* tree-ssa.c (target_for_debug_bind, verify_phi_args,
[official-gcc.git] / gcc / stor-layout.c
blob63a1454b6297c2bd4cdce50b4e353820ddcfa572
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "stringpool.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cgraph.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "varasm.h"
37 #include "print-tree.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-dump.h"
41 #include "gimplify.h"
42 #include "debug.h"
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab[(int) stk_type_kind_last];
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 static tree self_referential_size (tree);
53 static void finalize_record_size (record_layout_info);
54 static void finalize_type_size (tree);
55 static void place_union_field (record_layout_info, tree);
56 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
57 HOST_WIDE_INT, tree);
58 extern void debug_rli (record_layout_info);
60 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
61 to serve as the actual size-expression for a type or decl. */
63 tree
64 variable_size (tree size)
66 /* Obviously. */
67 if (TREE_CONSTANT (size))
68 return size;
70 /* If the size is self-referential, we can't make a SAVE_EXPR (see
71 save_expr for the rationale). But we can do something else. */
72 if (CONTAINS_PLACEHOLDER_P (size))
73 return self_referential_size (size);
75 /* If we are in the global binding level, we can't make a SAVE_EXPR
76 since it may end up being shared across functions, so it is up
77 to the front-end to deal with this case. */
78 if (lang_hooks.decls.global_bindings_p ())
79 return size;
81 return save_expr (size);
84 /* An array of functions used for self-referential size computation. */
85 static GTY(()) vec<tree, va_gc> *size_functions;
87 /* Return true if T is a self-referential component reference. */
89 static bool
90 self_referential_component_ref_p (tree t)
92 if (TREE_CODE (t) != COMPONENT_REF)
93 return false;
95 while (REFERENCE_CLASS_P (t))
96 t = TREE_OPERAND (t, 0);
98 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
101 /* Similar to copy_tree_r but do not copy component references involving
102 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
103 and substituted in substitute_in_expr. */
105 static tree
106 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
108 enum tree_code code = TREE_CODE (*tp);
110 /* Stop at types, decls, constants like copy_tree_r. */
111 if (TREE_CODE_CLASS (code) == tcc_type
112 || TREE_CODE_CLASS (code) == tcc_declaration
113 || TREE_CODE_CLASS (code) == tcc_constant)
115 *walk_subtrees = 0;
116 return NULL_TREE;
119 /* This is the pattern built in ada/make_aligning_type. */
120 else if (code == ADDR_EXPR
121 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
123 *walk_subtrees = 0;
124 return NULL_TREE;
127 /* Default case: the component reference. */
128 else if (self_referential_component_ref_p (*tp))
130 *walk_subtrees = 0;
131 return NULL_TREE;
134 /* We're not supposed to have them in self-referential size trees
135 because we wouldn't properly control when they are evaluated.
136 However, not creating superfluous SAVE_EXPRs requires accurate
137 tracking of readonly-ness all the way down to here, which we
138 cannot always guarantee in practice. So punt in this case. */
139 else if (code == SAVE_EXPR)
140 return error_mark_node;
142 else if (code == STATEMENT_LIST)
143 gcc_unreachable ();
145 return copy_tree_r (tp, walk_subtrees, data);
148 /* Given a SIZE expression that is self-referential, return an equivalent
149 expression to serve as the actual size expression for a type. */
151 static tree
152 self_referential_size (tree size)
154 static unsigned HOST_WIDE_INT fnno = 0;
155 vec<tree> self_refs = vNULL;
156 tree param_type_list = NULL, param_decl_list = NULL;
157 tree t, ref, return_type, fntype, fnname, fndecl;
158 unsigned int i;
159 char buf[128];
160 vec<tree, va_gc> *args = NULL;
162 /* Do not factor out simple operations. */
163 t = skip_simple_constant_arithmetic (size);
164 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
165 return size;
167 /* Collect the list of self-references in the expression. */
168 find_placeholder_in_expr (size, &self_refs);
169 gcc_assert (self_refs.length () > 0);
171 /* Obtain a private copy of the expression. */
172 t = size;
173 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
174 return size;
175 size = t;
177 /* Build the parameter and argument lists in parallel; also
178 substitute the former for the latter in the expression. */
179 vec_alloc (args, self_refs.length ());
180 FOR_EACH_VEC_ELT (self_refs, i, ref)
182 tree subst, param_name, param_type, param_decl;
184 if (DECL_P (ref))
186 /* We shouldn't have true variables here. */
187 gcc_assert (TREE_READONLY (ref));
188 subst = ref;
190 /* This is the pattern built in ada/make_aligning_type. */
191 else if (TREE_CODE (ref) == ADDR_EXPR)
192 subst = ref;
193 /* Default case: the component reference. */
194 else
195 subst = TREE_OPERAND (ref, 1);
197 sprintf (buf, "p%d", i);
198 param_name = get_identifier (buf);
199 param_type = TREE_TYPE (ref);
200 param_decl
201 = build_decl (input_location, PARM_DECL, param_name, param_type);
202 DECL_ARG_TYPE (param_decl) = param_type;
203 DECL_ARTIFICIAL (param_decl) = 1;
204 TREE_READONLY (param_decl) = 1;
206 size = substitute_in_expr (size, subst, param_decl);
208 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
209 param_decl_list = chainon (param_decl, param_decl_list);
210 args->quick_push (ref);
213 self_refs.release ();
215 /* Append 'void' to indicate that the number of parameters is fixed. */
216 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
218 /* The 3 lists have been created in reverse order. */
219 param_type_list = nreverse (param_type_list);
220 param_decl_list = nreverse (param_decl_list);
222 /* Build the function type. */
223 return_type = TREE_TYPE (size);
224 fntype = build_function_type (return_type, param_type_list);
226 /* Build the function declaration. */
227 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
228 fnname = get_file_function_name (buf);
229 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
230 for (t = param_decl_list; t; t = DECL_CHAIN (t))
231 DECL_CONTEXT (t) = fndecl;
232 DECL_ARGUMENTS (fndecl) = param_decl_list;
233 DECL_RESULT (fndecl)
234 = build_decl (input_location, RESULT_DECL, 0, return_type);
235 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
237 /* The function has been created by the compiler and we don't
238 want to emit debug info for it. */
239 DECL_ARTIFICIAL (fndecl) = 1;
240 DECL_IGNORED_P (fndecl) = 1;
242 /* It is supposed to be "const" and never throw. */
243 TREE_READONLY (fndecl) = 1;
244 TREE_NOTHROW (fndecl) = 1;
246 /* We want it to be inlined when this is deemed profitable, as
247 well as discarded if every call has been integrated. */
248 DECL_DECLARED_INLINE_P (fndecl) = 1;
250 /* It is made up of a unique return statement. */
251 DECL_INITIAL (fndecl) = make_node (BLOCK);
252 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
253 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
254 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
255 TREE_STATIC (fndecl) = 1;
257 /* Put it onto the list of size functions. */
258 vec_safe_push (size_functions, fndecl);
260 /* Replace the original expression with a call to the size function. */
261 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
264 /* Take, queue and compile all the size functions. It is essential that
265 the size functions be gimplified at the very end of the compilation
266 in order to guarantee transparent handling of self-referential sizes.
267 Otherwise the GENERIC inliner would not be able to inline them back
268 at each of their call sites, thus creating artificial non-constant
269 size expressions which would trigger nasty problems later on. */
271 void
272 finalize_size_functions (void)
274 unsigned int i;
275 tree fndecl;
277 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
279 allocate_struct_function (fndecl, false);
280 set_cfun (NULL);
281 dump_function (TDI_original, fndecl);
283 /* As these functions are used to describe the layout of variable-length
284 structures, debug info generation needs their implementation. */
285 debug_hooks->size_function (fndecl);
286 gimplify_function_tree (fndecl);
287 cgraph_node::finalize_function (fndecl, false);
290 vec_free (size_functions);
293 /* Return the machine mode to use for a nonscalar of SIZE bits. The
294 mode must be in class MCLASS, and have exactly that many value bits;
295 it may have padding as well. If LIMIT is nonzero, modes of wider
296 than MAX_FIXED_MODE_SIZE will not be used. */
298 machine_mode
299 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
301 machine_mode mode;
302 int i;
304 if (limit && size > MAX_FIXED_MODE_SIZE)
305 return BLKmode;
307 /* Get the first mode which has this size, in the specified class. */
308 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
309 mode = GET_MODE_WIDER_MODE (mode))
310 if (GET_MODE_PRECISION (mode) == size)
311 return mode;
313 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
314 for (i = 0; i < NUM_INT_N_ENTS; i ++)
315 if (int_n_data[i].bitsize == size
316 && int_n_enabled_p[i])
317 return int_n_data[i].m;
319 return BLKmode;
322 /* Similar, except passed a tree node. */
324 machine_mode
325 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 unsigned HOST_WIDE_INT uhwi;
328 unsigned int ui;
330 if (!tree_fits_uhwi_p (size))
331 return BLKmode;
332 uhwi = tree_to_uhwi (size);
333 ui = uhwi;
334 if (uhwi != ui)
335 return BLKmode;
336 return mode_for_size (ui, mclass, limit);
339 /* Similar, but never return BLKmode; return the narrowest mode that
340 contains at least the requested number of value bits. */
342 machine_mode
343 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
345 machine_mode mode = VOIDmode;
346 int i;
348 /* Get the first mode which has at least this size, in the
349 specified class. */
350 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
351 mode = GET_MODE_WIDER_MODE (mode))
352 if (GET_MODE_PRECISION (mode) >= size)
353 break;
355 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
356 for (i = 0; i < NUM_INT_N_ENTS; i ++)
357 if (int_n_data[i].bitsize >= size
358 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
359 && int_n_enabled_p[i])
360 mode = int_n_data[i].m;
362 if (mode == VOIDmode)
363 gcc_unreachable ();
365 return mode;
368 /* Find an integer mode of the exact same size, or BLKmode on failure. */
370 machine_mode
371 int_mode_for_mode (machine_mode mode)
373 switch (GET_MODE_CLASS (mode))
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 break;
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_VECTOR_INT:
384 case MODE_VECTOR_FLOAT:
385 case MODE_FRACT:
386 case MODE_ACCUM:
387 case MODE_UFRACT:
388 case MODE_UACCUM:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
395 break;
397 case MODE_RANDOM:
398 if (mode == BLKmode)
399 break;
401 /* fall through */
403 case MODE_CC:
404 default:
405 gcc_unreachable ();
408 return mode;
411 /* Find a mode that can be used for efficient bitwise operations on MODE.
412 Return BLKmode if no such mode exists. */
414 machine_mode
415 bitwise_mode_for_mode (machine_mode mode)
417 /* Quick exit if we already have a suitable mode. */
418 unsigned int bitsize = GET_MODE_BITSIZE (mode);
419 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
420 return mode;
422 /* Reuse the sanity checks from int_mode_for_mode. */
423 gcc_checking_assert ((int_mode_for_mode (mode), true));
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
430 machine_mode trial = mode;
431 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
432 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
433 if (trial != BLKmode
434 && have_regs_of_mode[GET_MODE_INNER (trial)])
435 return trial;
438 /* Try to replace vector modes with vector modes. Also try using vector
439 modes if an integer mode would be too big. */
440 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
442 machine_mode trial = mode;
443 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
444 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
445 if (trial != BLKmode
446 && have_regs_of_mode[trial]
447 && targetm.vector_mode_supported_p (trial))
448 return trial;
451 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
452 return mode_for_size (bitsize, MODE_INT, true);
455 /* Find a type that can be used for efficient bitwise operations on MODE.
456 Return null if no such mode exists. */
458 tree
459 bitwise_type_for_mode (machine_mode mode)
461 mode = bitwise_mode_for_mode (mode);
462 if (mode == BLKmode)
463 return NULL_TREE;
465 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
466 tree inner_type = build_nonstandard_integer_type (inner_size, true);
468 if (VECTOR_MODE_P (mode))
469 return build_vector_type_for_mode (inner_type, mode);
471 if (COMPLEX_MODE_P (mode))
472 return build_complex_type (inner_type);
474 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
475 return inner_type;
478 /* Find a mode that is suitable for representing a vector with
479 NUNITS elements of mode INNERMODE. Returns BLKmode if there
480 is no suitable mode. */
482 machine_mode
483 mode_for_vector (machine_mode innermode, unsigned nunits)
485 machine_mode mode;
487 /* First, look for a supported vector type. */
488 if (SCALAR_FLOAT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FLOAT;
490 else if (SCALAR_FRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_FRACT;
492 else if (SCALAR_UFRACT_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_UFRACT;
494 else if (SCALAR_ACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_ACCUM;
496 else if (SCALAR_UACCUM_MODE_P (innermode))
497 mode = MIN_MODE_VECTOR_UACCUM;
498 else
499 mode = MIN_MODE_VECTOR_INT;
501 /* Do not check vector_mode_supported_p here. We'll do that
502 later in vector_type_mode. */
503 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
504 if (GET_MODE_NUNITS (mode) == nunits
505 && GET_MODE_INNER (mode) == innermode)
506 break;
508 /* For integers, try mapping it to a same-sized scalar mode. */
509 if (mode == VOIDmode
510 && GET_MODE_CLASS (innermode) == MODE_INT)
511 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
512 MODE_INT, 0);
514 if (mode == VOIDmode
515 || (GET_MODE_CLASS (mode) == MODE_INT
516 && !have_regs_of_mode[mode]))
517 return BLKmode;
519 return mode;
522 /* Return the alignment of MODE. This will be bounded by 1 and
523 BIGGEST_ALIGNMENT. */
525 unsigned int
526 get_mode_alignment (machine_mode mode)
528 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
531 /* Return the natural mode of an array, given that it is SIZE bytes in
532 total and has elements of type ELEM_TYPE. */
534 static machine_mode
535 mode_for_array (tree elem_type, tree size)
537 tree elem_size;
538 unsigned HOST_WIDE_INT int_size, int_elem_size;
539 bool limit_p;
541 /* One-element arrays get the component type's mode. */
542 elem_size = TYPE_SIZE (elem_type);
543 if (simple_cst_equal (size, elem_size))
544 return TYPE_MODE (elem_type);
546 limit_p = true;
547 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
549 int_size = tree_to_uhwi (size);
550 int_elem_size = tree_to_uhwi (elem_size);
551 if (int_elem_size > 0
552 && int_size % int_elem_size == 0
553 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
554 int_size / int_elem_size))
555 limit_p = false;
557 return mode_for_size_tree (size, MODE_INT, limit_p);
560 /* Subroutine of layout_decl: Force alignment required for the data type.
561 But if the decl itself wants greater alignment, don't override that. */
563 static inline void
564 do_type_align (tree type, tree decl)
566 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
568 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
569 if (TREE_CODE (decl) == FIELD_DECL)
570 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
574 /* Set the size, mode and alignment of a ..._DECL node.
575 TYPE_DECL does need this for C++.
576 Note that LABEL_DECL and CONST_DECL nodes do not need this,
577 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
578 Don't call layout_decl for them.
580 KNOWN_ALIGN is the amount of alignment we can assume this
581 decl has with no special effort. It is relevant only for FIELD_DECLs
582 and depends on the previous fields.
583 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
584 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
585 the record will be aligned to suit. */
587 void
588 layout_decl (tree decl, unsigned int known_align)
590 tree type = TREE_TYPE (decl);
591 enum tree_code code = TREE_CODE (decl);
592 rtx rtl = NULL_RTX;
593 location_t loc = DECL_SOURCE_LOCATION (decl);
595 if (code == CONST_DECL)
596 return;
598 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
599 || code == TYPE_DECL || code == FIELD_DECL);
601 rtl = DECL_RTL_IF_SET (decl);
603 if (type == error_mark_node)
604 type = void_type_node;
606 /* Usually the size and mode come from the data type without change,
607 however, the front-end may set the explicit width of the field, so its
608 size may not be the same as the size of its type. This happens with
609 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
610 also happens with other fields. For example, the C++ front-end creates
611 zero-sized fields corresponding to empty base classes, and depends on
612 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
613 size in bytes from the size in bits. If we have already set the mode,
614 don't set it again since we can be called twice for FIELD_DECLs. */
616 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
617 if (DECL_MODE (decl) == VOIDmode)
618 DECL_MODE (decl) = TYPE_MODE (type);
620 if (DECL_SIZE (decl) == 0)
622 DECL_SIZE (decl) = TYPE_SIZE (type);
623 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
625 else if (DECL_SIZE_UNIT (decl) == 0)
626 DECL_SIZE_UNIT (decl)
627 = fold_convert_loc (loc, sizetype,
628 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
629 bitsize_unit_node));
631 if (code != FIELD_DECL)
632 /* For non-fields, update the alignment from the type. */
633 do_type_align (type, decl);
634 else
635 /* For fields, it's a bit more complicated... */
637 bool old_user_align = DECL_USER_ALIGN (decl);
638 bool zero_bitfield = false;
639 bool packed_p = DECL_PACKED (decl);
640 unsigned int mfa;
642 if (DECL_BIT_FIELD (decl))
644 DECL_BIT_FIELD_TYPE (decl) = type;
646 /* A zero-length bit-field affects the alignment of the next
647 field. In essence such bit-fields are not influenced by
648 any packing due to #pragma pack or attribute packed. */
649 if (integer_zerop (DECL_SIZE (decl))
650 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
652 zero_bitfield = true;
653 packed_p = false;
654 if (PCC_BITFIELD_TYPE_MATTERS)
655 do_type_align (type, decl);
656 else
658 #ifdef EMPTY_FIELD_BOUNDARY
659 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
661 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
662 DECL_USER_ALIGN (decl) = 0;
664 #endif
668 /* See if we can use an ordinary integer mode for a bit-field.
669 Conditions are: a fixed size that is correct for another mode,
670 occupying a complete byte or bytes on proper boundary. */
671 if (TYPE_SIZE (type) != 0
672 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
673 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
675 machine_mode xmode
676 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
677 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
679 if (xmode != BLKmode
680 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
681 && (known_align == 0 || known_align >= xalign))
683 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
684 DECL_MODE (decl) = xmode;
685 DECL_BIT_FIELD (decl) = 0;
689 /* Turn off DECL_BIT_FIELD if we won't need it set. */
690 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
691 && known_align >= TYPE_ALIGN (type)
692 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
693 DECL_BIT_FIELD (decl) = 0;
695 else if (packed_p && DECL_USER_ALIGN (decl))
696 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
697 round up; we'll reduce it again below. We want packing to
698 supersede USER_ALIGN inherited from the type, but defer to
699 alignment explicitly specified on the field decl. */;
700 else
701 do_type_align (type, decl);
703 /* If the field is packed and not explicitly aligned, give it the
704 minimum alignment. Note that do_type_align may set
705 DECL_USER_ALIGN, so we need to check old_user_align instead. */
706 if (packed_p
707 && !old_user_align)
708 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
710 if (! packed_p && ! DECL_USER_ALIGN (decl))
712 /* Some targets (i.e. i386, VMS) limit struct field alignment
713 to a lower boundary than alignment of variables unless
714 it was overridden by attribute aligned. */
715 #ifdef BIGGEST_FIELD_ALIGNMENT
716 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
717 (unsigned) BIGGEST_FIELD_ALIGNMENT));
718 #endif
719 #ifdef ADJUST_FIELD_ALIGN
720 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl)));
721 #endif
724 if (zero_bitfield)
725 mfa = initial_max_fld_align * BITS_PER_UNIT;
726 else
727 mfa = maximum_field_alignment;
728 /* Should this be controlled by DECL_USER_ALIGN, too? */
729 if (mfa != 0)
730 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
733 /* Evaluate nonconstant size only once, either now or as soon as safe. */
734 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
735 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
736 if (DECL_SIZE_UNIT (decl) != 0
737 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
738 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
740 /* If requested, warn about definitions of large data objects. */
741 if (warn_larger_than
742 && (code == VAR_DECL || code == PARM_DECL)
743 && ! DECL_EXTERNAL (decl))
745 tree size = DECL_SIZE_UNIT (decl);
747 if (size != 0 && TREE_CODE (size) == INTEGER_CST
748 && compare_tree_int (size, larger_than_size) > 0)
750 int size_as_int = TREE_INT_CST_LOW (size);
752 if (compare_tree_int (size, size_as_int) == 0)
753 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
754 else
755 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
756 decl, larger_than_size);
760 /* If the RTL was already set, update its mode and mem attributes. */
761 if (rtl)
763 PUT_MODE (rtl, DECL_MODE (decl));
764 SET_DECL_RTL (decl, 0);
765 if (MEM_P (rtl))
766 set_mem_attributes (rtl, decl, 1);
767 SET_DECL_RTL (decl, rtl);
771 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
772 results of a previous call to layout_decl and calls it again. */
774 void
775 relayout_decl (tree decl)
777 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
778 DECL_MODE (decl) = VOIDmode;
779 if (!DECL_USER_ALIGN (decl))
780 SET_DECL_ALIGN (decl, 0);
781 if (DECL_RTL_SET_P (decl))
782 SET_DECL_RTL (decl, 0);
784 layout_decl (decl, 0);
787 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
788 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
789 is to be passed to all other layout functions for this record. It is the
790 responsibility of the caller to call `free' for the storage returned.
791 Note that garbage collection is not permitted until we finish laying
792 out the record. */
794 record_layout_info
795 start_record_layout (tree t)
797 record_layout_info rli = XNEW (struct record_layout_info_s);
799 rli->t = t;
801 /* If the type has a minimum specified alignment (via an attribute
802 declaration, for example) use it -- otherwise, start with a
803 one-byte alignment. */
804 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
805 rli->unpacked_align = rli->record_align;
806 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
808 #ifdef STRUCTURE_SIZE_BOUNDARY
809 /* Packed structures don't need to have minimum size. */
810 if (! TYPE_PACKED (t))
812 unsigned tmp;
814 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
815 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
816 if (maximum_field_alignment != 0)
817 tmp = MIN (tmp, maximum_field_alignment);
818 rli->record_align = MAX (rli->record_align, tmp);
820 #endif
822 rli->offset = size_zero_node;
823 rli->bitpos = bitsize_zero_node;
824 rli->prev_field = 0;
825 rli->pending_statics = 0;
826 rli->packed_maybe_necessary = 0;
827 rli->remaining_in_alignment = 0;
829 return rli;
832 /* Return the combined bit position for the byte offset OFFSET and the
833 bit position BITPOS.
835 These functions operate on byte and bit positions present in FIELD_DECLs
836 and assume that these expressions result in no (intermediate) overflow.
837 This assumption is necessary to fold the expressions as much as possible,
838 so as to avoid creating artificially variable-sized types in languages
839 supporting variable-sized types like Ada. */
841 tree
842 bit_from_pos (tree offset, tree bitpos)
844 if (TREE_CODE (offset) == PLUS_EXPR)
845 offset = size_binop (PLUS_EXPR,
846 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
847 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
848 else
849 offset = fold_convert (bitsizetype, offset);
850 return size_binop (PLUS_EXPR, bitpos,
851 size_binop (MULT_EXPR, offset, bitsize_unit_node));
854 /* Return the combined truncated byte position for the byte offset OFFSET and
855 the bit position BITPOS. */
857 tree
858 byte_from_pos (tree offset, tree bitpos)
860 tree bytepos;
861 if (TREE_CODE (bitpos) == MULT_EXPR
862 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
863 bytepos = TREE_OPERAND (bitpos, 0);
864 else
865 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
866 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
869 /* Split the bit position POS into a byte offset *POFFSET and a bit
870 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
872 void
873 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
874 tree pos)
876 tree toff_align = bitsize_int (off_align);
877 if (TREE_CODE (pos) == MULT_EXPR
878 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
880 *poffset = size_binop (MULT_EXPR,
881 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
882 size_int (off_align / BITS_PER_UNIT));
883 *pbitpos = bitsize_zero_node;
885 else
887 *poffset = size_binop (MULT_EXPR,
888 fold_convert (sizetype,
889 size_binop (FLOOR_DIV_EXPR, pos,
890 toff_align)),
891 size_int (off_align / BITS_PER_UNIT));
892 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
896 /* Given a pointer to bit and byte offsets and an offset alignment,
897 normalize the offsets so they are within the alignment. */
899 void
900 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
902 /* If the bit position is now larger than it should be, adjust it
903 downwards. */
904 if (compare_tree_int (*pbitpos, off_align) >= 0)
906 tree offset, bitpos;
907 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
908 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
909 *pbitpos = bitpos;
913 /* Print debugging information about the information in RLI. */
915 DEBUG_FUNCTION void
916 debug_rli (record_layout_info rli)
918 print_node_brief (stderr, "type", rli->t, 0);
919 print_node_brief (stderr, "\noffset", rli->offset, 0);
920 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
922 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
923 rli->record_align, rli->unpacked_align,
924 rli->offset_align);
926 /* The ms_struct code is the only that uses this. */
927 if (targetm.ms_bitfield_layout_p (rli->t))
928 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
930 if (rli->packed_maybe_necessary)
931 fprintf (stderr, "packed may be necessary\n");
933 if (!vec_safe_is_empty (rli->pending_statics))
935 fprintf (stderr, "pending statics:\n");
936 debug_vec_tree (rli->pending_statics);
940 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
941 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
943 void
944 normalize_rli (record_layout_info rli)
946 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
949 /* Returns the size in bytes allocated so far. */
951 tree
952 rli_size_unit_so_far (record_layout_info rli)
954 return byte_from_pos (rli->offset, rli->bitpos);
957 /* Returns the size in bits allocated so far. */
959 tree
960 rli_size_so_far (record_layout_info rli)
962 return bit_from_pos (rli->offset, rli->bitpos);
965 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
966 the next available location within the record is given by KNOWN_ALIGN.
967 Update the variable alignment fields in RLI, and return the alignment
968 to give the FIELD. */
970 unsigned int
971 update_alignment_for_field (record_layout_info rli, tree field,
972 unsigned int known_align)
974 /* The alignment required for FIELD. */
975 unsigned int desired_align;
976 /* The type of this field. */
977 tree type = TREE_TYPE (field);
978 /* True if the field was explicitly aligned by the user. */
979 bool user_align;
980 bool is_bitfield;
982 /* Do not attempt to align an ERROR_MARK node */
983 if (TREE_CODE (type) == ERROR_MARK)
984 return 0;
986 /* Lay out the field so we know what alignment it needs. */
987 layout_decl (field, known_align);
988 desired_align = DECL_ALIGN (field);
989 user_align = DECL_USER_ALIGN (field);
991 is_bitfield = (type != error_mark_node
992 && DECL_BIT_FIELD_TYPE (field)
993 && ! integer_zerop (TYPE_SIZE (type)));
995 /* Record must have at least as much alignment as any field.
996 Otherwise, the alignment of the field within the record is
997 meaningless. */
998 if (targetm.ms_bitfield_layout_p (rli->t))
1000 /* Here, the alignment of the underlying type of a bitfield can
1001 affect the alignment of a record; even a zero-sized field
1002 can do this. The alignment should be to the alignment of
1003 the type, except that for zero-size bitfields this only
1004 applies if there was an immediately prior, nonzero-size
1005 bitfield. (That's the way it is, experimentally.) */
1006 if ((!is_bitfield && !DECL_PACKED (field))
1007 || ((DECL_SIZE (field) == NULL_TREE
1008 || !integer_zerop (DECL_SIZE (field)))
1009 ? !DECL_PACKED (field)
1010 : (rli->prev_field
1011 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1012 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1014 unsigned int type_align = TYPE_ALIGN (type);
1015 type_align = MAX (type_align, desired_align);
1016 if (maximum_field_alignment != 0)
1017 type_align = MIN (type_align, maximum_field_alignment);
1018 rli->record_align = MAX (rli->record_align, type_align);
1019 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1022 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1024 /* Named bit-fields cause the entire structure to have the
1025 alignment implied by their type. Some targets also apply the same
1026 rules to unnamed bitfields. */
1027 if (DECL_NAME (field) != 0
1028 || targetm.align_anon_bitfield ())
1030 unsigned int type_align = TYPE_ALIGN (type);
1032 #ifdef ADJUST_FIELD_ALIGN
1033 if (! TYPE_USER_ALIGN (type))
1034 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1035 #endif
1037 /* Targets might chose to handle unnamed and hence possibly
1038 zero-width bitfield. Those are not influenced by #pragmas
1039 or packed attributes. */
1040 if (integer_zerop (DECL_SIZE (field)))
1042 if (initial_max_fld_align)
1043 type_align = MIN (type_align,
1044 initial_max_fld_align * BITS_PER_UNIT);
1046 else if (maximum_field_alignment != 0)
1047 type_align = MIN (type_align, maximum_field_alignment);
1048 else if (DECL_PACKED (field))
1049 type_align = MIN (type_align, BITS_PER_UNIT);
1051 /* The alignment of the record is increased to the maximum
1052 of the current alignment, the alignment indicated on the
1053 field (i.e., the alignment specified by an __aligned__
1054 attribute), and the alignment indicated by the type of
1055 the field. */
1056 rli->record_align = MAX (rli->record_align, desired_align);
1057 rli->record_align = MAX (rli->record_align, type_align);
1059 if (warn_packed)
1060 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1061 user_align |= TYPE_USER_ALIGN (type);
1064 else
1066 rli->record_align = MAX (rli->record_align, desired_align);
1067 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1070 TYPE_USER_ALIGN (rli->t) |= user_align;
1072 return desired_align;
1075 /* Called from place_field to handle unions. */
1077 static void
1078 place_union_field (record_layout_info rli, tree field)
1080 update_alignment_for_field (rli, field, /*known_align=*/0);
1082 DECL_FIELD_OFFSET (field) = size_zero_node;
1083 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1084 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1086 /* If this is an ERROR_MARK return *after* having set the
1087 field at the start of the union. This helps when parsing
1088 invalid fields. */
1089 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1090 return;
1092 /* We assume the union's size will be a multiple of a byte so we don't
1093 bother with BITPOS. */
1094 if (TREE_CODE (rli->t) == UNION_TYPE)
1095 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1096 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1097 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1098 DECL_SIZE_UNIT (field), rli->offset);
1101 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1102 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1103 units of alignment than the underlying TYPE. */
1104 static int
1105 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1106 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1108 /* Note that the calculation of OFFSET might overflow; we calculate it so
1109 that we still get the right result as long as ALIGN is a power of two. */
1110 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1112 offset = offset % align;
1113 return ((offset + size + align - 1) / align
1114 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1117 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1118 is a FIELD_DECL to be added after those fields already present in
1119 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1120 callers that desire that behavior must manually perform that step.) */
1122 void
1123 place_field (record_layout_info rli, tree field)
1125 /* The alignment required for FIELD. */
1126 unsigned int desired_align;
1127 /* The alignment FIELD would have if we just dropped it into the
1128 record as it presently stands. */
1129 unsigned int known_align;
1130 unsigned int actual_align;
1131 /* The type of this field. */
1132 tree type = TREE_TYPE (field);
1134 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1136 /* If FIELD is static, then treat it like a separate variable, not
1137 really like a structure field. If it is a FUNCTION_DECL, it's a
1138 method. In both cases, all we do is lay out the decl, and we do
1139 it *after* the record is laid out. */
1140 if (VAR_P (field))
1142 vec_safe_push (rli->pending_statics, field);
1143 return;
1146 /* Enumerators and enum types which are local to this class need not
1147 be laid out. Likewise for initialized constant fields. */
1148 else if (TREE_CODE (field) != FIELD_DECL)
1149 return;
1151 /* Unions are laid out very differently than records, so split
1152 that code off to another function. */
1153 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1155 place_union_field (rli, field);
1156 return;
1159 else if (TREE_CODE (type) == ERROR_MARK)
1161 /* Place this field at the current allocation position, so we
1162 maintain monotonicity. */
1163 DECL_FIELD_OFFSET (field) = rli->offset;
1164 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1165 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1166 return;
1169 /* Work out the known alignment so far. Note that A & (-A) is the
1170 value of the least-significant bit in A that is one. */
1171 if (! integer_zerop (rli->bitpos))
1172 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1173 else if (integer_zerop (rli->offset))
1174 known_align = 0;
1175 else if (tree_fits_uhwi_p (rli->offset))
1176 known_align = (BITS_PER_UNIT
1177 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1178 else
1179 known_align = rli->offset_align;
1181 desired_align = update_alignment_for_field (rli, field, known_align);
1182 if (known_align == 0)
1183 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1185 if (warn_packed && DECL_PACKED (field))
1187 if (known_align >= TYPE_ALIGN (type))
1189 if (TYPE_ALIGN (type) > desired_align)
1191 if (STRICT_ALIGNMENT)
1192 warning (OPT_Wattributes, "packed attribute causes "
1193 "inefficient alignment for %q+D", field);
1194 /* Don't warn if DECL_PACKED was set by the type. */
1195 else if (!TYPE_PACKED (rli->t))
1196 warning (OPT_Wattributes, "packed attribute is "
1197 "unnecessary for %q+D", field);
1200 else
1201 rli->packed_maybe_necessary = 1;
1204 /* Does this field automatically have alignment it needs by virtue
1205 of the fields that precede it and the record's own alignment? */
1206 if (known_align < desired_align)
1208 /* No, we need to skip space before this field.
1209 Bump the cumulative size to multiple of field alignment. */
1211 if (!targetm.ms_bitfield_layout_p (rli->t)
1212 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1213 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1215 /* If the alignment is still within offset_align, just align
1216 the bit position. */
1217 if (desired_align < rli->offset_align)
1218 rli->bitpos = round_up (rli->bitpos, desired_align);
1219 else
1221 /* First adjust OFFSET by the partial bits, then align. */
1222 rli->offset
1223 = size_binop (PLUS_EXPR, rli->offset,
1224 fold_convert (sizetype,
1225 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1226 bitsize_unit_node)));
1227 rli->bitpos = bitsize_zero_node;
1229 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1232 if (! TREE_CONSTANT (rli->offset))
1233 rli->offset_align = desired_align;
1234 if (targetm.ms_bitfield_layout_p (rli->t))
1235 rli->prev_field = NULL;
1238 /* Handle compatibility with PCC. Note that if the record has any
1239 variable-sized fields, we need not worry about compatibility. */
1240 if (PCC_BITFIELD_TYPE_MATTERS
1241 && ! targetm.ms_bitfield_layout_p (rli->t)
1242 && TREE_CODE (field) == FIELD_DECL
1243 && type != error_mark_node
1244 && DECL_BIT_FIELD (field)
1245 && (! DECL_PACKED (field)
1246 /* Enter for these packed fields only to issue a warning. */
1247 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1248 && maximum_field_alignment == 0
1249 && ! integer_zerop (DECL_SIZE (field))
1250 && tree_fits_uhwi_p (DECL_SIZE (field))
1251 && tree_fits_uhwi_p (rli->offset)
1252 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1254 unsigned int type_align = TYPE_ALIGN (type);
1255 tree dsize = DECL_SIZE (field);
1256 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1257 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1258 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1260 #ifdef ADJUST_FIELD_ALIGN
1261 if (! TYPE_USER_ALIGN (type))
1262 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1263 #endif
1265 /* A bit field may not span more units of alignment of its type
1266 than its type itself. Advance to next boundary if necessary. */
1267 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1269 if (DECL_PACKED (field))
1271 if (warn_packed_bitfield_compat == 1)
1272 inform
1273 (input_location,
1274 "offset of packed bit-field %qD has changed in GCC 4.4",
1275 field);
1277 else
1278 rli->bitpos = round_up (rli->bitpos, type_align);
1281 if (! DECL_PACKED (field))
1282 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1285 #ifdef BITFIELD_NBYTES_LIMITED
1286 if (BITFIELD_NBYTES_LIMITED
1287 && ! targetm.ms_bitfield_layout_p (rli->t)
1288 && TREE_CODE (field) == FIELD_DECL
1289 && type != error_mark_node
1290 && DECL_BIT_FIELD_TYPE (field)
1291 && ! DECL_PACKED (field)
1292 && ! integer_zerop (DECL_SIZE (field))
1293 && tree_fits_uhwi_p (DECL_SIZE (field))
1294 && tree_fits_uhwi_p (rli->offset)
1295 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1297 unsigned int type_align = TYPE_ALIGN (type);
1298 tree dsize = DECL_SIZE (field);
1299 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1300 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1301 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1303 #ifdef ADJUST_FIELD_ALIGN
1304 if (! TYPE_USER_ALIGN (type))
1305 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1306 #endif
1308 if (maximum_field_alignment != 0)
1309 type_align = MIN (type_align, maximum_field_alignment);
1310 /* ??? This test is opposite the test in the containing if
1311 statement, so this code is unreachable currently. */
1312 else if (DECL_PACKED (field))
1313 type_align = MIN (type_align, BITS_PER_UNIT);
1315 /* A bit field may not span the unit of alignment of its type.
1316 Advance to next boundary if necessary. */
1317 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1318 rli->bitpos = round_up (rli->bitpos, type_align);
1320 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1322 #endif
1324 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1325 A subtlety:
1326 When a bit field is inserted into a packed record, the whole
1327 size of the underlying type is used by one or more same-size
1328 adjacent bitfields. (That is, if its long:3, 32 bits is
1329 used in the record, and any additional adjacent long bitfields are
1330 packed into the same chunk of 32 bits. However, if the size
1331 changes, a new field of that size is allocated.) In an unpacked
1332 record, this is the same as using alignment, but not equivalent
1333 when packing.
1335 Note: for compatibility, we use the type size, not the type alignment
1336 to determine alignment, since that matches the documentation */
1338 if (targetm.ms_bitfield_layout_p (rli->t))
1340 tree prev_saved = rli->prev_field;
1341 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1343 /* This is a bitfield if it exists. */
1344 if (rli->prev_field)
1346 /* If both are bitfields, nonzero, and the same size, this is
1347 the middle of a run. Zero declared size fields are special
1348 and handled as "end of run". (Note: it's nonzero declared
1349 size, but equal type sizes!) (Since we know that both
1350 the current and previous fields are bitfields by the
1351 time we check it, DECL_SIZE must be present for both.) */
1352 if (DECL_BIT_FIELD_TYPE (field)
1353 && !integer_zerop (DECL_SIZE (field))
1354 && !integer_zerop (DECL_SIZE (rli->prev_field))
1355 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1356 && tree_fits_uhwi_p (TYPE_SIZE (type))
1357 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1359 /* We're in the middle of a run of equal type size fields; make
1360 sure we realign if we run out of bits. (Not decl size,
1361 type size!) */
1362 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1364 if (rli->remaining_in_alignment < bitsize)
1366 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1368 /* out of bits; bump up to next 'word'. */
1369 rli->bitpos
1370 = size_binop (PLUS_EXPR, rli->bitpos,
1371 bitsize_int (rli->remaining_in_alignment));
1372 rli->prev_field = field;
1373 if (typesize < bitsize)
1374 rli->remaining_in_alignment = 0;
1375 else
1376 rli->remaining_in_alignment = typesize - bitsize;
1378 else
1379 rli->remaining_in_alignment -= bitsize;
1381 else
1383 /* End of a run: if leaving a run of bitfields of the same type
1384 size, we have to "use up" the rest of the bits of the type
1385 size.
1387 Compute the new position as the sum of the size for the prior
1388 type and where we first started working on that type.
1389 Note: since the beginning of the field was aligned then
1390 of course the end will be too. No round needed. */
1392 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1394 rli->bitpos
1395 = size_binop (PLUS_EXPR, rli->bitpos,
1396 bitsize_int (rli->remaining_in_alignment));
1398 else
1399 /* We "use up" size zero fields; the code below should behave
1400 as if the prior field was not a bitfield. */
1401 prev_saved = NULL;
1403 /* Cause a new bitfield to be captured, either this time (if
1404 currently a bitfield) or next time we see one. */
1405 if (!DECL_BIT_FIELD_TYPE (field)
1406 || integer_zerop (DECL_SIZE (field)))
1407 rli->prev_field = NULL;
1410 normalize_rli (rli);
1413 /* If we're starting a new run of same type size bitfields
1414 (or a run of non-bitfields), set up the "first of the run"
1415 fields.
1417 That is, if the current field is not a bitfield, or if there
1418 was a prior bitfield the type sizes differ, or if there wasn't
1419 a prior bitfield the size of the current field is nonzero.
1421 Note: we must be sure to test ONLY the type size if there was
1422 a prior bitfield and ONLY for the current field being zero if
1423 there wasn't. */
1425 if (!DECL_BIT_FIELD_TYPE (field)
1426 || (prev_saved != NULL
1427 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1428 : !integer_zerop (DECL_SIZE (field)) ))
1430 /* Never smaller than a byte for compatibility. */
1431 unsigned int type_align = BITS_PER_UNIT;
1433 /* (When not a bitfield), we could be seeing a flex array (with
1434 no DECL_SIZE). Since we won't be using remaining_in_alignment
1435 until we see a bitfield (and come by here again) we just skip
1436 calculating it. */
1437 if (DECL_SIZE (field) != NULL
1438 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1439 && tree_fits_uhwi_p (DECL_SIZE (field)))
1441 unsigned HOST_WIDE_INT bitsize
1442 = tree_to_uhwi (DECL_SIZE (field));
1443 unsigned HOST_WIDE_INT typesize
1444 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1446 if (typesize < bitsize)
1447 rli->remaining_in_alignment = 0;
1448 else
1449 rli->remaining_in_alignment = typesize - bitsize;
1452 /* Now align (conventionally) for the new type. */
1453 type_align = TYPE_ALIGN (TREE_TYPE (field));
1455 if (maximum_field_alignment != 0)
1456 type_align = MIN (type_align, maximum_field_alignment);
1458 rli->bitpos = round_up (rli->bitpos, type_align);
1460 /* If we really aligned, don't allow subsequent bitfields
1461 to undo that. */
1462 rli->prev_field = NULL;
1466 /* Offset so far becomes the position of this field after normalizing. */
1467 normalize_rli (rli);
1468 DECL_FIELD_OFFSET (field) = rli->offset;
1469 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1470 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1472 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1473 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1474 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1476 /* If this field ended up more aligned than we thought it would be (we
1477 approximate this by seeing if its position changed), lay out the field
1478 again; perhaps we can use an integral mode for it now. */
1479 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1480 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1481 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1482 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1483 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1484 actual_align = (BITS_PER_UNIT
1485 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1486 else
1487 actual_align = DECL_OFFSET_ALIGN (field);
1488 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1489 store / extract bit field operations will check the alignment of the
1490 record against the mode of bit fields. */
1492 if (known_align != actual_align)
1493 layout_decl (field, actual_align);
1495 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1496 rli->prev_field = field;
1498 /* Now add size of this field to the size of the record. If the size is
1499 not constant, treat the field as being a multiple of bytes and just
1500 adjust the offset, resetting the bit position. Otherwise, apportion the
1501 size amongst the bit position and offset. First handle the case of an
1502 unspecified size, which can happen when we have an invalid nested struct
1503 definition, such as struct j { struct j { int i; } }. The error message
1504 is printed in finish_struct. */
1505 if (DECL_SIZE (field) == 0)
1506 /* Do nothing. */;
1507 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1508 || TREE_OVERFLOW (DECL_SIZE (field)))
1510 rli->offset
1511 = size_binop (PLUS_EXPR, rli->offset,
1512 fold_convert (sizetype,
1513 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1514 bitsize_unit_node)));
1515 rli->offset
1516 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1517 rli->bitpos = bitsize_zero_node;
1518 rli->offset_align = MIN (rli->offset_align, desired_align);
1520 else if (targetm.ms_bitfield_layout_p (rli->t))
1522 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1524 /* If we ended a bitfield before the full length of the type then
1525 pad the struct out to the full length of the last type. */
1526 if ((DECL_CHAIN (field) == NULL
1527 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1528 && DECL_BIT_FIELD_TYPE (field)
1529 && !integer_zerop (DECL_SIZE (field)))
1530 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1531 bitsize_int (rli->remaining_in_alignment));
1533 normalize_rli (rli);
1535 else
1537 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1538 normalize_rli (rli);
1542 /* Assuming that all the fields have been laid out, this function uses
1543 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1544 indicated by RLI. */
1546 static void
1547 finalize_record_size (record_layout_info rli)
1549 tree unpadded_size, unpadded_size_unit;
1551 /* Now we want just byte and bit offsets, so set the offset alignment
1552 to be a byte and then normalize. */
1553 rli->offset_align = BITS_PER_UNIT;
1554 normalize_rli (rli);
1556 /* Determine the desired alignment. */
1557 #ifdef ROUND_TYPE_ALIGN
1558 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1559 rli->record_align));
1560 #else
1561 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1562 #endif
1564 /* Compute the size so far. Be sure to allow for extra bits in the
1565 size in bytes. We have guaranteed above that it will be no more
1566 than a single byte. */
1567 unpadded_size = rli_size_so_far (rli);
1568 unpadded_size_unit = rli_size_unit_so_far (rli);
1569 if (! integer_zerop (rli->bitpos))
1570 unpadded_size_unit
1571 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1573 /* Round the size up to be a multiple of the required alignment. */
1574 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1575 TYPE_SIZE_UNIT (rli->t)
1576 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1578 if (TREE_CONSTANT (unpadded_size)
1579 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1580 && input_location != BUILTINS_LOCATION)
1581 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1583 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1584 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1585 && TREE_CONSTANT (unpadded_size))
1587 tree unpacked_size;
1589 #ifdef ROUND_TYPE_ALIGN
1590 rli->unpacked_align
1591 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1592 #else
1593 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1594 #endif
1596 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1597 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1599 if (TYPE_NAME (rli->t))
1601 tree name;
1603 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1604 name = TYPE_NAME (rli->t);
1605 else
1606 name = DECL_NAME (TYPE_NAME (rli->t));
1608 if (STRICT_ALIGNMENT)
1609 warning (OPT_Wpacked, "packed attribute causes inefficient "
1610 "alignment for %qE", name);
1611 else
1612 warning (OPT_Wpacked,
1613 "packed attribute is unnecessary for %qE", name);
1615 else
1617 if (STRICT_ALIGNMENT)
1618 warning (OPT_Wpacked,
1619 "packed attribute causes inefficient alignment");
1620 else
1621 warning (OPT_Wpacked, "packed attribute is unnecessary");
1627 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1629 void
1630 compute_record_mode (tree type)
1632 tree field;
1633 machine_mode mode = VOIDmode;
1635 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1636 However, if possible, we use a mode that fits in a register
1637 instead, in order to allow for better optimization down the
1638 line. */
1639 SET_TYPE_MODE (type, BLKmode);
1641 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1642 return;
1644 /* A record which has any BLKmode members must itself be
1645 BLKmode; it can't go in a register. Unless the member is
1646 BLKmode only because it isn't aligned. */
1647 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1649 if (TREE_CODE (field) != FIELD_DECL)
1650 continue;
1652 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1653 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1654 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1655 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1656 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1657 || ! tree_fits_uhwi_p (bit_position (field))
1658 || DECL_SIZE (field) == 0
1659 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1660 return;
1662 /* If this field is the whole struct, remember its mode so
1663 that, say, we can put a double in a class into a DF
1664 register instead of forcing it to live in the stack. */
1665 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1666 mode = DECL_MODE (field);
1668 /* With some targets, it is sub-optimal to access an aligned
1669 BLKmode structure as a scalar. */
1670 if (targetm.member_type_forces_blk (field, mode))
1671 return;
1674 /* If we only have one real field; use its mode if that mode's size
1675 matches the type's size. This only applies to RECORD_TYPE. This
1676 does not apply to unions. */
1677 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1678 && tree_fits_uhwi_p (TYPE_SIZE (type))
1679 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1680 SET_TYPE_MODE (type, mode);
1681 else
1682 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1684 /* If structure's known alignment is less than what the scalar
1685 mode would need, and it matters, then stick with BLKmode. */
1686 if (TYPE_MODE (type) != BLKmode
1687 && STRICT_ALIGNMENT
1688 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1689 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1691 /* If this is the only reason this type is BLKmode, then
1692 don't force containing types to be BLKmode. */
1693 TYPE_NO_FORCE_BLK (type) = 1;
1694 SET_TYPE_MODE (type, BLKmode);
1698 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1699 out. */
1701 static void
1702 finalize_type_size (tree type)
1704 /* Normally, use the alignment corresponding to the mode chosen.
1705 However, where strict alignment is not required, avoid
1706 over-aligning structures, since most compilers do not do this
1707 alignment. */
1708 if (TYPE_MODE (type) != BLKmode
1709 && TYPE_MODE (type) != VOIDmode
1710 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1712 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1714 /* Don't override a larger alignment requirement coming from a user
1715 alignment of one of the fields. */
1716 if (mode_align >= TYPE_ALIGN (type))
1718 SET_TYPE_ALIGN (type, mode_align);
1719 TYPE_USER_ALIGN (type) = 0;
1723 /* Do machine-dependent extra alignment. */
1724 #ifdef ROUND_TYPE_ALIGN
1725 SET_TYPE_ALIGN (type,
1726 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1727 #endif
1729 /* If we failed to find a simple way to calculate the unit size
1730 of the type, find it by division. */
1731 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1732 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1733 result will fit in sizetype. We will get more efficient code using
1734 sizetype, so we force a conversion. */
1735 TYPE_SIZE_UNIT (type)
1736 = fold_convert (sizetype,
1737 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1738 bitsize_unit_node));
1740 if (TYPE_SIZE (type) != 0)
1742 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1743 TYPE_SIZE_UNIT (type)
1744 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1747 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1748 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1749 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1750 if (TYPE_SIZE_UNIT (type) != 0
1751 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1752 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1754 /* Also layout any other variants of the type. */
1755 if (TYPE_NEXT_VARIANT (type)
1756 || type != TYPE_MAIN_VARIANT (type))
1758 tree variant;
1759 /* Record layout info of this variant. */
1760 tree size = TYPE_SIZE (type);
1761 tree size_unit = TYPE_SIZE_UNIT (type);
1762 unsigned int align = TYPE_ALIGN (type);
1763 unsigned int precision = TYPE_PRECISION (type);
1764 unsigned int user_align = TYPE_USER_ALIGN (type);
1765 machine_mode mode = TYPE_MODE (type);
1767 /* Copy it into all variants. */
1768 for (variant = TYPE_MAIN_VARIANT (type);
1769 variant != 0;
1770 variant = TYPE_NEXT_VARIANT (variant))
1772 TYPE_SIZE (variant) = size;
1773 TYPE_SIZE_UNIT (variant) = size_unit;
1774 unsigned valign = align;
1775 if (TYPE_USER_ALIGN (variant))
1776 valign = MAX (valign, TYPE_ALIGN (variant));
1777 else
1778 TYPE_USER_ALIGN (variant) = user_align;
1779 SET_TYPE_ALIGN (variant, valign);
1780 TYPE_PRECISION (variant) = precision;
1781 SET_TYPE_MODE (variant, mode);
1786 /* Return a new underlying object for a bitfield started with FIELD. */
1788 static tree
1789 start_bitfield_representative (tree field)
1791 tree repr = make_node (FIELD_DECL);
1792 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1793 /* Force the representative to begin at a BITS_PER_UNIT aligned
1794 boundary - C++ may use tail-padding of a base object to
1795 continue packing bits so the bitfield region does not start
1796 at bit zero (see g++.dg/abi/bitfield5.C for example).
1797 Unallocated bits may happen for other reasons as well,
1798 for example Ada which allows explicit bit-granular structure layout. */
1799 DECL_FIELD_BIT_OFFSET (repr)
1800 = size_binop (BIT_AND_EXPR,
1801 DECL_FIELD_BIT_OFFSET (field),
1802 bitsize_int (~(BITS_PER_UNIT - 1)));
1803 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1804 DECL_SIZE (repr) = DECL_SIZE (field);
1805 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1806 DECL_PACKED (repr) = DECL_PACKED (field);
1807 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1808 /* There are no indirect accesses to this field. If we introduce
1809 some then they have to use the record alias set. This makes
1810 sure to properly conflict with [indirect] accesses to addressable
1811 fields of the bitfield group. */
1812 DECL_NONADDRESSABLE_P (repr) = 1;
1813 return repr;
1816 /* Finish up a bitfield group that was started by creating the underlying
1817 object REPR with the last field in the bitfield group FIELD. */
1819 static void
1820 finish_bitfield_representative (tree repr, tree field)
1822 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1823 machine_mode mode;
1824 tree nextf, size;
1826 size = size_diffop (DECL_FIELD_OFFSET (field),
1827 DECL_FIELD_OFFSET (repr));
1828 while (TREE_CODE (size) == COMPOUND_EXPR)
1829 size = TREE_OPERAND (size, 1);
1830 gcc_assert (tree_fits_uhwi_p (size));
1831 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1832 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1833 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1834 + tree_to_uhwi (DECL_SIZE (field)));
1836 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1837 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1839 /* Now nothing tells us how to pad out bitsize ... */
1840 nextf = DECL_CHAIN (field);
1841 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1842 nextf = DECL_CHAIN (nextf);
1843 if (nextf)
1845 tree maxsize;
1846 /* If there was an error, the field may be not laid out
1847 correctly. Don't bother to do anything. */
1848 if (TREE_TYPE (nextf) == error_mark_node)
1849 return;
1850 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1851 DECL_FIELD_OFFSET (repr));
1852 if (tree_fits_uhwi_p (maxsize))
1854 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1855 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1856 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1857 /* If the group ends within a bitfield nextf does not need to be
1858 aligned to BITS_PER_UNIT. Thus round up. */
1859 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1861 else
1862 maxbitsize = bitsize;
1864 else
1866 /* ??? If you consider that tail-padding of this struct might be
1867 re-used when deriving from it we cannot really do the following
1868 and thus need to set maxsize to bitsize? Also we cannot
1869 generally rely on maxsize to fold to an integer constant, so
1870 use bitsize as fallback for this case. */
1871 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1872 DECL_FIELD_OFFSET (repr));
1873 if (tree_fits_uhwi_p (maxsize))
1874 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1875 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1876 else
1877 maxbitsize = bitsize;
1880 /* Only if we don't artificially break up the representative in
1881 the middle of a large bitfield with different possibly
1882 overlapping representatives. And all representatives start
1883 at byte offset. */
1884 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1886 /* Find the smallest nice mode to use. */
1887 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1888 mode = GET_MODE_WIDER_MODE (mode))
1889 if (GET_MODE_BITSIZE (mode) >= bitsize)
1890 break;
1891 if (mode != VOIDmode
1892 && (GET_MODE_BITSIZE (mode) > maxbitsize
1893 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1894 mode = VOIDmode;
1896 if (mode == VOIDmode)
1898 /* We really want a BLKmode representative only as a last resort,
1899 considering the member b in
1900 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1901 Otherwise we simply want to split the representative up
1902 allowing for overlaps within the bitfield region as required for
1903 struct { int a : 7; int b : 7;
1904 int c : 10; int d; } __attribute__((packed));
1905 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1906 DECL_SIZE (repr) = bitsize_int (bitsize);
1907 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1908 DECL_MODE (repr) = BLKmode;
1909 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1910 bitsize / BITS_PER_UNIT);
1912 else
1914 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1915 DECL_SIZE (repr) = bitsize_int (modesize);
1916 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1917 DECL_MODE (repr) = mode;
1918 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1921 /* Remember whether the bitfield group is at the end of the
1922 structure or not. */
1923 DECL_CHAIN (repr) = nextf;
1926 /* Compute and set FIELD_DECLs for the underlying objects we should
1927 use for bitfield access for the structure T. */
1929 void
1930 finish_bitfield_layout (tree t)
1932 tree field, prev;
1933 tree repr = NULL_TREE;
1935 /* Unions would be special, for the ease of type-punning optimizations
1936 we could use the underlying type as hint for the representative
1937 if the bitfield would fit and the representative would not exceed
1938 the union in size. */
1939 if (TREE_CODE (t) != RECORD_TYPE)
1940 return;
1942 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1943 field; field = DECL_CHAIN (field))
1945 if (TREE_CODE (field) != FIELD_DECL)
1946 continue;
1948 /* In the C++ memory model, consecutive bit fields in a structure are
1949 considered one memory location and updating a memory location
1950 may not store into adjacent memory locations. */
1951 if (!repr
1952 && DECL_BIT_FIELD_TYPE (field))
1954 /* Start new representative. */
1955 repr = start_bitfield_representative (field);
1957 else if (repr
1958 && ! DECL_BIT_FIELD_TYPE (field))
1960 /* Finish off new representative. */
1961 finish_bitfield_representative (repr, prev);
1962 repr = NULL_TREE;
1964 else if (DECL_BIT_FIELD_TYPE (field))
1966 gcc_assert (repr != NULL_TREE);
1968 /* Zero-size bitfields finish off a representative and
1969 do not have a representative themselves. This is
1970 required by the C++ memory model. */
1971 if (integer_zerop (DECL_SIZE (field)))
1973 finish_bitfield_representative (repr, prev);
1974 repr = NULL_TREE;
1977 /* We assume that either DECL_FIELD_OFFSET of the representative
1978 and each bitfield member is a constant or they are equal.
1979 This is because we need to be able to compute the bit-offset
1980 of each field relative to the representative in get_bit_range
1981 during RTL expansion.
1982 If these constraints are not met, simply force a new
1983 representative to be generated. That will at most
1984 generate worse code but still maintain correctness with
1985 respect to the C++ memory model. */
1986 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1987 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1988 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1989 DECL_FIELD_OFFSET (field), 0)))
1991 finish_bitfield_representative (repr, prev);
1992 repr = start_bitfield_representative (field);
1995 else
1996 continue;
1998 if (repr)
1999 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2001 prev = field;
2004 if (repr)
2005 finish_bitfield_representative (repr, prev);
2008 /* Do all of the work required to layout the type indicated by RLI,
2009 once the fields have been laid out. This function will call `free'
2010 for RLI, unless FREE_P is false. Passing a value other than false
2011 for FREE_P is bad practice; this option only exists to support the
2012 G++ 3.2 ABI. */
2014 void
2015 finish_record_layout (record_layout_info rli, int free_p)
2017 tree variant;
2019 /* Compute the final size. */
2020 finalize_record_size (rli);
2022 /* Compute the TYPE_MODE for the record. */
2023 compute_record_mode (rli->t);
2025 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2026 finalize_type_size (rli->t);
2028 /* Compute bitfield representatives. */
2029 finish_bitfield_layout (rli->t);
2031 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2032 With C++ templates, it is too early to do this when the attribute
2033 is being parsed. */
2034 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2035 variant = TYPE_NEXT_VARIANT (variant))
2037 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2038 TYPE_REVERSE_STORAGE_ORDER (variant)
2039 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2042 /* Lay out any static members. This is done now because their type
2043 may use the record's type. */
2044 while (!vec_safe_is_empty (rli->pending_statics))
2045 layout_decl (rli->pending_statics->pop (), 0);
2047 /* Clean up. */
2048 if (free_p)
2050 vec_free (rli->pending_statics);
2051 free (rli);
2056 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2057 NAME, its fields are chained in reverse on FIELDS.
2059 If ALIGN_TYPE is non-null, it is given the same alignment as
2060 ALIGN_TYPE. */
2062 void
2063 finish_builtin_struct (tree type, const char *name, tree fields,
2064 tree align_type)
2066 tree tail, next;
2068 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2070 DECL_FIELD_CONTEXT (fields) = type;
2071 next = DECL_CHAIN (fields);
2072 DECL_CHAIN (fields) = tail;
2074 TYPE_FIELDS (type) = tail;
2076 if (align_type)
2078 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2079 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2082 layout_type (type);
2083 #if 0 /* not yet, should get fixed properly later */
2084 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2085 #else
2086 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2087 TYPE_DECL, get_identifier (name), type);
2088 #endif
2089 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2090 layout_decl (TYPE_NAME (type), 0);
2093 /* Calculate the mode, size, and alignment for TYPE.
2094 For an array type, calculate the element separation as well.
2095 Record TYPE on the chain of permanent or temporary types
2096 so that dbxout will find out about it.
2098 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2099 layout_type does nothing on such a type.
2101 If the type is incomplete, its TYPE_SIZE remains zero. */
2103 void
2104 layout_type (tree type)
2106 gcc_assert (type);
2108 if (type == error_mark_node)
2109 return;
2111 /* We don't want finalize_type_size to copy an alignment attribute to
2112 variants that don't have it. */
2113 type = TYPE_MAIN_VARIANT (type);
2115 /* Do nothing if type has been laid out before. */
2116 if (TYPE_SIZE (type))
2117 return;
2119 switch (TREE_CODE (type))
2121 case LANG_TYPE:
2122 /* This kind of type is the responsibility
2123 of the language-specific code. */
2124 gcc_unreachable ();
2126 case BOOLEAN_TYPE:
2127 case INTEGER_TYPE:
2128 case ENUMERAL_TYPE:
2129 SET_TYPE_MODE (type,
2130 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2131 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2132 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2133 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2134 break;
2136 case REAL_TYPE:
2137 SET_TYPE_MODE (type,
2138 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2139 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2140 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2141 break;
2143 case FIXED_POINT_TYPE:
2144 /* TYPE_MODE (type) has been set already. */
2145 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2146 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2147 break;
2149 case COMPLEX_TYPE:
2150 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2151 SET_TYPE_MODE (type,
2152 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2154 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2155 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2156 break;
2158 case VECTOR_TYPE:
2160 int nunits = TYPE_VECTOR_SUBPARTS (type);
2161 tree innertype = TREE_TYPE (type);
2163 gcc_assert (!(nunits & (nunits - 1)));
2165 /* Find an appropriate mode for the vector type. */
2166 if (TYPE_MODE (type) == VOIDmode)
2167 SET_TYPE_MODE (type,
2168 mode_for_vector (TYPE_MODE (innertype), nunits));
2170 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2171 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2172 /* Several boolean vector elements may fit in a single unit. */
2173 if (VECTOR_BOOLEAN_TYPE_P (type)
2174 && type->type_common.mode != BLKmode)
2175 TYPE_SIZE_UNIT (type)
2176 = size_int (GET_MODE_SIZE (type->type_common.mode));
2177 else
2178 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2179 TYPE_SIZE_UNIT (innertype),
2180 size_int (nunits));
2181 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2182 TYPE_SIZE (innertype),
2183 bitsize_int (nunits));
2185 /* For vector types, we do not default to the mode's alignment.
2186 Instead, query a target hook, defaulting to natural alignment.
2187 This prevents ABI changes depending on whether or not native
2188 vector modes are supported. */
2189 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2191 /* However, if the underlying mode requires a bigger alignment than
2192 what the target hook provides, we cannot use the mode. For now,
2193 simply reject that case. */
2194 gcc_assert (TYPE_ALIGN (type)
2195 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2196 break;
2199 case VOID_TYPE:
2200 /* This is an incomplete type and so doesn't have a size. */
2201 SET_TYPE_ALIGN (type, 1);
2202 TYPE_USER_ALIGN (type) = 0;
2203 SET_TYPE_MODE (type, VOIDmode);
2204 break;
2206 case POINTER_BOUNDS_TYPE:
2207 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2208 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2209 break;
2211 case OFFSET_TYPE:
2212 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2213 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2214 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2215 integral, which may be an __intN. */
2216 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2217 TYPE_PRECISION (type) = POINTER_SIZE;
2218 break;
2220 case FUNCTION_TYPE:
2221 case METHOD_TYPE:
2222 /* It's hard to see what the mode and size of a function ought to
2223 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2224 make it consistent with that. */
2225 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2226 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2227 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2228 break;
2230 case POINTER_TYPE:
2231 case REFERENCE_TYPE:
2233 machine_mode mode = TYPE_MODE (type);
2234 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2235 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2236 TYPE_UNSIGNED (type) = 1;
2237 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2239 break;
2241 case ARRAY_TYPE:
2243 tree index = TYPE_DOMAIN (type);
2244 tree element = TREE_TYPE (type);
2246 /* We need to know both bounds in order to compute the size. */
2247 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2248 && TYPE_SIZE (element))
2250 tree ub = TYPE_MAX_VALUE (index);
2251 tree lb = TYPE_MIN_VALUE (index);
2252 tree element_size = TYPE_SIZE (element);
2253 tree length;
2255 /* Make sure that an array of zero-sized element is zero-sized
2256 regardless of its extent. */
2257 if (integer_zerop (element_size))
2258 length = size_zero_node;
2260 /* The computation should happen in the original signedness so
2261 that (possible) negative values are handled appropriately
2262 when determining overflow. */
2263 else
2265 /* ??? When it is obvious that the range is signed
2266 represent it using ssizetype. */
2267 if (TREE_CODE (lb) == INTEGER_CST
2268 && TREE_CODE (ub) == INTEGER_CST
2269 && TYPE_UNSIGNED (TREE_TYPE (lb))
2270 && tree_int_cst_lt (ub, lb))
2272 lb = wide_int_to_tree (ssizetype,
2273 offset_int::from (lb, SIGNED));
2274 ub = wide_int_to_tree (ssizetype,
2275 offset_int::from (ub, SIGNED));
2277 length
2278 = fold_convert (sizetype,
2279 size_binop (PLUS_EXPR,
2280 build_int_cst (TREE_TYPE (lb), 1),
2281 size_binop (MINUS_EXPR, ub, lb)));
2284 /* ??? We have no way to distinguish a null-sized array from an
2285 array spanning the whole sizetype range, so we arbitrarily
2286 decide that [0, -1] is the only valid representation. */
2287 if (integer_zerop (length)
2288 && TREE_OVERFLOW (length)
2289 && integer_zerop (lb))
2290 length = size_zero_node;
2292 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2293 fold_convert (bitsizetype,
2294 length));
2296 /* If we know the size of the element, calculate the total size
2297 directly, rather than do some division thing below. This
2298 optimization helps Fortran assumed-size arrays (where the
2299 size of the array is determined at runtime) substantially. */
2300 if (TYPE_SIZE_UNIT (element))
2301 TYPE_SIZE_UNIT (type)
2302 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2305 /* Now round the alignment and size,
2306 using machine-dependent criteria if any. */
2308 unsigned align = TYPE_ALIGN (element);
2309 if (TYPE_USER_ALIGN (type))
2310 align = MAX (align, TYPE_ALIGN (type));
2311 else
2312 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2313 #ifdef ROUND_TYPE_ALIGN
2314 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2315 #else
2316 align = MAX (align, BITS_PER_UNIT);
2317 #endif
2318 SET_TYPE_ALIGN (type, align);
2319 SET_TYPE_MODE (type, BLKmode);
2320 if (TYPE_SIZE (type) != 0
2321 && ! targetm.member_type_forces_blk (type, VOIDmode)
2322 /* BLKmode elements force BLKmode aggregate;
2323 else extract/store fields may lose. */
2324 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2325 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2327 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2328 TYPE_SIZE (type)));
2329 if (TYPE_MODE (type) != BLKmode
2330 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2331 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2333 TYPE_NO_FORCE_BLK (type) = 1;
2334 SET_TYPE_MODE (type, BLKmode);
2337 /* When the element size is constant, check that it is at least as
2338 large as the element alignment. */
2339 if (TYPE_SIZE_UNIT (element)
2340 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2341 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2342 TYPE_ALIGN_UNIT. */
2343 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2344 && !integer_zerop (TYPE_SIZE_UNIT (element))
2345 && compare_tree_int (TYPE_SIZE_UNIT (element),
2346 TYPE_ALIGN_UNIT (element)) < 0)
2347 error ("alignment of array elements is greater than element size");
2348 break;
2351 case RECORD_TYPE:
2352 case UNION_TYPE:
2353 case QUAL_UNION_TYPE:
2355 tree field;
2356 record_layout_info rli;
2358 /* Initialize the layout information. */
2359 rli = start_record_layout (type);
2361 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2362 in the reverse order in building the COND_EXPR that denotes
2363 its size. We reverse them again later. */
2364 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2365 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2367 /* Place all the fields. */
2368 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2369 place_field (rli, field);
2371 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2372 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2374 /* Finish laying out the record. */
2375 finish_record_layout (rli, /*free_p=*/true);
2377 break;
2379 default:
2380 gcc_unreachable ();
2383 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2384 records and unions, finish_record_layout already called this
2385 function. */
2386 if (!RECORD_OR_UNION_TYPE_P (type))
2387 finalize_type_size (type);
2389 /* We should never see alias sets on incomplete aggregates. And we
2390 should not call layout_type on not incomplete aggregates. */
2391 if (AGGREGATE_TYPE_P (type))
2392 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2395 /* Return the least alignment required for type TYPE. */
2397 unsigned int
2398 min_align_of_type (tree type)
2400 unsigned int align = TYPE_ALIGN (type);
2401 if (!TYPE_USER_ALIGN (type))
2403 align = MIN (align, BIGGEST_ALIGNMENT);
2404 #ifdef BIGGEST_FIELD_ALIGNMENT
2405 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2406 #endif
2407 unsigned int field_align = align;
2408 #ifdef ADJUST_FIELD_ALIGN
2409 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2410 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2411 ggc_free (field);
2412 #endif
2413 align = MIN (align, field_align);
2415 return align / BITS_PER_UNIT;
2418 /* Vector types need to re-check the target flags each time we report
2419 the machine mode. We need to do this because attribute target can
2420 change the result of vector_mode_supported_p and have_regs_of_mode
2421 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2422 change on a per-function basis. */
2423 /* ??? Possibly a better solution is to run through all the types
2424 referenced by a function and re-compute the TYPE_MODE once, rather
2425 than make the TYPE_MODE macro call a function. */
2427 machine_mode
2428 vector_type_mode (const_tree t)
2430 machine_mode mode;
2432 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2434 mode = t->type_common.mode;
2435 if (VECTOR_MODE_P (mode)
2436 && (!targetm.vector_mode_supported_p (mode)
2437 || !have_regs_of_mode[mode]))
2439 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2441 /* For integers, try mapping it to a same-sized scalar mode. */
2442 if (GET_MODE_CLASS (innermode) == MODE_INT)
2444 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2445 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2447 if (mode != VOIDmode && have_regs_of_mode[mode])
2448 return mode;
2451 return BLKmode;
2454 return mode;
2457 /* Create and return a type for signed integers of PRECISION bits. */
2459 tree
2460 make_signed_type (int precision)
2462 tree type = make_node (INTEGER_TYPE);
2464 TYPE_PRECISION (type) = precision;
2466 fixup_signed_type (type);
2467 return type;
2470 /* Create and return a type for unsigned integers of PRECISION bits. */
2472 tree
2473 make_unsigned_type (int precision)
2475 tree type = make_node (INTEGER_TYPE);
2477 TYPE_PRECISION (type) = precision;
2479 fixup_unsigned_type (type);
2480 return type;
2483 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2484 and SATP. */
2486 tree
2487 make_fract_type (int precision, int unsignedp, int satp)
2489 tree type = make_node (FIXED_POINT_TYPE);
2491 TYPE_PRECISION (type) = precision;
2493 if (satp)
2494 TYPE_SATURATING (type) = 1;
2496 /* Lay out the type: set its alignment, size, etc. */
2497 if (unsignedp)
2499 TYPE_UNSIGNED (type) = 1;
2500 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2502 else
2503 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2504 layout_type (type);
2506 return type;
2509 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2510 and SATP. */
2512 tree
2513 make_accum_type (int precision, int unsignedp, int satp)
2515 tree type = make_node (FIXED_POINT_TYPE);
2517 TYPE_PRECISION (type) = precision;
2519 if (satp)
2520 TYPE_SATURATING (type) = 1;
2522 /* Lay out the type: set its alignment, size, etc. */
2523 if (unsignedp)
2525 TYPE_UNSIGNED (type) = 1;
2526 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2528 else
2529 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2530 layout_type (type);
2532 return type;
2535 /* Initialize sizetypes so layout_type can use them. */
2537 void
2538 initialize_sizetypes (void)
2540 int precision, bprecision;
2542 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2543 if (strcmp (SIZETYPE, "unsigned int") == 0)
2544 precision = INT_TYPE_SIZE;
2545 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2546 precision = LONG_TYPE_SIZE;
2547 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2548 precision = LONG_LONG_TYPE_SIZE;
2549 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2550 precision = SHORT_TYPE_SIZE;
2551 else
2553 int i;
2555 precision = -1;
2556 for (i = 0; i < NUM_INT_N_ENTS; i++)
2557 if (int_n_enabled_p[i])
2559 char name[50];
2560 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2562 if (strcmp (name, SIZETYPE) == 0)
2564 precision = int_n_data[i].bitsize;
2567 if (precision == -1)
2568 gcc_unreachable ();
2571 bprecision
2572 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2573 bprecision
2574 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2575 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2576 bprecision = HOST_BITS_PER_DOUBLE_INT;
2578 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2579 sizetype = make_node (INTEGER_TYPE);
2580 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2581 TYPE_PRECISION (sizetype) = precision;
2582 TYPE_UNSIGNED (sizetype) = 1;
2583 bitsizetype = make_node (INTEGER_TYPE);
2584 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2585 TYPE_PRECISION (bitsizetype) = bprecision;
2586 TYPE_UNSIGNED (bitsizetype) = 1;
2588 /* Now layout both types manually. */
2589 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2590 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2591 TYPE_SIZE (sizetype) = bitsize_int (precision);
2592 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2593 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2595 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2596 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2597 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2598 TYPE_SIZE_UNIT (bitsizetype)
2599 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2600 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2602 /* Create the signed variants of *sizetype. */
2603 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2604 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2605 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2606 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2609 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2610 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2611 for TYPE, based on the PRECISION and whether or not the TYPE
2612 IS_UNSIGNED. PRECISION need not correspond to a width supported
2613 natively by the hardware; for example, on a machine with 8-bit,
2614 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2615 61. */
2617 void
2618 set_min_and_max_values_for_integral_type (tree type,
2619 int precision,
2620 signop sgn)
2622 /* For bitfields with zero width we end up creating integer types
2623 with zero precision. Don't assign any minimum/maximum values
2624 to those types, they don't have any valid value. */
2625 if (precision < 1)
2626 return;
2628 TYPE_MIN_VALUE (type)
2629 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2630 TYPE_MAX_VALUE (type)
2631 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2634 /* Set the extreme values of TYPE based on its precision in bits,
2635 then lay it out. Used when make_signed_type won't do
2636 because the tree code is not INTEGER_TYPE.
2637 E.g. for Pascal, when the -fsigned-char option is given. */
2639 void
2640 fixup_signed_type (tree type)
2642 int precision = TYPE_PRECISION (type);
2644 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2646 /* Lay out the type: set its alignment, size, etc. */
2647 layout_type (type);
2650 /* Set the extreme values of TYPE based on its precision in bits,
2651 then lay it out. This is used both in `make_unsigned_type'
2652 and for enumeral types. */
2654 void
2655 fixup_unsigned_type (tree type)
2657 int precision = TYPE_PRECISION (type);
2659 TYPE_UNSIGNED (type) = 1;
2661 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2663 /* Lay out the type: set its alignment, size, etc. */
2664 layout_type (type);
2667 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2668 starting at BITPOS.
2670 BITREGION_START is the bit position of the first bit in this
2671 sequence of bit fields. BITREGION_END is the last bit in this
2672 sequence. If these two fields are non-zero, we should restrict the
2673 memory access to that range. Otherwise, we are allowed to touch
2674 any adjacent non bit-fields.
2676 ALIGN is the alignment of the underlying object in bits.
2677 VOLATILEP says whether the bitfield is volatile. */
2679 bit_field_mode_iterator
2680 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2681 HOST_WIDE_INT bitregion_start,
2682 HOST_WIDE_INT bitregion_end,
2683 unsigned int align, bool volatilep)
2684 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2685 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2686 m_bitregion_end (bitregion_end), m_align (align),
2687 m_volatilep (volatilep), m_count (0)
2689 if (!m_bitregion_end)
2691 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2692 the bitfield is mapped and won't trap, provided that ALIGN isn't
2693 too large. The cap is the biggest required alignment for data,
2694 or at least the word size. And force one such chunk at least. */
2695 unsigned HOST_WIDE_INT units
2696 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2697 if (bitsize <= 0)
2698 bitsize = 1;
2699 m_bitregion_end = bitpos + bitsize + units - 1;
2700 m_bitregion_end -= m_bitregion_end % units + 1;
2704 /* Calls to this function return successively larger modes that can be used
2705 to represent the bitfield. Return true if another bitfield mode is
2706 available, storing it in *OUT_MODE if so. */
2708 bool
2709 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2711 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2713 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2715 /* Skip modes that don't have full precision. */
2716 if (unit != GET_MODE_PRECISION (m_mode))
2717 continue;
2719 /* Stop if the mode is too wide to handle efficiently. */
2720 if (unit > MAX_FIXED_MODE_SIZE)
2721 break;
2723 /* Don't deliver more than one multiword mode; the smallest one
2724 should be used. */
2725 if (m_count > 0 && unit > BITS_PER_WORD)
2726 break;
2728 /* Skip modes that are too small. */
2729 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2730 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2731 if (subend > unit)
2732 continue;
2734 /* Stop if the mode goes outside the bitregion. */
2735 HOST_WIDE_INT start = m_bitpos - substart;
2736 if (m_bitregion_start && start < m_bitregion_start)
2737 break;
2738 HOST_WIDE_INT end = start + unit;
2739 if (end > m_bitregion_end + 1)
2740 break;
2742 /* Stop if the mode requires too much alignment. */
2743 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2744 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2745 break;
2747 *out_mode = m_mode;
2748 m_mode = GET_MODE_WIDER_MODE (m_mode);
2749 m_count++;
2750 return true;
2752 return false;
2755 /* Return true if smaller modes are generally preferred for this kind
2756 of bitfield. */
2758 bool
2759 bit_field_mode_iterator::prefer_smaller_modes ()
2761 return (m_volatilep
2762 ? targetm.narrow_volatile_bitfield ()
2763 : !SLOW_BYTE_ACCESS);
2766 /* Find the best machine mode to use when referencing a bit field of length
2767 BITSIZE bits starting at BITPOS.
2769 BITREGION_START is the bit position of the first bit in this
2770 sequence of bit fields. BITREGION_END is the last bit in this
2771 sequence. If these two fields are non-zero, we should restrict the
2772 memory access to that range. Otherwise, we are allowed to touch
2773 any adjacent non bit-fields.
2775 The underlying object is known to be aligned to a boundary of ALIGN bits.
2776 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2777 larger than LARGEST_MODE (usually SImode).
2779 If no mode meets all these conditions, we return VOIDmode.
2781 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2782 smallest mode meeting these conditions.
2784 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2785 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2786 all the conditions.
2788 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2789 decide which of the above modes should be used. */
2791 machine_mode
2792 get_best_mode (int bitsize, int bitpos,
2793 unsigned HOST_WIDE_INT bitregion_start,
2794 unsigned HOST_WIDE_INT bitregion_end,
2795 unsigned int align,
2796 machine_mode largest_mode, bool volatilep)
2798 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2799 bitregion_end, align, volatilep);
2800 machine_mode widest_mode = VOIDmode;
2801 machine_mode mode;
2802 while (iter.next_mode (&mode)
2803 /* ??? For historical reasons, reject modes that would normally
2804 receive greater alignment, even if unaligned accesses are
2805 acceptable. This has both advantages and disadvantages.
2806 Removing this check means that something like:
2808 struct s { unsigned int x; unsigned int y; };
2809 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2811 can be implemented using a single load and compare on
2812 64-bit machines that have no alignment restrictions.
2813 For example, on powerpc64-linux-gnu, we would generate:
2815 ld 3,0(3)
2816 cntlzd 3,3
2817 srdi 3,3,6
2820 rather than:
2822 lwz 9,0(3)
2823 cmpwi 7,9,0
2824 bne 7,.L3
2825 lwz 3,4(3)
2826 cntlzw 3,3
2827 srwi 3,3,5
2828 extsw 3,3
2830 .p2align 4,,15
2831 .L3:
2832 li 3,0
2835 However, accessing more than one field can make life harder
2836 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2837 has a series of unsigned short copies followed by a series of
2838 unsigned short comparisons. With this check, both the copies
2839 and comparisons remain 16-bit accesses and FRE is able
2840 to eliminate the latter. Without the check, the comparisons
2841 can be done using 2 64-bit operations, which FRE isn't able
2842 to handle in the same way.
2844 Either way, it would probably be worth disabling this check
2845 during expand. One particular example where removing the
2846 check would help is the get_best_mode call in store_bit_field.
2847 If we are given a memory bitregion of 128 bits that is aligned
2848 to a 64-bit boundary, and the bitfield we want to modify is
2849 in the second half of the bitregion, this check causes
2850 store_bitfield to turn the memory into a 64-bit reference
2851 to the _first_ half of the region. We later use
2852 adjust_bitfield_address to get a reference to the correct half,
2853 but doing so looks to adjust_bitfield_address as though we are
2854 moving past the end of the original object, so it drops the
2855 associated MEM_EXPR and MEM_OFFSET. Removing the check
2856 causes store_bit_field to keep a 128-bit memory reference,
2857 so that the final bitfield reference still has a MEM_EXPR
2858 and MEM_OFFSET. */
2859 && GET_MODE_ALIGNMENT (mode) <= align
2860 && (largest_mode == VOIDmode
2861 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2863 widest_mode = mode;
2864 if (iter.prefer_smaller_modes ())
2865 break;
2867 return widest_mode;
2870 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2871 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2873 void
2874 get_mode_bounds (machine_mode mode, int sign,
2875 machine_mode target_mode,
2876 rtx *mmin, rtx *mmax)
2878 unsigned size = GET_MODE_PRECISION (mode);
2879 unsigned HOST_WIDE_INT min_val, max_val;
2881 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2883 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2884 if (mode == BImode)
2886 if (STORE_FLAG_VALUE < 0)
2888 min_val = STORE_FLAG_VALUE;
2889 max_val = 0;
2891 else
2893 min_val = 0;
2894 max_val = STORE_FLAG_VALUE;
2897 else if (sign)
2899 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2900 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2902 else
2904 min_val = 0;
2905 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2908 *mmin = gen_int_mode (min_val, target_mode);
2909 *mmax = gen_int_mode (max_val, target_mode);
2912 #include "gt-stor-layout.h"