Merge from mainline
[official-gcc.git] / gcc / loop.c
blobdc64b5c889aee274ba2c7d1a8d7b195299161225
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "tm_p.h"
41 #include "obstack.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "hard-reg-set.h"
45 #include "basic-block.h"
46 #include "insn-config.h"
47 #include "regs.h"
48 #include "recog.h"
49 #include "flags.h"
50 #include "real.h"
51 #include "loop.h"
52 #include "cselib.h"
53 #include "except.h"
54 #include "toplev.h"
55 #include "predict.h"
56 #include "insn-flags.h"
57 #include "optabs.h"
59 /* Not really meaningful values, but at least something. */
60 #ifndef SIMULTANEOUS_PREFETCHES
61 #define SIMULTANEOUS_PREFETCHES 3
62 #endif
63 #ifndef PREFETCH_BLOCK
64 #define PREFETCH_BLOCK 32
65 #endif
66 #ifndef HAVE_prefetch
67 #define HAVE_prefetch 0
68 #define CODE_FOR_prefetch 0
69 #define gen_prefetch(a,b,c) (abort(), NULL_RTX)
70 #endif
72 /* Give up the prefetch optimizations once we exceed a given threshhold.
73 It is unlikely that we would be able to optimize something in a loop
74 with so many detected prefetches. */
75 #define MAX_PREFETCHES 100
76 /* The number of prefetch blocks that are beneficial to fetch at once before
77 a loop with a known (and low) iteration count. */
78 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
79 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
80 since it is likely that the data are already in the cache. */
81 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
82 /* The minimal number of prefetch blocks that a loop must consume to make
83 the emitting of prefetch instruction in the body of loop worthwhile. */
84 #define PREFETCH_BLOCKS_IN_LOOP_MIN 6
86 /* Parameterize some prefetch heuristics so they can be turned on and off
87 easily for performance testing on new architecures. These can be
88 defined in target-dependent files. */
90 /* Prefetch is worthwhile only when loads/stores are dense. */
91 #ifndef PREFETCH_ONLY_DENSE_MEM
92 #define PREFETCH_ONLY_DENSE_MEM 1
93 #endif
95 /* Define what we mean by "dense" loads and stores; This value divided by 256
96 is the minimum percentage of memory references that worth prefetching. */
97 #ifndef PREFETCH_DENSE_MEM
98 #define PREFETCH_DENSE_MEM 220
99 #endif
101 /* Do not prefetch for a loop whose iteration count is known to be low. */
102 #ifndef PREFETCH_NO_LOW_LOOPCNT
103 #define PREFETCH_NO_LOW_LOOPCNT 1
104 #endif
106 /* Define what we mean by a "low" iteration count. */
107 #ifndef PREFETCH_LOW_LOOPCNT
108 #define PREFETCH_LOW_LOOPCNT 32
109 #endif
111 /* Do not prefetch for a loop that contains a function call; such a loop is
112 probably not an internal loop. */
113 #ifndef PREFETCH_NO_CALL
114 #define PREFETCH_NO_CALL 1
115 #endif
117 /* Do not prefetch accesses with an extreme stride. */
118 #ifndef PREFETCH_NO_EXTREME_STRIDE
119 #define PREFETCH_NO_EXTREME_STRIDE 1
120 #endif
122 /* Define what we mean by an "extreme" stride. */
123 #ifndef PREFETCH_EXTREME_STRIDE
124 #define PREFETCH_EXTREME_STRIDE 4096
125 #endif
127 /* Define a limit to how far apart indices can be and still be merged
128 into a single prefetch. */
129 #ifndef PREFETCH_EXTREME_DIFFERENCE
130 #define PREFETCH_EXTREME_DIFFERENCE 4096
131 #endif
133 /* Issue prefetch instructions before the loop to fetch data to be used
134 in the first few loop iterations. */
135 #ifndef PREFETCH_BEFORE_LOOP
136 #define PREFETCH_BEFORE_LOOP 1
137 #endif
139 /* Do not handle reversed order prefetches (negative stride). */
140 #ifndef PREFETCH_NO_REVERSE_ORDER
141 #define PREFETCH_NO_REVERSE_ORDER 1
142 #endif
144 /* Prefetch even if the GIV is in conditional code. */
145 #ifndef PREFETCH_CONDITIONAL
146 #define PREFETCH_CONDITIONAL 1
147 #endif
149 /* If the loop requires more prefetches than the target can process in
150 parallel then don't prefetch anything in that loop. */
151 #ifndef PREFETCH_LIMIT_TO_SIMULTANEOUS
152 #define PREFETCH_LIMIT_TO_SIMULTANEOUS 1
153 #endif
155 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
156 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
158 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
159 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
160 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
162 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
163 ((REGNO) < FIRST_PSEUDO_REGISTER \
164 ? HARD_REGNO_NREGS ((REGNO), GET_MODE (SET_DEST)) : 1)
167 /* Vector mapping INSN_UIDs to luids.
168 The luids are like uids but increase monotonically always.
169 We use them to see whether a jump comes from outside a given loop. */
171 int *uid_luid;
173 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
174 number the insn is contained in. */
176 struct loop **uid_loop;
178 /* 1 + largest uid of any insn. */
180 int max_uid_for_loop;
182 /* 1 + luid of last insn. */
184 static int max_luid;
186 /* Number of loops detected in current function. Used as index to the
187 next few tables. */
189 static int max_loop_num;
191 /* Bound on pseudo register number before loop optimization.
192 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
193 unsigned int max_reg_before_loop;
195 /* The value to pass to the next call of reg_scan_update. */
196 static int loop_max_reg;
198 #define obstack_chunk_alloc xmalloc
199 #define obstack_chunk_free free
201 /* During the analysis of a loop, a chain of `struct movable's
202 is made to record all the movable insns found.
203 Then the entire chain can be scanned to decide which to move. */
205 struct movable
207 rtx insn; /* A movable insn */
208 rtx set_src; /* The expression this reg is set from. */
209 rtx set_dest; /* The destination of this SET. */
210 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
211 of any registers used within the LIBCALL. */
212 int consec; /* Number of consecutive following insns
213 that must be moved with this one. */
214 unsigned int regno; /* The register it sets */
215 short lifetime; /* lifetime of that register;
216 may be adjusted when matching movables
217 that load the same value are found. */
218 short savings; /* Number of insns we can move for this reg,
219 including other movables that force this
220 or match this one. */
221 unsigned int cond : 1; /* 1 if only conditionally movable */
222 unsigned int force : 1; /* 1 means MUST move this insn */
223 unsigned int global : 1; /* 1 means reg is live outside this loop */
224 /* If PARTIAL is 1, GLOBAL means something different:
225 that the reg is live outside the range from where it is set
226 to the following label. */
227 unsigned int done : 1; /* 1 inhibits further processing of this */
229 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
230 In particular, moving it does not make it
231 invariant. */
232 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
233 load SRC, rather than copying INSN. */
234 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
235 first insn of a consecutive sets group. */
236 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
237 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
238 that we should avoid changing when clearing
239 the rest of the reg. */
240 struct movable *match; /* First entry for same value */
241 struct movable *forces; /* An insn that must be moved if this is */
242 struct movable *next;
246 FILE *loop_dump_stream;
248 /* Forward declarations. */
250 static void invalidate_loops_containing_label PARAMS ((rtx));
251 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
252 static void mark_loop_jump PARAMS ((rtx, struct loop *));
253 static void prescan_loop PARAMS ((struct loop *));
254 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
255 static int consec_sets_invariant_p PARAMS ((const struct loop *,
256 rtx, int, rtx));
257 static int labels_in_range_p PARAMS ((rtx, int));
258 static void count_one_set PARAMS ((struct loop_regs *, rtx, rtx, rtx *));
259 static void note_addr_stored PARAMS ((rtx, rtx, void *));
260 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
261 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
262 static void scan_loop PARAMS ((struct loop*, int));
263 #if 0
264 static void replace_call_address PARAMS ((rtx, rtx, rtx));
265 #endif
266 static rtx skip_consec_insns PARAMS ((rtx, int));
267 static int libcall_benefit PARAMS ((rtx));
268 static void ignore_some_movables PARAMS ((struct loop_movables *));
269 static void force_movables PARAMS ((struct loop_movables *));
270 static void combine_movables PARAMS ((struct loop_movables *,
271 struct loop_regs *));
272 static int num_unmoved_movables PARAMS ((const struct loop *));
273 static int regs_match_p PARAMS ((rtx, rtx, struct loop_movables *));
274 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct loop_movables *,
275 struct loop_regs *));
276 static void add_label_notes PARAMS ((rtx, rtx));
277 static void move_movables PARAMS ((struct loop *loop, struct loop_movables *,
278 int, int));
279 static void loop_movables_add PARAMS((struct loop_movables *,
280 struct movable *));
281 static void loop_movables_free PARAMS((struct loop_movables *));
282 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
283 static void loop_bivs_find PARAMS((struct loop *));
284 static void loop_bivs_init_find PARAMS((struct loop *));
285 static void loop_bivs_check PARAMS((struct loop *));
286 static void loop_givs_find PARAMS((struct loop *));
287 static void loop_givs_check PARAMS((struct loop *));
288 static int loop_biv_eliminable_p PARAMS((struct loop *, struct iv_class *,
289 int, int));
290 static int loop_giv_reduce_benefit PARAMS((struct loop *, struct iv_class *,
291 struct induction *, rtx));
292 static void loop_givs_dead_check PARAMS((struct loop *, struct iv_class *));
293 static void loop_givs_reduce PARAMS((struct loop *, struct iv_class *));
294 static void loop_givs_rescan PARAMS((struct loop *, struct iv_class *,
295 rtx *));
296 static void loop_ivs_free PARAMS((struct loop *));
297 static void strength_reduce PARAMS ((struct loop *, int));
298 static void find_single_use_in_loop PARAMS ((struct loop_regs *, rtx, rtx));
299 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
300 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
301 static void record_biv PARAMS ((struct loop *, struct induction *,
302 rtx, rtx, rtx, rtx, rtx *,
303 int, int));
304 static void check_final_value PARAMS ((const struct loop *,
305 struct induction *));
306 static void loop_ivs_dump PARAMS((const struct loop *, FILE *, int));
307 static void loop_iv_class_dump PARAMS((const struct iv_class *, FILE *, int));
308 static void loop_biv_dump PARAMS((const struct induction *, FILE *, int));
309 static void loop_giv_dump PARAMS((const struct induction *, FILE *, int));
310 static void record_giv PARAMS ((const struct loop *, struct induction *,
311 rtx, rtx, rtx, rtx, rtx, rtx, int,
312 enum g_types, int, int, rtx *));
313 static void update_giv_derive PARAMS ((const struct loop *, rtx));
314 static void check_ext_dependent_givs PARAMS ((struct iv_class *,
315 struct loop_info *));
316 static int basic_induction_var PARAMS ((const struct loop *, rtx,
317 enum machine_mode, rtx, rtx,
318 rtx *, rtx *, rtx **));
319 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, rtx *, int *));
320 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
321 rtx *, rtx *, rtx *, int, int *,
322 enum machine_mode));
323 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
324 rtx, rtx, rtx *, rtx *, rtx *, rtx *));
325 static int check_dbra_loop PARAMS ((struct loop *, int));
326 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
327 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
328 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
329 static void combine_givs PARAMS ((struct loop_regs *, struct iv_class *));
330 static int product_cheap_p PARAMS ((rtx, rtx));
331 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
332 int, int, int));
333 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
334 struct iv_class *, int,
335 basic_block, rtx));
336 static int last_use_this_basic_block PARAMS ((rtx, rtx));
337 static void record_initial PARAMS ((rtx, rtx, void *));
338 static void update_reg_last_use PARAMS ((rtx, rtx));
339 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
340 static void loop_regs_scan PARAMS ((const struct loop *, int));
341 static int count_insns_in_loop PARAMS ((const struct loop *));
342 static void load_mems PARAMS ((const struct loop *));
343 static int insert_loop_mem PARAMS ((rtx *, void *));
344 static int replace_loop_mem PARAMS ((rtx *, void *));
345 static void replace_loop_mems PARAMS ((rtx, rtx, rtx));
346 static int replace_loop_reg PARAMS ((rtx *, void *));
347 static void replace_loop_regs PARAMS ((rtx insn, rtx, rtx));
348 static void note_reg_stored PARAMS ((rtx, rtx, void *));
349 static void try_copy_prop PARAMS ((const struct loop *, rtx, unsigned int));
350 static void try_swap_copy_prop PARAMS ((const struct loop *, rtx,
351 unsigned int));
352 static int replace_label PARAMS ((rtx *, void *));
353 static rtx check_insn_for_givs PARAMS((struct loop *, rtx, int, int));
354 static rtx check_insn_for_bivs PARAMS((struct loop *, rtx, int, int));
355 static rtx gen_add_mult PARAMS ((rtx, rtx, rtx, rtx));
356 static void loop_regs_update PARAMS ((const struct loop *, rtx));
357 static int iv_add_mult_cost PARAMS ((rtx, rtx, rtx, rtx));
359 static rtx loop_insn_emit_after PARAMS((const struct loop *, basic_block,
360 rtx, rtx));
361 static rtx loop_call_insn_emit_before PARAMS((const struct loop *,
362 basic_block, rtx, rtx));
363 static rtx loop_call_insn_hoist PARAMS((const struct loop *, rtx));
364 static rtx loop_insn_sink_or_swim PARAMS((const struct loop *, rtx));
366 static void loop_dump_aux PARAMS ((const struct loop *, FILE *, int));
367 static void loop_delete_insns PARAMS ((rtx, rtx));
368 static HOST_WIDE_INT remove_constant_addition PARAMS ((rtx *));
369 static rtx gen_load_of_final_value PARAMS ((rtx, rtx));
370 void debug_ivs PARAMS ((const struct loop *));
371 void debug_iv_class PARAMS ((const struct iv_class *));
372 void debug_biv PARAMS ((const struct induction *));
373 void debug_giv PARAMS ((const struct induction *));
374 void debug_loop PARAMS ((const struct loop *));
375 void debug_loops PARAMS ((const struct loops *));
377 typedef struct rtx_pair
379 rtx r1;
380 rtx r2;
381 } rtx_pair;
383 typedef struct loop_replace_args
385 rtx match;
386 rtx replacement;
387 rtx insn;
388 } loop_replace_args;
390 /* Nonzero iff INSN is between START and END, inclusive. */
391 #define INSN_IN_RANGE_P(INSN, START, END) \
392 (INSN_UID (INSN) < max_uid_for_loop \
393 && INSN_LUID (INSN) >= INSN_LUID (START) \
394 && INSN_LUID (INSN) <= INSN_LUID (END))
396 /* Indirect_jump_in_function is computed once per function. */
397 static int indirect_jump_in_function;
398 static int indirect_jump_in_function_p PARAMS ((rtx));
400 static int compute_luids PARAMS ((rtx, rtx, int));
402 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
403 struct induction *,
404 rtx));
406 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
407 copy the value of the strength reduced giv to its original register. */
408 static int copy_cost;
410 /* Cost of using a register, to normalize the benefits of a giv. */
411 static int reg_address_cost;
413 void
414 init_loop ()
416 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
418 reg_address_cost = address_cost (reg, SImode);
420 copy_cost = COSTS_N_INSNS (1);
423 /* Compute the mapping from uids to luids.
424 LUIDs are numbers assigned to insns, like uids,
425 except that luids increase monotonically through the code.
426 Start at insn START and stop just before END. Assign LUIDs
427 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
428 static int
429 compute_luids (start, end, prev_luid)
430 rtx start, end;
431 int prev_luid;
433 int i;
434 rtx insn;
436 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
438 if (INSN_UID (insn) >= max_uid_for_loop)
439 continue;
440 /* Don't assign luids to line-number NOTEs, so that the distance in
441 luids between two insns is not affected by -g. */
442 if (GET_CODE (insn) != NOTE
443 || NOTE_LINE_NUMBER (insn) <= 0)
444 uid_luid[INSN_UID (insn)] = ++i;
445 else
446 /* Give a line number note the same luid as preceding insn. */
447 uid_luid[INSN_UID (insn)] = i;
449 return i + 1;
452 /* Entry point of this file. Perform loop optimization
453 on the current function. F is the first insn of the function
454 and DUMPFILE is a stream for output of a trace of actions taken
455 (or 0 if none should be output). */
457 void
458 loop_optimize (f, dumpfile, flags)
459 /* f is the first instruction of a chain of insns for one function */
460 rtx f;
461 FILE *dumpfile;
462 int flags;
464 rtx insn;
465 int i;
466 struct loops loops_data;
467 struct loops *loops = &loops_data;
468 struct loop_info *loops_info;
470 loop_dump_stream = dumpfile;
472 init_recog_no_volatile ();
474 max_reg_before_loop = max_reg_num ();
475 loop_max_reg = max_reg_before_loop;
477 regs_may_share = 0;
479 /* Count the number of loops. */
481 max_loop_num = 0;
482 for (insn = f; insn; insn = NEXT_INSN (insn))
484 if (GET_CODE (insn) == NOTE
485 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
486 max_loop_num++;
489 /* Don't waste time if no loops. */
490 if (max_loop_num == 0)
491 return;
493 loops->num = max_loop_num;
495 /* Get size to use for tables indexed by uids.
496 Leave some space for labels allocated by find_and_verify_loops. */
497 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
499 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
500 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
501 sizeof (struct loop *));
503 /* Allocate storage for array of loops. */
504 loops->array = (struct loop *)
505 xcalloc (loops->num, sizeof (struct loop));
507 /* Find and process each loop.
508 First, find them, and record them in order of their beginnings. */
509 find_and_verify_loops (f, loops);
511 /* Allocate and initialize auxiliary loop information. */
512 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
513 for (i = 0; i < loops->num; i++)
514 loops->array[i].aux = loops_info + i;
516 /* Now find all register lifetimes. This must be done after
517 find_and_verify_loops, because it might reorder the insns in the
518 function. */
519 reg_scan (f, max_reg_before_loop, 1);
521 /* This must occur after reg_scan so that registers created by gcse
522 will have entries in the register tables.
524 We could have added a call to reg_scan after gcse_main in toplev.c,
525 but moving this call to init_alias_analysis is more efficient. */
526 init_alias_analysis ();
528 /* See if we went too far. Note that get_max_uid already returns
529 one more that the maximum uid of all insn. */
530 if (get_max_uid () > max_uid_for_loop)
531 abort ();
532 /* Now reset it to the actual size we need. See above. */
533 max_uid_for_loop = get_max_uid ();
535 /* find_and_verify_loops has already called compute_luids, but it
536 might have rearranged code afterwards, so we need to recompute
537 the luids now. */
538 max_luid = compute_luids (f, NULL_RTX, 0);
540 /* Don't leave gaps in uid_luid for insns that have been
541 deleted. It is possible that the first or last insn
542 using some register has been deleted by cross-jumping.
543 Make sure that uid_luid for that former insn's uid
544 points to the general area where that insn used to be. */
545 for (i = 0; i < max_uid_for_loop; i++)
547 uid_luid[0] = uid_luid[i];
548 if (uid_luid[0] != 0)
549 break;
551 for (i = 0; i < max_uid_for_loop; i++)
552 if (uid_luid[i] == 0)
553 uid_luid[i] = uid_luid[i - 1];
555 /* Determine if the function has indirect jump. On some systems
556 this prevents low overhead loop instructions from being used. */
557 indirect_jump_in_function = indirect_jump_in_function_p (f);
559 /* Now scan the loops, last ones first, since this means inner ones are done
560 before outer ones. */
561 for (i = max_loop_num - 1; i >= 0; i--)
563 struct loop *loop = &loops->array[i];
565 if (! loop->invalid && loop->end)
566 scan_loop (loop, flags);
569 end_alias_analysis ();
571 /* Clean up. */
572 free (uid_luid);
573 free (uid_loop);
574 free (loops_info);
575 free (loops->array);
578 /* Returns the next insn, in execution order, after INSN. START and
579 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
580 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
581 insn-stream; it is used with loops that are entered near the
582 bottom. */
584 static rtx
585 next_insn_in_loop (loop, insn)
586 const struct loop *loop;
587 rtx insn;
589 insn = NEXT_INSN (insn);
591 if (insn == loop->end)
593 if (loop->top)
594 /* Go to the top of the loop, and continue there. */
595 insn = loop->top;
596 else
597 /* We're done. */
598 insn = NULL_RTX;
601 if (insn == loop->scan_start)
602 /* We're done. */
603 insn = NULL_RTX;
605 return insn;
608 /* Optimize one loop described by LOOP. */
610 /* ??? Could also move memory writes out of loops if the destination address
611 is invariant, the source is invariant, the memory write is not volatile,
612 and if we can prove that no read inside the loop can read this address
613 before the write occurs. If there is a read of this address after the
614 write, then we can also mark the memory read as invariant. */
616 static void
617 scan_loop (loop, flags)
618 struct loop *loop;
619 int flags;
621 struct loop_info *loop_info = LOOP_INFO (loop);
622 struct loop_regs *regs = LOOP_REGS (loop);
623 int i;
624 rtx loop_start = loop->start;
625 rtx loop_end = loop->end;
626 rtx p;
627 /* 1 if we are scanning insns that could be executed zero times. */
628 int maybe_never = 0;
629 /* 1 if we are scanning insns that might never be executed
630 due to a subroutine call which might exit before they are reached. */
631 int call_passed = 0;
632 /* Jump insn that enters the loop, or 0 if control drops in. */
633 rtx loop_entry_jump = 0;
634 /* Number of insns in the loop. */
635 int insn_count;
636 int tem;
637 rtx temp, update_start, update_end;
638 /* The SET from an insn, if it is the only SET in the insn. */
639 rtx set, set1;
640 /* Chain describing insns movable in current loop. */
641 struct loop_movables *movables = LOOP_MOVABLES (loop);
642 /* Ratio of extra register life span we can justify
643 for saving an instruction. More if loop doesn't call subroutines
644 since in that case saving an insn makes more difference
645 and more registers are available. */
646 int threshold;
647 /* Nonzero if we are scanning instructions in a sub-loop. */
648 int loop_depth = 0;
650 loop->top = 0;
652 movables->head = 0;
653 movables->last = 0;
655 /* Determine whether this loop starts with a jump down to a test at
656 the end. This will occur for a small number of loops with a test
657 that is too complex to duplicate in front of the loop.
659 We search for the first insn or label in the loop, skipping NOTEs.
660 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
661 (because we might have a loop executed only once that contains a
662 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
663 (in case we have a degenerate loop).
665 Note that if we mistakenly think that a loop is entered at the top
666 when, in fact, it is entered at the exit test, the only effect will be
667 slightly poorer optimization. Making the opposite error can generate
668 incorrect code. Since very few loops now start with a jump to the
669 exit test, the code here to detect that case is very conservative. */
671 for (p = NEXT_INSN (loop_start);
672 p != loop_end
673 && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
674 && (GET_CODE (p) != NOTE
675 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
676 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
677 p = NEXT_INSN (p))
680 loop->scan_start = p;
682 /* If loop end is the end of the current function, then emit a
683 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
684 note insn. This is the position we use when sinking insns out of
685 the loop. */
686 if (NEXT_INSN (loop->end) != 0)
687 loop->sink = NEXT_INSN (loop->end);
688 else
689 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
691 /* Set up variables describing this loop. */
692 prescan_loop (loop);
693 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
695 /* If loop has a jump before the first label,
696 the true entry is the target of that jump.
697 Start scan from there.
698 But record in LOOP->TOP the place where the end-test jumps
699 back to so we can scan that after the end of the loop. */
700 if (GET_CODE (p) == JUMP_INSN)
702 loop_entry_jump = p;
704 /* Loop entry must be unconditional jump (and not a RETURN) */
705 if (any_uncondjump_p (p)
706 && JUMP_LABEL (p) != 0
707 /* Check to see whether the jump actually
708 jumps out of the loop (meaning it's no loop).
709 This case can happen for things like
710 do {..} while (0). If this label was generated previously
711 by loop, we can't tell anything about it and have to reject
712 the loop. */
713 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
715 loop->top = next_label (loop->scan_start);
716 loop->scan_start = JUMP_LABEL (p);
720 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
721 as required by loop_reg_used_before_p. So skip such loops. (This
722 test may never be true, but it's best to play it safe.)
724 Also, skip loops where we do not start scanning at a label. This
725 test also rejects loops starting with a JUMP_INSN that failed the
726 test above. */
728 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
729 || GET_CODE (loop->scan_start) != CODE_LABEL)
731 if (loop_dump_stream)
732 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
733 INSN_UID (loop_start), INSN_UID (loop_end));
734 return;
737 /* Allocate extra space for REGs that might be created by load_mems.
738 We allocate a little extra slop as well, in the hopes that we
739 won't have to reallocate the regs array. */
740 loop_regs_scan (loop, loop_info->mems_idx + 16);
741 insn_count = count_insns_in_loop (loop);
743 if (loop_dump_stream)
745 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
746 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
747 if (loop->cont)
748 fprintf (loop_dump_stream, "Continue at insn %d.\n",
749 INSN_UID (loop->cont));
752 /* Scan through the loop finding insns that are safe to move.
753 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
754 this reg will be considered invariant for subsequent insns.
755 We consider whether subsequent insns use the reg
756 in deciding whether it is worth actually moving.
758 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
759 and therefore it is possible that the insns we are scanning
760 would never be executed. At such times, we must make sure
761 that it is safe to execute the insn once instead of zero times.
762 When MAYBE_NEVER is 0, all insns will be executed at least once
763 so that is not a problem. */
765 for (p = next_insn_in_loop (loop, loop->scan_start);
766 p != NULL_RTX;
767 p = next_insn_in_loop (loop, p))
769 if (GET_CODE (p) == INSN
770 && (set = single_set (p))
771 && GET_CODE (SET_DEST (set)) == REG
772 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
773 && SET_DEST (set) != pic_offset_table_rtx
774 #endif
775 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
777 int tem1 = 0;
778 int tem2 = 0;
779 int move_insn = 0;
780 rtx src = SET_SRC (set);
781 rtx dependencies = 0;
783 /* Figure out what to use as a source of this insn. If a REG_EQUIV
784 note is given or if a REG_EQUAL note with a constant operand is
785 specified, use it as the source and mark that we should move
786 this insn by calling emit_move_insn rather that duplicating the
787 insn.
789 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
790 is present. */
791 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
792 if (temp)
793 src = XEXP (temp, 0), move_insn = 1;
794 else
796 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
797 if (temp && CONSTANT_P (XEXP (temp, 0)))
798 src = XEXP (temp, 0), move_insn = 1;
799 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
801 src = XEXP (temp, 0);
802 /* A libcall block can use regs that don't appear in
803 the equivalent expression. To move the libcall,
804 we must move those regs too. */
805 dependencies = libcall_other_reg (p, src);
809 /* For parallels, add any possible uses to the depencies, as we can't move
810 the insn without resolving them first. */
811 if (GET_CODE (PATTERN (p)) == PARALLEL)
813 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
815 rtx x = XVECEXP (PATTERN (p), 0, i);
816 if (GET_CODE (x) == USE)
817 dependencies = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0), dependencies);
821 /* Don't try to optimize a register that was made
822 by loop-optimization for an inner loop.
823 We don't know its life-span, so we can't compute the benefit. */
824 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
826 else if (/* The register is used in basic blocks other
827 than the one where it is set (meaning that
828 something after this point in the loop might
829 depend on its value before the set). */
830 ! reg_in_basic_block_p (p, SET_DEST (set))
831 /* And the set is not guaranteed to be executed once
832 the loop starts, or the value before the set is
833 needed before the set occurs...
835 ??? Note we have quadratic behaviour here, mitigated
836 by the fact that the previous test will often fail for
837 large loops. Rather than re-scanning the entire loop
838 each time for register usage, we should build tables
839 of the register usage and use them here instead. */
840 && (maybe_never
841 || loop_reg_used_before_p (loop, set, p)))
842 /* It is unsafe to move the set.
844 This code used to consider it OK to move a set of a variable
845 which was not created by the user and not used in an exit test.
846 That behavior is incorrect and was removed. */
848 else if ((tem = loop_invariant_p (loop, src))
849 && (dependencies == 0
850 || (tem2 = loop_invariant_p (loop, dependencies)) != 0)
851 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
852 || (tem1
853 = consec_sets_invariant_p
854 (loop, SET_DEST (set),
855 regs->array[REGNO (SET_DEST (set))].set_in_loop,
856 p)))
857 /* If the insn can cause a trap (such as divide by zero),
858 can't move it unless it's guaranteed to be executed
859 once loop is entered. Even a function call might
860 prevent the trap insn from being reached
861 (since it might exit!) */
862 && ! ((maybe_never || call_passed)
863 && may_trap_p (src)))
865 struct movable *m;
866 int regno = REGNO (SET_DEST (set));
868 /* A potential lossage is where we have a case where two insns
869 can be combined as long as they are both in the loop, but
870 we move one of them outside the loop. For large loops,
871 this can lose. The most common case of this is the address
872 of a function being called.
874 Therefore, if this register is marked as being used exactly
875 once if we are in a loop with calls (a "large loop"), see if
876 we can replace the usage of this register with the source
877 of this SET. If we can, delete this insn.
879 Don't do this if P has a REG_RETVAL note or if we have
880 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
882 if (loop_info->has_call
883 && regs->array[regno].single_usage != 0
884 && regs->array[regno].single_usage != const0_rtx
885 && REGNO_FIRST_UID (regno) == INSN_UID (p)
886 && (REGNO_LAST_UID (regno)
887 == INSN_UID (regs->array[regno].single_usage))
888 && regs->array[regno].set_in_loop == 1
889 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
890 && ! side_effects_p (SET_SRC (set))
891 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
892 && (! SMALL_REGISTER_CLASSES
893 || (! (GET_CODE (SET_SRC (set)) == REG
894 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
895 /* This test is not redundant; SET_SRC (set) might be
896 a call-clobbered register and the life of REGNO
897 might span a call. */
898 && ! modified_between_p (SET_SRC (set), p,
899 regs->array[regno].single_usage)
900 && no_labels_between_p (p, regs->array[regno].single_usage)
901 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
902 regs->array[regno].single_usage))
904 /* Replace any usage in a REG_EQUAL note. Must copy the
905 new source, so that we don't get rtx sharing between the
906 SET_SOURCE and REG_NOTES of insn p. */
907 REG_NOTES (regs->array[regno].single_usage)
908 = replace_rtx (REG_NOTES (regs->array[regno].single_usage),
909 SET_DEST (set), copy_rtx (SET_SRC (set)));
911 delete_insn (p);
912 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
913 regs->array[regno+i].set_in_loop = 0;
914 continue;
917 m = (struct movable *) xmalloc (sizeof (struct movable));
918 m->next = 0;
919 m->insn = p;
920 m->set_src = src;
921 m->dependencies = dependencies;
922 m->set_dest = SET_DEST (set);
923 m->force = 0;
924 m->consec = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
925 m->done = 0;
926 m->forces = 0;
927 m->partial = 0;
928 m->move_insn = move_insn;
929 m->move_insn_first = 0;
930 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
931 m->savemode = VOIDmode;
932 m->regno = regno;
933 /* Set M->cond if either loop_invariant_p
934 or consec_sets_invariant_p returned 2
935 (only conditionally invariant). */
936 m->cond = ((tem | tem1 | tem2) > 1);
937 m->global = LOOP_REG_GLOBAL_P (loop, regno);
938 m->match = 0;
939 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
940 m->savings = regs->array[regno].n_times_set;
941 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
942 m->savings += libcall_benefit (p);
943 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
944 regs->array[regno+i].set_in_loop = move_insn ? -2 : -1;
945 /* Add M to the end of the chain MOVABLES. */
946 loop_movables_add (movables, m);
948 if (m->consec > 0)
950 /* It is possible for the first instruction to have a
951 REG_EQUAL note but a non-invariant SET_SRC, so we must
952 remember the status of the first instruction in case
953 the last instruction doesn't have a REG_EQUAL note. */
954 m->move_insn_first = m->move_insn;
956 /* Skip this insn, not checking REG_LIBCALL notes. */
957 p = next_nonnote_insn (p);
958 /* Skip the consecutive insns, if there are any. */
959 p = skip_consec_insns (p, m->consec);
960 /* Back up to the last insn of the consecutive group. */
961 p = prev_nonnote_insn (p);
963 /* We must now reset m->move_insn, m->is_equiv, and possibly
964 m->set_src to correspond to the effects of all the
965 insns. */
966 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
967 if (temp)
968 m->set_src = XEXP (temp, 0), m->move_insn = 1;
969 else
971 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
972 if (temp && CONSTANT_P (XEXP (temp, 0)))
973 m->set_src = XEXP (temp, 0), m->move_insn = 1;
974 else
975 m->move_insn = 0;
978 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
981 /* If this register is always set within a STRICT_LOW_PART
982 or set to zero, then its high bytes are constant.
983 So clear them outside the loop and within the loop
984 just load the low bytes.
985 We must check that the machine has an instruction to do so.
986 Also, if the value loaded into the register
987 depends on the same register, this cannot be done. */
988 else if (SET_SRC (set) == const0_rtx
989 && GET_CODE (NEXT_INSN (p)) == INSN
990 && (set1 = single_set (NEXT_INSN (p)))
991 && GET_CODE (set1) == SET
992 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
993 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
994 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
995 == SET_DEST (set))
996 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
998 int regno = REGNO (SET_DEST (set));
999 if (regs->array[regno].set_in_loop == 2)
1001 struct movable *m;
1002 m = (struct movable *) xmalloc (sizeof (struct movable));
1003 m->next = 0;
1004 m->insn = p;
1005 m->set_dest = SET_DEST (set);
1006 m->dependencies = 0;
1007 m->force = 0;
1008 m->consec = 0;
1009 m->done = 0;
1010 m->forces = 0;
1011 m->move_insn = 0;
1012 m->move_insn_first = 0;
1013 m->partial = 1;
1014 /* If the insn may not be executed on some cycles,
1015 we can't clear the whole reg; clear just high part.
1016 Not even if the reg is used only within this loop.
1017 Consider this:
1018 while (1)
1019 while (s != t) {
1020 if (foo ()) x = *s;
1021 use (x);
1023 Clearing x before the inner loop could clobber a value
1024 being saved from the last time around the outer loop.
1025 However, if the reg is not used outside this loop
1026 and all uses of the register are in the same
1027 basic block as the store, there is no problem.
1029 If this insn was made by loop, we don't know its
1030 INSN_LUID and hence must make a conservative
1031 assumption. */
1032 m->global = (INSN_UID (p) >= max_uid_for_loop
1033 || LOOP_REG_GLOBAL_P (loop, regno)
1034 || (labels_in_range_p
1035 (p, REGNO_FIRST_LUID (regno))));
1036 if (maybe_never && m->global)
1037 m->savemode = GET_MODE (SET_SRC (set1));
1038 else
1039 m->savemode = VOIDmode;
1040 m->regno = regno;
1041 m->cond = 0;
1042 m->match = 0;
1043 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
1044 m->savings = 1;
1045 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
1046 regs->array[regno+i].set_in_loop = -1;
1047 /* Add M to the end of the chain MOVABLES. */
1048 loop_movables_add (movables, m);
1052 /* Past a call insn, we get to insns which might not be executed
1053 because the call might exit. This matters for insns that trap.
1054 Constant and pure call insns always return, so they don't count. */
1055 else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
1056 call_passed = 1;
1057 /* Past a label or a jump, we get to insns for which we
1058 can't count on whether or how many times they will be
1059 executed during each iteration. Therefore, we can
1060 only move out sets of trivial variables
1061 (those not used after the loop). */
1062 /* Similar code appears twice in strength_reduce. */
1063 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1064 /* If we enter the loop in the middle, and scan around to the
1065 beginning, don't set maybe_never for that. This must be an
1066 unconditional jump, otherwise the code at the top of the
1067 loop might never be executed. Unconditional jumps are
1068 followed by a barrier then the loop_end. */
1069 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1070 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1071 && any_uncondjump_p (p)))
1072 maybe_never = 1;
1073 else if (GET_CODE (p) == NOTE)
1075 /* At the virtual top of a converted loop, insns are again known to
1076 be executed: logically, the loop begins here even though the exit
1077 code has been duplicated. */
1078 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1079 maybe_never = call_passed = 0;
1080 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1081 loop_depth++;
1082 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1083 loop_depth--;
1087 /* If one movable subsumes another, ignore that other. */
1089 ignore_some_movables (movables);
1091 /* For each movable insn, see if the reg that it loads
1092 leads when it dies right into another conditionally movable insn.
1093 If so, record that the second insn "forces" the first one,
1094 since the second can be moved only if the first is. */
1096 force_movables (movables);
1098 /* See if there are multiple movable insns that load the same value.
1099 If there are, make all but the first point at the first one
1100 through the `match' field, and add the priorities of them
1101 all together as the priority of the first. */
1103 combine_movables (movables, regs);
1105 /* Now consider each movable insn to decide whether it is worth moving.
1106 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1108 Generally this increases code size, so do not move moveables when
1109 optimizing for code size. */
1111 if (! optimize_size)
1113 move_movables (loop, movables, threshold, insn_count);
1115 /* Recalculate regs->array if move_movables has created new
1116 registers. */
1117 if (max_reg_num () > regs->num)
1119 loop_regs_scan (loop, 0);
1120 for (update_start = loop_start;
1121 PREV_INSN (update_start)
1122 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1123 update_start = PREV_INSN (update_start))
1125 update_end = NEXT_INSN (loop_end);
1127 reg_scan_update (update_start, update_end, loop_max_reg);
1128 loop_max_reg = max_reg_num ();
1132 /* Now candidates that still are negative are those not moved.
1133 Change regs->array[I].set_in_loop to indicate that those are not actually
1134 invariant. */
1135 for (i = 0; i < regs->num; i++)
1136 if (regs->array[i].set_in_loop < 0)
1137 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1139 /* Now that we've moved some things out of the loop, we might be able to
1140 hoist even more memory references. */
1141 load_mems (loop);
1143 /* Recalculate regs->array if load_mems has created new registers. */
1144 if (max_reg_num () > regs->num)
1145 loop_regs_scan (loop, 0);
1147 for (update_start = loop_start;
1148 PREV_INSN (update_start)
1149 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1150 update_start = PREV_INSN (update_start))
1152 update_end = NEXT_INSN (loop_end);
1154 reg_scan_update (update_start, update_end, loop_max_reg);
1155 loop_max_reg = max_reg_num ();
1157 if (flag_strength_reduce)
1159 if (update_end && GET_CODE (update_end) == CODE_LABEL)
1160 /* Ensure our label doesn't go away. */
1161 LABEL_NUSES (update_end)++;
1163 strength_reduce (loop, flags);
1165 reg_scan_update (update_start, update_end, loop_max_reg);
1166 loop_max_reg = max_reg_num ();
1168 if (update_end && GET_CODE (update_end) == CODE_LABEL
1169 && --LABEL_NUSES (update_end) == 0)
1170 delete_related_insns (update_end);
1174 /* The movable information is required for strength reduction. */
1175 loop_movables_free (movables);
1177 free (regs->array);
1178 regs->array = 0;
1179 regs->num = 0;
1182 /* Add elements to *OUTPUT to record all the pseudo-regs
1183 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1185 void
1186 record_excess_regs (in_this, not_in_this, output)
1187 rtx in_this, not_in_this;
1188 rtx *output;
1190 enum rtx_code code;
1191 const char *fmt;
1192 int i;
1194 code = GET_CODE (in_this);
1196 switch (code)
1198 case PC:
1199 case CC0:
1200 case CONST_INT:
1201 case CONST_DOUBLE:
1202 case CONST:
1203 case SYMBOL_REF:
1204 case LABEL_REF:
1205 return;
1207 case REG:
1208 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1209 && ! reg_mentioned_p (in_this, not_in_this))
1210 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1211 return;
1213 default:
1214 break;
1217 fmt = GET_RTX_FORMAT (code);
1218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1220 int j;
1222 switch (fmt[i])
1224 case 'E':
1225 for (j = 0; j < XVECLEN (in_this, i); j++)
1226 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1227 break;
1229 case 'e':
1230 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1231 break;
1236 /* Check what regs are referred to in the libcall block ending with INSN,
1237 aside from those mentioned in the equivalent value.
1238 If there are none, return 0.
1239 If there are one or more, return an EXPR_LIST containing all of them. */
1242 libcall_other_reg (insn, equiv)
1243 rtx insn, equiv;
1245 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1246 rtx p = XEXP (note, 0);
1247 rtx output = 0;
1249 /* First, find all the regs used in the libcall block
1250 that are not mentioned as inputs to the result. */
1252 while (p != insn)
1254 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1255 || GET_CODE (p) == CALL_INSN)
1256 record_excess_regs (PATTERN (p), equiv, &output);
1257 p = NEXT_INSN (p);
1260 return output;
1263 /* Return 1 if all uses of REG
1264 are between INSN and the end of the basic block. */
1266 static int
1267 reg_in_basic_block_p (insn, reg)
1268 rtx insn, reg;
1270 int regno = REGNO (reg);
1271 rtx p;
1273 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1274 return 0;
1276 /* Search this basic block for the already recorded last use of the reg. */
1277 for (p = insn; p; p = NEXT_INSN (p))
1279 switch (GET_CODE (p))
1281 case NOTE:
1282 break;
1284 case INSN:
1285 case CALL_INSN:
1286 /* Ordinary insn: if this is the last use, we win. */
1287 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1288 return 1;
1289 break;
1291 case JUMP_INSN:
1292 /* Jump insn: if this is the last use, we win. */
1293 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1294 return 1;
1295 /* Otherwise, it's the end of the basic block, so we lose. */
1296 return 0;
1298 case CODE_LABEL:
1299 case BARRIER:
1300 /* It's the end of the basic block, so we lose. */
1301 return 0;
1303 default:
1304 break;
1308 /* The "last use" that was recorded can't be found after the first
1309 use. This can happen when the last use was deleted while
1310 processing an inner loop, this inner loop was then completely
1311 unrolled, and the outer loop is always exited after the inner loop,
1312 so that everything after the first use becomes a single basic block. */
1313 return 1;
1316 /* Compute the benefit of eliminating the insns in the block whose
1317 last insn is LAST. This may be a group of insns used to compute a
1318 value directly or can contain a library call. */
1320 static int
1321 libcall_benefit (last)
1322 rtx last;
1324 rtx insn;
1325 int benefit = 0;
1327 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1328 insn != last; insn = NEXT_INSN (insn))
1330 if (GET_CODE (insn) == CALL_INSN)
1331 benefit += 10; /* Assume at least this many insns in a library
1332 routine. */
1333 else if (GET_CODE (insn) == INSN
1334 && GET_CODE (PATTERN (insn)) != USE
1335 && GET_CODE (PATTERN (insn)) != CLOBBER)
1336 benefit++;
1339 return benefit;
1342 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1344 static rtx
1345 skip_consec_insns (insn, count)
1346 rtx insn;
1347 int count;
1349 for (; count > 0; count--)
1351 rtx temp;
1353 /* If first insn of libcall sequence, skip to end. */
1354 /* Do this at start of loop, since INSN is guaranteed to
1355 be an insn here. */
1356 if (GET_CODE (insn) != NOTE
1357 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1358 insn = XEXP (temp, 0);
1361 insn = NEXT_INSN (insn);
1362 while (GET_CODE (insn) == NOTE);
1365 return insn;
1368 /* Ignore any movable whose insn falls within a libcall
1369 which is part of another movable.
1370 We make use of the fact that the movable for the libcall value
1371 was made later and so appears later on the chain. */
1373 static void
1374 ignore_some_movables (movables)
1375 struct loop_movables *movables;
1377 struct movable *m, *m1;
1379 for (m = movables->head; m; m = m->next)
1381 /* Is this a movable for the value of a libcall? */
1382 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1383 if (note)
1385 rtx insn;
1386 /* Check for earlier movables inside that range,
1387 and mark them invalid. We cannot use LUIDs here because
1388 insns created by loop.c for prior loops don't have LUIDs.
1389 Rather than reject all such insns from movables, we just
1390 explicitly check each insn in the libcall (since invariant
1391 libcalls aren't that common). */
1392 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1393 for (m1 = movables->head; m1 != m; m1 = m1->next)
1394 if (m1->insn == insn)
1395 m1->done = 1;
1400 /* For each movable insn, see if the reg that it loads
1401 leads when it dies right into another conditionally movable insn.
1402 If so, record that the second insn "forces" the first one,
1403 since the second can be moved only if the first is. */
1405 static void
1406 force_movables (movables)
1407 struct loop_movables *movables;
1409 struct movable *m, *m1;
1411 for (m1 = movables->head; m1; m1 = m1->next)
1412 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1413 if (!m1->partial && !m1->done)
1415 int regno = m1->regno;
1416 for (m = m1->next; m; m = m->next)
1417 /* ??? Could this be a bug? What if CSE caused the
1418 register of M1 to be used after this insn?
1419 Since CSE does not update regno_last_uid,
1420 this insn M->insn might not be where it dies.
1421 But very likely this doesn't matter; what matters is
1422 that M's reg is computed from M1's reg. */
1423 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1424 && !m->done)
1425 break;
1426 if (m != 0 && m->set_src == m1->set_dest
1427 /* If m->consec, m->set_src isn't valid. */
1428 && m->consec == 0)
1429 m = 0;
1431 /* Increase the priority of the moving the first insn
1432 since it permits the second to be moved as well. */
1433 if (m != 0)
1435 m->forces = m1;
1436 m1->lifetime += m->lifetime;
1437 m1->savings += m->savings;
1442 /* Find invariant expressions that are equal and can be combined into
1443 one register. */
1445 static void
1446 combine_movables (movables, regs)
1447 struct loop_movables *movables;
1448 struct loop_regs *regs;
1450 struct movable *m;
1451 char *matched_regs = (char *) xmalloc (regs->num);
1452 enum machine_mode mode;
1454 /* Regs that are set more than once are not allowed to match
1455 or be matched. I'm no longer sure why not. */
1456 /* Only pseudo registers are allowed to match or be matched,
1457 since move_movables does not validate the change. */
1458 /* Perhaps testing m->consec_sets would be more appropriate here? */
1460 for (m = movables->head; m; m = m->next)
1461 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1462 && m->regno >= FIRST_PSEUDO_REGISTER
1463 && !m->partial)
1465 struct movable *m1;
1466 int regno = m->regno;
1468 memset (matched_regs, 0, regs->num);
1469 matched_regs[regno] = 1;
1471 /* We want later insns to match the first one. Don't make the first
1472 one match any later ones. So start this loop at m->next. */
1473 for (m1 = m->next; m1; m1 = m1->next)
1474 if (m != m1 && m1->match == 0
1475 && regs->array[m1->regno].n_times_set == 1
1476 && m1->regno >= FIRST_PSEUDO_REGISTER
1477 /* A reg used outside the loop mustn't be eliminated. */
1478 && !m1->global
1479 /* A reg used for zero-extending mustn't be eliminated. */
1480 && !m1->partial
1481 && (matched_regs[m1->regno]
1484 /* Can combine regs with different modes loaded from the
1485 same constant only if the modes are the same or
1486 if both are integer modes with M wider or the same
1487 width as M1. The check for integer is redundant, but
1488 safe, since the only case of differing destination
1489 modes with equal sources is when both sources are
1490 VOIDmode, i.e., CONST_INT. */
1491 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1492 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1493 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1494 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1495 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1496 /* See if the source of M1 says it matches M. */
1497 && ((GET_CODE (m1->set_src) == REG
1498 && matched_regs[REGNO (m1->set_src)])
1499 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1500 movables, regs))))
1501 && ((m->dependencies == m1->dependencies)
1502 || rtx_equal_p (m->dependencies, m1->dependencies)))
1504 m->lifetime += m1->lifetime;
1505 m->savings += m1->savings;
1506 m1->done = 1;
1507 m1->match = m;
1508 matched_regs[m1->regno] = 1;
1512 /* Now combine the regs used for zero-extension.
1513 This can be done for those not marked `global'
1514 provided their lives don't overlap. */
1516 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1517 mode = GET_MODE_WIDER_MODE (mode))
1519 struct movable *m0 = 0;
1521 /* Combine all the registers for extension from mode MODE.
1522 Don't combine any that are used outside this loop. */
1523 for (m = movables->head; m; m = m->next)
1524 if (m->partial && ! m->global
1525 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1527 struct movable *m1;
1529 int first = REGNO_FIRST_LUID (m->regno);
1530 int last = REGNO_LAST_LUID (m->regno);
1532 if (m0 == 0)
1534 /* First one: don't check for overlap, just record it. */
1535 m0 = m;
1536 continue;
1539 /* Make sure they extend to the same mode.
1540 (Almost always true.) */
1541 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1542 continue;
1544 /* We already have one: check for overlap with those
1545 already combined together. */
1546 for (m1 = movables->head; m1 != m; m1 = m1->next)
1547 if (m1 == m0 || (m1->partial && m1->match == m0))
1548 if (! (REGNO_FIRST_LUID (m1->regno) > last
1549 || REGNO_LAST_LUID (m1->regno) < first))
1550 goto overlap;
1552 /* No overlap: we can combine this with the others. */
1553 m0->lifetime += m->lifetime;
1554 m0->savings += m->savings;
1555 m->done = 1;
1556 m->match = m0;
1558 overlap:
1563 /* Clean up. */
1564 free (matched_regs);
1567 /* Returns the number of movable instructions in LOOP that were not
1568 moved outside the loop. */
1570 static int
1571 num_unmoved_movables (loop)
1572 const struct loop *loop;
1574 int num = 0;
1575 struct movable *m;
1577 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1578 if (!m->done)
1579 ++num;
1581 return num;
1585 /* Return 1 if regs X and Y will become the same if moved. */
1587 static int
1588 regs_match_p (x, y, movables)
1589 rtx x, y;
1590 struct loop_movables *movables;
1592 unsigned int xn = REGNO (x);
1593 unsigned int yn = REGNO (y);
1594 struct movable *mx, *my;
1596 for (mx = movables->head; mx; mx = mx->next)
1597 if (mx->regno == xn)
1598 break;
1600 for (my = movables->head; my; my = my->next)
1601 if (my->regno == yn)
1602 break;
1604 return (mx && my
1605 && ((mx->match == my->match && mx->match != 0)
1606 || mx->match == my
1607 || mx == my->match));
1610 /* Return 1 if X and Y are identical-looking rtx's.
1611 This is the Lisp function EQUAL for rtx arguments.
1613 If two registers are matching movables or a movable register and an
1614 equivalent constant, consider them equal. */
1616 static int
1617 rtx_equal_for_loop_p (x, y, movables, regs)
1618 rtx x, y;
1619 struct loop_movables *movables;
1620 struct loop_regs *regs;
1622 int i;
1623 int j;
1624 struct movable *m;
1625 enum rtx_code code;
1626 const char *fmt;
1628 if (x == y)
1629 return 1;
1630 if (x == 0 || y == 0)
1631 return 0;
1633 code = GET_CODE (x);
1635 /* If we have a register and a constant, they may sometimes be
1636 equal. */
1637 if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
1638 && CONSTANT_P (y))
1640 for (m = movables->head; m; m = m->next)
1641 if (m->move_insn && m->regno == REGNO (x)
1642 && rtx_equal_p (m->set_src, y))
1643 return 1;
1645 else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
1646 && CONSTANT_P (x))
1648 for (m = movables->head; m; m = m->next)
1649 if (m->move_insn && m->regno == REGNO (y)
1650 && rtx_equal_p (m->set_src, x))
1651 return 1;
1654 /* Otherwise, rtx's of different codes cannot be equal. */
1655 if (code != GET_CODE (y))
1656 return 0;
1658 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1659 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1661 if (GET_MODE (x) != GET_MODE (y))
1662 return 0;
1664 /* These three types of rtx's can be compared nonrecursively. */
1665 if (code == REG)
1666 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1668 if (code == LABEL_REF)
1669 return XEXP (x, 0) == XEXP (y, 0);
1670 if (code == SYMBOL_REF)
1671 return XSTR (x, 0) == XSTR (y, 0);
1673 /* Compare the elements. If any pair of corresponding elements
1674 fail to match, return 0 for the whole things. */
1676 fmt = GET_RTX_FORMAT (code);
1677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1679 switch (fmt[i])
1681 case 'w':
1682 if (XWINT (x, i) != XWINT (y, i))
1683 return 0;
1684 break;
1686 case 'i':
1687 if (XINT (x, i) != XINT (y, i))
1688 return 0;
1689 break;
1691 case 'E':
1692 /* Two vectors must have the same length. */
1693 if (XVECLEN (x, i) != XVECLEN (y, i))
1694 return 0;
1696 /* And the corresponding elements must match. */
1697 for (j = 0; j < XVECLEN (x, i); j++)
1698 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
1699 movables, regs) == 0)
1700 return 0;
1701 break;
1703 case 'e':
1704 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
1705 == 0)
1706 return 0;
1707 break;
1709 case 's':
1710 if (strcmp (XSTR (x, i), XSTR (y, i)))
1711 return 0;
1712 break;
1714 case 'u':
1715 /* These are just backpointers, so they don't matter. */
1716 break;
1718 case '0':
1719 break;
1721 /* It is believed that rtx's at this level will never
1722 contain anything but integers and other rtx's,
1723 except for within LABEL_REFs and SYMBOL_REFs. */
1724 default:
1725 abort ();
1728 return 1;
1731 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1732 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1733 references is incremented once for each added note. */
1735 static void
1736 add_label_notes (x, insns)
1737 rtx x;
1738 rtx insns;
1740 enum rtx_code code = GET_CODE (x);
1741 int i, j;
1742 const char *fmt;
1743 rtx insn;
1745 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1747 /* This code used to ignore labels that referred to dispatch tables to
1748 avoid flow generating (slighly) worse code.
1750 We no longer ignore such label references (see LABEL_REF handling in
1751 mark_jump_label for additional information). */
1752 for (insn = insns; insn; insn = NEXT_INSN (insn))
1753 if (reg_mentioned_p (XEXP (x, 0), insn))
1755 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
1756 REG_NOTES (insn));
1757 if (LABEL_P (XEXP (x, 0)))
1758 LABEL_NUSES (XEXP (x, 0))++;
1762 fmt = GET_RTX_FORMAT (code);
1763 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1765 if (fmt[i] == 'e')
1766 add_label_notes (XEXP (x, i), insns);
1767 else if (fmt[i] == 'E')
1768 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1769 add_label_notes (XVECEXP (x, i, j), insns);
1773 /* Scan MOVABLES, and move the insns that deserve to be moved.
1774 If two matching movables are combined, replace one reg with the
1775 other throughout. */
1777 static void
1778 move_movables (loop, movables, threshold, insn_count)
1779 struct loop *loop;
1780 struct loop_movables *movables;
1781 int threshold;
1782 int insn_count;
1784 struct loop_regs *regs = LOOP_REGS (loop);
1785 int nregs = regs->num;
1786 rtx new_start = 0;
1787 struct movable *m;
1788 rtx p;
1789 rtx loop_start = loop->start;
1790 rtx loop_end = loop->end;
1791 /* Map of pseudo-register replacements to handle combining
1792 when we move several insns that load the same value
1793 into different pseudo-registers. */
1794 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1795 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1797 for (m = movables->head; m; m = m->next)
1799 /* Describe this movable insn. */
1801 if (loop_dump_stream)
1803 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1804 INSN_UID (m->insn), m->regno, m->lifetime);
1805 if (m->consec > 0)
1806 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1807 if (m->cond)
1808 fprintf (loop_dump_stream, "cond ");
1809 if (m->force)
1810 fprintf (loop_dump_stream, "force ");
1811 if (m->global)
1812 fprintf (loop_dump_stream, "global ");
1813 if (m->done)
1814 fprintf (loop_dump_stream, "done ");
1815 if (m->move_insn)
1816 fprintf (loop_dump_stream, "move-insn ");
1817 if (m->match)
1818 fprintf (loop_dump_stream, "matches %d ",
1819 INSN_UID (m->match->insn));
1820 if (m->forces)
1821 fprintf (loop_dump_stream, "forces %d ",
1822 INSN_UID (m->forces->insn));
1825 /* Ignore the insn if it's already done (it matched something else).
1826 Otherwise, see if it is now safe to move. */
1828 if (!m->done
1829 && (! m->cond
1830 || (1 == loop_invariant_p (loop, m->set_src)
1831 && (m->dependencies == 0
1832 || 1 == loop_invariant_p (loop, m->dependencies))
1833 && (m->consec == 0
1834 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1835 m->consec + 1,
1836 m->insn))))
1837 && (! m->forces || m->forces->done))
1839 int regno;
1840 rtx p;
1841 int savings = m->savings;
1843 /* We have an insn that is safe to move.
1844 Compute its desirability. */
1846 p = m->insn;
1847 regno = m->regno;
1849 if (loop_dump_stream)
1850 fprintf (loop_dump_stream, "savings %d ", savings);
1852 if (regs->array[regno].moved_once && loop_dump_stream)
1853 fprintf (loop_dump_stream, "halved since already moved ");
1855 /* An insn MUST be moved if we already moved something else
1856 which is safe only if this one is moved too: that is,
1857 if already_moved[REGNO] is nonzero. */
1859 /* An insn is desirable to move if the new lifetime of the
1860 register is no more than THRESHOLD times the old lifetime.
1861 If it's not desirable, it means the loop is so big
1862 that moving won't speed things up much,
1863 and it is liable to make register usage worse. */
1865 /* It is also desirable to move if it can be moved at no
1866 extra cost because something else was already moved. */
1868 if (already_moved[regno]
1869 || flag_move_all_movables
1870 || (threshold * savings * m->lifetime) >=
1871 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
1872 || (m->forces && m->forces->done
1873 && regs->array[m->forces->regno].n_times_set == 1))
1875 int count;
1876 struct movable *m1;
1877 rtx first = NULL_RTX;
1879 /* Now move the insns that set the reg. */
1881 if (m->partial && m->match)
1883 rtx newpat, i1;
1884 rtx r1, r2;
1885 /* Find the end of this chain of matching regs.
1886 Thus, we load each reg in the chain from that one reg.
1887 And that reg is loaded with 0 directly,
1888 since it has ->match == 0. */
1889 for (m1 = m; m1->match; m1 = m1->match);
1890 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1891 SET_DEST (PATTERN (m1->insn)));
1892 i1 = loop_insn_hoist (loop, newpat);
1894 /* Mark the moved, invariant reg as being allowed to
1895 share a hard reg with the other matching invariant. */
1896 REG_NOTES (i1) = REG_NOTES (m->insn);
1897 r1 = SET_DEST (PATTERN (m->insn));
1898 r2 = SET_DEST (PATTERN (m1->insn));
1899 regs_may_share
1900 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1901 gen_rtx_EXPR_LIST (VOIDmode, r2,
1902 regs_may_share));
1903 delete_insn (m->insn);
1905 if (new_start == 0)
1906 new_start = i1;
1908 if (loop_dump_stream)
1909 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1911 /* If we are to re-generate the item being moved with a
1912 new move insn, first delete what we have and then emit
1913 the move insn before the loop. */
1914 else if (m->move_insn)
1916 rtx i1, temp, seq;
1918 for (count = m->consec; count >= 0; count--)
1920 /* If this is the first insn of a library call sequence,
1921 skip to the end. */
1922 if (GET_CODE (p) != NOTE
1923 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1924 p = XEXP (temp, 0);
1926 /* If this is the last insn of a libcall sequence, then
1927 delete every insn in the sequence except the last.
1928 The last insn is handled in the normal manner. */
1929 if (GET_CODE (p) != NOTE
1930 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1932 temp = XEXP (temp, 0);
1933 while (temp != p)
1934 temp = delete_insn (temp);
1937 temp = p;
1938 p = delete_insn (p);
1940 /* simplify_giv_expr expects that it can walk the insns
1941 at m->insn forwards and see this old sequence we are
1942 tossing here. delete_insn does preserve the next
1943 pointers, but when we skip over a NOTE we must fix
1944 it up. Otherwise that code walks into the non-deleted
1945 insn stream. */
1946 while (p && GET_CODE (p) == NOTE)
1947 p = NEXT_INSN (temp) = NEXT_INSN (p);
1950 start_sequence ();
1951 emit_move_insn (m->set_dest, m->set_src);
1952 seq = get_insns ();
1953 end_sequence ();
1955 add_label_notes (m->set_src, seq);
1957 i1 = loop_insn_hoist (loop, seq);
1958 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1959 set_unique_reg_note (i1,
1960 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1961 m->set_src);
1963 if (loop_dump_stream)
1964 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1966 /* The more regs we move, the less we like moving them. */
1967 threshold -= 3;
1969 else
1971 for (count = m->consec; count >= 0; count--)
1973 rtx i1, temp;
1975 /* If first insn of libcall sequence, skip to end. */
1976 /* Do this at start of loop, since p is guaranteed to
1977 be an insn here. */
1978 if (GET_CODE (p) != NOTE
1979 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1980 p = XEXP (temp, 0);
1982 /* If last insn of libcall sequence, move all
1983 insns except the last before the loop. The last
1984 insn is handled in the normal manner. */
1985 if (GET_CODE (p) != NOTE
1986 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1988 rtx fn_address = 0;
1989 rtx fn_reg = 0;
1990 rtx fn_address_insn = 0;
1992 first = 0;
1993 for (temp = XEXP (temp, 0); temp != p;
1994 temp = NEXT_INSN (temp))
1996 rtx body;
1997 rtx n;
1998 rtx next;
2000 if (GET_CODE (temp) == NOTE)
2001 continue;
2003 body = PATTERN (temp);
2005 /* Find the next insn after TEMP,
2006 not counting USE or NOTE insns. */
2007 for (next = NEXT_INSN (temp); next != p;
2008 next = NEXT_INSN (next))
2009 if (! (GET_CODE (next) == INSN
2010 && GET_CODE (PATTERN (next)) == USE)
2011 && GET_CODE (next) != NOTE)
2012 break;
2014 /* If that is the call, this may be the insn
2015 that loads the function address.
2017 Extract the function address from the insn
2018 that loads it into a register.
2019 If this insn was cse'd, we get incorrect code.
2021 So emit a new move insn that copies the
2022 function address into the register that the
2023 call insn will use. flow.c will delete any
2024 redundant stores that we have created. */
2025 if (GET_CODE (next) == CALL_INSN
2026 && GET_CODE (body) == SET
2027 && GET_CODE (SET_DEST (body)) == REG
2028 && (n = find_reg_note (temp, REG_EQUAL,
2029 NULL_RTX)))
2031 fn_reg = SET_SRC (body);
2032 if (GET_CODE (fn_reg) != REG)
2033 fn_reg = SET_DEST (body);
2034 fn_address = XEXP (n, 0);
2035 fn_address_insn = temp;
2037 /* We have the call insn.
2038 If it uses the register we suspect it might,
2039 load it with the correct address directly. */
2040 if (GET_CODE (temp) == CALL_INSN
2041 && fn_address != 0
2042 && reg_referenced_p (fn_reg, body))
2043 loop_insn_emit_after (loop, 0, fn_address_insn,
2044 gen_move_insn
2045 (fn_reg, fn_address));
2047 if (GET_CODE (temp) == CALL_INSN)
2049 i1 = loop_call_insn_hoist (loop, body);
2050 /* Because the USAGE information potentially
2051 contains objects other than hard registers
2052 we need to copy it. */
2053 if (CALL_INSN_FUNCTION_USAGE (temp))
2054 CALL_INSN_FUNCTION_USAGE (i1)
2055 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2057 else
2058 i1 = loop_insn_hoist (loop, body);
2059 if (first == 0)
2060 first = i1;
2061 if (temp == fn_address_insn)
2062 fn_address_insn = i1;
2063 REG_NOTES (i1) = REG_NOTES (temp);
2064 REG_NOTES (temp) = NULL;
2065 delete_insn (temp);
2067 if (new_start == 0)
2068 new_start = first;
2070 if (m->savemode != VOIDmode)
2072 /* P sets REG to zero; but we should clear only
2073 the bits that are not covered by the mode
2074 m->savemode. */
2075 rtx reg = m->set_dest;
2076 rtx sequence;
2077 rtx tem;
2079 start_sequence ();
2080 tem = expand_simple_binop
2081 (GET_MODE (reg), AND, reg,
2082 GEN_INT ((((HOST_WIDE_INT) 1
2083 << GET_MODE_BITSIZE (m->savemode)))
2084 - 1),
2085 reg, 1, OPTAB_LIB_WIDEN);
2086 if (tem == 0)
2087 abort ();
2088 if (tem != reg)
2089 emit_move_insn (reg, tem);
2090 sequence = get_insns ();
2091 end_sequence ();
2092 i1 = loop_insn_hoist (loop, sequence);
2094 else if (GET_CODE (p) == CALL_INSN)
2096 i1 = loop_call_insn_hoist (loop, PATTERN (p));
2097 /* Because the USAGE information potentially
2098 contains objects other than hard registers
2099 we need to copy it. */
2100 if (CALL_INSN_FUNCTION_USAGE (p))
2101 CALL_INSN_FUNCTION_USAGE (i1)
2102 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2104 else if (count == m->consec && m->move_insn_first)
2106 rtx seq;
2107 /* The SET_SRC might not be invariant, so we must
2108 use the REG_EQUAL note. */
2109 start_sequence ();
2110 emit_move_insn (m->set_dest, m->set_src);
2111 seq = get_insns ();
2112 end_sequence ();
2114 add_label_notes (m->set_src, seq);
2116 i1 = loop_insn_hoist (loop, seq);
2117 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2118 set_unique_reg_note (i1, m->is_equiv ? REG_EQUIV
2119 : REG_EQUAL, m->set_src);
2121 else
2122 i1 = loop_insn_hoist (loop, PATTERN (p));
2124 if (REG_NOTES (i1) == 0)
2126 REG_NOTES (i1) = REG_NOTES (p);
2127 REG_NOTES (p) = NULL;
2129 /* If there is a REG_EQUAL note present whose value
2130 is not loop invariant, then delete it, since it
2131 may cause problems with later optimization passes.
2132 It is possible for cse to create such notes
2133 like this as a result of record_jump_cond. */
2135 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2136 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2137 remove_note (i1, temp);
2140 if (new_start == 0)
2141 new_start = i1;
2143 if (loop_dump_stream)
2144 fprintf (loop_dump_stream, " moved to %d",
2145 INSN_UID (i1));
2147 /* If library call, now fix the REG_NOTES that contain
2148 insn pointers, namely REG_LIBCALL on FIRST
2149 and REG_RETVAL on I1. */
2150 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2152 XEXP (temp, 0) = first;
2153 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2154 XEXP (temp, 0) = i1;
2157 temp = p;
2158 delete_insn (p);
2159 p = NEXT_INSN (p);
2161 /* simplify_giv_expr expects that it can walk the insns
2162 at m->insn forwards and see this old sequence we are
2163 tossing here. delete_insn does preserve the next
2164 pointers, but when we skip over a NOTE we must fix
2165 it up. Otherwise that code walks into the non-deleted
2166 insn stream. */
2167 while (p && GET_CODE (p) == NOTE)
2168 p = NEXT_INSN (temp) = NEXT_INSN (p);
2171 /* The more regs we move, the less we like moving them. */
2172 threshold -= 3;
2175 /* Any other movable that loads the same register
2176 MUST be moved. */
2177 already_moved[regno] = 1;
2179 /* This reg has been moved out of one loop. */
2180 regs->array[regno].moved_once = 1;
2182 /* The reg set here is now invariant. */
2183 if (! m->partial)
2185 int i;
2186 for (i = 0; i < LOOP_REGNO_NREGS (regno, m->set_dest); i++)
2187 regs->array[regno+i].set_in_loop = 0;
2190 m->done = 1;
2192 /* Change the length-of-life info for the register
2193 to say it lives at least the full length of this loop.
2194 This will help guide optimizations in outer loops. */
2196 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2197 /* This is the old insn before all the moved insns.
2198 We can't use the moved insn because it is out of range
2199 in uid_luid. Only the old insns have luids. */
2200 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2201 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2202 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2204 /* Combine with this moved insn any other matching movables. */
2206 if (! m->partial)
2207 for (m1 = movables->head; m1; m1 = m1->next)
2208 if (m1->match == m)
2210 rtx temp;
2212 /* Schedule the reg loaded by M1
2213 for replacement so that shares the reg of M.
2214 If the modes differ (only possible in restricted
2215 circumstances, make a SUBREG.
2217 Note this assumes that the target dependent files
2218 treat REG and SUBREG equally, including within
2219 GO_IF_LEGITIMATE_ADDRESS and in all the
2220 predicates since we never verify that replacing the
2221 original register with a SUBREG results in a
2222 recognizable insn. */
2223 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2224 reg_map[m1->regno] = m->set_dest;
2225 else
2226 reg_map[m1->regno]
2227 = gen_lowpart_common (GET_MODE (m1->set_dest),
2228 m->set_dest);
2230 /* Get rid of the matching insn
2231 and prevent further processing of it. */
2232 m1->done = 1;
2234 /* if library call, delete all insns. */
2235 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2236 NULL_RTX)))
2237 delete_insn_chain (XEXP (temp, 0), m1->insn);
2238 else
2239 delete_insn (m1->insn);
2241 /* Any other movable that loads the same register
2242 MUST be moved. */
2243 already_moved[m1->regno] = 1;
2245 /* The reg merged here is now invariant,
2246 if the reg it matches is invariant. */
2247 if (! m->partial)
2249 int i;
2250 for (i = 0;
2251 i < LOOP_REGNO_NREGS (regno, m1->set_dest);
2252 i++)
2253 regs->array[m1->regno+i].set_in_loop = 0;
2257 else if (loop_dump_stream)
2258 fprintf (loop_dump_stream, "not desirable");
2260 else if (loop_dump_stream && !m->match)
2261 fprintf (loop_dump_stream, "not safe");
2263 if (loop_dump_stream)
2264 fprintf (loop_dump_stream, "\n");
2267 if (new_start == 0)
2268 new_start = loop_start;
2270 /* Go through all the instructions in the loop, making
2271 all the register substitutions scheduled in REG_MAP. */
2272 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2273 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2274 || GET_CODE (p) == CALL_INSN)
2276 replace_regs (PATTERN (p), reg_map, nregs, 0);
2277 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2278 INSN_CODE (p) = -1;
2281 /* Clean up. */
2282 free (reg_map);
2283 free (already_moved);
2287 static void
2288 loop_movables_add (movables, m)
2289 struct loop_movables *movables;
2290 struct movable *m;
2292 if (movables->head == 0)
2293 movables->head = m;
2294 else
2295 movables->last->next = m;
2296 movables->last = m;
2300 static void
2301 loop_movables_free (movables)
2302 struct loop_movables *movables;
2304 struct movable *m;
2305 struct movable *m_next;
2307 for (m = movables->head; m; m = m_next)
2309 m_next = m->next;
2310 free (m);
2314 #if 0
2315 /* Scan X and replace the address of any MEM in it with ADDR.
2316 REG is the address that MEM should have before the replacement. */
2318 static void
2319 replace_call_address (x, reg, addr)
2320 rtx x, reg, addr;
2322 enum rtx_code code;
2323 int i;
2324 const char *fmt;
2326 if (x == 0)
2327 return;
2328 code = GET_CODE (x);
2329 switch (code)
2331 case PC:
2332 case CC0:
2333 case CONST_INT:
2334 case CONST_DOUBLE:
2335 case CONST:
2336 case SYMBOL_REF:
2337 case LABEL_REF:
2338 case REG:
2339 return;
2341 case SET:
2342 /* Short cut for very common case. */
2343 replace_call_address (XEXP (x, 1), reg, addr);
2344 return;
2346 case CALL:
2347 /* Short cut for very common case. */
2348 replace_call_address (XEXP (x, 0), reg, addr);
2349 return;
2351 case MEM:
2352 /* If this MEM uses a reg other than the one we expected,
2353 something is wrong. */
2354 if (XEXP (x, 0) != reg)
2355 abort ();
2356 XEXP (x, 0) = addr;
2357 return;
2359 default:
2360 break;
2363 fmt = GET_RTX_FORMAT (code);
2364 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2366 if (fmt[i] == 'e')
2367 replace_call_address (XEXP (x, i), reg, addr);
2368 else if (fmt[i] == 'E')
2370 int j;
2371 for (j = 0; j < XVECLEN (x, i); j++)
2372 replace_call_address (XVECEXP (x, i, j), reg, addr);
2376 #endif
2378 /* Return the number of memory refs to addresses that vary
2379 in the rtx X. */
2381 static int
2382 count_nonfixed_reads (loop, x)
2383 const struct loop *loop;
2384 rtx x;
2386 enum rtx_code code;
2387 int i;
2388 const char *fmt;
2389 int value;
2391 if (x == 0)
2392 return 0;
2394 code = GET_CODE (x);
2395 switch (code)
2397 case PC:
2398 case CC0:
2399 case CONST_INT:
2400 case CONST_DOUBLE:
2401 case CONST:
2402 case SYMBOL_REF:
2403 case LABEL_REF:
2404 case REG:
2405 return 0;
2407 case MEM:
2408 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2409 + count_nonfixed_reads (loop, XEXP (x, 0)));
2411 default:
2412 break;
2415 value = 0;
2416 fmt = GET_RTX_FORMAT (code);
2417 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2419 if (fmt[i] == 'e')
2420 value += count_nonfixed_reads (loop, XEXP (x, i));
2421 if (fmt[i] == 'E')
2423 int j;
2424 for (j = 0; j < XVECLEN (x, i); j++)
2425 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2428 return value;
2431 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2432 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2433 `unknown_address_altered', `unknown_constant_address_altered', and
2434 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2435 list `store_mems' in LOOP. */
2437 static void
2438 prescan_loop (loop)
2439 struct loop *loop;
2441 int level = 1;
2442 rtx insn;
2443 struct loop_info *loop_info = LOOP_INFO (loop);
2444 rtx start = loop->start;
2445 rtx end = loop->end;
2446 /* The label after END. Jumping here is just like falling off the
2447 end of the loop. We use next_nonnote_insn instead of next_label
2448 as a hedge against the (pathological) case where some actual insn
2449 might end up between the two. */
2450 rtx exit_target = next_nonnote_insn (end);
2452 loop_info->has_indirect_jump = indirect_jump_in_function;
2453 loop_info->pre_header_has_call = 0;
2454 loop_info->has_call = 0;
2455 loop_info->has_nonconst_call = 0;
2456 loop_info->has_prefetch = 0;
2457 loop_info->has_volatile = 0;
2458 loop_info->has_tablejump = 0;
2459 loop_info->has_multiple_exit_targets = 0;
2460 loop->level = 1;
2462 loop_info->unknown_address_altered = 0;
2463 loop_info->unknown_constant_address_altered = 0;
2464 loop_info->store_mems = NULL_RTX;
2465 loop_info->first_loop_store_insn = NULL_RTX;
2466 loop_info->mems_idx = 0;
2467 loop_info->num_mem_sets = 0;
2470 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
2471 insn = PREV_INSN (insn))
2473 if (GET_CODE (insn) == CALL_INSN)
2475 loop_info->pre_header_has_call = 1;
2476 break;
2480 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2481 insn = NEXT_INSN (insn))
2483 switch (GET_CODE (insn))
2485 case NOTE:
2486 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2488 ++level;
2489 /* Count number of loops contained in this one. */
2490 loop->level++;
2492 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2493 --level;
2494 break;
2496 case CALL_INSN:
2497 if (! CONST_OR_PURE_CALL_P (insn))
2499 loop_info->unknown_address_altered = 1;
2500 loop_info->has_nonconst_call = 1;
2502 else if (pure_call_p (insn))
2503 loop_info->has_nonconst_call = 1;
2504 loop_info->has_call = 1;
2505 if (can_throw_internal (insn))
2506 loop_info->has_multiple_exit_targets = 1;
2507 break;
2509 case JUMP_INSN:
2510 if (! loop_info->has_multiple_exit_targets)
2512 rtx set = pc_set (insn);
2514 if (set)
2516 rtx src = SET_SRC (set);
2517 rtx label1, label2;
2519 if (GET_CODE (src) == IF_THEN_ELSE)
2521 label1 = XEXP (src, 1);
2522 label2 = XEXP (src, 2);
2524 else
2526 label1 = src;
2527 label2 = NULL_RTX;
2532 if (label1 && label1 != pc_rtx)
2534 if (GET_CODE (label1) != LABEL_REF)
2536 /* Something tricky. */
2537 loop_info->has_multiple_exit_targets = 1;
2538 break;
2540 else if (XEXP (label1, 0) != exit_target
2541 && LABEL_OUTSIDE_LOOP_P (label1))
2543 /* A jump outside the current loop. */
2544 loop_info->has_multiple_exit_targets = 1;
2545 break;
2549 label1 = label2;
2550 label2 = NULL_RTX;
2552 while (label1);
2554 else
2556 /* A return, or something tricky. */
2557 loop_info->has_multiple_exit_targets = 1;
2560 /* FALLTHRU */
2562 case INSN:
2563 if (volatile_refs_p (PATTERN (insn)))
2564 loop_info->has_volatile = 1;
2566 if (GET_CODE (insn) == JUMP_INSN
2567 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2568 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2569 loop_info->has_tablejump = 1;
2571 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2572 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2573 loop_info->first_loop_store_insn = insn;
2575 if (flag_non_call_exceptions && can_throw_internal (insn))
2576 loop_info->has_multiple_exit_targets = 1;
2577 break;
2579 default:
2580 break;
2584 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2585 if (/* An exception thrown by a called function might land us
2586 anywhere. */
2587 ! loop_info->has_nonconst_call
2588 /* We don't want loads for MEMs moved to a location before the
2589 one at which their stack memory becomes allocated. (Note
2590 that this is not a problem for malloc, etc., since those
2591 require actual function calls. */
2592 && ! current_function_calls_alloca
2593 /* There are ways to leave the loop other than falling off the
2594 end. */
2595 && ! loop_info->has_multiple_exit_targets)
2596 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2597 insn = NEXT_INSN (insn))
2598 for_each_rtx (&insn, insert_loop_mem, loop_info);
2600 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2601 that loop_invariant_p and load_mems can use true_dependence
2602 to determine what is really clobbered. */
2603 if (loop_info->unknown_address_altered)
2605 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2607 loop_info->store_mems
2608 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2610 if (loop_info->unknown_constant_address_altered)
2612 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2614 RTX_UNCHANGING_P (mem) = 1;
2615 loop_info->store_mems
2616 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2620 /* Invalidate all loops containing LABEL. */
2622 static void
2623 invalidate_loops_containing_label (label)
2624 rtx label;
2626 struct loop *loop;
2627 for (loop = uid_loop[INSN_UID (label)]; loop; loop = loop->outer)
2628 loop->invalid = 1;
2631 /* Scan the function looking for loops. Record the start and end of each loop.
2632 Also mark as invalid loops any loops that contain a setjmp or are branched
2633 to from outside the loop. */
2635 static void
2636 find_and_verify_loops (f, loops)
2637 rtx f;
2638 struct loops *loops;
2640 rtx insn;
2641 rtx label;
2642 int num_loops;
2643 struct loop *current_loop;
2644 struct loop *next_loop;
2645 struct loop *loop;
2647 num_loops = loops->num;
2649 compute_luids (f, NULL_RTX, 0);
2651 /* If there are jumps to undefined labels,
2652 treat them as jumps out of any/all loops.
2653 This also avoids writing past end of tables when there are no loops. */
2654 uid_loop[0] = NULL;
2656 /* Find boundaries of loops, mark which loops are contained within
2657 loops, and invalidate loops that have setjmp. */
2659 num_loops = 0;
2660 current_loop = NULL;
2661 for (insn = f; insn; insn = NEXT_INSN (insn))
2663 if (GET_CODE (insn) == NOTE)
2664 switch (NOTE_LINE_NUMBER (insn))
2666 case NOTE_INSN_LOOP_BEG:
2667 next_loop = loops->array + num_loops;
2668 next_loop->num = num_loops;
2669 num_loops++;
2670 next_loop->start = insn;
2671 next_loop->outer = current_loop;
2672 current_loop = next_loop;
2673 break;
2675 case NOTE_INSN_LOOP_CONT:
2676 current_loop->cont = insn;
2677 break;
2679 case NOTE_INSN_LOOP_VTOP:
2680 current_loop->vtop = insn;
2681 break;
2683 case NOTE_INSN_LOOP_END:
2684 if (! current_loop)
2685 abort ();
2687 current_loop->end = insn;
2688 current_loop = current_loop->outer;
2689 break;
2691 default:
2692 break;
2695 if (GET_CODE (insn) == CALL_INSN
2696 && find_reg_note (insn, REG_SETJMP, NULL))
2698 /* In this case, we must invalidate our current loop and any
2699 enclosing loop. */
2700 for (loop = current_loop; loop; loop = loop->outer)
2702 loop->invalid = 1;
2703 if (loop_dump_stream)
2704 fprintf (loop_dump_stream,
2705 "\nLoop at %d ignored due to setjmp.\n",
2706 INSN_UID (loop->start));
2710 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2711 enclosing loop, but this doesn't matter. */
2712 uid_loop[INSN_UID (insn)] = current_loop;
2715 /* Any loop containing a label used in an initializer must be invalidated,
2716 because it can be jumped into from anywhere. */
2717 for (label = forced_labels; label; label = XEXP (label, 1))
2718 invalidate_loops_containing_label (XEXP (label, 0));
2720 /* Any loop containing a label used for an exception handler must be
2721 invalidated, because it can be jumped into from anywhere. */
2722 for_each_eh_label (invalidate_loops_containing_label);
2724 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2725 loop that it is not contained within, that loop is marked invalid.
2726 If any INSN or CALL_INSN uses a label's address, then the loop containing
2727 that label is marked invalid, because it could be jumped into from
2728 anywhere.
2730 Also look for blocks of code ending in an unconditional branch that
2731 exits the loop. If such a block is surrounded by a conditional
2732 branch around the block, move the block elsewhere (see below) and
2733 invert the jump to point to the code block. This may eliminate a
2734 label in our loop and will simplify processing by both us and a
2735 possible second cse pass. */
2737 for (insn = f; insn; insn = NEXT_INSN (insn))
2738 if (INSN_P (insn))
2740 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2742 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2744 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2745 if (note)
2746 invalidate_loops_containing_label (XEXP (note, 0));
2749 if (GET_CODE (insn) != JUMP_INSN)
2750 continue;
2752 mark_loop_jump (PATTERN (insn), this_loop);
2754 /* See if this is an unconditional branch outside the loop. */
2755 if (this_loop
2756 && (GET_CODE (PATTERN (insn)) == RETURN
2757 || (any_uncondjump_p (insn)
2758 && onlyjump_p (insn)
2759 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2760 != this_loop)))
2761 && get_max_uid () < max_uid_for_loop)
2763 rtx p;
2764 rtx our_next = next_real_insn (insn);
2765 rtx last_insn_to_move = NEXT_INSN (insn);
2766 struct loop *dest_loop;
2767 struct loop *outer_loop = NULL;
2769 /* Go backwards until we reach the start of the loop, a label,
2770 or a JUMP_INSN. */
2771 for (p = PREV_INSN (insn);
2772 GET_CODE (p) != CODE_LABEL
2773 && ! (GET_CODE (p) == NOTE
2774 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2775 && GET_CODE (p) != JUMP_INSN;
2776 p = PREV_INSN (p))
2779 /* Check for the case where we have a jump to an inner nested
2780 loop, and do not perform the optimization in that case. */
2782 if (JUMP_LABEL (insn))
2784 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2785 if (dest_loop)
2787 for (outer_loop = dest_loop; outer_loop;
2788 outer_loop = outer_loop->outer)
2789 if (outer_loop == this_loop)
2790 break;
2794 /* Make sure that the target of P is within the current loop. */
2796 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2797 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2798 outer_loop = this_loop;
2800 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2801 we have a block of code to try to move.
2803 We look backward and then forward from the target of INSN
2804 to find a BARRIER at the same loop depth as the target.
2805 If we find such a BARRIER, we make a new label for the start
2806 of the block, invert the jump in P and point it to that label,
2807 and move the block of code to the spot we found. */
2809 if (! outer_loop
2810 && GET_CODE (p) == JUMP_INSN
2811 && JUMP_LABEL (p) != 0
2812 /* Just ignore jumps to labels that were never emitted.
2813 These always indicate compilation errors. */
2814 && INSN_UID (JUMP_LABEL (p)) != 0
2815 && any_condjump_p (p) && onlyjump_p (p)
2816 && next_real_insn (JUMP_LABEL (p)) == our_next
2817 /* If it's not safe to move the sequence, then we
2818 mustn't try. */
2819 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2820 &last_insn_to_move))
2822 rtx target
2823 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2824 struct loop *target_loop = uid_loop[INSN_UID (target)];
2825 rtx loc, loc2;
2826 rtx tmp;
2828 /* Search for possible garbage past the conditional jumps
2829 and look for the last barrier. */
2830 for (tmp = last_insn_to_move;
2831 tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
2832 if (GET_CODE (tmp) == BARRIER)
2833 last_insn_to_move = tmp;
2835 for (loc = target; loc; loc = PREV_INSN (loc))
2836 if (GET_CODE (loc) == BARRIER
2837 /* Don't move things inside a tablejump. */
2838 && ((loc2 = next_nonnote_insn (loc)) == 0
2839 || GET_CODE (loc2) != CODE_LABEL
2840 || (loc2 = next_nonnote_insn (loc2)) == 0
2841 || GET_CODE (loc2) != JUMP_INSN
2842 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2843 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2844 && uid_loop[INSN_UID (loc)] == target_loop)
2845 break;
2847 if (loc == 0)
2848 for (loc = target; loc; loc = NEXT_INSN (loc))
2849 if (GET_CODE (loc) == BARRIER
2850 /* Don't move things inside a tablejump. */
2851 && ((loc2 = next_nonnote_insn (loc)) == 0
2852 || GET_CODE (loc2) != CODE_LABEL
2853 || (loc2 = next_nonnote_insn (loc2)) == 0
2854 || GET_CODE (loc2) != JUMP_INSN
2855 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2856 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2857 && uid_loop[INSN_UID (loc)] == target_loop)
2858 break;
2860 if (loc)
2862 rtx cond_label = JUMP_LABEL (p);
2863 rtx new_label = get_label_after (p);
2865 /* Ensure our label doesn't go away. */
2866 LABEL_NUSES (cond_label)++;
2868 /* Verify that uid_loop is large enough and that
2869 we can invert P. */
2870 if (invert_jump (p, new_label, 1))
2872 rtx q, r;
2874 /* If no suitable BARRIER was found, create a suitable
2875 one before TARGET. Since TARGET is a fall through
2876 path, we'll need to insert an jump around our block
2877 and add a BARRIER before TARGET.
2879 This creates an extra unconditional jump outside
2880 the loop. However, the benefits of removing rarely
2881 executed instructions from inside the loop usually
2882 outweighs the cost of the extra unconditional jump
2883 outside the loop. */
2884 if (loc == 0)
2886 rtx temp;
2888 temp = gen_jump (JUMP_LABEL (insn));
2889 temp = emit_jump_insn_before (temp, target);
2890 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2891 LABEL_NUSES (JUMP_LABEL (insn))++;
2892 loc = emit_barrier_before (target);
2895 /* Include the BARRIER after INSN and copy the
2896 block after LOC. */
2897 if (squeeze_notes (&new_label, &last_insn_to_move))
2898 abort ();
2899 reorder_insns (new_label, last_insn_to_move, loc);
2901 /* All those insns are now in TARGET_LOOP. */
2902 for (q = new_label;
2903 q != NEXT_INSN (last_insn_to_move);
2904 q = NEXT_INSN (q))
2905 uid_loop[INSN_UID (q)] = target_loop;
2907 /* The label jumped to by INSN is no longer a loop
2908 exit. Unless INSN does not have a label (e.g.,
2909 it is a RETURN insn), search loop->exit_labels
2910 to find its label_ref, and remove it. Also turn
2911 off LABEL_OUTSIDE_LOOP_P bit. */
2912 if (JUMP_LABEL (insn))
2914 for (q = 0, r = this_loop->exit_labels;
2916 q = r, r = LABEL_NEXTREF (r))
2917 if (XEXP (r, 0) == JUMP_LABEL (insn))
2919 LABEL_OUTSIDE_LOOP_P (r) = 0;
2920 if (q)
2921 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2922 else
2923 this_loop->exit_labels = LABEL_NEXTREF (r);
2924 break;
2927 for (loop = this_loop; loop && loop != target_loop;
2928 loop = loop->outer)
2929 loop->exit_count--;
2931 /* If we didn't find it, then something is
2932 wrong. */
2933 if (! r)
2934 abort ();
2937 /* P is now a jump outside the loop, so it must be put
2938 in loop->exit_labels, and marked as such.
2939 The easiest way to do this is to just call
2940 mark_loop_jump again for P. */
2941 mark_loop_jump (PATTERN (p), this_loop);
2943 /* If INSN now jumps to the insn after it,
2944 delete INSN. */
2945 if (JUMP_LABEL (insn) != 0
2946 && (next_real_insn (JUMP_LABEL (insn))
2947 == next_real_insn (insn)))
2948 delete_related_insns (insn);
2951 /* Continue the loop after where the conditional
2952 branch used to jump, since the only branch insn
2953 in the block (if it still remains) is an inter-loop
2954 branch and hence needs no processing. */
2955 insn = NEXT_INSN (cond_label);
2957 if (--LABEL_NUSES (cond_label) == 0)
2958 delete_related_insns (cond_label);
2960 /* This loop will be continued with NEXT_INSN (insn). */
2961 insn = PREV_INSN (insn);
2968 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2969 loops it is contained in, mark the target loop invalid.
2971 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2973 static void
2974 mark_loop_jump (x, loop)
2975 rtx x;
2976 struct loop *loop;
2978 struct loop *dest_loop;
2979 struct loop *outer_loop;
2980 int i;
2982 switch (GET_CODE (x))
2984 case PC:
2985 case USE:
2986 case CLOBBER:
2987 case REG:
2988 case MEM:
2989 case CONST_INT:
2990 case CONST_DOUBLE:
2991 case RETURN:
2992 return;
2994 case CONST:
2995 /* There could be a label reference in here. */
2996 mark_loop_jump (XEXP (x, 0), loop);
2997 return;
2999 case PLUS:
3000 case MINUS:
3001 case MULT:
3002 mark_loop_jump (XEXP (x, 0), loop);
3003 mark_loop_jump (XEXP (x, 1), loop);
3004 return;
3006 case LO_SUM:
3007 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3008 mark_loop_jump (XEXP (x, 1), loop);
3009 return;
3011 case SIGN_EXTEND:
3012 case ZERO_EXTEND:
3013 mark_loop_jump (XEXP (x, 0), loop);
3014 return;
3016 case LABEL_REF:
3017 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3019 /* Link together all labels that branch outside the loop. This
3020 is used by final_[bg]iv_value and the loop unrolling code. Also
3021 mark this LABEL_REF so we know that this branch should predict
3022 false. */
3024 /* A check to make sure the label is not in an inner nested loop,
3025 since this does not count as a loop exit. */
3026 if (dest_loop)
3028 for (outer_loop = dest_loop; outer_loop;
3029 outer_loop = outer_loop->outer)
3030 if (outer_loop == loop)
3031 break;
3033 else
3034 outer_loop = NULL;
3036 if (loop && ! outer_loop)
3038 LABEL_OUTSIDE_LOOP_P (x) = 1;
3039 LABEL_NEXTREF (x) = loop->exit_labels;
3040 loop->exit_labels = x;
3042 for (outer_loop = loop;
3043 outer_loop && outer_loop != dest_loop;
3044 outer_loop = outer_loop->outer)
3045 outer_loop->exit_count++;
3048 /* If this is inside a loop, but not in the current loop or one enclosed
3049 by it, it invalidates at least one loop. */
3051 if (! dest_loop)
3052 return;
3054 /* We must invalidate every nested loop containing the target of this
3055 label, except those that also contain the jump insn. */
3057 for (; dest_loop; dest_loop = dest_loop->outer)
3059 /* Stop when we reach a loop that also contains the jump insn. */
3060 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3061 if (dest_loop == outer_loop)
3062 return;
3064 /* If we get here, we know we need to invalidate a loop. */
3065 if (loop_dump_stream && ! dest_loop->invalid)
3066 fprintf (loop_dump_stream,
3067 "\nLoop at %d ignored due to multiple entry points.\n",
3068 INSN_UID (dest_loop->start));
3070 dest_loop->invalid = 1;
3072 return;
3074 case SET:
3075 /* If this is not setting pc, ignore. */
3076 if (SET_DEST (x) == pc_rtx)
3077 mark_loop_jump (SET_SRC (x), loop);
3078 return;
3080 case IF_THEN_ELSE:
3081 mark_loop_jump (XEXP (x, 1), loop);
3082 mark_loop_jump (XEXP (x, 2), loop);
3083 return;
3085 case PARALLEL:
3086 case ADDR_VEC:
3087 for (i = 0; i < XVECLEN (x, 0); i++)
3088 mark_loop_jump (XVECEXP (x, 0, i), loop);
3089 return;
3091 case ADDR_DIFF_VEC:
3092 for (i = 0; i < XVECLEN (x, 1); i++)
3093 mark_loop_jump (XVECEXP (x, 1, i), loop);
3094 return;
3096 default:
3097 /* Strictly speaking this is not a jump into the loop, only a possible
3098 jump out of the loop. However, we have no way to link the destination
3099 of this jump onto the list of exit labels. To be safe we mark this
3100 loop and any containing loops as invalid. */
3101 if (loop)
3103 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3105 if (loop_dump_stream && ! outer_loop->invalid)
3106 fprintf (loop_dump_stream,
3107 "\nLoop at %d ignored due to unknown exit jump.\n",
3108 INSN_UID (outer_loop->start));
3109 outer_loop->invalid = 1;
3112 return;
3116 /* Return nonzero if there is a label in the range from
3117 insn INSN to and including the insn whose luid is END
3118 INSN must have an assigned luid (i.e., it must not have
3119 been previously created by loop.c). */
3121 static int
3122 labels_in_range_p (insn, end)
3123 rtx insn;
3124 int end;
3126 while (insn && INSN_LUID (insn) <= end)
3128 if (GET_CODE (insn) == CODE_LABEL)
3129 return 1;
3130 insn = NEXT_INSN (insn);
3133 return 0;
3136 /* Record that a memory reference X is being set. */
3138 static void
3139 note_addr_stored (x, y, data)
3140 rtx x;
3141 rtx y ATTRIBUTE_UNUSED;
3142 void *data ATTRIBUTE_UNUSED;
3144 struct loop_info *loop_info = data;
3146 if (x == 0 || GET_CODE (x) != MEM)
3147 return;
3149 /* Count number of memory writes.
3150 This affects heuristics in strength_reduce. */
3151 loop_info->num_mem_sets++;
3153 /* BLKmode MEM means all memory is clobbered. */
3154 if (GET_MODE (x) == BLKmode)
3156 if (RTX_UNCHANGING_P (x))
3157 loop_info->unknown_constant_address_altered = 1;
3158 else
3159 loop_info->unknown_address_altered = 1;
3161 return;
3164 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3165 loop_info->store_mems);
3168 /* X is a value modified by an INSN that references a biv inside a loop
3169 exit test (ie, X is somehow related to the value of the biv). If X
3170 is a pseudo that is used more than once, then the biv is (effectively)
3171 used more than once. DATA is a pointer to a loop_regs structure. */
3173 static void
3174 note_set_pseudo_multiple_uses (x, y, data)
3175 rtx x;
3176 rtx y ATTRIBUTE_UNUSED;
3177 void *data;
3179 struct loop_regs *regs = (struct loop_regs *) data;
3181 if (x == 0)
3182 return;
3184 while (GET_CODE (x) == STRICT_LOW_PART
3185 || GET_CODE (x) == SIGN_EXTRACT
3186 || GET_CODE (x) == ZERO_EXTRACT
3187 || GET_CODE (x) == SUBREG)
3188 x = XEXP (x, 0);
3190 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3191 return;
3193 /* If we do not have usage information, or if we know the register
3194 is used more than once, note that fact for check_dbra_loop. */
3195 if (REGNO (x) >= max_reg_before_loop
3196 || ! regs->array[REGNO (x)].single_usage
3197 || regs->array[REGNO (x)].single_usage == const0_rtx)
3198 regs->multiple_uses = 1;
3201 /* Return nonzero if the rtx X is invariant over the current loop.
3203 The value is 2 if we refer to something only conditionally invariant.
3205 A memory ref is invariant if it is not volatile and does not conflict
3206 with anything stored in `loop_info->store_mems'. */
3209 loop_invariant_p (loop, x)
3210 const struct loop *loop;
3211 rtx x;
3213 struct loop_info *loop_info = LOOP_INFO (loop);
3214 struct loop_regs *regs = LOOP_REGS (loop);
3215 int i;
3216 enum rtx_code code;
3217 const char *fmt;
3218 int conditional = 0;
3219 rtx mem_list_entry;
3221 if (x == 0)
3222 return 1;
3223 code = GET_CODE (x);
3224 switch (code)
3226 case CONST_INT:
3227 case CONST_DOUBLE:
3228 case SYMBOL_REF:
3229 case CONST:
3230 return 1;
3232 case LABEL_REF:
3233 /* A LABEL_REF is normally invariant, however, if we are unrolling
3234 loops, and this label is inside the loop, then it isn't invariant.
3235 This is because each unrolled copy of the loop body will have
3236 a copy of this label. If this was invariant, then an insn loading
3237 the address of this label into a register might get moved outside
3238 the loop, and then each loop body would end up using the same label.
3240 We don't know the loop bounds here though, so just fail for all
3241 labels. */
3242 if (flag_unroll_loops)
3243 return 0;
3244 else
3245 return 1;
3247 case PC:
3248 case CC0:
3249 case UNSPEC_VOLATILE:
3250 return 0;
3252 case REG:
3253 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3254 since the reg might be set by initialization within the loop. */
3256 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3257 || x == arg_pointer_rtx || x == pic_offset_table_rtx)
3258 && ! current_function_has_nonlocal_goto)
3259 return 1;
3261 if (LOOP_INFO (loop)->has_call
3262 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3263 return 0;
3265 if (regs->array[REGNO (x)].set_in_loop < 0)
3266 return 2;
3268 return regs->array[REGNO (x)].set_in_loop == 0;
3270 case MEM:
3271 /* Volatile memory references must be rejected. Do this before
3272 checking for read-only items, so that volatile read-only items
3273 will be rejected also. */
3274 if (MEM_VOLATILE_P (x))
3275 return 0;
3277 /* See if there is any dependence between a store and this load. */
3278 mem_list_entry = loop_info->store_mems;
3279 while (mem_list_entry)
3281 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3282 x, rtx_varies_p))
3283 return 0;
3285 mem_list_entry = XEXP (mem_list_entry, 1);
3288 /* It's not invalidated by a store in memory
3289 but we must still verify the address is invariant. */
3290 break;
3292 case ASM_OPERANDS:
3293 /* Don't mess with insns declared volatile. */
3294 if (MEM_VOLATILE_P (x))
3295 return 0;
3296 break;
3298 default:
3299 break;
3302 fmt = GET_RTX_FORMAT (code);
3303 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3305 if (fmt[i] == 'e')
3307 int tem = loop_invariant_p (loop, XEXP (x, i));
3308 if (tem == 0)
3309 return 0;
3310 if (tem == 2)
3311 conditional = 1;
3313 else if (fmt[i] == 'E')
3315 int j;
3316 for (j = 0; j < XVECLEN (x, i); j++)
3318 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3319 if (tem == 0)
3320 return 0;
3321 if (tem == 2)
3322 conditional = 1;
3328 return 1 + conditional;
3331 /* Return nonzero if all the insns in the loop that set REG
3332 are INSN and the immediately following insns,
3333 and if each of those insns sets REG in an invariant way
3334 (not counting uses of REG in them).
3336 The value is 2 if some of these insns are only conditionally invariant.
3338 We assume that INSN itself is the first set of REG
3339 and that its source is invariant. */
3341 static int
3342 consec_sets_invariant_p (loop, reg, n_sets, insn)
3343 const struct loop *loop;
3344 int n_sets;
3345 rtx reg, insn;
3347 struct loop_regs *regs = LOOP_REGS (loop);
3348 rtx p = insn;
3349 unsigned int regno = REGNO (reg);
3350 rtx temp;
3351 /* Number of sets we have to insist on finding after INSN. */
3352 int count = n_sets - 1;
3353 int old = regs->array[regno].set_in_loop;
3354 int value = 0;
3355 int this;
3357 /* If N_SETS hit the limit, we can't rely on its value. */
3358 if (n_sets == 127)
3359 return 0;
3361 regs->array[regno].set_in_loop = 0;
3363 while (count > 0)
3365 enum rtx_code code;
3366 rtx set;
3368 p = NEXT_INSN (p);
3369 code = GET_CODE (p);
3371 /* If library call, skip to end of it. */
3372 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3373 p = XEXP (temp, 0);
3375 this = 0;
3376 if (code == INSN
3377 && (set = single_set (p))
3378 && GET_CODE (SET_DEST (set)) == REG
3379 && REGNO (SET_DEST (set)) == regno)
3381 this = loop_invariant_p (loop, SET_SRC (set));
3382 if (this != 0)
3383 value |= this;
3384 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3386 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3387 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3388 notes are OK. */
3389 this = (CONSTANT_P (XEXP (temp, 0))
3390 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3391 && loop_invariant_p (loop, XEXP (temp, 0))));
3392 if (this != 0)
3393 value |= this;
3396 if (this != 0)
3397 count--;
3398 else if (code != NOTE)
3400 regs->array[regno].set_in_loop = old;
3401 return 0;
3405 regs->array[regno].set_in_loop = old;
3406 /* If loop_invariant_p ever returned 2, we return 2. */
3407 return 1 + (value & 2);
3410 #if 0
3411 /* I don't think this condition is sufficient to allow INSN
3412 to be moved, so we no longer test it. */
3414 /* Return 1 if all insns in the basic block of INSN and following INSN
3415 that set REG are invariant according to TABLE. */
3417 static int
3418 all_sets_invariant_p (reg, insn, table)
3419 rtx reg, insn;
3420 short *table;
3422 rtx p = insn;
3423 int regno = REGNO (reg);
3425 while (1)
3427 enum rtx_code code;
3428 p = NEXT_INSN (p);
3429 code = GET_CODE (p);
3430 if (code == CODE_LABEL || code == JUMP_INSN)
3431 return 1;
3432 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3433 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3434 && REGNO (SET_DEST (PATTERN (p))) == regno)
3436 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3437 return 0;
3441 #endif /* 0 */
3443 /* Look at all uses (not sets) of registers in X. For each, if it is
3444 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3445 a different insn, set USAGE[REGNO] to const0_rtx. */
3447 static void
3448 find_single_use_in_loop (regs, insn, x)
3449 struct loop_regs *regs;
3450 rtx insn;
3451 rtx x;
3453 enum rtx_code code = GET_CODE (x);
3454 const char *fmt = GET_RTX_FORMAT (code);
3455 int i, j;
3457 if (code == REG)
3458 regs->array[REGNO (x)].single_usage
3459 = (regs->array[REGNO (x)].single_usage != 0
3460 && regs->array[REGNO (x)].single_usage != insn)
3461 ? const0_rtx : insn;
3463 else if (code == SET)
3465 /* Don't count SET_DEST if it is a REG; otherwise count things
3466 in SET_DEST because if a register is partially modified, it won't
3467 show up as a potential movable so we don't care how USAGE is set
3468 for it. */
3469 if (GET_CODE (SET_DEST (x)) != REG)
3470 find_single_use_in_loop (regs, insn, SET_DEST (x));
3471 find_single_use_in_loop (regs, insn, SET_SRC (x));
3473 else
3474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3476 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3477 find_single_use_in_loop (regs, insn, XEXP (x, i));
3478 else if (fmt[i] == 'E')
3479 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3480 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3484 /* Count and record any set in X which is contained in INSN. Update
3485 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3486 in X. */
3488 static void
3489 count_one_set (regs, insn, x, last_set)
3490 struct loop_regs *regs;
3491 rtx insn, x;
3492 rtx *last_set;
3494 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3495 /* Don't move a reg that has an explicit clobber.
3496 It's not worth the pain to try to do it correctly. */
3497 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3499 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3501 rtx dest = SET_DEST (x);
3502 while (GET_CODE (dest) == SUBREG
3503 || GET_CODE (dest) == ZERO_EXTRACT
3504 || GET_CODE (dest) == SIGN_EXTRACT
3505 || GET_CODE (dest) == STRICT_LOW_PART)
3506 dest = XEXP (dest, 0);
3507 if (GET_CODE (dest) == REG)
3509 int i;
3510 int regno = REGNO (dest);
3511 for (i = 0; i < LOOP_REGNO_NREGS (regno, dest); i++)
3513 /* If this is the first setting of this reg
3514 in current basic block, and it was set before,
3515 it must be set in two basic blocks, so it cannot
3516 be moved out of the loop. */
3517 if (regs->array[regno].set_in_loop > 0
3518 && last_set == 0)
3519 regs->array[regno+i].may_not_optimize = 1;
3520 /* If this is not first setting in current basic block,
3521 see if reg was used in between previous one and this.
3522 If so, neither one can be moved. */
3523 if (last_set[regno] != 0
3524 && reg_used_between_p (dest, last_set[regno], insn))
3525 regs->array[regno+i].may_not_optimize = 1;
3526 if (regs->array[regno+i].set_in_loop < 127)
3527 ++regs->array[regno+i].set_in_loop;
3528 last_set[regno+i] = insn;
3534 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3535 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3536 contained in insn INSN is used by any insn that precedes INSN in
3537 cyclic order starting from the loop entry point.
3539 We don't want to use INSN_LUID here because if we restrict INSN to those
3540 that have a valid INSN_LUID, it means we cannot move an invariant out
3541 from an inner loop past two loops. */
3543 static int
3544 loop_reg_used_before_p (loop, set, insn)
3545 const struct loop *loop;
3546 rtx set, insn;
3548 rtx reg = SET_DEST (set);
3549 rtx p;
3551 /* Scan forward checking for register usage. If we hit INSN, we
3552 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3553 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3555 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3556 return 1;
3558 if (p == loop->end)
3559 p = loop->start;
3562 return 0;
3566 /* Information we collect about arrays that we might want to prefetch. */
3567 struct prefetch_info
3569 struct iv_class *class; /* Class this prefetch is based on. */
3570 struct induction *giv; /* GIV this prefetch is based on. */
3571 rtx base_address; /* Start prefetching from this address plus
3572 index. */
3573 HOST_WIDE_INT index;
3574 HOST_WIDE_INT stride; /* Prefetch stride in bytes in each
3575 iteration. */
3576 unsigned int bytes_accessed; /* Sum of sizes of all acceses to this
3577 prefetch area in one iteration. */
3578 unsigned int total_bytes; /* Total bytes loop will access in this block.
3579 This is set only for loops with known
3580 iteration counts and is 0xffffffff
3581 otherwise. */
3582 int prefetch_in_loop; /* Number of prefetch insns in loop. */
3583 int prefetch_before_loop; /* Number of prefetch insns before loop. */
3584 unsigned int write : 1; /* 1 for read/write prefetches. */
3587 /* Data used by check_store function. */
3588 struct check_store_data
3590 rtx mem_address;
3591 int mem_write;
3594 static void check_store PARAMS ((rtx, rtx, void *));
3595 static void emit_prefetch_instructions PARAMS ((struct loop *));
3596 static int rtx_equal_for_prefetch_p PARAMS ((rtx, rtx));
3598 /* Set mem_write when mem_address is found. Used as callback to
3599 note_stores. */
3600 static void
3601 check_store (x, pat, data)
3602 rtx x, pat ATTRIBUTE_UNUSED;
3603 void *data;
3605 struct check_store_data *d = (struct check_store_data *) data;
3607 if ((GET_CODE (x) == MEM) && rtx_equal_p (d->mem_address, XEXP (x, 0)))
3608 d->mem_write = 1;
3611 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3612 important to get some addresses combined. Later more sophisticated
3613 transformations can be added when necesary.
3615 ??? Same trick with swapping operand is done at several other places.
3616 It can be nice to develop some common way to handle this. */
3618 static int
3619 rtx_equal_for_prefetch_p (x, y)
3620 rtx x, y;
3622 int i;
3623 int j;
3624 enum rtx_code code = GET_CODE (x);
3625 const char *fmt;
3627 if (x == y)
3628 return 1;
3629 if (code != GET_CODE (y))
3630 return 0;
3632 code = GET_CODE (x);
3634 if (GET_RTX_CLASS (code) == 'c')
3636 return ((rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 0))
3637 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 1)))
3638 || (rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 1))
3639 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 0))));
3641 /* Compare the elements. If any pair of corresponding elements fails to
3642 match, return 0 for the whole thing. */
3644 fmt = GET_RTX_FORMAT (code);
3645 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3647 switch (fmt[i])
3649 case 'w':
3650 if (XWINT (x, i) != XWINT (y, i))
3651 return 0;
3652 break;
3654 case 'i':
3655 if (XINT (x, i) != XINT (y, i))
3656 return 0;
3657 break;
3659 case 'E':
3660 /* Two vectors must have the same length. */
3661 if (XVECLEN (x, i) != XVECLEN (y, i))
3662 return 0;
3664 /* And the corresponding elements must match. */
3665 for (j = 0; j < XVECLEN (x, i); j++)
3666 if (rtx_equal_for_prefetch_p (XVECEXP (x, i, j),
3667 XVECEXP (y, i, j)) == 0)
3668 return 0;
3669 break;
3671 case 'e':
3672 if (rtx_equal_for_prefetch_p (XEXP (x, i), XEXP (y, i)) == 0)
3673 return 0;
3674 break;
3676 case 's':
3677 if (strcmp (XSTR (x, i), XSTR (y, i)))
3678 return 0;
3679 break;
3681 case 'u':
3682 /* These are just backpointers, so they don't matter. */
3683 break;
3685 case '0':
3686 break;
3688 /* It is believed that rtx's at this level will never
3689 contain anything but integers and other rtx's,
3690 except for within LABEL_REFs and SYMBOL_REFs. */
3691 default:
3692 abort ();
3695 return 1;
3698 /* Remove constant addition value from the expression X (when present)
3699 and return it. */
3701 static HOST_WIDE_INT
3702 remove_constant_addition (x)
3703 rtx *x;
3705 HOST_WIDE_INT addval = 0;
3706 rtx exp = *x;
3708 /* Avoid clobbering a shared CONST expression. */
3709 if (GET_CODE (exp) == CONST)
3711 if (GET_CODE (XEXP (exp, 0)) == PLUS
3712 && GET_CODE (XEXP (XEXP (exp, 0), 0)) == SYMBOL_REF
3713 && GET_CODE (XEXP (XEXP (exp, 0), 1)) == CONST_INT)
3715 *x = XEXP (XEXP (exp, 0), 0);
3716 return INTVAL (XEXP (XEXP (exp, 0), 1));
3718 return 0;
3721 if (GET_CODE (exp) == CONST_INT)
3723 addval = INTVAL (exp);
3724 *x = const0_rtx;
3727 /* For plus expression recurse on ourself. */
3728 else if (GET_CODE (exp) == PLUS)
3730 addval += remove_constant_addition (&XEXP (exp, 0));
3731 addval += remove_constant_addition (&XEXP (exp, 1));
3733 /* In case our parameter was constant, remove extra zero from the
3734 expression. */
3735 if (XEXP (exp, 0) == const0_rtx)
3736 *x = XEXP (exp, 1);
3737 else if (XEXP (exp, 1) == const0_rtx)
3738 *x = XEXP (exp, 0);
3741 return addval;
3744 /* Attempt to identify accesses to arrays that are most likely to cause cache
3745 misses, and emit prefetch instructions a few prefetch blocks forward.
3747 To detect the arrays we use the GIV information that was collected by the
3748 strength reduction pass.
3750 The prefetch instructions are generated after the GIV information is done
3751 and before the strength reduction process. The new GIVs are injected into
3752 the strength reduction tables, so the prefetch addresses are optimized as
3753 well.
3755 GIVs are split into base address, stride, and constant addition values.
3756 GIVs with the same address, stride and close addition values are combined
3757 into a single prefetch. Also writes to GIVs are detected, so that prefetch
3758 for write instructions can be used for the block we write to, on machines
3759 that support write prefetches.
3761 Several heuristics are used to determine when to prefetch. They are
3762 controlled by defined symbols that can be overridden for each target. */
3764 static void
3765 emit_prefetch_instructions (loop)
3766 struct loop *loop;
3768 int num_prefetches = 0;
3769 int num_real_prefetches = 0;
3770 int num_real_write_prefetches = 0;
3771 int num_prefetches_before = 0;
3772 int num_write_prefetches_before = 0;
3773 int ahead = 0;
3774 int i;
3775 struct iv_class *bl;
3776 struct induction *iv;
3777 struct prefetch_info info[MAX_PREFETCHES];
3778 struct loop_ivs *ivs = LOOP_IVS (loop);
3780 if (!HAVE_prefetch)
3781 return;
3783 /* Consider only loops w/o calls. When a call is done, the loop is probably
3784 slow enough to read the memory. */
3785 if (PREFETCH_NO_CALL && LOOP_INFO (loop)->has_call)
3787 if (loop_dump_stream)
3788 fprintf (loop_dump_stream, "Prefetch: ignoring loop: has call.\n");
3790 return;
3793 /* Don't prefetch in loops known to have few iterations. */
3794 if (PREFETCH_NO_LOW_LOOPCNT
3795 && LOOP_INFO (loop)->n_iterations
3796 && LOOP_INFO (loop)->n_iterations <= PREFETCH_LOW_LOOPCNT)
3798 if (loop_dump_stream)
3799 fprintf (loop_dump_stream,
3800 "Prefetch: ignoring loop: not enough iterations.\n");
3801 return;
3804 /* Search all induction variables and pick those interesting for the prefetch
3805 machinery. */
3806 for (bl = ivs->list; bl; bl = bl->next)
3808 struct induction *biv = bl->biv, *biv1;
3809 int basestride = 0;
3811 biv1 = biv;
3813 /* Expect all BIVs to be executed in each iteration. This makes our
3814 analysis more conservative. */
3815 while (biv1)
3817 /* Discard non-constant additions that we can't handle well yet, and
3818 BIVs that are executed multiple times; such BIVs ought to be
3819 handled in the nested loop. We accept not_every_iteration BIVs,
3820 since these only result in larger strides and make our
3821 heuristics more conservative. */
3822 if (GET_CODE (biv->add_val) != CONST_INT)
3824 if (loop_dump_stream)
3826 fprintf (loop_dump_stream,
3827 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
3828 REGNO (biv->src_reg), INSN_UID (biv->insn));
3829 print_rtl (loop_dump_stream, biv->add_val);
3830 fprintf (loop_dump_stream, "\n");
3832 break;
3835 if (biv->maybe_multiple)
3837 if (loop_dump_stream)
3839 fprintf (loop_dump_stream,
3840 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
3841 REGNO (biv->src_reg), INSN_UID (biv->insn));
3842 print_rtl (loop_dump_stream, biv->add_val);
3843 fprintf (loop_dump_stream, "\n");
3845 break;
3848 basestride += INTVAL (biv1->add_val);
3849 biv1 = biv1->next_iv;
3852 if (biv1 || !basestride)
3853 continue;
3855 for (iv = bl->giv; iv; iv = iv->next_iv)
3857 rtx address;
3858 rtx temp;
3859 HOST_WIDE_INT index = 0;
3860 int add = 1;
3861 HOST_WIDE_INT stride = 0;
3862 int stride_sign = 1;
3863 struct check_store_data d;
3864 const char *ignore_reason = NULL;
3865 int size = GET_MODE_SIZE (GET_MODE (iv));
3867 /* See whether an induction variable is interesting to us and if
3868 not, report the reason. */
3869 if (iv->giv_type != DEST_ADDR)
3870 ignore_reason = "giv is not a destination address";
3872 /* We are interested only in constant stride memory references
3873 in order to be able to compute density easily. */
3874 else if (GET_CODE (iv->mult_val) != CONST_INT)
3875 ignore_reason = "stride is not constant";
3877 else
3879 stride = INTVAL (iv->mult_val) * basestride;
3880 if (stride < 0)
3882 stride = -stride;
3883 stride_sign = -1;
3886 /* On some targets, reversed order prefetches are not
3887 worthwhile. */
3888 if (PREFETCH_NO_REVERSE_ORDER && stride_sign < 0)
3889 ignore_reason = "reversed order stride";
3891 /* Prefetch of accesses with an extreme stride might not be
3892 worthwhile, either. */
3893 else if (PREFETCH_NO_EXTREME_STRIDE
3894 && stride > PREFETCH_EXTREME_STRIDE)
3895 ignore_reason = "extreme stride";
3897 /* Ignore GIVs with varying add values; we can't predict the
3898 value for the next iteration. */
3899 else if (!loop_invariant_p (loop, iv->add_val))
3900 ignore_reason = "giv has varying add value";
3902 /* Ignore GIVs in the nested loops; they ought to have been
3903 handled already. */
3904 else if (iv->maybe_multiple)
3905 ignore_reason = "giv is in nested loop";
3908 if (ignore_reason != NULL)
3910 if (loop_dump_stream)
3911 fprintf (loop_dump_stream,
3912 "Prefetch: ignoring giv at %d: %s.\n",
3913 INSN_UID (iv->insn), ignore_reason);
3914 continue;
3917 /* Determine the pointer to the basic array we are examining. It is
3918 the sum of the BIV's initial value and the GIV's add_val. */
3919 address = copy_rtx (iv->add_val);
3920 temp = copy_rtx (bl->initial_value);
3922 address = simplify_gen_binary (PLUS, Pmode, temp, address);
3923 index = remove_constant_addition (&address);
3925 d.mem_write = 0;
3926 d.mem_address = *iv->location;
3928 /* When the GIV is not always executed, we might be better off by
3929 not dirtying the cache pages. */
3930 if (PREFETCH_CONDITIONAL || iv->always_executed)
3931 note_stores (PATTERN (iv->insn), check_store, &d);
3932 else
3934 if (loop_dump_stream)
3935 fprintf (loop_dump_stream, "Prefetch: Ignoring giv at %d: %s\n",
3936 INSN_UID (iv->insn), "in conditional code.");
3937 continue;
3940 /* Attempt to find another prefetch to the same array and see if we
3941 can merge this one. */
3942 for (i = 0; i < num_prefetches; i++)
3943 if (rtx_equal_for_prefetch_p (address, info[i].base_address)
3944 && stride == info[i].stride)
3946 /* In case both access same array (same location
3947 just with small difference in constant indexes), merge
3948 the prefetches. Just do the later and the earlier will
3949 get prefetched from previous iteration.
3950 The artificial threshold should not be too small,
3951 but also not bigger than small portion of memory usually
3952 traversed by single loop. */
3953 if (index >= info[i].index
3954 && index - info[i].index < PREFETCH_EXTREME_DIFFERENCE)
3956 info[i].write |= d.mem_write;
3957 info[i].bytes_accessed += size;
3958 info[i].index = index;
3959 info[i].giv = iv;
3960 info[i].class = bl;
3961 info[num_prefetches].base_address = address;
3962 add = 0;
3963 break;
3966 if (index < info[i].index
3967 && info[i].index - index < PREFETCH_EXTREME_DIFFERENCE)
3969 info[i].write |= d.mem_write;
3970 info[i].bytes_accessed += size;
3971 add = 0;
3972 break;
3976 /* Merging failed. */
3977 if (add)
3979 info[num_prefetches].giv = iv;
3980 info[num_prefetches].class = bl;
3981 info[num_prefetches].index = index;
3982 info[num_prefetches].stride = stride;
3983 info[num_prefetches].base_address = address;
3984 info[num_prefetches].write = d.mem_write;
3985 info[num_prefetches].bytes_accessed = size;
3986 num_prefetches++;
3987 if (num_prefetches >= MAX_PREFETCHES)
3989 if (loop_dump_stream)
3990 fprintf (loop_dump_stream,
3991 "Maximal number of prefetches exceeded.\n");
3992 return;
3998 for (i = 0; i < num_prefetches; i++)
4000 int density;
4002 /* Attempt to calculate the total number of bytes fetched by all
4003 iterations of the loop. Avoid overflow. */
4004 if (LOOP_INFO (loop)->n_iterations
4005 && ((unsigned HOST_WIDE_INT) (0xffffffff / info[i].stride)
4006 >= LOOP_INFO (loop)->n_iterations))
4007 info[i].total_bytes = info[i].stride * LOOP_INFO (loop)->n_iterations;
4008 else
4009 info[i].total_bytes = 0xffffffff;
4011 density = info[i].bytes_accessed * 100 / info[i].stride;
4013 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4014 if (PREFETCH_ONLY_DENSE_MEM)
4015 if (density * 256 > PREFETCH_DENSE_MEM * 100
4016 && (info[i].total_bytes / PREFETCH_BLOCK
4017 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN))
4019 info[i].prefetch_before_loop = 1;
4020 info[i].prefetch_in_loop
4021 = (info[i].total_bytes / PREFETCH_BLOCK
4022 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX);
4024 else
4026 info[i].prefetch_in_loop = 0, info[i].prefetch_before_loop = 0;
4027 if (loop_dump_stream)
4028 fprintf (loop_dump_stream,
4029 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4030 INSN_UID (info[i].giv->insn), density);
4032 else
4033 info[i].prefetch_in_loop = 1, info[i].prefetch_before_loop = 1;
4035 /* Find how many prefetch instructions we'll use within the loop. */
4036 if (info[i].prefetch_in_loop != 0)
4038 info[i].prefetch_in_loop = ((info[i].stride + PREFETCH_BLOCK - 1)
4039 / PREFETCH_BLOCK);
4040 num_real_prefetches += info[i].prefetch_in_loop;
4041 if (info[i].write)
4042 num_real_write_prefetches += info[i].prefetch_in_loop;
4046 /* Determine how many iterations ahead to prefetch within the loop, based
4047 on how many prefetches we currently expect to do within the loop. */
4048 if (num_real_prefetches != 0)
4050 if ((ahead = SIMULTANEOUS_PREFETCHES / num_real_prefetches) == 0)
4052 if (loop_dump_stream)
4053 fprintf (loop_dump_stream,
4054 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4055 SIMULTANEOUS_PREFETCHES, num_real_prefetches);
4056 num_real_prefetches = 0, num_real_write_prefetches = 0;
4059 /* We'll also use AHEAD to determine how many prefetch instructions to
4060 emit before a loop, so don't leave it zero. */
4061 if (ahead == 0)
4062 ahead = PREFETCH_BLOCKS_BEFORE_LOOP_MAX;
4064 for (i = 0; i < num_prefetches; i++)
4066 /* Update if we've decided not to prefetch anything within the loop. */
4067 if (num_real_prefetches == 0)
4068 info[i].prefetch_in_loop = 0;
4070 /* Find how many prefetch instructions we'll use before the loop. */
4071 if (info[i].prefetch_before_loop != 0)
4073 int n = info[i].total_bytes / PREFETCH_BLOCK;
4074 if (n > ahead)
4075 n = ahead;
4076 info[i].prefetch_before_loop = n;
4077 num_prefetches_before += n;
4078 if (info[i].write)
4079 num_write_prefetches_before += n;
4082 if (loop_dump_stream)
4084 if (info[i].prefetch_in_loop == 0
4085 && info[i].prefetch_before_loop == 0)
4086 continue;
4087 fprintf (loop_dump_stream, "Prefetch insn: %d",
4088 INSN_UID (info[i].giv->insn));
4089 fprintf (loop_dump_stream,
4090 "; in loop: %d; before: %d; %s\n",
4091 info[i].prefetch_in_loop,
4092 info[i].prefetch_before_loop,
4093 info[i].write ? "read/write" : "read only");
4094 fprintf (loop_dump_stream,
4095 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4096 (int) (info[i].bytes_accessed * 100 / info[i].stride),
4097 info[i].bytes_accessed, info[i].total_bytes);
4098 fprintf (loop_dump_stream, " index: ");
4099 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, info[i].index);
4100 fprintf (loop_dump_stream, "; stride: ");
4101 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, info[i].stride);
4102 fprintf (loop_dump_stream, "; address: ");
4103 print_rtl (loop_dump_stream, info[i].base_address);
4104 fprintf (loop_dump_stream, "\n");
4108 if (num_real_prefetches + num_prefetches_before > 0)
4110 /* Record that this loop uses prefetch instructions. */
4111 LOOP_INFO (loop)->has_prefetch = 1;
4113 if (loop_dump_stream)
4115 fprintf (loop_dump_stream, "Real prefetches needed within loop: %d (write: %d)\n",
4116 num_real_prefetches, num_real_write_prefetches);
4117 fprintf (loop_dump_stream, "Real prefetches needed before loop: %d (write: %d)\n",
4118 num_prefetches_before, num_write_prefetches_before);
4122 for (i = 0; i < num_prefetches; i++)
4124 int y;
4126 for (y = 0; y < info[i].prefetch_in_loop; y++)
4128 rtx loc = copy_rtx (*info[i].giv->location);
4129 rtx insn;
4130 int bytes_ahead = PREFETCH_BLOCK * (ahead + y);
4131 rtx before_insn = info[i].giv->insn;
4132 rtx prev_insn = PREV_INSN (info[i].giv->insn);
4133 rtx seq;
4135 /* We can save some effort by offsetting the address on
4136 architectures with offsettable memory references. */
4137 if (offsettable_address_p (0, VOIDmode, loc))
4138 loc = plus_constant (loc, bytes_ahead);
4139 else
4141 rtx reg = gen_reg_rtx (Pmode);
4142 loop_iv_add_mult_emit_before (loop, loc, const1_rtx,
4143 GEN_INT (bytes_ahead), reg,
4144 0, before_insn);
4145 loc = reg;
4148 start_sequence ();
4149 /* Make sure the address operand is valid for prefetch. */
4150 if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
4151 (loc, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
4152 loc = force_reg (Pmode, loc);
4153 emit_insn (gen_prefetch (loc, GEN_INT (info[i].write),
4154 GEN_INT (3)));
4155 seq = get_insns ();
4156 end_sequence ();
4157 emit_insn_before (seq, before_insn);
4159 /* Check all insns emitted and record the new GIV
4160 information. */
4161 insn = NEXT_INSN (prev_insn);
4162 while (insn != before_insn)
4164 insn = check_insn_for_givs (loop, insn,
4165 info[i].giv->always_executed,
4166 info[i].giv->maybe_multiple);
4167 insn = NEXT_INSN (insn);
4171 if (PREFETCH_BEFORE_LOOP)
4173 /* Emit insns before the loop to fetch the first cache lines or,
4174 if we're not prefetching within the loop, everything we expect
4175 to need. */
4176 for (y = 0; y < info[i].prefetch_before_loop; y++)
4178 rtx reg = gen_reg_rtx (Pmode);
4179 rtx loop_start = loop->start;
4180 rtx init_val = info[i].class->initial_value;
4181 rtx add_val = simplify_gen_binary (PLUS, Pmode,
4182 info[i].giv->add_val,
4183 GEN_INT (y * PREFETCH_BLOCK));
4185 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4186 non-constant INIT_VAL to have the same mode as REG, which
4187 in this case we know to be Pmode. */
4188 if (GET_MODE (init_val) != Pmode && !CONSTANT_P (init_val))
4189 init_val = convert_to_mode (Pmode, init_val, 0);
4190 loop_iv_add_mult_emit_before (loop, init_val,
4191 info[i].giv->mult_val,
4192 add_val, reg, 0, loop_start);
4193 emit_insn_before (gen_prefetch (reg, GEN_INT (info[i].write),
4194 GEN_INT (3)),
4195 loop_start);
4200 return;
4203 /* A "basic induction variable" or biv is a pseudo reg that is set
4204 (within this loop) only by incrementing or decrementing it. */
4205 /* A "general induction variable" or giv is a pseudo reg whose
4206 value is a linear function of a biv. */
4208 /* Bivs are recognized by `basic_induction_var';
4209 Givs by `general_induction_var'. */
4211 /* Communication with routines called via `note_stores'. */
4213 static rtx note_insn;
4215 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
4217 static rtx addr_placeholder;
4219 /* ??? Unfinished optimizations, and possible future optimizations,
4220 for the strength reduction code. */
4222 /* ??? The interaction of biv elimination, and recognition of 'constant'
4223 bivs, may cause problems. */
4225 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4226 performance problems.
4228 Perhaps don't eliminate things that can be combined with an addressing
4229 mode. Find all givs that have the same biv, mult_val, and add_val;
4230 then for each giv, check to see if its only use dies in a following
4231 memory address. If so, generate a new memory address and check to see
4232 if it is valid. If it is valid, then store the modified memory address,
4233 otherwise, mark the giv as not done so that it will get its own iv. */
4235 /* ??? Could try to optimize branches when it is known that a biv is always
4236 positive. */
4238 /* ??? When replace a biv in a compare insn, we should replace with closest
4239 giv so that an optimized branch can still be recognized by the combiner,
4240 e.g. the VAX acb insn. */
4242 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4243 was rerun in loop_optimize whenever a register was added or moved.
4244 Also, some of the optimizations could be a little less conservative. */
4246 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4247 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4248 callback.
4250 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4251 least once for every loop iteration except for the last one.
4253 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4254 loop iteration.
4256 void
4257 for_each_insn_in_loop (loop, fncall)
4258 struct loop *loop;
4259 loop_insn_callback fncall;
4261 int not_every_iteration = 0;
4262 int maybe_multiple = 0;
4263 int past_loop_latch = 0;
4264 int loop_depth = 0;
4265 rtx p;
4267 /* If loop_scan_start points to the loop exit test, we have to be wary of
4268 subversive use of gotos inside expression statements. */
4269 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
4270 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
4272 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4273 for (p = next_insn_in_loop (loop, loop->scan_start);
4274 p != NULL_RTX;
4275 p = next_insn_in_loop (loop, p))
4277 p = fncall (loop, p, not_every_iteration, maybe_multiple);
4279 /* Past CODE_LABEL, we get to insns that may be executed multiple
4280 times. The only way we can be sure that they can't is if every
4281 jump insn between here and the end of the loop either
4282 returns, exits the loop, is a jump to a location that is still
4283 behind the label, or is a jump to the loop start. */
4285 if (GET_CODE (p) == CODE_LABEL)
4287 rtx insn = p;
4289 maybe_multiple = 0;
4291 while (1)
4293 insn = NEXT_INSN (insn);
4294 if (insn == loop->scan_start)
4295 break;
4296 if (insn == loop->end)
4298 if (loop->top != 0)
4299 insn = loop->top;
4300 else
4301 break;
4302 if (insn == loop->scan_start)
4303 break;
4306 if (GET_CODE (insn) == JUMP_INSN
4307 && GET_CODE (PATTERN (insn)) != RETURN
4308 && (!any_condjump_p (insn)
4309 || (JUMP_LABEL (insn) != 0
4310 && JUMP_LABEL (insn) != loop->scan_start
4311 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
4313 maybe_multiple = 1;
4314 break;
4319 /* Past a jump, we get to insns for which we can't count
4320 on whether they will be executed during each iteration. */
4321 /* This code appears twice in strength_reduce. There is also similar
4322 code in scan_loop. */
4323 if (GET_CODE (p) == JUMP_INSN
4324 /* If we enter the loop in the middle, and scan around to the
4325 beginning, don't set not_every_iteration for that.
4326 This can be any kind of jump, since we want to know if insns
4327 will be executed if the loop is executed. */
4328 && !(JUMP_LABEL (p) == loop->top
4329 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
4330 && any_uncondjump_p (p))
4331 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
4333 rtx label = 0;
4335 /* If this is a jump outside the loop, then it also doesn't
4336 matter. Check to see if the target of this branch is on the
4337 loop->exits_labels list. */
4339 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
4340 if (XEXP (label, 0) == JUMP_LABEL (p))
4341 break;
4343 if (!label)
4344 not_every_iteration = 1;
4347 else if (GET_CODE (p) == NOTE)
4349 /* At the virtual top of a converted loop, insns are again known to
4350 be executed each iteration: logically, the loop begins here
4351 even though the exit code has been duplicated.
4353 Insns are also again known to be executed each iteration at
4354 the LOOP_CONT note. */
4355 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4356 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4357 && loop_depth == 0)
4358 not_every_iteration = 0;
4359 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4360 loop_depth++;
4361 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4362 loop_depth--;
4365 /* Note if we pass a loop latch. If we do, then we can not clear
4366 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4367 a loop since a jump before the last CODE_LABEL may have started
4368 a new loop iteration.
4370 Note that LOOP_TOP is only set for rotated loops and we need
4371 this check for all loops, so compare against the CODE_LABEL
4372 which immediately follows LOOP_START. */
4373 if (GET_CODE (p) == JUMP_INSN
4374 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
4375 past_loop_latch = 1;
4377 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4378 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4379 or not an insn is known to be executed each iteration of the
4380 loop, whether or not any iterations are known to occur.
4382 Therefore, if we have just passed a label and have no more labels
4383 between here and the test insn of the loop, and we have not passed
4384 a jump to the top of the loop, then we know these insns will be
4385 executed each iteration. */
4387 if (not_every_iteration
4388 && !past_loop_latch
4389 && GET_CODE (p) == CODE_LABEL
4390 && no_labels_between_p (p, loop->end)
4391 && loop_insn_first_p (p, loop->cont))
4392 not_every_iteration = 0;
4396 static void
4397 loop_bivs_find (loop)
4398 struct loop *loop;
4400 struct loop_regs *regs = LOOP_REGS (loop);
4401 struct loop_ivs *ivs = LOOP_IVS (loop);
4402 /* Temporary list pointers for traversing ivs->list. */
4403 struct iv_class *bl, **backbl;
4405 ivs->list = 0;
4407 for_each_insn_in_loop (loop, check_insn_for_bivs);
4409 /* Scan ivs->list to remove all regs that proved not to be bivs.
4410 Make a sanity check against regs->n_times_set. */
4411 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
4413 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4414 /* Above happens if register modified by subreg, etc. */
4415 /* Make sure it is not recognized as a basic induction var: */
4416 || regs->array[bl->regno].n_times_set != bl->biv_count
4417 /* If never incremented, it is invariant that we decided not to
4418 move. So leave it alone. */
4419 || ! bl->incremented)
4421 if (loop_dump_stream)
4422 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
4423 bl->regno,
4424 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4425 ? "not induction variable"
4426 : (! bl->incremented ? "never incremented"
4427 : "count error")));
4429 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
4430 *backbl = bl->next;
4432 else
4434 backbl = &bl->next;
4436 if (loop_dump_stream)
4437 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
4443 /* Determine how BIVS are initialised by looking through pre-header
4444 extended basic block. */
4445 static void
4446 loop_bivs_init_find (loop)
4447 struct loop *loop;
4449 struct loop_ivs *ivs = LOOP_IVS (loop);
4450 /* Temporary list pointers for traversing ivs->list. */
4451 struct iv_class *bl;
4452 int call_seen;
4453 rtx p;
4455 /* Find initial value for each biv by searching backwards from loop_start,
4456 halting at first label. Also record any test condition. */
4458 call_seen = 0;
4459 for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
4461 rtx test;
4463 note_insn = p;
4465 if (GET_CODE (p) == CALL_INSN)
4466 call_seen = 1;
4468 if (INSN_P (p))
4469 note_stores (PATTERN (p), record_initial, ivs);
4471 /* Record any test of a biv that branches around the loop if no store
4472 between it and the start of loop. We only care about tests with
4473 constants and registers and only certain of those. */
4474 if (GET_CODE (p) == JUMP_INSN
4475 && JUMP_LABEL (p) != 0
4476 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
4477 && (test = get_condition_for_loop (loop, p)) != 0
4478 && GET_CODE (XEXP (test, 0)) == REG
4479 && REGNO (XEXP (test, 0)) < max_reg_before_loop
4480 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
4481 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
4482 && bl->init_insn == 0)
4484 /* If an NE test, we have an initial value! */
4485 if (GET_CODE (test) == NE)
4487 bl->init_insn = p;
4488 bl->init_set = gen_rtx_SET (VOIDmode,
4489 XEXP (test, 0), XEXP (test, 1));
4491 else
4492 bl->initial_test = test;
4498 /* Look at the each biv and see if we can say anything better about its
4499 initial value from any initializing insns set up above. (This is done
4500 in two passes to avoid missing SETs in a PARALLEL.) */
4501 static void
4502 loop_bivs_check (loop)
4503 struct loop *loop;
4505 struct loop_ivs *ivs = LOOP_IVS (loop);
4506 /* Temporary list pointers for traversing ivs->list. */
4507 struct iv_class *bl;
4508 struct iv_class **backbl;
4510 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
4512 rtx src;
4513 rtx note;
4515 if (! bl->init_insn)
4516 continue;
4518 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4519 is a constant, use the value of that. */
4520 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4521 && CONSTANT_P (XEXP (note, 0)))
4522 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4523 && CONSTANT_P (XEXP (note, 0))))
4524 src = XEXP (note, 0);
4525 else
4526 src = SET_SRC (bl->init_set);
4528 if (loop_dump_stream)
4529 fprintf (loop_dump_stream,
4530 "Biv %d: initialized at insn %d: initial value ",
4531 bl->regno, INSN_UID (bl->init_insn));
4533 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4534 || GET_MODE (src) == VOIDmode)
4535 && valid_initial_value_p (src, bl->init_insn,
4536 LOOP_INFO (loop)->pre_header_has_call,
4537 loop->start))
4539 bl->initial_value = src;
4541 if (loop_dump_stream)
4543 print_simple_rtl (loop_dump_stream, src);
4544 fputc ('\n', loop_dump_stream);
4547 /* If we can't make it a giv,
4548 let biv keep initial value of "itself". */
4549 else if (loop_dump_stream)
4550 fprintf (loop_dump_stream, "is complex\n");
4555 /* Search the loop for general induction variables. */
4557 static void
4558 loop_givs_find (loop)
4559 struct loop* loop;
4561 for_each_insn_in_loop (loop, check_insn_for_givs);
4565 /* For each giv for which we still don't know whether or not it is
4566 replaceable, check to see if it is replaceable because its final value
4567 can be calculated. */
4569 static void
4570 loop_givs_check (loop)
4571 struct loop *loop;
4573 struct loop_ivs *ivs = LOOP_IVS (loop);
4574 struct iv_class *bl;
4576 for (bl = ivs->list; bl; bl = bl->next)
4578 struct induction *v;
4580 for (v = bl->giv; v; v = v->next_iv)
4581 if (! v->replaceable && ! v->not_replaceable)
4582 check_final_value (loop, v);
4587 /* Return non-zero if it is possible to eliminate the biv BL provided
4588 all givs are reduced. This is possible if either the reg is not
4589 used outside the loop, or we can compute what its final value will
4590 be. */
4592 static int
4593 loop_biv_eliminable_p (loop, bl, threshold, insn_count)
4594 struct loop *loop;
4595 struct iv_class *bl;
4596 int threshold;
4597 int insn_count;
4599 /* For architectures with a decrement_and_branch_until_zero insn,
4600 don't do this if we put a REG_NONNEG note on the endtest for this
4601 biv. */
4603 #ifdef HAVE_decrement_and_branch_until_zero
4604 if (bl->nonneg)
4606 if (loop_dump_stream)
4607 fprintf (loop_dump_stream,
4608 "Cannot eliminate nonneg biv %d.\n", bl->regno);
4609 return 0;
4611 #endif
4613 /* Check that biv is used outside loop or if it has a final value.
4614 Compare against bl->init_insn rather than loop->start. We aren't
4615 concerned with any uses of the biv between init_insn and
4616 loop->start since these won't be affected by the value of the biv
4617 elsewhere in the function, so long as init_insn doesn't use the
4618 biv itself. */
4620 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
4621 && bl->init_insn
4622 && INSN_UID (bl->init_insn) < max_uid_for_loop
4623 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
4624 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4625 || (bl->final_value = final_biv_value (loop, bl)))
4626 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
4628 if (loop_dump_stream)
4630 fprintf (loop_dump_stream,
4631 "Cannot eliminate biv %d.\n",
4632 bl->regno);
4633 fprintf (loop_dump_stream,
4634 "First use: insn %d, last use: insn %d.\n",
4635 REGNO_FIRST_UID (bl->regno),
4636 REGNO_LAST_UID (bl->regno));
4638 return 0;
4642 /* Reduce each giv of BL that we have decided to reduce. */
4644 static void
4645 loop_givs_reduce (loop, bl)
4646 struct loop *loop;
4647 struct iv_class *bl;
4649 struct induction *v;
4651 for (v = bl->giv; v; v = v->next_iv)
4653 struct induction *tv;
4654 if (! v->ignore && v->same == 0)
4656 int auto_inc_opt = 0;
4658 /* If the code for derived givs immediately below has already
4659 allocated a new_reg, we must keep it. */
4660 if (! v->new_reg)
4661 v->new_reg = gen_reg_rtx (v->mode);
4663 #ifdef AUTO_INC_DEC
4664 /* If the target has auto-increment addressing modes, and
4665 this is an address giv, then try to put the increment
4666 immediately after its use, so that flow can create an
4667 auto-increment addressing mode. */
4668 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4669 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4670 /* We don't handle reversed biv's because bl->biv->insn
4671 does not have a valid INSN_LUID. */
4672 && ! bl->reversed
4673 && v->always_executed && ! v->maybe_multiple
4674 && INSN_UID (v->insn) < max_uid_for_loop)
4676 /* If other giv's have been combined with this one, then
4677 this will work only if all uses of the other giv's occur
4678 before this giv's insn. This is difficult to check.
4680 We simplify this by looking for the common case where
4681 there is one DEST_REG giv, and this giv's insn is the
4682 last use of the dest_reg of that DEST_REG giv. If the
4683 increment occurs after the address giv, then we can
4684 perform the optimization. (Otherwise, the increment
4685 would have to go before other_giv, and we would not be
4686 able to combine it with the address giv to get an
4687 auto-inc address.) */
4688 if (v->combined_with)
4690 struct induction *other_giv = 0;
4692 for (tv = bl->giv; tv; tv = tv->next_iv)
4693 if (tv->same == v)
4695 if (other_giv)
4696 break;
4697 else
4698 other_giv = tv;
4700 if (! tv && other_giv
4701 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4702 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4703 == INSN_UID (v->insn))
4704 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4705 auto_inc_opt = 1;
4707 /* Check for case where increment is before the address
4708 giv. Do this test in "loop order". */
4709 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4710 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4711 || (INSN_LUID (bl->biv->insn)
4712 > INSN_LUID (loop->scan_start))))
4713 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4714 && (INSN_LUID (loop->scan_start)
4715 < INSN_LUID (bl->biv->insn))))
4716 auto_inc_opt = -1;
4717 else
4718 auto_inc_opt = 1;
4720 #ifdef HAVE_cc0
4722 rtx prev;
4724 /* We can't put an insn immediately after one setting
4725 cc0, or immediately before one using cc0. */
4726 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4727 || (auto_inc_opt == -1
4728 && (prev = prev_nonnote_insn (v->insn)) != 0
4729 && INSN_P (prev)
4730 && sets_cc0_p (PATTERN (prev))))
4731 auto_inc_opt = 0;
4733 #endif
4735 if (auto_inc_opt)
4736 v->auto_inc_opt = 1;
4738 #endif
4740 /* For each place where the biv is incremented, add an insn
4741 to increment the new, reduced reg for the giv. */
4742 for (tv = bl->biv; tv; tv = tv->next_iv)
4744 rtx insert_before;
4746 if (! auto_inc_opt)
4747 insert_before = tv->insn;
4748 else if (auto_inc_opt == 1)
4749 insert_before = NEXT_INSN (v->insn);
4750 else
4751 insert_before = v->insn;
4753 if (tv->mult_val == const1_rtx)
4754 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4755 v->new_reg, v->new_reg,
4756 0, insert_before);
4757 else /* tv->mult_val == const0_rtx */
4758 /* A multiply is acceptable here
4759 since this is presumed to be seldom executed. */
4760 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4761 v->add_val, v->new_reg,
4762 0, insert_before);
4765 /* Add code at loop start to initialize giv's reduced reg. */
4767 loop_iv_add_mult_hoist (loop,
4768 extend_value_for_giv (v, bl->initial_value),
4769 v->mult_val, v->add_val, v->new_reg);
4775 /* Check for givs whose first use is their definition and whose
4776 last use is the definition of another giv. If so, it is likely
4777 dead and should not be used to derive another giv nor to
4778 eliminate a biv. */
4780 static void
4781 loop_givs_dead_check (loop, bl)
4782 struct loop *loop ATTRIBUTE_UNUSED;
4783 struct iv_class *bl;
4785 struct induction *v;
4787 for (v = bl->giv; v; v = v->next_iv)
4789 if (v->ignore
4790 || (v->same && v->same->ignore))
4791 continue;
4793 if (v->giv_type == DEST_REG
4794 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4796 struct induction *v1;
4798 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4799 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4800 v->maybe_dead = 1;
4806 static void
4807 loop_givs_rescan (loop, bl, reg_map)
4808 struct loop *loop;
4809 struct iv_class *bl;
4810 rtx *reg_map;
4812 struct induction *v;
4814 for (v = bl->giv; v; v = v->next_iv)
4816 if (v->same && v->same->ignore)
4817 v->ignore = 1;
4819 if (v->ignore)
4820 continue;
4822 /* Update expression if this was combined, in case other giv was
4823 replaced. */
4824 if (v->same)
4825 v->new_reg = replace_rtx (v->new_reg,
4826 v->same->dest_reg, v->same->new_reg);
4828 /* See if this register is known to be a pointer to something. If
4829 so, see if we can find the alignment. First see if there is a
4830 destination register that is a pointer. If so, this shares the
4831 alignment too. Next see if we can deduce anything from the
4832 computational information. If not, and this is a DEST_ADDR
4833 giv, at least we know that it's a pointer, though we don't know
4834 the alignment. */
4835 if (GET_CODE (v->new_reg) == REG
4836 && v->giv_type == DEST_REG
4837 && REG_POINTER (v->dest_reg))
4838 mark_reg_pointer (v->new_reg,
4839 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
4840 else if (GET_CODE (v->new_reg) == REG
4841 && REG_POINTER (v->src_reg))
4843 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
4845 if (align == 0
4846 || GET_CODE (v->add_val) != CONST_INT
4847 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
4848 align = 0;
4850 mark_reg_pointer (v->new_reg, align);
4852 else if (GET_CODE (v->new_reg) == REG
4853 && GET_CODE (v->add_val) == REG
4854 && REG_POINTER (v->add_val))
4856 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
4858 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
4859 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
4860 align = 0;
4862 mark_reg_pointer (v->new_reg, align);
4864 else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
4865 mark_reg_pointer (v->new_reg, 0);
4867 if (v->giv_type == DEST_ADDR)
4868 /* Store reduced reg as the address in the memref where we found
4869 this giv. */
4870 validate_change (v->insn, v->location, v->new_reg, 0);
4871 else if (v->replaceable)
4873 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4875 else
4877 /* Not replaceable; emit an insn to set the original giv reg from
4878 the reduced giv, same as above. */
4879 loop_insn_emit_after (loop, 0, v->insn,
4880 gen_move_insn (v->dest_reg, v->new_reg));
4883 /* When a loop is reversed, givs which depend on the reversed
4884 biv, and which are live outside the loop, must be set to their
4885 correct final value. This insn is only needed if the giv is
4886 not replaceable. The correct final value is the same as the
4887 value that the giv starts the reversed loop with. */
4888 if (bl->reversed && ! v->replaceable)
4889 loop_iv_add_mult_sink (loop,
4890 extend_value_for_giv (v, bl->initial_value),
4891 v->mult_val, v->add_val, v->dest_reg);
4892 else if (v->final_value)
4893 loop_insn_sink_or_swim (loop,
4894 gen_load_of_final_value (v->dest_reg,
4895 v->final_value));
4897 if (loop_dump_stream)
4899 fprintf (loop_dump_stream, "giv at %d reduced to ",
4900 INSN_UID (v->insn));
4901 print_simple_rtl (loop_dump_stream, v->new_reg);
4902 fprintf (loop_dump_stream, "\n");
4908 static int
4909 loop_giv_reduce_benefit (loop, bl, v, test_reg)
4910 struct loop *loop ATTRIBUTE_UNUSED;
4911 struct iv_class *bl;
4912 struct induction *v;
4913 rtx test_reg;
4915 int add_cost;
4916 int benefit;
4918 benefit = v->benefit;
4919 PUT_MODE (test_reg, v->mode);
4920 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
4921 test_reg, test_reg);
4923 /* Reduce benefit if not replaceable, since we will insert a
4924 move-insn to replace the insn that calculates this giv. Don't do
4925 this unless the giv is a user variable, since it will often be
4926 marked non-replaceable because of the duplication of the exit
4927 code outside the loop. In such a case, the copies we insert are
4928 dead and will be deleted. So they don't have a cost. Similar
4929 situations exist. */
4930 /* ??? The new final_[bg]iv_value code does a much better job of
4931 finding replaceable giv's, and hence this code may no longer be
4932 necessary. */
4933 if (! v->replaceable && ! bl->eliminable
4934 && REG_USERVAR_P (v->dest_reg))
4935 benefit -= copy_cost;
4937 /* Decrease the benefit to count the add-insns that we will insert
4938 to increment the reduced reg for the giv. ??? This can
4939 overestimate the run-time cost of the additional insns, e.g. if
4940 there are multiple basic blocks that increment the biv, but only
4941 one of these blocks is executed during each iteration. There is
4942 no good way to detect cases like this with the current structure
4943 of the loop optimizer. This code is more accurate for
4944 determining code size than run-time benefits. */
4945 benefit -= add_cost * bl->biv_count;
4947 /* Decide whether to strength-reduce this giv or to leave the code
4948 unchanged (recompute it from the biv each time it is used). This
4949 decision can be made independently for each giv. */
4951 #ifdef AUTO_INC_DEC
4952 /* Attempt to guess whether autoincrement will handle some of the
4953 new add insns; if so, increase BENEFIT (undo the subtraction of
4954 add_cost that was done above). */
4955 if (v->giv_type == DEST_ADDR
4956 /* Increasing the benefit is risky, since this is only a guess.
4957 Avoid increasing register pressure in cases where there would
4958 be no other benefit from reducing this giv. */
4959 && benefit > 0
4960 && GET_CODE (v->mult_val) == CONST_INT)
4962 int size = GET_MODE_SIZE (GET_MODE (v->mem));
4964 if (HAVE_POST_INCREMENT
4965 && INTVAL (v->mult_val) == size)
4966 benefit += add_cost * bl->biv_count;
4967 else if (HAVE_PRE_INCREMENT
4968 && INTVAL (v->mult_val) == size)
4969 benefit += add_cost * bl->biv_count;
4970 else if (HAVE_POST_DECREMENT
4971 && -INTVAL (v->mult_val) == size)
4972 benefit += add_cost * bl->biv_count;
4973 else if (HAVE_PRE_DECREMENT
4974 && -INTVAL (v->mult_val) == size)
4975 benefit += add_cost * bl->biv_count;
4977 #endif
4979 return benefit;
4983 /* Free IV structures for LOOP. */
4985 static void
4986 loop_ivs_free (loop)
4987 struct loop *loop;
4989 struct loop_ivs *ivs = LOOP_IVS (loop);
4990 struct iv_class *iv = ivs->list;
4992 free (ivs->regs);
4994 while (iv)
4996 struct iv_class *next = iv->next;
4997 struct induction *induction;
4998 struct induction *next_induction;
5000 for (induction = iv->biv; induction; induction = next_induction)
5002 next_induction = induction->next_iv;
5003 free (induction);
5005 for (induction = iv->giv; induction; induction = next_induction)
5007 next_induction = induction->next_iv;
5008 free (induction);
5011 free (iv);
5012 iv = next;
5017 /* Perform strength reduction and induction variable elimination.
5019 Pseudo registers created during this function will be beyond the
5020 last valid index in several tables including
5021 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
5022 problem here, because the added registers cannot be givs outside of
5023 their loop, and hence will never be reconsidered. But scan_loop
5024 must check regnos to make sure they are in bounds. */
5026 static void
5027 strength_reduce (loop, flags)
5028 struct loop *loop;
5029 int flags;
5031 struct loop_info *loop_info = LOOP_INFO (loop);
5032 struct loop_regs *regs = LOOP_REGS (loop);
5033 struct loop_ivs *ivs = LOOP_IVS (loop);
5034 rtx p;
5035 /* Temporary list pointer for traversing ivs->list. */
5036 struct iv_class *bl;
5037 /* Ratio of extra register life span we can justify
5038 for saving an instruction. More if loop doesn't call subroutines
5039 since in that case saving an insn makes more difference
5040 and more registers are available. */
5041 /* ??? could set this to last value of threshold in move_movables */
5042 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
5043 /* Map of pseudo-register replacements. */
5044 rtx *reg_map = NULL;
5045 int reg_map_size;
5046 int unrolled_insn_copies = 0;
5047 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
5048 int insn_count = count_insns_in_loop (loop);
5050 addr_placeholder = gen_reg_rtx (Pmode);
5052 ivs->n_regs = max_reg_before_loop;
5053 ivs->regs = (struct iv *) xcalloc (ivs->n_regs, sizeof (struct iv));
5055 /* Find all BIVs in loop. */
5056 loop_bivs_find (loop);
5058 /* Exit if there are no bivs. */
5059 if (! ivs->list)
5061 /* Can still unroll the loop anyways, but indicate that there is no
5062 strength reduction info available. */
5063 if (flags & LOOP_UNROLL)
5064 unroll_loop (loop, insn_count, 0);
5066 loop_ivs_free (loop);
5067 return;
5070 /* Determine how BIVS are initialised by looking through pre-header
5071 extended basic block. */
5072 loop_bivs_init_find (loop);
5074 /* Look at the each biv and see if we can say anything better about its
5075 initial value from any initializing insns set up above. */
5076 loop_bivs_check (loop);
5078 /* Search the loop for general induction variables. */
5079 loop_givs_find (loop);
5081 /* Try to calculate and save the number of loop iterations. This is
5082 set to zero if the actual number can not be calculated. This must
5083 be called after all giv's have been identified, since otherwise it may
5084 fail if the iteration variable is a giv. */
5085 loop_iterations (loop);
5087 #ifdef HAVE_prefetch
5088 if (flags & LOOP_PREFETCH)
5089 emit_prefetch_instructions (loop);
5090 #endif
5092 /* Now for each giv for which we still don't know whether or not it is
5093 replaceable, check to see if it is replaceable because its final value
5094 can be calculated. This must be done after loop_iterations is called,
5095 so that final_giv_value will work correctly. */
5096 loop_givs_check (loop);
5098 /* Try to prove that the loop counter variable (if any) is always
5099 nonnegative; if so, record that fact with a REG_NONNEG note
5100 so that "decrement and branch until zero" insn can be used. */
5101 check_dbra_loop (loop, insn_count);
5103 /* Create reg_map to hold substitutions for replaceable giv regs.
5104 Some givs might have been made from biv increments, so look at
5105 ivs->reg_iv_type for a suitable size. */
5106 reg_map_size = ivs->n_regs;
5107 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
5109 /* Examine each iv class for feasibility of strength reduction/induction
5110 variable elimination. */
5112 for (bl = ivs->list; bl; bl = bl->next)
5114 struct induction *v;
5115 int benefit;
5117 /* Test whether it will be possible to eliminate this biv
5118 provided all givs are reduced. */
5119 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
5121 /* This will be true at the end, if all givs which depend on this
5122 biv have been strength reduced.
5123 We can't (currently) eliminate the biv unless this is so. */
5124 bl->all_reduced = 1;
5126 /* Check each extension dependent giv in this class to see if its
5127 root biv is safe from wrapping in the interior mode. */
5128 check_ext_dependent_givs (bl, loop_info);
5130 /* Combine all giv's for this iv_class. */
5131 combine_givs (regs, bl);
5133 for (v = bl->giv; v; v = v->next_iv)
5135 struct induction *tv;
5137 if (v->ignore || v->same)
5138 continue;
5140 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
5142 /* If an insn is not to be strength reduced, then set its ignore
5143 flag, and clear bl->all_reduced. */
5145 /* A giv that depends on a reversed biv must be reduced if it is
5146 used after the loop exit, otherwise, it would have the wrong
5147 value after the loop exit. To make it simple, just reduce all
5148 of such giv's whether or not we know they are used after the loop
5149 exit. */
5151 if (! flag_reduce_all_givs
5152 && v->lifetime * threshold * benefit < insn_count
5153 && ! bl->reversed)
5155 if (loop_dump_stream)
5156 fprintf (loop_dump_stream,
5157 "giv of insn %d not worth while, %d vs %d.\n",
5158 INSN_UID (v->insn),
5159 v->lifetime * threshold * benefit, insn_count);
5160 v->ignore = 1;
5161 bl->all_reduced = 0;
5163 else
5165 /* Check that we can increment the reduced giv without a
5166 multiply insn. If not, reject it. */
5168 for (tv = bl->biv; tv; tv = tv->next_iv)
5169 if (tv->mult_val == const1_rtx
5170 && ! product_cheap_p (tv->add_val, v->mult_val))
5172 if (loop_dump_stream)
5173 fprintf (loop_dump_stream,
5174 "giv of insn %d: would need a multiply.\n",
5175 INSN_UID (v->insn));
5176 v->ignore = 1;
5177 bl->all_reduced = 0;
5178 break;
5183 /* Check for givs whose first use is their definition and whose
5184 last use is the definition of another giv. If so, it is likely
5185 dead and should not be used to derive another giv nor to
5186 eliminate a biv. */
5187 loop_givs_dead_check (loop, bl);
5189 /* Reduce each giv that we decided to reduce. */
5190 loop_givs_reduce (loop, bl);
5192 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5193 as not reduced.
5195 For each giv register that can be reduced now: if replaceable,
5196 substitute reduced reg wherever the old giv occurs;
5197 else add new move insn "giv_reg = reduced_reg". */
5198 loop_givs_rescan (loop, bl, reg_map);
5200 /* All the givs based on the biv bl have been reduced if they
5201 merit it. */
5203 /* For each giv not marked as maybe dead that has been combined with a
5204 second giv, clear any "maybe dead" mark on that second giv.
5205 v->new_reg will either be or refer to the register of the giv it
5206 combined with.
5208 Doing this clearing avoids problems in biv elimination where
5209 a giv's new_reg is a complex value that can't be put in the
5210 insn but the giv combined with (with a reg as new_reg) is
5211 marked maybe_dead. Since the register will be used in either
5212 case, we'd prefer it be used from the simpler giv. */
5214 for (v = bl->giv; v; v = v->next_iv)
5215 if (! v->maybe_dead && v->same)
5216 v->same->maybe_dead = 0;
5218 /* Try to eliminate the biv, if it is a candidate.
5219 This won't work if ! bl->all_reduced,
5220 since the givs we planned to use might not have been reduced.
5222 We have to be careful that we didn't initially think we could
5223 eliminate this biv because of a giv that we now think may be
5224 dead and shouldn't be used as a biv replacement.
5226 Also, there is the possibility that we may have a giv that looks
5227 like it can be used to eliminate a biv, but the resulting insn
5228 isn't valid. This can happen, for example, on the 88k, where a
5229 JUMP_INSN can compare a register only with zero. Attempts to
5230 replace it with a compare with a constant will fail.
5232 Note that in cases where this call fails, we may have replaced some
5233 of the occurrences of the biv with a giv, but no harm was done in
5234 doing so in the rare cases where it can occur. */
5236 if (bl->all_reduced == 1 && bl->eliminable
5237 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
5239 /* ?? If we created a new test to bypass the loop entirely,
5240 or otherwise drop straight in, based on this test, then
5241 we might want to rewrite it also. This way some later
5242 pass has more hope of removing the initialization of this
5243 biv entirely. */
5245 /* If final_value != 0, then the biv may be used after loop end
5246 and we must emit an insn to set it just in case.
5248 Reversed bivs already have an insn after the loop setting their
5249 value, so we don't need another one. We can't calculate the
5250 proper final value for such a biv here anyways. */
5251 if (bl->final_value && ! bl->reversed)
5252 loop_insn_sink_or_swim (loop,
5253 gen_load_of_final_value (bl->biv->dest_reg,
5254 bl->final_value));
5256 if (loop_dump_stream)
5257 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5258 bl->regno);
5260 /* See above note wrt final_value. But since we couldn't eliminate
5261 the biv, we must set the value after the loop instead of before. */
5262 else if (bl->final_value && ! bl->reversed)
5263 loop_insn_sink (loop, gen_load_of_final_value (bl->biv->dest_reg,
5264 bl->final_value));
5267 /* Go through all the instructions in the loop, making all the
5268 register substitutions scheduled in REG_MAP. */
5270 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
5271 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5272 || GET_CODE (p) == CALL_INSN)
5274 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5275 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5276 INSN_CODE (p) = -1;
5279 if (loop_info->n_iterations > 0)
5281 /* When we completely unroll a loop we will likely not need the increment
5282 of the loop BIV and we will not need the conditional branch at the
5283 end of the loop. */
5284 unrolled_insn_copies = insn_count - 2;
5286 #ifdef HAVE_cc0
5287 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5288 need the comparison before the conditional branch at the end of the
5289 loop. */
5290 unrolled_insn_copies -= 1;
5291 #endif
5293 /* We'll need one copy for each loop iteration. */
5294 unrolled_insn_copies *= loop_info->n_iterations;
5296 /* A little slop to account for the ability to remove initialization
5297 code, better CSE, and other secondary benefits of completely
5298 unrolling some loops. */
5299 unrolled_insn_copies -= 1;
5301 /* Clamp the value. */
5302 if (unrolled_insn_copies < 0)
5303 unrolled_insn_copies = 0;
5306 /* Unroll loops from within strength reduction so that we can use the
5307 induction variable information that strength_reduce has already
5308 collected. Always unroll loops that would be as small or smaller
5309 unrolled than when rolled. */
5310 if ((flags & LOOP_UNROLL)
5311 || (!(flags & LOOP_FIRST_PASS)
5312 && loop_info->n_iterations > 0
5313 && unrolled_insn_copies <= insn_count))
5314 unroll_loop (loop, insn_count, 1);
5316 #ifdef HAVE_doloop_end
5317 if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
5318 doloop_optimize (loop);
5319 #endif /* HAVE_doloop_end */
5321 /* In case number of iterations is known, drop branch prediction note
5322 in the branch. Do that only in second loop pass, as loop unrolling
5323 may change the number of iterations performed. */
5324 if (flags & LOOP_BCT)
5326 unsigned HOST_WIDE_INT n
5327 = loop_info->n_iterations / loop_info->unroll_number;
5328 if (n > 1)
5329 predict_insn (PREV_INSN (loop->end), PRED_LOOP_ITERATIONS,
5330 REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
5333 if (loop_dump_stream)
5334 fprintf (loop_dump_stream, "\n");
5336 loop_ivs_free (loop);
5337 if (reg_map)
5338 free (reg_map);
5341 /*Record all basic induction variables calculated in the insn. */
5342 static rtx
5343 check_insn_for_bivs (loop, p, not_every_iteration, maybe_multiple)
5344 struct loop *loop;
5345 rtx p;
5346 int not_every_iteration;
5347 int maybe_multiple;
5349 struct loop_ivs *ivs = LOOP_IVS (loop);
5350 rtx set;
5351 rtx dest_reg;
5352 rtx inc_val;
5353 rtx mult_val;
5354 rtx *location;
5356 if (GET_CODE (p) == INSN
5357 && (set = single_set (p))
5358 && GET_CODE (SET_DEST (set)) == REG)
5360 dest_reg = SET_DEST (set);
5361 if (REGNO (dest_reg) < max_reg_before_loop
5362 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
5363 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
5365 if (basic_induction_var (loop, SET_SRC (set),
5366 GET_MODE (SET_SRC (set)),
5367 dest_reg, p, &inc_val, &mult_val,
5368 &location))
5370 /* It is a possible basic induction variable.
5371 Create and initialize an induction structure for it. */
5373 struct induction *v
5374 = (struct induction *) xmalloc (sizeof (struct induction));
5376 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
5377 not_every_iteration, maybe_multiple);
5378 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
5380 else if (REGNO (dest_reg) < ivs->n_regs)
5381 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
5384 return p;
5387 /* Record all givs calculated in the insn.
5388 A register is a giv if: it is only set once, it is a function of a
5389 biv and a constant (or invariant), and it is not a biv. */
5390 static rtx
5391 check_insn_for_givs (loop, p, not_every_iteration, maybe_multiple)
5392 struct loop *loop;
5393 rtx p;
5394 int not_every_iteration;
5395 int maybe_multiple;
5397 struct loop_regs *regs = LOOP_REGS (loop);
5399 rtx set;
5400 /* Look for a general induction variable in a register. */
5401 if (GET_CODE (p) == INSN
5402 && (set = single_set (p))
5403 && GET_CODE (SET_DEST (set)) == REG
5404 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
5406 rtx src_reg;
5407 rtx dest_reg;
5408 rtx add_val;
5409 rtx mult_val;
5410 rtx ext_val;
5411 int benefit;
5412 rtx regnote = 0;
5413 rtx last_consec_insn;
5415 dest_reg = SET_DEST (set);
5416 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
5417 return p;
5419 if (/* SET_SRC is a giv. */
5420 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
5421 &mult_val, &ext_val, 0, &benefit, VOIDmode)
5422 /* Equivalent expression is a giv. */
5423 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
5424 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
5425 &add_val, &mult_val, &ext_val, 0,
5426 &benefit, VOIDmode)))
5427 /* Don't try to handle any regs made by loop optimization.
5428 We have nothing on them in regno_first_uid, etc. */
5429 && REGNO (dest_reg) < max_reg_before_loop
5430 /* Don't recognize a BASIC_INDUCT_VAR here. */
5431 && dest_reg != src_reg
5432 /* This must be the only place where the register is set. */
5433 && (regs->array[REGNO (dest_reg)].n_times_set == 1
5434 /* or all sets must be consecutive and make a giv. */
5435 || (benefit = consec_sets_giv (loop, benefit, p,
5436 src_reg, dest_reg,
5437 &add_val, &mult_val, &ext_val,
5438 &last_consec_insn))))
5440 struct induction *v
5441 = (struct induction *) xmalloc (sizeof (struct induction));
5443 /* If this is a library call, increase benefit. */
5444 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5445 benefit += libcall_benefit (p);
5447 /* Skip the consecutive insns, if there are any. */
5448 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
5449 p = last_consec_insn;
5451 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
5452 ext_val, benefit, DEST_REG, not_every_iteration,
5453 maybe_multiple, (rtx*) 0);
5458 #ifndef DONT_REDUCE_ADDR
5459 /* Look for givs which are memory addresses. */
5460 /* This resulted in worse code on a VAX 8600. I wonder if it
5461 still does. */
5462 if (GET_CODE (p) == INSN)
5463 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
5464 maybe_multiple);
5465 #endif
5467 /* Update the status of whether giv can derive other givs. This can
5468 change when we pass a label or an insn that updates a biv. */
5469 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5470 || GET_CODE (p) == CODE_LABEL)
5471 update_giv_derive (loop, p);
5472 return p;
5475 /* Return 1 if X is a valid source for an initial value (or as value being
5476 compared against in an initial test).
5478 X must be either a register or constant and must not be clobbered between
5479 the current insn and the start of the loop.
5481 INSN is the insn containing X. */
5483 static int
5484 valid_initial_value_p (x, insn, call_seen, loop_start)
5485 rtx x;
5486 rtx insn;
5487 int call_seen;
5488 rtx loop_start;
5490 if (CONSTANT_P (x))
5491 return 1;
5493 /* Only consider pseudos we know about initialized in insns whose luids
5494 we know. */
5495 if (GET_CODE (x) != REG
5496 || REGNO (x) >= max_reg_before_loop)
5497 return 0;
5499 /* Don't use call-clobbered registers across a call which clobbers it. On
5500 some machines, don't use any hard registers at all. */
5501 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5502 && (SMALL_REGISTER_CLASSES
5503 || (call_used_regs[REGNO (x)] && call_seen)))
5504 return 0;
5506 /* Don't use registers that have been clobbered before the start of the
5507 loop. */
5508 if (reg_set_between_p (x, insn, loop_start))
5509 return 0;
5511 return 1;
5514 /* Scan X for memory refs and check each memory address
5515 as a possible giv. INSN is the insn whose pattern X comes from.
5516 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5517 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5518 more thanonce in each loop iteration. */
5520 static void
5521 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
5522 const struct loop *loop;
5523 rtx x;
5524 rtx insn;
5525 int not_every_iteration, maybe_multiple;
5527 int i, j;
5528 enum rtx_code code;
5529 const char *fmt;
5531 if (x == 0)
5532 return;
5534 code = GET_CODE (x);
5535 switch (code)
5537 case REG:
5538 case CONST_INT:
5539 case CONST:
5540 case CONST_DOUBLE:
5541 case SYMBOL_REF:
5542 case LABEL_REF:
5543 case PC:
5544 case CC0:
5545 case ADDR_VEC:
5546 case ADDR_DIFF_VEC:
5547 case USE:
5548 case CLOBBER:
5549 return;
5551 case MEM:
5553 rtx src_reg;
5554 rtx add_val;
5555 rtx mult_val;
5556 rtx ext_val;
5557 int benefit;
5559 /* This code used to disable creating GIVs with mult_val == 1 and
5560 add_val == 0. However, this leads to lost optimizations when
5561 it comes time to combine a set of related DEST_ADDR GIVs, since
5562 this one would not be seen. */
5564 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5565 &mult_val, &ext_val, 1, &benefit,
5566 GET_MODE (x)))
5568 /* Found one; record it. */
5569 struct induction *v
5570 = (struct induction *) xmalloc (sizeof (struct induction));
5572 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5573 add_val, ext_val, benefit, DEST_ADDR,
5574 not_every_iteration, maybe_multiple, &XEXP (x, 0));
5576 v->mem = x;
5579 return;
5581 default:
5582 break;
5585 /* Recursively scan the subexpressions for other mem refs. */
5587 fmt = GET_RTX_FORMAT (code);
5588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5589 if (fmt[i] == 'e')
5590 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5591 maybe_multiple);
5592 else if (fmt[i] == 'E')
5593 for (j = 0; j < XVECLEN (x, i); j++)
5594 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5595 maybe_multiple);
5598 /* Fill in the data about one biv update.
5599 V is the `struct induction' in which we record the biv. (It is
5600 allocated by the caller, with alloca.)
5601 INSN is the insn that sets it.
5602 DEST_REG is the biv's reg.
5604 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5605 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5606 being set to INC_VAL.
5608 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5609 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5610 can be executed more than once per iteration. If MAYBE_MULTIPLE
5611 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5612 executed exactly once per iteration. */
5614 static void
5615 record_biv (loop, v, insn, dest_reg, inc_val, mult_val, location,
5616 not_every_iteration, maybe_multiple)
5617 struct loop *loop;
5618 struct induction *v;
5619 rtx insn;
5620 rtx dest_reg;
5621 rtx inc_val;
5622 rtx mult_val;
5623 rtx *location;
5624 int not_every_iteration;
5625 int maybe_multiple;
5627 struct loop_ivs *ivs = LOOP_IVS (loop);
5628 struct iv_class *bl;
5630 v->insn = insn;
5631 v->src_reg = dest_reg;
5632 v->dest_reg = dest_reg;
5633 v->mult_val = mult_val;
5634 v->add_val = inc_val;
5635 v->ext_dependent = NULL_RTX;
5636 v->location = location;
5637 v->mode = GET_MODE (dest_reg);
5638 v->always_computable = ! not_every_iteration;
5639 v->always_executed = ! not_every_iteration;
5640 v->maybe_multiple = maybe_multiple;
5642 /* Add this to the reg's iv_class, creating a class
5643 if this is the first incrementation of the reg. */
5645 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
5646 if (bl == 0)
5648 /* Create and initialize new iv_class. */
5650 bl = (struct iv_class *) xmalloc (sizeof (struct iv_class));
5652 bl->regno = REGNO (dest_reg);
5653 bl->biv = 0;
5654 bl->giv = 0;
5655 bl->biv_count = 0;
5656 bl->giv_count = 0;
5658 /* Set initial value to the reg itself. */
5659 bl->initial_value = dest_reg;
5660 bl->final_value = 0;
5661 /* We haven't seen the initializing insn yet */
5662 bl->init_insn = 0;
5663 bl->init_set = 0;
5664 bl->initial_test = 0;
5665 bl->incremented = 0;
5666 bl->eliminable = 0;
5667 bl->nonneg = 0;
5668 bl->reversed = 0;
5669 bl->total_benefit = 0;
5671 /* Add this class to ivs->list. */
5672 bl->next = ivs->list;
5673 ivs->list = bl;
5675 /* Put it in the array of biv register classes. */
5676 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
5679 /* Update IV_CLASS entry for this biv. */
5680 v->next_iv = bl->biv;
5681 bl->biv = v;
5682 bl->biv_count++;
5683 if (mult_val == const1_rtx)
5684 bl->incremented = 1;
5686 if (loop_dump_stream)
5687 loop_biv_dump (v, loop_dump_stream, 0);
5690 /* Fill in the data about one giv.
5691 V is the `struct induction' in which we record the giv. (It is
5692 allocated by the caller, with alloca.)
5693 INSN is the insn that sets it.
5694 BENEFIT estimates the savings from deleting this insn.
5695 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5696 into a register or is used as a memory address.
5698 SRC_REG is the biv reg which the giv is computed from.
5699 DEST_REG is the giv's reg (if the giv is stored in a reg).
5700 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5701 LOCATION points to the place where this giv's value appears in INSN. */
5703 static void
5704 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, ext_val,
5705 benefit, type, not_every_iteration, maybe_multiple, location)
5706 const struct loop *loop;
5707 struct induction *v;
5708 rtx insn;
5709 rtx src_reg;
5710 rtx dest_reg;
5711 rtx mult_val, add_val, ext_val;
5712 int benefit;
5713 enum g_types type;
5714 int not_every_iteration, maybe_multiple;
5715 rtx *location;
5717 struct loop_ivs *ivs = LOOP_IVS (loop);
5718 struct induction *b;
5719 struct iv_class *bl;
5720 rtx set = single_set (insn);
5721 rtx temp;
5723 /* Attempt to prove constantness of the values. Don't let simplity_rtx
5724 undo the MULT canonicalization that we performed earlier. */
5725 temp = simplify_rtx (add_val);
5726 if (temp
5727 && ! (GET_CODE (add_val) == MULT
5728 && GET_CODE (temp) == ASHIFT))
5729 add_val = temp;
5731 v->insn = insn;
5732 v->src_reg = src_reg;
5733 v->giv_type = type;
5734 v->dest_reg = dest_reg;
5735 v->mult_val = mult_val;
5736 v->add_val = add_val;
5737 v->ext_dependent = ext_val;
5738 v->benefit = benefit;
5739 v->location = location;
5740 v->cant_derive = 0;
5741 v->combined_with = 0;
5742 v->maybe_multiple = maybe_multiple;
5743 v->maybe_dead = 0;
5744 v->derive_adjustment = 0;
5745 v->same = 0;
5746 v->ignore = 0;
5747 v->new_reg = 0;
5748 v->final_value = 0;
5749 v->same_insn = 0;
5750 v->auto_inc_opt = 0;
5751 v->unrolled = 0;
5752 v->shared = 0;
5754 /* The v->always_computable field is used in update_giv_derive, to
5755 determine whether a giv can be used to derive another giv. For a
5756 DEST_REG giv, INSN computes a new value for the giv, so its value
5757 isn't computable if INSN insn't executed every iteration.
5758 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5759 it does not compute a new value. Hence the value is always computable
5760 regardless of whether INSN is executed each iteration. */
5762 if (type == DEST_ADDR)
5763 v->always_computable = 1;
5764 else
5765 v->always_computable = ! not_every_iteration;
5767 v->always_executed = ! not_every_iteration;
5769 if (type == DEST_ADDR)
5771 v->mode = GET_MODE (*location);
5772 v->lifetime = 1;
5774 else /* type == DEST_REG */
5776 v->mode = GET_MODE (SET_DEST (set));
5778 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
5780 /* If the lifetime is zero, it means that this register is
5781 really a dead store. So mark this as a giv that can be
5782 ignored. This will not prevent the biv from being eliminated. */
5783 if (v->lifetime == 0)
5784 v->ignore = 1;
5786 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
5787 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
5790 /* Add the giv to the class of givs computed from one biv. */
5792 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
5793 if (bl)
5795 v->next_iv = bl->giv;
5796 bl->giv = v;
5797 /* Don't count DEST_ADDR. This is supposed to count the number of
5798 insns that calculate givs. */
5799 if (type == DEST_REG)
5800 bl->giv_count++;
5801 bl->total_benefit += benefit;
5803 else
5804 /* Fatal error, biv missing for this giv? */
5805 abort ();
5807 if (type == DEST_ADDR)
5808 v->replaceable = 1;
5809 else
5811 /* The giv can be replaced outright by the reduced register only if all
5812 of the following conditions are true:
5813 - the insn that sets the giv is always executed on any iteration
5814 on which the giv is used at all
5815 (there are two ways to deduce this:
5816 either the insn is executed on every iteration,
5817 or all uses follow that insn in the same basic block),
5818 - the giv is not used outside the loop
5819 - no assignments to the biv occur during the giv's lifetime. */
5821 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5822 /* Previous line always fails if INSN was moved by loop opt. */
5823 && REGNO_LAST_LUID (REGNO (dest_reg))
5824 < INSN_LUID (loop->end)
5825 && (! not_every_iteration
5826 || last_use_this_basic_block (dest_reg, insn)))
5828 /* Now check that there are no assignments to the biv within the
5829 giv's lifetime. This requires two separate checks. */
5831 /* Check each biv update, and fail if any are between the first
5832 and last use of the giv.
5834 If this loop contains an inner loop that was unrolled, then
5835 the insn modifying the biv may have been emitted by the loop
5836 unrolling code, and hence does not have a valid luid. Just
5837 mark the biv as not replaceable in this case. It is not very
5838 useful as a biv, because it is used in two different loops.
5839 It is very unlikely that we would be able to optimize the giv
5840 using this biv anyways. */
5842 v->replaceable = 1;
5843 for (b = bl->biv; b; b = b->next_iv)
5845 if (INSN_UID (b->insn) >= max_uid_for_loop
5846 || ((INSN_LUID (b->insn)
5847 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
5848 && (INSN_LUID (b->insn)
5849 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
5851 v->replaceable = 0;
5852 v->not_replaceable = 1;
5853 break;
5857 /* If there are any backwards branches that go from after the
5858 biv update to before it, then this giv is not replaceable. */
5859 if (v->replaceable)
5860 for (b = bl->biv; b; b = b->next_iv)
5861 if (back_branch_in_range_p (loop, b->insn))
5863 v->replaceable = 0;
5864 v->not_replaceable = 1;
5865 break;
5868 else
5870 /* May still be replaceable, we don't have enough info here to
5871 decide. */
5872 v->replaceable = 0;
5873 v->not_replaceable = 0;
5877 /* Record whether the add_val contains a const_int, for later use by
5878 combine_givs. */
5880 rtx tem = add_val;
5882 v->no_const_addval = 1;
5883 if (tem == const0_rtx)
5885 else if (CONSTANT_P (add_val))
5886 v->no_const_addval = 0;
5887 if (GET_CODE (tem) == PLUS)
5889 while (1)
5891 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5892 tem = XEXP (tem, 0);
5893 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5894 tem = XEXP (tem, 1);
5895 else
5896 break;
5898 if (CONSTANT_P (XEXP (tem, 1)))
5899 v->no_const_addval = 0;
5903 if (loop_dump_stream)
5904 loop_giv_dump (v, loop_dump_stream, 0);
5907 /* All this does is determine whether a giv can be made replaceable because
5908 its final value can be calculated. This code can not be part of record_giv
5909 above, because final_giv_value requires that the number of loop iterations
5910 be known, and that can not be accurately calculated until after all givs
5911 have been identified. */
5913 static void
5914 check_final_value (loop, v)
5915 const struct loop *loop;
5916 struct induction *v;
5918 struct loop_ivs *ivs = LOOP_IVS (loop);
5919 struct iv_class *bl;
5920 rtx final_value = 0;
5922 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
5924 /* DEST_ADDR givs will never reach here, because they are always marked
5925 replaceable above in record_giv. */
5927 /* The giv can be replaced outright by the reduced register only if all
5928 of the following conditions are true:
5929 - the insn that sets the giv is always executed on any iteration
5930 on which the giv is used at all
5931 (there are two ways to deduce this:
5932 either the insn is executed on every iteration,
5933 or all uses follow that insn in the same basic block),
5934 - its final value can be calculated (this condition is different
5935 than the one above in record_giv)
5936 - it's not used before the it's set
5937 - no assignments to the biv occur during the giv's lifetime. */
5939 #if 0
5940 /* This is only called now when replaceable is known to be false. */
5941 /* Clear replaceable, so that it won't confuse final_giv_value. */
5942 v->replaceable = 0;
5943 #endif
5945 if ((final_value = final_giv_value (loop, v))
5946 && (v->always_executed
5947 || last_use_this_basic_block (v->dest_reg, v->insn)))
5949 int biv_increment_seen = 0, before_giv_insn = 0;
5950 rtx p = v->insn;
5951 rtx last_giv_use;
5953 v->replaceable = 1;
5955 /* When trying to determine whether or not a biv increment occurs
5956 during the lifetime of the giv, we can ignore uses of the variable
5957 outside the loop because final_value is true. Hence we can not
5958 use regno_last_uid and regno_first_uid as above in record_giv. */
5960 /* Search the loop to determine whether any assignments to the
5961 biv occur during the giv's lifetime. Start with the insn
5962 that sets the giv, and search around the loop until we come
5963 back to that insn again.
5965 Also fail if there is a jump within the giv's lifetime that jumps
5966 to somewhere outside the lifetime but still within the loop. This
5967 catches spaghetti code where the execution order is not linear, and
5968 hence the above test fails. Here we assume that the giv lifetime
5969 does not extend from one iteration of the loop to the next, so as
5970 to make the test easier. Since the lifetime isn't known yet,
5971 this requires two loops. See also record_giv above. */
5973 last_giv_use = v->insn;
5975 while (1)
5977 p = NEXT_INSN (p);
5978 if (p == loop->end)
5980 before_giv_insn = 1;
5981 p = NEXT_INSN (loop->start);
5983 if (p == v->insn)
5984 break;
5986 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5987 || GET_CODE (p) == CALL_INSN)
5989 /* It is possible for the BIV increment to use the GIV if we
5990 have a cycle. Thus we must be sure to check each insn for
5991 both BIV and GIV uses, and we must check for BIV uses
5992 first. */
5994 if (! biv_increment_seen
5995 && reg_set_p (v->src_reg, PATTERN (p)))
5996 biv_increment_seen = 1;
5998 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
6000 if (biv_increment_seen || before_giv_insn)
6002 v->replaceable = 0;
6003 v->not_replaceable = 1;
6004 break;
6006 last_giv_use = p;
6011 /* Now that the lifetime of the giv is known, check for branches
6012 from within the lifetime to outside the lifetime if it is still
6013 replaceable. */
6015 if (v->replaceable)
6017 p = v->insn;
6018 while (1)
6020 p = NEXT_INSN (p);
6021 if (p == loop->end)
6022 p = NEXT_INSN (loop->start);
6023 if (p == last_giv_use)
6024 break;
6026 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
6027 && LABEL_NAME (JUMP_LABEL (p))
6028 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
6029 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
6030 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
6031 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
6033 v->replaceable = 0;
6034 v->not_replaceable = 1;
6036 if (loop_dump_stream)
6037 fprintf (loop_dump_stream,
6038 "Found branch outside giv lifetime.\n");
6040 break;
6045 /* If it is replaceable, then save the final value. */
6046 if (v->replaceable)
6047 v->final_value = final_value;
6050 if (loop_dump_stream && v->replaceable)
6051 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
6052 INSN_UID (v->insn), REGNO (v->dest_reg));
6055 /* Update the status of whether a giv can derive other givs.
6057 We need to do something special if there is or may be an update to the biv
6058 between the time the giv is defined and the time it is used to derive
6059 another giv.
6061 In addition, a giv that is only conditionally set is not allowed to
6062 derive another giv once a label has been passed.
6064 The cases we look at are when a label or an update to a biv is passed. */
6066 static void
6067 update_giv_derive (loop, p)
6068 const struct loop *loop;
6069 rtx p;
6071 struct loop_ivs *ivs = LOOP_IVS (loop);
6072 struct iv_class *bl;
6073 struct induction *biv, *giv;
6074 rtx tem;
6075 int dummy;
6077 /* Search all IV classes, then all bivs, and finally all givs.
6079 There are three cases we are concerned with. First we have the situation
6080 of a giv that is only updated conditionally. In that case, it may not
6081 derive any givs after a label is passed.
6083 The second case is when a biv update occurs, or may occur, after the
6084 definition of a giv. For certain biv updates (see below) that are
6085 known to occur between the giv definition and use, we can adjust the
6086 giv definition. For others, or when the biv update is conditional,
6087 we must prevent the giv from deriving any other givs. There are two
6088 sub-cases within this case.
6090 If this is a label, we are concerned with any biv update that is done
6091 conditionally, since it may be done after the giv is defined followed by
6092 a branch here (actually, we need to pass both a jump and a label, but
6093 this extra tracking doesn't seem worth it).
6095 If this is a jump, we are concerned about any biv update that may be
6096 executed multiple times. We are actually only concerned about
6097 backward jumps, but it is probably not worth performing the test
6098 on the jump again here.
6100 If this is a biv update, we must adjust the giv status to show that a
6101 subsequent biv update was performed. If this adjustment cannot be done,
6102 the giv cannot derive further givs. */
6104 for (bl = ivs->list; bl; bl = bl->next)
6105 for (biv = bl->biv; biv; biv = biv->next_iv)
6106 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
6107 || biv->insn == p)
6109 for (giv = bl->giv; giv; giv = giv->next_iv)
6111 /* If cant_derive is already true, there is no point in
6112 checking all of these conditions again. */
6113 if (giv->cant_derive)
6114 continue;
6116 /* If this giv is conditionally set and we have passed a label,
6117 it cannot derive anything. */
6118 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
6119 giv->cant_derive = 1;
6121 /* Skip givs that have mult_val == 0, since
6122 they are really invariants. Also skip those that are
6123 replaceable, since we know their lifetime doesn't contain
6124 any biv update. */
6125 else if (giv->mult_val == const0_rtx || giv->replaceable)
6126 continue;
6128 /* The only way we can allow this giv to derive another
6129 is if this is a biv increment and we can form the product
6130 of biv->add_val and giv->mult_val. In this case, we will
6131 be able to compute a compensation. */
6132 else if (biv->insn == p)
6134 rtx ext_val_dummy;
6136 tem = 0;
6137 if (biv->mult_val == const1_rtx)
6138 tem = simplify_giv_expr (loop,
6139 gen_rtx_MULT (giv->mode,
6140 biv->add_val,
6141 giv->mult_val),
6142 &ext_val_dummy, &dummy);
6144 if (tem && giv->derive_adjustment)
6145 tem = simplify_giv_expr
6146 (loop,
6147 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
6148 &ext_val_dummy, &dummy);
6150 if (tem)
6151 giv->derive_adjustment = tem;
6152 else
6153 giv->cant_derive = 1;
6155 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
6156 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
6157 giv->cant_derive = 1;
6162 /* Check whether an insn is an increment legitimate for a basic induction var.
6163 X is the source of insn P, or a part of it.
6164 MODE is the mode in which X should be interpreted.
6166 DEST_REG is the putative biv, also the destination of the insn.
6167 We accept patterns of these forms:
6168 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6169 REG = INVARIANT + REG
6171 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6172 store the additive term into *INC_VAL, and store the place where
6173 we found the additive term into *LOCATION.
6175 If X is an assignment of an invariant into DEST_REG, we set
6176 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6178 We also want to detect a BIV when it corresponds to a variable
6179 whose mode was promoted via PROMOTED_MODE. In that case, an increment
6180 of the variable may be a PLUS that adds a SUBREG of that variable to
6181 an invariant and then sign- or zero-extends the result of the PLUS
6182 into the variable.
6184 Most GIVs in such cases will be in the promoted mode, since that is the
6185 probably the natural computation mode (and almost certainly the mode
6186 used for addresses) on the machine. So we view the pseudo-reg containing
6187 the variable as the BIV, as if it were simply incremented.
6189 Note that treating the entire pseudo as a BIV will result in making
6190 simple increments to any GIVs based on it. However, if the variable
6191 overflows in its declared mode but not its promoted mode, the result will
6192 be incorrect. This is acceptable if the variable is signed, since
6193 overflows in such cases are undefined, but not if it is unsigned, since
6194 those overflows are defined. So we only check for SIGN_EXTEND and
6195 not ZERO_EXTEND.
6197 If we cannot find a biv, we return 0. */
6199 static int
6200 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val, location)
6201 const struct loop *loop;
6202 rtx x;
6203 enum machine_mode mode;
6204 rtx dest_reg;
6205 rtx p;
6206 rtx *inc_val;
6207 rtx *mult_val;
6208 rtx **location;
6210 enum rtx_code code;
6211 rtx *argp, arg;
6212 rtx insn, set = 0;
6214 code = GET_CODE (x);
6215 *location = NULL;
6216 switch (code)
6218 case PLUS:
6219 if (rtx_equal_p (XEXP (x, 0), dest_reg)
6220 || (GET_CODE (XEXP (x, 0)) == SUBREG
6221 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
6222 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
6224 argp = &XEXP (x, 1);
6226 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
6227 || (GET_CODE (XEXP (x, 1)) == SUBREG
6228 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
6229 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
6231 argp = &XEXP (x, 0);
6233 else
6234 return 0;
6236 arg = *argp;
6237 if (loop_invariant_p (loop, arg) != 1)
6238 return 0;
6240 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
6241 *mult_val = const1_rtx;
6242 *location = argp;
6243 return 1;
6245 case SUBREG:
6246 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
6247 handle addition of promoted variables.
6248 ??? The comment at the start of this function is wrong: promoted
6249 variable increments don't look like it says they do. */
6250 return basic_induction_var (loop, SUBREG_REG (x),
6251 GET_MODE (SUBREG_REG (x)),
6252 dest_reg, p, inc_val, mult_val, location);
6254 case REG:
6255 /* If this register is assigned in a previous insn, look at its
6256 source, but don't go outside the loop or past a label. */
6258 /* If this sets a register to itself, we would repeat any previous
6259 biv increment if we applied this strategy blindly. */
6260 if (rtx_equal_p (dest_reg, x))
6261 return 0;
6263 insn = p;
6264 while (1)
6266 rtx dest;
6269 insn = PREV_INSN (insn);
6271 while (insn && GET_CODE (insn) == NOTE
6272 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6274 if (!insn)
6275 break;
6276 set = single_set (insn);
6277 if (set == 0)
6278 break;
6279 dest = SET_DEST (set);
6280 if (dest == x
6281 || (GET_CODE (dest) == SUBREG
6282 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
6283 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
6284 && SUBREG_REG (dest) == x))
6285 return basic_induction_var (loop, SET_SRC (set),
6286 (GET_MODE (SET_SRC (set)) == VOIDmode
6287 ? GET_MODE (x)
6288 : GET_MODE (SET_SRC (set))),
6289 dest_reg, insn,
6290 inc_val, mult_val, location);
6292 while (GET_CODE (dest) == SIGN_EXTRACT
6293 || GET_CODE (dest) == ZERO_EXTRACT
6294 || GET_CODE (dest) == SUBREG
6295 || GET_CODE (dest) == STRICT_LOW_PART)
6296 dest = XEXP (dest, 0);
6297 if (dest == x)
6298 break;
6300 /* Fall through. */
6302 /* Can accept constant setting of biv only when inside inner most loop.
6303 Otherwise, a biv of an inner loop may be incorrectly recognized
6304 as a biv of the outer loop,
6305 causing code to be moved INTO the inner loop. */
6306 case MEM:
6307 if (loop_invariant_p (loop, x) != 1)
6308 return 0;
6309 case CONST_INT:
6310 case SYMBOL_REF:
6311 case CONST:
6312 /* convert_modes aborts if we try to convert to or from CCmode, so just
6313 exclude that case. It is very unlikely that a condition code value
6314 would be a useful iterator anyways. convert_modes aborts if we try to
6315 convert a float mode to non-float or vice versa too. */
6316 if (loop->level == 1
6317 && GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (dest_reg))
6318 && GET_MODE_CLASS (mode) != MODE_CC)
6320 /* Possible bug here? Perhaps we don't know the mode of X. */
6321 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6322 *mult_val = const0_rtx;
6323 return 1;
6325 else
6326 return 0;
6328 case SIGN_EXTEND:
6329 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6330 dest_reg, p, inc_val, mult_val, location);
6332 case ASHIFTRT:
6333 /* Similar, since this can be a sign extension. */
6334 for (insn = PREV_INSN (p);
6335 (insn && GET_CODE (insn) == NOTE
6336 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6337 insn = PREV_INSN (insn))
6340 if (insn)
6341 set = single_set (insn);
6343 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
6344 && set && SET_DEST (set) == XEXP (x, 0)
6345 && GET_CODE (XEXP (x, 1)) == CONST_INT
6346 && INTVAL (XEXP (x, 1)) >= 0
6347 && GET_CODE (SET_SRC (set)) == ASHIFT
6348 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6349 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6350 GET_MODE (XEXP (x, 0)),
6351 dest_reg, insn, inc_val, mult_val,
6352 location);
6353 return 0;
6355 default:
6356 return 0;
6360 /* A general induction variable (giv) is any quantity that is a linear
6361 function of a basic induction variable,
6362 i.e. giv = biv * mult_val + add_val.
6363 The coefficients can be any loop invariant quantity.
6364 A giv need not be computed directly from the biv;
6365 it can be computed by way of other givs. */
6367 /* Determine whether X computes a giv.
6368 If it does, return a nonzero value
6369 which is the benefit from eliminating the computation of X;
6370 set *SRC_REG to the register of the biv that it is computed from;
6371 set *ADD_VAL and *MULT_VAL to the coefficients,
6372 such that the value of X is biv * mult + add; */
6374 static int
6375 general_induction_var (loop, x, src_reg, add_val, mult_val, ext_val,
6376 is_addr, pbenefit, addr_mode)
6377 const struct loop *loop;
6378 rtx x;
6379 rtx *src_reg;
6380 rtx *add_val;
6381 rtx *mult_val;
6382 rtx *ext_val;
6383 int is_addr;
6384 int *pbenefit;
6385 enum machine_mode addr_mode;
6387 struct loop_ivs *ivs = LOOP_IVS (loop);
6388 rtx orig_x = x;
6390 /* If this is an invariant, forget it, it isn't a giv. */
6391 if (loop_invariant_p (loop, x) == 1)
6392 return 0;
6394 *pbenefit = 0;
6395 *ext_val = NULL_RTX;
6396 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
6397 if (x == 0)
6398 return 0;
6400 switch (GET_CODE (x))
6402 case USE:
6403 case CONST_INT:
6404 /* Since this is now an invariant and wasn't before, it must be a giv
6405 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6406 with. */
6407 *src_reg = ivs->list->biv->dest_reg;
6408 *mult_val = const0_rtx;
6409 *add_val = x;
6410 break;
6412 case REG:
6413 /* This is equivalent to a BIV. */
6414 *src_reg = x;
6415 *mult_val = const1_rtx;
6416 *add_val = const0_rtx;
6417 break;
6419 case PLUS:
6420 /* Either (plus (biv) (invar)) or
6421 (plus (mult (biv) (invar_1)) (invar_2)). */
6422 if (GET_CODE (XEXP (x, 0)) == MULT)
6424 *src_reg = XEXP (XEXP (x, 0), 0);
6425 *mult_val = XEXP (XEXP (x, 0), 1);
6427 else
6429 *src_reg = XEXP (x, 0);
6430 *mult_val = const1_rtx;
6432 *add_val = XEXP (x, 1);
6433 break;
6435 case MULT:
6436 /* ADD_VAL is zero. */
6437 *src_reg = XEXP (x, 0);
6438 *mult_val = XEXP (x, 1);
6439 *add_val = const0_rtx;
6440 break;
6442 default:
6443 abort ();
6446 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6447 unless they are CONST_INT). */
6448 if (GET_CODE (*add_val) == USE)
6449 *add_val = XEXP (*add_val, 0);
6450 if (GET_CODE (*mult_val) == USE)
6451 *mult_val = XEXP (*mult_val, 0);
6453 if (is_addr)
6454 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
6455 else
6456 *pbenefit += rtx_cost (orig_x, SET);
6458 /* Always return true if this is a giv so it will be detected as such,
6459 even if the benefit is zero or negative. This allows elimination
6460 of bivs that might otherwise not be eliminated. */
6461 return 1;
6464 /* Given an expression, X, try to form it as a linear function of a biv.
6465 We will canonicalize it to be of the form
6466 (plus (mult (BIV) (invar_1))
6467 (invar_2))
6468 with possible degeneracies.
6470 The invariant expressions must each be of a form that can be used as a
6471 machine operand. We surround then with a USE rtx (a hack, but localized
6472 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6473 routine; it is the caller's responsibility to strip them.
6475 If no such canonicalization is possible (i.e., two biv's are used or an
6476 expression that is neither invariant nor a biv or giv), this routine
6477 returns 0.
6479 For a non-zero return, the result will have a code of CONST_INT, USE,
6480 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6482 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6484 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
6485 static rtx sge_plus_constant PARAMS ((rtx, rtx));
6487 static rtx
6488 simplify_giv_expr (loop, x, ext_val, benefit)
6489 const struct loop *loop;
6490 rtx x;
6491 rtx *ext_val;
6492 int *benefit;
6494 struct loop_ivs *ivs = LOOP_IVS (loop);
6495 struct loop_regs *regs = LOOP_REGS (loop);
6496 enum machine_mode mode = GET_MODE (x);
6497 rtx arg0, arg1;
6498 rtx tem;
6500 /* If this is not an integer mode, or if we cannot do arithmetic in this
6501 mode, this can't be a giv. */
6502 if (mode != VOIDmode
6503 && (GET_MODE_CLASS (mode) != MODE_INT
6504 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6505 return NULL_RTX;
6507 switch (GET_CODE (x))
6509 case PLUS:
6510 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6511 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6512 if (arg0 == 0 || arg1 == 0)
6513 return NULL_RTX;
6515 /* Put constant last, CONST_INT last if both constant. */
6516 if ((GET_CODE (arg0) == USE
6517 || GET_CODE (arg0) == CONST_INT)
6518 && ! ((GET_CODE (arg0) == USE
6519 && GET_CODE (arg1) == USE)
6520 || GET_CODE (arg1) == CONST_INT))
6521 tem = arg0, arg0 = arg1, arg1 = tem;
6523 /* Handle addition of zero, then addition of an invariant. */
6524 if (arg1 == const0_rtx)
6525 return arg0;
6526 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6527 switch (GET_CODE (arg0))
6529 case CONST_INT:
6530 case USE:
6531 /* Adding two invariants must result in an invariant, so enclose
6532 addition operation inside a USE and return it. */
6533 if (GET_CODE (arg0) == USE)
6534 arg0 = XEXP (arg0, 0);
6535 if (GET_CODE (arg1) == USE)
6536 arg1 = XEXP (arg1, 0);
6538 if (GET_CODE (arg0) == CONST_INT)
6539 tem = arg0, arg0 = arg1, arg1 = tem;
6540 if (GET_CODE (arg1) == CONST_INT)
6541 tem = sge_plus_constant (arg0, arg1);
6542 else
6543 tem = sge_plus (mode, arg0, arg1);
6545 if (GET_CODE (tem) != CONST_INT)
6546 tem = gen_rtx_USE (mode, tem);
6547 return tem;
6549 case REG:
6550 case MULT:
6551 /* biv + invar or mult + invar. Return sum. */
6552 return gen_rtx_PLUS (mode, arg0, arg1);
6554 case PLUS:
6555 /* (a + invar_1) + invar_2. Associate. */
6556 return
6557 simplify_giv_expr (loop,
6558 gen_rtx_PLUS (mode,
6559 XEXP (arg0, 0),
6560 gen_rtx_PLUS (mode,
6561 XEXP (arg0, 1),
6562 arg1)),
6563 ext_val, benefit);
6565 default:
6566 abort ();
6569 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6570 MULT to reduce cases. */
6571 if (GET_CODE (arg0) == REG)
6572 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6573 if (GET_CODE (arg1) == REG)
6574 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6576 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6577 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6578 Recurse to associate the second PLUS. */
6579 if (GET_CODE (arg1) == MULT)
6580 tem = arg0, arg0 = arg1, arg1 = tem;
6582 if (GET_CODE (arg1) == PLUS)
6583 return
6584 simplify_giv_expr (loop,
6585 gen_rtx_PLUS (mode,
6586 gen_rtx_PLUS (mode, arg0,
6587 XEXP (arg1, 0)),
6588 XEXP (arg1, 1)),
6589 ext_val, benefit);
6591 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6592 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6593 return NULL_RTX;
6595 if (!rtx_equal_p (arg0, arg1))
6596 return NULL_RTX;
6598 return simplify_giv_expr (loop,
6599 gen_rtx_MULT (mode,
6600 XEXP (arg0, 0),
6601 gen_rtx_PLUS (mode,
6602 XEXP (arg0, 1),
6603 XEXP (arg1, 1))),
6604 ext_val, benefit);
6606 case MINUS:
6607 /* Handle "a - b" as "a + b * (-1)". */
6608 return simplify_giv_expr (loop,
6609 gen_rtx_PLUS (mode,
6610 XEXP (x, 0),
6611 gen_rtx_MULT (mode,
6612 XEXP (x, 1),
6613 constm1_rtx)),
6614 ext_val, benefit);
6616 case MULT:
6617 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6618 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6619 if (arg0 == 0 || arg1 == 0)
6620 return NULL_RTX;
6622 /* Put constant last, CONST_INT last if both constant. */
6623 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6624 && GET_CODE (arg1) != CONST_INT)
6625 tem = arg0, arg0 = arg1, arg1 = tem;
6627 /* If second argument is not now constant, not giv. */
6628 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6629 return NULL_RTX;
6631 /* Handle multiply by 0 or 1. */
6632 if (arg1 == const0_rtx)
6633 return const0_rtx;
6635 else if (arg1 == const1_rtx)
6636 return arg0;
6638 switch (GET_CODE (arg0))
6640 case REG:
6641 /* biv * invar. Done. */
6642 return gen_rtx_MULT (mode, arg0, arg1);
6644 case CONST_INT:
6645 /* Product of two constants. */
6646 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6648 case USE:
6649 /* invar * invar is a giv, but attempt to simplify it somehow. */
6650 if (GET_CODE (arg1) != CONST_INT)
6651 return NULL_RTX;
6653 arg0 = XEXP (arg0, 0);
6654 if (GET_CODE (arg0) == MULT)
6656 /* (invar_0 * invar_1) * invar_2. Associate. */
6657 return simplify_giv_expr (loop,
6658 gen_rtx_MULT (mode,
6659 XEXP (arg0, 0),
6660 gen_rtx_MULT (mode,
6661 XEXP (arg0,
6663 arg1)),
6664 ext_val, benefit);
6666 /* Porpagate the MULT expressions to the intermost nodes. */
6667 else if (GET_CODE (arg0) == PLUS)
6669 /* (invar_0 + invar_1) * invar_2. Distribute. */
6670 return simplify_giv_expr (loop,
6671 gen_rtx_PLUS (mode,
6672 gen_rtx_MULT (mode,
6673 XEXP (arg0,
6675 arg1),
6676 gen_rtx_MULT (mode,
6677 XEXP (arg0,
6679 arg1)),
6680 ext_val, benefit);
6682 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
6684 case MULT:
6685 /* (a * invar_1) * invar_2. Associate. */
6686 return simplify_giv_expr (loop,
6687 gen_rtx_MULT (mode,
6688 XEXP (arg0, 0),
6689 gen_rtx_MULT (mode,
6690 XEXP (arg0, 1),
6691 arg1)),
6692 ext_val, benefit);
6694 case PLUS:
6695 /* (a + invar_1) * invar_2. Distribute. */
6696 return simplify_giv_expr (loop,
6697 gen_rtx_PLUS (mode,
6698 gen_rtx_MULT (mode,
6699 XEXP (arg0, 0),
6700 arg1),
6701 gen_rtx_MULT (mode,
6702 XEXP (arg0, 1),
6703 arg1)),
6704 ext_val, benefit);
6706 default:
6707 abort ();
6710 case ASHIFT:
6711 /* Shift by constant is multiply by power of two. */
6712 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6713 return 0;
6715 return
6716 simplify_giv_expr (loop,
6717 gen_rtx_MULT (mode,
6718 XEXP (x, 0),
6719 GEN_INT ((HOST_WIDE_INT) 1
6720 << INTVAL (XEXP (x, 1)))),
6721 ext_val, benefit);
6723 case NEG:
6724 /* "-a" is "a * (-1)" */
6725 return simplify_giv_expr (loop,
6726 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6727 ext_val, benefit);
6729 case NOT:
6730 /* "~a" is "-a - 1". Silly, but easy. */
6731 return simplify_giv_expr (loop,
6732 gen_rtx_MINUS (mode,
6733 gen_rtx_NEG (mode, XEXP (x, 0)),
6734 const1_rtx),
6735 ext_val, benefit);
6737 case USE:
6738 /* Already in proper form for invariant. */
6739 return x;
6741 case SIGN_EXTEND:
6742 case ZERO_EXTEND:
6743 case TRUNCATE:
6744 /* Conditionally recognize extensions of simple IVs. After we've
6745 computed loop traversal counts and verified the range of the
6746 source IV, we'll reevaluate this as a GIV. */
6747 if (*ext_val == NULL_RTX)
6749 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6750 if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
6752 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
6753 return arg0;
6756 goto do_default;
6758 case REG:
6759 /* If this is a new register, we can't deal with it. */
6760 if (REGNO (x) >= max_reg_before_loop)
6761 return 0;
6763 /* Check for biv or giv. */
6764 switch (REG_IV_TYPE (ivs, REGNO (x)))
6766 case BASIC_INDUCT:
6767 return x;
6768 case GENERAL_INDUCT:
6770 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
6772 /* Form expression from giv and add benefit. Ensure this giv
6773 can derive another and subtract any needed adjustment if so. */
6775 /* Increasing the benefit here is risky. The only case in which it
6776 is arguably correct is if this is the only use of V. In other
6777 cases, this will artificially inflate the benefit of the current
6778 giv, and lead to suboptimal code. Thus, it is disabled, since
6779 potentially not reducing an only marginally beneficial giv is
6780 less harmful than reducing many givs that are not really
6781 beneficial. */
6783 rtx single_use = regs->array[REGNO (x)].single_usage;
6784 if (single_use && single_use != const0_rtx)
6785 *benefit += v->benefit;
6788 if (v->cant_derive)
6789 return 0;
6791 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6792 v->src_reg, v->mult_val),
6793 v->add_val);
6795 if (v->derive_adjustment)
6796 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6797 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
6798 if (*ext_val)
6800 if (!v->ext_dependent)
6801 return arg0;
6803 else
6805 *ext_val = v->ext_dependent;
6806 return arg0;
6808 return 0;
6811 default:
6812 do_default:
6813 /* If it isn't an induction variable, and it is invariant, we
6814 may be able to simplify things further by looking through
6815 the bits we just moved outside the loop. */
6816 if (loop_invariant_p (loop, x) == 1)
6818 struct movable *m;
6819 struct loop_movables *movables = LOOP_MOVABLES (loop);
6821 for (m = movables->head; m; m = m->next)
6822 if (rtx_equal_p (x, m->set_dest))
6824 /* Ok, we found a match. Substitute and simplify. */
6826 /* If we match another movable, we must use that, as
6827 this one is going away. */
6828 if (m->match)
6829 return simplify_giv_expr (loop, m->match->set_dest,
6830 ext_val, benefit);
6832 /* If consec is non-zero, this is a member of a group of
6833 instructions that were moved together. We handle this
6834 case only to the point of seeking to the last insn and
6835 looking for a REG_EQUAL. Fail if we don't find one. */
6836 if (m->consec != 0)
6838 int i = m->consec;
6839 tem = m->insn;
6842 tem = NEXT_INSN (tem);
6844 while (--i > 0);
6846 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6847 if (tem)
6848 tem = XEXP (tem, 0);
6850 else
6852 tem = single_set (m->insn);
6853 if (tem)
6854 tem = SET_SRC (tem);
6857 if (tem)
6859 /* What we are most interested in is pointer
6860 arithmetic on invariants -- only take
6861 patterns we may be able to do something with. */
6862 if (GET_CODE (tem) == PLUS
6863 || GET_CODE (tem) == MULT
6864 || GET_CODE (tem) == ASHIFT
6865 || GET_CODE (tem) == CONST_INT
6866 || GET_CODE (tem) == SYMBOL_REF)
6868 tem = simplify_giv_expr (loop, tem, ext_val,
6869 benefit);
6870 if (tem)
6871 return tem;
6873 else if (GET_CODE (tem) == CONST
6874 && GET_CODE (XEXP (tem, 0)) == PLUS
6875 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6876 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6878 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6879 ext_val, benefit);
6880 if (tem)
6881 return tem;
6884 break;
6887 break;
6890 /* Fall through to general case. */
6891 default:
6892 /* If invariant, return as USE (unless CONST_INT).
6893 Otherwise, not giv. */
6894 if (GET_CODE (x) == USE)
6895 x = XEXP (x, 0);
6897 if (loop_invariant_p (loop, x) == 1)
6899 if (GET_CODE (x) == CONST_INT)
6900 return x;
6901 if (GET_CODE (x) == CONST
6902 && GET_CODE (XEXP (x, 0)) == PLUS
6903 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6904 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6905 x = XEXP (x, 0);
6906 return gen_rtx_USE (mode, x);
6908 else
6909 return 0;
6913 /* This routine folds invariants such that there is only ever one
6914 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6916 static rtx
6917 sge_plus_constant (x, c)
6918 rtx x, c;
6920 if (GET_CODE (x) == CONST_INT)
6921 return GEN_INT (INTVAL (x) + INTVAL (c));
6922 else if (GET_CODE (x) != PLUS)
6923 return gen_rtx_PLUS (GET_MODE (x), x, c);
6924 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6926 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6927 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6929 else if (GET_CODE (XEXP (x, 0)) == PLUS
6930 || GET_CODE (XEXP (x, 1)) != PLUS)
6932 return gen_rtx_PLUS (GET_MODE (x),
6933 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6935 else
6937 return gen_rtx_PLUS (GET_MODE (x),
6938 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6942 static rtx
6943 sge_plus (mode, x, y)
6944 enum machine_mode mode;
6945 rtx x, y;
6947 while (GET_CODE (y) == PLUS)
6949 rtx a = XEXP (y, 0);
6950 if (GET_CODE (a) == CONST_INT)
6951 x = sge_plus_constant (x, a);
6952 else
6953 x = gen_rtx_PLUS (mode, x, a);
6954 y = XEXP (y, 1);
6956 if (GET_CODE (y) == CONST_INT)
6957 x = sge_plus_constant (x, y);
6958 else
6959 x = gen_rtx_PLUS (mode, x, y);
6960 return x;
6963 /* Help detect a giv that is calculated by several consecutive insns;
6964 for example,
6965 giv = biv * M
6966 giv = giv + A
6967 The caller has already identified the first insn P as having a giv as dest;
6968 we check that all other insns that set the same register follow
6969 immediately after P, that they alter nothing else,
6970 and that the result of the last is still a giv.
6972 The value is 0 if the reg set in P is not really a giv.
6973 Otherwise, the value is the amount gained by eliminating
6974 all the consecutive insns that compute the value.
6976 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6977 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6979 The coefficients of the ultimate giv value are stored in
6980 *MULT_VAL and *ADD_VAL. */
6982 static int
6983 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
6984 add_val, mult_val, ext_val, last_consec_insn)
6985 const struct loop *loop;
6986 int first_benefit;
6987 rtx p;
6988 rtx src_reg;
6989 rtx dest_reg;
6990 rtx *add_val;
6991 rtx *mult_val;
6992 rtx *ext_val;
6993 rtx *last_consec_insn;
6995 struct loop_ivs *ivs = LOOP_IVS (loop);
6996 struct loop_regs *regs = LOOP_REGS (loop);
6997 int count;
6998 enum rtx_code code;
6999 int benefit;
7000 rtx temp;
7001 rtx set;
7003 /* Indicate that this is a giv so that we can update the value produced in
7004 each insn of the multi-insn sequence.
7006 This induction structure will be used only by the call to
7007 general_induction_var below, so we can allocate it on our stack.
7008 If this is a giv, our caller will replace the induct var entry with
7009 a new induction structure. */
7010 struct induction *v;
7012 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
7013 return 0;
7015 v = (struct induction *) alloca (sizeof (struct induction));
7016 v->src_reg = src_reg;
7017 v->mult_val = *mult_val;
7018 v->add_val = *add_val;
7019 v->benefit = first_benefit;
7020 v->cant_derive = 0;
7021 v->derive_adjustment = 0;
7022 v->ext_dependent = NULL_RTX;
7024 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
7025 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
7027 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
7029 while (count > 0)
7031 p = NEXT_INSN (p);
7032 code = GET_CODE (p);
7034 /* If libcall, skip to end of call sequence. */
7035 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
7036 p = XEXP (temp, 0);
7038 if (code == INSN
7039 && (set = single_set (p))
7040 && GET_CODE (SET_DEST (set)) == REG
7041 && SET_DEST (set) == dest_reg
7042 && (general_induction_var (loop, SET_SRC (set), &src_reg,
7043 add_val, mult_val, ext_val, 0,
7044 &benefit, VOIDmode)
7045 /* Giv created by equivalent expression. */
7046 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
7047 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
7048 add_val, mult_val, ext_val, 0,
7049 &benefit, VOIDmode)))
7050 && src_reg == v->src_reg)
7052 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
7053 benefit += libcall_benefit (p);
7055 count--;
7056 v->mult_val = *mult_val;
7057 v->add_val = *add_val;
7058 v->benefit += benefit;
7060 else if (code != NOTE)
7062 /* Allow insns that set something other than this giv to a
7063 constant. Such insns are needed on machines which cannot
7064 include long constants and should not disqualify a giv. */
7065 if (code == INSN
7066 && (set = single_set (p))
7067 && SET_DEST (set) != dest_reg
7068 && CONSTANT_P (SET_SRC (set)))
7069 continue;
7071 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7072 return 0;
7076 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7077 *last_consec_insn = p;
7078 return v->benefit;
7081 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7082 represented by G1. If no such expression can be found, or it is clear that
7083 it cannot possibly be a valid address, 0 is returned.
7085 To perform the computation, we note that
7086 G1 = x * v + a and
7087 G2 = y * v + b
7088 where `v' is the biv.
7090 So G2 = (y/b) * G1 + (b - a*y/x).
7092 Note that MULT = y/x.
7094 Update: A and B are now allowed to be additive expressions such that
7095 B contains all variables in A. That is, computing B-A will not require
7096 subtracting variables. */
7098 static rtx
7099 express_from_1 (a, b, mult)
7100 rtx a, b, mult;
7102 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
7104 if (mult == const0_rtx)
7105 return b;
7107 /* If MULT is not 1, we cannot handle A with non-constants, since we
7108 would then be required to subtract multiples of the registers in A.
7109 This is theoretically possible, and may even apply to some Fortran
7110 constructs, but it is a lot of work and we do not attempt it here. */
7112 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
7113 return NULL_RTX;
7115 /* In general these structures are sorted top to bottom (down the PLUS
7116 chain), but not left to right across the PLUS. If B is a higher
7117 order giv than A, we can strip one level and recurse. If A is higher
7118 order, we'll eventually bail out, but won't know that until the end.
7119 If they are the same, we'll strip one level around this loop. */
7121 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
7123 rtx ra, rb, oa, ob, tmp;
7125 ra = XEXP (a, 0), oa = XEXP (a, 1);
7126 if (GET_CODE (ra) == PLUS)
7127 tmp = ra, ra = oa, oa = tmp;
7129 rb = XEXP (b, 0), ob = XEXP (b, 1);
7130 if (GET_CODE (rb) == PLUS)
7131 tmp = rb, rb = ob, ob = tmp;
7133 if (rtx_equal_p (ra, rb))
7134 /* We matched: remove one reg completely. */
7135 a = oa, b = ob;
7136 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
7137 /* An alternate match. */
7138 a = oa, b = rb;
7139 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
7140 /* An alternate match. */
7141 a = ra, b = ob;
7142 else
7144 /* Indicates an extra register in B. Strip one level from B and
7145 recurse, hoping B was the higher order expression. */
7146 ob = express_from_1 (a, ob, mult);
7147 if (ob == NULL_RTX)
7148 return NULL_RTX;
7149 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
7153 /* Here we are at the last level of A, go through the cases hoping to
7154 get rid of everything but a constant. */
7156 if (GET_CODE (a) == PLUS)
7158 rtx ra, oa;
7160 ra = XEXP (a, 0), oa = XEXP (a, 1);
7161 if (rtx_equal_p (oa, b))
7162 oa = ra;
7163 else if (!rtx_equal_p (ra, b))
7164 return NULL_RTX;
7166 if (GET_CODE (oa) != CONST_INT)
7167 return NULL_RTX;
7169 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
7171 else if (GET_CODE (a) == CONST_INT)
7173 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
7175 else if (CONSTANT_P (a))
7177 enum machine_mode mode_a = GET_MODE (a);
7178 enum machine_mode mode_b = GET_MODE (b);
7179 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
7180 return simplify_gen_binary (MINUS, mode, b, a);
7182 else if (GET_CODE (b) == PLUS)
7184 if (rtx_equal_p (a, XEXP (b, 0)))
7185 return XEXP (b, 1);
7186 else if (rtx_equal_p (a, XEXP (b, 1)))
7187 return XEXP (b, 0);
7188 else
7189 return NULL_RTX;
7191 else if (rtx_equal_p (a, b))
7192 return const0_rtx;
7194 return NULL_RTX;
7198 express_from (g1, g2)
7199 struct induction *g1, *g2;
7201 rtx mult, add;
7203 /* The value that G1 will be multiplied by must be a constant integer. Also,
7204 the only chance we have of getting a valid address is if b*c/a (see above
7205 for notation) is also an integer. */
7206 if (GET_CODE (g1->mult_val) == CONST_INT
7207 && GET_CODE (g2->mult_val) == CONST_INT)
7209 if (g1->mult_val == const0_rtx
7210 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
7211 return NULL_RTX;
7212 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
7214 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
7215 mult = const1_rtx;
7216 else
7218 /* ??? Find out if the one is a multiple of the other? */
7219 return NULL_RTX;
7222 add = express_from_1 (g1->add_val, g2->add_val, mult);
7223 if (add == NULL_RTX)
7225 /* Failed. If we've got a multiplication factor between G1 and G2,
7226 scale G1's addend and try again. */
7227 if (INTVAL (mult) > 1)
7229 rtx g1_add_val = g1->add_val;
7230 if (GET_CODE (g1_add_val) == MULT
7231 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
7233 HOST_WIDE_INT m;
7234 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
7235 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
7236 XEXP (g1_add_val, 0), GEN_INT (m));
7238 else
7240 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
7241 mult);
7244 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
7247 if (add == NULL_RTX)
7248 return NULL_RTX;
7250 /* Form simplified final result. */
7251 if (mult == const0_rtx)
7252 return add;
7253 else if (mult == const1_rtx)
7254 mult = g1->dest_reg;
7255 else
7256 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
7258 if (add == const0_rtx)
7259 return mult;
7260 else
7262 if (GET_CODE (add) == PLUS
7263 && CONSTANT_P (XEXP (add, 1)))
7265 rtx tem = XEXP (add, 1);
7266 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
7267 add = tem;
7270 return gen_rtx_PLUS (g2->mode, mult, add);
7274 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7275 represented by G1. This indicates that G2 should be combined with G1 and
7276 that G2 can use (either directly or via an address expression) a register
7277 used to represent G1. */
7279 static rtx
7280 combine_givs_p (g1, g2)
7281 struct induction *g1, *g2;
7283 rtx comb, ret;
7285 /* With the introduction of ext dependent givs, we must care for modes.
7286 G2 must not use a wider mode than G1. */
7287 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
7288 return NULL_RTX;
7290 ret = comb = express_from (g1, g2);
7291 if (comb == NULL_RTX)
7292 return NULL_RTX;
7293 if (g1->mode != g2->mode)
7294 ret = gen_lowpart (g2->mode, comb);
7296 /* If these givs are identical, they can be combined. We use the results
7297 of express_from because the addends are not in a canonical form, so
7298 rtx_equal_p is a weaker test. */
7299 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7300 combination to be the other way round. */
7301 if (comb == g1->dest_reg
7302 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
7304 return ret;
7307 /* If G2 can be expressed as a function of G1 and that function is valid
7308 as an address and no more expensive than using a register for G2,
7309 the expression of G2 in terms of G1 can be used. */
7310 if (ret != NULL_RTX
7311 && g2->giv_type == DEST_ADDR
7312 && memory_address_p (GET_MODE (g2->mem), ret)
7313 /* ??? Looses, especially with -fforce-addr, where *g2->location
7314 will always be a register, and so anything more complicated
7315 gets discarded. */
7316 #if 0
7317 #ifdef ADDRESS_COST
7318 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
7319 #else
7320 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
7321 #endif
7322 #endif
7325 return ret;
7328 return NULL_RTX;
7331 /* Check each extension dependent giv in this class to see if its
7332 root biv is safe from wrapping in the interior mode, which would
7333 make the giv illegal. */
7335 static void
7336 check_ext_dependent_givs (bl, loop_info)
7337 struct iv_class *bl;
7338 struct loop_info *loop_info;
7340 int ze_ok = 0, se_ok = 0, info_ok = 0;
7341 enum machine_mode biv_mode = GET_MODE (bl->biv->src_reg);
7342 HOST_WIDE_INT start_val;
7343 unsigned HOST_WIDE_INT u_end_val = 0;
7344 unsigned HOST_WIDE_INT u_start_val = 0;
7345 rtx incr = pc_rtx;
7346 struct induction *v;
7348 /* Make sure the iteration data is available. We must have
7349 constants in order to be certain of no overflow. */
7350 /* ??? An unknown iteration count with an increment of +-1
7351 combined with friendly exit tests of against an invariant
7352 value is also ameanable to optimization. Not implemented. */
7353 if (loop_info->n_iterations > 0
7354 && bl->initial_value
7355 && GET_CODE (bl->initial_value) == CONST_INT
7356 && (incr = biv_total_increment (bl))
7357 && GET_CODE (incr) == CONST_INT
7358 /* Make sure the host can represent the arithmetic. */
7359 && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (biv_mode))
7361 unsigned HOST_WIDE_INT abs_incr, total_incr;
7362 HOST_WIDE_INT s_end_val;
7363 int neg_incr;
7365 info_ok = 1;
7366 start_val = INTVAL (bl->initial_value);
7367 u_start_val = start_val;
7369 neg_incr = 0, abs_incr = INTVAL (incr);
7370 if (INTVAL (incr) < 0)
7371 neg_incr = 1, abs_incr = -abs_incr;
7372 total_incr = abs_incr * loop_info->n_iterations;
7374 /* Check for host arithmatic overflow. */
7375 if (total_incr / loop_info->n_iterations == abs_incr)
7377 unsigned HOST_WIDE_INT u_max;
7378 HOST_WIDE_INT s_max;
7380 u_end_val = start_val + (neg_incr ? -total_incr : total_incr);
7381 s_end_val = u_end_val;
7382 u_max = GET_MODE_MASK (biv_mode);
7383 s_max = u_max >> 1;
7385 /* Check zero extension of biv ok. */
7386 if (start_val >= 0
7387 /* Check for host arithmatic overflow. */
7388 && (neg_incr
7389 ? u_end_val < u_start_val
7390 : u_end_val > u_start_val)
7391 /* Check for target arithmetic overflow. */
7392 && (neg_incr
7393 ? 1 /* taken care of with host overflow */
7394 : u_end_val <= u_max))
7396 ze_ok = 1;
7399 /* Check sign extension of biv ok. */
7400 /* ??? While it is true that overflow with signed and pointer
7401 arithmetic is undefined, I fear too many programmers don't
7402 keep this fact in mind -- myself included on occasion.
7403 So leave alone with the signed overflow optimizations. */
7404 if (start_val >= -s_max - 1
7405 /* Check for host arithmatic overflow. */
7406 && (neg_incr
7407 ? s_end_val < start_val
7408 : s_end_val > start_val)
7409 /* Check for target arithmetic overflow. */
7410 && (neg_incr
7411 ? s_end_val >= -s_max - 1
7412 : s_end_val <= s_max))
7414 se_ok = 1;
7419 /* Invalidate givs that fail the tests. */
7420 for (v = bl->giv; v; v = v->next_iv)
7421 if (v->ext_dependent)
7423 enum rtx_code code = GET_CODE (v->ext_dependent);
7424 int ok = 0;
7426 switch (code)
7428 case SIGN_EXTEND:
7429 ok = se_ok;
7430 break;
7431 case ZERO_EXTEND:
7432 ok = ze_ok;
7433 break;
7435 case TRUNCATE:
7436 /* We don't know whether this value is being used as either
7437 signed or unsigned, so to safely truncate we must satisfy
7438 both. The initial check here verifies the BIV itself;
7439 once that is successful we may check its range wrt the
7440 derived GIV. */
7441 if (se_ok && ze_ok)
7443 enum machine_mode outer_mode = GET_MODE (v->ext_dependent);
7444 unsigned HOST_WIDE_INT max = GET_MODE_MASK (outer_mode) >> 1;
7446 /* We know from the above that both endpoints are nonnegative,
7447 and that there is no wrapping. Verify that both endpoints
7448 are within the (signed) range of the outer mode. */
7449 if (u_start_val <= max && u_end_val <= max)
7450 ok = 1;
7452 break;
7454 default:
7455 abort ();
7458 if (ok)
7460 if (loop_dump_stream)
7462 fprintf (loop_dump_stream,
7463 "Verified ext dependent giv at %d of reg %d\n",
7464 INSN_UID (v->insn), bl->regno);
7467 else
7469 if (loop_dump_stream)
7471 const char *why;
7473 if (info_ok)
7474 why = "biv iteration values overflowed";
7475 else
7477 if (incr == pc_rtx)
7478 incr = biv_total_increment (bl);
7479 if (incr == const1_rtx)
7480 why = "biv iteration info incomplete; incr by 1";
7481 else
7482 why = "biv iteration info incomplete";
7485 fprintf (loop_dump_stream,
7486 "Failed ext dependent giv at %d, %s\n",
7487 INSN_UID (v->insn), why);
7489 v->ignore = 1;
7490 bl->all_reduced = 0;
7495 /* Generate a version of VALUE in a mode appropriate for initializing V. */
7498 extend_value_for_giv (v, value)
7499 struct induction *v;
7500 rtx value;
7502 rtx ext_dep = v->ext_dependent;
7504 if (! ext_dep)
7505 return value;
7507 /* Recall that check_ext_dependent_givs verified that the known bounds
7508 of a biv did not overflow or wrap with respect to the extension for
7509 the giv. Therefore, constants need no additional adjustment. */
7510 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
7511 return value;
7513 /* Otherwise, we must adjust the value to compensate for the
7514 differing modes of the biv and the giv. */
7515 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
7518 struct combine_givs_stats
7520 int giv_number;
7521 int total_benefit;
7524 static int
7525 cmp_combine_givs_stats (xp, yp)
7526 const PTR xp;
7527 const PTR yp;
7529 const struct combine_givs_stats * const x =
7530 (const struct combine_givs_stats *) xp;
7531 const struct combine_givs_stats * const y =
7532 (const struct combine_givs_stats *) yp;
7533 int d;
7534 d = y->total_benefit - x->total_benefit;
7535 /* Stabilize the sort. */
7536 if (!d)
7537 d = x->giv_number - y->giv_number;
7538 return d;
7541 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7542 any other. If so, point SAME to the giv combined with and set NEW_REG to
7543 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7544 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7546 static void
7547 combine_givs (regs, bl)
7548 struct loop_regs *regs;
7549 struct iv_class *bl;
7551 /* Additional benefit to add for being combined multiple times. */
7552 const int extra_benefit = 3;
7554 struct induction *g1, *g2, **giv_array;
7555 int i, j, k, giv_count;
7556 struct combine_givs_stats *stats;
7557 rtx *can_combine;
7559 /* Count givs, because bl->giv_count is incorrect here. */
7560 giv_count = 0;
7561 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7562 if (!g1->ignore)
7563 giv_count++;
7565 giv_array
7566 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7567 i = 0;
7568 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7569 if (!g1->ignore)
7570 giv_array[i++] = g1;
7572 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
7573 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof (rtx));
7575 for (i = 0; i < giv_count; i++)
7577 int this_benefit;
7578 rtx single_use;
7580 g1 = giv_array[i];
7581 stats[i].giv_number = i;
7583 /* If a DEST_REG GIV is used only once, do not allow it to combine
7584 with anything, for in doing so we will gain nothing that cannot
7585 be had by simply letting the GIV with which we would have combined
7586 to be reduced on its own. The losage shows up in particular with
7587 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7588 be seen elsewhere as well. */
7589 if (g1->giv_type == DEST_REG
7590 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
7591 && single_use != const0_rtx)
7592 continue;
7594 this_benefit = g1->benefit;
7595 /* Add an additional weight for zero addends. */
7596 if (g1->no_const_addval)
7597 this_benefit += 1;
7599 for (j = 0; j < giv_count; j++)
7601 rtx this_combine;
7603 g2 = giv_array[j];
7604 if (g1 != g2
7605 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7607 can_combine[i * giv_count + j] = this_combine;
7608 this_benefit += g2->benefit + extra_benefit;
7611 stats[i].total_benefit = this_benefit;
7614 /* Iterate, combining until we can't. */
7615 restart:
7616 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
7618 if (loop_dump_stream)
7620 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7621 for (k = 0; k < giv_count; k++)
7623 g1 = giv_array[stats[k].giv_number];
7624 if (!g1->combined_with && !g1->same)
7625 fprintf (loop_dump_stream, " {%d, %d}",
7626 INSN_UID (giv_array[stats[k].giv_number]->insn),
7627 stats[k].total_benefit);
7629 putc ('\n', loop_dump_stream);
7632 for (k = 0; k < giv_count; k++)
7634 int g1_add_benefit = 0;
7636 i = stats[k].giv_number;
7637 g1 = giv_array[i];
7639 /* If it has already been combined, skip. */
7640 if (g1->combined_with || g1->same)
7641 continue;
7643 for (j = 0; j < giv_count; j++)
7645 g2 = giv_array[j];
7646 if (g1 != g2 && can_combine[i * giv_count + j]
7647 /* If it has already been combined, skip. */
7648 && ! g2->same && ! g2->combined_with)
7650 int l;
7652 g2->new_reg = can_combine[i * giv_count + j];
7653 g2->same = g1;
7654 /* For destination, we now may replace by mem expression instead
7655 of register. This changes the costs considerably, so add the
7656 compensation. */
7657 if (g2->giv_type == DEST_ADDR)
7658 g2->benefit = (g2->benefit + reg_address_cost
7659 - address_cost (g2->new_reg,
7660 GET_MODE (g2->mem)));
7661 g1->combined_with++;
7662 g1->lifetime += g2->lifetime;
7664 g1_add_benefit += g2->benefit;
7666 /* ??? The new final_[bg]iv_value code does a much better job
7667 of finding replaceable giv's, and hence this code may no
7668 longer be necessary. */
7669 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7670 g1_add_benefit -= copy_cost;
7672 /* To help optimize the next set of combinations, remove
7673 this giv from the benefits of other potential mates. */
7674 for (l = 0; l < giv_count; ++l)
7676 int m = stats[l].giv_number;
7677 if (can_combine[m * giv_count + j])
7678 stats[l].total_benefit -= g2->benefit + extra_benefit;
7681 if (loop_dump_stream)
7682 fprintf (loop_dump_stream,
7683 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
7684 INSN_UID (g2->insn), INSN_UID (g1->insn),
7685 g1->benefit, g1_add_benefit, g1->lifetime);
7689 /* To help optimize the next set of combinations, remove
7690 this giv from the benefits of other potential mates. */
7691 if (g1->combined_with)
7693 for (j = 0; j < giv_count; ++j)
7695 int m = stats[j].giv_number;
7696 if (can_combine[m * giv_count + i])
7697 stats[j].total_benefit -= g1->benefit + extra_benefit;
7700 g1->benefit += g1_add_benefit;
7702 /* We've finished with this giv, and everything it touched.
7703 Restart the combination so that proper weights for the
7704 rest of the givs are properly taken into account. */
7705 /* ??? Ideally we would compact the arrays at this point, so
7706 as to not cover old ground. But sanely compacting
7707 can_combine is tricky. */
7708 goto restart;
7712 /* Clean up. */
7713 free (stats);
7714 free (can_combine);
7717 /* Generate sequence for REG = B * M + A. */
7719 static rtx
7720 gen_add_mult (b, m, a, reg)
7721 rtx b; /* initial value of basic induction variable */
7722 rtx m; /* multiplicative constant */
7723 rtx a; /* additive constant */
7724 rtx reg; /* destination register */
7726 rtx seq;
7727 rtx result;
7729 start_sequence ();
7730 /* Use unsigned arithmetic. */
7731 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7732 if (reg != result)
7733 emit_move_insn (reg, result);
7734 seq = get_insns ();
7735 end_sequence ();
7737 return seq;
7741 /* Update registers created in insn sequence SEQ. */
7743 static void
7744 loop_regs_update (loop, seq)
7745 const struct loop *loop ATTRIBUTE_UNUSED;
7746 rtx seq;
7748 rtx insn;
7750 /* Update register info for alias analysis. */
7752 if (seq == NULL_RTX)
7753 return;
7755 if (INSN_P (seq))
7757 insn = seq;
7758 while (insn != NULL_RTX)
7760 rtx set = single_set (insn);
7762 if (set && GET_CODE (SET_DEST (set)) == REG)
7763 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7765 insn = NEXT_INSN (insn);
7768 else if (GET_CODE (seq) == SET
7769 && GET_CODE (SET_DEST (seq)) == REG)
7770 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7774 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. */
7776 void
7777 loop_iv_add_mult_emit_before (loop, b, m, a, reg, before_bb, before_insn)
7778 const struct loop *loop;
7779 rtx b; /* initial value of basic induction variable */
7780 rtx m; /* multiplicative constant */
7781 rtx a; /* additive constant */
7782 rtx reg; /* destination register */
7783 basic_block before_bb;
7784 rtx before_insn;
7786 rtx seq;
7788 if (! before_insn)
7790 loop_iv_add_mult_hoist (loop, b, m, a, reg);
7791 return;
7794 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7795 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7797 /* Increase the lifetime of any invariants moved further in code. */
7798 update_reg_last_use (a, before_insn);
7799 update_reg_last_use (b, before_insn);
7800 update_reg_last_use (m, before_insn);
7802 loop_insn_emit_before (loop, before_bb, before_insn, seq);
7804 /* It is possible that the expansion created lots of new registers.
7805 Iterate over the sequence we just created and record them all. */
7806 loop_regs_update (loop, seq);
7810 /* Emit insns in loop pre-header to set REG = B * M + A. */
7812 void
7813 loop_iv_add_mult_sink (loop, b, m, a, reg)
7814 const struct loop *loop;
7815 rtx b; /* initial value of basic induction variable */
7816 rtx m; /* multiplicative constant */
7817 rtx a; /* additive constant */
7818 rtx reg; /* destination register */
7820 rtx seq;
7822 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7823 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7825 /* Increase the lifetime of any invariants moved further in code.
7826 ???? Is this really necessary? */
7827 update_reg_last_use (a, loop->sink);
7828 update_reg_last_use (b, loop->sink);
7829 update_reg_last_use (m, loop->sink);
7831 loop_insn_sink (loop, seq);
7833 /* It is possible that the expansion created lots of new registers.
7834 Iterate over the sequence we just created and record them all. */
7835 loop_regs_update (loop, seq);
7839 /* Emit insns after loop to set REG = B * M + A. */
7841 void
7842 loop_iv_add_mult_hoist (loop, b, m, a, reg)
7843 const struct loop *loop;
7844 rtx b; /* initial value of basic induction variable */
7845 rtx m; /* multiplicative constant */
7846 rtx a; /* additive constant */
7847 rtx reg; /* destination register */
7849 rtx seq;
7851 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7852 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7854 loop_insn_hoist (loop, seq);
7856 /* It is possible that the expansion created lots of new registers.
7857 Iterate over the sequence we just created and record them all. */
7858 loop_regs_update (loop, seq);
7863 /* Similar to gen_add_mult, but compute cost rather than generating
7864 sequence. */
7866 static int
7867 iv_add_mult_cost (b, m, a, reg)
7868 rtx b; /* initial value of basic induction variable */
7869 rtx m; /* multiplicative constant */
7870 rtx a; /* additive constant */
7871 rtx reg; /* destination register */
7873 int cost = 0;
7874 rtx last, result;
7876 start_sequence ();
7877 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7878 if (reg != result)
7879 emit_move_insn (reg, result);
7880 last = get_last_insn ();
7881 while (last)
7883 rtx t = single_set (last);
7884 if (t)
7885 cost += rtx_cost (SET_SRC (t), SET);
7886 last = PREV_INSN (last);
7888 end_sequence ();
7889 return cost;
7892 /* Test whether A * B can be computed without
7893 an actual multiply insn. Value is 1 if so.
7895 ??? This function stinks because it generates a ton of wasted RTL
7896 ??? and as a result fragments GC memory to no end. There are other
7897 ??? places in the compiler which are invoked a lot and do the same
7898 ??? thing, generate wasted RTL just to see if something is possible. */
7900 static int
7901 product_cheap_p (a, b)
7902 rtx a;
7903 rtx b;
7905 rtx tmp;
7906 int win, n_insns;
7908 /* If only one is constant, make it B. */
7909 if (GET_CODE (a) == CONST_INT)
7910 tmp = a, a = b, b = tmp;
7912 /* If first constant, both constant, so don't need multiply. */
7913 if (GET_CODE (a) == CONST_INT)
7914 return 1;
7916 /* If second not constant, neither is constant, so would need multiply. */
7917 if (GET_CODE (b) != CONST_INT)
7918 return 0;
7920 /* One operand is constant, so might not need multiply insn. Generate the
7921 code for the multiply and see if a call or multiply, or long sequence
7922 of insns is generated. */
7924 start_sequence ();
7925 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
7926 tmp = get_insns ();
7927 end_sequence ();
7929 win = 1;
7930 if (INSN_P (tmp))
7932 n_insns = 0;
7933 while (tmp != NULL_RTX)
7935 rtx next = NEXT_INSN (tmp);
7937 if (++n_insns > 3
7938 || GET_CODE (tmp) != INSN
7939 || (GET_CODE (PATTERN (tmp)) == SET
7940 && GET_CODE (SET_SRC (PATTERN (tmp))) == MULT)
7941 || (GET_CODE (PATTERN (tmp)) == PARALLEL
7942 && GET_CODE (XVECEXP (PATTERN (tmp), 0, 0)) == SET
7943 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp), 0, 0))) == MULT))
7945 win = 0;
7946 break;
7949 tmp = next;
7952 else if (GET_CODE (tmp) == SET
7953 && GET_CODE (SET_SRC (tmp)) == MULT)
7954 win = 0;
7955 else if (GET_CODE (tmp) == PARALLEL
7956 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7957 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7958 win = 0;
7960 return win;
7963 /* Check to see if loop can be terminated by a "decrement and branch until
7964 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7965 Also try reversing an increment loop to a decrement loop
7966 to see if the optimization can be performed.
7967 Value is nonzero if optimization was performed. */
7969 /* This is useful even if the architecture doesn't have such an insn,
7970 because it might change a loops which increments from 0 to n to a loop
7971 which decrements from n to 0. A loop that decrements to zero is usually
7972 faster than one that increments from zero. */
7974 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7975 such as approx_final_value, biv_total_increment, loop_iterations, and
7976 final_[bg]iv_value. */
7978 static int
7979 check_dbra_loop (loop, insn_count)
7980 struct loop *loop;
7981 int insn_count;
7983 struct loop_info *loop_info = LOOP_INFO (loop);
7984 struct loop_regs *regs = LOOP_REGS (loop);
7985 struct loop_ivs *ivs = LOOP_IVS (loop);
7986 struct iv_class *bl;
7987 rtx reg;
7988 rtx jump_label;
7989 rtx final_value;
7990 rtx start_value;
7991 rtx new_add_val;
7992 rtx comparison;
7993 rtx before_comparison;
7994 rtx p;
7995 rtx jump;
7996 rtx first_compare;
7997 int compare_and_branch;
7998 rtx loop_start = loop->start;
7999 rtx loop_end = loop->end;
8001 /* If last insn is a conditional branch, and the insn before tests a
8002 register value, try to optimize it. Otherwise, we can't do anything. */
8004 jump = PREV_INSN (loop_end);
8005 comparison = get_condition_for_loop (loop, jump);
8006 if (comparison == 0)
8007 return 0;
8008 if (!onlyjump_p (jump))
8009 return 0;
8011 /* Try to compute whether the compare/branch at the loop end is one or
8012 two instructions. */
8013 get_condition (jump, &first_compare);
8014 if (first_compare == jump)
8015 compare_and_branch = 1;
8016 else if (first_compare == prev_nonnote_insn (jump))
8017 compare_and_branch = 2;
8018 else
8019 return 0;
8022 /* If more than one condition is present to control the loop, then
8023 do not proceed, as this function does not know how to rewrite
8024 loop tests with more than one condition.
8026 Look backwards from the first insn in the last comparison
8027 sequence and see if we've got another comparison sequence. */
8029 rtx jump1;
8030 if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
8031 if (GET_CODE (jump1) == JUMP_INSN)
8032 return 0;
8035 /* Check all of the bivs to see if the compare uses one of them.
8036 Skip biv's set more than once because we can't guarantee that
8037 it will be zero on the last iteration. Also skip if the biv is
8038 used between its update and the test insn. */
8040 for (bl = ivs->list; bl; bl = bl->next)
8042 if (bl->biv_count == 1
8043 && ! bl->biv->maybe_multiple
8044 && bl->biv->dest_reg == XEXP (comparison, 0)
8045 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
8046 first_compare))
8047 break;
8050 if (! bl)
8051 return 0;
8053 /* Look for the case where the basic induction variable is always
8054 nonnegative, and equals zero on the last iteration.
8055 In this case, add a reg_note REG_NONNEG, which allows the
8056 m68k DBRA instruction to be used. */
8058 if (((GET_CODE (comparison) == GT
8059 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
8060 && INTVAL (XEXP (comparison, 1)) == -1)
8061 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
8062 && GET_CODE (bl->biv->add_val) == CONST_INT
8063 && INTVAL (bl->biv->add_val) < 0)
8065 /* Initial value must be greater than 0,
8066 init_val % -dec_value == 0 to ensure that it equals zero on
8067 the last iteration */
8069 if (GET_CODE (bl->initial_value) == CONST_INT
8070 && INTVAL (bl->initial_value) > 0
8071 && (INTVAL (bl->initial_value)
8072 % (-INTVAL (bl->biv->add_val))) == 0)
8074 /* register always nonnegative, add REG_NOTE to branch */
8075 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8076 REG_NOTES (jump)
8077 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8078 REG_NOTES (jump));
8079 bl->nonneg = 1;
8081 return 1;
8084 /* If the decrement is 1 and the value was tested as >= 0 before
8085 the loop, then we can safely optimize. */
8086 for (p = loop_start; p; p = PREV_INSN (p))
8088 if (GET_CODE (p) == CODE_LABEL)
8089 break;
8090 if (GET_CODE (p) != JUMP_INSN)
8091 continue;
8093 before_comparison = get_condition_for_loop (loop, p);
8094 if (before_comparison
8095 && XEXP (before_comparison, 0) == bl->biv->dest_reg
8096 && GET_CODE (before_comparison) == LT
8097 && XEXP (before_comparison, 1) == const0_rtx
8098 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
8099 && INTVAL (bl->biv->add_val) == -1)
8101 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8102 REG_NOTES (jump)
8103 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8104 REG_NOTES (jump));
8105 bl->nonneg = 1;
8107 return 1;
8111 else if (GET_CODE (bl->biv->add_val) == CONST_INT
8112 && INTVAL (bl->biv->add_val) > 0)
8114 /* Try to change inc to dec, so can apply above optimization. */
8115 /* Can do this if:
8116 all registers modified are induction variables or invariant,
8117 all memory references have non-overlapping addresses
8118 (obviously true if only one write)
8119 allow 2 insns for the compare/jump at the end of the loop. */
8120 /* Also, we must avoid any instructions which use both the reversed
8121 biv and another biv. Such instructions will fail if the loop is
8122 reversed. We meet this condition by requiring that either
8123 no_use_except_counting is true, or else that there is only
8124 one biv. */
8125 int num_nonfixed_reads = 0;
8126 /* 1 if the iteration var is used only to count iterations. */
8127 int no_use_except_counting = 0;
8128 /* 1 if the loop has no memory store, or it has a single memory store
8129 which is reversible. */
8130 int reversible_mem_store = 1;
8132 if (bl->giv_count == 0
8133 && !loop->exit_count
8134 && !loop_info->has_multiple_exit_targets)
8136 rtx bivreg = regno_reg_rtx[bl->regno];
8137 struct iv_class *blt;
8139 /* If there are no givs for this biv, and the only exit is the
8140 fall through at the end of the loop, then
8141 see if perhaps there are no uses except to count. */
8142 no_use_except_counting = 1;
8143 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8144 if (INSN_P (p))
8146 rtx set = single_set (p);
8148 if (set && GET_CODE (SET_DEST (set)) == REG
8149 && REGNO (SET_DEST (set)) == bl->regno)
8150 /* An insn that sets the biv is okay. */
8152 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
8153 || p == prev_nonnote_insn (loop_end))
8154 && reg_mentioned_p (bivreg, PATTERN (p)))
8156 /* If either of these insns uses the biv and sets a pseudo
8157 that has more than one usage, then the biv has uses
8158 other than counting since it's used to derive a value
8159 that is used more than one time. */
8160 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
8161 regs);
8162 if (regs->multiple_uses)
8164 no_use_except_counting = 0;
8165 break;
8168 else if (reg_mentioned_p (bivreg, PATTERN (p)))
8170 no_use_except_counting = 0;
8171 break;
8175 /* A biv has uses besides counting if it is used to set
8176 another biv. */
8177 for (blt = ivs->list; blt; blt = blt->next)
8178 if (blt->init_set
8179 && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
8181 no_use_except_counting = 0;
8182 break;
8186 if (no_use_except_counting)
8187 /* No need to worry about MEMs. */
8189 else if (loop_info->num_mem_sets <= 1)
8191 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8192 if (INSN_P (p))
8193 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
8195 /* If the loop has a single store, and the destination address is
8196 invariant, then we can't reverse the loop, because this address
8197 might then have the wrong value at loop exit.
8198 This would work if the source was invariant also, however, in that
8199 case, the insn should have been moved out of the loop. */
8201 if (loop_info->num_mem_sets == 1)
8203 struct induction *v;
8205 /* If we could prove that each of the memory locations
8206 written to was different, then we could reverse the
8207 store -- but we don't presently have any way of
8208 knowing that. */
8209 reversible_mem_store = 0;
8211 /* If the store depends on a register that is set after the
8212 store, it depends on the initial value, and is thus not
8213 reversible. */
8214 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
8216 if (v->giv_type == DEST_REG
8217 && reg_mentioned_p (v->dest_reg,
8218 PATTERN (loop_info->first_loop_store_insn))
8219 && loop_insn_first_p (loop_info->first_loop_store_insn,
8220 v->insn))
8221 reversible_mem_store = 0;
8225 else
8226 return 0;
8228 /* This code only acts for innermost loops. Also it simplifies
8229 the memory address check by only reversing loops with
8230 zero or one memory access.
8231 Two memory accesses could involve parts of the same array,
8232 and that can't be reversed.
8233 If the biv is used only for counting, than we don't need to worry
8234 about all these things. */
8236 if ((num_nonfixed_reads <= 1
8237 && ! loop_info->has_nonconst_call
8238 && ! loop_info->has_prefetch
8239 && ! loop_info->has_volatile
8240 && reversible_mem_store
8241 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
8242 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
8243 && (bl == ivs->list && bl->next == 0))
8244 || (no_use_except_counting && ! loop_info->has_prefetch))
8246 rtx tem;
8248 /* Loop can be reversed. */
8249 if (loop_dump_stream)
8250 fprintf (loop_dump_stream, "Can reverse loop\n");
8252 /* Now check other conditions:
8254 The increment must be a constant, as must the initial value,
8255 and the comparison code must be LT.
8257 This test can probably be improved since +/- 1 in the constant
8258 can be obtained by changing LT to LE and vice versa; this is
8259 confusing. */
8261 if (comparison
8262 /* for constants, LE gets turned into LT */
8263 && (GET_CODE (comparison) == LT
8264 || (GET_CODE (comparison) == LE
8265 && no_use_except_counting)))
8267 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8268 rtx initial_value, comparison_value;
8269 int nonneg = 0;
8270 enum rtx_code cmp_code;
8271 int comparison_const_width;
8272 unsigned HOST_WIDE_INT comparison_sign_mask;
8274 add_val = INTVAL (bl->biv->add_val);
8275 comparison_value = XEXP (comparison, 1);
8276 if (GET_MODE (comparison_value) == VOIDmode)
8277 comparison_const_width
8278 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8279 else
8280 comparison_const_width
8281 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8282 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8283 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8284 comparison_sign_mask
8285 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
8287 /* If the comparison value is not a loop invariant, then we
8288 can not reverse this loop.
8290 ??? If the insns which initialize the comparison value as
8291 a whole compute an invariant result, then we could move
8292 them out of the loop and proceed with loop reversal. */
8293 if (! loop_invariant_p (loop, comparison_value))
8294 return 0;
8296 if (GET_CODE (comparison_value) == CONST_INT)
8297 comparison_val = INTVAL (comparison_value);
8298 initial_value = bl->initial_value;
8300 /* Normalize the initial value if it is an integer and
8301 has no other use except as a counter. This will allow
8302 a few more loops to be reversed. */
8303 if (no_use_except_counting
8304 && GET_CODE (comparison_value) == CONST_INT
8305 && GET_CODE (initial_value) == CONST_INT)
8307 comparison_val = comparison_val - INTVAL (bl->initial_value);
8308 /* The code below requires comparison_val to be a multiple
8309 of add_val in order to do the loop reversal, so
8310 round up comparison_val to a multiple of add_val.
8311 Since comparison_value is constant, we know that the
8312 current comparison code is LT. */
8313 comparison_val = comparison_val + add_val - 1;
8314 comparison_val
8315 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8316 /* We postpone overflow checks for COMPARISON_VAL here;
8317 even if there is an overflow, we might still be able to
8318 reverse the loop, if converting the loop exit test to
8319 NE is possible. */
8320 initial_value = const0_rtx;
8323 /* First check if we can do a vanilla loop reversal. */
8324 if (initial_value == const0_rtx
8325 /* If we have a decrement_and_branch_on_count,
8326 prefer the NE test, since this will allow that
8327 instruction to be generated. Note that we must
8328 use a vanilla loop reversal if the biv is used to
8329 calculate a giv or has a non-counting use. */
8330 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8331 && defined (HAVE_decrement_and_branch_on_count)
8332 && (! (add_val == 1 && loop->vtop
8333 && (bl->biv_count == 0
8334 || no_use_except_counting)))
8335 #endif
8336 && GET_CODE (comparison_value) == CONST_INT
8337 /* Now do postponed overflow checks on COMPARISON_VAL. */
8338 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8339 & comparison_sign_mask))
8341 /* Register will always be nonnegative, with value
8342 0 on last iteration */
8343 add_adjust = add_val;
8344 nonneg = 1;
8345 cmp_code = GE;
8347 else if (add_val == 1 && loop->vtop
8348 && (bl->biv_count == 0
8349 || no_use_except_counting))
8351 add_adjust = 0;
8352 cmp_code = NE;
8354 else
8355 return 0;
8357 if (GET_CODE (comparison) == LE)
8358 add_adjust -= add_val;
8360 /* If the initial value is not zero, or if the comparison
8361 value is not an exact multiple of the increment, then we
8362 can not reverse this loop. */
8363 if (initial_value == const0_rtx
8364 && GET_CODE (comparison_value) == CONST_INT)
8366 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8367 return 0;
8369 else
8371 if (! no_use_except_counting || add_val != 1)
8372 return 0;
8375 final_value = comparison_value;
8377 /* Reset these in case we normalized the initial value
8378 and comparison value above. */
8379 if (GET_CODE (comparison_value) == CONST_INT
8380 && GET_CODE (initial_value) == CONST_INT)
8382 comparison_value = GEN_INT (comparison_val);
8383 final_value
8384 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8386 bl->initial_value = initial_value;
8388 /* Save some info needed to produce the new insns. */
8389 reg = bl->biv->dest_reg;
8390 jump_label = condjump_label (PREV_INSN (loop_end));
8391 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
8393 /* Set start_value; if this is not a CONST_INT, we need
8394 to generate a SUB.
8395 Initialize biv to start_value before loop start.
8396 The old initializing insn will be deleted as a
8397 dead store by flow.c. */
8398 if (initial_value == const0_rtx
8399 && GET_CODE (comparison_value) == CONST_INT)
8401 start_value = GEN_INT (comparison_val - add_adjust);
8402 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
8404 else if (GET_CODE (initial_value) == CONST_INT)
8406 enum machine_mode mode = GET_MODE (reg);
8407 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8408 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
8410 if (add_insn == 0)
8411 return 0;
8413 start_value
8414 = gen_rtx_PLUS (mode, comparison_value, offset);
8415 loop_insn_hoist (loop, add_insn);
8416 if (GET_CODE (comparison) == LE)
8417 final_value = gen_rtx_PLUS (mode, comparison_value,
8418 GEN_INT (add_val));
8420 else if (! add_adjust)
8422 enum machine_mode mode = GET_MODE (reg);
8423 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
8424 initial_value);
8426 if (sub_insn == 0)
8427 return 0;
8428 start_value
8429 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8430 loop_insn_hoist (loop, sub_insn);
8432 else
8433 /* We could handle the other cases too, but it'll be
8434 better to have a testcase first. */
8435 return 0;
8437 /* We may not have a single insn which can increment a reg, so
8438 create a sequence to hold all the insns from expand_inc. */
8439 start_sequence ();
8440 expand_inc (reg, new_add_val);
8441 tem = get_insns ();
8442 end_sequence ();
8444 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
8445 delete_insn (bl->biv->insn);
8447 /* Update biv info to reflect its new status. */
8448 bl->biv->insn = p;
8449 bl->initial_value = start_value;
8450 bl->biv->add_val = new_add_val;
8452 /* Update loop info. */
8453 loop_info->initial_value = reg;
8454 loop_info->initial_equiv_value = reg;
8455 loop_info->final_value = const0_rtx;
8456 loop_info->final_equiv_value = const0_rtx;
8457 loop_info->comparison_value = const0_rtx;
8458 loop_info->comparison_code = cmp_code;
8459 loop_info->increment = new_add_val;
8461 /* Inc LABEL_NUSES so that delete_insn will
8462 not delete the label. */
8463 LABEL_NUSES (XEXP (jump_label, 0))++;
8465 /* Emit an insn after the end of the loop to set the biv's
8466 proper exit value if it is used anywhere outside the loop. */
8467 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8468 || ! bl->init_insn
8469 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8470 loop_insn_sink (loop, gen_load_of_final_value (reg, final_value));
8472 /* Delete compare/branch at end of loop. */
8473 delete_related_insns (PREV_INSN (loop_end));
8474 if (compare_and_branch == 2)
8475 delete_related_insns (first_compare);
8477 /* Add new compare/branch insn at end of loop. */
8478 start_sequence ();
8479 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8480 GET_MODE (reg), 0,
8481 XEXP (jump_label, 0));
8482 tem = get_insns ();
8483 end_sequence ();
8484 emit_jump_insn_before (tem, loop_end);
8486 for (tem = PREV_INSN (loop_end);
8487 tem && GET_CODE (tem) != JUMP_INSN;
8488 tem = PREV_INSN (tem))
8491 if (tem)
8492 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8494 if (nonneg)
8496 if (tem)
8498 /* Increment of LABEL_NUSES done above. */
8499 /* Register is now always nonnegative,
8500 so add REG_NONNEG note to the branch. */
8501 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
8502 REG_NOTES (tem));
8504 bl->nonneg = 1;
8507 /* No insn may reference both the reversed and another biv or it
8508 will fail (see comment near the top of the loop reversal
8509 code).
8510 Earlier on, we have verified that the biv has no use except
8511 counting, or it is the only biv in this function.
8512 However, the code that computes no_use_except_counting does
8513 not verify reg notes. It's possible to have an insn that
8514 references another biv, and has a REG_EQUAL note with an
8515 expression based on the reversed biv. To avoid this case,
8516 remove all REG_EQUAL notes based on the reversed biv
8517 here. */
8518 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8519 if (INSN_P (p))
8521 rtx *pnote;
8522 rtx set = single_set (p);
8523 /* If this is a set of a GIV based on the reversed biv, any
8524 REG_EQUAL notes should still be correct. */
8525 if (! set
8526 || GET_CODE (SET_DEST (set)) != REG
8527 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
8528 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
8529 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8530 for (pnote = &REG_NOTES (p); *pnote;)
8532 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8533 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8534 XEXP (*pnote, 0)))
8535 *pnote = XEXP (*pnote, 1);
8536 else
8537 pnote = &XEXP (*pnote, 1);
8541 /* Mark that this biv has been reversed. Each giv which depends
8542 on this biv, and which is also live past the end of the loop
8543 will have to be fixed up. */
8545 bl->reversed = 1;
8547 if (loop_dump_stream)
8549 fprintf (loop_dump_stream, "Reversed loop");
8550 if (bl->nonneg)
8551 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8552 else
8553 fprintf (loop_dump_stream, "\n");
8556 return 1;
8561 return 0;
8564 /* Verify whether the biv BL appears to be eliminable,
8565 based on the insns in the loop that refer to it.
8567 If ELIMINATE_P is non-zero, actually do the elimination.
8569 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8570 determine whether invariant insns should be placed inside or at the
8571 start of the loop. */
8573 static int
8574 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
8575 const struct loop *loop;
8576 struct iv_class *bl;
8577 int eliminate_p;
8578 int threshold, insn_count;
8580 struct loop_ivs *ivs = LOOP_IVS (loop);
8581 rtx reg = bl->biv->dest_reg;
8582 rtx p;
8584 /* Scan all insns in the loop, stopping if we find one that uses the
8585 biv in a way that we cannot eliminate. */
8587 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
8589 enum rtx_code code = GET_CODE (p);
8590 basic_block where_bb = 0;
8591 rtx where_insn = threshold >= insn_count ? 0 : p;
8593 /* If this is a libcall that sets a giv, skip ahead to its end. */
8594 if (GET_RTX_CLASS (code) == 'i')
8596 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8598 if (note)
8600 rtx last = XEXP (note, 0);
8601 rtx set = single_set (last);
8603 if (set && GET_CODE (SET_DEST (set)) == REG)
8605 unsigned int regno = REGNO (SET_DEST (set));
8607 if (regno < ivs->n_regs
8608 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
8609 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
8610 p = last;
8614 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8615 && reg_mentioned_p (reg, PATTERN (p))
8616 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8617 eliminate_p, where_bb, where_insn))
8619 if (loop_dump_stream)
8620 fprintf (loop_dump_stream,
8621 "Cannot eliminate biv %d: biv used in insn %d.\n",
8622 bl->regno, INSN_UID (p));
8623 break;
8627 if (p == loop->end)
8629 if (loop_dump_stream)
8630 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8631 bl->regno, eliminate_p ? "was" : "can be");
8632 return 1;
8635 return 0;
8638 /* INSN and REFERENCE are instructions in the same insn chain.
8639 Return non-zero if INSN is first. */
8642 loop_insn_first_p (insn, reference)
8643 rtx insn, reference;
8645 rtx p, q;
8647 for (p = insn, q = reference;;)
8649 /* Start with test for not first so that INSN == REFERENCE yields not
8650 first. */
8651 if (q == insn || ! p)
8652 return 0;
8653 if (p == reference || ! q)
8654 return 1;
8656 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8657 previous insn, hence the <= comparison below does not work if
8658 P is a note. */
8659 if (INSN_UID (p) < max_uid_for_loop
8660 && INSN_UID (q) < max_uid_for_loop
8661 && GET_CODE (p) != NOTE)
8662 return INSN_LUID (p) <= INSN_LUID (q);
8664 if (INSN_UID (p) >= max_uid_for_loop
8665 || GET_CODE (p) == NOTE)
8666 p = NEXT_INSN (p);
8667 if (INSN_UID (q) >= max_uid_for_loop)
8668 q = NEXT_INSN (q);
8672 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8673 the offset that we have to take into account due to auto-increment /
8674 div derivation is zero. */
8675 static int
8676 biv_elimination_giv_has_0_offset (biv, giv, insn)
8677 struct induction *biv, *giv;
8678 rtx insn;
8680 /* If the giv V had the auto-inc address optimization applied
8681 to it, and INSN occurs between the giv insn and the biv
8682 insn, then we'd have to adjust the value used here.
8683 This is rare, so we don't bother to make this possible. */
8684 if (giv->auto_inc_opt
8685 && ((loop_insn_first_p (giv->insn, insn)
8686 && loop_insn_first_p (insn, biv->insn))
8687 || (loop_insn_first_p (biv->insn, insn)
8688 && loop_insn_first_p (insn, giv->insn))))
8689 return 0;
8691 return 1;
8694 /* If BL appears in X (part of the pattern of INSN), see if we can
8695 eliminate its use. If so, return 1. If not, return 0.
8697 If BIV does not appear in X, return 1.
8699 If ELIMINATE_P is non-zero, actually do the elimination.
8700 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
8701 Depending on how many items have been moved out of the loop, it
8702 will either be before INSN (when WHERE_INSN is non-zero) or at the
8703 start of the loop (when WHERE_INSN is zero). */
8705 static int
8706 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where_bb, where_insn)
8707 const struct loop *loop;
8708 rtx x, insn;
8709 struct iv_class *bl;
8710 int eliminate_p;
8711 basic_block where_bb;
8712 rtx where_insn;
8714 enum rtx_code code = GET_CODE (x);
8715 rtx reg = bl->biv->dest_reg;
8716 enum machine_mode mode = GET_MODE (reg);
8717 struct induction *v;
8718 rtx arg, tem;
8719 #ifdef HAVE_cc0
8720 rtx new;
8721 #endif
8722 int arg_operand;
8723 const char *fmt;
8724 int i, j;
8726 switch (code)
8728 case REG:
8729 /* If we haven't already been able to do something with this BIV,
8730 we can't eliminate it. */
8731 if (x == reg)
8732 return 0;
8733 return 1;
8735 case SET:
8736 /* If this sets the BIV, it is not a problem. */
8737 if (SET_DEST (x) == reg)
8738 return 1;
8740 /* If this is an insn that defines a giv, it is also ok because
8741 it will go away when the giv is reduced. */
8742 for (v = bl->giv; v; v = v->next_iv)
8743 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8744 return 1;
8746 #ifdef HAVE_cc0
8747 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8749 /* Can replace with any giv that was reduced and
8750 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8751 Require a constant for MULT_VAL, so we know it's nonzero.
8752 ??? We disable this optimization to avoid potential
8753 overflows. */
8755 for (v = bl->giv; v; v = v->next_iv)
8756 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8757 && v->add_val == const0_rtx
8758 && ! v->ignore && ! v->maybe_dead && v->always_computable
8759 && v->mode == mode
8760 && 0)
8762 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8763 continue;
8765 if (! eliminate_p)
8766 return 1;
8768 /* If the giv has the opposite direction of change,
8769 then reverse the comparison. */
8770 if (INTVAL (v->mult_val) < 0)
8771 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8772 const0_rtx, v->new_reg);
8773 else
8774 new = v->new_reg;
8776 /* We can probably test that giv's reduced reg. */
8777 if (validate_change (insn, &SET_SRC (x), new, 0))
8778 return 1;
8781 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8782 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8783 Require a constant for MULT_VAL, so we know it's nonzero.
8784 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8785 overflow problem. */
8787 for (v = bl->giv; v; v = v->next_iv)
8788 if (GET_CODE (v->mult_val) == CONST_INT
8789 && v->mult_val != const0_rtx
8790 && ! v->ignore && ! v->maybe_dead && v->always_computable
8791 && v->mode == mode
8792 && (GET_CODE (v->add_val) == SYMBOL_REF
8793 || GET_CODE (v->add_val) == LABEL_REF
8794 || GET_CODE (v->add_val) == CONST
8795 || (GET_CODE (v->add_val) == REG
8796 && REG_POINTER (v->add_val))))
8798 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8799 continue;
8801 if (! eliminate_p)
8802 return 1;
8804 /* If the giv has the opposite direction of change,
8805 then reverse the comparison. */
8806 if (INTVAL (v->mult_val) < 0)
8807 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8808 v->new_reg);
8809 else
8810 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8811 copy_rtx (v->add_val));
8813 /* Replace biv with the giv's reduced register. */
8814 update_reg_last_use (v->add_val, insn);
8815 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8816 return 1;
8818 /* Insn doesn't support that constant or invariant. Copy it
8819 into a register (it will be a loop invariant.) */
8820 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8822 loop_insn_emit_before (loop, 0, where_insn,
8823 gen_move_insn (tem,
8824 copy_rtx (v->add_val)));
8826 /* Substitute the new register for its invariant value in
8827 the compare expression. */
8828 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8829 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8830 return 1;
8833 #endif
8834 break;
8836 case COMPARE:
8837 case EQ: case NE:
8838 case GT: case GE: case GTU: case GEU:
8839 case LT: case LE: case LTU: case LEU:
8840 /* See if either argument is the biv. */
8841 if (XEXP (x, 0) == reg)
8842 arg = XEXP (x, 1), arg_operand = 1;
8843 else if (XEXP (x, 1) == reg)
8844 arg = XEXP (x, 0), arg_operand = 0;
8845 else
8846 break;
8848 if (CONSTANT_P (arg))
8850 /* First try to replace with any giv that has constant positive
8851 mult_val and constant add_val. We might be able to support
8852 negative mult_val, but it seems complex to do it in general. */
8854 for (v = bl->giv; v; v = v->next_iv)
8855 if (GET_CODE (v->mult_val) == CONST_INT
8856 && INTVAL (v->mult_val) > 0
8857 && (GET_CODE (v->add_val) == SYMBOL_REF
8858 || GET_CODE (v->add_val) == LABEL_REF
8859 || GET_CODE (v->add_val) == CONST
8860 || (GET_CODE (v->add_val) == REG
8861 && REG_POINTER (v->add_val)))
8862 && ! v->ignore && ! v->maybe_dead && v->always_computable
8863 && v->mode == mode)
8865 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8866 continue;
8868 /* Don't eliminate if the linear combination that makes up
8869 the giv overflows when it is applied to ARG. */
8870 if (GET_CODE (arg) == CONST_INT)
8872 rtx add_val;
8874 if (GET_CODE (v->add_val) == CONST_INT)
8875 add_val = v->add_val;
8876 else
8877 add_val = const0_rtx;
8879 if (const_mult_add_overflow_p (arg, v->mult_val,
8880 add_val, mode, 1))
8881 continue;
8884 if (! eliminate_p)
8885 return 1;
8887 /* Replace biv with the giv's reduced reg. */
8888 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
8890 /* If all constants are actually constant integers and
8891 the derived constant can be directly placed in the COMPARE,
8892 do so. */
8893 if (GET_CODE (arg) == CONST_INT
8894 && GET_CODE (v->add_val) == CONST_INT)
8896 tem = expand_mult_add (arg, NULL_RTX, v->mult_val,
8897 v->add_val, mode, 1);
8899 else
8901 /* Otherwise, load it into a register. */
8902 tem = gen_reg_rtx (mode);
8903 loop_iv_add_mult_emit_before (loop, arg,
8904 v->mult_val, v->add_val,
8905 tem, where_bb, where_insn);
8908 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8910 if (apply_change_group ())
8911 return 1;
8914 /* Look for giv with positive constant mult_val and nonconst add_val.
8915 Insert insns to calculate new compare value.
8916 ??? Turn this off due to possible overflow. */
8918 for (v = bl->giv; v; v = v->next_iv)
8919 if (GET_CODE (v->mult_val) == CONST_INT
8920 && INTVAL (v->mult_val) > 0
8921 && ! v->ignore && ! v->maybe_dead && v->always_computable
8922 && v->mode == mode
8923 && 0)
8925 rtx tem;
8927 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8928 continue;
8930 if (! eliminate_p)
8931 return 1;
8933 tem = gen_reg_rtx (mode);
8935 /* Replace biv with giv's reduced register. */
8936 validate_change (insn, &XEXP (x, 1 - arg_operand),
8937 v->new_reg, 1);
8939 /* Compute value to compare against. */
8940 loop_iv_add_mult_emit_before (loop, arg,
8941 v->mult_val, v->add_val,
8942 tem, where_bb, where_insn);
8943 /* Use it in this insn. */
8944 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8945 if (apply_change_group ())
8946 return 1;
8949 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8951 if (loop_invariant_p (loop, arg) == 1)
8953 /* Look for giv with constant positive mult_val and nonconst
8954 add_val. Insert insns to compute new compare value.
8955 ??? Turn this off due to possible overflow. */
8957 for (v = bl->giv; v; v = v->next_iv)
8958 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8959 && ! v->ignore && ! v->maybe_dead && v->always_computable
8960 && v->mode == mode
8961 && 0)
8963 rtx tem;
8965 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8966 continue;
8968 if (! eliminate_p)
8969 return 1;
8971 tem = gen_reg_rtx (mode);
8973 /* Replace biv with giv's reduced register. */
8974 validate_change (insn, &XEXP (x, 1 - arg_operand),
8975 v->new_reg, 1);
8977 /* Compute value to compare against. */
8978 loop_iv_add_mult_emit_before (loop, arg,
8979 v->mult_val, v->add_val,
8980 tem, where_bb, where_insn);
8981 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8982 if (apply_change_group ())
8983 return 1;
8987 /* This code has problems. Basically, you can't know when
8988 seeing if we will eliminate BL, whether a particular giv
8989 of ARG will be reduced. If it isn't going to be reduced,
8990 we can't eliminate BL. We can try forcing it to be reduced,
8991 but that can generate poor code.
8993 The problem is that the benefit of reducing TV, below should
8994 be increased if BL can actually be eliminated, but this means
8995 we might have to do a topological sort of the order in which
8996 we try to process biv. It doesn't seem worthwhile to do
8997 this sort of thing now. */
8999 #if 0
9000 /* Otherwise the reg compared with had better be a biv. */
9001 if (GET_CODE (arg) != REG
9002 || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
9003 return 0;
9005 /* Look for a pair of givs, one for each biv,
9006 with identical coefficients. */
9007 for (v = bl->giv; v; v = v->next_iv)
9009 struct induction *tv;
9011 if (v->ignore || v->maybe_dead || v->mode != mode)
9012 continue;
9014 for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
9015 tv = tv->next_iv)
9016 if (! tv->ignore && ! tv->maybe_dead
9017 && rtx_equal_p (tv->mult_val, v->mult_val)
9018 && rtx_equal_p (tv->add_val, v->add_val)
9019 && tv->mode == mode)
9021 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
9022 continue;
9024 if (! eliminate_p)
9025 return 1;
9027 /* Replace biv with its giv's reduced reg. */
9028 XEXP (x, 1 - arg_operand) = v->new_reg;
9029 /* Replace other operand with the other giv's
9030 reduced reg. */
9031 XEXP (x, arg_operand) = tv->new_reg;
9032 return 1;
9035 #endif
9038 /* If we get here, the biv can't be eliminated. */
9039 return 0;
9041 case MEM:
9042 /* If this address is a DEST_ADDR giv, it doesn't matter if the
9043 biv is used in it, since it will be replaced. */
9044 for (v = bl->giv; v; v = v->next_iv)
9045 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
9046 return 1;
9047 break;
9049 default:
9050 break;
9053 /* See if any subexpression fails elimination. */
9054 fmt = GET_RTX_FORMAT (code);
9055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9057 switch (fmt[i])
9059 case 'e':
9060 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
9061 eliminate_p, where_bb, where_insn))
9062 return 0;
9063 break;
9065 case 'E':
9066 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9067 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
9068 eliminate_p, where_bb, where_insn))
9069 return 0;
9070 break;
9074 return 1;
9077 /* Return nonzero if the last use of REG
9078 is in an insn following INSN in the same basic block. */
9080 static int
9081 last_use_this_basic_block (reg, insn)
9082 rtx reg;
9083 rtx insn;
9085 rtx n;
9086 for (n = insn;
9087 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
9088 n = NEXT_INSN (n))
9090 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
9091 return 1;
9093 return 0;
9096 /* Called via `note_stores' to record the initial value of a biv. Here we
9097 just record the location of the set and process it later. */
9099 static void
9100 record_initial (dest, set, data)
9101 rtx dest;
9102 rtx set;
9103 void *data ATTRIBUTE_UNUSED;
9105 struct loop_ivs *ivs = (struct loop_ivs *) data;
9106 struct iv_class *bl;
9108 if (GET_CODE (dest) != REG
9109 || REGNO (dest) >= ivs->n_regs
9110 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
9111 return;
9113 bl = REG_IV_CLASS (ivs, REGNO (dest));
9115 /* If this is the first set found, record it. */
9116 if (bl->init_insn == 0)
9118 bl->init_insn = note_insn;
9119 bl->init_set = set;
9123 /* If any of the registers in X are "old" and currently have a last use earlier
9124 than INSN, update them to have a last use of INSN. Their actual last use
9125 will be the previous insn but it will not have a valid uid_luid so we can't
9126 use it. X must be a source expression only. */
9128 static void
9129 update_reg_last_use (x, insn)
9130 rtx x;
9131 rtx insn;
9133 /* Check for the case where INSN does not have a valid luid. In this case,
9134 there is no need to modify the regno_last_uid, as this can only happen
9135 when code is inserted after the loop_end to set a pseudo's final value,
9136 and hence this insn will never be the last use of x.
9137 ???? This comment is not correct. See for example loop_givs_reduce.
9138 This may insert an insn before another new insn. */
9139 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
9140 && INSN_UID (insn) < max_uid_for_loop
9141 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
9143 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
9145 else
9147 int i, j;
9148 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
9149 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
9151 if (fmt[i] == 'e')
9152 update_reg_last_use (XEXP (x, i), insn);
9153 else if (fmt[i] == 'E')
9154 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9155 update_reg_last_use (XVECEXP (x, i, j), insn);
9160 /* Given an insn INSN and condition COND, return the condition in a
9161 canonical form to simplify testing by callers. Specifically:
9163 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9164 (2) Both operands will be machine operands; (cc0) will have been replaced.
9165 (3) If an operand is a constant, it will be the second operand.
9166 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9167 for GE, GEU, and LEU.
9169 If the condition cannot be understood, or is an inequality floating-point
9170 comparison which needs to be reversed, 0 will be returned.
9172 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
9174 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9175 insn used in locating the condition was found. If a replacement test
9176 of the condition is desired, it should be placed in front of that
9177 insn and we will be sure that the inputs are still valid.
9179 If WANT_REG is non-zero, we wish the condition to be relative to that
9180 register, if possible. Therefore, do not canonicalize the condition
9181 further. */
9184 canonicalize_condition (insn, cond, reverse, earliest, want_reg)
9185 rtx insn;
9186 rtx cond;
9187 int reverse;
9188 rtx *earliest;
9189 rtx want_reg;
9191 enum rtx_code code;
9192 rtx prev = insn;
9193 rtx set;
9194 rtx tem;
9195 rtx op0, op1;
9196 int reverse_code = 0;
9197 enum machine_mode mode;
9199 code = GET_CODE (cond);
9200 mode = GET_MODE (cond);
9201 op0 = XEXP (cond, 0);
9202 op1 = XEXP (cond, 1);
9204 if (reverse)
9205 code = reversed_comparison_code (cond, insn);
9206 if (code == UNKNOWN)
9207 return 0;
9209 if (earliest)
9210 *earliest = insn;
9212 /* If we are comparing a register with zero, see if the register is set
9213 in the previous insn to a COMPARE or a comparison operation. Perform
9214 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9215 in cse.c */
9217 while (GET_RTX_CLASS (code) == '<'
9218 && op1 == CONST0_RTX (GET_MODE (op0))
9219 && op0 != want_reg)
9221 /* Set non-zero when we find something of interest. */
9222 rtx x = 0;
9224 #ifdef HAVE_cc0
9225 /* If comparison with cc0, import actual comparison from compare
9226 insn. */
9227 if (op0 == cc0_rtx)
9229 if ((prev = prev_nonnote_insn (prev)) == 0
9230 || GET_CODE (prev) != INSN
9231 || (set = single_set (prev)) == 0
9232 || SET_DEST (set) != cc0_rtx)
9233 return 0;
9235 op0 = SET_SRC (set);
9236 op1 = CONST0_RTX (GET_MODE (op0));
9237 if (earliest)
9238 *earliest = prev;
9240 #endif
9242 /* If this is a COMPARE, pick up the two things being compared. */
9243 if (GET_CODE (op0) == COMPARE)
9245 op1 = XEXP (op0, 1);
9246 op0 = XEXP (op0, 0);
9247 continue;
9249 else if (GET_CODE (op0) != REG)
9250 break;
9252 /* Go back to the previous insn. Stop if it is not an INSN. We also
9253 stop if it isn't a single set or if it has a REG_INC note because
9254 we don't want to bother dealing with it. */
9256 if ((prev = prev_nonnote_insn (prev)) == 0
9257 || GET_CODE (prev) != INSN
9258 || FIND_REG_INC_NOTE (prev, NULL_RTX))
9259 break;
9261 set = set_of (op0, prev);
9263 if (set
9264 && (GET_CODE (set) != SET
9265 || !rtx_equal_p (SET_DEST (set), op0)))
9266 break;
9268 /* If this is setting OP0, get what it sets it to if it looks
9269 relevant. */
9270 if (set)
9272 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
9274 /* ??? We may not combine comparisons done in a CCmode with
9275 comparisons not done in a CCmode. This is to aid targets
9276 like Alpha that have an IEEE compliant EQ instruction, and
9277 a non-IEEE compliant BEQ instruction. The use of CCmode is
9278 actually artificial, simply to prevent the combination, but
9279 should not affect other platforms.
9281 However, we must allow VOIDmode comparisons to match either
9282 CCmode or non-CCmode comparison, because some ports have
9283 modeless comparisons inside branch patterns.
9285 ??? This mode check should perhaps look more like the mode check
9286 in simplify_comparison in combine. */
9288 if ((GET_CODE (SET_SRC (set)) == COMPARE
9289 || (((code == NE
9290 || (code == LT
9291 && GET_MODE_CLASS (inner_mode) == MODE_INT
9292 && (GET_MODE_BITSIZE (inner_mode)
9293 <= HOST_BITS_PER_WIDE_INT)
9294 && (STORE_FLAG_VALUE
9295 & ((HOST_WIDE_INT) 1
9296 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9297 #ifdef FLOAT_STORE_FLAG_VALUE
9298 || (code == LT
9299 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9300 && (REAL_VALUE_NEGATIVE
9301 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9302 #endif
9304 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9305 && (((GET_MODE_CLASS (mode) == MODE_CC)
9306 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9307 || mode == VOIDmode || inner_mode == VOIDmode))
9308 x = SET_SRC (set);
9309 else if (((code == EQ
9310 || (code == GE
9311 && (GET_MODE_BITSIZE (inner_mode)
9312 <= HOST_BITS_PER_WIDE_INT)
9313 && GET_MODE_CLASS (inner_mode) == MODE_INT
9314 && (STORE_FLAG_VALUE
9315 & ((HOST_WIDE_INT) 1
9316 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9317 #ifdef FLOAT_STORE_FLAG_VALUE
9318 || (code == GE
9319 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9320 && (REAL_VALUE_NEGATIVE
9321 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9322 #endif
9324 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9325 && (((GET_MODE_CLASS (mode) == MODE_CC)
9326 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9327 || mode == VOIDmode || inner_mode == VOIDmode))
9330 reverse_code = 1;
9331 x = SET_SRC (set);
9333 else
9334 break;
9337 else if (reg_set_p (op0, prev))
9338 /* If this sets OP0, but not directly, we have to give up. */
9339 break;
9341 if (x)
9343 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9344 code = GET_CODE (x);
9345 if (reverse_code)
9347 code = reversed_comparison_code (x, prev);
9348 if (code == UNKNOWN)
9349 return 0;
9350 reverse_code = 0;
9353 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9354 if (earliest)
9355 *earliest = prev;
9359 /* If constant is first, put it last. */
9360 if (CONSTANT_P (op0))
9361 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9363 /* If OP0 is the result of a comparison, we weren't able to find what
9364 was really being compared, so fail. */
9365 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9366 return 0;
9368 /* Canonicalize any ordered comparison with integers involving equality
9369 if we can do computations in the relevant mode and we do not
9370 overflow. */
9372 if (GET_CODE (op1) == CONST_INT
9373 && GET_MODE (op0) != VOIDmode
9374 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9376 HOST_WIDE_INT const_val = INTVAL (op1);
9377 unsigned HOST_WIDE_INT uconst_val = const_val;
9378 unsigned HOST_WIDE_INT max_val
9379 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9381 switch (code)
9383 case LE:
9384 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9385 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
9386 break;
9388 /* When cross-compiling, const_val might be sign-extended from
9389 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9390 case GE:
9391 if ((HOST_WIDE_INT) (const_val & max_val)
9392 != (((HOST_WIDE_INT) 1
9393 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9394 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
9395 break;
9397 case LEU:
9398 if (uconst_val < max_val)
9399 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
9400 break;
9402 case GEU:
9403 if (uconst_val != 0)
9404 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
9405 break;
9407 default:
9408 break;
9412 #ifdef HAVE_cc0
9413 /* Never return CC0; return zero instead. */
9414 if (op0 == cc0_rtx)
9415 return 0;
9416 #endif
9418 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9421 /* Given a jump insn JUMP, return the condition that will cause it to branch
9422 to its JUMP_LABEL. If the condition cannot be understood, or is an
9423 inequality floating-point comparison which needs to be reversed, 0 will
9424 be returned.
9426 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9427 insn used in locating the condition was found. If a replacement test
9428 of the condition is desired, it should be placed in front of that
9429 insn and we will be sure that the inputs are still valid. */
9432 get_condition (jump, earliest)
9433 rtx jump;
9434 rtx *earliest;
9436 rtx cond;
9437 int reverse;
9438 rtx set;
9440 /* If this is not a standard conditional jump, we can't parse it. */
9441 if (GET_CODE (jump) != JUMP_INSN
9442 || ! any_condjump_p (jump))
9443 return 0;
9444 set = pc_set (jump);
9446 cond = XEXP (SET_SRC (set), 0);
9448 /* If this branches to JUMP_LABEL when the condition is false, reverse
9449 the condition. */
9450 reverse
9451 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
9452 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
9454 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
9457 /* Similar to above routine, except that we also put an invariant last
9458 unless both operands are invariants. */
9461 get_condition_for_loop (loop, x)
9462 const struct loop *loop;
9463 rtx x;
9465 rtx comparison = get_condition (x, (rtx*) 0);
9467 if (comparison == 0
9468 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9469 || loop_invariant_p (loop, XEXP (comparison, 1)))
9470 return comparison;
9472 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9473 XEXP (comparison, 1), XEXP (comparison, 0));
9476 /* Scan the function and determine whether it has indirect (computed) jumps.
9478 This is taken mostly from flow.c; similar code exists elsewhere
9479 in the compiler. It may be useful to put this into rtlanal.c. */
9480 static int
9481 indirect_jump_in_function_p (start)
9482 rtx start;
9484 rtx insn;
9486 for (insn = start; insn; insn = NEXT_INSN (insn))
9487 if (computed_jump_p (insn))
9488 return 1;
9490 return 0;
9493 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9494 documentation for LOOP_MEMS for the definition of `appropriate'.
9495 This function is called from prescan_loop via for_each_rtx. */
9497 static int
9498 insert_loop_mem (mem, data)
9499 rtx *mem;
9500 void *data ATTRIBUTE_UNUSED;
9502 struct loop_info *loop_info = data;
9503 int i;
9504 rtx m = *mem;
9506 if (m == NULL_RTX)
9507 return 0;
9509 switch (GET_CODE (m))
9511 case MEM:
9512 break;
9514 case CLOBBER:
9515 /* We're not interested in MEMs that are only clobbered. */
9516 return -1;
9518 case CONST_DOUBLE:
9519 /* We're not interested in the MEM associated with a
9520 CONST_DOUBLE, so there's no need to traverse into this. */
9521 return -1;
9523 case EXPR_LIST:
9524 /* We're not interested in any MEMs that only appear in notes. */
9525 return -1;
9527 default:
9528 /* This is not a MEM. */
9529 return 0;
9532 /* See if we've already seen this MEM. */
9533 for (i = 0; i < loop_info->mems_idx; ++i)
9534 if (rtx_equal_p (m, loop_info->mems[i].mem))
9536 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
9537 /* The modes of the two memory accesses are different. If
9538 this happens, something tricky is going on, and we just
9539 don't optimize accesses to this MEM. */
9540 loop_info->mems[i].optimize = 0;
9542 return 0;
9545 /* Resize the array, if necessary. */
9546 if (loop_info->mems_idx == loop_info->mems_allocated)
9548 if (loop_info->mems_allocated != 0)
9549 loop_info->mems_allocated *= 2;
9550 else
9551 loop_info->mems_allocated = 32;
9553 loop_info->mems = (loop_mem_info *)
9554 xrealloc (loop_info->mems,
9555 loop_info->mems_allocated * sizeof (loop_mem_info));
9558 /* Actually insert the MEM. */
9559 loop_info->mems[loop_info->mems_idx].mem = m;
9560 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9561 because we can't put it in a register. We still store it in the
9562 table, though, so that if we see the same address later, but in a
9563 non-BLK mode, we'll not think we can optimize it at that point. */
9564 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
9565 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
9566 ++loop_info->mems_idx;
9568 return 0;
9572 /* Allocate REGS->ARRAY or reallocate it if it is too small.
9574 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
9575 register that is modified by an insn between FROM and TO. If the
9576 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
9577 more, stop incrementing it, to avoid overflow.
9579 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
9580 register I is used, if it is only used once. Otherwise, it is set
9581 to 0 (for no uses) or const0_rtx for more than one use. This
9582 parameter may be zero, in which case this processing is not done.
9584 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
9585 optimize register I. */
9587 static void
9588 loop_regs_scan (loop, extra_size)
9589 const struct loop *loop;
9590 int extra_size;
9592 struct loop_regs *regs = LOOP_REGS (loop);
9593 int old_nregs;
9594 /* last_set[n] is nonzero iff reg n has been set in the current
9595 basic block. In that case, it is the insn that last set reg n. */
9596 rtx *last_set;
9597 rtx insn;
9598 int i;
9600 old_nregs = regs->num;
9601 regs->num = max_reg_num ();
9603 /* Grow the regs array if not allocated or too small. */
9604 if (regs->num >= regs->size)
9606 regs->size = regs->num + extra_size;
9608 regs->array = (struct loop_reg *)
9609 xrealloc (regs->array, regs->size * sizeof (*regs->array));
9611 /* Zero the new elements. */
9612 memset (regs->array + old_nregs, 0,
9613 (regs->size - old_nregs) * sizeof (*regs->array));
9616 /* Clear previously scanned fields but do not clear n_times_set. */
9617 for (i = 0; i < old_nregs; i++)
9619 regs->array[i].set_in_loop = 0;
9620 regs->array[i].may_not_optimize = 0;
9621 regs->array[i].single_usage = NULL_RTX;
9624 last_set = (rtx *) xcalloc (regs->num, sizeof (rtx));
9626 /* Scan the loop, recording register usage. */
9627 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9628 insn = NEXT_INSN (insn))
9630 if (INSN_P (insn))
9632 /* Record registers that have exactly one use. */
9633 find_single_use_in_loop (regs, insn, PATTERN (insn));
9635 /* Include uses in REG_EQUAL notes. */
9636 if (REG_NOTES (insn))
9637 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
9639 if (GET_CODE (PATTERN (insn)) == SET
9640 || GET_CODE (PATTERN (insn)) == CLOBBER)
9641 count_one_set (regs, insn, PATTERN (insn), last_set);
9642 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
9644 int i;
9645 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
9646 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
9647 last_set);
9651 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
9652 memset (last_set, 0, regs->num * sizeof (rtx));
9655 /* Invalidate all hard registers clobbered by calls. With one exception:
9656 a call-clobbered PIC register is still function-invariant for our
9657 purposes, since we can hoist any PIC calculations out of the loop.
9658 Thus the call to rtx_varies_p. */
9659 if (LOOP_INFO (loop)->has_call)
9660 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9661 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
9662 && rtx_varies_p (regno_reg_rtx[i], 1))
9664 regs->array[i].may_not_optimize = 1;
9665 regs->array[i].set_in_loop = 1;
9668 #ifdef AVOID_CCMODE_COPIES
9669 /* Don't try to move insns which set CC registers if we should not
9670 create CCmode register copies. */
9671 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9672 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9673 regs->array[i].may_not_optimize = 1;
9674 #endif
9676 /* Set regs->array[I].n_times_set for the new registers. */
9677 for (i = old_nregs; i < regs->num; i++)
9678 regs->array[i].n_times_set = regs->array[i].set_in_loop;
9680 free (last_set);
9683 /* Returns the number of real INSNs in the LOOP. */
9685 static int
9686 count_insns_in_loop (loop)
9687 const struct loop *loop;
9689 int count = 0;
9690 rtx insn;
9692 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9693 insn = NEXT_INSN (insn))
9694 if (INSN_P (insn))
9695 ++count;
9697 return count;
9700 /* Move MEMs into registers for the duration of the loop. */
9702 static void
9703 load_mems (loop)
9704 const struct loop *loop;
9706 struct loop_info *loop_info = LOOP_INFO (loop);
9707 struct loop_regs *regs = LOOP_REGS (loop);
9708 int maybe_never = 0;
9709 int i;
9710 rtx p, prev_ebb_head;
9711 rtx label = NULL_RTX;
9712 rtx end_label;
9713 /* Nonzero if the next instruction may never be executed. */
9714 int next_maybe_never = 0;
9715 unsigned int last_max_reg = max_reg_num ();
9717 if (loop_info->mems_idx == 0)
9718 return;
9720 /* We cannot use next_label here because it skips over normal insns. */
9721 end_label = next_nonnote_insn (loop->end);
9722 if (end_label && GET_CODE (end_label) != CODE_LABEL)
9723 end_label = NULL_RTX;
9725 /* Check to see if it's possible that some instructions in the loop are
9726 never executed. Also check if there is a goto out of the loop other
9727 than right after the end of the loop. */
9728 for (p = next_insn_in_loop (loop, loop->scan_start);
9729 p != NULL_RTX;
9730 p = next_insn_in_loop (loop, p))
9732 if (GET_CODE (p) == CODE_LABEL)
9733 maybe_never = 1;
9734 else if (GET_CODE (p) == JUMP_INSN
9735 /* If we enter the loop in the middle, and scan
9736 around to the beginning, don't set maybe_never
9737 for that. This must be an unconditional jump,
9738 otherwise the code at the top of the loop might
9739 never be executed. Unconditional jumps are
9740 followed a by barrier then loop end. */
9741 && ! (GET_CODE (p) == JUMP_INSN
9742 && JUMP_LABEL (p) == loop->top
9743 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9744 && any_uncondjump_p (p)))
9746 /* If this is a jump outside of the loop but not right
9747 after the end of the loop, we would have to emit new fixup
9748 sequences for each such label. */
9749 if (/* If we can't tell where control might go when this
9750 JUMP_INSN is executed, we must be conservative. */
9751 !JUMP_LABEL (p)
9752 || (JUMP_LABEL (p) != end_label
9753 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
9754 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
9755 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
9756 return;
9758 if (!any_condjump_p (p))
9759 /* Something complicated. */
9760 maybe_never = 1;
9761 else
9762 /* If there are any more instructions in the loop, they
9763 might not be reached. */
9764 next_maybe_never = 1;
9766 else if (next_maybe_never)
9767 maybe_never = 1;
9770 /* Find start of the extended basic block that enters the loop. */
9771 for (p = loop->start;
9772 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
9773 p = PREV_INSN (p))
9775 prev_ebb_head = p;
9777 cselib_init ();
9779 /* Build table of mems that get set to constant values before the
9780 loop. */
9781 for (; p != loop->start; p = NEXT_INSN (p))
9782 cselib_process_insn (p);
9784 /* Actually move the MEMs. */
9785 for (i = 0; i < loop_info->mems_idx; ++i)
9787 regset_head load_copies;
9788 regset_head store_copies;
9789 int written = 0;
9790 rtx reg;
9791 rtx mem = loop_info->mems[i].mem;
9792 rtx mem_list_entry;
9794 if (MEM_VOLATILE_P (mem)
9795 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9796 /* There's no telling whether or not MEM is modified. */
9797 loop_info->mems[i].optimize = 0;
9799 /* Go through the MEMs written to in the loop to see if this
9800 one is aliased by one of them. */
9801 mem_list_entry = loop_info->store_mems;
9802 while (mem_list_entry)
9804 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9805 written = 1;
9806 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9807 mem, rtx_varies_p))
9809 /* MEM is indeed aliased by this store. */
9810 loop_info->mems[i].optimize = 0;
9811 break;
9813 mem_list_entry = XEXP (mem_list_entry, 1);
9816 if (flag_float_store && written
9817 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9818 loop_info->mems[i].optimize = 0;
9820 /* If this MEM is written to, we must be sure that there
9821 are no reads from another MEM that aliases this one. */
9822 if (loop_info->mems[i].optimize && written)
9824 int j;
9826 for (j = 0; j < loop_info->mems_idx; ++j)
9828 if (j == i)
9829 continue;
9830 else if (true_dependence (mem,
9831 VOIDmode,
9832 loop_info->mems[j].mem,
9833 rtx_varies_p))
9835 /* It's not safe to hoist loop_info->mems[i] out of
9836 the loop because writes to it might not be
9837 seen by reads from loop_info->mems[j]. */
9838 loop_info->mems[i].optimize = 0;
9839 break;
9844 if (maybe_never && may_trap_p (mem))
9845 /* We can't access the MEM outside the loop; it might
9846 cause a trap that wouldn't have happened otherwise. */
9847 loop_info->mems[i].optimize = 0;
9849 if (!loop_info->mems[i].optimize)
9850 /* We thought we were going to lift this MEM out of the
9851 loop, but later discovered that we could not. */
9852 continue;
9854 INIT_REG_SET (&load_copies);
9855 INIT_REG_SET (&store_copies);
9857 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9858 order to keep scan_loop from moving stores to this MEM
9859 out of the loop just because this REG is neither a
9860 user-variable nor used in the loop test. */
9861 reg = gen_reg_rtx (GET_MODE (mem));
9862 REG_USERVAR_P (reg) = 1;
9863 loop_info->mems[i].reg = reg;
9865 /* Now, replace all references to the MEM with the
9866 corresponding pseudos. */
9867 maybe_never = 0;
9868 for (p = next_insn_in_loop (loop, loop->scan_start);
9869 p != NULL_RTX;
9870 p = next_insn_in_loop (loop, p))
9872 if (INSN_P (p))
9874 rtx set;
9876 set = single_set (p);
9878 /* See if this copies the mem into a register that isn't
9879 modified afterwards. We'll try to do copy propagation
9880 a little further on. */
9881 if (set
9882 /* @@@ This test is _way_ too conservative. */
9883 && ! maybe_never
9884 && GET_CODE (SET_DEST (set)) == REG
9885 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9886 && REGNO (SET_DEST (set)) < last_max_reg
9887 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
9888 && rtx_equal_p (SET_SRC (set), mem))
9889 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
9891 /* See if this copies the mem from a register that isn't
9892 modified afterwards. We'll try to remove the
9893 redundant copy later on by doing a little register
9894 renaming and copy propagation. This will help
9895 to untangle things for the BIV detection code. */
9896 if (set
9897 && ! maybe_never
9898 && GET_CODE (SET_SRC (set)) == REG
9899 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
9900 && REGNO (SET_SRC (set)) < last_max_reg
9901 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
9902 && rtx_equal_p (SET_DEST (set), mem))
9903 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
9905 /* If this is a call which uses / clobbers this memory
9906 location, we must not change the interface here. */
9907 if (GET_CODE (p) == CALL_INSN
9908 && reg_mentioned_p (loop_info->mems[i].mem,
9909 CALL_INSN_FUNCTION_USAGE (p)))
9911 cancel_changes (0);
9912 loop_info->mems[i].optimize = 0;
9913 break;
9915 else
9916 /* Replace the memory reference with the shadow register. */
9917 replace_loop_mems (p, loop_info->mems[i].mem,
9918 loop_info->mems[i].reg);
9921 if (GET_CODE (p) == CODE_LABEL
9922 || GET_CODE (p) == JUMP_INSN)
9923 maybe_never = 1;
9926 if (! loop_info->mems[i].optimize)
9927 ; /* We found we couldn't do the replacement, so do nothing. */
9928 else if (! apply_change_group ())
9929 /* We couldn't replace all occurrences of the MEM. */
9930 loop_info->mems[i].optimize = 0;
9931 else
9933 /* Load the memory immediately before LOOP->START, which is
9934 the NOTE_LOOP_BEG. */
9935 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9936 rtx set;
9937 rtx best = mem;
9938 int j;
9939 struct elt_loc_list *const_equiv = 0;
9941 if (e)
9943 struct elt_loc_list *equiv;
9944 struct elt_loc_list *best_equiv = 0;
9945 for (equiv = e->locs; equiv; equiv = equiv->next)
9947 if (CONSTANT_P (equiv->loc))
9948 const_equiv = equiv;
9949 else if (GET_CODE (equiv->loc) == REG
9950 /* Extending hard register lifetimes causes crash
9951 on SRC targets. Doing so on non-SRC is
9952 probably also not good idea, since we most
9953 probably have pseudoregister equivalence as
9954 well. */
9955 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9956 best_equiv = equiv;
9958 /* Use the constant equivalence if that is cheap enough. */
9959 if (! best_equiv)
9960 best_equiv = const_equiv;
9961 else if (const_equiv
9962 && (rtx_cost (const_equiv->loc, SET)
9963 <= rtx_cost (best_equiv->loc, SET)))
9965 best_equiv = const_equiv;
9966 const_equiv = 0;
9969 /* If best_equiv is nonzero, we know that MEM is set to a
9970 constant or register before the loop. We will use this
9971 knowledge to initialize the shadow register with that
9972 constant or reg rather than by loading from MEM. */
9973 if (best_equiv)
9974 best = copy_rtx (best_equiv->loc);
9977 set = gen_move_insn (reg, best);
9978 set = loop_insn_hoist (loop, set);
9979 if (REG_P (best))
9981 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
9982 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
9984 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
9985 break;
9989 if (const_equiv)
9990 set_unique_reg_note (set, REG_EQUAL, copy_rtx (const_equiv->loc));
9992 if (written)
9994 if (label == NULL_RTX)
9996 label = gen_label_rtx ();
9997 emit_label_after (label, loop->end);
10000 /* Store the memory immediately after END, which is
10001 the NOTE_LOOP_END. */
10002 set = gen_move_insn (copy_rtx (mem), reg);
10003 loop_insn_emit_after (loop, 0, label, set);
10006 if (loop_dump_stream)
10008 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
10009 REGNO (reg), (written ? "r/w" : "r/o"));
10010 print_rtl (loop_dump_stream, mem);
10011 fputc ('\n', loop_dump_stream);
10014 /* Attempt a bit of copy propagation. This helps untangle the
10015 data flow, and enables {basic,general}_induction_var to find
10016 more bivs/givs. */
10017 EXECUTE_IF_SET_IN_REG_SET
10018 (&load_copies, FIRST_PSEUDO_REGISTER, j,
10020 try_copy_prop (loop, reg, j);
10022 CLEAR_REG_SET (&load_copies);
10024 EXECUTE_IF_SET_IN_REG_SET
10025 (&store_copies, FIRST_PSEUDO_REGISTER, j,
10027 try_swap_copy_prop (loop, reg, j);
10029 CLEAR_REG_SET (&store_copies);
10033 if (label != NULL_RTX && end_label != NULL_RTX)
10035 /* Now, we need to replace all references to the previous exit
10036 label with the new one. */
10037 rtx_pair rr;
10038 rr.r1 = end_label;
10039 rr.r2 = label;
10041 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
10043 for_each_rtx (&p, replace_label, &rr);
10045 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
10046 field. This is not handled by for_each_rtx because it doesn't
10047 handle unprinted ('0') fields. We need to update JUMP_LABEL
10048 because the immediately following unroll pass will use it.
10049 replace_label would not work anyways, because that only handles
10050 LABEL_REFs. */
10051 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
10052 JUMP_LABEL (p) = label;
10056 cselib_finish ();
10059 /* For communication between note_reg_stored and its caller. */
10060 struct note_reg_stored_arg
10062 int set_seen;
10063 rtx reg;
10066 /* Called via note_stores, record in SET_SEEN whether X, which is written,
10067 is equal to ARG. */
10068 static void
10069 note_reg_stored (x, setter, arg)
10070 rtx x, setter ATTRIBUTE_UNUSED;
10071 void *arg;
10073 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
10074 if (t->reg == x)
10075 t->set_seen = 1;
10078 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
10079 There must be exactly one insn that sets this pseudo; it will be
10080 deleted if all replacements succeed and we can prove that the register
10081 is not used after the loop. */
10083 static void
10084 try_copy_prop (loop, replacement, regno)
10085 const struct loop *loop;
10086 rtx replacement;
10087 unsigned int regno;
10089 /* This is the reg that we are copying from. */
10090 rtx reg_rtx = regno_reg_rtx[regno];
10091 rtx init_insn = 0;
10092 rtx insn;
10093 /* These help keep track of whether we replaced all uses of the reg. */
10094 int replaced_last = 0;
10095 int store_is_first = 0;
10097 for (insn = next_insn_in_loop (loop, loop->scan_start);
10098 insn != NULL_RTX;
10099 insn = next_insn_in_loop (loop, insn))
10101 rtx set;
10103 /* Only substitute within one extended basic block from the initializing
10104 insn. */
10105 if (GET_CODE (insn) == CODE_LABEL && init_insn)
10106 break;
10108 if (! INSN_P (insn))
10109 continue;
10111 /* Is this the initializing insn? */
10112 set = single_set (insn);
10113 if (set
10114 && GET_CODE (SET_DEST (set)) == REG
10115 && REGNO (SET_DEST (set)) == regno)
10117 if (init_insn)
10118 abort ();
10120 init_insn = insn;
10121 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
10122 store_is_first = 1;
10125 /* Only substitute after seeing the initializing insn. */
10126 if (init_insn && insn != init_insn)
10128 struct note_reg_stored_arg arg;
10130 replace_loop_regs (insn, reg_rtx, replacement);
10131 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10132 replaced_last = 1;
10134 /* Stop replacing when REPLACEMENT is modified. */
10135 arg.reg = replacement;
10136 arg.set_seen = 0;
10137 note_stores (PATTERN (insn), note_reg_stored, &arg);
10138 if (arg.set_seen)
10140 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
10142 /* It is possible that we've turned previously valid REG_EQUAL to
10143 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
10144 REPLACEMENT is modified, we get different meaning. */
10145 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
10146 remove_note (insn, note);
10147 break;
10151 if (! init_insn)
10152 abort ();
10153 if (apply_change_group ())
10155 if (loop_dump_stream)
10156 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10157 if (store_is_first && replaced_last)
10159 rtx first;
10160 rtx retval_note;
10162 /* Assume we're just deleting INIT_INSN. */
10163 first = init_insn;
10164 /* Look for REG_RETVAL note. If we're deleting the end of
10165 the libcall sequence, the whole sequence can go. */
10166 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
10167 /* If we found a REG_RETVAL note, find the first instruction
10168 in the sequence. */
10169 if (retval_note)
10170 first = XEXP (retval_note, 0);
10172 /* Delete the instructions. */
10173 loop_delete_insns (first, init_insn);
10175 if (loop_dump_stream)
10176 fprintf (loop_dump_stream, ".\n");
10180 /* Replace all the instructions from FIRST up to and including LAST
10181 with NOTE_INSN_DELETED notes. */
10183 static void
10184 loop_delete_insns (first, last)
10185 rtx first;
10186 rtx last;
10188 while (1)
10190 if (loop_dump_stream)
10191 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10192 INSN_UID (first));
10193 delete_insn (first);
10195 /* If this was the LAST instructions we're supposed to delete,
10196 we're done. */
10197 if (first == last)
10198 break;
10200 first = NEXT_INSN (first);
10204 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
10205 loop LOOP if the order of the sets of these registers can be
10206 swapped. There must be exactly one insn within the loop that sets
10207 this pseudo followed immediately by a move insn that sets
10208 REPLACEMENT with REGNO. */
10209 static void
10210 try_swap_copy_prop (loop, replacement, regno)
10211 const struct loop *loop;
10212 rtx replacement;
10213 unsigned int regno;
10215 rtx insn;
10216 rtx set = NULL_RTX;
10217 unsigned int new_regno;
10219 new_regno = REGNO (replacement);
10221 for (insn = next_insn_in_loop (loop, loop->scan_start);
10222 insn != NULL_RTX;
10223 insn = next_insn_in_loop (loop, insn))
10225 /* Search for the insn that copies REGNO to NEW_REGNO? */
10226 if (INSN_P (insn)
10227 && (set = single_set (insn))
10228 && GET_CODE (SET_DEST (set)) == REG
10229 && REGNO (SET_DEST (set)) == new_regno
10230 && GET_CODE (SET_SRC (set)) == REG
10231 && REGNO (SET_SRC (set)) == regno)
10232 break;
10235 if (insn != NULL_RTX)
10237 rtx prev_insn;
10238 rtx prev_set;
10240 /* Some DEF-USE info would come in handy here to make this
10241 function more general. For now, just check the previous insn
10242 which is the most likely candidate for setting REGNO. */
10244 prev_insn = PREV_INSN (insn);
10246 if (INSN_P (insn)
10247 && (prev_set = single_set (prev_insn))
10248 && GET_CODE (SET_DEST (prev_set)) == REG
10249 && REGNO (SET_DEST (prev_set)) == regno)
10251 /* We have:
10252 (set (reg regno) (expr))
10253 (set (reg new_regno) (reg regno))
10255 so try converting this to:
10256 (set (reg new_regno) (expr))
10257 (set (reg regno) (reg new_regno))
10259 The former construct is often generated when a global
10260 variable used for an induction variable is shadowed by a
10261 register (NEW_REGNO). The latter construct improves the
10262 chances of GIV replacement and BIV elimination. */
10264 validate_change (prev_insn, &SET_DEST (prev_set),
10265 replacement, 1);
10266 validate_change (insn, &SET_DEST (set),
10267 SET_SRC (set), 1);
10268 validate_change (insn, &SET_SRC (set),
10269 replacement, 1);
10271 if (apply_change_group ())
10273 if (loop_dump_stream)
10274 fprintf (loop_dump_stream,
10275 " Swapped set of reg %d at %d with reg %d at %d.\n",
10276 regno, INSN_UID (insn),
10277 new_regno, INSN_UID (prev_insn));
10279 /* Update first use of REGNO. */
10280 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
10281 REGNO_FIRST_UID (regno) = INSN_UID (insn);
10283 /* Now perform copy propagation to hopefully
10284 remove all uses of REGNO within the loop. */
10285 try_copy_prop (loop, replacement, regno);
10291 /* Replace MEM with its associated pseudo register. This function is
10292 called from load_mems via for_each_rtx. DATA is actually a pointer
10293 to a structure describing the instruction currently being scanned
10294 and the MEM we are currently replacing. */
10296 static int
10297 replace_loop_mem (mem, data)
10298 rtx *mem;
10299 void *data;
10301 loop_replace_args *args = (loop_replace_args *) data;
10302 rtx m = *mem;
10304 if (m == NULL_RTX)
10305 return 0;
10307 switch (GET_CODE (m))
10309 case MEM:
10310 break;
10312 case CONST_DOUBLE:
10313 /* We're not interested in the MEM associated with a
10314 CONST_DOUBLE, so there's no need to traverse into one. */
10315 return -1;
10317 default:
10318 /* This is not a MEM. */
10319 return 0;
10322 if (!rtx_equal_p (args->match, m))
10323 /* This is not the MEM we are currently replacing. */
10324 return 0;
10326 /* Actually replace the MEM. */
10327 validate_change (args->insn, mem, args->replacement, 1);
10329 return 0;
10332 static void
10333 replace_loop_mems (insn, mem, reg)
10334 rtx insn;
10335 rtx mem;
10336 rtx reg;
10338 loop_replace_args args;
10340 args.insn = insn;
10341 args.match = mem;
10342 args.replacement = reg;
10344 for_each_rtx (&insn, replace_loop_mem, &args);
10347 /* Replace one register with another. Called through for_each_rtx; PX points
10348 to the rtx being scanned. DATA is actually a pointer to
10349 a structure of arguments. */
10351 static int
10352 replace_loop_reg (px, data)
10353 rtx *px;
10354 void *data;
10356 rtx x = *px;
10357 loop_replace_args *args = (loop_replace_args *) data;
10359 if (x == NULL_RTX)
10360 return 0;
10362 if (x == args->match)
10363 validate_change (args->insn, px, args->replacement, 1);
10365 return 0;
10368 static void
10369 replace_loop_regs (insn, reg, replacement)
10370 rtx insn;
10371 rtx reg;
10372 rtx replacement;
10374 loop_replace_args args;
10376 args.insn = insn;
10377 args.match = reg;
10378 args.replacement = replacement;
10380 for_each_rtx (&insn, replace_loop_reg, &args);
10383 /* Replace occurrences of the old exit label for the loop with the new
10384 one. DATA is an rtx_pair containing the old and new labels,
10385 respectively. */
10387 static int
10388 replace_label (x, data)
10389 rtx *x;
10390 void *data;
10392 rtx l = *x;
10393 rtx old_label = ((rtx_pair *) data)->r1;
10394 rtx new_label = ((rtx_pair *) data)->r2;
10396 if (l == NULL_RTX)
10397 return 0;
10399 if (GET_CODE (l) != LABEL_REF)
10400 return 0;
10402 if (XEXP (l, 0) != old_label)
10403 return 0;
10405 XEXP (l, 0) = new_label;
10406 ++LABEL_NUSES (new_label);
10407 --LABEL_NUSES (old_label);
10409 return 0;
10412 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
10413 (ignored in the interim). */
10415 static rtx
10416 loop_insn_emit_after (loop, where_bb, where_insn, pattern)
10417 const struct loop *loop ATTRIBUTE_UNUSED;
10418 basic_block where_bb ATTRIBUTE_UNUSED;
10419 rtx where_insn;
10420 rtx pattern;
10422 return emit_insn_after (pattern, where_insn);
10426 /* If WHERE_INSN is non-zero emit insn for PATTERN before WHERE_INSN
10427 in basic block WHERE_BB (ignored in the interim) within the loop
10428 otherwise hoist PATTERN into the loop pre-header. */
10431 loop_insn_emit_before (loop, where_bb, where_insn, pattern)
10432 const struct loop *loop;
10433 basic_block where_bb ATTRIBUTE_UNUSED;
10434 rtx where_insn;
10435 rtx pattern;
10437 if (! where_insn)
10438 return loop_insn_hoist (loop, pattern);
10439 return emit_insn_before (pattern, where_insn);
10443 /* Emit call insn for PATTERN before WHERE_INSN in basic block
10444 WHERE_BB (ignored in the interim) within the loop. */
10446 static rtx
10447 loop_call_insn_emit_before (loop, where_bb, where_insn, pattern)
10448 const struct loop *loop ATTRIBUTE_UNUSED;
10449 basic_block where_bb ATTRIBUTE_UNUSED;
10450 rtx where_insn;
10451 rtx pattern;
10453 return emit_call_insn_before (pattern, where_insn);
10457 /* Hoist insn for PATTERN into the loop pre-header. */
10460 loop_insn_hoist (loop, pattern)
10461 const struct loop *loop;
10462 rtx pattern;
10464 return loop_insn_emit_before (loop, 0, loop->start, pattern);
10468 /* Hoist call insn for PATTERN into the loop pre-header. */
10470 static rtx
10471 loop_call_insn_hoist (loop, pattern)
10472 const struct loop *loop;
10473 rtx pattern;
10475 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
10479 /* Sink insn for PATTERN after the loop end. */
10482 loop_insn_sink (loop, pattern)
10483 const struct loop *loop;
10484 rtx pattern;
10486 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
10489 /* bl->final_value can be eighter general_operand or PLUS of general_operand
10490 and constant. Emit sequence of intructions to load it into REG */
10491 static rtx
10492 gen_load_of_final_value (reg, final_value)
10493 rtx reg, final_value;
10495 rtx seq;
10496 start_sequence ();
10497 final_value = force_operand (final_value, reg);
10498 if (final_value != reg)
10499 emit_move_insn (reg, final_value);
10500 seq = get_insns ();
10501 end_sequence ();
10502 return seq;
10505 /* If the loop has multiple exits, emit insn for PATTERN before the
10506 loop to ensure that it will always be executed no matter how the
10507 loop exits. Otherwise, emit the insn for PATTERN after the loop,
10508 since this is slightly more efficient. */
10510 static rtx
10511 loop_insn_sink_or_swim (loop, pattern)
10512 const struct loop *loop;
10513 rtx pattern;
10515 if (loop->exit_count)
10516 return loop_insn_hoist (loop, pattern);
10517 else
10518 return loop_insn_sink (loop, pattern);
10521 static void
10522 loop_ivs_dump (loop, file, verbose)
10523 const struct loop *loop;
10524 FILE *file;
10525 int verbose;
10527 struct iv_class *bl;
10528 int iv_num = 0;
10530 if (! loop || ! file)
10531 return;
10533 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10534 iv_num++;
10536 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
10538 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10540 loop_iv_class_dump (bl, file, verbose);
10541 fputc ('\n', file);
10546 static void
10547 loop_iv_class_dump (bl, file, verbose)
10548 const struct iv_class *bl;
10549 FILE *file;
10550 int verbose ATTRIBUTE_UNUSED;
10552 struct induction *v;
10553 rtx incr;
10554 int i;
10556 if (! bl || ! file)
10557 return;
10559 fprintf (file, "IV class for reg %d, benefit %d\n",
10560 bl->regno, bl->total_benefit);
10562 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
10563 if (bl->initial_value)
10565 fprintf (file, ", init val: ");
10566 print_simple_rtl (file, bl->initial_value);
10568 if (bl->initial_test)
10570 fprintf (file, ", init test: ");
10571 print_simple_rtl (file, bl->initial_test);
10573 fputc ('\n', file);
10575 if (bl->final_value)
10577 fprintf (file, " Final val: ");
10578 print_simple_rtl (file, bl->final_value);
10579 fputc ('\n', file);
10582 if ((incr = biv_total_increment (bl)))
10584 fprintf (file, " Total increment: ");
10585 print_simple_rtl (file, incr);
10586 fputc ('\n', file);
10589 /* List the increments. */
10590 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
10592 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
10593 print_simple_rtl (file, v->add_val);
10594 fputc ('\n', file);
10597 /* List the givs. */
10598 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
10600 fprintf (file, " Giv%d: insn %d, benefit %d, ",
10601 i, INSN_UID (v->insn), v->benefit);
10602 if (v->giv_type == DEST_ADDR)
10603 print_simple_rtl (file, v->mem);
10604 else
10605 print_simple_rtl (file, single_set (v->insn));
10606 fputc ('\n', file);
10611 static void
10612 loop_biv_dump (v, file, verbose)
10613 const struct induction *v;
10614 FILE *file;
10615 int verbose;
10617 if (! v || ! file)
10618 return;
10620 fprintf (file,
10621 "Biv %d: insn %d",
10622 REGNO (v->dest_reg), INSN_UID (v->insn));
10623 fprintf (file, " const ");
10624 print_simple_rtl (file, v->add_val);
10626 if (verbose && v->final_value)
10628 fputc ('\n', file);
10629 fprintf (file, " final ");
10630 print_simple_rtl (file, v->final_value);
10633 fputc ('\n', file);
10637 static void
10638 loop_giv_dump (v, file, verbose)
10639 const struct induction *v;
10640 FILE *file;
10641 int verbose;
10643 if (! v || ! file)
10644 return;
10646 if (v->giv_type == DEST_REG)
10647 fprintf (file, "Giv %d: insn %d",
10648 REGNO (v->dest_reg), INSN_UID (v->insn));
10649 else
10650 fprintf (file, "Dest address: insn %d",
10651 INSN_UID (v->insn));
10653 fprintf (file, " src reg %d benefit %d",
10654 REGNO (v->src_reg), v->benefit);
10655 fprintf (file, " lifetime %d",
10656 v->lifetime);
10658 if (v->replaceable)
10659 fprintf (file, " replaceable");
10661 if (v->no_const_addval)
10662 fprintf (file, " ncav");
10664 if (v->ext_dependent)
10666 switch (GET_CODE (v->ext_dependent))
10668 case SIGN_EXTEND:
10669 fprintf (file, " ext se");
10670 break;
10671 case ZERO_EXTEND:
10672 fprintf (file, " ext ze");
10673 break;
10674 case TRUNCATE:
10675 fprintf (file, " ext tr");
10676 break;
10677 default:
10678 abort ();
10682 fputc ('\n', file);
10683 fprintf (file, " mult ");
10684 print_simple_rtl (file, v->mult_val);
10686 fputc ('\n', file);
10687 fprintf (file, " add ");
10688 print_simple_rtl (file, v->add_val);
10690 if (verbose && v->final_value)
10692 fputc ('\n', file);
10693 fprintf (file, " final ");
10694 print_simple_rtl (file, v->final_value);
10697 fputc ('\n', file);
10701 void
10702 debug_ivs (loop)
10703 const struct loop *loop;
10705 loop_ivs_dump (loop, stderr, 1);
10709 void
10710 debug_iv_class (bl)
10711 const struct iv_class *bl;
10713 loop_iv_class_dump (bl, stderr, 1);
10717 void
10718 debug_biv (v)
10719 const struct induction *v;
10721 loop_biv_dump (v, stderr, 1);
10725 void
10726 debug_giv (v)
10727 const struct induction *v;
10729 loop_giv_dump (v, stderr, 1);
10733 #define LOOP_BLOCK_NUM_1(INSN) \
10734 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
10736 /* The notes do not have an assigned block, so look at the next insn. */
10737 #define LOOP_BLOCK_NUM(INSN) \
10738 ((INSN) ? (GET_CODE (INSN) == NOTE \
10739 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
10740 : LOOP_BLOCK_NUM_1 (INSN)) \
10741 : -1)
10743 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
10745 static void
10746 loop_dump_aux (loop, file, verbose)
10747 const struct loop *loop;
10748 FILE *file;
10749 int verbose ATTRIBUTE_UNUSED;
10751 rtx label;
10753 if (! loop || ! file)
10754 return;
10756 /* Print diagnostics to compare our concept of a loop with
10757 what the loop notes say. */
10758 if (! PREV_INSN (loop->first->head)
10759 || GET_CODE (PREV_INSN (loop->first->head)) != NOTE
10760 || NOTE_LINE_NUMBER (PREV_INSN (loop->first->head))
10761 != NOTE_INSN_LOOP_BEG)
10762 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
10763 INSN_UID (PREV_INSN (loop->first->head)));
10764 if (! NEXT_INSN (loop->last->end)
10765 || GET_CODE (NEXT_INSN (loop->last->end)) != NOTE
10766 || NOTE_LINE_NUMBER (NEXT_INSN (loop->last->end))
10767 != NOTE_INSN_LOOP_END)
10768 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
10769 INSN_UID (NEXT_INSN (loop->last->end)));
10771 if (loop->start)
10773 fprintf (file,
10774 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
10775 LOOP_BLOCK_NUM (loop->start),
10776 LOOP_INSN_UID (loop->start),
10777 LOOP_BLOCK_NUM (loop->cont),
10778 LOOP_INSN_UID (loop->cont),
10779 LOOP_BLOCK_NUM (loop->cont),
10780 LOOP_INSN_UID (loop->cont),
10781 LOOP_BLOCK_NUM (loop->vtop),
10782 LOOP_INSN_UID (loop->vtop),
10783 LOOP_BLOCK_NUM (loop->end),
10784 LOOP_INSN_UID (loop->end));
10785 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
10786 LOOP_BLOCK_NUM (loop->top),
10787 LOOP_INSN_UID (loop->top),
10788 LOOP_BLOCK_NUM (loop->scan_start),
10789 LOOP_INSN_UID (loop->scan_start));
10790 fprintf (file, ";; exit_count %d", loop->exit_count);
10791 if (loop->exit_count)
10793 fputs (", labels:", file);
10794 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
10796 fprintf (file, " %d ",
10797 LOOP_INSN_UID (XEXP (label, 0)));
10800 fputs ("\n", file);
10802 /* This can happen when a marked loop appears as two nested loops,
10803 say from while (a || b) {}. The inner loop won't match
10804 the loop markers but the outer one will. */
10805 if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
10806 fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
10810 /* Call this function from the debugger to dump LOOP. */
10812 void
10813 debug_loop (loop)
10814 const struct loop *loop;
10816 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
10819 /* Call this function from the debugger to dump LOOPS. */
10821 void
10822 debug_loops (loops)
10823 const struct loops *loops;
10825 flow_loops_dump (loops, stderr, loop_dump_aux, 1);