Merge from mainline
[official-gcc.git] / gcc / flow.c
blob48016cef781a911071bf4acfb0db91cd883ad6fd
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
140 #include "obstack.h"
141 #include "splay-tree.h"
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
183 /* Maximum register number used in this function, plus one. */
185 int max_regno;
187 /* Indexed by n, giving various register information */
189 varray_type reg_n_info;
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
194 int regset_bytes;
195 int regset_size;
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
200 regset regs_live_at_setjmp;
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
215 static HARD_REG_SET elim_reg_set;
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
236 struct propagate_block_info
238 /* The basic block we're considering. */
239 basic_block bb;
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
282 /* Number of dead insns removed. */
283 static int ndead;
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
342 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void clear_log_links PARAMS ((sbitmap));
347 void
348 check_function_return_warnings ()
350 if (warn_missing_noreturn
351 && !TREE_THIS_VOLATILE (cfun->decl)
352 && EXIT_BLOCK_PTR->pred == NULL
353 && (lang_missing_noreturn_ok_p
354 && !lang_missing_noreturn_ok_p (cfun->decl)))
355 warning ("function might be possible candidate for attribute `noreturn'");
357 /* If we have a path to EXIT, then we do return. */
358 if (TREE_THIS_VOLATILE (cfun->decl)
359 && EXIT_BLOCK_PTR->pred != NULL)
360 warning ("`noreturn' function does return");
362 /* If the clobber_return_insn appears in some basic block, then we
363 do reach the end without returning a value. */
364 else if (warn_return_type
365 && cfun->x_clobber_return_insn != NULL
366 && EXIT_BLOCK_PTR->pred != NULL)
368 int max_uid = get_max_uid ();
370 /* If clobber_return_insn was excised by jump1, then renumber_insns
371 can make max_uid smaller than the number still recorded in our rtx.
372 That's fine, since this is a quick way of verifying that the insn
373 is no longer in the chain. */
374 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
376 rtx insn;
378 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
379 if (insn == cfun->x_clobber_return_insn)
381 warning ("control reaches end of non-void function");
382 break;
388 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
389 note associated with the BLOCK. */
392 first_insn_after_basic_block_note (block)
393 basic_block block;
395 rtx insn;
397 /* Get the first instruction in the block. */
398 insn = block->head;
400 if (insn == NULL_RTX)
401 return NULL_RTX;
402 if (GET_CODE (insn) == CODE_LABEL)
403 insn = NEXT_INSN (insn);
404 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
405 abort ();
407 return NEXT_INSN (insn);
410 /* Perform data flow analysis.
411 F is the first insn of the function; FLAGS is a set of PROP_* flags
412 to be used in accumulating flow info. */
414 void
415 life_analysis (f, file, flags)
416 rtx f;
417 FILE *file;
418 int flags;
420 #ifdef ELIMINABLE_REGS
421 int i;
422 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
423 #endif
425 /* Record which registers will be eliminated. We use this in
426 mark_used_regs. */
428 CLEAR_HARD_REG_SET (elim_reg_set);
430 #ifdef ELIMINABLE_REGS
431 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
432 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
433 #else
434 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
435 #endif
437 if (! optimize)
438 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
440 /* The post-reload life analysis have (on a global basis) the same
441 registers live as was computed by reload itself. elimination
442 Otherwise offsets and such may be incorrect.
444 Reload will make some registers as live even though they do not
445 appear in the rtl.
447 We don't want to create new auto-incs after reload, since they
448 are unlikely to be useful and can cause problems with shared
449 stack slots. */
450 if (reload_completed)
451 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
453 /* We want alias analysis information for local dead store elimination. */
454 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
455 init_alias_analysis ();
457 /* Always remove no-op moves. Do this before other processing so
458 that we don't have to keep re-scanning them. */
459 delete_noop_moves (f);
461 /* Some targets can emit simpler epilogues if they know that sp was
462 not ever modified during the function. After reload, of course,
463 we've already emitted the epilogue so there's no sense searching. */
464 if (! reload_completed)
465 notice_stack_pointer_modification (f);
467 /* Allocate and zero out data structures that will record the
468 data from lifetime analysis. */
469 allocate_reg_life_data ();
470 allocate_bb_life_data ();
472 /* Find the set of registers live on function exit. */
473 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
475 /* "Update" life info from zero. It'd be nice to begin the
476 relaxation with just the exit and noreturn blocks, but that set
477 is not immediately handy. */
479 if (flags & PROP_REG_INFO)
480 memset (regs_ever_live, 0, sizeof (regs_ever_live));
481 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
483 /* Clean up. */
484 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
485 end_alias_analysis ();
487 if (file)
488 dump_flow_info (file);
490 free_basic_block_vars (1);
492 /* Removing dead insns should've made jumptables really dead. */
493 delete_dead_jumptables ();
496 /* A subroutine of verify_wide_reg, called through for_each_rtx.
497 Search for REGNO. If found, return 2 if it is not wider than
498 word_mode. */
500 static int
501 verify_wide_reg_1 (px, pregno)
502 rtx *px;
503 void *pregno;
505 rtx x = *px;
506 unsigned int regno = *(int *) pregno;
508 if (GET_CODE (x) == REG && REGNO (x) == regno)
510 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
511 return 2;
512 return 1;
514 return 0;
517 /* A subroutine of verify_local_live_at_start. Search through insns
518 of BB looking for register REGNO. */
520 static void
521 verify_wide_reg (regno, bb)
522 int regno;
523 basic_block bb;
525 rtx head = bb->head, end = bb->end;
527 while (1)
529 if (INSN_P (head))
531 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
532 if (r == 1)
533 return;
534 if (r == 2)
535 break;
537 if (head == end)
538 break;
539 head = NEXT_INSN (head);
542 if (rtl_dump_file)
544 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
545 dump_bb (bb, rtl_dump_file);
547 abort ();
550 /* A subroutine of update_life_info. Verify that there are no untoward
551 changes in live_at_start during a local update. */
553 static void
554 verify_local_live_at_start (new_live_at_start, bb)
555 regset new_live_at_start;
556 basic_block bb;
558 if (reload_completed)
560 /* After reload, there are no pseudos, nor subregs of multi-word
561 registers. The regsets should exactly match. */
562 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
564 if (rtl_dump_file)
566 fprintf (rtl_dump_file,
567 "live_at_start mismatch in bb %d, aborting\nNew:\n",
568 bb->index);
569 debug_bitmap_file (rtl_dump_file, new_live_at_start);
570 fputs ("Old:\n", rtl_dump_file);
571 dump_bb (bb, rtl_dump_file);
573 abort ();
576 else
578 int i;
580 /* Find the set of changed registers. */
581 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
583 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
585 /* No registers should die. */
586 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
588 if (rtl_dump_file)
590 fprintf (rtl_dump_file,
591 "Register %d died unexpectedly.\n", i);
592 dump_bb (bb, rtl_dump_file);
594 abort ();
597 /* Verify that the now-live register is wider than word_mode. */
598 verify_wide_reg (i, bb);
603 /* Updates life information starting with the basic blocks set in BLOCKS.
604 If BLOCKS is null, consider it to be the universal set.
606 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
607 we are only expecting local modifications to basic blocks. If we find
608 extra registers live at the beginning of a block, then we either killed
609 useful data, or we have a broken split that wants data not provided.
610 If we find registers removed from live_at_start, that means we have
611 a broken peephole that is killing a register it shouldn't.
613 ??? This is not true in one situation -- when a pre-reload splitter
614 generates subregs of a multi-word pseudo, current life analysis will
615 lose the kill. So we _can_ have a pseudo go live. How irritating.
617 Including PROP_REG_INFO does not properly refresh regs_ever_live
618 unless the caller resets it to zero. */
621 update_life_info (blocks, extent, prop_flags)
622 sbitmap blocks;
623 enum update_life_extent extent;
624 int prop_flags;
626 regset tmp;
627 regset_head tmp_head;
628 int i;
629 int stabilized_prop_flags = prop_flags;
630 basic_block bb;
632 tmp = INITIALIZE_REG_SET (tmp_head);
633 ndead = 0;
635 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
636 ? TV_LIFE_UPDATE : TV_LIFE);
638 /* Changes to the CFG are only allowed when
639 doing a global update for the entire CFG. */
640 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
641 && (extent == UPDATE_LIFE_LOCAL || blocks))
642 abort ();
644 /* For a global update, we go through the relaxation process again. */
645 if (extent != UPDATE_LIFE_LOCAL)
647 for ( ; ; )
649 int changed = 0;
651 calculate_global_regs_live (blocks, blocks,
652 prop_flags & (PROP_SCAN_DEAD_CODE
653 | PROP_SCAN_DEAD_STORES
654 | PROP_ALLOW_CFG_CHANGES));
656 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
657 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
658 break;
660 /* Removing dead code may allow the CFG to be simplified which
661 in turn may allow for further dead code detection / removal. */
662 FOR_EACH_BB_REVERSE (bb)
664 COPY_REG_SET (tmp, bb->global_live_at_end);
665 changed |= propagate_block (bb, tmp, NULL, NULL,
666 prop_flags & (PROP_SCAN_DEAD_CODE
667 | PROP_SCAN_DEAD_STORES
668 | PROP_KILL_DEAD_CODE));
671 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
672 subsequent propagate_block calls, since removing or acting as
673 removing dead code can affect global register liveness, which
674 is supposed to be finalized for this call after this loop. */
675 stabilized_prop_flags
676 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
677 | PROP_KILL_DEAD_CODE);
679 if (! changed)
680 break;
682 /* We repeat regardless of what cleanup_cfg says. If there were
683 instructions deleted above, that might have been only a
684 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
685 Further improvement may be possible. */
686 cleanup_cfg (CLEANUP_EXPENSIVE);
689 /* If asked, remove notes from the blocks we'll update. */
690 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
691 count_or_remove_death_notes (blocks, 1);
694 /* Clear log links in case we are asked to (re)compute them. */
695 if (prop_flags & PROP_LOG_LINKS)
696 clear_log_links (blocks);
698 if (blocks)
700 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
702 bb = BASIC_BLOCK (i);
704 COPY_REG_SET (tmp, bb->global_live_at_end);
705 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
707 if (extent == UPDATE_LIFE_LOCAL)
708 verify_local_live_at_start (tmp, bb);
711 else
713 FOR_EACH_BB_REVERSE (bb)
715 COPY_REG_SET (tmp, bb->global_live_at_end);
717 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
719 if (extent == UPDATE_LIFE_LOCAL)
720 verify_local_live_at_start (tmp, bb);
724 FREE_REG_SET (tmp);
726 if (prop_flags & PROP_REG_INFO)
728 /* The only pseudos that are live at the beginning of the function
729 are those that were not set anywhere in the function. local-alloc
730 doesn't know how to handle these correctly, so mark them as not
731 local to any one basic block. */
732 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
733 FIRST_PSEUDO_REGISTER, i,
734 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
736 /* We have a problem with any pseudoreg that lives across the setjmp.
737 ANSI says that if a user variable does not change in value between
738 the setjmp and the longjmp, then the longjmp preserves it. This
739 includes longjmp from a place where the pseudo appears dead.
740 (In principle, the value still exists if it is in scope.)
741 If the pseudo goes in a hard reg, some other value may occupy
742 that hard reg where this pseudo is dead, thus clobbering the pseudo.
743 Conclusion: such a pseudo must not go in a hard reg. */
744 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
745 FIRST_PSEUDO_REGISTER, i,
747 if (regno_reg_rtx[i] != 0)
749 REG_LIVE_LENGTH (i) = -1;
750 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
754 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
755 ? TV_LIFE_UPDATE : TV_LIFE);
756 if (ndead && rtl_dump_file)
757 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
758 return ndead;
761 /* Update life information in all blocks where BB_DIRTY is set. */
764 update_life_info_in_dirty_blocks (extent, prop_flags)
765 enum update_life_extent extent;
766 int prop_flags;
768 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
769 int n = 0;
770 basic_block bb;
771 int retval = 0;
773 sbitmap_zero (update_life_blocks);
774 FOR_EACH_BB (bb)
776 if (extent == UPDATE_LIFE_LOCAL)
778 if (bb->flags & BB_DIRTY)
780 SET_BIT (update_life_blocks, bb->index);
781 n++;
784 else
786 /* ??? Bootstrap with -march=pentium4 fails to terminate
787 with only a partial life update. */
788 SET_BIT (update_life_blocks, bb->index);
789 if (bb->flags & BB_DIRTY)
790 n++;
794 if (n)
795 retval = update_life_info (update_life_blocks, extent, prop_flags);
797 sbitmap_free (update_life_blocks);
798 return retval;
801 /* Free the variables allocated by find_basic_blocks.
803 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
805 void
806 free_basic_block_vars (keep_head_end_p)
807 int keep_head_end_p;
809 if (! keep_head_end_p)
811 if (basic_block_info)
813 clear_edges ();
814 VARRAY_FREE (basic_block_info);
816 n_basic_blocks = 0;
817 last_basic_block = 0;
819 ENTRY_BLOCK_PTR->aux = NULL;
820 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
821 EXIT_BLOCK_PTR->aux = NULL;
822 EXIT_BLOCK_PTR->global_live_at_start = NULL;
826 /* Delete any insns that copy a register to itself. */
829 delete_noop_moves (f)
830 rtx f ATTRIBUTE_UNUSED;
832 rtx insn, next;
833 basic_block bb;
834 int nnoops = 0;
836 FOR_EACH_BB (bb)
838 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
840 next = NEXT_INSN (insn);
841 if (INSN_P (insn) && noop_move_p (insn))
843 rtx note;
845 /* If we're about to remove the first insn of a libcall
846 then move the libcall note to the next real insn and
847 update the retval note. */
848 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
849 && XEXP (note, 0) != insn)
851 rtx new_libcall_insn = next_real_insn (insn);
852 rtx retval_note = find_reg_note (XEXP (note, 0),
853 REG_RETVAL, NULL_RTX);
854 REG_NOTES (new_libcall_insn)
855 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
856 REG_NOTES (new_libcall_insn));
857 XEXP (retval_note, 0) = new_libcall_insn;
860 delete_insn_and_edges (insn);
861 nnoops++;
865 if (nnoops && rtl_dump_file)
866 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
867 return nnoops;
870 /* Delete any jump tables never referenced. We can't delete them at the
871 time of removing tablejump insn as they are referenced by the preceding
872 insns computing the destination, so we delay deleting and garbagecollect
873 them once life information is computed. */
874 void
875 delete_dead_jumptables ()
877 rtx insn, next;
878 for (insn = get_insns (); insn; insn = next)
880 next = NEXT_INSN (insn);
881 if (GET_CODE (insn) == CODE_LABEL
882 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
883 && GET_CODE (next) == JUMP_INSN
884 && (GET_CODE (PATTERN (next)) == ADDR_VEC
885 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
887 if (rtl_dump_file)
888 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
889 delete_insn (NEXT_INSN (insn));
890 delete_insn (insn);
891 next = NEXT_INSN (next);
896 /* Determine if the stack pointer is constant over the life of the function.
897 Only useful before prologues have been emitted. */
899 static void
900 notice_stack_pointer_modification_1 (x, pat, data)
901 rtx x;
902 rtx pat ATTRIBUTE_UNUSED;
903 void *data ATTRIBUTE_UNUSED;
905 if (x == stack_pointer_rtx
906 /* The stack pointer is only modified indirectly as the result
907 of a push until later in flow. See the comments in rtl.texi
908 regarding Embedded Side-Effects on Addresses. */
909 || (GET_CODE (x) == MEM
910 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
911 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
912 current_function_sp_is_unchanging = 0;
915 static void
916 notice_stack_pointer_modification (f)
917 rtx f;
919 rtx insn;
921 /* Assume that the stack pointer is unchanging if alloca hasn't
922 been used. */
923 current_function_sp_is_unchanging = !current_function_calls_alloca;
924 if (! current_function_sp_is_unchanging)
925 return;
927 for (insn = f; insn; insn = NEXT_INSN (insn))
929 if (INSN_P (insn))
931 /* Check if insn modifies the stack pointer. */
932 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
933 NULL);
934 if (! current_function_sp_is_unchanging)
935 return;
940 /* Mark a register in SET. Hard registers in large modes get all
941 of their component registers set as well. */
943 static void
944 mark_reg (reg, xset)
945 rtx reg;
946 void *xset;
948 regset set = (regset) xset;
949 int regno = REGNO (reg);
951 if (GET_MODE (reg) == BLKmode)
952 abort ();
954 SET_REGNO_REG_SET (set, regno);
955 if (regno < FIRST_PSEUDO_REGISTER)
957 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
958 while (--n > 0)
959 SET_REGNO_REG_SET (set, regno + n);
963 /* Mark those regs which are needed at the end of the function as live
964 at the end of the last basic block. */
966 static void
967 mark_regs_live_at_end (set)
968 regset set;
970 unsigned int i;
972 /* If exiting needs the right stack value, consider the stack pointer
973 live at the end of the function. */
974 if ((HAVE_epilogue && reload_completed)
975 || ! EXIT_IGNORE_STACK
976 || (! FRAME_POINTER_REQUIRED
977 && ! current_function_calls_alloca
978 && flag_omit_frame_pointer)
979 || current_function_sp_is_unchanging)
981 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
984 /* Mark the frame pointer if needed at the end of the function. If
985 we end up eliminating it, it will be removed from the live list
986 of each basic block by reload. */
988 if (! reload_completed || frame_pointer_needed)
990 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
991 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
992 /* If they are different, also mark the hard frame pointer as live. */
993 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
994 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
995 #endif
998 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
999 /* Many architectures have a GP register even without flag_pic.
1000 Assume the pic register is not in use, or will be handled by
1001 other means, if it is not fixed. */
1002 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1003 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1004 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1005 #endif
1007 /* Mark all global registers, and all registers used by the epilogue
1008 as being live at the end of the function since they may be
1009 referenced by our caller. */
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1011 if (global_regs[i] || EPILOGUE_USES (i))
1012 SET_REGNO_REG_SET (set, i);
1014 if (HAVE_epilogue && reload_completed)
1016 /* Mark all call-saved registers that we actually used. */
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1019 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1020 SET_REGNO_REG_SET (set, i);
1023 #ifdef EH_RETURN_DATA_REGNO
1024 /* Mark the registers that will contain data for the handler. */
1025 if (reload_completed && current_function_calls_eh_return)
1026 for (i = 0; ; ++i)
1028 unsigned regno = EH_RETURN_DATA_REGNO(i);
1029 if (regno == INVALID_REGNUM)
1030 break;
1031 SET_REGNO_REG_SET (set, regno);
1033 #endif
1034 #ifdef EH_RETURN_STACKADJ_RTX
1035 if ((! HAVE_epilogue || ! reload_completed)
1036 && current_function_calls_eh_return)
1038 rtx tmp = EH_RETURN_STACKADJ_RTX;
1039 if (tmp && REG_P (tmp))
1040 mark_reg (tmp, set);
1042 #endif
1043 #ifdef EH_RETURN_HANDLER_RTX
1044 if ((! HAVE_epilogue || ! reload_completed)
1045 && current_function_calls_eh_return)
1047 rtx tmp = EH_RETURN_HANDLER_RTX;
1048 if (tmp && REG_P (tmp))
1049 mark_reg (tmp, set);
1051 #endif
1053 /* Mark function return value. */
1054 diddle_return_value (mark_reg, set);
1057 /* Callback function for for_each_successor_phi. DATA is a regset.
1058 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1059 INSN, in the regset. */
1061 static int
1062 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1063 rtx insn ATTRIBUTE_UNUSED;
1064 int dest_regno ATTRIBUTE_UNUSED;
1065 int src_regno;
1066 void *data;
1068 regset live = (regset) data;
1069 SET_REGNO_REG_SET (live, src_regno);
1070 return 0;
1073 /* Propagate global life info around the graph of basic blocks. Begin
1074 considering blocks with their corresponding bit set in BLOCKS_IN.
1075 If BLOCKS_IN is null, consider it the universal set.
1077 BLOCKS_OUT is set for every block that was changed. */
1079 static void
1080 calculate_global_regs_live (blocks_in, blocks_out, flags)
1081 sbitmap blocks_in, blocks_out;
1082 int flags;
1084 basic_block *queue, *qhead, *qtail, *qend, bb;
1085 regset tmp, new_live_at_end, invalidated_by_call;
1086 regset_head tmp_head, invalidated_by_call_head;
1087 regset_head new_live_at_end_head;
1088 int i;
1090 /* Some passes used to forget clear aux field of basic block causing
1091 sick behaviour here. */
1092 #ifdef ENABLE_CHECKING
1093 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1094 if (bb->aux)
1095 abort ();
1096 #endif
1098 tmp = INITIALIZE_REG_SET (tmp_head);
1099 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1100 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1102 /* Inconveniently, this is only readily available in hard reg set form. */
1103 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1104 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1105 SET_REGNO_REG_SET (invalidated_by_call, i);
1107 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1108 because the `head == tail' style test for an empty queue doesn't
1109 work with a full queue. */
1110 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1111 qtail = queue;
1112 qhead = qend = queue + n_basic_blocks + 2;
1114 /* Queue the blocks set in the initial mask. Do this in reverse block
1115 number order so that we are more likely for the first round to do
1116 useful work. We use AUX non-null to flag that the block is queued. */
1117 if (blocks_in)
1119 FOR_EACH_BB (bb)
1120 if (TEST_BIT (blocks_in, bb->index))
1122 *--qhead = bb;
1123 bb->aux = bb;
1126 else
1128 FOR_EACH_BB (bb)
1130 *--qhead = bb;
1131 bb->aux = bb;
1135 /* We clean aux when we remove the initially-enqueued bbs, but we
1136 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1137 unconditionally. */
1138 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1140 if (blocks_out)
1141 sbitmap_zero (blocks_out);
1143 /* We work through the queue until there are no more blocks. What
1144 is live at the end of this block is precisely the union of what
1145 is live at the beginning of all its successors. So, we set its
1146 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1147 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1148 this block by walking through the instructions in this block in
1149 reverse order and updating as we go. If that changed
1150 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1151 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1153 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1154 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1155 must either be live at the end of the block, or used within the
1156 block. In the latter case, it will certainly never disappear
1157 from GLOBAL_LIVE_AT_START. In the former case, the register
1158 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1159 for one of the successor blocks. By induction, that cannot
1160 occur. */
1161 while (qhead != qtail)
1163 int rescan, changed;
1164 basic_block bb;
1165 edge e;
1167 bb = *qhead++;
1168 if (qhead == qend)
1169 qhead = queue;
1170 bb->aux = NULL;
1172 /* Begin by propagating live_at_start from the successor blocks. */
1173 CLEAR_REG_SET (new_live_at_end);
1175 if (bb->succ)
1176 for (e = bb->succ; e; e = e->succ_next)
1178 basic_block sb = e->dest;
1180 /* Call-clobbered registers die across exception and
1181 call edges. */
1182 /* ??? Abnormal call edges ignored for the moment, as this gets
1183 confused by sibling call edges, which crashes reg-stack. */
1184 if (e->flags & EDGE_EH)
1186 bitmap_operation (tmp, sb->global_live_at_start,
1187 invalidated_by_call, BITMAP_AND_COMPL);
1188 IOR_REG_SET (new_live_at_end, tmp);
1190 else
1191 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1193 /* If a target saves one register in another (instead of on
1194 the stack) the save register will need to be live for EH. */
1195 if (e->flags & EDGE_EH)
1196 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1197 if (EH_USES (i))
1198 SET_REGNO_REG_SET (new_live_at_end, i);
1200 else
1202 /* This might be a noreturn function that throws. And
1203 even if it isn't, getting the unwind info right helps
1204 debugging. */
1205 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1206 if (EH_USES (i))
1207 SET_REGNO_REG_SET (new_live_at_end, i);
1210 /* The all-important stack pointer must always be live. */
1211 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1213 /* Before reload, there are a few registers that must be forced
1214 live everywhere -- which might not already be the case for
1215 blocks within infinite loops. */
1216 if (! reload_completed)
1218 /* Any reference to any pseudo before reload is a potential
1219 reference of the frame pointer. */
1220 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1222 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1223 /* Pseudos with argument area equivalences may require
1224 reloading via the argument pointer. */
1225 if (fixed_regs[ARG_POINTER_REGNUM])
1226 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1227 #endif
1229 /* Any constant, or pseudo with constant equivalences, may
1230 require reloading from memory using the pic register. */
1231 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1232 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1233 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1236 /* Regs used in phi nodes are not included in
1237 global_live_at_start, since they are live only along a
1238 particular edge. Set those regs that are live because of a
1239 phi node alternative corresponding to this particular block. */
1240 if (in_ssa_form)
1241 for_each_successor_phi (bb, &set_phi_alternative_reg,
1242 new_live_at_end);
1244 if (bb == ENTRY_BLOCK_PTR)
1246 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1247 continue;
1250 /* On our first pass through this block, we'll go ahead and continue.
1251 Recognize first pass by local_set NULL. On subsequent passes, we
1252 get to skip out early if live_at_end wouldn't have changed. */
1254 if (bb->local_set == NULL)
1256 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1257 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1258 rescan = 1;
1260 else
1262 /* If any bits were removed from live_at_end, we'll have to
1263 rescan the block. This wouldn't be necessary if we had
1264 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1265 local_live is really dependent on live_at_end. */
1266 CLEAR_REG_SET (tmp);
1267 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1268 new_live_at_end, BITMAP_AND_COMPL);
1270 if (! rescan)
1272 /* If any of the registers in the new live_at_end set are
1273 conditionally set in this basic block, we must rescan.
1274 This is because conditional lifetimes at the end of the
1275 block do not just take the live_at_end set into account,
1276 but also the liveness at the start of each successor
1277 block. We can miss changes in those sets if we only
1278 compare the new live_at_end against the previous one. */
1279 CLEAR_REG_SET (tmp);
1280 rescan = bitmap_operation (tmp, new_live_at_end,
1281 bb->cond_local_set, BITMAP_AND);
1284 if (! rescan)
1286 /* Find the set of changed bits. Take this opportunity
1287 to notice that this set is empty and early out. */
1288 CLEAR_REG_SET (tmp);
1289 changed = bitmap_operation (tmp, bb->global_live_at_end,
1290 new_live_at_end, BITMAP_XOR);
1291 if (! changed)
1292 continue;
1294 /* If any of the changed bits overlap with local_set,
1295 we'll have to rescan the block. Detect overlap by
1296 the AND with ~local_set turning off bits. */
1297 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1298 BITMAP_AND_COMPL);
1302 /* Let our caller know that BB changed enough to require its
1303 death notes updated. */
1304 if (blocks_out)
1305 SET_BIT (blocks_out, bb->index);
1307 if (! rescan)
1309 /* Add to live_at_start the set of all registers in
1310 new_live_at_end that aren't in the old live_at_end. */
1312 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1313 BITMAP_AND_COMPL);
1314 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1316 changed = bitmap_operation (bb->global_live_at_start,
1317 bb->global_live_at_start,
1318 tmp, BITMAP_IOR);
1319 if (! changed)
1320 continue;
1322 else
1324 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1326 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1327 into live_at_start. */
1328 propagate_block (bb, new_live_at_end, bb->local_set,
1329 bb->cond_local_set, flags);
1331 /* If live_at start didn't change, no need to go farther. */
1332 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1333 continue;
1335 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1338 /* Queue all predecessors of BB so that we may re-examine
1339 their live_at_end. */
1340 for (e = bb->pred; e; e = e->pred_next)
1342 basic_block pb = e->src;
1343 if (pb->aux == NULL)
1345 *qtail++ = pb;
1346 if (qtail == qend)
1347 qtail = queue;
1348 pb->aux = pb;
1353 FREE_REG_SET (tmp);
1354 FREE_REG_SET (new_live_at_end);
1355 FREE_REG_SET (invalidated_by_call);
1357 if (blocks_out)
1359 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1361 basic_block bb = BASIC_BLOCK (i);
1362 FREE_REG_SET (bb->local_set);
1363 FREE_REG_SET (bb->cond_local_set);
1366 else
1368 FOR_EACH_BB (bb)
1370 FREE_REG_SET (bb->local_set);
1371 FREE_REG_SET (bb->cond_local_set);
1375 free (queue);
1379 /* This structure is used to pass parameters to an from the
1380 the function find_regno_partial(). It is used to pass in the
1381 register number we are looking, as well as to return any rtx
1382 we find. */
1384 typedef struct {
1385 unsigned regno_to_find;
1386 rtx retval;
1387 } find_regno_partial_param;
1390 /* Find the rtx for the reg numbers specified in 'data' if it is
1391 part of an expression which only uses part of the register. Return
1392 it in the structure passed in. */
1393 static int
1394 find_regno_partial (ptr, data)
1395 rtx *ptr;
1396 void *data;
1398 find_regno_partial_param *param = (find_regno_partial_param *)data;
1399 unsigned reg = param->regno_to_find;
1400 param->retval = NULL_RTX;
1402 if (*ptr == NULL_RTX)
1403 return 0;
1405 switch (GET_CODE (*ptr))
1407 case ZERO_EXTRACT:
1408 case SIGN_EXTRACT:
1409 case STRICT_LOW_PART:
1410 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1412 param->retval = XEXP (*ptr, 0);
1413 return 1;
1415 break;
1417 case SUBREG:
1418 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1419 && REGNO (SUBREG_REG (*ptr)) == reg)
1421 param->retval = SUBREG_REG (*ptr);
1422 return 1;
1424 break;
1426 default:
1427 break;
1430 return 0;
1433 /* Process all immediate successors of the entry block looking for pseudo
1434 registers which are live on entry. Find all of those whose first
1435 instance is a partial register reference of some kind, and initialize
1436 them to 0 after the entry block. This will prevent bit sets within
1437 registers whose value is unknown, and may contain some kind of sticky
1438 bits we don't want. */
1441 initialize_uninitialized_subregs ()
1443 rtx insn;
1444 edge e;
1445 int reg, did_something = 0;
1446 find_regno_partial_param param;
1448 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1450 basic_block bb = e->dest;
1451 regset map = bb->global_live_at_start;
1452 EXECUTE_IF_SET_IN_REG_SET (map,
1453 FIRST_PSEUDO_REGISTER, reg,
1455 int uid = REGNO_FIRST_UID (reg);
1456 rtx i;
1458 /* Find an insn which mentions the register we are looking for.
1459 Its preferable to have an instance of the register's rtl since
1460 there may be various flags set which we need to duplicate.
1461 If we can't find it, its probably an automatic whose initial
1462 value doesn't matter, or hopefully something we don't care about. */
1463 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1465 if (i != NULL_RTX)
1467 /* Found the insn, now get the REG rtx, if we can. */
1468 param.regno_to_find = reg;
1469 for_each_rtx (&i, find_regno_partial, &param);
1470 if (param.retval != NULL_RTX)
1472 insn = gen_move_insn (param.retval,
1473 CONST0_RTX (GET_MODE (param.retval)));
1474 insert_insn_on_edge (insn, e);
1475 did_something = 1;
1481 if (did_something)
1482 commit_edge_insertions ();
1483 return did_something;
1487 /* Subroutines of life analysis. */
1489 /* Allocate the permanent data structures that represent the results
1490 of life analysis. Not static since used also for stupid life analysis. */
1492 void
1493 allocate_bb_life_data ()
1495 basic_block bb;
1497 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1499 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1500 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1503 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1506 void
1507 allocate_reg_life_data ()
1509 int i;
1511 max_regno = max_reg_num ();
1513 /* Recalculate the register space, in case it has grown. Old style
1514 vector oriented regsets would set regset_{size,bytes} here also. */
1515 allocate_reg_info (max_regno, FALSE, FALSE);
1517 /* Reset all the data we'll collect in propagate_block and its
1518 subroutines. */
1519 for (i = 0; i < max_regno; i++)
1521 REG_N_SETS (i) = 0;
1522 REG_N_REFS (i) = 0;
1523 REG_N_DEATHS (i) = 0;
1524 REG_N_CALLS_CROSSED (i) = 0;
1525 REG_LIVE_LENGTH (i) = 0;
1526 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1530 /* Delete dead instructions for propagate_block. */
1532 static void
1533 propagate_block_delete_insn (insn)
1534 rtx insn;
1536 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1538 /* If the insn referred to a label, and that label was attached to
1539 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1540 pretty much mandatory to delete it, because the ADDR_VEC may be
1541 referencing labels that no longer exist.
1543 INSN may reference a deleted label, particularly when a jump
1544 table has been optimized into a direct jump. There's no
1545 real good way to fix up the reference to the deleted label
1546 when the label is deleted, so we just allow it here. */
1548 if (inote && GET_CODE (inote) == CODE_LABEL)
1550 rtx label = XEXP (inote, 0);
1551 rtx next;
1553 /* The label may be forced if it has been put in the constant
1554 pool. If that is the only use we must discard the table
1555 jump following it, but not the label itself. */
1556 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1557 && (next = next_nonnote_insn (label)) != NULL
1558 && GET_CODE (next) == JUMP_INSN
1559 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1560 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1562 rtx pat = PATTERN (next);
1563 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1564 int len = XVECLEN (pat, diff_vec_p);
1565 int i;
1567 for (i = 0; i < len; i++)
1568 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1570 delete_insn_and_edges (next);
1571 ndead++;
1575 delete_insn_and_edges (insn);
1576 ndead++;
1579 /* Delete dead libcalls for propagate_block. Return the insn
1580 before the libcall. */
1582 static rtx
1583 propagate_block_delete_libcall ( insn, note)
1584 rtx insn, note;
1586 rtx first = XEXP (note, 0);
1587 rtx before = PREV_INSN (first);
1589 delete_insn_chain_and_edges (first, insn);
1590 ndead++;
1591 return before;
1594 /* Update the life-status of regs for one insn. Return the previous insn. */
1597 propagate_one_insn (pbi, insn)
1598 struct propagate_block_info *pbi;
1599 rtx insn;
1601 rtx prev = PREV_INSN (insn);
1602 int flags = pbi->flags;
1603 int insn_is_dead = 0;
1604 int libcall_is_dead = 0;
1605 rtx note;
1606 int i;
1608 if (! INSN_P (insn))
1609 return prev;
1611 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1612 if (flags & PROP_SCAN_DEAD_CODE)
1614 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1615 libcall_is_dead = (insn_is_dead && note != 0
1616 && libcall_dead_p (pbi, note, insn));
1619 /* If an instruction consists of just dead store(s) on final pass,
1620 delete it. */
1621 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1623 /* If we're trying to delete a prologue or epilogue instruction
1624 that isn't flagged as possibly being dead, something is wrong.
1625 But if we are keeping the stack pointer depressed, we might well
1626 be deleting insns that are used to compute the amount to update
1627 it by, so they are fine. */
1628 if (reload_completed
1629 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1630 && (TYPE_RETURNS_STACK_DEPRESSED
1631 (TREE_TYPE (current_function_decl))))
1632 && (((HAVE_epilogue || HAVE_prologue)
1633 && prologue_epilogue_contains (insn))
1634 || (HAVE_sibcall_epilogue
1635 && sibcall_epilogue_contains (insn)))
1636 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1637 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1639 /* Record sets. Do this even for dead instructions, since they
1640 would have killed the values if they hadn't been deleted. */
1641 mark_set_regs (pbi, PATTERN (insn), insn);
1643 /* CC0 is now known to be dead. Either this insn used it,
1644 in which case it doesn't anymore, or clobbered it,
1645 so the next insn can't use it. */
1646 pbi->cc0_live = 0;
1648 if (libcall_is_dead)
1649 prev = propagate_block_delete_libcall ( insn, note);
1650 else
1653 if (note)
1655 /* If INSN contains a RETVAL note and is dead, but the libcall
1656 as a whole is not dead, then we want to remove INSN, but
1657 not the whole libcall sequence.
1659 However, we need to also remove the dangling REG_LIBCALL
1660 note so that we do not have mis-matched LIBCALL/RETVAL
1661 notes. In theory we could find a new location for the
1662 REG_RETVAL note, but it hardly seems worth the effort. */
1663 rtx libcall_note;
1665 libcall_note
1666 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1667 remove_note (XEXP (note, 0), libcall_note);
1669 propagate_block_delete_insn (insn);
1672 return prev;
1675 /* See if this is an increment or decrement that can be merged into
1676 a following memory address. */
1677 #ifdef AUTO_INC_DEC
1679 rtx x = single_set (insn);
1681 /* Does this instruction increment or decrement a register? */
1682 if ((flags & PROP_AUTOINC)
1683 && x != 0
1684 && GET_CODE (SET_DEST (x)) == REG
1685 && (GET_CODE (SET_SRC (x)) == PLUS
1686 || GET_CODE (SET_SRC (x)) == MINUS)
1687 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1688 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1689 /* Ok, look for a following memory ref we can combine with.
1690 If one is found, change the memory ref to a PRE_INC
1691 or PRE_DEC, cancel this insn, and return 1.
1692 Return 0 if nothing has been done. */
1693 && try_pre_increment_1 (pbi, insn))
1694 return prev;
1696 #endif /* AUTO_INC_DEC */
1698 CLEAR_REG_SET (pbi->new_set);
1700 /* If this is not the final pass, and this insn is copying the value of
1701 a library call and it's dead, don't scan the insns that perform the
1702 library call, so that the call's arguments are not marked live. */
1703 if (libcall_is_dead)
1705 /* Record the death of the dest reg. */
1706 mark_set_regs (pbi, PATTERN (insn), insn);
1708 insn = XEXP (note, 0);
1709 return PREV_INSN (insn);
1711 else if (GET_CODE (PATTERN (insn)) == SET
1712 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1713 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1714 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1715 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1716 /* We have an insn to pop a constant amount off the stack.
1717 (Such insns use PLUS regardless of the direction of the stack,
1718 and any insn to adjust the stack by a constant is always a pop.)
1719 These insns, if not dead stores, have no effect on life, though
1720 they do have an effect on the memory stores we are tracking. */
1721 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1722 else
1724 rtx note;
1725 /* Any regs live at the time of a call instruction must not go
1726 in a register clobbered by calls. Find all regs now live and
1727 record this for them. */
1729 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1730 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1731 { REG_N_CALLS_CROSSED (i)++; });
1733 /* Record sets. Do this even for dead instructions, since they
1734 would have killed the values if they hadn't been deleted. */
1735 mark_set_regs (pbi, PATTERN (insn), insn);
1737 if (GET_CODE (insn) == CALL_INSN)
1739 int i;
1740 rtx note, cond;
1742 cond = NULL_RTX;
1743 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1744 cond = COND_EXEC_TEST (PATTERN (insn));
1746 /* Non-constant calls clobber memory, constant calls do not
1747 clobber memory, though they may clobber outgoing arguments
1748 on the stack. */
1749 if (! CONST_OR_PURE_CALL_P (insn))
1751 free_EXPR_LIST_list (&pbi->mem_set_list);
1752 pbi->mem_set_list_len = 0;
1754 else
1755 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1757 /* There may be extra registers to be clobbered. */
1758 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1759 note;
1760 note = XEXP (note, 1))
1761 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1762 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1763 cond, insn, pbi->flags);
1765 /* Calls change all call-used and global registers. */
1766 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1767 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1769 /* We do not want REG_UNUSED notes for these registers. */
1770 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1771 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1775 /* If an insn doesn't use CC0, it becomes dead since we assume
1776 that every insn clobbers it. So show it dead here;
1777 mark_used_regs will set it live if it is referenced. */
1778 pbi->cc0_live = 0;
1780 /* Record uses. */
1781 if (! insn_is_dead)
1782 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1783 if ((flags & PROP_EQUAL_NOTES)
1784 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1785 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1786 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1788 /* Sometimes we may have inserted something before INSN (such as a move)
1789 when we make an auto-inc. So ensure we will scan those insns. */
1790 #ifdef AUTO_INC_DEC
1791 prev = PREV_INSN (insn);
1792 #endif
1794 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1796 int i;
1797 rtx note, cond;
1799 cond = NULL_RTX;
1800 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1801 cond = COND_EXEC_TEST (PATTERN (insn));
1803 /* Calls use their arguments. */
1804 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1805 note;
1806 note = XEXP (note, 1))
1807 if (GET_CODE (XEXP (note, 0)) == USE)
1808 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1809 cond, insn);
1811 /* The stack ptr is used (honorarily) by a CALL insn. */
1812 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1814 /* Calls may also reference any of the global registers,
1815 so they are made live. */
1816 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1817 if (global_regs[i])
1818 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1822 /* On final pass, update counts of how many insns in which each reg
1823 is live. */
1824 if (flags & PROP_REG_INFO)
1825 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1826 { REG_LIVE_LENGTH (i)++; });
1828 return prev;
1831 /* Initialize a propagate_block_info struct for public consumption.
1832 Note that the structure itself is opaque to this file, but that
1833 the user can use the regsets provided here. */
1835 struct propagate_block_info *
1836 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1837 basic_block bb;
1838 regset live, local_set, cond_local_set;
1839 int flags;
1841 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1843 pbi->bb = bb;
1844 pbi->reg_live = live;
1845 pbi->mem_set_list = NULL_RTX;
1846 pbi->mem_set_list_len = 0;
1847 pbi->local_set = local_set;
1848 pbi->cond_local_set = cond_local_set;
1849 pbi->cc0_live = 0;
1850 pbi->flags = flags;
1852 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1853 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1854 else
1855 pbi->reg_next_use = NULL;
1857 pbi->new_set = BITMAP_XMALLOC ();
1859 #ifdef HAVE_conditional_execution
1860 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1861 free_reg_cond_life_info);
1862 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1864 /* If this block ends in a conditional branch, for each register live
1865 from one side of the branch and not the other, record the register
1866 as conditionally dead. */
1867 if (GET_CODE (bb->end) == JUMP_INSN
1868 && any_condjump_p (bb->end))
1870 regset_head diff_head;
1871 regset diff = INITIALIZE_REG_SET (diff_head);
1872 basic_block bb_true, bb_false;
1873 rtx cond_true, cond_false, set_src;
1874 int i;
1876 /* Identify the successor blocks. */
1877 bb_true = bb->succ->dest;
1878 if (bb->succ->succ_next != NULL)
1880 bb_false = bb->succ->succ_next->dest;
1882 if (bb->succ->flags & EDGE_FALLTHRU)
1884 basic_block t = bb_false;
1885 bb_false = bb_true;
1886 bb_true = t;
1888 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1889 abort ();
1891 else
1893 /* This can happen with a conditional jump to the next insn. */
1894 if (JUMP_LABEL (bb->end) != bb_true->head)
1895 abort ();
1897 /* Simplest way to do nothing. */
1898 bb_false = bb_true;
1901 /* Extract the condition from the branch. */
1902 set_src = SET_SRC (pc_set (bb->end));
1903 cond_true = XEXP (set_src, 0);
1904 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1905 GET_MODE (cond_true), XEXP (cond_true, 0),
1906 XEXP (cond_true, 1));
1907 if (GET_CODE (XEXP (set_src, 1)) == PC)
1909 rtx t = cond_false;
1910 cond_false = cond_true;
1911 cond_true = t;
1914 /* Compute which register lead different lives in the successors. */
1915 if (bitmap_operation (diff, bb_true->global_live_at_start,
1916 bb_false->global_live_at_start, BITMAP_XOR))
1918 rtx reg = XEXP (cond_true, 0);
1920 if (GET_CODE (reg) == SUBREG)
1921 reg = SUBREG_REG (reg);
1923 if (GET_CODE (reg) != REG)
1924 abort ();
1926 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1928 /* For each such register, mark it conditionally dead. */
1929 EXECUTE_IF_SET_IN_REG_SET
1930 (diff, 0, i,
1932 struct reg_cond_life_info *rcli;
1933 rtx cond;
1935 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1937 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1938 cond = cond_false;
1939 else
1940 cond = cond_true;
1941 rcli->condition = cond;
1942 rcli->stores = const0_rtx;
1943 rcli->orig_condition = cond;
1945 splay_tree_insert (pbi->reg_cond_dead, i,
1946 (splay_tree_value) rcli);
1950 FREE_REG_SET (diff);
1952 #endif
1954 /* If this block has no successors, any stores to the frame that aren't
1955 used later in the block are dead. So make a pass over the block
1956 recording any such that are made and show them dead at the end. We do
1957 a very conservative and simple job here. */
1958 if (optimize
1959 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1960 && (TYPE_RETURNS_STACK_DEPRESSED
1961 (TREE_TYPE (current_function_decl))))
1962 && (flags & PROP_SCAN_DEAD_STORES)
1963 && (bb->succ == NULL
1964 || (bb->succ->succ_next == NULL
1965 && bb->succ->dest == EXIT_BLOCK_PTR
1966 && ! current_function_calls_eh_return)))
1968 rtx insn, set;
1969 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1970 if (GET_CODE (insn) == INSN
1971 && (set = single_set (insn))
1972 && GET_CODE (SET_DEST (set)) == MEM)
1974 rtx mem = SET_DEST (set);
1975 rtx canon_mem = canon_rtx (mem);
1977 /* This optimization is performed by faking a store to the
1978 memory at the end of the block. This doesn't work for
1979 unchanging memories because multiple stores to unchanging
1980 memory is illegal and alias analysis doesn't consider it. */
1981 if (RTX_UNCHANGING_P (canon_mem))
1982 continue;
1984 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1985 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1986 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1987 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1988 add_to_mem_set_list (pbi, canon_mem);
1992 return pbi;
1995 /* Release a propagate_block_info struct. */
1997 void
1998 free_propagate_block_info (pbi)
1999 struct propagate_block_info *pbi;
2001 free_EXPR_LIST_list (&pbi->mem_set_list);
2003 BITMAP_XFREE (pbi->new_set);
2005 #ifdef HAVE_conditional_execution
2006 splay_tree_delete (pbi->reg_cond_dead);
2007 BITMAP_XFREE (pbi->reg_cond_reg);
2008 #endif
2010 if (pbi->reg_next_use)
2011 free (pbi->reg_next_use);
2013 free (pbi);
2016 /* Compute the registers live at the beginning of a basic block BB from
2017 those live at the end.
2019 When called, REG_LIVE contains those live at the end. On return, it
2020 contains those live at the beginning.
2022 LOCAL_SET, if non-null, will be set with all registers killed
2023 unconditionally by this basic block.
2024 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2025 killed conditionally by this basic block. If there is any unconditional
2026 set of a register, then the corresponding bit will be set in LOCAL_SET
2027 and cleared in COND_LOCAL_SET.
2028 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2029 case, the resulting set will be equal to the union of the two sets that
2030 would otherwise be computed.
2032 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2035 propagate_block (bb, live, local_set, cond_local_set, flags)
2036 basic_block bb;
2037 regset live;
2038 regset local_set;
2039 regset cond_local_set;
2040 int flags;
2042 struct propagate_block_info *pbi;
2043 rtx insn, prev;
2044 int changed;
2046 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2048 if (flags & PROP_REG_INFO)
2050 int i;
2052 /* Process the regs live at the end of the block.
2053 Mark them as not local to any one basic block. */
2054 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2055 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2058 /* Scan the block an insn at a time from end to beginning. */
2060 changed = 0;
2061 for (insn = bb->end;; insn = prev)
2063 /* If this is a call to `setjmp' et al, warn if any
2064 non-volatile datum is live. */
2065 if ((flags & PROP_REG_INFO)
2066 && GET_CODE (insn) == CALL_INSN
2067 && find_reg_note (insn, REG_SETJMP, NULL))
2068 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2070 prev = propagate_one_insn (pbi, insn);
2071 changed |= NEXT_INSN (prev) != insn;
2073 if (insn == bb->head)
2074 break;
2077 free_propagate_block_info (pbi);
2079 return changed;
2082 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2083 (SET expressions whose destinations are registers dead after the insn).
2084 NEEDED is the regset that says which regs are alive after the insn.
2086 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2088 If X is the entire body of an insn, NOTES contains the reg notes
2089 pertaining to the insn. */
2091 static int
2092 insn_dead_p (pbi, x, call_ok, notes)
2093 struct propagate_block_info *pbi;
2094 rtx x;
2095 int call_ok;
2096 rtx notes ATTRIBUTE_UNUSED;
2098 enum rtx_code code = GET_CODE (x);
2100 #ifdef AUTO_INC_DEC
2101 /* As flow is invoked after combine, we must take existing AUTO_INC
2102 expressions into account. */
2103 for (; notes; notes = XEXP (notes, 1))
2105 if (REG_NOTE_KIND (notes) == REG_INC)
2107 int regno = REGNO (XEXP (notes, 0));
2109 /* Don't delete insns to set global regs. */
2110 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2111 || REGNO_REG_SET_P (pbi->reg_live, regno))
2112 return 0;
2115 #endif
2117 /* If setting something that's a reg or part of one,
2118 see if that register's altered value will be live. */
2120 if (code == SET)
2122 rtx r = SET_DEST (x);
2124 #ifdef HAVE_cc0
2125 if (GET_CODE (r) == CC0)
2126 return ! pbi->cc0_live;
2127 #endif
2129 /* A SET that is a subroutine call cannot be dead. */
2130 if (GET_CODE (SET_SRC (x)) == CALL)
2132 if (! call_ok)
2133 return 0;
2136 /* Don't eliminate loads from volatile memory or volatile asms. */
2137 else if (volatile_refs_p (SET_SRC (x)))
2138 return 0;
2140 if (GET_CODE (r) == MEM)
2142 rtx temp, canon_r;
2144 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2145 return 0;
2147 canon_r = canon_rtx (r);
2149 /* Walk the set of memory locations we are currently tracking
2150 and see if one is an identical match to this memory location.
2151 If so, this memory write is dead (remember, we're walking
2152 backwards from the end of the block to the start). Since
2153 rtx_equal_p does not check the alias set or flags, we also
2154 must have the potential for them to conflict (anti_dependence). */
2155 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2156 if (anti_dependence (r, XEXP (temp, 0)))
2158 rtx mem = XEXP (temp, 0);
2160 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2161 && (GET_MODE_SIZE (GET_MODE (canon_r))
2162 <= GET_MODE_SIZE (GET_MODE (mem))))
2163 return 1;
2165 #ifdef AUTO_INC_DEC
2166 /* Check if memory reference matches an auto increment. Only
2167 post increment/decrement or modify are valid. */
2168 if (GET_MODE (mem) == GET_MODE (r)
2169 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2170 || GET_CODE (XEXP (mem, 0)) == POST_INC
2171 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2172 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2173 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2174 return 1;
2175 #endif
2178 else
2180 while (GET_CODE (r) == SUBREG
2181 || GET_CODE (r) == STRICT_LOW_PART
2182 || GET_CODE (r) == ZERO_EXTRACT)
2183 r = XEXP (r, 0);
2185 if (GET_CODE (r) == REG)
2187 int regno = REGNO (r);
2189 /* Obvious. */
2190 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2191 return 0;
2193 /* If this is a hard register, verify that subsequent
2194 words are not needed. */
2195 if (regno < FIRST_PSEUDO_REGISTER)
2197 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2199 while (--n > 0)
2200 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2201 return 0;
2204 /* Don't delete insns to set global regs. */
2205 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2206 return 0;
2208 /* Make sure insns to set the stack pointer aren't deleted. */
2209 if (regno == STACK_POINTER_REGNUM)
2210 return 0;
2212 /* ??? These bits might be redundant with the force live bits
2213 in calculate_global_regs_live. We would delete from
2214 sequential sets; whether this actually affects real code
2215 for anything but the stack pointer I don't know. */
2216 /* Make sure insns to set the frame pointer aren't deleted. */
2217 if (regno == FRAME_POINTER_REGNUM
2218 && (! reload_completed || frame_pointer_needed))
2219 return 0;
2220 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2221 if (regno == HARD_FRAME_POINTER_REGNUM
2222 && (! reload_completed || frame_pointer_needed))
2223 return 0;
2224 #endif
2226 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2227 /* Make sure insns to set arg pointer are never deleted
2228 (if the arg pointer isn't fixed, there will be a USE
2229 for it, so we can treat it normally). */
2230 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2231 return 0;
2232 #endif
2234 /* Otherwise, the set is dead. */
2235 return 1;
2240 /* If performing several activities, insn is dead if each activity
2241 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2242 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2243 worth keeping. */
2244 else if (code == PARALLEL)
2246 int i = XVECLEN (x, 0);
2248 for (i--; i >= 0; i--)
2249 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2250 && GET_CODE (XVECEXP (x, 0, i)) != USE
2251 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2252 return 0;
2254 return 1;
2257 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2258 is not necessarily true for hard registers. */
2259 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2260 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2261 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2262 return 1;
2264 /* We do not check other CLOBBER or USE here. An insn consisting of just
2265 a CLOBBER or just a USE should not be deleted. */
2266 return 0;
2269 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2270 return 1 if the entire library call is dead.
2271 This is true if INSN copies a register (hard or pseudo)
2272 and if the hard return reg of the call insn is dead.
2273 (The caller should have tested the destination of the SET inside
2274 INSN already for death.)
2276 If this insn doesn't just copy a register, then we don't
2277 have an ordinary libcall. In that case, cse could not have
2278 managed to substitute the source for the dest later on,
2279 so we can assume the libcall is dead.
2281 PBI is the block info giving pseudoregs live before this insn.
2282 NOTE is the REG_RETVAL note of the insn. */
2284 static int
2285 libcall_dead_p (pbi, note, insn)
2286 struct propagate_block_info *pbi;
2287 rtx note;
2288 rtx insn;
2290 rtx x = single_set (insn);
2292 if (x)
2294 rtx r = SET_SRC (x);
2296 if (GET_CODE (r) == REG)
2298 rtx call = XEXP (note, 0);
2299 rtx call_pat;
2300 int i;
2302 /* Find the call insn. */
2303 while (call != insn && GET_CODE (call) != CALL_INSN)
2304 call = NEXT_INSN (call);
2306 /* If there is none, do nothing special,
2307 since ordinary death handling can understand these insns. */
2308 if (call == insn)
2309 return 0;
2311 /* See if the hard reg holding the value is dead.
2312 If this is a PARALLEL, find the call within it. */
2313 call_pat = PATTERN (call);
2314 if (GET_CODE (call_pat) == PARALLEL)
2316 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2317 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2318 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2319 break;
2321 /* This may be a library call that is returning a value
2322 via invisible pointer. Do nothing special, since
2323 ordinary death handling can understand these insns. */
2324 if (i < 0)
2325 return 0;
2327 call_pat = XVECEXP (call_pat, 0, i);
2330 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2333 return 1;
2336 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2337 live at function entry. Don't count global register variables, variables
2338 in registers that can be used for function arg passing, or variables in
2339 fixed hard registers. */
2342 regno_uninitialized (regno)
2343 unsigned int regno;
2345 if (n_basic_blocks == 0
2346 || (regno < FIRST_PSEUDO_REGISTER
2347 && (global_regs[regno]
2348 || fixed_regs[regno]
2349 || FUNCTION_ARG_REGNO_P (regno))))
2350 return 0;
2352 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2355 /* 1 if register REGNO was alive at a place where `setjmp' was called
2356 and was set more than once or is an argument.
2357 Such regs may be clobbered by `longjmp'. */
2360 regno_clobbered_at_setjmp (regno)
2361 int regno;
2363 if (n_basic_blocks == 0)
2364 return 0;
2366 return ((REG_N_SETS (regno) > 1
2367 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2368 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2371 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2372 maximal list size; look for overlaps in mode and select the largest. */
2373 static void
2374 add_to_mem_set_list (pbi, mem)
2375 struct propagate_block_info *pbi;
2376 rtx mem;
2378 rtx i;
2380 /* We don't know how large a BLKmode store is, so we must not
2381 take them into consideration. */
2382 if (GET_MODE (mem) == BLKmode)
2383 return;
2385 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2387 rtx e = XEXP (i, 0);
2388 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2390 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2392 #ifdef AUTO_INC_DEC
2393 /* If we must store a copy of the mem, we can just modify
2394 the mode of the stored copy. */
2395 if (pbi->flags & PROP_AUTOINC)
2396 PUT_MODE (e, GET_MODE (mem));
2397 else
2398 #endif
2399 XEXP (i, 0) = mem;
2401 return;
2405 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2407 #ifdef AUTO_INC_DEC
2408 /* Store a copy of mem, otherwise the address may be
2409 scrogged by find_auto_inc. */
2410 if (pbi->flags & PROP_AUTOINC)
2411 mem = shallow_copy_rtx (mem);
2412 #endif
2413 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2414 pbi->mem_set_list_len++;
2418 /* INSN references memory, possibly using autoincrement addressing modes.
2419 Find any entries on the mem_set_list that need to be invalidated due
2420 to an address change. */
2422 static int
2423 invalidate_mems_from_autoinc (px, data)
2424 rtx *px;
2425 void *data;
2427 rtx x = *px;
2428 struct propagate_block_info *pbi = data;
2430 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2432 invalidate_mems_from_set (pbi, XEXP (x, 0));
2433 return -1;
2436 return 0;
2439 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2441 static void
2442 invalidate_mems_from_set (pbi, exp)
2443 struct propagate_block_info *pbi;
2444 rtx exp;
2446 rtx temp = pbi->mem_set_list;
2447 rtx prev = NULL_RTX;
2448 rtx next;
2450 while (temp)
2452 next = XEXP (temp, 1);
2453 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2455 /* Splice this entry out of the list. */
2456 if (prev)
2457 XEXP (prev, 1) = next;
2458 else
2459 pbi->mem_set_list = next;
2460 free_EXPR_LIST_node (temp);
2461 pbi->mem_set_list_len--;
2463 else
2464 prev = temp;
2465 temp = next;
2469 /* Process the registers that are set within X. Their bits are set to
2470 1 in the regset DEAD, because they are dead prior to this insn.
2472 If INSN is nonzero, it is the insn being processed.
2474 FLAGS is the set of operations to perform. */
2476 static void
2477 mark_set_regs (pbi, x, insn)
2478 struct propagate_block_info *pbi;
2479 rtx x, insn;
2481 rtx cond = NULL_RTX;
2482 rtx link;
2483 enum rtx_code code;
2485 if (insn)
2486 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2488 if (REG_NOTE_KIND (link) == REG_INC)
2489 mark_set_1 (pbi, SET, XEXP (link, 0),
2490 (GET_CODE (x) == COND_EXEC
2491 ? COND_EXEC_TEST (x) : NULL_RTX),
2492 insn, pbi->flags);
2494 retry:
2495 switch (code = GET_CODE (x))
2497 case SET:
2498 case CLOBBER:
2499 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2500 return;
2502 case COND_EXEC:
2503 cond = COND_EXEC_TEST (x);
2504 x = COND_EXEC_CODE (x);
2505 goto retry;
2507 case PARALLEL:
2509 int i;
2511 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2513 rtx sub = XVECEXP (x, 0, i);
2514 switch (code = GET_CODE (sub))
2516 case COND_EXEC:
2517 if (cond != NULL_RTX)
2518 abort ();
2520 cond = COND_EXEC_TEST (sub);
2521 sub = COND_EXEC_CODE (sub);
2522 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2523 break;
2524 /* Fall through. */
2526 case SET:
2527 case CLOBBER:
2528 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2529 break;
2531 default:
2532 break;
2535 break;
2538 default:
2539 break;
2543 /* Process a single set, which appears in INSN. REG (which may not
2544 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2545 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2546 If the set is conditional (because it appear in a COND_EXEC), COND
2547 will be the condition. */
2549 static void
2550 mark_set_1 (pbi, code, reg, cond, insn, flags)
2551 struct propagate_block_info *pbi;
2552 enum rtx_code code;
2553 rtx reg, cond, insn;
2554 int flags;
2556 int regno_first = -1, regno_last = -1;
2557 unsigned long not_dead = 0;
2558 int i;
2560 /* Modifying just one hardware register of a multi-reg value or just a
2561 byte field of a register does not mean the value from before this insn
2562 is now dead. Of course, if it was dead after it's unused now. */
2564 switch (GET_CODE (reg))
2566 case PARALLEL:
2567 /* Some targets place small structures in registers for return values of
2568 functions. We have to detect this case specially here to get correct
2569 flow information. */
2570 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2571 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2572 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2573 flags);
2574 return;
2576 case ZERO_EXTRACT:
2577 case SIGN_EXTRACT:
2578 case STRICT_LOW_PART:
2579 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2581 reg = XEXP (reg, 0);
2582 while (GET_CODE (reg) == SUBREG
2583 || GET_CODE (reg) == ZERO_EXTRACT
2584 || GET_CODE (reg) == SIGN_EXTRACT
2585 || GET_CODE (reg) == STRICT_LOW_PART);
2586 if (GET_CODE (reg) == MEM)
2587 break;
2588 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2589 /* Fall through. */
2591 case REG:
2592 regno_last = regno_first = REGNO (reg);
2593 if (regno_first < FIRST_PSEUDO_REGISTER)
2594 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2595 break;
2597 case SUBREG:
2598 if (GET_CODE (SUBREG_REG (reg)) == REG)
2600 enum machine_mode outer_mode = GET_MODE (reg);
2601 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2603 /* Identify the range of registers affected. This is moderately
2604 tricky for hard registers. See alter_subreg. */
2606 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2607 if (regno_first < FIRST_PSEUDO_REGISTER)
2609 regno_first += subreg_regno_offset (regno_first, inner_mode,
2610 SUBREG_BYTE (reg),
2611 outer_mode);
2612 regno_last = (regno_first
2613 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2615 /* Since we've just adjusted the register number ranges, make
2616 sure REG matches. Otherwise some_was_live will be clear
2617 when it shouldn't have been, and we'll create incorrect
2618 REG_UNUSED notes. */
2619 reg = gen_rtx_REG (outer_mode, regno_first);
2621 else
2623 /* If the number of words in the subreg is less than the number
2624 of words in the full register, we have a well-defined partial
2625 set. Otherwise the high bits are undefined.
2627 This is only really applicable to pseudos, since we just took
2628 care of multi-word hard registers. */
2629 if (((GET_MODE_SIZE (outer_mode)
2630 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2631 < ((GET_MODE_SIZE (inner_mode)
2632 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2633 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2634 regno_first);
2636 reg = SUBREG_REG (reg);
2639 else
2640 reg = SUBREG_REG (reg);
2641 break;
2643 default:
2644 break;
2647 /* If this set is a MEM, then it kills any aliased writes.
2648 If this set is a REG, then it kills any MEMs which use the reg. */
2649 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2651 if (GET_CODE (reg) == REG)
2652 invalidate_mems_from_set (pbi, reg);
2654 /* If the memory reference had embedded side effects (autoincrement
2655 address modes. Then we may need to kill some entries on the
2656 memory set list. */
2657 if (insn && GET_CODE (reg) == MEM)
2658 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2660 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2661 /* ??? With more effort we could track conditional memory life. */
2662 && ! cond)
2663 add_to_mem_set_list (pbi, canon_rtx (reg));
2666 if (GET_CODE (reg) == REG
2667 && ! (regno_first == FRAME_POINTER_REGNUM
2668 && (! reload_completed || frame_pointer_needed))
2669 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2670 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2671 && (! reload_completed || frame_pointer_needed))
2672 #endif
2673 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2674 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2675 #endif
2678 int some_was_live = 0, some_was_dead = 0;
2680 for (i = regno_first; i <= regno_last; ++i)
2682 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2683 if (pbi->local_set)
2685 /* Order of the set operation matters here since both
2686 sets may be the same. */
2687 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2688 if (cond != NULL_RTX
2689 && ! REGNO_REG_SET_P (pbi->local_set, i))
2690 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2691 else
2692 SET_REGNO_REG_SET (pbi->local_set, i);
2694 if (code != CLOBBER)
2695 SET_REGNO_REG_SET (pbi->new_set, i);
2697 some_was_live |= needed_regno;
2698 some_was_dead |= ! needed_regno;
2701 #ifdef HAVE_conditional_execution
2702 /* Consider conditional death in deciding that the register needs
2703 a death note. */
2704 if (some_was_live && ! not_dead
2705 /* The stack pointer is never dead. Well, not strictly true,
2706 but it's very difficult to tell from here. Hopefully
2707 combine_stack_adjustments will fix up the most egregious
2708 errors. */
2709 && regno_first != STACK_POINTER_REGNUM)
2711 for (i = regno_first; i <= regno_last; ++i)
2712 if (! mark_regno_cond_dead (pbi, i, cond))
2713 not_dead |= ((unsigned long) 1) << (i - regno_first);
2715 #endif
2717 /* Additional data to record if this is the final pass. */
2718 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2719 | PROP_DEATH_NOTES | PROP_AUTOINC))
2721 rtx y;
2722 int blocknum = pbi->bb->index;
2724 y = NULL_RTX;
2725 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2727 y = pbi->reg_next_use[regno_first];
2729 /* The next use is no longer next, since a store intervenes. */
2730 for (i = regno_first; i <= regno_last; ++i)
2731 pbi->reg_next_use[i] = 0;
2734 if (flags & PROP_REG_INFO)
2736 for (i = regno_first; i <= regno_last; ++i)
2738 /* Count (weighted) references, stores, etc. This counts a
2739 register twice if it is modified, but that is correct. */
2740 REG_N_SETS (i) += 1;
2741 REG_N_REFS (i) += 1;
2742 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2744 /* The insns where a reg is live are normally counted
2745 elsewhere, but we want the count to include the insn
2746 where the reg is set, and the normal counting mechanism
2747 would not count it. */
2748 REG_LIVE_LENGTH (i) += 1;
2751 /* If this is a hard reg, record this function uses the reg. */
2752 if (regno_first < FIRST_PSEUDO_REGISTER)
2754 for (i = regno_first; i <= regno_last; i++)
2755 regs_ever_live[i] = 1;
2757 else
2759 /* Keep track of which basic blocks each reg appears in. */
2760 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2761 REG_BASIC_BLOCK (regno_first) = blocknum;
2762 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2763 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2767 if (! some_was_dead)
2769 if (flags & PROP_LOG_LINKS)
2771 /* Make a logical link from the next following insn
2772 that uses this register, back to this insn.
2773 The following insns have already been processed.
2775 We don't build a LOG_LINK for hard registers containing
2776 in ASM_OPERANDs. If these registers get replaced,
2777 we might wind up changing the semantics of the insn,
2778 even if reload can make what appear to be valid
2779 assignments later. */
2780 if (y && (BLOCK_NUM (y) == blocknum)
2781 && (regno_first >= FIRST_PSEUDO_REGISTER
2782 || asm_noperands (PATTERN (y)) < 0))
2783 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2786 else if (not_dead)
2788 else if (! some_was_live)
2790 if (flags & PROP_REG_INFO)
2791 REG_N_DEATHS (regno_first) += 1;
2793 if (flags & PROP_DEATH_NOTES)
2795 /* Note that dead stores have already been deleted
2796 when possible. If we get here, we have found a
2797 dead store that cannot be eliminated (because the
2798 same insn does something useful). Indicate this
2799 by marking the reg being set as dying here. */
2800 REG_NOTES (insn)
2801 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2804 else
2806 if (flags & PROP_DEATH_NOTES)
2808 /* This is a case where we have a multi-word hard register
2809 and some, but not all, of the words of the register are
2810 needed in subsequent insns. Write REG_UNUSED notes
2811 for those parts that were not needed. This case should
2812 be rare. */
2814 for (i = regno_first; i <= regno_last; ++i)
2815 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2816 REG_NOTES (insn)
2817 = alloc_EXPR_LIST (REG_UNUSED,
2818 regno_reg_rtx[i],
2819 REG_NOTES (insn));
2824 /* Mark the register as being dead. */
2825 if (some_was_live
2826 /* The stack pointer is never dead. Well, not strictly true,
2827 but it's very difficult to tell from here. Hopefully
2828 combine_stack_adjustments will fix up the most egregious
2829 errors. */
2830 && regno_first != STACK_POINTER_REGNUM)
2832 for (i = regno_first; i <= regno_last; ++i)
2833 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2834 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2837 else if (GET_CODE (reg) == REG)
2839 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2840 pbi->reg_next_use[regno_first] = 0;
2843 /* If this is the last pass and this is a SCRATCH, show it will be dying
2844 here and count it. */
2845 else if (GET_CODE (reg) == SCRATCH)
2847 if (flags & PROP_DEATH_NOTES)
2848 REG_NOTES (insn)
2849 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2853 #ifdef HAVE_conditional_execution
2854 /* Mark REGNO conditionally dead.
2855 Return true if the register is now unconditionally dead. */
2857 static int
2858 mark_regno_cond_dead (pbi, regno, cond)
2859 struct propagate_block_info *pbi;
2860 int regno;
2861 rtx cond;
2863 /* If this is a store to a predicate register, the value of the
2864 predicate is changing, we don't know that the predicate as seen
2865 before is the same as that seen after. Flush all dependent
2866 conditions from reg_cond_dead. This will make all such
2867 conditionally live registers unconditionally live. */
2868 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2869 flush_reg_cond_reg (pbi, regno);
2871 /* If this is an unconditional store, remove any conditional
2872 life that may have existed. */
2873 if (cond == NULL_RTX)
2874 splay_tree_remove (pbi->reg_cond_dead, regno);
2875 else
2877 splay_tree_node node;
2878 struct reg_cond_life_info *rcli;
2879 rtx ncond;
2881 /* Otherwise this is a conditional set. Record that fact.
2882 It may have been conditionally used, or there may be a
2883 subsequent set with a complimentary condition. */
2885 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2886 if (node == NULL)
2888 /* The register was unconditionally live previously.
2889 Record the current condition as the condition under
2890 which it is dead. */
2891 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2892 rcli->condition = cond;
2893 rcli->stores = cond;
2894 rcli->orig_condition = const0_rtx;
2895 splay_tree_insert (pbi->reg_cond_dead, regno,
2896 (splay_tree_value) rcli);
2898 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2900 /* Not unconditionally dead. */
2901 return 0;
2903 else
2905 /* The register was conditionally live previously.
2906 Add the new condition to the old. */
2907 rcli = (struct reg_cond_life_info *) node->value;
2908 ncond = rcli->condition;
2909 ncond = ior_reg_cond (ncond, cond, 1);
2910 if (rcli->stores == const0_rtx)
2911 rcli->stores = cond;
2912 else if (rcli->stores != const1_rtx)
2913 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2915 /* If the register is now unconditionally dead, remove the entry
2916 in the splay_tree. A register is unconditionally dead if the
2917 dead condition ncond is true. A register is also unconditionally
2918 dead if the sum of all conditional stores is an unconditional
2919 store (stores is true), and the dead condition is identically the
2920 same as the original dead condition initialized at the end of
2921 the block. This is a pointer compare, not an rtx_equal_p
2922 compare. */
2923 if (ncond == const1_rtx
2924 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2925 splay_tree_remove (pbi->reg_cond_dead, regno);
2926 else
2928 rcli->condition = ncond;
2930 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2932 /* Not unconditionally dead. */
2933 return 0;
2938 return 1;
2941 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2943 static void
2944 free_reg_cond_life_info (value)
2945 splay_tree_value value;
2947 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2948 free (rcli);
2951 /* Helper function for flush_reg_cond_reg. */
2953 static int
2954 flush_reg_cond_reg_1 (node, data)
2955 splay_tree_node node;
2956 void *data;
2958 struct reg_cond_life_info *rcli;
2959 int *xdata = (int *) data;
2960 unsigned int regno = xdata[0];
2962 /* Don't need to search if last flushed value was farther on in
2963 the in-order traversal. */
2964 if (xdata[1] >= (int) node->key)
2965 return 0;
2967 /* Splice out portions of the expression that refer to regno. */
2968 rcli = (struct reg_cond_life_info *) node->value;
2969 rcli->condition = elim_reg_cond (rcli->condition, regno);
2970 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2971 rcli->stores = elim_reg_cond (rcli->stores, regno);
2973 /* If the entire condition is now false, signal the node to be removed. */
2974 if (rcli->condition == const0_rtx)
2976 xdata[1] = node->key;
2977 return -1;
2979 else if (rcli->condition == const1_rtx)
2980 abort ();
2982 return 0;
2985 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2987 static void
2988 flush_reg_cond_reg (pbi, regno)
2989 struct propagate_block_info *pbi;
2990 int regno;
2992 int pair[2];
2994 pair[0] = regno;
2995 pair[1] = -1;
2996 while (splay_tree_foreach (pbi->reg_cond_dead,
2997 flush_reg_cond_reg_1, pair) == -1)
2998 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3000 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3003 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3004 For ior/and, the ADD flag determines whether we want to add the new
3005 condition X to the old one unconditionally. If it is zero, we will
3006 only return a new expression if X allows us to simplify part of
3007 OLD, otherwise we return NULL to the caller.
3008 If ADD is nonzero, we will return a new condition in all cases. The
3009 toplevel caller of one of these functions should always pass 1 for
3010 ADD. */
3012 static rtx
3013 ior_reg_cond (old, x, add)
3014 rtx old, x;
3015 int add;
3017 rtx op0, op1;
3019 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3021 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3022 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3023 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3024 return const1_rtx;
3025 if (GET_CODE (x) == GET_CODE (old)
3026 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3027 return old;
3028 if (! add)
3029 return NULL;
3030 return gen_rtx_IOR (0, old, x);
3033 switch (GET_CODE (old))
3035 case IOR:
3036 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3037 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3038 if (op0 != NULL || op1 != NULL)
3040 if (op0 == const0_rtx)
3041 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3042 if (op1 == const0_rtx)
3043 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3044 if (op0 == const1_rtx || op1 == const1_rtx)
3045 return const1_rtx;
3046 if (op0 == NULL)
3047 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3048 else if (rtx_equal_p (x, op0))
3049 /* (x | A) | x ~ (x | A). */
3050 return old;
3051 if (op1 == NULL)
3052 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3053 else if (rtx_equal_p (x, op1))
3054 /* (A | x) | x ~ (A | x). */
3055 return old;
3056 return gen_rtx_IOR (0, op0, op1);
3058 if (! add)
3059 return NULL;
3060 return gen_rtx_IOR (0, old, x);
3062 case AND:
3063 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3064 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3065 if (op0 != NULL || op1 != NULL)
3067 if (op0 == const1_rtx)
3068 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3069 if (op1 == const1_rtx)
3070 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3071 if (op0 == const0_rtx || op1 == const0_rtx)
3072 return const0_rtx;
3073 if (op0 == NULL)
3074 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3075 else if (rtx_equal_p (x, op0))
3076 /* (x & A) | x ~ x. */
3077 return op0;
3078 if (op1 == NULL)
3079 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3080 else if (rtx_equal_p (x, op1))
3081 /* (A & x) | x ~ x. */
3082 return op1;
3083 return gen_rtx_AND (0, op0, op1);
3085 if (! add)
3086 return NULL;
3087 return gen_rtx_IOR (0, old, x);
3089 case NOT:
3090 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3091 if (op0 != NULL)
3092 return not_reg_cond (op0);
3093 if (! add)
3094 return NULL;
3095 return gen_rtx_IOR (0, old, x);
3097 default:
3098 abort ();
3102 static rtx
3103 not_reg_cond (x)
3104 rtx x;
3106 enum rtx_code x_code;
3108 if (x == const0_rtx)
3109 return const1_rtx;
3110 else if (x == const1_rtx)
3111 return const0_rtx;
3112 x_code = GET_CODE (x);
3113 if (x_code == NOT)
3114 return XEXP (x, 0);
3115 if (GET_RTX_CLASS (x_code) == '<'
3116 && GET_CODE (XEXP (x, 0)) == REG)
3118 if (XEXP (x, 1) != const0_rtx)
3119 abort ();
3121 return gen_rtx_fmt_ee (reverse_condition (x_code),
3122 VOIDmode, XEXP (x, 0), const0_rtx);
3124 return gen_rtx_NOT (0, x);
3127 static rtx
3128 and_reg_cond (old, x, add)
3129 rtx old, x;
3130 int add;
3132 rtx op0, op1;
3134 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3136 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3137 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3138 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3139 return const0_rtx;
3140 if (GET_CODE (x) == GET_CODE (old)
3141 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3142 return old;
3143 if (! add)
3144 return NULL;
3145 return gen_rtx_AND (0, old, x);
3148 switch (GET_CODE (old))
3150 case IOR:
3151 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3152 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3153 if (op0 != NULL || op1 != NULL)
3155 if (op0 == const0_rtx)
3156 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3157 if (op1 == const0_rtx)
3158 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3159 if (op0 == const1_rtx || op1 == const1_rtx)
3160 return const1_rtx;
3161 if (op0 == NULL)
3162 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3163 else if (rtx_equal_p (x, op0))
3164 /* (x | A) & x ~ x. */
3165 return op0;
3166 if (op1 == NULL)
3167 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3168 else if (rtx_equal_p (x, op1))
3169 /* (A | x) & x ~ x. */
3170 return op1;
3171 return gen_rtx_IOR (0, op0, op1);
3173 if (! add)
3174 return NULL;
3175 return gen_rtx_AND (0, old, x);
3177 case AND:
3178 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3179 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3180 if (op0 != NULL || op1 != NULL)
3182 if (op0 == const1_rtx)
3183 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3184 if (op1 == const1_rtx)
3185 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3186 if (op0 == const0_rtx || op1 == const0_rtx)
3187 return const0_rtx;
3188 if (op0 == NULL)
3189 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3190 else if (rtx_equal_p (x, op0))
3191 /* (x & A) & x ~ (x & A). */
3192 return old;
3193 if (op1 == NULL)
3194 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3195 else if (rtx_equal_p (x, op1))
3196 /* (A & x) & x ~ (A & x). */
3197 return old;
3198 return gen_rtx_AND (0, op0, op1);
3200 if (! add)
3201 return NULL;
3202 return gen_rtx_AND (0, old, x);
3204 case NOT:
3205 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3206 if (op0 != NULL)
3207 return not_reg_cond (op0);
3208 if (! add)
3209 return NULL;
3210 return gen_rtx_AND (0, old, x);
3212 default:
3213 abort ();
3217 /* Given a condition X, remove references to reg REGNO and return the
3218 new condition. The removal will be done so that all conditions
3219 involving REGNO are considered to evaluate to false. This function
3220 is used when the value of REGNO changes. */
3222 static rtx
3223 elim_reg_cond (x, regno)
3224 rtx x;
3225 unsigned int regno;
3227 rtx op0, op1;
3229 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3231 if (REGNO (XEXP (x, 0)) == regno)
3232 return const0_rtx;
3233 return x;
3236 switch (GET_CODE (x))
3238 case AND:
3239 op0 = elim_reg_cond (XEXP (x, 0), regno);
3240 op1 = elim_reg_cond (XEXP (x, 1), regno);
3241 if (op0 == const0_rtx || op1 == const0_rtx)
3242 return const0_rtx;
3243 if (op0 == const1_rtx)
3244 return op1;
3245 if (op1 == const1_rtx)
3246 return op0;
3247 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3248 return x;
3249 return gen_rtx_AND (0, op0, op1);
3251 case IOR:
3252 op0 = elim_reg_cond (XEXP (x, 0), regno);
3253 op1 = elim_reg_cond (XEXP (x, 1), regno);
3254 if (op0 == const1_rtx || op1 == const1_rtx)
3255 return const1_rtx;
3256 if (op0 == const0_rtx)
3257 return op1;
3258 if (op1 == const0_rtx)
3259 return op0;
3260 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3261 return x;
3262 return gen_rtx_IOR (0, op0, op1);
3264 case NOT:
3265 op0 = elim_reg_cond (XEXP (x, 0), regno);
3266 if (op0 == const0_rtx)
3267 return const1_rtx;
3268 if (op0 == const1_rtx)
3269 return const0_rtx;
3270 if (op0 != XEXP (x, 0))
3271 return not_reg_cond (op0);
3272 return x;
3274 default:
3275 abort ();
3278 #endif /* HAVE_conditional_execution */
3280 #ifdef AUTO_INC_DEC
3282 /* Try to substitute the auto-inc expression INC as the address inside
3283 MEM which occurs in INSN. Currently, the address of MEM is an expression
3284 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3285 that has a single set whose source is a PLUS of INCR_REG and something
3286 else. */
3288 static void
3289 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3290 struct propagate_block_info *pbi;
3291 rtx inc, insn, mem, incr, incr_reg;
3293 int regno = REGNO (incr_reg);
3294 rtx set = single_set (incr);
3295 rtx q = SET_DEST (set);
3296 rtx y = SET_SRC (set);
3297 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3299 /* Make sure this reg appears only once in this insn. */
3300 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3301 return;
3303 if (dead_or_set_p (incr, incr_reg)
3304 /* Mustn't autoinc an eliminable register. */
3305 && (regno >= FIRST_PSEUDO_REGISTER
3306 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3308 /* This is the simple case. Try to make the auto-inc. If
3309 we can't, we are done. Otherwise, we will do any
3310 needed updates below. */
3311 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3312 return;
3314 else if (GET_CODE (q) == REG
3315 /* PREV_INSN used here to check the semi-open interval
3316 [insn,incr). */
3317 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3318 /* We must also check for sets of q as q may be
3319 a call clobbered hard register and there may
3320 be a call between PREV_INSN (insn) and incr. */
3321 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3323 /* We have *p followed sometime later by q = p+size.
3324 Both p and q must be live afterward,
3325 and q is not used between INSN and its assignment.
3326 Change it to q = p, ...*q..., q = q+size.
3327 Then fall into the usual case. */
3328 rtx insns, temp;
3330 start_sequence ();
3331 emit_move_insn (q, incr_reg);
3332 insns = get_insns ();
3333 end_sequence ();
3335 /* If we can't make the auto-inc, or can't make the
3336 replacement into Y, exit. There's no point in making
3337 the change below if we can't do the auto-inc and doing
3338 so is not correct in the pre-inc case. */
3340 XEXP (inc, 0) = q;
3341 validate_change (insn, &XEXP (mem, 0), inc, 1);
3342 validate_change (incr, &XEXP (y, opnum), q, 1);
3343 if (! apply_change_group ())
3344 return;
3346 /* We now know we'll be doing this change, so emit the
3347 new insn(s) and do the updates. */
3348 emit_insn_before (insns, insn);
3350 if (pbi->bb->head == insn)
3351 pbi->bb->head = insns;
3353 /* INCR will become a NOTE and INSN won't contain a
3354 use of INCR_REG. If a use of INCR_REG was just placed in
3355 the insn before INSN, make that the next use.
3356 Otherwise, invalidate it. */
3357 if (GET_CODE (PREV_INSN (insn)) == INSN
3358 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3359 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3360 pbi->reg_next_use[regno] = PREV_INSN (insn);
3361 else
3362 pbi->reg_next_use[regno] = 0;
3364 incr_reg = q;
3365 regno = REGNO (q);
3367 /* REGNO is now used in INCR which is below INSN, but
3368 it previously wasn't live here. If we don't mark
3369 it as live, we'll put a REG_DEAD note for it
3370 on this insn, which is incorrect. */
3371 SET_REGNO_REG_SET (pbi->reg_live, regno);
3373 /* If there are any calls between INSN and INCR, show
3374 that REGNO now crosses them. */
3375 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3376 if (GET_CODE (temp) == CALL_INSN)
3377 REG_N_CALLS_CROSSED (regno)++;
3379 /* Invalidate alias info for Q since we just changed its value. */
3380 clear_reg_alias_info (q);
3382 else
3383 return;
3385 /* If we haven't returned, it means we were able to make the
3386 auto-inc, so update the status. First, record that this insn
3387 has an implicit side effect. */
3389 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3391 /* Modify the old increment-insn to simply copy
3392 the already-incremented value of our register. */
3393 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3394 abort ();
3396 /* If that makes it a no-op (copying the register into itself) delete
3397 it so it won't appear to be a "use" and a "set" of this
3398 register. */
3399 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3401 /* If the original source was dead, it's dead now. */
3402 rtx note;
3404 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3406 remove_note (incr, note);
3407 if (XEXP (note, 0) != incr_reg)
3408 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3411 PUT_CODE (incr, NOTE);
3412 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3413 NOTE_SOURCE_FILE (incr) = 0;
3416 if (regno >= FIRST_PSEUDO_REGISTER)
3418 /* Count an extra reference to the reg. When a reg is
3419 incremented, spilling it is worse, so we want to make
3420 that less likely. */
3421 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3423 /* Count the increment as a setting of the register,
3424 even though it isn't a SET in rtl. */
3425 REG_N_SETS (regno)++;
3429 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3430 reference. */
3432 static void
3433 find_auto_inc (pbi, x, insn)
3434 struct propagate_block_info *pbi;
3435 rtx x;
3436 rtx insn;
3438 rtx addr = XEXP (x, 0);
3439 HOST_WIDE_INT offset = 0;
3440 rtx set, y, incr, inc_val;
3441 int regno;
3442 int size = GET_MODE_SIZE (GET_MODE (x));
3444 if (GET_CODE (insn) == JUMP_INSN)
3445 return;
3447 /* Here we detect use of an index register which might be good for
3448 postincrement, postdecrement, preincrement, or predecrement. */
3450 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3451 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3453 if (GET_CODE (addr) != REG)
3454 return;
3456 regno = REGNO (addr);
3458 /* Is the next use an increment that might make auto-increment? */
3459 incr = pbi->reg_next_use[regno];
3460 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3461 return;
3462 set = single_set (incr);
3463 if (set == 0 || GET_CODE (set) != SET)
3464 return;
3465 y = SET_SRC (set);
3467 if (GET_CODE (y) != PLUS)
3468 return;
3470 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3471 inc_val = XEXP (y, 1);
3472 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3473 inc_val = XEXP (y, 0);
3474 else
3475 return;
3477 if (GET_CODE (inc_val) == CONST_INT)
3479 if (HAVE_POST_INCREMENT
3480 && (INTVAL (inc_val) == size && offset == 0))
3481 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3482 incr, addr);
3483 else if (HAVE_POST_DECREMENT
3484 && (INTVAL (inc_val) == -size && offset == 0))
3485 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3486 incr, addr);
3487 else if (HAVE_PRE_INCREMENT
3488 && (INTVAL (inc_val) == size && offset == size))
3489 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3490 incr, addr);
3491 else if (HAVE_PRE_DECREMENT
3492 && (INTVAL (inc_val) == -size && offset == -size))
3493 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3494 incr, addr);
3495 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3496 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3497 gen_rtx_PLUS (Pmode,
3498 addr,
3499 inc_val)),
3500 insn, x, incr, addr);
3502 else if (GET_CODE (inc_val) == REG
3503 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3504 NEXT_INSN (incr)))
3507 if (HAVE_POST_MODIFY_REG && offset == 0)
3508 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3509 gen_rtx_PLUS (Pmode,
3510 addr,
3511 inc_val)),
3512 insn, x, incr, addr);
3516 #endif /* AUTO_INC_DEC */
3518 static void
3519 mark_used_reg (pbi, reg, cond, insn)
3520 struct propagate_block_info *pbi;
3521 rtx reg;
3522 rtx cond ATTRIBUTE_UNUSED;
3523 rtx insn;
3525 unsigned int regno_first, regno_last, i;
3526 int some_was_live, some_was_dead, some_not_set;
3528 regno_last = regno_first = REGNO (reg);
3529 if (regno_first < FIRST_PSEUDO_REGISTER)
3530 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3532 /* Find out if any of this register is live after this instruction. */
3533 some_was_live = some_was_dead = 0;
3534 for (i = regno_first; i <= regno_last; ++i)
3536 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3537 some_was_live |= needed_regno;
3538 some_was_dead |= ! needed_regno;
3541 /* Find out if any of the register was set this insn. */
3542 some_not_set = 0;
3543 for (i = regno_first; i <= regno_last; ++i)
3544 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3546 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3548 /* Record where each reg is used, so when the reg is set we know
3549 the next insn that uses it. */
3550 pbi->reg_next_use[regno_first] = insn;
3553 if (pbi->flags & PROP_REG_INFO)
3555 if (regno_first < FIRST_PSEUDO_REGISTER)
3557 /* If this is a register we are going to try to eliminate,
3558 don't mark it live here. If we are successful in
3559 eliminating it, it need not be live unless it is used for
3560 pseudos, in which case it will have been set live when it
3561 was allocated to the pseudos. If the register will not
3562 be eliminated, reload will set it live at that point.
3564 Otherwise, record that this function uses this register. */
3565 /* ??? The PPC backend tries to "eliminate" on the pic
3566 register to itself. This should be fixed. In the mean
3567 time, hack around it. */
3569 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3570 && (regno_first == FRAME_POINTER_REGNUM
3571 || regno_first == ARG_POINTER_REGNUM)))
3572 for (i = regno_first; i <= regno_last; ++i)
3573 regs_ever_live[i] = 1;
3575 else
3577 /* Keep track of which basic block each reg appears in. */
3579 int blocknum = pbi->bb->index;
3580 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3581 REG_BASIC_BLOCK (regno_first) = blocknum;
3582 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3583 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3585 /* Count (weighted) number of uses of each reg. */
3586 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3587 REG_N_REFS (regno_first)++;
3591 /* Record and count the insns in which a reg dies. If it is used in
3592 this insn and was dead below the insn then it dies in this insn.
3593 If it was set in this insn, we do not make a REG_DEAD note;
3594 likewise if we already made such a note. */
3595 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3596 && some_was_dead
3597 && some_not_set)
3599 /* Check for the case where the register dying partially
3600 overlaps the register set by this insn. */
3601 if (regno_first != regno_last)
3602 for (i = regno_first; i <= regno_last; ++i)
3603 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3605 /* If none of the words in X is needed, make a REG_DEAD note.
3606 Otherwise, we must make partial REG_DEAD notes. */
3607 if (! some_was_live)
3609 if ((pbi->flags & PROP_DEATH_NOTES)
3610 && ! find_regno_note (insn, REG_DEAD, regno_first))
3611 REG_NOTES (insn)
3612 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3614 if (pbi->flags & PROP_REG_INFO)
3615 REG_N_DEATHS (regno_first)++;
3617 else
3619 /* Don't make a REG_DEAD note for a part of a register
3620 that is set in the insn. */
3621 for (i = regno_first; i <= regno_last; ++i)
3622 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3623 && ! dead_or_set_regno_p (insn, i))
3624 REG_NOTES (insn)
3625 = alloc_EXPR_LIST (REG_DEAD,
3626 regno_reg_rtx[i],
3627 REG_NOTES (insn));
3631 /* Mark the register as being live. */
3632 for (i = regno_first; i <= regno_last; ++i)
3634 #ifdef HAVE_conditional_execution
3635 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3636 #endif
3638 SET_REGNO_REG_SET (pbi->reg_live, i);
3640 #ifdef HAVE_conditional_execution
3641 /* If this is a conditional use, record that fact. If it is later
3642 conditionally set, we'll know to kill the register. */
3643 if (cond != NULL_RTX)
3645 splay_tree_node node;
3646 struct reg_cond_life_info *rcli;
3647 rtx ncond;
3649 if (this_was_live)
3651 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3652 if (node == NULL)
3654 /* The register was unconditionally live previously.
3655 No need to do anything. */
3657 else
3659 /* The register was conditionally live previously.
3660 Subtract the new life cond from the old death cond. */
3661 rcli = (struct reg_cond_life_info *) node->value;
3662 ncond = rcli->condition;
3663 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3665 /* If the register is now unconditionally live,
3666 remove the entry in the splay_tree. */
3667 if (ncond == const0_rtx)
3668 splay_tree_remove (pbi->reg_cond_dead, i);
3669 else
3671 rcli->condition = ncond;
3672 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3673 REGNO (XEXP (cond, 0)));
3677 else
3679 /* The register was not previously live at all. Record
3680 the condition under which it is still dead. */
3681 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3682 rcli->condition = not_reg_cond (cond);
3683 rcli->stores = const0_rtx;
3684 rcli->orig_condition = const0_rtx;
3685 splay_tree_insert (pbi->reg_cond_dead, i,
3686 (splay_tree_value) rcli);
3688 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3691 else if (this_was_live)
3693 /* The register may have been conditionally live previously, but
3694 is now unconditionally live. Remove it from the conditionally
3695 dead list, so that a conditional set won't cause us to think
3696 it dead. */
3697 splay_tree_remove (pbi->reg_cond_dead, i);
3699 #endif
3703 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3704 This is done assuming the registers needed from X are those that
3705 have 1-bits in PBI->REG_LIVE.
3707 INSN is the containing instruction. If INSN is dead, this function
3708 is not called. */
3710 static void
3711 mark_used_regs (pbi, x, cond, insn)
3712 struct propagate_block_info *pbi;
3713 rtx x, cond, insn;
3715 RTX_CODE code;
3716 int regno;
3717 int flags = pbi->flags;
3719 retry:
3720 if (!x)
3721 return;
3722 code = GET_CODE (x);
3723 switch (code)
3725 case LABEL_REF:
3726 case SYMBOL_REF:
3727 case CONST_INT:
3728 case CONST:
3729 case CONST_DOUBLE:
3730 case CONST_VECTOR:
3731 case PC:
3732 case ADDR_VEC:
3733 case ADDR_DIFF_VEC:
3734 return;
3736 #ifdef HAVE_cc0
3737 case CC0:
3738 pbi->cc0_live = 1;
3739 return;
3740 #endif
3742 case CLOBBER:
3743 /* If we are clobbering a MEM, mark any registers inside the address
3744 as being used. */
3745 if (GET_CODE (XEXP (x, 0)) == MEM)
3746 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3747 return;
3749 case MEM:
3750 /* Don't bother watching stores to mems if this is not the
3751 final pass. We'll not be deleting dead stores this round. */
3752 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3754 /* Invalidate the data for the last MEM stored, but only if MEM is
3755 something that can be stored into. */
3756 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3757 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3758 /* Needn't clear the memory set list. */
3760 else
3762 rtx temp = pbi->mem_set_list;
3763 rtx prev = NULL_RTX;
3764 rtx next;
3766 while (temp)
3768 next = XEXP (temp, 1);
3769 if (anti_dependence (XEXP (temp, 0), x))
3771 /* Splice temp out of the list. */
3772 if (prev)
3773 XEXP (prev, 1) = next;
3774 else
3775 pbi->mem_set_list = next;
3776 free_EXPR_LIST_node (temp);
3777 pbi->mem_set_list_len--;
3779 else
3780 prev = temp;
3781 temp = next;
3785 /* If the memory reference had embedded side effects (autoincrement
3786 address modes. Then we may need to kill some entries on the
3787 memory set list. */
3788 if (insn)
3789 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3792 #ifdef AUTO_INC_DEC
3793 if (flags & PROP_AUTOINC)
3794 find_auto_inc (pbi, x, insn);
3795 #endif
3796 break;
3798 case SUBREG:
3799 #ifdef CLASS_CANNOT_CHANGE_MODE
3800 if (GET_CODE (SUBREG_REG (x)) == REG
3801 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3802 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3803 GET_MODE (SUBREG_REG (x))))
3804 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3805 #endif
3807 /* While we're here, optimize this case. */
3808 x = SUBREG_REG (x);
3809 if (GET_CODE (x) != REG)
3810 goto retry;
3811 /* Fall through. */
3813 case REG:
3814 /* See a register other than being set => mark it as needed. */
3815 mark_used_reg (pbi, x, cond, insn);
3816 return;
3818 case SET:
3820 rtx testreg = SET_DEST (x);
3821 int mark_dest = 0;
3823 /* If storing into MEM, don't show it as being used. But do
3824 show the address as being used. */
3825 if (GET_CODE (testreg) == MEM)
3827 #ifdef AUTO_INC_DEC
3828 if (flags & PROP_AUTOINC)
3829 find_auto_inc (pbi, testreg, insn);
3830 #endif
3831 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3832 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3833 return;
3836 /* Storing in STRICT_LOW_PART is like storing in a reg
3837 in that this SET might be dead, so ignore it in TESTREG.
3838 but in some other ways it is like using the reg.
3840 Storing in a SUBREG or a bit field is like storing the entire
3841 register in that if the register's value is not used
3842 then this SET is not needed. */
3843 while (GET_CODE (testreg) == STRICT_LOW_PART
3844 || GET_CODE (testreg) == ZERO_EXTRACT
3845 || GET_CODE (testreg) == SIGN_EXTRACT
3846 || GET_CODE (testreg) == SUBREG)
3848 #ifdef CLASS_CANNOT_CHANGE_MODE
3849 if (GET_CODE (testreg) == SUBREG
3850 && GET_CODE (SUBREG_REG (testreg)) == REG
3851 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3852 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3853 GET_MODE (testreg)))
3854 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3855 #endif
3857 /* Modifying a single register in an alternate mode
3858 does not use any of the old value. But these other
3859 ways of storing in a register do use the old value. */
3860 if (GET_CODE (testreg) == SUBREG
3861 && !((REG_BYTES (SUBREG_REG (testreg))
3862 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3863 > (REG_BYTES (testreg)
3864 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3866 else
3867 mark_dest = 1;
3869 testreg = XEXP (testreg, 0);
3872 /* If this is a store into a register or group of registers,
3873 recursively scan the value being stored. */
3875 if ((GET_CODE (testreg) == PARALLEL
3876 && GET_MODE (testreg) == BLKmode)
3877 || (GET_CODE (testreg) == REG
3878 && (regno = REGNO (testreg),
3879 ! (regno == FRAME_POINTER_REGNUM
3880 && (! reload_completed || frame_pointer_needed)))
3881 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3882 && ! (regno == HARD_FRAME_POINTER_REGNUM
3883 && (! reload_completed || frame_pointer_needed))
3884 #endif
3885 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3886 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3887 #endif
3890 if (mark_dest)
3891 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3892 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3893 return;
3896 break;
3898 case ASM_OPERANDS:
3899 case UNSPEC_VOLATILE:
3900 case TRAP_IF:
3901 case ASM_INPUT:
3903 /* Traditional and volatile asm instructions must be considered to use
3904 and clobber all hard registers, all pseudo-registers and all of
3905 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3907 Consider for instance a volatile asm that changes the fpu rounding
3908 mode. An insn should not be moved across this even if it only uses
3909 pseudo-regs because it might give an incorrectly rounded result.
3911 ?!? Unfortunately, marking all hard registers as live causes massive
3912 problems for the register allocator and marking all pseudos as live
3913 creates mountains of uninitialized variable warnings.
3915 So for now, just clear the memory set list and mark any regs
3916 we can find in ASM_OPERANDS as used. */
3917 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3919 free_EXPR_LIST_list (&pbi->mem_set_list);
3920 pbi->mem_set_list_len = 0;
3923 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3924 We can not just fall through here since then we would be confused
3925 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3926 traditional asms unlike their normal usage. */
3927 if (code == ASM_OPERANDS)
3929 int j;
3931 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3932 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3934 break;
3937 case COND_EXEC:
3938 if (cond != NULL_RTX)
3939 abort ();
3941 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3943 cond = COND_EXEC_TEST (x);
3944 x = COND_EXEC_CODE (x);
3945 goto retry;
3947 case PHI:
3948 /* We _do_not_ want to scan operands of phi nodes. Operands of
3949 a phi function are evaluated only when control reaches this
3950 block along a particular edge. Therefore, regs that appear
3951 as arguments to phi should not be added to the global live at
3952 start. */
3953 return;
3955 default:
3956 break;
3959 /* Recursively scan the operands of this expression. */
3962 const char * const fmt = GET_RTX_FORMAT (code);
3963 int i;
3965 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3967 if (fmt[i] == 'e')
3969 /* Tail recursive case: save a function call level. */
3970 if (i == 0)
3972 x = XEXP (x, 0);
3973 goto retry;
3975 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3977 else if (fmt[i] == 'E')
3979 int j;
3980 for (j = 0; j < XVECLEN (x, i); j++)
3981 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3987 #ifdef AUTO_INC_DEC
3989 static int
3990 try_pre_increment_1 (pbi, insn)
3991 struct propagate_block_info *pbi;
3992 rtx insn;
3994 /* Find the next use of this reg. If in same basic block,
3995 make it do pre-increment or pre-decrement if appropriate. */
3996 rtx x = single_set (insn);
3997 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3998 * INTVAL (XEXP (SET_SRC (x), 1)));
3999 int regno = REGNO (SET_DEST (x));
4000 rtx y = pbi->reg_next_use[regno];
4001 if (y != 0
4002 && SET_DEST (x) != stack_pointer_rtx
4003 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4004 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4005 mode would be better. */
4006 && ! dead_or_set_p (y, SET_DEST (x))
4007 && try_pre_increment (y, SET_DEST (x), amount))
4009 /* We have found a suitable auto-increment and already changed
4010 insn Y to do it. So flush this increment instruction. */
4011 propagate_block_delete_insn (insn);
4013 /* Count a reference to this reg for the increment insn we are
4014 deleting. When a reg is incremented, spilling it is worse,
4015 so we want to make that less likely. */
4016 if (regno >= FIRST_PSEUDO_REGISTER)
4018 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4019 REG_N_SETS (regno)++;
4022 /* Flush any remembered memories depending on the value of
4023 the incremented register. */
4024 invalidate_mems_from_set (pbi, SET_DEST (x));
4026 return 1;
4028 return 0;
4031 /* Try to change INSN so that it does pre-increment or pre-decrement
4032 addressing on register REG in order to add AMOUNT to REG.
4033 AMOUNT is negative for pre-decrement.
4034 Returns 1 if the change could be made.
4035 This checks all about the validity of the result of modifying INSN. */
4037 static int
4038 try_pre_increment (insn, reg, amount)
4039 rtx insn, reg;
4040 HOST_WIDE_INT amount;
4042 rtx use;
4044 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4045 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4046 int pre_ok = 0;
4047 /* Nonzero if we can try to make a post-increment or post-decrement.
4048 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4049 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4050 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4051 int post_ok = 0;
4053 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4054 int do_post = 0;
4056 /* From the sign of increment, see which possibilities are conceivable
4057 on this target machine. */
4058 if (HAVE_PRE_INCREMENT && amount > 0)
4059 pre_ok = 1;
4060 if (HAVE_POST_INCREMENT && amount > 0)
4061 post_ok = 1;
4063 if (HAVE_PRE_DECREMENT && amount < 0)
4064 pre_ok = 1;
4065 if (HAVE_POST_DECREMENT && amount < 0)
4066 post_ok = 1;
4068 if (! (pre_ok || post_ok))
4069 return 0;
4071 /* It is not safe to add a side effect to a jump insn
4072 because if the incremented register is spilled and must be reloaded
4073 there would be no way to store the incremented value back in memory. */
4075 if (GET_CODE (insn) == JUMP_INSN)
4076 return 0;
4078 use = 0;
4079 if (pre_ok)
4080 use = find_use_as_address (PATTERN (insn), reg, 0);
4081 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4083 use = find_use_as_address (PATTERN (insn), reg, -amount);
4084 do_post = 1;
4087 if (use == 0 || use == (rtx) (size_t) 1)
4088 return 0;
4090 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4091 return 0;
4093 /* See if this combination of instruction and addressing mode exists. */
4094 if (! validate_change (insn, &XEXP (use, 0),
4095 gen_rtx_fmt_e (amount > 0
4096 ? (do_post ? POST_INC : PRE_INC)
4097 : (do_post ? POST_DEC : PRE_DEC),
4098 Pmode, reg), 0))
4099 return 0;
4101 /* Record that this insn now has an implicit side effect on X. */
4102 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4103 return 1;
4106 #endif /* AUTO_INC_DEC */
4108 /* Find the place in the rtx X where REG is used as a memory address.
4109 Return the MEM rtx that so uses it.
4110 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4111 (plus REG (const_int PLUSCONST)).
4113 If such an address does not appear, return 0.
4114 If REG appears more than once, or is used other than in such an address,
4115 return (rtx) 1. */
4118 find_use_as_address (x, reg, plusconst)
4119 rtx x;
4120 rtx reg;
4121 HOST_WIDE_INT plusconst;
4123 enum rtx_code code = GET_CODE (x);
4124 const char * const fmt = GET_RTX_FORMAT (code);
4125 int i;
4126 rtx value = 0;
4127 rtx tem;
4129 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4130 return x;
4132 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4133 && XEXP (XEXP (x, 0), 0) == reg
4134 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4135 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4136 return x;
4138 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4140 /* If REG occurs inside a MEM used in a bit-field reference,
4141 that is unacceptable. */
4142 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4143 return (rtx) (size_t) 1;
4146 if (x == reg)
4147 return (rtx) (size_t) 1;
4149 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4151 if (fmt[i] == 'e')
4153 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4154 if (value == 0)
4155 value = tem;
4156 else if (tem != 0)
4157 return (rtx) (size_t) 1;
4159 else if (fmt[i] == 'E')
4161 int j;
4162 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4164 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4165 if (value == 0)
4166 value = tem;
4167 else if (tem != 0)
4168 return (rtx) (size_t) 1;
4173 return value;
4176 /* Write information about registers and basic blocks into FILE.
4177 This is part of making a debugging dump. */
4179 void
4180 dump_regset (r, outf)
4181 regset r;
4182 FILE *outf;
4184 int i;
4185 if (r == NULL)
4187 fputs (" (nil)", outf);
4188 return;
4191 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4193 fprintf (outf, " %d", i);
4194 if (i < FIRST_PSEUDO_REGISTER)
4195 fprintf (outf, " [%s]",
4196 reg_names[i]);
4200 /* Print a human-reaable representation of R on the standard error
4201 stream. This function is designed to be used from within the
4202 debugger. */
4204 void
4205 debug_regset (r)
4206 regset r;
4208 dump_regset (r, stderr);
4209 putc ('\n', stderr);
4212 /* Recompute register set/reference counts immediately prior to register
4213 allocation.
4215 This avoids problems with set/reference counts changing to/from values
4216 which have special meanings to the register allocators.
4218 Additionally, the reference counts are the primary component used by the
4219 register allocators to prioritize pseudos for allocation to hard regs.
4220 More accurate reference counts generally lead to better register allocation.
4222 F is the first insn to be scanned.
4224 LOOP_STEP denotes how much loop_depth should be incremented per
4225 loop nesting level in order to increase the ref count more for
4226 references in a loop.
4228 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4229 possibly other information which is used by the register allocators. */
4231 void
4232 recompute_reg_usage (f, loop_step)
4233 rtx f ATTRIBUTE_UNUSED;
4234 int loop_step ATTRIBUTE_UNUSED;
4236 allocate_reg_life_data ();
4237 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4240 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4241 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4242 of the number of registers that died. */
4245 count_or_remove_death_notes (blocks, kill)
4246 sbitmap blocks;
4247 int kill;
4249 int count = 0;
4250 basic_block bb;
4252 FOR_EACH_BB_REVERSE (bb)
4254 rtx insn;
4256 if (blocks && ! TEST_BIT (blocks, bb->index))
4257 continue;
4259 for (insn = bb->head;; insn = NEXT_INSN (insn))
4261 if (INSN_P (insn))
4263 rtx *pprev = &REG_NOTES (insn);
4264 rtx link = *pprev;
4266 while (link)
4268 switch (REG_NOTE_KIND (link))
4270 case REG_DEAD:
4271 if (GET_CODE (XEXP (link, 0)) == REG)
4273 rtx reg = XEXP (link, 0);
4274 int n;
4276 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4277 n = 1;
4278 else
4279 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4280 count += n;
4282 /* Fall through. */
4284 case REG_UNUSED:
4285 if (kill)
4287 rtx next = XEXP (link, 1);
4288 free_EXPR_LIST_node (link);
4289 *pprev = link = next;
4290 break;
4292 /* Fall through. */
4294 default:
4295 pprev = &XEXP (link, 1);
4296 link = *pprev;
4297 break;
4302 if (insn == bb->end)
4303 break;
4307 return count;
4309 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4310 if blocks is NULL. */
4312 static void
4313 clear_log_links (blocks)
4314 sbitmap blocks;
4316 rtx insn;
4317 int i;
4319 if (!blocks)
4321 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4322 if (INSN_P (insn))
4323 free_INSN_LIST_list (&LOG_LINKS (insn));
4325 else
4326 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4328 basic_block bb = BASIC_BLOCK (i);
4330 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4331 insn = NEXT_INSN (insn))
4332 if (INSN_P (insn))
4333 free_INSN_LIST_list (&LOG_LINKS (insn));
4337 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4338 correspond to the hard registers, if any, set in that map. This
4339 could be done far more efficiently by having all sorts of special-cases
4340 with moving single words, but probably isn't worth the trouble. */
4342 void
4343 reg_set_to_hard_reg_set (to, from)
4344 HARD_REG_SET *to;
4345 bitmap from;
4347 int i;
4349 EXECUTE_IF_SET_IN_BITMAP
4350 (from, 0, i,
4352 if (i >= FIRST_PSEUDO_REGISTER)
4353 return;
4354 SET_HARD_REG_BIT (*to, i);