in any
1251 order. Also handle the simple binary and unary cases without a loop. */
1252 if (COMMUTATIVE_P (x))
1254 rtx xop0 = canon_rtx (XEXP (x, 0));
1255 rtx yop0 = canon_rtx (XEXP (y, 0));
1256 rtx yop1 = canon_rtx (XEXP (y, 1));
1258 return ((rtx_equal_for_memref_p (xop0, yop0)
1259 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1260 || (rtx_equal_for_memref_p (xop0, yop1)
1261 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1263 else if (NON_COMMUTATIVE_P (x))
1265 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1266 canon_rtx (XEXP (y, 0)))
1267 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1268 canon_rtx (XEXP (y, 1))));
1270 else if (UNARY_P (x))
1271 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1272 canon_rtx (XEXP (y, 0)));
1274 /* Compare the elements. If any pair of corresponding elements
1275 fail to match, return 0 for the whole things.
1277 Limit cases to types which actually appear in addresses. */
1279 fmt = GET_RTX_FORMAT (code);
1280 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1282 switch (fmt[i])
1284 case 'i':
1285 if (XINT (x, i) != XINT (y, i))
1286 return 0;
1287 break;
1289 case 'E':
1290 /* Two vectors must have the same length. */
1291 if (XVECLEN (x, i) != XVECLEN (y, i))
1292 return 0;
1294 /* And the corresponding elements must match. */
1295 for (j = 0; j < XVECLEN (x, i); j++)
1296 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1297 canon_rtx (XVECEXP (y, i, j))) == 0)
1298 return 0;
1299 break;
1301 case 'e':
1302 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1303 canon_rtx (XEXP (y, i))) == 0)
1304 return 0;
1305 break;
1307 /* This can happen for asm operands. */
1308 case 's':
1309 if (strcmp (XSTR (x, i), XSTR (y, i)))
1310 return 0;
1311 break;
1313 /* This can happen for an asm which clobbers memory. */
1314 case '0':
1315 break;
1317 /* It is believed that rtx's at this level will never
1318 contain anything but integers and other rtx's,
1319 except for within LABEL_REFs and SYMBOL_REFs. */
1320 default:
1321 gcc_unreachable ();
1324 return 1;
1327 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1328 X and return it, or return 0 if none found. */
1330 static rtx
1331 find_symbolic_term (rtx x)
1333 int i;
1334 enum rtx_code code;
1335 const char *fmt;
1337 code = GET_CODE (x);
1338 if (code == SYMBOL_REF || code == LABEL_REF)
1339 return x;
1340 if (OBJECT_P (x))
1341 return 0;
1343 fmt = GET_RTX_FORMAT (code);
1344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1346 rtx t;
1348 if (fmt[i] == 'e')
1350 t = find_symbolic_term (XEXP (x, i));
1351 if (t != 0)
1352 return t;
1354 else if (fmt[i] == 'E')
1355 break;
1357 return 0;
1361 find_base_term (rtx x)
1363 cselib_val *val;
1364 struct elt_loc_list *l;
1366 #if defined (FIND_BASE_TERM)
1367 /* Try machine-dependent ways to find the base term. */
1368 x = FIND_BASE_TERM (x);
1369 #endif
1371 switch (GET_CODE (x))
1373 case REG:
1374 return REG_BASE_VALUE (x);
1376 case TRUNCATE:
1377 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1378 return 0;
1379 /* Fall through. */
1380 case HIGH:
1381 case PRE_INC:
1382 case PRE_DEC:
1383 case POST_INC:
1384 case POST_DEC:
1385 case PRE_MODIFY:
1386 case POST_MODIFY:
1387 return find_base_term (XEXP (x, 0));
1389 case ZERO_EXTEND:
1390 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1392 rtx temp = find_base_term (XEXP (x, 0));
1394 if (temp != 0 && CONSTANT_P (temp))
1395 temp = convert_memory_address (Pmode, temp);
1397 return temp;
1400 case VALUE:
1401 val = CSELIB_VAL_PTR (x);
1402 if (!val)
1403 return 0;
1404 for (l = val->locs; l; l = l->next)
1405 if ((x = find_base_term (l->loc)) != 0)
1406 return x;
1407 return 0;
1409 case CONST:
1410 x = XEXP (x, 0);
1411 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1412 return 0;
1413 /* Fall through. */
1414 case LO_SUM:
1415 case PLUS:
1416 case MINUS:
1418 rtx tmp1 = XEXP (x, 0);
1419 rtx tmp2 = XEXP (x, 1);
1421 /* This is a little bit tricky since we have to determine which of
1422 the two operands represents the real base address. Otherwise this
1423 routine may return the index register instead of the base register.
1425 That may cause us to believe no aliasing was possible, when in
1426 fact aliasing is possible.
1428 We use a few simple tests to guess the base register. Additional
1429 tests can certainly be added. For example, if one of the operands
1430 is a shift or multiply, then it must be the index register and the
1431 other operand is the base register. */
1433 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1434 return find_base_term (tmp2);
1436 /* If either operand is known to be a pointer, then use it
1437 to determine the base term. */
1438 if (REG_P (tmp1) && REG_POINTER (tmp1))
1439 return find_base_term (tmp1);
1441 if (REG_P (tmp2) && REG_POINTER (tmp2))
1442 return find_base_term (tmp2);
1444 /* Neither operand was known to be a pointer. Go ahead and find the
1445 base term for both operands. */
1446 tmp1 = find_base_term (tmp1);
1447 tmp2 = find_base_term (tmp2);
1449 /* If either base term is named object or a special address
1450 (like an argument or stack reference), then use it for the
1451 base term. */
1452 if (tmp1 != 0
1453 && (GET_CODE (tmp1) == SYMBOL_REF
1454 || GET_CODE (tmp1) == LABEL_REF
1455 || (GET_CODE (tmp1) == ADDRESS
1456 && GET_MODE (tmp1) != VOIDmode)))
1457 return tmp1;
1459 if (tmp2 != 0
1460 && (GET_CODE (tmp2) == SYMBOL_REF
1461 || GET_CODE (tmp2) == LABEL_REF
1462 || (GET_CODE (tmp2) == ADDRESS
1463 && GET_MODE (tmp2) != VOIDmode)))
1464 return tmp2;
1466 /* We could not determine which of the two operands was the
1467 base register and which was the index. So we can determine
1468 nothing from the base alias check. */
1469 return 0;
1472 case AND:
1473 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1474 return find_base_term (XEXP (x, 0));
1475 return 0;
1477 case SYMBOL_REF:
1478 case LABEL_REF:
1479 return x;
1481 default:
1482 return 0;
1486 /* Return 0 if the addresses X and Y are known to point to different
1487 objects, 1 if they might be pointers to the same object. */
1489 static int
1490 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1491 enum machine_mode y_mode)
1493 rtx x_base = find_base_term (x);
1494 rtx y_base = find_base_term (y);
1496 /* If the address itself has no known base see if a known equivalent
1497 value has one. If either address still has no known base, nothing
1498 is known about aliasing. */
1499 if (x_base == 0)
1501 rtx x_c;
1503 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1504 return 1;
1506 x_base = find_base_term (x_c);
1507 if (x_base == 0)
1508 return 1;
1511 if (y_base == 0)
1513 rtx y_c;
1514 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1515 return 1;
1517 y_base = find_base_term (y_c);
1518 if (y_base == 0)
1519 return 1;
1522 /* If the base addresses are equal nothing is known about aliasing. */
1523 if (rtx_equal_p (x_base, y_base))
1524 return 1;
1526 /* The base addresses of the read and write are different expressions.
1527 If they are both symbols and they are not accessed via AND, there is
1528 no conflict. We can bring knowledge of object alignment into play
1529 here. For example, on alpha, "char a, b;" can alias one another,
1530 though "char a; long b;" cannot. */
1531 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1533 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1534 return 1;
1535 if (GET_CODE (x) == AND
1536 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1537 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1538 return 1;
1539 if (GET_CODE (y) == AND
1540 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1541 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1542 return 1;
1543 /* Differing symbols never alias. */
1544 return 0;
1547 /* If one address is a stack reference there can be no alias:
1548 stack references using different base registers do not alias,
1549 a stack reference can not alias a parameter, and a stack reference
1550 can not alias a global. */
1551 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1552 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1553 return 0;
1555 if (! flag_argument_noalias)
1556 return 1;
1558 if (flag_argument_noalias > 1)
1559 return 0;
1561 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1562 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1565 /* Convert the address X into something we can use. This is done by returning
1566 it unchanged unless it is a value; in the latter case we call cselib to get
1567 a more useful rtx. */
1570 get_addr (rtx x)
1572 cselib_val *v;
1573 struct elt_loc_list *l;
1575 if (GET_CODE (x) != VALUE)
1576 return x;
1577 v = CSELIB_VAL_PTR (x);
1578 if (v)
1580 for (l = v->locs; l; l = l->next)
1581 if (CONSTANT_P (l->loc))
1582 return l->loc;
1583 for (l = v->locs; l; l = l->next)
1584 if (!REG_P (l->loc) && !MEM_P (l->loc))
1585 return l->loc;
1586 if (v->locs)
1587 return v->locs->loc;
1589 return x;
1592 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1593 where SIZE is the size in bytes of the memory reference. If ADDR
1594 is not modified by the memory reference then ADDR is returned. */
1596 static rtx
1597 addr_side_effect_eval (rtx addr, int size, int n_refs)
1599 int offset = 0;
1601 switch (GET_CODE (addr))
1603 case PRE_INC:
1604 offset = (n_refs + 1) * size;
1605 break;
1606 case PRE_DEC:
1607 offset = -(n_refs + 1) * size;
1608 break;
1609 case POST_INC:
1610 offset = n_refs * size;
1611 break;
1612 case POST_DEC:
1613 offset = -n_refs * size;
1614 break;
1616 default:
1617 return addr;
1620 if (offset)
1621 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1622 GEN_INT (offset));
1623 else
1624 addr = XEXP (addr, 0);
1625 addr = canon_rtx (addr);
1627 return addr;
1630 /* Return nonzero if X and Y (memory addresses) could reference the
1631 same location in memory. C is an offset accumulator. When
1632 C is nonzero, we are testing aliases between X and Y + C.
1633 XSIZE is the size in bytes of the X reference,
1634 similarly YSIZE is the size in bytes for Y.
1635 Expect that canon_rtx has been already called for X and Y.
1637 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1638 referenced (the reference was BLKmode), so make the most pessimistic
1639 assumptions.
1641 If XSIZE or YSIZE is negative, we may access memory outside the object
1642 being referenced as a side effect. This can happen when using AND to
1643 align memory references, as is done on the Alpha.
1645 Nice to notice that varying addresses cannot conflict with fp if no
1646 local variables had their addresses taken, but that's too hard now. */
1648 static int
1649 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1651 if (GET_CODE (x) == VALUE)
1652 x = get_addr (x);
1653 if (GET_CODE (y) == VALUE)
1654 y = get_addr (y);
1655 if (GET_CODE (x) == HIGH)
1656 x = XEXP (x, 0);
1657 else if (GET_CODE (x) == LO_SUM)
1658 x = XEXP (x, 1);
1659 else
1660 x = addr_side_effect_eval (x, xsize, 0);
1661 if (GET_CODE (y) == HIGH)
1662 y = XEXP (y, 0);
1663 else if (GET_CODE (y) == LO_SUM)
1664 y = XEXP (y, 1);
1665 else
1666 y = addr_side_effect_eval (y, ysize, 0);
1668 if (rtx_equal_for_memref_p (x, y))
1670 if (xsize <= 0 || ysize <= 0)
1671 return 1;
1672 if (c >= 0 && xsize > c)
1673 return 1;
1674 if (c < 0 && ysize+c > 0)
1675 return 1;
1676 return 0;
1679 /* This code used to check for conflicts involving stack references and
1680 globals but the base address alias code now handles these cases. */
1682 if (GET_CODE (x) == PLUS)
1684 /* The fact that X is canonicalized means that this
1685 PLUS rtx is canonicalized. */
1686 rtx x0 = XEXP (x, 0);
1687 rtx x1 = XEXP (x, 1);
1689 if (GET_CODE (y) == PLUS)
1691 /* The fact that Y is canonicalized means that this
1692 PLUS rtx is canonicalized. */
1693 rtx y0 = XEXP (y, 0);
1694 rtx y1 = XEXP (y, 1);
1696 if (rtx_equal_for_memref_p (x1, y1))
1697 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1698 if (rtx_equal_for_memref_p (x0, y0))
1699 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1700 if (GET_CODE (x1) == CONST_INT)
1702 if (GET_CODE (y1) == CONST_INT)
1703 return memrefs_conflict_p (xsize, x0, ysize, y0,
1704 c - INTVAL (x1) + INTVAL (y1));
1705 else
1706 return memrefs_conflict_p (xsize, x0, ysize, y,
1707 c - INTVAL (x1));
1709 else if (GET_CODE (y1) == CONST_INT)
1710 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1712 return 1;
1714 else if (GET_CODE (x1) == CONST_INT)
1715 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1717 else if (GET_CODE (y) == PLUS)
1719 /* The fact that Y is canonicalized means that this
1720 PLUS rtx is canonicalized. */
1721 rtx y0 = XEXP (y, 0);
1722 rtx y1 = XEXP (y, 1);
1724 if (GET_CODE (y1) == CONST_INT)
1725 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1726 else
1727 return 1;
1730 if (GET_CODE (x) == GET_CODE (y))
1731 switch (GET_CODE (x))
1733 case MULT:
1735 /* Handle cases where we expect the second operands to be the
1736 same, and check only whether the first operand would conflict
1737 or not. */
1738 rtx x0, y0;
1739 rtx x1 = canon_rtx (XEXP (x, 1));
1740 rtx y1 = canon_rtx (XEXP (y, 1));
1741 if (! rtx_equal_for_memref_p (x1, y1))
1742 return 1;
1743 x0 = canon_rtx (XEXP (x, 0));
1744 y0 = canon_rtx (XEXP (y, 0));
1745 if (rtx_equal_for_memref_p (x0, y0))
1746 return (xsize == 0 || ysize == 0
1747 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1749 /* Can't properly adjust our sizes. */
1750 if (GET_CODE (x1) != CONST_INT)
1751 return 1;
1752 xsize /= INTVAL (x1);
1753 ysize /= INTVAL (x1);
1754 c /= INTVAL (x1);
1755 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1758 default:
1759 break;
1762 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1763 as an access with indeterminate size. Assume that references
1764 besides AND are aligned, so if the size of the other reference is
1765 at least as large as the alignment, assume no other overlap. */
1766 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1768 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1769 xsize = -1;
1770 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1772 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1774 /* ??? If we are indexing far enough into the array/structure, we
1775 may yet be able to determine that we can not overlap. But we
1776 also need to that we are far enough from the end not to overlap
1777 a following reference, so we do nothing with that for now. */
1778 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1779 ysize = -1;
1780 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1783 if (CONSTANT_P (x))
1785 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1787 c += (INTVAL (y) - INTVAL (x));
1788 return (xsize <= 0 || ysize <= 0
1789 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1792 if (GET_CODE (x) == CONST)
1794 if (GET_CODE (y) == CONST)
1795 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1796 ysize, canon_rtx (XEXP (y, 0)), c);
1797 else
1798 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1799 ysize, y, c);
1801 if (GET_CODE (y) == CONST)
1802 return memrefs_conflict_p (xsize, x, ysize,
1803 canon_rtx (XEXP (y, 0)), c);
1805 if (CONSTANT_P (y))
1806 return (xsize <= 0 || ysize <= 0
1807 || (rtx_equal_for_memref_p (x, y)
1808 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1810 return 1;
1812 return 1;
1815 /* Functions to compute memory dependencies.
1817 Since we process the insns in execution order, we can build tables
1818 to keep track of what registers are fixed (and not aliased), what registers
1819 are varying in known ways, and what registers are varying in unknown
1820 ways.
1822 If both memory references are volatile, then there must always be a
1823 dependence between the two references, since their order can not be
1824 changed. A volatile and non-volatile reference can be interchanged
1825 though.
1827 A MEM_IN_STRUCT reference at a non-AND varying address can never
1828 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1829 also must allow AND addresses, because they may generate accesses
1830 outside the object being referenced. This is used to generate
1831 aligned addresses from unaligned addresses, for instance, the alpha
1832 storeqi_unaligned pattern. */
1834 /* Read dependence: X is read after read in MEM takes place. There can
1835 only be a dependence here if both reads are volatile. */
1838 read_dependence (rtx mem, rtx x)
1840 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1843 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1844 MEM2 is a reference to a structure at a varying address, or returns
1845 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1846 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1847 to decide whether or not an address may vary; it should return
1848 nonzero whenever variation is possible.
1849 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1851 static rtx
1852 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1853 rtx mem2_addr,
1854 int (*varies_p) (rtx, int))
1856 if (! flag_strict_aliasing)
1857 return NULL_RTX;
1859 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1860 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1861 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1862 varying address. */
1863 return mem1;
1865 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1866 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1867 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1868 varying address. */
1869 return mem2;
1871 return NULL_RTX;
1874 /* Returns nonzero if something about the mode or address format MEM1
1875 indicates that it might well alias *anything*. */
1877 static int
1878 aliases_everything_p (rtx mem)
1880 if (GET_CODE (XEXP (mem, 0)) == AND)
1881 /* If the address is an AND, it's very hard to know at what it is
1882 actually pointing. */
1883 return 1;
1885 return 0;
1888 /* Return true if we can determine that the fields referenced cannot
1889 overlap for any pair of objects. */
1891 static bool
1892 nonoverlapping_component_refs_p (tree x, tree y)
1894 tree fieldx, fieldy, typex, typey, orig_y;
1898 /* The comparison has to be done at a common type, since we don't
1899 know how the inheritance hierarchy works. */
1900 orig_y = y;
1903 fieldx = TREE_OPERAND (x, 1);
1904 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1906 y = orig_y;
1909 fieldy = TREE_OPERAND (y, 1);
1910 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1912 if (typex == typey)
1913 goto found;
1915 y = TREE_OPERAND (y, 0);
1917 while (y && TREE_CODE (y) == COMPONENT_REF);
1919 x = TREE_OPERAND (x, 0);
1921 while (x && TREE_CODE (x) == COMPONENT_REF);
1922 /* Never found a common type. */
1923 return false;
1925 found:
1926 /* If we're left with accessing different fields of a structure,
1927 then no overlap. */
1928 if (TREE_CODE (typex) == RECORD_TYPE
1929 && fieldx != fieldy)
1930 return true;
1932 /* The comparison on the current field failed. If we're accessing
1933 a very nested structure, look at the next outer level. */
1934 x = TREE_OPERAND (x, 0);
1935 y = TREE_OPERAND (y, 0);
1937 while (x && y
1938 && TREE_CODE (x) == COMPONENT_REF
1939 && TREE_CODE (y) == COMPONENT_REF);
1941 return false;
1944 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1946 static tree
1947 decl_for_component_ref (tree x)
1951 x = TREE_OPERAND (x, 0);
1953 while (x && TREE_CODE (x) == COMPONENT_REF);
1955 return x && DECL_P (x) ? x : NULL_TREE;
1958 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1959 offset of the field reference. */
1961 static rtx
1962 adjust_offset_for_component_ref (tree x, rtx offset)
1964 HOST_WIDE_INT ioffset;
1966 if (! offset)
1967 return NULL_RTX;
1969 ioffset = INTVAL (offset);
1972 tree offset = component_ref_field_offset (x);
1973 tree field = TREE_OPERAND (x, 1);
1975 if (! host_integerp (offset, 1))
1976 return NULL_RTX;
1977 ioffset += (tree_low_cst (offset, 1)
1978 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1979 / BITS_PER_UNIT));
1981 x = TREE_OPERAND (x, 0);
1983 while (x && TREE_CODE (x) == COMPONENT_REF);
1985 return GEN_INT (ioffset);
1988 /* Return nonzero if we can determine the exprs corresponding to memrefs
1989 X and Y and they do not overlap. */
1991 static int
1992 nonoverlapping_memrefs_p (rtx x, rtx y)
1994 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1995 rtx rtlx, rtly;
1996 rtx basex, basey;
1997 rtx moffsetx, moffsety;
1998 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2000 /* Unless both have exprs, we can't tell anything. */
2001 if (exprx == 0 || expry == 0)
2002 return 0;
2004 /* If both are field references, we may be able to determine something. */
2005 if (TREE_CODE (exprx) == COMPONENT_REF
2006 && TREE_CODE (expry) == COMPONENT_REF
2007 && nonoverlapping_component_refs_p (exprx, expry))
2008 return 1;
2011 /* If the field reference test failed, look at the DECLs involved. */
2012 moffsetx = MEM_OFFSET (x);
2013 if (TREE_CODE (exprx) == COMPONENT_REF)
2015 if (TREE_CODE (expry) == VAR_DECL
2016 && POINTER_TYPE_P (TREE_TYPE (expry)))
2018 tree field = TREE_OPERAND (exprx, 1);
2019 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2020 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2021 TREE_TYPE (field)))
2022 return 1;
2025 tree t = decl_for_component_ref (exprx);
2026 if (! t)
2027 return 0;
2028 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2029 exprx = t;
2032 else if (INDIRECT_REF_P (exprx))
2034 exprx = TREE_OPERAND (exprx, 0);
2035 if (flag_argument_noalias < 2
2036 || TREE_CODE (exprx) != PARM_DECL)
2037 return 0;
2040 moffsety = MEM_OFFSET (y);
2041 if (TREE_CODE (expry) == COMPONENT_REF)
2043 if (TREE_CODE (exprx) == VAR_DECL
2044 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2046 tree field = TREE_OPERAND (expry, 1);
2047 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2048 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2049 TREE_TYPE (field)))
2050 return 1;
2053 tree t = decl_for_component_ref (expry);
2054 if (! t)
2055 return 0;
2056 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2057 expry = t;
2060 else if (INDIRECT_REF_P (expry))
2062 expry = TREE_OPERAND (expry, 0);
2063 if (flag_argument_noalias < 2
2064 || TREE_CODE (expry) != PARM_DECL)
2065 return 0;
2068 if (! DECL_P (exprx) || ! DECL_P (expry))
2069 return 0;
2071 rtlx = DECL_RTL (exprx);
2072 rtly = DECL_RTL (expry);
2074 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2075 can't overlap unless they are the same because we never reuse that part
2076 of the stack frame used for locals for spilled pseudos. */
2077 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2078 && ! rtx_equal_p (rtlx, rtly))
2079 return 1;
2081 /* Get the base and offsets of both decls. If either is a register, we
2082 know both are and are the same, so use that as the base. The only
2083 we can avoid overlap is if we can deduce that they are nonoverlapping
2084 pieces of that decl, which is very rare. */
2085 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2086 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2087 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2089 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2090 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2091 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2093 /* If the bases are different, we know they do not overlap if both
2094 are constants or if one is a constant and the other a pointer into the
2095 stack frame. Otherwise a different base means we can't tell if they
2096 overlap or not. */
2097 if (! rtx_equal_p (basex, basey))
2098 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2099 || (CONSTANT_P (basex) && REG_P (basey)
2100 && REGNO_PTR_FRAME_P (REGNO (basey)))
2101 || (CONSTANT_P (basey) && REG_P (basex)
2102 && REGNO_PTR_FRAME_P (REGNO (basex))));
2104 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2105 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2106 : -1);
2107 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2108 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2109 -1);
2111 /* If we have an offset for either memref, it can update the values computed
2112 above. */
2113 if (moffsetx)
2114 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2115 if (moffsety)
2116 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2118 /* If a memref has both a size and an offset, we can use the smaller size.
2119 We can't do this if the offset isn't known because we must view this
2120 memref as being anywhere inside the DECL's MEM. */
2121 if (MEM_SIZE (x) && moffsetx)
2122 sizex = INTVAL (MEM_SIZE (x));
2123 if (MEM_SIZE (y) && moffsety)
2124 sizey = INTVAL (MEM_SIZE (y));
2126 /* Put the values of the memref with the lower offset in X's values. */
2127 if (offsetx > offsety)
2129 tem = offsetx, offsetx = offsety, offsety = tem;
2130 tem = sizex, sizex = sizey, sizey = tem;
2133 /* If we don't know the size of the lower-offset value, we can't tell
2134 if they conflict. Otherwise, we do the test. */
2135 return sizex >= 0 && offsety >= offsetx + sizex;
2138 /* True dependence: X is read after store in MEM takes place. */
2141 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2142 int (*varies) (rtx, int))
2144 rtx x_addr, mem_addr;
2145 rtx base;
2147 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2148 return 1;
2150 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2151 This is used in epilogue deallocation functions. */
2152 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2153 return 1;
2154 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2155 return 1;
2156 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2157 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2158 return 1;
2160 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2161 return 0;
2163 /* Read-only memory is by definition never modified, and therefore can't
2164 conflict with anything. We don't expect to find read-only set on MEM,
2165 but stupid user tricks can produce them, so don't die. */
2166 if (MEM_READONLY_P (x))
2167 return 0;
2169 if (nonoverlapping_memrefs_p (mem, x))
2170 return 0;
2172 if (mem_mode == VOIDmode)
2173 mem_mode = GET_MODE (mem);
2175 x_addr = get_addr (XEXP (x, 0));
2176 mem_addr = get_addr (XEXP (mem, 0));
2178 base = find_base_term (x_addr);
2179 if (base && (GET_CODE (base) == LABEL_REF
2180 || (GET_CODE (base) == SYMBOL_REF
2181 && CONSTANT_POOL_ADDRESS_P (base))))
2182 return 0;
2184 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2185 return 0;
2187 x_addr = canon_rtx (x_addr);
2188 mem_addr = canon_rtx (mem_addr);
2190 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2191 SIZE_FOR_MODE (x), x_addr, 0))
2192 return 0;
2194 if (aliases_everything_p (x))
2195 return 1;
2197 /* We cannot use aliases_everything_p to test MEM, since we must look
2198 at MEM_MODE, rather than GET_MODE (MEM). */
2199 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2200 return 1;
2202 /* In true_dependence we also allow BLKmode to alias anything. Why
2203 don't we do this in anti_dependence and output_dependence? */
2204 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2205 return 1;
2207 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2208 varies);
2211 /* Canonical true dependence: X is read after store in MEM takes place.
2212 Variant of true_dependence which assumes MEM has already been
2213 canonicalized (hence we no longer do that here).
2214 The mem_addr argument has been added, since true_dependence computed
2215 this value prior to canonicalizing. */
2218 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2219 rtx x, int (*varies) (rtx, int))
2221 rtx x_addr;
2223 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2224 return 1;
2226 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2227 This is used in epilogue deallocation functions. */
2228 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2229 return 1;
2230 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2231 return 1;
2232 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2233 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2234 return 1;
2236 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2237 return 0;
2239 /* Read-only memory is by definition never modified, and therefore can't
2240 conflict with anything. We don't expect to find read-only set on MEM,
2241 but stupid user tricks can produce them, so don't die. */
2242 if (MEM_READONLY_P (x))
2243 return 0;
2245 if (nonoverlapping_memrefs_p (x, mem))
2246 return 0;
2248 x_addr = get_addr (XEXP (x, 0));
2250 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2251 return 0;
2253 x_addr = canon_rtx (x_addr);
2254 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2255 SIZE_FOR_MODE (x), x_addr, 0))
2256 return 0;
2258 if (aliases_everything_p (x))
2259 return 1;
2261 /* We cannot use aliases_everything_p to test MEM, since we must look
2262 at MEM_MODE, rather than GET_MODE (MEM). */
2263 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2264 return 1;
2266 /* In true_dependence we also allow BLKmode to alias anything. Why
2267 don't we do this in anti_dependence and output_dependence? */
2268 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2269 return 1;
2271 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2272 varies);
2275 /* Returns nonzero if a write to X might alias a previous read from
2276 (or, if WRITEP is nonzero, a write to) MEM. */
2278 static int
2279 write_dependence_p (rtx mem, rtx x, int writep)
2281 rtx x_addr, mem_addr;
2282 rtx fixed_scalar;
2283 rtx base;
2285 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2286 return 1;
2288 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2289 This is used in epilogue deallocation functions. */
2290 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2291 return 1;
2292 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2293 return 1;
2294 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2295 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2296 return 1;
2298 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2299 return 0;
2301 /* A read from read-only memory can't conflict with read-write memory. */
2302 if (!writep && MEM_READONLY_P (mem))
2303 return 0;
2305 if (nonoverlapping_memrefs_p (x, mem))
2306 return 0;
2308 x_addr = get_addr (XEXP (x, 0));
2309 mem_addr = get_addr (XEXP (mem, 0));
2311 if (! writep)
2313 base = find_base_term (mem_addr);
2314 if (base && (GET_CODE (base) == LABEL_REF
2315 || (GET_CODE (base) == SYMBOL_REF
2316 && CONSTANT_POOL_ADDRESS_P (base))))
2317 return 0;
2320 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2321 GET_MODE (mem)))
2322 return 0;
2324 x_addr = canon_rtx (x_addr);
2325 mem_addr = canon_rtx (mem_addr);
2327 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2328 SIZE_FOR_MODE (x), x_addr, 0))
2329 return 0;
2331 fixed_scalar
2332 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2333 rtx_addr_varies_p);
2335 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2336 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2339 /* Anti dependence: X is written after read in MEM takes place. */
2342 anti_dependence (rtx mem, rtx x)
2344 return write_dependence_p (mem, x, /*writep=*/0);
2347 /* Output dependence: X is written after store in MEM takes place. */
2350 output_dependence (rtx mem, rtx x)
2352 return write_dependence_p (mem, x, /*writep=*/1);
2356 void
2357 init_alias_once (void)
2359 int i;
2361 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2362 /* Check whether this register can hold an incoming pointer
2363 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2364 numbers, so translate if necessary due to register windows. */
2365 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2366 && HARD_REGNO_MODE_OK (i, Pmode))
2367 static_reg_base_value[i]
2368 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2370 static_reg_base_value[STACK_POINTER_REGNUM]
2371 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2372 static_reg_base_value[ARG_POINTER_REGNUM]
2373 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2374 static_reg_base_value[FRAME_POINTER_REGNUM]
2375 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2376 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2377 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2378 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2379 #endif
2382 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2383 to be memory reference. */
2384 static bool memory_modified;
2385 static void
2386 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2388 if (MEM_P (x))
2390 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2391 memory_modified = true;
2396 /* Return true when INSN possibly modify memory contents of MEM
2397 (i.e. address can be modified). */
2398 bool
2399 memory_modified_in_insn_p (rtx mem, rtx insn)
2401 if (!INSN_P (insn))
2402 return false;
2403 memory_modified = false;
2404 note_stores (PATTERN (insn), memory_modified_1, mem);
2405 return memory_modified;
2408 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2409 array. */
2411 void
2412 init_alias_analysis (void)
2414 unsigned int maxreg = max_reg_num ();
2415 int changed, pass;
2416 int i;
2417 unsigned int ui;
2418 rtx insn;
2420 timevar_push (TV_ALIAS_ANALYSIS);
2422 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2423 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2424 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2426 /* If we have memory allocated from the previous run, use it. */
2427 if (old_reg_base_value)
2428 reg_base_value = old_reg_base_value;
2430 if (reg_base_value)
2431 VEC_truncate (rtx, reg_base_value, 0);
2433 VEC_safe_grow (rtx, gc, reg_base_value, maxreg);
2434 memset (VEC_address (rtx, reg_base_value), 0,
2435 sizeof (rtx) * VEC_length (rtx, reg_base_value));
2437 new_reg_base_value = XNEWVEC (rtx, maxreg);
2438 reg_seen = XNEWVEC (char, maxreg);
2440 /* The basic idea is that each pass through this loop will use the
2441 "constant" information from the previous pass to propagate alias
2442 information through another level of assignments.
2444 This could get expensive if the assignment chains are long. Maybe
2445 we should throttle the number of iterations, possibly based on
2446 the optimization level or flag_expensive_optimizations.
2448 We could propagate more information in the first pass by making use
2449 of REG_N_SETS to determine immediately that the alias information
2450 for a pseudo is "constant".
2452 A program with an uninitialized variable can cause an infinite loop
2453 here. Instead of doing a full dataflow analysis to detect such problems
2454 we just cap the number of iterations for the loop.
2456 The state of the arrays for the set chain in question does not matter
2457 since the program has undefined behavior. */
2459 pass = 0;
2462 /* Assume nothing will change this iteration of the loop. */
2463 changed = 0;
2465 /* We want to assign the same IDs each iteration of this loop, so
2466 start counting from zero each iteration of the loop. */
2467 unique_id = 0;
2469 /* We're at the start of the function each iteration through the
2470 loop, so we're copying arguments. */
2471 copying_arguments = true;
2473 /* Wipe the potential alias information clean for this pass. */
2474 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2476 /* Wipe the reg_seen array clean. */
2477 memset (reg_seen, 0, maxreg);
2479 /* Mark all hard registers which may contain an address.
2480 The stack, frame and argument pointers may contain an address.
2481 An argument register which can hold a Pmode value may contain
2482 an address even if it is not in BASE_REGS.
2484 The address expression is VOIDmode for an argument and
2485 Pmode for other registers. */
2487 memcpy (new_reg_base_value, static_reg_base_value,
2488 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2490 /* Walk the insns adding values to the new_reg_base_value array. */
2491 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2493 if (INSN_P (insn))
2495 rtx note, set;
2497 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2498 /* The prologue/epilogue insns are not threaded onto the
2499 insn chain until after reload has completed. Thus,
2500 there is no sense wasting time checking if INSN is in
2501 the prologue/epilogue until after reload has completed. */
2502 if (reload_completed
2503 && prologue_epilogue_contains (insn))
2504 continue;
2505 #endif
2507 /* If this insn has a noalias note, process it, Otherwise,
2508 scan for sets. A simple set will have no side effects
2509 which could change the base value of any other register. */
2511 if (GET_CODE (PATTERN (insn)) == SET
2512 && REG_NOTES (insn) != 0
2513 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2514 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2515 else
2516 note_stores (PATTERN (insn), record_set, NULL);
2518 set = single_set (insn);
2520 if (set != 0
2521 && REG_P (SET_DEST (set))
2522 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2524 unsigned int regno = REGNO (SET_DEST (set));
2525 rtx src = SET_SRC (set);
2526 rtx t;
2528 if (REG_NOTES (insn) != 0
2529 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2530 && REG_N_SETS (regno) == 1)
2531 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2532 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2533 && ! rtx_varies_p (XEXP (note, 0), 1)
2534 && ! reg_overlap_mentioned_p (SET_DEST (set),
2535 XEXP (note, 0)))
2537 set_reg_known_value (regno, XEXP (note, 0));
2538 set_reg_known_equiv_p (regno,
2539 REG_NOTE_KIND (note) == REG_EQUIV);
2541 else if (REG_N_SETS (regno) == 1
2542 && GET_CODE (src) == PLUS
2543 && REG_P (XEXP (src, 0))
2544 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2545 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2547 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2548 set_reg_known_value (regno, t);
2549 set_reg_known_equiv_p (regno, 0);
2551 else if (REG_N_SETS (regno) == 1
2552 && ! rtx_varies_p (src, 1))
2554 set_reg_known_value (regno, src);
2555 set_reg_known_equiv_p (regno, 0);
2559 else if (NOTE_P (insn)
2560 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2561 copying_arguments = false;
2564 /* Now propagate values from new_reg_base_value to reg_base_value. */
2565 gcc_assert (maxreg == (unsigned int) max_reg_num());
2567 for (ui = 0; ui < maxreg; ui++)
2569 if (new_reg_base_value[ui]
2570 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2571 && ! rtx_equal_p (new_reg_base_value[ui],
2572 VEC_index (rtx, reg_base_value, ui)))
2574 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2575 changed = 1;
2579 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2581 /* Fill in the remaining entries. */
2582 for (i = 0; i < (int)reg_known_value_size; i++)
2583 if (reg_known_value[i] == 0)
2584 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2586 /* Simplify the reg_base_value array so that no register refers to
2587 another register, except to special registers indirectly through
2588 ADDRESS expressions.
2590 In theory this loop can take as long as O(registers^2), but unless
2591 there are very long dependency chains it will run in close to linear
2592 time.
2594 This loop may not be needed any longer now that the main loop does
2595 a better job at propagating alias information. */
2596 pass = 0;
2599 changed = 0;
2600 pass++;
2601 for (ui = 0; ui < maxreg; ui++)
2603 rtx base = VEC_index (rtx, reg_base_value, ui);
2604 if (base && REG_P (base))
2606 unsigned int base_regno = REGNO (base);
2607 if (base_regno == ui) /* register set from itself */
2608 VEC_replace (rtx, reg_base_value, ui, 0);
2609 else
2610 VEC_replace (rtx, reg_base_value, ui,
2611 VEC_index (rtx, reg_base_value, base_regno));
2612 changed = 1;
2616 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2618 /* Clean up. */
2619 free (new_reg_base_value);
2620 new_reg_base_value = 0;
2621 free (reg_seen);
2622 reg_seen = 0;
2623 timevar_pop (TV_ALIAS_ANALYSIS);
2626 void
2627 end_alias_analysis (void)
2629 old_reg_base_value = reg_base_value;
2630 ggc_free (reg_known_value);
2631 reg_known_value = 0;
2632 reg_known_value_size = 0;
2633 free (reg_known_equiv_p);
2634 reg_known_equiv_p = 0;
2637 #include "gt-alias.h"