[gcc]
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob98a44aa32e19f62a3174215c83b9072873659f72
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* Definitions for the object file format. These are set at
34 compile-time. */
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
98 #ifdef HAVE_AS_DCI
99 #define ASM_CPU_476_SPEC "-m476"
100 #else
101 #define ASM_CPU_476_SPEC "-mpower4"
102 #endif
104 /* Common ASM definitions used by ASM_SPEC among the various targets for
105 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
106 provide the default assembler options if the user uses -mcpu=native, so if
107 you make changes here, make them also there. */
108 #define ASM_CPU_SPEC \
109 "%{!mcpu*: \
110 %{mpowerpc64*: -mppc64} \
111 %{!mpowerpc64*: %(asm_default)}} \
112 %{mcpu=native: %(asm_cpu_native)} \
113 %{mcpu=cell: -mcell} \
114 %{mcpu=power3: -mppc64} \
115 %{mcpu=power4: -mpower4} \
116 %{mcpu=power5: %(asm_cpu_power5)} \
117 %{mcpu=power5+: %(asm_cpu_power5)} \
118 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
119 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
120 %{mcpu=power7: %(asm_cpu_power7)} \
121 %{mcpu=power8: %(asm_cpu_power8)} \
122 %{mcpu=a2: -ma2} \
123 %{mcpu=powerpc: -mppc} \
124 %{mcpu=rs64a: -mppc64} \
125 %{mcpu=401: -mppc} \
126 %{mcpu=403: -m403} \
127 %{mcpu=405: -m405} \
128 %{mcpu=405fp: -m405} \
129 %{mcpu=440: -m440} \
130 %{mcpu=440fp: -m440} \
131 %{mcpu=464: -m440} \
132 %{mcpu=464fp: -m440} \
133 %{mcpu=476: %(asm_cpu_476)} \
134 %{mcpu=476fp: %(asm_cpu_476)} \
135 %{mcpu=505: -mppc} \
136 %{mcpu=601: -m601} \
137 %{mcpu=602: -mppc} \
138 %{mcpu=603: -mppc} \
139 %{mcpu=603e: -mppc} \
140 %{mcpu=ec603e: -mppc} \
141 %{mcpu=604: -mppc} \
142 %{mcpu=604e: -mppc} \
143 %{mcpu=620: -mppc64} \
144 %{mcpu=630: -mppc64} \
145 %{mcpu=740: -mppc} \
146 %{mcpu=750: -mppc} \
147 %{mcpu=G3: -mppc} \
148 %{mcpu=7400: -mppc -maltivec} \
149 %{mcpu=7450: -mppc -maltivec} \
150 %{mcpu=G4: -mppc -maltivec} \
151 %{mcpu=801: -mppc} \
152 %{mcpu=821: -mppc} \
153 %{mcpu=823: -mppc} \
154 %{mcpu=860: -mppc} \
155 %{mcpu=970: -mpower4 -maltivec} \
156 %{mcpu=G5: -mpower4 -maltivec} \
157 %{mcpu=8540: -me500} \
158 %{mcpu=8548: -me500} \
159 %{mcpu=e300c2: -me300} \
160 %{mcpu=e300c3: -me300} \
161 %{mcpu=e500mc: -me500mc} \
162 %{mcpu=e500mc64: -me500mc64} \
163 %{mcpu=e5500: -me5500} \
164 %{mcpu=e6500: -me6500} \
165 %{maltivec: -maltivec} \
166 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
167 %{mpower8-vector|mcrypto|mdirect-move: %{!mcpu*: %(asm_cpu_power8)}} \
168 -many"
170 #define CPP_DEFAULT_SPEC ""
172 #define ASM_DEFAULT_SPEC ""
174 /* This macro defines names of additional specifications to put in the specs
175 that can be used in various specifications like CC1_SPEC. Its definition
176 is an initializer with a subgrouping for each command option.
178 Each subgrouping contains a string constant, that defines the
179 specification name, and a string constant that used by the GCC driver
180 program.
182 Do not define this macro if it does not need to do anything. */
184 #define SUBTARGET_EXTRA_SPECS
186 #define EXTRA_SPECS \
187 { "cpp_default", CPP_DEFAULT_SPEC }, \
188 { "asm_cpu", ASM_CPU_SPEC }, \
189 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
190 { "asm_default", ASM_DEFAULT_SPEC }, \
191 { "cc1_cpu", CC1_CPU_SPEC }, \
192 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
193 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
194 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
195 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
196 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
197 SUBTARGET_EXTRA_SPECS
199 /* -mcpu=native handling only makes sense with compiler running on
200 an PowerPC chip. If changing this condition, also change
201 the condition in driver-rs6000.c. */
202 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203 /* In driver-rs6000.c. */
204 extern const char *host_detect_local_cpu (int argc, const char **argv);
205 #define EXTRA_SPEC_FUNCTIONS \
206 { "local_cpu_detect", host_detect_local_cpu },
207 #define HAVE_LOCAL_CPU_DETECT
208 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
210 #else
211 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212 #endif
214 #ifndef CC1_CPU_SPEC
215 #ifdef HAVE_LOCAL_CPU_DETECT
216 #define CC1_CPU_SPEC \
217 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219 #else
220 #define CC1_CPU_SPEC ""
221 #endif
222 #endif
224 /* Architecture type. */
226 /* Define TARGET_MFCRF if the target assembler does not support the
227 optional field operand for mfcr. */
229 #ifndef HAVE_AS_MFCRF
230 #undef TARGET_MFCRF
231 #define TARGET_MFCRF 0
232 #endif
234 /* Define TARGET_POPCNTB if the target assembler does not support the
235 popcount byte instruction. */
237 #ifndef HAVE_AS_POPCNTB
238 #undef TARGET_POPCNTB
239 #define TARGET_POPCNTB 0
240 #endif
242 /* Define TARGET_FPRND if the target assembler does not support the
243 fp rounding instructions. */
245 #ifndef HAVE_AS_FPRND
246 #undef TARGET_FPRND
247 #define TARGET_FPRND 0
248 #endif
250 /* Define TARGET_CMPB if the target assembler does not support the
251 cmpb instruction. */
253 #ifndef HAVE_AS_CMPB
254 #undef TARGET_CMPB
255 #define TARGET_CMPB 0
256 #endif
258 /* Define TARGET_MFPGPR if the target assembler does not support the
259 mffpr and mftgpr instructions. */
261 #ifndef HAVE_AS_MFPGPR
262 #undef TARGET_MFPGPR
263 #define TARGET_MFPGPR 0
264 #endif
266 /* Define TARGET_DFP if the target assembler does not support decimal
267 floating point instructions. */
268 #ifndef HAVE_AS_DFP
269 #undef TARGET_DFP
270 #define TARGET_DFP 0
271 #endif
273 /* Define TARGET_POPCNTD if the target assembler does not support the
274 popcount word and double word instructions. */
276 #ifndef HAVE_AS_POPCNTD
277 #undef TARGET_POPCNTD
278 #define TARGET_POPCNTD 0
279 #endif
281 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
282 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
283 instructions. */
285 #ifndef HAVE_AS_POWER8
286 #undef TARGET_DIRECT_MOVE
287 #undef TARGET_CRYPTO
288 #undef TARGET_P8_VECTOR
289 #define TARGET_DIRECT_MOVE 0
290 #define TARGET_CRYPTO 0
291 #define TARGET_P8_VECTOR 0
292 #endif
294 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
295 not, generate the lwsync code as an integer constant. */
296 #ifdef HAVE_AS_LWSYNC
297 #define TARGET_LWSYNC_INSTRUCTION 1
298 #else
299 #define TARGET_LWSYNC_INSTRUCTION 0
300 #endif
302 /* Define TARGET_TLS_MARKERS if the target assembler does not support
303 arg markers for __tls_get_addr calls. */
304 #ifndef HAVE_AS_TLS_MARKERS
305 #undef TARGET_TLS_MARKERS
306 #define TARGET_TLS_MARKERS 0
307 #else
308 #define TARGET_TLS_MARKERS tls_markers
309 #endif
311 #ifndef TARGET_SECURE_PLT
312 #define TARGET_SECURE_PLT 0
313 #endif
315 #ifndef TARGET_CMODEL
316 #define TARGET_CMODEL CMODEL_SMALL
317 #endif
319 #define TARGET_32BIT (! TARGET_64BIT)
321 #ifndef HAVE_AS_TLS
322 #define HAVE_AS_TLS 0
323 #endif
325 #ifndef TARGET_LINK_STACK
326 #define TARGET_LINK_STACK 0
327 #endif
329 #ifndef SET_TARGET_LINK_STACK
330 #define SET_TARGET_LINK_STACK(X) do { } while (0)
331 #endif
333 /* Return 1 for a symbol ref for a thread-local storage symbol. */
334 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
335 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
337 #ifdef IN_LIBGCC2
338 /* For libgcc2 we make sure this is a compile time constant */
339 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
340 #undef TARGET_POWERPC64
341 #define TARGET_POWERPC64 1
342 #else
343 #undef TARGET_POWERPC64
344 #define TARGET_POWERPC64 0
345 #endif
346 #else
347 /* The option machinery will define this. */
348 #endif
350 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
352 /* FPU operations supported.
353 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
354 also test TARGET_HARD_FLOAT. */
355 #define TARGET_SINGLE_FLOAT 1
356 #define TARGET_DOUBLE_FLOAT 1
357 #define TARGET_SINGLE_FPU 0
358 #define TARGET_SIMPLE_FPU 0
359 #define TARGET_XILINX_FPU 0
361 /* Recast the processor type to the cpu attribute. */
362 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
364 /* Define generic processor types based upon current deployment. */
365 #define PROCESSOR_COMMON PROCESSOR_PPC601
366 #define PROCESSOR_POWERPC PROCESSOR_PPC604
367 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
369 /* Define the default processor. This is overridden by other tm.h files. */
370 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
371 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
373 /* Specify the dialect of assembler to use. Only new mnemonics are supported
374 starting with GCC 4.8, i.e. just one dialect, but for backwards
375 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
376 defined. */
377 #define ASSEMBLER_DIALECT 1
379 /* Debug support */
380 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
381 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
382 #define MASK_DEBUG_REG 0x04 /* debug register handling */
383 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
384 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
385 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
386 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
387 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
388 | MASK_DEBUG_ARG \
389 | MASK_DEBUG_REG \
390 | MASK_DEBUG_ADDR \
391 | MASK_DEBUG_COST \
392 | MASK_DEBUG_TARGET \
393 | MASK_DEBUG_BUILTIN)
395 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
396 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
397 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
398 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
399 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
400 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
401 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
403 /* Describe the vector unit used for arithmetic operations. */
404 extern enum rs6000_vector rs6000_vector_unit[];
406 #define VECTOR_UNIT_NONE_P(MODE) \
407 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
409 #define VECTOR_UNIT_VSX_P(MODE) \
410 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
412 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
413 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
415 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
416 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
418 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
419 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
420 (int)VECTOR_VSX, \
421 (int)VECTOR_P8_VECTOR))
423 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
424 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
425 compatible, so allow it as well, rather than changing all of the uses of the
426 macro. */
427 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
428 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
429 (int)VECTOR_ALTIVEC, \
430 (int)VECTOR_P8_VECTOR))
432 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
433 same unit as the vector unit we are using, but we may want to migrate to
434 using VSX style loads even for types handled by altivec. */
435 extern enum rs6000_vector rs6000_vector_mem[];
437 #define VECTOR_MEM_NONE_P(MODE) \
438 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
440 #define VECTOR_MEM_VSX_P(MODE) \
441 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
443 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
444 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
446 #define VECTOR_MEM_ALTIVEC_P(MODE) \
447 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
449 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
450 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
451 (int)VECTOR_VSX, \
452 (int)VECTOR_P8_VECTOR))
454 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
455 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
456 (int)VECTOR_ALTIVEC, \
457 (int)VECTOR_P8_VECTOR))
459 /* Return the alignment of a given vector type, which is set based on the
460 vector unit use. VSX for instance can load 32 or 64 bit aligned words
461 without problems, while Altivec requires 128-bit aligned vectors. */
462 extern int rs6000_vector_align[];
464 #define VECTOR_ALIGN(MODE) \
465 ((rs6000_vector_align[(MODE)] != 0) \
466 ? rs6000_vector_align[(MODE)] \
467 : (int)GET_MODE_BITSIZE ((MODE)))
469 /* Alignment options for fields in structures for sub-targets following
470 AIX-like ABI.
471 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
472 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
474 Override the macro definitions when compiling libobjc to avoid undefined
475 reference to rs6000_alignment_flags due to library's use of GCC alignment
476 macros which use the macros below. */
478 #ifndef IN_TARGET_LIBS
479 #define MASK_ALIGN_POWER 0x00000000
480 #define MASK_ALIGN_NATURAL 0x00000001
481 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
482 #else
483 #define TARGET_ALIGN_NATURAL 0
484 #endif
486 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
487 #define TARGET_IEEEQUAD rs6000_ieeequad
488 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
489 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
491 #define TARGET_SPE_ABI 0
492 #define TARGET_SPE 0
493 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
494 #define TARGET_FPRS 1
495 #define TARGET_E500_SINGLE 0
496 #define TARGET_E500_DOUBLE 0
497 #define CHECK_E500_OPTIONS do { } while (0)
499 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
500 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
501 XILINX. */
502 #define TARGET_FCFID (TARGET_POWERPC64 \
503 || TARGET_PPC_GPOPT /* 970/power4 */ \
504 || TARGET_POPCNTB /* ISA 2.02 */ \
505 || TARGET_CMPB /* ISA 2.05 */ \
506 || TARGET_POPCNTD /* ISA 2.06 */ \
507 || TARGET_XILINX_FPU)
509 #define TARGET_FCTIDZ TARGET_FCFID
510 #define TARGET_STFIWX TARGET_PPC_GFXOPT
511 #define TARGET_LFIWAX TARGET_CMPB
512 #define TARGET_LFIWZX TARGET_POPCNTD
513 #define TARGET_FCFIDS TARGET_POPCNTD
514 #define TARGET_FCFIDU TARGET_POPCNTD
515 #define TARGET_FCFIDUS TARGET_POPCNTD
516 #define TARGET_FCTIDUZ TARGET_POPCNTD
517 #define TARGET_FCTIWUZ TARGET_POPCNTD
519 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
520 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
522 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
523 in power7, so conditionalize them on p8 features. TImode syncs need quad
524 memory support. */
525 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY || TARGET_DIRECT_MOVE)
526 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY
528 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
529 to allocate the SDmode stack slot to get the value into the proper location
530 in the register. */
531 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
533 /* In switching from using target_flags to using rs6000_isa_flags, the options
534 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
535 OPTION_MASK_<xxx> back into MASK_<xxx>. */
536 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
537 #define MASK_CMPB OPTION_MASK_CMPB
538 #define MASK_CRYPTO OPTION_MASK_CRYPTO
539 #define MASK_DFP OPTION_MASK_DFP
540 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
541 #define MASK_DLMZB OPTION_MASK_DLMZB
542 #define MASK_EABI OPTION_MASK_EABI
543 #define MASK_FPRND OPTION_MASK_FPRND
544 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
545 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
546 #define MASK_ISEL OPTION_MASK_ISEL
547 #define MASK_MFCRF OPTION_MASK_MFCRF
548 #define MASK_MFPGPR OPTION_MASK_MFPGPR
549 #define MASK_MULHW OPTION_MASK_MULHW
550 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
551 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
552 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
553 #define MASK_POPCNTB OPTION_MASK_POPCNTB
554 #define MASK_POPCNTD OPTION_MASK_POPCNTD
555 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
556 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
557 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
558 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
559 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
560 #define MASK_STRING OPTION_MASK_STRING
561 #define MASK_UPDATE OPTION_MASK_UPDATE
562 #define MASK_VSX OPTION_MASK_VSX
563 #define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
565 #ifndef IN_LIBGCC2
566 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
567 #endif
569 #ifdef TARGET_64BIT
570 #define MASK_64BIT OPTION_MASK_64BIT
571 #endif
573 #ifdef TARGET_RELOCATABLE
574 #define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
575 #endif
577 #ifdef TARGET_LITTLE_ENDIAN
578 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
579 #endif
581 #ifdef TARGET_MINIMAL_TOC
582 #define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
583 #endif
585 #ifdef TARGET_REGNAMES
586 #define MASK_REGNAMES OPTION_MASK_REGNAMES
587 #endif
589 #ifdef TARGET_PROTOTYPE
590 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
591 #endif
593 /* Explicit ISA options that were set. */
594 #define rs6000_isa_flags_explicit global_options_set.x_rs6000_isa_flags
596 /* For power systems, we want to enable Altivec and VSX builtins even if the
597 user did not use -maltivec or -mvsx to allow the builtins to be used inside
598 of #pragma GCC target or the target attribute to change the code level for a
599 given system. The SPE and Paired builtins are only enabled if you configure
600 the compiler for those builtins, and those machines don't support altivec or
601 VSX. */
603 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
604 && ((TARGET_POWERPC64 \
605 || TARGET_PPC_GPOPT /* 970/power4 */ \
606 || TARGET_POPCNTB /* ISA 2.02 */ \
607 || TARGET_CMPB /* ISA 2.05 */ \
608 || TARGET_POPCNTD /* ISA 2.06 */ \
609 || TARGET_ALTIVEC \
610 || TARGET_VSX)))
612 /* E500 cores only support plain "sync", not lwsync. */
613 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
614 || rs6000_cpu == PROCESSOR_PPC8548)
617 /* Which machine supports the various reciprocal estimate instructions. */
618 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
619 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
621 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
622 && TARGET_DOUBLE_FLOAT \
623 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
625 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
626 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
628 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
629 && TARGET_DOUBLE_FLOAT \
630 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
632 /* Whether the various reciprocal divide/square root estimate instructions
633 exist, and whether we should automatically generate code for the instruction
634 by default. */
635 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
636 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
637 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
638 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
640 extern unsigned char rs6000_recip_bits[];
642 #define RS6000_RECIP_HAVE_RE_P(MODE) \
643 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
645 #define RS6000_RECIP_AUTO_RE_P(MODE) \
646 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
648 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
649 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
651 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
652 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
654 /* The default CPU for TARGET_OPTION_OVERRIDE. */
655 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
657 /* Target pragma. */
658 #define REGISTER_TARGET_PRAGMAS() do { \
659 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
660 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
661 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
662 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
663 } while (0)
665 /* Target #defines. */
666 #define TARGET_CPU_CPP_BUILTINS() \
667 rs6000_cpu_cpp_builtins (pfile)
669 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
670 we're compiling for. Some configurations may need to override it. */
671 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
672 do \
674 if (BYTES_BIG_ENDIAN) \
676 builtin_define ("__BIG_ENDIAN__"); \
677 builtin_define ("_BIG_ENDIAN"); \
678 builtin_assert ("machine=bigendian"); \
680 else \
682 builtin_define ("__LITTLE_ENDIAN__"); \
683 builtin_define ("_LITTLE_ENDIAN"); \
684 builtin_assert ("machine=littleendian"); \
687 while (0)
689 /* Target machine storage layout. */
691 /* Define this macro if it is advisable to hold scalars in registers
692 in a wider mode than that declared by the program. In such cases,
693 the value is constrained to be within the bounds of the declared
694 type, but kept valid in the wider mode. The signedness of the
695 extension may differ from that of the type. */
697 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
698 if (GET_MODE_CLASS (MODE) == MODE_INT \
699 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
700 (MODE) = TARGET_32BIT ? SImode : DImode;
702 /* Define this if most significant bit is lowest numbered
703 in instructions that operate on numbered bit-fields. */
704 /* That is true on RS/6000. */
705 #define BITS_BIG_ENDIAN 1
707 /* Define this if most significant byte of a word is the lowest numbered. */
708 /* That is true on RS/6000. */
709 #define BYTES_BIG_ENDIAN 1
711 /* Define this if most significant word of a multiword number is lowest
712 numbered.
714 For RS/6000 we can decide arbitrarily since there are no machine
715 instructions for them. Might as well be consistent with bits and bytes. */
716 #define WORDS_BIG_ENDIAN 1
718 /* This says that for the IBM long double the larger magnitude double
719 comes first. It's really a two element double array, and arrays
720 don't index differently between little- and big-endian. */
721 #define LONG_DOUBLE_LARGE_FIRST 1
723 #define MAX_BITS_PER_WORD 64
725 /* Width of a word, in units (bytes). */
726 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
727 #ifdef IN_LIBGCC2
728 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
729 #else
730 #define MIN_UNITS_PER_WORD 4
731 #endif
732 #define UNITS_PER_FP_WORD 8
733 #define UNITS_PER_ALTIVEC_WORD 16
734 #define UNITS_PER_VSX_WORD 16
735 #define UNITS_PER_SPE_WORD 8
736 #define UNITS_PER_PAIRED_WORD 8
738 /* Type used for ptrdiff_t, as a string used in a declaration. */
739 #define PTRDIFF_TYPE "int"
741 /* Type used for size_t, as a string used in a declaration. */
742 #define SIZE_TYPE "long unsigned int"
744 /* Type used for wchar_t, as a string used in a declaration. */
745 #define WCHAR_TYPE "short unsigned int"
747 /* Width of wchar_t in bits. */
748 #define WCHAR_TYPE_SIZE 16
750 /* A C expression for the size in bits of the type `short' on the
751 target machine. If you don't define this, the default is half a
752 word. (If this would be less than one storage unit, it is
753 rounded up to one unit.) */
754 #define SHORT_TYPE_SIZE 16
756 /* A C expression for the size in bits of the type `int' on the
757 target machine. If you don't define this, the default is one
758 word. */
759 #define INT_TYPE_SIZE 32
761 /* A C expression for the size in bits of the type `long' on the
762 target machine. If you don't define this, the default is one
763 word. */
764 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
766 /* A C expression for the size in bits of the type `long long' on the
767 target machine. If you don't define this, the default is two
768 words. */
769 #define LONG_LONG_TYPE_SIZE 64
771 /* A C expression for the size in bits of the type `float' on the
772 target machine. If you don't define this, the default is one
773 word. */
774 #define FLOAT_TYPE_SIZE 32
776 /* A C expression for the size in bits of the type `double' on the
777 target machine. If you don't define this, the default is two
778 words. */
779 #define DOUBLE_TYPE_SIZE 64
781 /* A C expression for the size in bits of the type `long double' on
782 the target machine. If you don't define this, the default is two
783 words. */
784 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
786 /* Define this to set long double type size to use in libgcc2.c, which can
787 not depend on target_flags. */
788 #ifdef __LONG_DOUBLE_128__
789 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
790 #else
791 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
792 #endif
794 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
795 #define WIDEST_HARDWARE_FP_SIZE 64
797 /* Width in bits of a pointer.
798 See also the macro `Pmode' defined below. */
799 extern unsigned rs6000_pointer_size;
800 #define POINTER_SIZE rs6000_pointer_size
802 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
803 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
805 /* Boundary (in *bits*) on which stack pointer should be aligned. */
806 #define STACK_BOUNDARY \
807 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
808 ? 64 : 128)
810 /* Allocation boundary (in *bits*) for the code of a function. */
811 #define FUNCTION_BOUNDARY 32
813 /* No data type wants to be aligned rounder than this. */
814 #define BIGGEST_ALIGNMENT 128
816 /* Alignment of field after `int : 0' in a structure. */
817 #define EMPTY_FIELD_BOUNDARY 32
819 /* Every structure's size must be a multiple of this. */
820 #define STRUCTURE_SIZE_BOUNDARY 8
822 /* A bit-field declared as `int' forces `int' alignment for the struct. */
823 #define PCC_BITFIELD_TYPE_MATTERS 1
825 enum data_align { align_abi, align_opt, align_both };
827 /* A C expression to compute the alignment for a variables in the
828 local store. TYPE is the data type, and ALIGN is the alignment
829 that the object would ordinarily have. */
830 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
831 rs6000_data_alignment (TYPE, ALIGN, align_both)
833 /* Make strings word-aligned so strcpy from constants will be faster. */
834 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
835 (TREE_CODE (EXP) == STRING_CST \
836 && (STRICT_ALIGNMENT || !optimize_size) \
837 && (ALIGN) < BITS_PER_WORD \
838 ? BITS_PER_WORD \
839 : (ALIGN))
841 /* Make arrays of chars word-aligned for the same reasons. */
842 #define DATA_ALIGNMENT(TYPE, ALIGN) \
843 rs6000_data_alignment (TYPE, ALIGN, align_opt)
845 /* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
846 64 bits. */
847 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
848 rs6000_data_alignment (TYPE, ALIGN, align_abi)
850 /* Nonzero if move instructions will actually fail to work
851 when given unaligned data. */
852 #define STRICT_ALIGNMENT 0
854 /* Define this macro to be the value 1 if unaligned accesses have a cost
855 many times greater than aligned accesses, for example if they are
856 emulated in a trap handler. */
857 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
858 memory instructions trap on unaligned accesses; VSX memory instructions are
859 aligned to 4 or 8 bytes. */
860 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
861 (STRICT_ALIGNMENT \
862 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
863 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
864 && (ALIGN) < 32) \
865 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
868 /* Standard register usage. */
870 /* Number of actual hardware registers.
871 The hardware registers are assigned numbers for the compiler
872 from 0 to just below FIRST_PSEUDO_REGISTER.
873 All registers that the compiler knows about must be given numbers,
874 even those that are not normally considered general registers.
876 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
877 a count register, a link register, and 8 condition register fields,
878 which we view here as separate registers. AltiVec adds 32 vector
879 registers and a VRsave register.
881 In addition, the difference between the frame and argument pointers is
882 a function of the number of registers saved, so we need to have a
883 register for AP that will later be eliminated in favor of SP or FP.
884 This is a normal register, but it is fixed.
886 We also create a pseudo register for float/int conversions, that will
887 really represent the memory location used. It is represented here as
888 a register, in order to work around problems in allocating stack storage
889 in inline functions.
891 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
892 pointer, which is eventually eliminated in favor of SP or FP. */
894 #define FIRST_PSEUDO_REGISTER 114
896 /* This must be included for pre gcc 3.0 glibc compatibility. */
897 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
899 /* Add 32 dwarf columns for synthetic SPE registers. */
900 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
902 /* The SPE has an additional 32 synthetic registers, with DWARF debug
903 info numbering for these registers starting at 1200. While eh_frame
904 register numbering need not be the same as the debug info numbering,
905 we choose to number these regs for eh_frame at 1200 too. This allows
906 future versions of the rs6000 backend to add hard registers and
907 continue to use the gcc hard register numbering for eh_frame. If the
908 extra SPE registers in eh_frame were numbered starting from the
909 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
910 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
911 avoid invalidating older SPE eh_frame info.
913 We must map them here to avoid huge unwinder tables mostly consisting
914 of unused space. */
915 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
916 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
918 /* Use standard DWARF numbering for DWARF debugging information. */
919 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
921 /* Use gcc hard register numbering for eh_frame. */
922 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
924 /* Map register numbers held in the call frame info that gcc has
925 collected using DWARF_FRAME_REGNUM to those that should be output in
926 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
927 for .eh_frame, but use the numbers mandated by the various ABIs for
928 .debug_frame. rs6000_emit_prologue has translated any combination of
929 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
930 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
931 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
932 ((FOR_EH) ? (REGNO) \
933 : (REGNO) == CR2_REGNO ? 64 \
934 : DBX_REGISTER_NUMBER (REGNO))
936 /* 1 for registers that have pervasive standard uses
937 and are not available for the register allocator.
939 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
940 as a local register; for all other OS's r2 is the TOC pointer.
942 cr5 is not supposed to be used.
944 On System V implementations, r13 is fixed and not available for use. */
946 #define FIXED_REGISTERS \
947 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
948 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
949 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
950 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
951 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
952 /* AltiVec registers. */ \
953 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
954 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
955 1, 1 \
956 , 1, 1, 1 \
959 /* 1 for registers not available across function calls.
960 These must include the FIXED_REGISTERS and also any
961 registers that can be used without being saved.
962 The latter must include the registers where values are returned
963 and the register where structure-value addresses are passed.
964 Aside from that, you can include as many other registers as you like. */
966 #define CALL_USED_REGISTERS \
967 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
968 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
969 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
970 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
971 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
972 /* AltiVec registers. */ \
973 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
974 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
975 1, 1 \
976 , 1, 1, 1 \
979 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
980 the entire set of `FIXED_REGISTERS' be included.
981 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
982 This macro is optional. If not specified, it defaults to the value
983 of `CALL_USED_REGISTERS'. */
985 #define CALL_REALLY_USED_REGISTERS \
986 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
987 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
988 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
989 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
990 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
991 /* AltiVec registers. */ \
992 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
993 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
994 0, 0 \
995 , 0, 0, 0 \
998 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1000 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1001 #define FIRST_SAVED_FP_REGNO (14+32)
1002 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1004 /* List the order in which to allocate registers. Each register must be
1005 listed once, even those in FIXED_REGISTERS.
1007 We allocate in the following order:
1008 fp0 (not saved or used for anything)
1009 fp13 - fp2 (not saved; incoming fp arg registers)
1010 fp1 (not saved; return value)
1011 fp31 - fp14 (saved; order given to save least number)
1012 cr7, cr6 (not saved or special)
1013 cr1 (not saved, but used for FP operations)
1014 cr0 (not saved, but used for arithmetic operations)
1015 cr4, cr3, cr2 (saved)
1016 r9 (not saved; best for TImode)
1017 r10, r8-r4 (not saved; highest first for less conflict with params)
1018 r3 (not saved; return value register)
1019 r11 (not saved; later alloc to help shrink-wrap)
1020 r0 (not saved; cannot be base reg)
1021 r31 - r13 (saved; order given to save least number)
1022 r12 (not saved; if used for DImode or DFmode would use r13)
1023 ctr (not saved; when we have the choice ctr is better)
1024 lr (saved)
1025 cr5, r1, r2, ap, ca (fixed)
1026 v0 - v1 (not saved or used for anything)
1027 v13 - v3 (not saved; incoming vector arg registers)
1028 v2 (not saved; incoming vector arg reg; return value)
1029 v19 - v14 (not saved or used for anything)
1030 v31 - v20 (saved; order given to save least number)
1031 vrsave, vscr (fixed)
1032 spe_acc, spefscr (fixed)
1033 sfp (fixed)
1036 #if FIXED_R2 == 1
1037 #define MAYBE_R2_AVAILABLE
1038 #define MAYBE_R2_FIXED 2,
1039 #else
1040 #define MAYBE_R2_AVAILABLE 2,
1041 #define MAYBE_R2_FIXED
1042 #endif
1044 #if FIXED_R13 == 1
1045 #define EARLY_R12 12,
1046 #define LATE_R12
1047 #else
1048 #define EARLY_R12
1049 #define LATE_R12 12,
1050 #endif
1052 #define REG_ALLOC_ORDER \
1053 {32, \
1054 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1055 /* not use fr14 which is a saved register. */ \
1056 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1057 33, \
1058 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1059 50, 49, 48, 47, 46, \
1060 75, 74, 69, 68, 72, 71, 70, \
1061 MAYBE_R2_AVAILABLE \
1062 9, 10, 8, 7, 6, 5, 4, \
1063 3, EARLY_R12 11, 0, \
1064 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1065 18, 17, 16, 15, 14, 13, LATE_R12 \
1066 66, 65, \
1067 73, 1, MAYBE_R2_FIXED 67, 76, \
1068 /* AltiVec registers. */ \
1069 77, 78, \
1070 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1071 79, \
1072 96, 95, 94, 93, 92, 91, \
1073 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1074 109, 110, \
1075 111, 112, 113 \
1078 /* True if register is floating-point. */
1079 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1081 /* True if register is a condition register. */
1082 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1084 /* True if register is a condition register, but not cr0. */
1085 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1087 /* True if register is an integer register. */
1088 #define INT_REGNO_P(N) \
1089 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1091 /* SPE SIMD registers are just the GPRs. */
1092 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1094 /* PAIRED SIMD registers are just the FPRs. */
1095 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1097 /* True if register is the CA register. */
1098 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1100 /* True if register is an AltiVec register. */
1101 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1103 /* True if register is a VSX register. */
1104 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1106 /* Alternate name for any vector register supporting floating point, no matter
1107 which instruction set(s) are available. */
1108 #define VFLOAT_REGNO_P(N) \
1109 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1111 /* Alternate name for any vector register supporting integer, no matter which
1112 instruction set(s) are available. */
1113 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1115 /* Alternate name for any vector register supporting logical operations, no
1116 matter which instruction set(s) are available. For 64-bit mode, we also
1117 allow logical operations in the GPRS. This is to allow atomic quad word
1118 builtins not to need the VSX registers for lqarx/stqcx. It also helps with
1119 __int128_t arguments that are passed in GPRs. */
1120 #define VLOGICAL_REGNO_P(N) \
1121 (ALTIVEC_REGNO_P (N) \
1122 || (TARGET_VSX && FP_REGNO_P (N)) \
1123 || (TARGET_VSX && TARGET_POWERPC64 && INT_REGNO_P (N)))
1125 /* Return number of consecutive hard regs needed starting at reg REGNO
1126 to hold something of mode MODE. */
1128 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1130 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1131 enough space to account for vectors in FP regs. However, TFmode/TDmode
1132 should not use VSX instructions to do a caller save. */
1133 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1134 (TARGET_VSX \
1135 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1136 && FP_REGNO_P (REGNO) \
1137 ? V2DFmode \
1138 : ((MODE) == TFmode && FP_REGNO_P (REGNO)) \
1139 ? DFmode \
1140 : ((MODE) == TDmode && FP_REGNO_P (REGNO)) \
1141 ? DImode \
1142 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1144 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1145 (((TARGET_32BIT && TARGET_POWERPC64 \
1146 && (GET_MODE_SIZE (MODE) > 4) \
1147 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1148 || (TARGET_VSX && FP_REGNO_P (REGNO) \
1149 && GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) \
1150 && ((MODE) != TFmode)))
1152 #define VSX_VECTOR_MODE(MODE) \
1153 ((MODE) == V4SFmode \
1154 || (MODE) == V2DFmode) \
1156 #define ALTIVEC_VECTOR_MODE(MODE) \
1157 ((MODE) == V16QImode \
1158 || (MODE) == V8HImode \
1159 || (MODE) == V4SFmode \
1160 || (MODE) == V4SImode)
1162 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1163 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1164 || (MODE) == V2DImode)
1166 #define SPE_VECTOR_MODE(MODE) \
1167 ((MODE) == V4HImode \
1168 || (MODE) == V2SFmode \
1169 || (MODE) == V1DImode \
1170 || (MODE) == V2SImode)
1172 #define PAIRED_VECTOR_MODE(MODE) \
1173 ((MODE) == V2SFmode)
1175 /* Value is TRUE if hard register REGNO can hold a value of
1176 machine-mode MODE. */
1177 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1178 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1180 /* Value is 1 if it is a good idea to tie two pseudo registers
1181 when one has mode MODE1 and one has mode MODE2.
1182 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1183 for any hard reg, then this must be 0 for correct output.
1185 PTImode cannot tie with other modes because PTImode is restricted to even
1186 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1187 57744). */
1188 #define MODES_TIEABLE_P(MODE1, MODE2) \
1189 ((MODE1) == PTImode \
1190 ? (MODE2) == PTImode \
1191 : (MODE2) == PTImode \
1192 ? 0 \
1193 : SCALAR_FLOAT_MODE_P (MODE1) \
1194 ? SCALAR_FLOAT_MODE_P (MODE2) \
1195 : SCALAR_FLOAT_MODE_P (MODE2) \
1196 ? 0 \
1197 : GET_MODE_CLASS (MODE1) == MODE_CC \
1198 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1199 : GET_MODE_CLASS (MODE2) == MODE_CC \
1200 ? 0 \
1201 : SPE_VECTOR_MODE (MODE1) \
1202 ? SPE_VECTOR_MODE (MODE2) \
1203 : SPE_VECTOR_MODE (MODE2) \
1204 ? 0 \
1205 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1206 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1207 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1208 ? 0 \
1209 : 1)
1211 /* Post-reload, we can't use any new AltiVec registers, as we already
1212 emitted the vrsave mask. */
1214 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1215 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1217 /* Specify the cost of a branch insn; roughly the number of extra insns that
1218 should be added to avoid a branch.
1220 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1221 unscheduled conditional branch. */
1223 #define BRANCH_COST(speed_p, predictable_p) 3
1225 /* Override BRANCH_COST heuristic which empirically produces worse
1226 performance for removing short circuiting from the logical ops. */
1228 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1230 /* A fixed register used at epilogue generation to address SPE registers
1231 with negative offsets. The 64-bit load/store instructions on the SPE
1232 only take positive offsets (and small ones at that), so we need to
1233 reserve a register for consing up negative offsets. */
1235 #define FIXED_SCRATCH 0
1237 /* Specify the registers used for certain standard purposes.
1238 The values of these macros are register numbers. */
1240 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1241 /* #define PC_REGNUM */
1243 /* Register to use for pushing function arguments. */
1244 #define STACK_POINTER_REGNUM 1
1246 /* Base register for access to local variables of the function. */
1247 #define HARD_FRAME_POINTER_REGNUM 31
1249 /* Base register for access to local variables of the function. */
1250 #define FRAME_POINTER_REGNUM 113
1252 /* Base register for access to arguments of the function. */
1253 #define ARG_POINTER_REGNUM 67
1255 /* Place to put static chain when calling a function that requires it. */
1256 #define STATIC_CHAIN_REGNUM 11
1259 /* Define the classes of registers for register constraints in the
1260 machine description. Also define ranges of constants.
1262 One of the classes must always be named ALL_REGS and include all hard regs.
1263 If there is more than one class, another class must be named NO_REGS
1264 and contain no registers.
1266 The name GENERAL_REGS must be the name of a class (or an alias for
1267 another name such as ALL_REGS). This is the class of registers
1268 that is allowed by "g" or "r" in a register constraint.
1269 Also, registers outside this class are allocated only when
1270 instructions express preferences for them.
1272 The classes must be numbered in nondecreasing order; that is,
1273 a larger-numbered class must never be contained completely
1274 in a smaller-numbered class.
1276 For any two classes, it is very desirable that there be another
1277 class that represents their union. */
1279 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1280 condition registers, plus three special registers, CTR, and the link
1281 register. AltiVec adds a vector register class. VSX registers overlap the
1282 FPR registers and the Altivec registers.
1284 However, r0 is special in that it cannot be used as a base register.
1285 So make a class for registers valid as base registers.
1287 Also, cr0 is the only condition code register that can be used in
1288 arithmetic insns, so make a separate class for it. */
1290 enum reg_class
1292 NO_REGS,
1293 BASE_REGS,
1294 GENERAL_REGS,
1295 FLOAT_REGS,
1296 ALTIVEC_REGS,
1297 VSX_REGS,
1298 VRSAVE_REGS,
1299 VSCR_REGS,
1300 SPE_ACC_REGS,
1301 SPEFSCR_REGS,
1302 NON_SPECIAL_REGS,
1303 LINK_REGS,
1304 CTR_REGS,
1305 LINK_OR_CTR_REGS,
1306 SPECIAL_REGS,
1307 SPEC_OR_GEN_REGS,
1308 CR0_REGS,
1309 CR_REGS,
1310 NON_FLOAT_REGS,
1311 CA_REGS,
1312 ALL_REGS,
1313 LIM_REG_CLASSES
1316 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1318 /* Give names of register classes as strings for dump file. */
1320 #define REG_CLASS_NAMES \
1322 "NO_REGS", \
1323 "BASE_REGS", \
1324 "GENERAL_REGS", \
1325 "FLOAT_REGS", \
1326 "ALTIVEC_REGS", \
1327 "VSX_REGS", \
1328 "VRSAVE_REGS", \
1329 "VSCR_REGS", \
1330 "SPE_ACC_REGS", \
1331 "SPEFSCR_REGS", \
1332 "NON_SPECIAL_REGS", \
1333 "LINK_REGS", \
1334 "CTR_REGS", \
1335 "LINK_OR_CTR_REGS", \
1336 "SPECIAL_REGS", \
1337 "SPEC_OR_GEN_REGS", \
1338 "CR0_REGS", \
1339 "CR_REGS", \
1340 "NON_FLOAT_REGS", \
1341 "CA_REGS", \
1342 "ALL_REGS" \
1345 /* Define which registers fit in which classes.
1346 This is an initializer for a vector of HARD_REG_SET
1347 of length N_REG_CLASSES. */
1349 #define REG_CLASS_CONTENTS \
1351 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1352 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1353 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1354 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1355 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1356 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
1357 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1358 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1359 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1360 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1361 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1362 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1363 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1364 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1365 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
1366 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1367 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1368 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1369 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
1370 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
1371 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0003ffff } /* ALL_REGS */ \
1374 /* The same information, inverted:
1375 Return the class number of the smallest class containing
1376 reg number REGNO. This could be a conditional expression
1377 or could index an array. */
1379 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1381 #if ENABLE_CHECKING
1382 #define REGNO_REG_CLASS(REGNO) \
1383 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1384 rs6000_regno_regclass[(REGNO)])
1386 #else
1387 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1388 #endif
1390 /* Register classes for various constraints that are based on the target
1391 switches. */
1392 enum r6000_reg_class_enum {
1393 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1394 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1395 RS6000_CONSTRAINT_v, /* Altivec registers */
1396 RS6000_CONSTRAINT_wa, /* Any VSX register */
1397 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1398 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1399 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1400 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1401 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1402 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1403 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1404 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1405 RS6000_CONSTRAINT_wv, /* Altivec register for power8 vector */
1406 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1407 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1408 RS6000_CONSTRAINT_MAX
1411 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1413 /* The class value for index registers, and the one for base regs. */
1414 #define INDEX_REG_CLASS GENERAL_REGS
1415 #define BASE_REG_CLASS BASE_REGS
1417 /* Return whether a given register class can hold VSX objects. */
1418 #define VSX_REG_CLASS_P(CLASS) \
1419 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1421 /* Given an rtx X being reloaded into a reg required to be
1422 in class CLASS, return the class of reg to actually use.
1423 In general this is just CLASS; but on some machines
1424 in some cases it is preferable to use a more restrictive class.
1426 On the RS/6000, we have to return NO_REGS when we want to reload a
1427 floating-point CONST_DOUBLE to force it to be copied to memory.
1429 We also don't want to reload integer values into floating-point
1430 registers if we can at all help it. In fact, this can
1431 cause reload to die, if it tries to generate a reload of CTR
1432 into a FP register and discovers it doesn't have the memory location
1433 required.
1435 ??? Would it be a good idea to have reload do the converse, that is
1436 try to reload floating modes into FP registers if possible?
1439 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1440 rs6000_preferred_reload_class_ptr (X, CLASS)
1442 /* Return the register class of a scratch register needed to copy IN into
1443 or out of a register in CLASS in MODE. If it can be done directly,
1444 NO_REGS is returned. */
1446 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1447 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1449 /* If we are copying between FP or AltiVec registers and anything
1450 else, we need a memory location. The exception is when we are
1451 targeting ppc64 and the move to/from fpr to gpr instructions
1452 are available.*/
1454 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1455 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1457 /* For cpus that cannot load/store SDmode values from the 64-bit
1458 FP registers without using a full 64-bit load/store, we need
1459 to allocate a full 64-bit stack slot for them. */
1461 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1462 rs6000_secondary_memory_needed_rtx (MODE)
1464 /* Return the maximum number of consecutive registers
1465 needed to represent mode MODE in a register of class CLASS.
1467 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1468 a single reg is enough for two words, unless we have VSX, where the FP
1469 registers can hold 128 bits. */
1470 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1472 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1474 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1475 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1477 /* Stack layout; function entry, exit and calling. */
1479 /* Define this if pushing a word on the stack
1480 makes the stack pointer a smaller address. */
1481 #define STACK_GROWS_DOWNWARD
1483 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1484 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1486 /* Define this to nonzero if the nominal address of the stack frame
1487 is at the high-address end of the local variables;
1488 that is, each additional local variable allocated
1489 goes at a more negative offset in the frame.
1491 On the RS/6000, we grow upwards, from the area after the outgoing
1492 arguments. */
1493 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 || flag_asan != 0)
1495 /* Size of the outgoing register save area */
1496 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1497 || DEFAULT_ABI == ABI_DARWIN) \
1498 ? (TARGET_64BIT ? 64 : 32) \
1499 : 0)
1501 /* Size of the fixed area on the stack */
1502 #define RS6000_SAVE_AREA \
1503 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1504 << (TARGET_64BIT ? 1 : 0))
1506 /* MEM representing address to save the TOC register */
1507 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1508 plus_constant (Pmode, stack_pointer_rtx, \
1509 (TARGET_32BIT ? 20 : 40)))
1511 /* Align an address */
1512 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1514 /* Offset within stack frame to start allocating local variables at.
1515 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1516 first local allocated. Otherwise, it is the offset to the BEGINNING
1517 of the first local allocated.
1519 On the RS/6000, the frame pointer is the same as the stack pointer,
1520 except for dynamic allocations. So we start after the fixed area and
1521 outgoing parameter area. */
1523 #define STARTING_FRAME_OFFSET \
1524 (FRAME_GROWS_DOWNWARD \
1525 ? 0 \
1526 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1527 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1528 + RS6000_SAVE_AREA))
1530 /* Offset from the stack pointer register to an item dynamically
1531 allocated on the stack, e.g., by `alloca'.
1533 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1534 length of the outgoing arguments. The default is correct for most
1535 machines. See `function.c' for details. */
1536 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1537 (RS6000_ALIGN (crtl->outgoing_args_size, \
1538 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1539 + (STACK_POINTER_OFFSET))
1541 /* If we generate an insn to push BYTES bytes,
1542 this says how many the stack pointer really advances by.
1543 On RS/6000, don't define this because there are no push insns. */
1544 /* #define PUSH_ROUNDING(BYTES) */
1546 /* Offset of first parameter from the argument pointer register value.
1547 On the RS/6000, we define the argument pointer to the start of the fixed
1548 area. */
1549 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1551 /* Offset from the argument pointer register value to the top of
1552 stack. This is different from FIRST_PARM_OFFSET because of the
1553 register save area. */
1554 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1556 /* Define this if stack space is still allocated for a parameter passed
1557 in a register. The value is the number of bytes allocated to this
1558 area. */
1559 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1561 /* Define this if the above stack space is to be considered part of the
1562 space allocated by the caller. */
1563 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1565 /* This is the difference between the logical top of stack and the actual sp.
1567 For the RS/6000, sp points past the fixed area. */
1568 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1570 /* Define this if the maximum size of all the outgoing args is to be
1571 accumulated and pushed during the prologue. The amount can be
1572 found in the variable crtl->outgoing_args_size. */
1573 #define ACCUMULATE_OUTGOING_ARGS 1
1575 /* Define how to find the value returned by a library function
1576 assuming the value has mode MODE. */
1578 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1580 /* DRAFT_V4_STRUCT_RET defaults off. */
1581 #define DRAFT_V4_STRUCT_RET 0
1583 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1584 #define DEFAULT_PCC_STRUCT_RETURN 0
1586 /* Mode of stack savearea.
1587 FUNCTION is VOIDmode because calling convention maintains SP.
1588 BLOCK needs Pmode for SP.
1589 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1590 #define STACK_SAVEAREA_MODE(LEVEL) \
1591 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1592 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1594 /* Minimum and maximum general purpose registers used to hold arguments. */
1595 #define GP_ARG_MIN_REG 3
1596 #define GP_ARG_MAX_REG 10
1597 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1599 /* Minimum and maximum floating point registers used to hold arguments. */
1600 #define FP_ARG_MIN_REG 33
1601 #define FP_ARG_AIX_MAX_REG 45
1602 #define FP_ARG_V4_MAX_REG 40
1603 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1604 || DEFAULT_ABI == ABI_DARWIN) \
1605 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1606 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1608 /* Minimum and maximum AltiVec registers used to hold arguments. */
1609 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1610 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1611 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1613 /* Return registers */
1614 #define GP_ARG_RETURN GP_ARG_MIN_REG
1615 #define FP_ARG_RETURN FP_ARG_MIN_REG
1616 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1618 /* Flags for the call/call_value rtl operations set up by function_arg */
1619 #define CALL_NORMAL 0x00000000 /* no special processing */
1620 /* Bits in 0x00000001 are unused. */
1621 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1622 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1623 #define CALL_LONG 0x00000008 /* always call indirect */
1624 #define CALL_LIBCALL 0x00000010 /* libcall */
1626 /* We don't have prologue and epilogue functions to save/restore
1627 everything for most ABIs. */
1628 #define WORLD_SAVE_P(INFO) 0
1630 /* 1 if N is a possible register number for a function value
1631 as seen by the caller.
1633 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1634 #define FUNCTION_VALUE_REGNO_P(N) \
1635 ((N) == GP_ARG_RETURN \
1636 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1637 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1639 /* 1 if N is a possible register number for function argument passing.
1640 On RS/6000, these are r3-r10 and fp1-fp13.
1641 On AltiVec, v2 - v13 are used for passing vectors. */
1642 #define FUNCTION_ARG_REGNO_P(N) \
1643 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1644 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1645 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1646 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1647 && TARGET_HARD_FLOAT && TARGET_FPRS))
1649 /* Define a data type for recording info about an argument list
1650 during the scan of that argument list. This data type should
1651 hold all necessary information about the function itself
1652 and about the args processed so far, enough to enable macros
1653 such as FUNCTION_ARG to determine where the next arg should go.
1655 On the RS/6000, this is a structure. The first element is the number of
1656 total argument words, the second is used to store the next
1657 floating-point register number, and the third says how many more args we
1658 have prototype types for.
1660 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1661 the next available GP register, `fregno' is the next available FP
1662 register, and `words' is the number of words used on the stack.
1664 The varargs/stdarg support requires that this structure's size
1665 be a multiple of sizeof(int). */
1667 typedef struct rs6000_args
1669 int words; /* # words used for passing GP registers */
1670 int fregno; /* next available FP register */
1671 int vregno; /* next available AltiVec register */
1672 int nargs_prototype; /* # args left in the current prototype */
1673 int prototype; /* Whether a prototype was defined */
1674 int stdarg; /* Whether function is a stdarg function. */
1675 int call_cookie; /* Do special things for this call */
1676 int sysv_gregno; /* next available GP register */
1677 int intoffset; /* running offset in struct (darwin64) */
1678 int use_stack; /* any part of struct on stack (darwin64) */
1679 int floats_in_gpr; /* count of SFmode floats taking up
1680 GPR space (darwin64) */
1681 int named; /* false for varargs params */
1682 int escapes; /* if function visible outside tu */
1683 } CUMULATIVE_ARGS;
1685 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1686 for a call to a function whose data type is FNTYPE.
1687 For a library call, FNTYPE is 0. */
1689 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1690 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1691 N_NAMED_ARGS, FNDECL, VOIDmode)
1693 /* Similar, but when scanning the definition of a procedure. We always
1694 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1696 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1697 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1698 1000, current_function_decl, VOIDmode)
1700 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1702 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1703 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1704 0, NULL_TREE, MODE)
1706 /* If defined, a C expression which determines whether, and in which
1707 direction, to pad out an argument with extra space. The value
1708 should be of type `enum direction': either `upward' to pad above
1709 the argument, `downward' to pad below, or `none' to inhibit
1710 padding. */
1712 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1714 #define PAD_VARARGS_DOWN \
1715 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1717 /* Output assembler code to FILE to increment profiler label # LABELNO
1718 for profiling a function entry. */
1720 #define FUNCTION_PROFILER(FILE, LABELNO) \
1721 output_function_profiler ((FILE), (LABELNO));
1723 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1724 the stack pointer does not matter. No definition is equivalent to
1725 always zero.
1727 On the RS/6000, this is nonzero because we can restore the stack from
1728 its backpointer, which we maintain. */
1729 #define EXIT_IGNORE_STACK 1
1731 /* Define this macro as a C expression that is nonzero for registers
1732 that are used by the epilogue or the return' pattern. The stack
1733 and frame pointer registers are already be assumed to be used as
1734 needed. */
1736 #define EPILOGUE_USES(REGNO) \
1737 ((reload_completed && (REGNO) == LR_REGNO) \
1738 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1739 || (crtl->calls_eh_return \
1740 && TARGET_AIX \
1741 && (REGNO) == 2))
1744 /* Length in units of the trampoline for entering a nested function. */
1746 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1748 /* Definitions for __builtin_return_address and __builtin_frame_address.
1749 __builtin_return_address (0) should give link register (65), enable
1750 this. */
1751 /* This should be uncommented, so that the link register is used, but
1752 currently this would result in unmatched insns and spilling fixed
1753 registers so we'll leave it for another day. When these problems are
1754 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1755 (mrs) */
1756 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1758 /* Number of bytes into the frame return addresses can be found. See
1759 rs6000_stack_info in rs6000.c for more information on how the different
1760 abi's store the return address. */
1761 #define RETURN_ADDRESS_OFFSET \
1762 ((DEFAULT_ABI == ABI_AIX \
1763 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1764 (DEFAULT_ABI == ABI_V4) ? 4 : \
1765 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1767 /* The current return address is in link register (65). The return address
1768 of anything farther back is accessed normally at an offset of 8 from the
1769 frame pointer. */
1770 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1771 (rs6000_return_addr (COUNT, FRAME))
1774 /* Definitions for register eliminations.
1776 We have two registers that can be eliminated on the RS/6000. First, the
1777 frame pointer register can often be eliminated in favor of the stack
1778 pointer register. Secondly, the argument pointer register can always be
1779 eliminated; it is replaced with either the stack or frame pointer.
1781 In addition, we use the elimination mechanism to see if r30 is needed
1782 Initially we assume that it isn't. If it is, we spill it. This is done
1783 by making it an eliminable register. We replace it with itself so that
1784 if it isn't needed, then existing uses won't be modified. */
1786 /* This is an array of structures. Each structure initializes one pair
1787 of eliminable registers. The "from" register number is given first,
1788 followed by "to". Eliminations of the same "from" register are listed
1789 in order of preference. */
1790 #define ELIMINABLE_REGS \
1791 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1792 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1793 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1794 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1795 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1796 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1798 /* Define the offset between two registers, one to be eliminated, and the other
1799 its replacement, at the start of a routine. */
1800 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1801 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1803 /* Addressing modes, and classification of registers for them. */
1805 #define HAVE_PRE_DECREMENT 1
1806 #define HAVE_PRE_INCREMENT 1
1807 #define HAVE_PRE_MODIFY_DISP 1
1808 #define HAVE_PRE_MODIFY_REG 1
1810 /* Macros to check register numbers against specific register classes. */
1812 /* These assume that REGNO is a hard or pseudo reg number.
1813 They give nonzero only if REGNO is a hard reg of the suitable class
1814 or a pseudo reg currently allocated to a suitable hard reg.
1815 Since they use reg_renumber, they are safe only once reg_renumber
1816 has been allocated, which happens in reginfo.c during register
1817 allocation. */
1819 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1820 ((REGNO) < FIRST_PSEUDO_REGISTER \
1821 ? (REGNO) <= 31 || (REGNO) == 67 \
1822 || (REGNO) == FRAME_POINTER_REGNUM \
1823 : (reg_renumber[REGNO] >= 0 \
1824 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1825 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1827 #define REGNO_OK_FOR_BASE_P(REGNO) \
1828 ((REGNO) < FIRST_PSEUDO_REGISTER \
1829 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1830 || (REGNO) == FRAME_POINTER_REGNUM \
1831 : (reg_renumber[REGNO] > 0 \
1832 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1833 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1835 /* Nonzero if X is a hard reg that can be used as an index
1836 or if it is a pseudo reg in the non-strict case. */
1837 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1838 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1839 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1841 /* Nonzero if X is a hard reg that can be used as a base reg
1842 or if it is a pseudo reg in the non-strict case. */
1843 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1844 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1845 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1848 /* Maximum number of registers that can appear in a valid memory address. */
1850 #define MAX_REGS_PER_ADDRESS 2
1852 /* Recognize any constant value that is a valid address. */
1854 #define CONSTANT_ADDRESS_P(X) \
1855 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1856 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1857 || GET_CODE (X) == HIGH)
1859 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1860 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1861 && EASY_VECTOR_15((n) >> 1) \
1862 && ((n) & 1) == 0)
1864 #define EASY_VECTOR_MSB(n,mode) \
1865 (((unsigned HOST_WIDE_INT)n) == \
1866 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1869 /* Try a machine-dependent way of reloading an illegitimate address
1870 operand. If we find one, push the reload and jump to WIN. This
1871 macro is used in only one place: `find_reloads_address' in reload.c.
1873 Implemented on rs6000 by rs6000_legitimize_reload_address.
1874 Note that (X) is evaluated twice; this is safe in current usage. */
1876 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1877 do { \
1878 int win; \
1879 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1880 (int)(TYPE), (IND_LEVELS), &win); \
1881 if ( win ) \
1882 goto WIN; \
1883 } while (0)
1885 #define FIND_BASE_TERM rs6000_find_base_term
1887 /* The register number of the register used to address a table of
1888 static data addresses in memory. In some cases this register is
1889 defined by a processor's "application binary interface" (ABI).
1890 When this macro is defined, RTL is generated for this register
1891 once, as with the stack pointer and frame pointer registers. If
1892 this macro is not defined, it is up to the machine-dependent files
1893 to allocate such a register (if necessary). */
1895 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1896 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1898 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1900 /* Define this macro if the register defined by
1901 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1902 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1904 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1906 /* A C expression that is nonzero if X is a legitimate immediate
1907 operand on the target machine when generating position independent
1908 code. You can assume that X satisfies `CONSTANT_P', so you need
1909 not check this. You can also assume FLAG_PIC is true, so you need
1910 not check it either. You need not define this macro if all
1911 constants (including `SYMBOL_REF') can be immediate operands when
1912 generating position independent code. */
1914 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1916 /* Define this if some processing needs to be done immediately before
1917 emitting code for an insn. */
1919 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1920 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1922 /* Specify the machine mode that this machine uses
1923 for the index in the tablejump instruction. */
1924 #define CASE_VECTOR_MODE SImode
1926 /* Define as C expression which evaluates to nonzero if the tablejump
1927 instruction expects the table to contain offsets from the address of the
1928 table.
1929 Do not define this if the table should contain absolute addresses. */
1930 #define CASE_VECTOR_PC_RELATIVE 1
1932 /* Define this as 1 if `char' should by default be signed; else as 0. */
1933 #define DEFAULT_SIGNED_CHAR 0
1935 /* An integer expression for the size in bits of the largest integer machine
1936 mode that should actually be used. */
1938 /* Allow pairs of registers to be used, which is the intent of the default. */
1939 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1941 /* Max number of bytes we can move from memory to memory
1942 in one reasonably fast instruction. */
1943 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1944 #define MAX_MOVE_MAX 8
1946 /* Nonzero if access to memory by bytes is no faster than for words.
1947 Also nonzero if doing byte operations (specifically shifts) in registers
1948 is undesirable. */
1949 #define SLOW_BYTE_ACCESS 1
1951 /* Define if operations between registers always perform the operation
1952 on the full register even if a narrower mode is specified. */
1953 #define WORD_REGISTER_OPERATIONS
1955 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1956 will either zero-extend or sign-extend. The value of this macro should
1957 be the code that says which one of the two operations is implicitly
1958 done, UNKNOWN if none. */
1959 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1961 /* Define if loading short immediate values into registers sign extends. */
1962 #define SHORT_IMMEDIATES_SIGN_EXTEND
1964 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1965 is done just by pretending it is already truncated. */
1966 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1968 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1969 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1970 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1972 /* The CTZ patterns return -1 for input of zero. */
1973 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1975 /* Specify the machine mode that pointers have.
1976 After generation of rtl, the compiler makes no further distinction
1977 between pointers and any other objects of this machine mode. */
1978 extern unsigned rs6000_pmode;
1979 #define Pmode ((enum machine_mode)rs6000_pmode)
1981 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1982 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1984 /* Mode of a function address in a call instruction (for indexing purposes).
1985 Doesn't matter on RS/6000. */
1986 #define FUNCTION_MODE SImode
1988 /* Define this if addresses of constant functions
1989 shouldn't be put through pseudo regs where they can be cse'd.
1990 Desirable on machines where ordinary constants are expensive
1991 but a CALL with constant address is cheap. */
1992 #define NO_FUNCTION_CSE
1994 /* Define this to be nonzero if shift instructions ignore all but the low-order
1995 few bits.
1997 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1998 have been dropped from the PowerPC architecture. */
1999 #define SHIFT_COUNT_TRUNCATED 0
2001 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2002 should be adjusted to reflect any required changes. This macro is used when
2003 there is some systematic length adjustment required that would be difficult
2004 to express in the length attribute. */
2006 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2008 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2009 COMPARE, return the mode to be used for the comparison. For
2010 floating-point, CCFPmode should be used. CCUNSmode should be used
2011 for unsigned comparisons. CCEQmode should be used when we are
2012 doing an inequality comparison on the result of a
2013 comparison. CCmode should be used in all other cases. */
2015 #define SELECT_CC_MODE(OP,X,Y) \
2016 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2017 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2018 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2019 ? CCEQmode : CCmode))
2021 /* Can the condition code MODE be safely reversed? This is safe in
2022 all cases on this port, because at present it doesn't use the
2023 trapping FP comparisons (fcmpo). */
2024 #define REVERSIBLE_CC_MODE(MODE) 1
2026 /* Given a condition code and a mode, return the inverse condition. */
2027 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2030 /* Control the assembler format that we output. */
2032 /* A C string constant describing how to begin a comment in the target
2033 assembler language. The compiler assumes that the comment will end at
2034 the end of the line. */
2035 #define ASM_COMMENT_START " #"
2037 /* Flag to say the TOC is initialized */
2038 extern int toc_initialized;
2040 /* Macro to output a special constant pool entry. Go to WIN if we output
2041 it. Otherwise, it is written the usual way.
2043 On the RS/6000, toc entries are handled this way. */
2045 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2046 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2048 output_toc (FILE, X, LABELNO, MODE); \
2049 goto WIN; \
2053 #ifdef HAVE_GAS_WEAK
2054 #define RS6000_WEAK 1
2055 #else
2056 #define RS6000_WEAK 0
2057 #endif
2059 #if RS6000_WEAK
2060 /* Used in lieu of ASM_WEAKEN_LABEL. */
2061 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2062 do \
2064 fputs ("\t.weak\t", (FILE)); \
2065 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2066 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2067 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2069 if (TARGET_XCOFF) \
2070 fputs ("[DS]", (FILE)); \
2071 fputs ("\n\t.weak\t.", (FILE)); \
2072 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2074 fputc ('\n', (FILE)); \
2075 if (VAL) \
2077 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2078 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2079 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2081 fputs ("\t.set\t.", (FILE)); \
2082 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2083 fputs (",.", (FILE)); \
2084 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2085 fputc ('\n', (FILE)); \
2089 while (0)
2090 #endif
2092 #if HAVE_GAS_WEAKREF
2093 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2094 do \
2096 fputs ("\t.weakref\t", (FILE)); \
2097 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2098 fputs (", ", (FILE)); \
2099 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2100 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2101 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2103 fputs ("\n\t.weakref\t.", (FILE)); \
2104 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2105 fputs (", .", (FILE)); \
2106 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2108 fputc ('\n', (FILE)); \
2109 } while (0)
2110 #endif
2112 /* This implements the `alias' attribute. */
2113 #undef ASM_OUTPUT_DEF_FROM_DECLS
2114 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2115 do \
2117 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2118 const char *name = IDENTIFIER_POINTER (TARGET); \
2119 if (TREE_CODE (DECL) == FUNCTION_DECL \
2120 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2122 if (TREE_PUBLIC (DECL)) \
2124 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2126 fputs ("\t.globl\t.", FILE); \
2127 RS6000_OUTPUT_BASENAME (FILE, alias); \
2128 putc ('\n', FILE); \
2131 else if (TARGET_XCOFF) \
2133 fputs ("\t.lglobl\t.", FILE); \
2134 RS6000_OUTPUT_BASENAME (FILE, alias); \
2135 putc ('\n', FILE); \
2137 fputs ("\t.set\t.", FILE); \
2138 RS6000_OUTPUT_BASENAME (FILE, alias); \
2139 fputs (",.", FILE); \
2140 RS6000_OUTPUT_BASENAME (FILE, name); \
2141 fputc ('\n', FILE); \
2143 ASM_OUTPUT_DEF (FILE, alias, name); \
2145 while (0)
2147 #define TARGET_ASM_FILE_START rs6000_file_start
2149 /* Output to assembler file text saying following lines
2150 may contain character constants, extra white space, comments, etc. */
2152 #define ASM_APP_ON ""
2154 /* Output to assembler file text saying following lines
2155 no longer contain unusual constructs. */
2157 #define ASM_APP_OFF ""
2159 /* How to refer to registers in assembler output.
2160 This sequence is indexed by compiler's hard-register-number (see above). */
2162 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2164 #define REGISTER_NAMES \
2166 &rs6000_reg_names[ 0][0], /* r0 */ \
2167 &rs6000_reg_names[ 1][0], /* r1 */ \
2168 &rs6000_reg_names[ 2][0], /* r2 */ \
2169 &rs6000_reg_names[ 3][0], /* r3 */ \
2170 &rs6000_reg_names[ 4][0], /* r4 */ \
2171 &rs6000_reg_names[ 5][0], /* r5 */ \
2172 &rs6000_reg_names[ 6][0], /* r6 */ \
2173 &rs6000_reg_names[ 7][0], /* r7 */ \
2174 &rs6000_reg_names[ 8][0], /* r8 */ \
2175 &rs6000_reg_names[ 9][0], /* r9 */ \
2176 &rs6000_reg_names[10][0], /* r10 */ \
2177 &rs6000_reg_names[11][0], /* r11 */ \
2178 &rs6000_reg_names[12][0], /* r12 */ \
2179 &rs6000_reg_names[13][0], /* r13 */ \
2180 &rs6000_reg_names[14][0], /* r14 */ \
2181 &rs6000_reg_names[15][0], /* r15 */ \
2182 &rs6000_reg_names[16][0], /* r16 */ \
2183 &rs6000_reg_names[17][0], /* r17 */ \
2184 &rs6000_reg_names[18][0], /* r18 */ \
2185 &rs6000_reg_names[19][0], /* r19 */ \
2186 &rs6000_reg_names[20][0], /* r20 */ \
2187 &rs6000_reg_names[21][0], /* r21 */ \
2188 &rs6000_reg_names[22][0], /* r22 */ \
2189 &rs6000_reg_names[23][0], /* r23 */ \
2190 &rs6000_reg_names[24][0], /* r24 */ \
2191 &rs6000_reg_names[25][0], /* r25 */ \
2192 &rs6000_reg_names[26][0], /* r26 */ \
2193 &rs6000_reg_names[27][0], /* r27 */ \
2194 &rs6000_reg_names[28][0], /* r28 */ \
2195 &rs6000_reg_names[29][0], /* r29 */ \
2196 &rs6000_reg_names[30][0], /* r30 */ \
2197 &rs6000_reg_names[31][0], /* r31 */ \
2199 &rs6000_reg_names[32][0], /* fr0 */ \
2200 &rs6000_reg_names[33][0], /* fr1 */ \
2201 &rs6000_reg_names[34][0], /* fr2 */ \
2202 &rs6000_reg_names[35][0], /* fr3 */ \
2203 &rs6000_reg_names[36][0], /* fr4 */ \
2204 &rs6000_reg_names[37][0], /* fr5 */ \
2205 &rs6000_reg_names[38][0], /* fr6 */ \
2206 &rs6000_reg_names[39][0], /* fr7 */ \
2207 &rs6000_reg_names[40][0], /* fr8 */ \
2208 &rs6000_reg_names[41][0], /* fr9 */ \
2209 &rs6000_reg_names[42][0], /* fr10 */ \
2210 &rs6000_reg_names[43][0], /* fr11 */ \
2211 &rs6000_reg_names[44][0], /* fr12 */ \
2212 &rs6000_reg_names[45][0], /* fr13 */ \
2213 &rs6000_reg_names[46][0], /* fr14 */ \
2214 &rs6000_reg_names[47][0], /* fr15 */ \
2215 &rs6000_reg_names[48][0], /* fr16 */ \
2216 &rs6000_reg_names[49][0], /* fr17 */ \
2217 &rs6000_reg_names[50][0], /* fr18 */ \
2218 &rs6000_reg_names[51][0], /* fr19 */ \
2219 &rs6000_reg_names[52][0], /* fr20 */ \
2220 &rs6000_reg_names[53][0], /* fr21 */ \
2221 &rs6000_reg_names[54][0], /* fr22 */ \
2222 &rs6000_reg_names[55][0], /* fr23 */ \
2223 &rs6000_reg_names[56][0], /* fr24 */ \
2224 &rs6000_reg_names[57][0], /* fr25 */ \
2225 &rs6000_reg_names[58][0], /* fr26 */ \
2226 &rs6000_reg_names[59][0], /* fr27 */ \
2227 &rs6000_reg_names[60][0], /* fr28 */ \
2228 &rs6000_reg_names[61][0], /* fr29 */ \
2229 &rs6000_reg_names[62][0], /* fr30 */ \
2230 &rs6000_reg_names[63][0], /* fr31 */ \
2232 &rs6000_reg_names[64][0], /* was mq */ \
2233 &rs6000_reg_names[65][0], /* lr */ \
2234 &rs6000_reg_names[66][0], /* ctr */ \
2235 &rs6000_reg_names[67][0], /* ap */ \
2237 &rs6000_reg_names[68][0], /* cr0 */ \
2238 &rs6000_reg_names[69][0], /* cr1 */ \
2239 &rs6000_reg_names[70][0], /* cr2 */ \
2240 &rs6000_reg_names[71][0], /* cr3 */ \
2241 &rs6000_reg_names[72][0], /* cr4 */ \
2242 &rs6000_reg_names[73][0], /* cr5 */ \
2243 &rs6000_reg_names[74][0], /* cr6 */ \
2244 &rs6000_reg_names[75][0], /* cr7 */ \
2246 &rs6000_reg_names[76][0], /* ca */ \
2248 &rs6000_reg_names[77][0], /* v0 */ \
2249 &rs6000_reg_names[78][0], /* v1 */ \
2250 &rs6000_reg_names[79][0], /* v2 */ \
2251 &rs6000_reg_names[80][0], /* v3 */ \
2252 &rs6000_reg_names[81][0], /* v4 */ \
2253 &rs6000_reg_names[82][0], /* v5 */ \
2254 &rs6000_reg_names[83][0], /* v6 */ \
2255 &rs6000_reg_names[84][0], /* v7 */ \
2256 &rs6000_reg_names[85][0], /* v8 */ \
2257 &rs6000_reg_names[86][0], /* v9 */ \
2258 &rs6000_reg_names[87][0], /* v10 */ \
2259 &rs6000_reg_names[88][0], /* v11 */ \
2260 &rs6000_reg_names[89][0], /* v12 */ \
2261 &rs6000_reg_names[90][0], /* v13 */ \
2262 &rs6000_reg_names[91][0], /* v14 */ \
2263 &rs6000_reg_names[92][0], /* v15 */ \
2264 &rs6000_reg_names[93][0], /* v16 */ \
2265 &rs6000_reg_names[94][0], /* v17 */ \
2266 &rs6000_reg_names[95][0], /* v18 */ \
2267 &rs6000_reg_names[96][0], /* v19 */ \
2268 &rs6000_reg_names[97][0], /* v20 */ \
2269 &rs6000_reg_names[98][0], /* v21 */ \
2270 &rs6000_reg_names[99][0], /* v22 */ \
2271 &rs6000_reg_names[100][0], /* v23 */ \
2272 &rs6000_reg_names[101][0], /* v24 */ \
2273 &rs6000_reg_names[102][0], /* v25 */ \
2274 &rs6000_reg_names[103][0], /* v26 */ \
2275 &rs6000_reg_names[104][0], /* v27 */ \
2276 &rs6000_reg_names[105][0], /* v28 */ \
2277 &rs6000_reg_names[106][0], /* v29 */ \
2278 &rs6000_reg_names[107][0], /* v30 */ \
2279 &rs6000_reg_names[108][0], /* v31 */ \
2280 &rs6000_reg_names[109][0], /* vrsave */ \
2281 &rs6000_reg_names[110][0], /* vscr */ \
2282 &rs6000_reg_names[111][0], /* spe_acc */ \
2283 &rs6000_reg_names[112][0], /* spefscr */ \
2284 &rs6000_reg_names[113][0], /* sfp */ \
2287 /* Table of additional register names to use in user input. */
2289 #define ADDITIONAL_REGISTER_NAMES \
2290 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2291 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2292 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2293 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2294 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2295 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2296 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2297 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2298 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2299 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2300 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2301 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2302 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2303 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2304 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2305 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2306 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2307 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2308 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2309 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2310 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2311 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2312 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2313 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2314 {"vrsave", 109}, {"vscr", 110}, \
2315 {"spe_acc", 111}, {"spefscr", 112}, \
2316 /* no additional names for: lr, ctr, ap */ \
2317 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2318 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2319 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2320 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2321 {"xer", 76}, \
2322 /* VSX registers overlaid on top of FR, Altivec registers */ \
2323 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2324 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2325 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2326 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2327 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2328 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2329 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2330 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2331 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2332 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2333 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2334 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2335 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2336 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2337 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2338 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2340 /* This is how to output an element of a case-vector that is relative. */
2342 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2343 do { char buf[100]; \
2344 fputs ("\t.long ", FILE); \
2345 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2346 assemble_name (FILE, buf); \
2347 putc ('-', FILE); \
2348 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2349 assemble_name (FILE, buf); \
2350 putc ('\n', FILE); \
2351 } while (0)
2353 /* This is how to output an assembler line
2354 that says to advance the location counter
2355 to a multiple of 2**LOG bytes. */
2357 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2358 if ((LOG) != 0) \
2359 fprintf (FILE, "\t.align %d\n", (LOG))
2361 /* How to align the given loop. */
2362 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2364 /* Alignment guaranteed by __builtin_malloc. */
2365 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2366 However, specifying the stronger guarantee currently leads to
2367 a regression in SPEC CPU2006 437.leslie3d. The stronger
2368 guarantee should be implemented here once that's fixed. */
2369 #define MALLOC_ABI_ALIGNMENT (64)
2371 /* Pick up the return address upon entry to a procedure. Used for
2372 dwarf2 unwind information. This also enables the table driven
2373 mechanism. */
2375 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2376 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2378 /* Describe how we implement __builtin_eh_return. */
2379 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2380 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2382 /* Print operand X (an rtx) in assembler syntax to file FILE.
2383 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2384 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2386 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2388 /* Define which CODE values are valid. */
2390 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2392 /* Print a memory address as an operand to reference that memory location. */
2394 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2396 /* uncomment for disabling the corresponding default options */
2397 /* #define MACHINE_no_sched_interblock */
2398 /* #define MACHINE_no_sched_speculative */
2399 /* #define MACHINE_no_sched_speculative_load */
2401 /* General flags. */
2402 extern int frame_pointer_needed;
2404 /* Classification of the builtin functions as to which switches enable the
2405 builtin, and what attributes it should have. We used to use the target
2406 flags macros, but we've run out of bits, so we now map the options into new
2407 settings used here. */
2409 /* Builtin attributes. */
2410 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2411 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2412 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2413 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2414 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2415 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2416 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2417 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2418 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2420 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2421 #define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2422 #define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2423 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2424 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2426 /* Miscellaneous information. */
2427 #define RS6000_BTC_OVERLOADED 0x4000000 /* function is overloaded. */
2429 /* Convenience macros to document the instruction type. */
2430 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2431 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2433 /* Builtin targets. For now, we reuse the masks for those options that are in
2434 target flags, and pick two random bits for SPE and paired which aren't in
2435 target_flags. */
2436 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2437 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2438 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2439 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2440 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2441 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2442 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2443 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2444 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2445 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2446 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2447 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2448 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2450 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2451 | RS6000_BTM_VSX \
2452 | RS6000_BTM_P8_VECTOR \
2453 | RS6000_BTM_CRYPTO \
2454 | RS6000_BTM_FRE \
2455 | RS6000_BTM_FRES \
2456 | RS6000_BTM_FRSQRTE \
2457 | RS6000_BTM_FRSQRTES \
2458 | RS6000_BTM_POPCNTD \
2459 | RS6000_BTM_CELL)
2461 /* Define builtin enum index. */
2463 #undef RS6000_BUILTIN_1
2464 #undef RS6000_BUILTIN_2
2465 #undef RS6000_BUILTIN_3
2466 #undef RS6000_BUILTIN_A
2467 #undef RS6000_BUILTIN_D
2468 #undef RS6000_BUILTIN_E
2469 #undef RS6000_BUILTIN_P
2470 #undef RS6000_BUILTIN_Q
2471 #undef RS6000_BUILTIN_S
2472 #undef RS6000_BUILTIN_X
2474 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2475 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2476 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2477 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2478 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2479 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2480 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2481 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2482 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2483 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2485 enum rs6000_builtins
2487 #include "rs6000-builtin.def"
2489 RS6000_BUILTIN_COUNT
2492 #undef RS6000_BUILTIN_1
2493 #undef RS6000_BUILTIN_2
2494 #undef RS6000_BUILTIN_3
2495 #undef RS6000_BUILTIN_A
2496 #undef RS6000_BUILTIN_D
2497 #undef RS6000_BUILTIN_E
2498 #undef RS6000_BUILTIN_P
2499 #undef RS6000_BUILTIN_Q
2500 #undef RS6000_BUILTIN_S
2501 #undef RS6000_BUILTIN_X
2503 enum rs6000_builtin_type_index
2505 RS6000_BTI_NOT_OPAQUE,
2506 RS6000_BTI_opaque_V2SI,
2507 RS6000_BTI_opaque_V2SF,
2508 RS6000_BTI_opaque_p_V2SI,
2509 RS6000_BTI_opaque_V4SI,
2510 RS6000_BTI_V16QI,
2511 RS6000_BTI_V2SI,
2512 RS6000_BTI_V2SF,
2513 RS6000_BTI_V2DI,
2514 RS6000_BTI_V2DF,
2515 RS6000_BTI_V4HI,
2516 RS6000_BTI_V4SI,
2517 RS6000_BTI_V4SF,
2518 RS6000_BTI_V8HI,
2519 RS6000_BTI_unsigned_V16QI,
2520 RS6000_BTI_unsigned_V8HI,
2521 RS6000_BTI_unsigned_V4SI,
2522 RS6000_BTI_unsigned_V2DI,
2523 RS6000_BTI_bool_char, /* __bool char */
2524 RS6000_BTI_bool_short, /* __bool short */
2525 RS6000_BTI_bool_int, /* __bool int */
2526 RS6000_BTI_bool_long, /* __bool long */
2527 RS6000_BTI_pixel, /* __pixel */
2528 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2529 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2530 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2531 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2532 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2533 RS6000_BTI_long, /* long_integer_type_node */
2534 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2535 RS6000_BTI_long_long, /* long_long_integer_type_node */
2536 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2537 RS6000_BTI_INTQI, /* intQI_type_node */
2538 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2539 RS6000_BTI_INTHI, /* intHI_type_node */
2540 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2541 RS6000_BTI_INTSI, /* intSI_type_node */
2542 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2543 RS6000_BTI_INTDI, /* intDI_type_node */
2544 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2545 RS6000_BTI_float, /* float_type_node */
2546 RS6000_BTI_double, /* double_type_node */
2547 RS6000_BTI_void, /* void_type_node */
2548 RS6000_BTI_MAX
2552 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2553 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2554 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2555 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2556 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2557 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2558 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2559 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2560 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2561 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2562 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2563 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2564 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2565 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2566 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2567 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2568 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2569 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2570 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2571 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2572 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2573 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2574 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2575 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2576 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2577 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2578 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2580 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2581 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2582 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2583 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2584 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2585 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2586 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2587 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2588 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2589 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2590 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2591 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2592 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2593 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2594 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2596 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2597 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];