* tree-ssa.c (target_for_debug_bind, verify_phi_args,
[official-gcc.git] / gcc / expr.c
blobe6d110dd027bd3e8ee9eb8d7f0bda8a6ad2cfe04
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "tm_p.h"
30 #include "ssa.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "cgraph.h"
37 #include "diagnostic.h"
38 #include "alias.h"
39 #include "fold-const.h"
40 #include "stor-layout.h"
41 #include "attribs.h"
42 #include "varasm.h"
43 #include "except.h"
44 #include "insn-attr.h"
45 #include "dojump.h"
46 #include "explow.h"
47 #include "calls.h"
48 #include "stmt.h"
49 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
50 #include "expr.h"
51 #include "optabs-tree.h"
52 #include "libfuncs.h"
53 #include "reload.h"
54 #include "langhooks.h"
55 #include "common/common-target.h"
56 #include "tree-ssa-live.h"
57 #include "tree-outof-ssa.h"
58 #include "tree-ssa-address.h"
59 #include "builtins.h"
60 #include "tree-chkp.h"
61 #include "rtl-chkp.h"
62 #include "ccmp.h"
65 /* If this is nonzero, we do not bother generating VOLATILE
66 around volatile memory references, and we are willing to
67 output indirect addresses. If cse is to follow, we reject
68 indirect addresses so a useful potential cse is generated;
69 if it is used only once, instruction combination will produce
70 the same indirect address eventually. */
71 int cse_not_expected;
73 static bool block_move_libcall_safe_for_call_parm (void);
74 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
75 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
76 unsigned HOST_WIDE_INT);
77 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
78 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
79 static rtx_insn *compress_float_constant (rtx, rtx);
80 static rtx get_subtarget (rtx);
81 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
82 HOST_WIDE_INT, machine_mode,
83 tree, int, alias_set_type, bool);
84 static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
85 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
86 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
87 machine_mode, tree, alias_set_type, bool, bool);
89 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
91 static int is_aligning_offset (const_tree, const_tree);
92 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
93 static rtx do_store_flag (sepops, rtx, machine_mode);
94 #ifdef PUSH_ROUNDING
95 static void emit_single_push_insn (machine_mode, rtx, tree);
96 #endif
97 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, int);
98 static rtx const_vector_from_tree (tree);
99 static rtx const_scalar_mask_from_tree (tree);
100 static tree tree_expr_size (const_tree);
101 static HOST_WIDE_INT int_expr_size (tree);
104 /* This is run to set up which modes can be used
105 directly in memory and to initialize the block move optab. It is run
106 at the beginning of compilation and when the target is reinitialized. */
108 void
109 init_expr_target (void)
111 rtx insn, pat;
112 machine_mode mode;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
127 insn = rtx_alloc (INSN);
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
131 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
134 int regno;
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
148 if (! HARD_REGNO_MODE_OK (regno, mode))
149 continue;
151 set_mode_and_regno (reg, mode, regno);
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
177 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
178 mode = GET_MODE_WIDER_MODE (mode))
180 machine_mode srcmode;
181 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
182 srcmode = GET_MODE_WIDER_MODE (srcmode))
184 enum insn_code ic;
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
190 PUT_MODE (mem, srcmode);
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
198 /* This is run at the start of compiling a function. */
200 void
201 init_expr (void)
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
217 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
218 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
219 enum insn_code code;
220 rtx libcall;
222 /* rtx code for making an equivalent value. */
223 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
224 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
227 gcc_assert (to_real == from_real);
228 gcc_assert (to_mode != BLKmode);
229 gcc_assert (from_mode != BLKmode);
231 /* If the source and destination are already the same, then there's
232 nothing to do. */
233 if (to == from)
234 return;
236 /* If FROM is a SUBREG that indicates that we have already done at least
237 the required extension, strip it. We don't handle such SUBREGs as
238 TO here. */
240 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
241 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
242 >= GET_MODE_PRECISION (to_mode))
243 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
244 from = gen_lowpart (to_mode, from), from_mode = to_mode;
246 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
248 if (to_mode == from_mode
249 || (from_mode == VOIDmode && CONSTANT_P (from)))
251 emit_move_insn (to, from);
252 return;
255 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
257 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
259 if (VECTOR_MODE_P (to_mode))
260 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
261 else
262 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
264 emit_move_insn (to, from);
265 return;
268 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
270 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
271 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
272 return;
275 if (to_real)
277 rtx value;
278 rtx_insn *insns;
279 convert_optab tab;
281 gcc_assert ((GET_MODE_PRECISION (from_mode)
282 != GET_MODE_PRECISION (to_mode))
283 || (DECIMAL_FLOAT_MODE_P (from_mode)
284 != DECIMAL_FLOAT_MODE_P (to_mode)));
286 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
287 /* Conversion between decimal float and binary float, same size. */
288 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
289 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
290 tab = sext_optab;
291 else
292 tab = trunc_optab;
294 /* Try converting directly if the insn is supported. */
296 code = convert_optab_handler (tab, to_mode, from_mode);
297 if (code != CODE_FOR_nothing)
299 emit_unop_insn (code, to, from,
300 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
301 return;
304 /* Otherwise use a libcall. */
305 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
307 /* Is this conversion implemented yet? */
308 gcc_assert (libcall);
310 start_sequence ();
311 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
312 1, from, from_mode);
313 insns = get_insns ();
314 end_sequence ();
315 emit_libcall_block (insns, to, value,
316 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
317 from)
318 : gen_rtx_FLOAT_EXTEND (to_mode, from));
319 return;
322 /* Handle pointer conversion. */ /* SPEE 900220. */
323 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
325 convert_optab ctab;
327 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
328 ctab = trunc_optab;
329 else if (unsignedp)
330 ctab = zext_optab;
331 else
332 ctab = sext_optab;
334 if (convert_optab_handler (ctab, to_mode, from_mode)
335 != CODE_FOR_nothing)
337 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
338 to, from, UNKNOWN);
339 return;
343 /* Targets are expected to provide conversion insns between PxImode and
344 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
345 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
347 machine_mode full_mode
348 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
350 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
351 != CODE_FOR_nothing);
353 if (full_mode != from_mode)
354 from = convert_to_mode (full_mode, from, unsignedp);
355 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
356 to, from, UNKNOWN);
357 return;
359 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
361 rtx new_from;
362 machine_mode full_mode
363 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
364 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
365 enum insn_code icode;
367 icode = convert_optab_handler (ctab, full_mode, from_mode);
368 gcc_assert (icode != CODE_FOR_nothing);
370 if (to_mode == full_mode)
372 emit_unop_insn (icode, to, from, UNKNOWN);
373 return;
376 new_from = gen_reg_rtx (full_mode);
377 emit_unop_insn (icode, new_from, from, UNKNOWN);
379 /* else proceed to integer conversions below. */
380 from_mode = full_mode;
381 from = new_from;
384 /* Make sure both are fixed-point modes or both are not. */
385 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
386 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
387 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
389 /* If we widen from_mode to to_mode and they are in the same class,
390 we won't saturate the result.
391 Otherwise, always saturate the result to play safe. */
392 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
393 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
394 expand_fixed_convert (to, from, 0, 0);
395 else
396 expand_fixed_convert (to, from, 0, 1);
397 return;
400 /* Now both modes are integers. */
402 /* Handle expanding beyond a word. */
403 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
404 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
406 rtx_insn *insns;
407 rtx lowpart;
408 rtx fill_value;
409 rtx lowfrom;
410 int i;
411 machine_mode lowpart_mode;
412 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
414 /* Try converting directly if the insn is supported. */
415 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
416 != CODE_FOR_nothing)
418 /* If FROM is a SUBREG, put it into a register. Do this
419 so that we always generate the same set of insns for
420 better cse'ing; if an intermediate assignment occurred,
421 we won't be doing the operation directly on the SUBREG. */
422 if (optimize > 0 && GET_CODE (from) == SUBREG)
423 from = force_reg (from_mode, from);
424 emit_unop_insn (code, to, from, equiv_code);
425 return;
427 /* Next, try converting via full word. */
428 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
429 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
430 != CODE_FOR_nothing))
432 rtx word_to = gen_reg_rtx (word_mode);
433 if (REG_P (to))
435 if (reg_overlap_mentioned_p (to, from))
436 from = force_reg (from_mode, from);
437 emit_clobber (to);
439 convert_move (word_to, from, unsignedp);
440 emit_unop_insn (code, to, word_to, equiv_code);
441 return;
444 /* No special multiword conversion insn; do it by hand. */
445 start_sequence ();
447 /* Since we will turn this into a no conflict block, we must ensure
448 the source does not overlap the target so force it into an isolated
449 register when maybe so. Likewise for any MEM input, since the
450 conversion sequence might require several references to it and we
451 must ensure we're getting the same value every time. */
453 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
456 /* Get a copy of FROM widened to a word, if necessary. */
457 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
458 lowpart_mode = word_mode;
459 else
460 lowpart_mode = from_mode;
462 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
464 lowpart = gen_lowpart (lowpart_mode, to);
465 emit_move_insn (lowpart, lowfrom);
467 /* Compute the value to put in each remaining word. */
468 if (unsignedp)
469 fill_value = const0_rtx;
470 else
471 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
472 LT, lowfrom, const0_rtx,
473 lowpart_mode, 0, -1);
475 /* Fill the remaining words. */
476 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
478 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
479 rtx subword = operand_subword (to, index, 1, to_mode);
481 gcc_assert (subword);
483 if (fill_value != subword)
484 emit_move_insn (subword, fill_value);
487 insns = get_insns ();
488 end_sequence ();
490 emit_insn (insns);
491 return;
494 /* Truncating multi-word to a word or less. */
495 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
496 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
498 if (!((MEM_P (from)
499 && ! MEM_VOLATILE_P (from)
500 && direct_load[(int) to_mode]
501 && ! mode_dependent_address_p (XEXP (from, 0),
502 MEM_ADDR_SPACE (from)))
503 || REG_P (from)
504 || GET_CODE (from) == SUBREG))
505 from = force_reg (from_mode, from);
506 convert_move (to, gen_lowpart (word_mode, from), 0);
507 return;
510 /* Now follow all the conversions between integers
511 no more than a word long. */
513 /* For truncation, usually we can just refer to FROM in a narrower mode. */
514 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
515 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
517 if (!((MEM_P (from)
518 && ! MEM_VOLATILE_P (from)
519 && direct_load[(int) to_mode]
520 && ! mode_dependent_address_p (XEXP (from, 0),
521 MEM_ADDR_SPACE (from)))
522 || REG_P (from)
523 || GET_CODE (from) == SUBREG))
524 from = force_reg (from_mode, from);
525 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
526 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
527 from = copy_to_reg (from);
528 emit_move_insn (to, gen_lowpart (to_mode, from));
529 return;
532 /* Handle extension. */
533 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
535 /* Convert directly if that works. */
536 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
537 != CODE_FOR_nothing)
539 emit_unop_insn (code, to, from, equiv_code);
540 return;
542 else
544 machine_mode intermediate;
545 rtx tmp;
546 int shift_amount;
548 /* Search for a mode to convert via. */
549 for (intermediate = from_mode; intermediate != VOIDmode;
550 intermediate = GET_MODE_WIDER_MODE (intermediate))
551 if (((can_extend_p (to_mode, intermediate, unsignedp)
552 != CODE_FOR_nothing)
553 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
554 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
555 && (can_extend_p (intermediate, from_mode, unsignedp)
556 != CODE_FOR_nothing))
558 convert_move (to, convert_to_mode (intermediate, from,
559 unsignedp), unsignedp);
560 return;
563 /* No suitable intermediate mode.
564 Generate what we need with shifts. */
565 shift_amount = (GET_MODE_PRECISION (to_mode)
566 - GET_MODE_PRECISION (from_mode));
567 from = gen_lowpart (to_mode, force_reg (from_mode, from));
568 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
569 to, unsignedp);
570 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
571 to, unsignedp);
572 if (tmp != to)
573 emit_move_insn (to, tmp);
574 return;
578 /* Support special truncate insns for certain modes. */
579 if (convert_optab_handler (trunc_optab, to_mode,
580 from_mode) != CODE_FOR_nothing)
582 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
583 to, from, UNKNOWN);
584 return;
587 /* Handle truncation of volatile memrefs, and so on;
588 the things that couldn't be truncated directly,
589 and for which there was no special instruction.
591 ??? Code above formerly short-circuited this, for most integer
592 mode pairs, with a force_reg in from_mode followed by a recursive
593 call to this routine. Appears always to have been wrong. */
594 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
596 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
597 emit_move_insn (to, temp);
598 return;
601 /* Mode combination is not recognized. */
602 gcc_unreachable ();
605 /* Return an rtx for a value that would result
606 from converting X to mode MODE.
607 Both X and MODE may be floating, or both integer.
608 UNSIGNEDP is nonzero if X is an unsigned value.
609 This can be done by referring to a part of X in place
610 or by copying to a new temporary with conversion. */
613 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
615 return convert_modes (mode, VOIDmode, x, unsignedp);
618 /* Return an rtx for a value that would result
619 from converting X from mode OLDMODE to mode MODE.
620 Both modes may be floating, or both integer.
621 UNSIGNEDP is nonzero if X is an unsigned value.
623 This can be done by referring to a part of X in place
624 or by copying to a new temporary with conversion.
626 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
629 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
631 rtx temp;
633 /* If FROM is a SUBREG that indicates that we have already done at least
634 the required extension, strip it. */
636 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
637 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
638 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
639 x = gen_lowpart (mode, SUBREG_REG (x));
641 if (GET_MODE (x) != VOIDmode)
642 oldmode = GET_MODE (x);
644 if (mode == oldmode)
645 return x;
647 if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
649 /* If the caller did not tell us the old mode, then there is not
650 much to do with respect to canonicalization. We have to
651 assume that all the bits are significant. */
652 if (GET_MODE_CLASS (oldmode) != MODE_INT)
653 oldmode = MAX_MODE_INT;
654 wide_int w = wide_int::from (std::make_pair (x, oldmode),
655 GET_MODE_PRECISION (mode),
656 unsignedp ? UNSIGNED : SIGNED);
657 return immed_wide_int_const (w, mode);
660 /* We can do this with a gen_lowpart if both desired and current modes
661 are integer, and this is either a constant integer, a register, or a
662 non-volatile MEM. */
663 if (GET_MODE_CLASS (mode) == MODE_INT
664 && GET_MODE_CLASS (oldmode) == MODE_INT
665 && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
666 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
667 || (REG_P (x)
668 && (!HARD_REGISTER_P (x)
669 || HARD_REGNO_MODE_OK (REGNO (x), mode))
670 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))
672 return gen_lowpart (mode, x);
674 /* Converting from integer constant into mode is always equivalent to an
675 subreg operation. */
676 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
678 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
679 return simplify_gen_subreg (mode, x, oldmode, 0);
682 temp = gen_reg_rtx (mode);
683 convert_move (temp, x, unsignedp);
684 return temp;
687 /* Return the largest alignment we can use for doing a move (or store)
688 of MAX_PIECES. ALIGN is the largest alignment we could use. */
690 static unsigned int
691 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
693 machine_mode tmode;
695 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
696 if (align >= GET_MODE_ALIGNMENT (tmode))
697 align = GET_MODE_ALIGNMENT (tmode);
698 else
700 machine_mode tmode, xmode;
702 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
703 tmode != VOIDmode;
704 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
705 if (GET_MODE_SIZE (tmode) > max_pieces
706 || SLOW_UNALIGNED_ACCESS (tmode, align))
707 break;
709 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
712 return align;
715 /* Return the widest integer mode no wider than SIZE. If no such mode
716 can be found, return VOIDmode. */
718 static machine_mode
719 widest_int_mode_for_size (unsigned int size)
721 machine_mode tmode, mode = VOIDmode;
723 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
724 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
725 if (GET_MODE_SIZE (tmode) < size)
726 mode = tmode;
728 return mode;
731 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
732 and should be performed piecewise. */
734 static bool
735 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
736 enum by_pieces_operation op)
738 return targetm.use_by_pieces_infrastructure_p (len, align, op,
739 optimize_insn_for_speed_p ());
742 /* Determine whether the LEN bytes can be moved by using several move
743 instructions. Return nonzero if a call to move_by_pieces should
744 succeed. */
746 bool
747 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
749 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
752 /* Return number of insns required to perform operation OP by pieces
753 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
755 unsigned HOST_WIDE_INT
756 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
757 unsigned int max_size, by_pieces_operation op)
759 unsigned HOST_WIDE_INT n_insns = 0;
761 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
763 while (max_size > 1 && l > 0)
765 machine_mode mode;
766 enum insn_code icode;
768 mode = widest_int_mode_for_size (max_size);
770 if (mode == VOIDmode)
771 break;
772 unsigned int modesize = GET_MODE_SIZE (mode);
774 icode = optab_handler (mov_optab, mode);
775 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
777 unsigned HOST_WIDE_INT n_pieces = l / modesize;
778 l %= modesize;
779 switch (op)
781 default:
782 n_insns += n_pieces;
783 break;
785 case COMPARE_BY_PIECES:
786 int batch = targetm.compare_by_pieces_branch_ratio (mode);
787 int batch_ops = 4 * batch - 1;
788 unsigned HOST_WIDE_INT full = n_pieces / batch;
789 n_insns += full * batch_ops;
790 if (n_pieces % batch != 0)
791 n_insns++;
792 break;
796 max_size = modesize;
799 gcc_assert (!l);
800 return n_insns;
803 /* Used when performing piecewise block operations, holds information
804 about one of the memory objects involved. The member functions
805 can be used to generate code for loading from the object and
806 updating the address when iterating. */
808 class pieces_addr
810 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
811 stack pushes. */
812 rtx m_obj;
813 /* The address of the object. Can differ from that seen in the
814 MEM rtx if we copied the address to a register. */
815 rtx m_addr;
816 /* Nonzero if the address on the object has an autoincrement already,
817 signifies whether that was an increment or decrement. */
818 signed char m_addr_inc;
819 /* Nonzero if we intend to use autoinc without the address already
820 having autoinc form. We will insert add insns around each memory
821 reference, expecting later passes to form autoinc addressing modes.
822 The only supported options are predecrement and postincrement. */
823 signed char m_explicit_inc;
824 /* True if we have either of the two possible cases of using
825 autoincrement. */
826 bool m_auto;
827 /* True if this is an address to be used for load operations rather
828 than stores. */
829 bool m_is_load;
831 /* Optionally, a function to obtain constants for any given offset into
832 the objects, and data associated with it. */
833 by_pieces_constfn m_constfn;
834 void *m_cfndata;
835 public:
836 pieces_addr (rtx, bool, by_pieces_constfn, void *);
837 rtx adjust (machine_mode, HOST_WIDE_INT);
838 void increment_address (HOST_WIDE_INT);
839 void maybe_predec (HOST_WIDE_INT);
840 void maybe_postinc (HOST_WIDE_INT);
841 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
842 int get_addr_inc ()
844 return m_addr_inc;
848 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
849 true if the operation to be performed on this object is a load
850 rather than a store. For stores, OBJ can be NULL, in which case we
851 assume the operation is a stack push. For loads, the optional
852 CONSTFN and its associated CFNDATA can be used in place of the
853 memory load. */
855 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
856 void *cfndata)
857 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
859 m_addr_inc = 0;
860 m_auto = false;
861 if (obj)
863 rtx addr = XEXP (obj, 0);
864 rtx_code code = GET_CODE (addr);
865 m_addr = addr;
866 bool dec = code == PRE_DEC || code == POST_DEC;
867 bool inc = code == PRE_INC || code == POST_INC;
868 m_auto = inc || dec;
869 if (m_auto)
870 m_addr_inc = dec ? -1 : 1;
872 /* While we have always looked for these codes here, the code
873 implementing the memory operation has never handled them.
874 Support could be added later if necessary or beneficial. */
875 gcc_assert (code != PRE_INC && code != POST_DEC);
877 else
879 m_addr = NULL_RTX;
880 if (!is_load)
882 m_auto = true;
883 if (STACK_GROWS_DOWNWARD)
884 m_addr_inc = -1;
885 else
886 m_addr_inc = 1;
888 else
889 gcc_assert (constfn != NULL);
891 m_explicit_inc = 0;
892 if (constfn)
893 gcc_assert (is_load);
896 /* Decide whether to use autoinc for an address involved in a memory op.
897 MODE is the mode of the accesses, REVERSE is true if we've decided to
898 perform the operation starting from the end, and LEN is the length of
899 the operation. Don't override an earlier decision to set m_auto. */
901 void
902 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
903 HOST_WIDE_INT len)
905 if (m_auto || m_obj == NULL_RTX)
906 return;
908 bool use_predec = (m_is_load
909 ? USE_LOAD_PRE_DECREMENT (mode)
910 : USE_STORE_PRE_DECREMENT (mode));
911 bool use_postinc = (m_is_load
912 ? USE_LOAD_POST_INCREMENT (mode)
913 : USE_STORE_POST_INCREMENT (mode));
914 machine_mode addr_mode = get_address_mode (m_obj);
916 if (use_predec && reverse)
918 m_addr = copy_to_mode_reg (addr_mode,
919 plus_constant (addr_mode,
920 m_addr, len));
921 m_auto = true;
922 m_explicit_inc = -1;
924 else if (use_postinc && !reverse)
926 m_addr = copy_to_mode_reg (addr_mode, m_addr);
927 m_auto = true;
928 m_explicit_inc = 1;
930 else if (CONSTANT_P (m_addr))
931 m_addr = copy_to_mode_reg (addr_mode, m_addr);
934 /* Adjust the address to refer to the data at OFFSET in MODE. If we
935 are using autoincrement for this address, we don't add the offset,
936 but we still modify the MEM's properties. */
939 pieces_addr::adjust (machine_mode mode, HOST_WIDE_INT offset)
941 if (m_constfn)
942 return m_constfn (m_cfndata, offset, mode);
943 if (m_obj == NULL_RTX)
944 return NULL_RTX;
945 if (m_auto)
946 return adjust_automodify_address (m_obj, mode, m_addr, offset);
947 else
948 return adjust_address (m_obj, mode, offset);
951 /* Emit an add instruction to increment the address by SIZE. */
953 void
954 pieces_addr::increment_address (HOST_WIDE_INT size)
956 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
957 emit_insn (gen_add2_insn (m_addr, amount));
960 /* If we are supposed to decrement the address after each access, emit code
961 to do so now. Increment by SIZE (which has should have the correct sign
962 already). */
964 void
965 pieces_addr::maybe_predec (HOST_WIDE_INT size)
967 if (m_explicit_inc >= 0)
968 return;
969 gcc_assert (HAVE_PRE_DECREMENT);
970 increment_address (size);
973 /* If we are supposed to decrement the address after each access, emit code
974 to do so now. Increment by SIZE. */
976 void
977 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
979 if (m_explicit_inc <= 0)
980 return;
981 gcc_assert (HAVE_POST_INCREMENT);
982 increment_address (size);
985 /* This structure is used by do_op_by_pieces to describe the operation
986 to be performed. */
988 class op_by_pieces_d
990 protected:
991 pieces_addr m_to, m_from;
992 unsigned HOST_WIDE_INT m_len;
993 HOST_WIDE_INT m_offset;
994 unsigned int m_align;
995 unsigned int m_max_size;
996 bool m_reverse;
998 /* Virtual functions, overriden by derived classes for the specific
999 operation. */
1000 virtual void generate (rtx, rtx, machine_mode) = 0;
1001 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1002 virtual void finish_mode (machine_mode)
1006 public:
1007 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1008 unsigned HOST_WIDE_INT, unsigned int);
1009 void run ();
1012 /* The constructor for an op_by_pieces_d structure. We require two
1013 objects named TO and FROM, which are identified as loads or stores
1014 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1015 and its associated FROM_CFN_DATA can be used to replace loads with
1016 constant values. LEN describes the length of the operation. */
1018 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1019 rtx from, bool from_load,
1020 by_pieces_constfn from_cfn,
1021 void *from_cfn_data,
1022 unsigned HOST_WIDE_INT len,
1023 unsigned int align)
1024 : m_to (to, to_load, NULL, NULL),
1025 m_from (from, from_load, from_cfn, from_cfn_data),
1026 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1028 int toi = m_to.get_addr_inc ();
1029 int fromi = m_from.get_addr_inc ();
1030 if (toi >= 0 && fromi >= 0)
1031 m_reverse = false;
1032 else if (toi <= 0 && fromi <= 0)
1033 m_reverse = true;
1034 else
1035 gcc_unreachable ();
1037 m_offset = m_reverse ? len : 0;
1038 align = MIN (to ? MEM_ALIGN (to) : align,
1039 from ? MEM_ALIGN (from) : align);
1041 /* If copying requires more than two move insns,
1042 copy addresses to registers (to make displacements shorter)
1043 and use post-increment if available. */
1044 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1046 /* Find the mode of the largest comparison. */
1047 machine_mode mode = widest_int_mode_for_size (m_max_size);
1049 m_from.decide_autoinc (mode, m_reverse, len);
1050 m_to.decide_autoinc (mode, m_reverse, len);
1053 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1054 m_align = align;
1057 /* This function contains the main loop used for expanding a block
1058 operation. First move what we can in the largest integer mode,
1059 then go to successively smaller modes. For every access, call
1060 GENFUN with the two operands and the EXTRA_DATA. */
1062 void
1063 op_by_pieces_d::run ()
1065 while (m_max_size > 1 && m_len > 0)
1067 machine_mode mode = widest_int_mode_for_size (m_max_size);
1069 if (mode == VOIDmode)
1070 break;
1072 if (prepare_mode (mode, m_align))
1074 unsigned int size = GET_MODE_SIZE (mode);
1075 rtx to1 = NULL_RTX, from1;
1077 while (m_len >= size)
1079 if (m_reverse)
1080 m_offset -= size;
1082 to1 = m_to.adjust (mode, m_offset);
1083 from1 = m_from.adjust (mode, m_offset);
1085 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1086 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1088 generate (to1, from1, mode);
1090 m_to.maybe_postinc (size);
1091 m_from.maybe_postinc (size);
1093 if (!m_reverse)
1094 m_offset += size;
1096 m_len -= size;
1099 finish_mode (mode);
1102 m_max_size = GET_MODE_SIZE (mode);
1105 /* The code above should have handled everything. */
1106 gcc_assert (!m_len);
1109 /* Derived class from op_by_pieces_d, providing support for block move
1110 operations. */
1112 class move_by_pieces_d : public op_by_pieces_d
1114 insn_gen_fn m_gen_fun;
1115 void generate (rtx, rtx, machine_mode);
1116 bool prepare_mode (machine_mode, unsigned int);
1118 public:
1119 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1120 unsigned int align)
1121 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1124 rtx finish_endp (int);
1127 /* Return true if MODE can be used for a set of copies, given an
1128 alignment ALIGN. Prepare whatever data is necessary for later
1129 calls to generate. */
1131 bool
1132 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1134 insn_code icode = optab_handler (mov_optab, mode);
1135 m_gen_fun = GEN_FCN (icode);
1136 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1139 /* A callback used when iterating for a compare_by_pieces_operation.
1140 OP0 and OP1 are the values that have been loaded and should be
1141 compared in MODE. If OP0 is NULL, this means we should generate a
1142 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1143 gen function that should be used to generate the mode. */
1145 void
1146 move_by_pieces_d::generate (rtx op0, rtx op1,
1147 machine_mode mode ATTRIBUTE_UNUSED)
1149 #ifdef PUSH_ROUNDING
1150 if (op0 == NULL_RTX)
1152 emit_single_push_insn (mode, op1, NULL);
1153 return;
1155 #endif
1156 emit_insn (m_gen_fun (op0, op1));
1159 /* Perform the final adjustment at the end of a string to obtain the
1160 correct return value for the block operation. If ENDP is 1 return
1161 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1162 end minus one byte ala stpcpy. */
1165 move_by_pieces_d::finish_endp (int endp)
1167 gcc_assert (!m_reverse);
1168 if (endp == 2)
1170 m_to.maybe_postinc (-1);
1171 --m_offset;
1173 return m_to.adjust (QImode, m_offset);
1176 /* Generate several move instructions to copy LEN bytes from block FROM to
1177 block TO. (These are MEM rtx's with BLKmode).
1179 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1180 used to push FROM to the stack.
1182 ALIGN is maximum stack alignment we can assume.
1184 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1185 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1186 stpcpy. */
1189 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1190 unsigned int align, int endp)
1192 #ifndef PUSH_ROUNDING
1193 if (to == NULL)
1194 gcc_unreachable ();
1195 #endif
1197 move_by_pieces_d data (to, from, len, align);
1199 data.run ();
1201 if (endp)
1202 return data.finish_endp (endp);
1203 else
1204 return to;
1207 /* Derived class from op_by_pieces_d, providing support for block move
1208 operations. */
1210 class store_by_pieces_d : public op_by_pieces_d
1212 insn_gen_fn m_gen_fun;
1213 void generate (rtx, rtx, machine_mode);
1214 bool prepare_mode (machine_mode, unsigned int);
1216 public:
1217 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1218 unsigned HOST_WIDE_INT len, unsigned int align)
1219 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1222 rtx finish_endp (int);
1225 /* Return true if MODE can be used for a set of stores, given an
1226 alignment ALIGN. Prepare whatever data is necessary for later
1227 calls to generate. */
1229 bool
1230 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1232 insn_code icode = optab_handler (mov_optab, mode);
1233 m_gen_fun = GEN_FCN (icode);
1234 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1237 /* A callback used when iterating for a store_by_pieces_operation.
1238 OP0 and OP1 are the values that have been loaded and should be
1239 compared in MODE. If OP0 is NULL, this means we should generate a
1240 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1241 gen function that should be used to generate the mode. */
1243 void
1244 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1246 emit_insn (m_gen_fun (op0, op1));
1249 /* Perform the final adjustment at the end of a string to obtain the
1250 correct return value for the block operation. If ENDP is 1 return
1251 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1252 end minus one byte ala stpcpy. */
1255 store_by_pieces_d::finish_endp (int endp)
1257 gcc_assert (!m_reverse);
1258 if (endp == 2)
1260 m_to.maybe_postinc (-1);
1261 --m_offset;
1263 return m_to.adjust (QImode, m_offset);
1266 /* Determine whether the LEN bytes generated by CONSTFUN can be
1267 stored to memory using several move instructions. CONSTFUNDATA is
1268 a pointer which will be passed as argument in every CONSTFUN call.
1269 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1270 a memset operation and false if it's a copy of a constant string.
1271 Return nonzero if a call to store_by_pieces should succeed. */
1274 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1275 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
1276 void *constfundata, unsigned int align, bool memsetp)
1278 unsigned HOST_WIDE_INT l;
1279 unsigned int max_size;
1280 HOST_WIDE_INT offset = 0;
1281 machine_mode mode;
1282 enum insn_code icode;
1283 int reverse;
1284 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1285 rtx cst ATTRIBUTE_UNUSED;
1287 if (len == 0)
1288 return 1;
1290 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1291 memsetp
1292 ? SET_BY_PIECES
1293 : STORE_BY_PIECES,
1294 optimize_insn_for_speed_p ()))
1295 return 0;
1297 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1299 /* We would first store what we can in the largest integer mode, then go to
1300 successively smaller modes. */
1302 for (reverse = 0;
1303 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1304 reverse++)
1306 l = len;
1307 max_size = STORE_MAX_PIECES + 1;
1308 while (max_size > 1 && l > 0)
1310 mode = widest_int_mode_for_size (max_size);
1312 if (mode == VOIDmode)
1313 break;
1315 icode = optab_handler (mov_optab, mode);
1316 if (icode != CODE_FOR_nothing
1317 && align >= GET_MODE_ALIGNMENT (mode))
1319 unsigned int size = GET_MODE_SIZE (mode);
1321 while (l >= size)
1323 if (reverse)
1324 offset -= size;
1326 cst = (*constfun) (constfundata, offset, mode);
1327 if (!targetm.legitimate_constant_p (mode, cst))
1328 return 0;
1330 if (!reverse)
1331 offset += size;
1333 l -= size;
1337 max_size = GET_MODE_SIZE (mode);
1340 /* The code above should have handled everything. */
1341 gcc_assert (!l);
1344 return 1;
1347 /* Generate several move instructions to store LEN bytes generated by
1348 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1349 pointer which will be passed as argument in every CONSTFUN call.
1350 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1351 a memset operation and false if it's a copy of a constant string.
1352 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1353 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1354 stpcpy. */
1357 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1358 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
1359 void *constfundata, unsigned int align, bool memsetp, int endp)
1361 if (len == 0)
1363 gcc_assert (endp != 2);
1364 return to;
1367 gcc_assert (targetm.use_by_pieces_infrastructure_p
1368 (len, align,
1369 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1370 optimize_insn_for_speed_p ()));
1372 store_by_pieces_d data (to, constfun, constfundata, len, align);
1373 data.run ();
1375 if (endp)
1376 return data.finish_endp (endp);
1377 else
1378 return to;
1381 /* Callback routine for clear_by_pieces.
1382 Return const0_rtx unconditionally. */
1384 static rtx
1385 clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode)
1387 return const0_rtx;
1390 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1391 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1393 static void
1394 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1396 if (len == 0)
1397 return;
1399 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1400 data.run ();
1403 /* Context used by compare_by_pieces_genfn. It stores the fail label
1404 to jump to in case of miscomparison, and for branch ratios greater than 1,
1405 it stores an accumulator and the current and maximum counts before
1406 emitting another branch. */
1408 class compare_by_pieces_d : public op_by_pieces_d
1410 rtx_code_label *m_fail_label;
1411 rtx m_accumulator;
1412 int m_count, m_batch;
1414 void generate (rtx, rtx, machine_mode);
1415 bool prepare_mode (machine_mode, unsigned int);
1416 void finish_mode (machine_mode);
1417 public:
1418 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1419 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1420 rtx_code_label *fail_label)
1421 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1423 m_fail_label = fail_label;
1427 /* A callback used when iterating for a compare_by_pieces_operation.
1428 OP0 and OP1 are the values that have been loaded and should be
1429 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1430 context structure. */
1432 void
1433 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1435 if (m_batch > 1)
1437 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1438 true, OPTAB_LIB_WIDEN);
1439 if (m_count != 0)
1440 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1441 true, OPTAB_LIB_WIDEN);
1442 m_accumulator = temp;
1444 if (++m_count < m_batch)
1445 return;
1447 m_count = 0;
1448 op0 = m_accumulator;
1449 op1 = const0_rtx;
1450 m_accumulator = NULL_RTX;
1452 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1453 m_fail_label, -1);
1456 /* Return true if MODE can be used for a set of moves and comparisons,
1457 given an alignment ALIGN. Prepare whatever data is necessary for
1458 later calls to generate. */
1460 bool
1461 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1463 insn_code icode = optab_handler (mov_optab, mode);
1464 if (icode == CODE_FOR_nothing
1465 || align < GET_MODE_ALIGNMENT (mode)
1466 || !can_compare_p (EQ, mode, ccp_jump))
1467 return false;
1468 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1469 if (m_batch < 0)
1470 return false;
1471 m_accumulator = NULL_RTX;
1472 m_count = 0;
1473 return true;
1476 /* Called after expanding a series of comparisons in MODE. If we have
1477 accumulated results for which we haven't emitted a branch yet, do
1478 so now. */
1480 void
1481 compare_by_pieces_d::finish_mode (machine_mode mode)
1483 if (m_accumulator != NULL_RTX)
1484 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1485 NULL_RTX, NULL, m_fail_label, -1);
1488 /* Generate several move instructions to compare LEN bytes from blocks
1489 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1491 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1492 used to push FROM to the stack.
1494 ALIGN is maximum stack alignment we can assume.
1496 Optionally, the caller can pass a constfn and associated data in A1_CFN
1497 and A1_CFN_DATA. describing that the second operand being compared is a
1498 known constant and how to obtain its data. */
1500 static rtx
1501 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1502 rtx target, unsigned int align,
1503 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1505 rtx_code_label *fail_label = gen_label_rtx ();
1506 rtx_code_label *end_label = gen_label_rtx ();
1508 if (target == NULL_RTX
1509 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1510 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1512 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1513 fail_label);
1515 data.run ();
1517 emit_move_insn (target, const0_rtx);
1518 emit_jump (end_label);
1519 emit_barrier ();
1520 emit_label (fail_label);
1521 emit_move_insn (target, const1_rtx);
1522 emit_label (end_label);
1524 return target;
1527 /* Emit code to move a block Y to a block X. This may be done with
1528 string-move instructions, with multiple scalar move instructions,
1529 or with a library call.
1531 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1532 SIZE is an rtx that says how long they are.
1533 ALIGN is the maximum alignment we can assume they have.
1534 METHOD describes what kind of copy this is, and what mechanisms may be used.
1535 MIN_SIZE is the minimal size of block to move
1536 MAX_SIZE is the maximal size of block to move, if it can not be represented
1537 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1539 Return the address of the new block, if memcpy is called and returns it,
1540 0 otherwise. */
1543 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1544 unsigned int expected_align, HOST_WIDE_INT expected_size,
1545 unsigned HOST_WIDE_INT min_size,
1546 unsigned HOST_WIDE_INT max_size,
1547 unsigned HOST_WIDE_INT probable_max_size)
1549 bool may_use_call;
1550 rtx retval = 0;
1551 unsigned int align;
1553 gcc_assert (size);
1554 if (CONST_INT_P (size) && INTVAL (size) == 0)
1555 return 0;
1557 switch (method)
1559 case BLOCK_OP_NORMAL:
1560 case BLOCK_OP_TAILCALL:
1561 may_use_call = true;
1562 break;
1564 case BLOCK_OP_CALL_PARM:
1565 may_use_call = block_move_libcall_safe_for_call_parm ();
1567 /* Make inhibit_defer_pop nonzero around the library call
1568 to force it to pop the arguments right away. */
1569 NO_DEFER_POP;
1570 break;
1572 case BLOCK_OP_NO_LIBCALL:
1573 may_use_call = false;
1574 break;
1576 default:
1577 gcc_unreachable ();
1580 gcc_assert (MEM_P (x) && MEM_P (y));
1581 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1582 gcc_assert (align >= BITS_PER_UNIT);
1584 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1585 block copy is more efficient for other large modes, e.g. DCmode. */
1586 x = adjust_address (x, BLKmode, 0);
1587 y = adjust_address (y, BLKmode, 0);
1589 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1590 can be incorrect is coming from __builtin_memcpy. */
1591 if (CONST_INT_P (size))
1593 x = shallow_copy_rtx (x);
1594 y = shallow_copy_rtx (y);
1595 set_mem_size (x, INTVAL (size));
1596 set_mem_size (y, INTVAL (size));
1599 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1600 move_by_pieces (x, y, INTVAL (size), align, 0);
1601 else if (emit_block_move_via_movmem (x, y, size, align,
1602 expected_align, expected_size,
1603 min_size, max_size, probable_max_size))
1605 else if (may_use_call
1606 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1607 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1609 /* Since x and y are passed to a libcall, mark the corresponding
1610 tree EXPR as addressable. */
1611 tree y_expr = MEM_EXPR (y);
1612 tree x_expr = MEM_EXPR (x);
1613 if (y_expr)
1614 mark_addressable (y_expr);
1615 if (x_expr)
1616 mark_addressable (x_expr);
1617 retval = emit_block_copy_via_libcall (x, y, size,
1618 method == BLOCK_OP_TAILCALL);
1621 else
1622 emit_block_move_via_loop (x, y, size, align);
1624 if (method == BLOCK_OP_CALL_PARM)
1625 OK_DEFER_POP;
1627 return retval;
1631 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1633 unsigned HOST_WIDE_INT max, min = 0;
1634 if (GET_CODE (size) == CONST_INT)
1635 min = max = UINTVAL (size);
1636 else
1637 max = GET_MODE_MASK (GET_MODE (size));
1638 return emit_block_move_hints (x, y, size, method, 0, -1,
1639 min, max, max);
1642 /* A subroutine of emit_block_move. Returns true if calling the
1643 block move libcall will not clobber any parameters which may have
1644 already been placed on the stack. */
1646 static bool
1647 block_move_libcall_safe_for_call_parm (void)
1649 #if defined (REG_PARM_STACK_SPACE)
1650 tree fn;
1651 #endif
1653 /* If arguments are pushed on the stack, then they're safe. */
1654 if (PUSH_ARGS)
1655 return true;
1657 /* If registers go on the stack anyway, any argument is sure to clobber
1658 an outgoing argument. */
1659 #if defined (REG_PARM_STACK_SPACE)
1660 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1661 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1662 depend on its argument. */
1663 (void) fn;
1664 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1665 && REG_PARM_STACK_SPACE (fn) != 0)
1666 return false;
1667 #endif
1669 /* If any argument goes in memory, then it might clobber an outgoing
1670 argument. */
1672 CUMULATIVE_ARGS args_so_far_v;
1673 cumulative_args_t args_so_far;
1674 tree fn, arg;
1676 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1677 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1678 args_so_far = pack_cumulative_args (&args_so_far_v);
1680 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1681 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1683 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1684 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1685 NULL_TREE, true);
1686 if (!tmp || !REG_P (tmp))
1687 return false;
1688 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1689 return false;
1690 targetm.calls.function_arg_advance (args_so_far, mode,
1691 NULL_TREE, true);
1694 return true;
1697 /* A subroutine of emit_block_move. Expand a movmem pattern;
1698 return true if successful. */
1700 static bool
1701 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1702 unsigned int expected_align, HOST_WIDE_INT expected_size,
1703 unsigned HOST_WIDE_INT min_size,
1704 unsigned HOST_WIDE_INT max_size,
1705 unsigned HOST_WIDE_INT probable_max_size)
1707 int save_volatile_ok = volatile_ok;
1708 machine_mode mode;
1710 if (expected_align < align)
1711 expected_align = align;
1712 if (expected_size != -1)
1714 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1715 expected_size = probable_max_size;
1716 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1717 expected_size = min_size;
1720 /* Since this is a move insn, we don't care about volatility. */
1721 volatile_ok = 1;
1723 /* Try the most limited insn first, because there's no point
1724 including more than one in the machine description unless
1725 the more limited one has some advantage. */
1727 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1728 mode = GET_MODE_WIDER_MODE (mode))
1730 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1732 if (code != CODE_FOR_nothing
1733 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1734 here because if SIZE is less than the mode mask, as it is
1735 returned by the macro, it will definitely be less than the
1736 actual mode mask. Since SIZE is within the Pmode address
1737 space, we limit MODE to Pmode. */
1738 && ((CONST_INT_P (size)
1739 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1740 <= (GET_MODE_MASK (mode) >> 1)))
1741 || max_size <= (GET_MODE_MASK (mode) >> 1)
1742 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1744 struct expand_operand ops[9];
1745 unsigned int nops;
1747 /* ??? When called via emit_block_move_for_call, it'd be
1748 nice if there were some way to inform the backend, so
1749 that it doesn't fail the expansion because it thinks
1750 emitting the libcall would be more efficient. */
1751 nops = insn_data[(int) code].n_generator_args;
1752 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1754 create_fixed_operand (&ops[0], x);
1755 create_fixed_operand (&ops[1], y);
1756 /* The check above guarantees that this size conversion is valid. */
1757 create_convert_operand_to (&ops[2], size, mode, true);
1758 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1759 if (nops >= 6)
1761 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1762 create_integer_operand (&ops[5], expected_size);
1764 if (nops >= 8)
1766 create_integer_operand (&ops[6], min_size);
1767 /* If we can not represent the maximal size,
1768 make parameter NULL. */
1769 if ((HOST_WIDE_INT) max_size != -1)
1770 create_integer_operand (&ops[7], max_size);
1771 else
1772 create_fixed_operand (&ops[7], NULL);
1774 if (nops == 9)
1776 /* If we can not represent the maximal size,
1777 make parameter NULL. */
1778 if ((HOST_WIDE_INT) probable_max_size != -1)
1779 create_integer_operand (&ops[8], probable_max_size);
1780 else
1781 create_fixed_operand (&ops[8], NULL);
1783 if (maybe_expand_insn (code, nops, ops))
1785 volatile_ok = save_volatile_ok;
1786 return true;
1791 volatile_ok = save_volatile_ok;
1792 return false;
1795 /* A subroutine of emit_block_move. Copy the data via an explicit
1796 loop. This is used only when libcalls are forbidden. */
1797 /* ??? It'd be nice to copy in hunks larger than QImode. */
1799 static void
1800 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1801 unsigned int align ATTRIBUTE_UNUSED)
1803 rtx_code_label *cmp_label, *top_label;
1804 rtx iter, x_addr, y_addr, tmp;
1805 machine_mode x_addr_mode = get_address_mode (x);
1806 machine_mode y_addr_mode = get_address_mode (y);
1807 machine_mode iter_mode;
1809 iter_mode = GET_MODE (size);
1810 if (iter_mode == VOIDmode)
1811 iter_mode = word_mode;
1813 top_label = gen_label_rtx ();
1814 cmp_label = gen_label_rtx ();
1815 iter = gen_reg_rtx (iter_mode);
1817 emit_move_insn (iter, const0_rtx);
1819 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1820 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1821 do_pending_stack_adjust ();
1823 emit_jump (cmp_label);
1824 emit_label (top_label);
1826 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1827 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1829 if (x_addr_mode != y_addr_mode)
1830 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1831 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1833 x = change_address (x, QImode, x_addr);
1834 y = change_address (y, QImode, y_addr);
1836 emit_move_insn (x, y);
1838 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1839 true, OPTAB_LIB_WIDEN);
1840 if (tmp != iter)
1841 emit_move_insn (iter, tmp);
1843 emit_label (cmp_label);
1845 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1846 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1849 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1850 TAILCALL is true if this is a tail call. */
1853 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1854 rtx size, bool tailcall)
1856 rtx dst_addr, src_addr;
1857 tree call_expr, dst_tree, src_tree, size_tree;
1858 machine_mode size_mode;
1860 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1861 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1862 dst_tree = make_tree (ptr_type_node, dst_addr);
1864 src_addr = copy_addr_to_reg (XEXP (src, 0));
1865 src_addr = convert_memory_address (ptr_mode, src_addr);
1866 src_tree = make_tree (ptr_type_node, src_addr);
1868 size_mode = TYPE_MODE (sizetype);
1869 size = convert_to_mode (size_mode, size, 1);
1870 size = copy_to_mode_reg (size_mode, size);
1871 size_tree = make_tree (sizetype, size);
1873 /* It is incorrect to use the libcall calling conventions for calls to
1874 memcpy/memmove/memcmp because they can be provided by the user. */
1875 tree fn = builtin_decl_implicit (fncode);
1876 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1877 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1879 return expand_call (call_expr, NULL_RTX, false);
1882 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1883 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1884 otherwise return null. */
1887 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1888 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1889 HOST_WIDE_INT align)
1891 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1893 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1894 target = NULL_RTX;
1896 struct expand_operand ops[5];
1897 create_output_operand (&ops[0], target, insn_mode);
1898 create_fixed_operand (&ops[1], arg1_rtx);
1899 create_fixed_operand (&ops[2], arg2_rtx);
1900 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1901 TYPE_UNSIGNED (arg3_type));
1902 create_integer_operand (&ops[4], align);
1903 if (maybe_expand_insn (icode, 5, ops))
1904 return ops[0].value;
1905 return NULL_RTX;
1908 /* Expand a block compare between X and Y with length LEN using the
1909 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1910 of the expression that was used to calculate the length. ALIGN
1911 gives the known minimum common alignment. */
1913 static rtx
1914 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1915 unsigned align)
1917 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1918 implementing memcmp because it will stop if it encounters two
1919 zero bytes. */
1920 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1922 if (icode == CODE_FOR_nothing)
1923 return NULL_RTX;
1925 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1928 /* Emit code to compare a block Y to a block X. This may be done with
1929 string-compare instructions, with multiple scalar instructions,
1930 or with a library call.
1932 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1933 they are. LEN_TYPE is the type of the expression that was used to
1934 calculate it.
1936 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1937 value of a normal memcmp call, instead we can just compare for equality.
1938 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1939 returning NULL_RTX.
1941 Optionally, the caller can pass a constfn and associated data in Y_CFN
1942 and Y_CFN_DATA. describing that the second operand being compared is a
1943 known constant and how to obtain its data.
1944 Return the result of the comparison, or NULL_RTX if we failed to
1945 perform the operation. */
1948 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1949 bool equality_only, by_pieces_constfn y_cfn,
1950 void *y_cfndata)
1952 rtx result = 0;
1954 if (CONST_INT_P (len) && INTVAL (len) == 0)
1955 return const0_rtx;
1957 gcc_assert (MEM_P (x) && MEM_P (y));
1958 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1959 gcc_assert (align >= BITS_PER_UNIT);
1961 x = adjust_address (x, BLKmode, 0);
1962 y = adjust_address (y, BLKmode, 0);
1964 if (equality_only
1965 && CONST_INT_P (len)
1966 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1967 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1968 y_cfn, y_cfndata);
1969 else
1970 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1972 return result;
1975 /* Copy all or part of a value X into registers starting at REGNO.
1976 The number of registers to be filled is NREGS. */
1978 void
1979 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
1981 if (nregs == 0)
1982 return;
1984 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1985 x = validize_mem (force_const_mem (mode, x));
1987 /* See if the machine can do this with a load multiple insn. */
1988 if (targetm.have_load_multiple ())
1990 rtx_insn *last = get_last_insn ();
1991 rtx first = gen_rtx_REG (word_mode, regno);
1992 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
1993 GEN_INT (nregs)))
1995 emit_insn (pat);
1996 return;
1998 else
1999 delete_insns_since (last);
2002 for (int i = 0; i < nregs; i++)
2003 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2004 operand_subword_force (x, i, mode));
2007 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2008 The number of registers to be filled is NREGS. */
2010 void
2011 move_block_from_reg (int regno, rtx x, int nregs)
2013 if (nregs == 0)
2014 return;
2016 /* See if the machine can do this with a store multiple insn. */
2017 if (targetm.have_store_multiple ())
2019 rtx_insn *last = get_last_insn ();
2020 rtx first = gen_rtx_REG (word_mode, regno);
2021 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2022 GEN_INT (nregs)))
2024 emit_insn (pat);
2025 return;
2027 else
2028 delete_insns_since (last);
2031 for (int i = 0; i < nregs; i++)
2033 rtx tem = operand_subword (x, i, 1, BLKmode);
2035 gcc_assert (tem);
2037 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2041 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2042 ORIG, where ORIG is a non-consecutive group of registers represented by
2043 a PARALLEL. The clone is identical to the original except in that the
2044 original set of registers is replaced by a new set of pseudo registers.
2045 The new set has the same modes as the original set. */
2048 gen_group_rtx (rtx orig)
2050 int i, length;
2051 rtx *tmps;
2053 gcc_assert (GET_CODE (orig) == PARALLEL);
2055 length = XVECLEN (orig, 0);
2056 tmps = XALLOCAVEC (rtx, length);
2058 /* Skip a NULL entry in first slot. */
2059 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2061 if (i)
2062 tmps[0] = 0;
2064 for (; i < length; i++)
2066 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2067 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2069 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2072 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2075 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2076 except that values are placed in TMPS[i], and must later be moved
2077 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2079 static void
2080 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
2082 rtx src;
2083 int start, i;
2084 machine_mode m = GET_MODE (orig_src);
2086 gcc_assert (GET_CODE (dst) == PARALLEL);
2088 if (m != VOIDmode
2089 && !SCALAR_INT_MODE_P (m)
2090 && !MEM_P (orig_src)
2091 && GET_CODE (orig_src) != CONCAT)
2093 machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
2094 if (imode == BLKmode)
2095 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2096 else
2097 src = gen_reg_rtx (imode);
2098 if (imode != BLKmode)
2099 src = gen_lowpart (GET_MODE (orig_src), src);
2100 emit_move_insn (src, orig_src);
2101 /* ...and back again. */
2102 if (imode != BLKmode)
2103 src = gen_lowpart (imode, src);
2104 emit_group_load_1 (tmps, dst, src, type, ssize);
2105 return;
2108 /* Check for a NULL entry, used to indicate that the parameter goes
2109 both on the stack and in registers. */
2110 if (XEXP (XVECEXP (dst, 0, 0), 0))
2111 start = 0;
2112 else
2113 start = 1;
2115 /* Process the pieces. */
2116 for (i = start; i < XVECLEN (dst, 0); i++)
2118 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2119 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
2120 unsigned int bytelen = GET_MODE_SIZE (mode);
2121 int shift = 0;
2123 /* Handle trailing fragments that run over the size of the struct. */
2124 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2126 /* Arrange to shift the fragment to where it belongs.
2127 extract_bit_field loads to the lsb of the reg. */
2128 if (
2129 #ifdef BLOCK_REG_PADDING
2130 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2131 == (BYTES_BIG_ENDIAN ? upward : downward)
2132 #else
2133 BYTES_BIG_ENDIAN
2134 #endif
2136 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2137 bytelen = ssize - bytepos;
2138 gcc_assert (bytelen > 0);
2141 /* If we won't be loading directly from memory, protect the real source
2142 from strange tricks we might play; but make sure that the source can
2143 be loaded directly into the destination. */
2144 src = orig_src;
2145 if (!MEM_P (orig_src)
2146 && (!CONSTANT_P (orig_src)
2147 || (GET_MODE (orig_src) != mode
2148 && GET_MODE (orig_src) != VOIDmode)))
2150 if (GET_MODE (orig_src) == VOIDmode)
2151 src = gen_reg_rtx (mode);
2152 else
2153 src = gen_reg_rtx (GET_MODE (orig_src));
2155 emit_move_insn (src, orig_src);
2158 /* Optimize the access just a bit. */
2159 if (MEM_P (src)
2160 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
2161 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2162 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2163 && bytelen == GET_MODE_SIZE (mode))
2165 tmps[i] = gen_reg_rtx (mode);
2166 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2168 else if (COMPLEX_MODE_P (mode)
2169 && GET_MODE (src) == mode
2170 && bytelen == GET_MODE_SIZE (mode))
2171 /* Let emit_move_complex do the bulk of the work. */
2172 tmps[i] = src;
2173 else if (GET_CODE (src) == CONCAT)
2175 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
2176 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2178 if ((bytepos == 0 && bytelen == slen0)
2179 || (bytepos != 0 && bytepos + bytelen <= slen))
2181 /* The following assumes that the concatenated objects all
2182 have the same size. In this case, a simple calculation
2183 can be used to determine the object and the bit field
2184 to be extracted. */
2185 tmps[i] = XEXP (src, bytepos / slen0);
2186 if (! CONSTANT_P (tmps[i])
2187 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
2188 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2189 (bytepos % slen0) * BITS_PER_UNIT,
2190 1, NULL_RTX, mode, mode, false);
2192 else
2194 rtx mem;
2196 gcc_assert (!bytepos);
2197 mem = assign_stack_temp (GET_MODE (src), slen);
2198 emit_move_insn (mem, src);
2199 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2200 0, 1, NULL_RTX, mode, mode, false);
2203 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2204 SIMD register, which is currently broken. While we get GCC
2205 to emit proper RTL for these cases, let's dump to memory. */
2206 else if (VECTOR_MODE_P (GET_MODE (dst))
2207 && REG_P (src))
2209 int slen = GET_MODE_SIZE (GET_MODE (src));
2210 rtx mem;
2212 mem = assign_stack_temp (GET_MODE (src), slen);
2213 emit_move_insn (mem, src);
2214 tmps[i] = adjust_address (mem, mode, (int) bytepos);
2216 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2217 && XVECLEN (dst, 0) > 1)
2218 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2219 else if (CONSTANT_P (src))
2221 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
2223 if (len == ssize)
2224 tmps[i] = src;
2225 else
2227 rtx first, second;
2229 /* TODO: const_wide_int can have sizes other than this... */
2230 gcc_assert (2 * len == ssize);
2231 split_double (src, &first, &second);
2232 if (i)
2233 tmps[i] = second;
2234 else
2235 tmps[i] = first;
2238 else if (REG_P (src) && GET_MODE (src) == mode)
2239 tmps[i] = src;
2240 else
2241 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2242 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2243 mode, mode, false);
2245 if (shift)
2246 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2247 shift, tmps[i], 0);
2251 /* Emit code to move a block SRC of type TYPE to a block DST,
2252 where DST is non-consecutive registers represented by a PARALLEL.
2253 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2254 if not known. */
2256 void
2257 emit_group_load (rtx dst, rtx src, tree type, int ssize)
2259 rtx *tmps;
2260 int i;
2262 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2263 emit_group_load_1 (tmps, dst, src, type, ssize);
2265 /* Copy the extracted pieces into the proper (probable) hard regs. */
2266 for (i = 0; i < XVECLEN (dst, 0); i++)
2268 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2269 if (d == NULL)
2270 continue;
2271 emit_move_insn (d, tmps[i]);
2275 /* Similar, but load SRC into new pseudos in a format that looks like
2276 PARALLEL. This can later be fed to emit_group_move to get things
2277 in the right place. */
2280 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
2282 rtvec vec;
2283 int i;
2285 vec = rtvec_alloc (XVECLEN (parallel, 0));
2286 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2288 /* Convert the vector to look just like the original PARALLEL, except
2289 with the computed values. */
2290 for (i = 0; i < XVECLEN (parallel, 0); i++)
2292 rtx e = XVECEXP (parallel, 0, i);
2293 rtx d = XEXP (e, 0);
2295 if (d)
2297 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2298 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2300 RTVEC_ELT (vec, i) = e;
2303 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2306 /* Emit code to move a block SRC to block DST, where SRC and DST are
2307 non-consecutive groups of registers, each represented by a PARALLEL. */
2309 void
2310 emit_group_move (rtx dst, rtx src)
2312 int i;
2314 gcc_assert (GET_CODE (src) == PARALLEL
2315 && GET_CODE (dst) == PARALLEL
2316 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2318 /* Skip first entry if NULL. */
2319 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2320 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2321 XEXP (XVECEXP (src, 0, i), 0));
2324 /* Move a group of registers represented by a PARALLEL into pseudos. */
2327 emit_group_move_into_temps (rtx src)
2329 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2330 int i;
2332 for (i = 0; i < XVECLEN (src, 0); i++)
2334 rtx e = XVECEXP (src, 0, i);
2335 rtx d = XEXP (e, 0);
2337 if (d)
2338 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2339 RTVEC_ELT (vec, i) = e;
2342 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2345 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2346 where SRC is non-consecutive registers represented by a PARALLEL.
2347 SSIZE represents the total size of block ORIG_DST, or -1 if not
2348 known. */
2350 void
2351 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
2353 rtx *tmps, dst;
2354 int start, finish, i;
2355 machine_mode m = GET_MODE (orig_dst);
2357 gcc_assert (GET_CODE (src) == PARALLEL);
2359 if (!SCALAR_INT_MODE_P (m)
2360 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2362 machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
2363 if (imode == BLKmode)
2364 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2365 else
2366 dst = gen_reg_rtx (imode);
2367 emit_group_store (dst, src, type, ssize);
2368 if (imode != BLKmode)
2369 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2370 emit_move_insn (orig_dst, dst);
2371 return;
2374 /* Check for a NULL entry, used to indicate that the parameter goes
2375 both on the stack and in registers. */
2376 if (XEXP (XVECEXP (src, 0, 0), 0))
2377 start = 0;
2378 else
2379 start = 1;
2380 finish = XVECLEN (src, 0);
2382 tmps = XALLOCAVEC (rtx, finish);
2384 /* Copy the (probable) hard regs into pseudos. */
2385 for (i = start; i < finish; i++)
2387 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2388 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2390 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2391 emit_move_insn (tmps[i], reg);
2393 else
2394 tmps[i] = reg;
2397 /* If we won't be storing directly into memory, protect the real destination
2398 from strange tricks we might play. */
2399 dst = orig_dst;
2400 if (GET_CODE (dst) == PARALLEL)
2402 rtx temp;
2404 /* We can get a PARALLEL dst if there is a conditional expression in
2405 a return statement. In that case, the dst and src are the same,
2406 so no action is necessary. */
2407 if (rtx_equal_p (dst, src))
2408 return;
2410 /* It is unclear if we can ever reach here, but we may as well handle
2411 it. Allocate a temporary, and split this into a store/load to/from
2412 the temporary. */
2413 temp = assign_stack_temp (GET_MODE (dst), ssize);
2414 emit_group_store (temp, src, type, ssize);
2415 emit_group_load (dst, temp, type, ssize);
2416 return;
2418 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2420 machine_mode outer = GET_MODE (dst);
2421 machine_mode inner;
2422 HOST_WIDE_INT bytepos;
2423 bool done = false;
2424 rtx temp;
2426 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2427 dst = gen_reg_rtx (outer);
2429 /* Make life a bit easier for combine. */
2430 /* If the first element of the vector is the low part
2431 of the destination mode, use a paradoxical subreg to
2432 initialize the destination. */
2433 if (start < finish)
2435 inner = GET_MODE (tmps[start]);
2436 bytepos = subreg_lowpart_offset (inner, outer);
2437 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2439 temp = simplify_gen_subreg (outer, tmps[start],
2440 inner, 0);
2441 if (temp)
2443 emit_move_insn (dst, temp);
2444 done = true;
2445 start++;
2450 /* If the first element wasn't the low part, try the last. */
2451 if (!done
2452 && start < finish - 1)
2454 inner = GET_MODE (tmps[finish - 1]);
2455 bytepos = subreg_lowpart_offset (inner, outer);
2456 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2458 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2459 inner, 0);
2460 if (temp)
2462 emit_move_insn (dst, temp);
2463 done = true;
2464 finish--;
2469 /* Otherwise, simply initialize the result to zero. */
2470 if (!done)
2471 emit_move_insn (dst, CONST0_RTX (outer));
2474 /* Process the pieces. */
2475 for (i = start; i < finish; i++)
2477 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2478 machine_mode mode = GET_MODE (tmps[i]);
2479 unsigned int bytelen = GET_MODE_SIZE (mode);
2480 unsigned int adj_bytelen;
2481 rtx dest = dst;
2483 /* Handle trailing fragments that run over the size of the struct. */
2484 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2485 adj_bytelen = ssize - bytepos;
2486 else
2487 adj_bytelen = bytelen;
2489 if (GET_CODE (dst) == CONCAT)
2491 if (bytepos + adj_bytelen
2492 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2493 dest = XEXP (dst, 0);
2494 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2496 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2497 dest = XEXP (dst, 1);
2499 else
2501 machine_mode dest_mode = GET_MODE (dest);
2502 machine_mode tmp_mode = GET_MODE (tmps[i]);
2504 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2506 if (GET_MODE_ALIGNMENT (dest_mode)
2507 >= GET_MODE_ALIGNMENT (tmp_mode))
2509 dest = assign_stack_temp (dest_mode,
2510 GET_MODE_SIZE (dest_mode));
2511 emit_move_insn (adjust_address (dest,
2512 tmp_mode,
2513 bytepos),
2514 tmps[i]);
2515 dst = dest;
2517 else
2519 dest = assign_stack_temp (tmp_mode,
2520 GET_MODE_SIZE (tmp_mode));
2521 emit_move_insn (dest, tmps[i]);
2522 dst = adjust_address (dest, dest_mode, bytepos);
2524 break;
2528 /* Handle trailing fragments that run over the size of the struct. */
2529 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2531 /* store_bit_field always takes its value from the lsb.
2532 Move the fragment to the lsb if it's not already there. */
2533 if (
2534 #ifdef BLOCK_REG_PADDING
2535 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2536 == (BYTES_BIG_ENDIAN ? upward : downward)
2537 #else
2538 BYTES_BIG_ENDIAN
2539 #endif
2542 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2543 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2544 shift, tmps[i], 0);
2547 /* Make sure not to write past the end of the struct. */
2548 store_bit_field (dest,
2549 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2550 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2551 VOIDmode, tmps[i], false);
2554 /* Optimize the access just a bit. */
2555 else if (MEM_P (dest)
2556 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2557 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2558 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2559 && bytelen == GET_MODE_SIZE (mode))
2560 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2562 else
2563 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2564 0, 0, mode, tmps[i], false);
2567 /* Copy from the pseudo into the (probable) hard reg. */
2568 if (orig_dst != dst)
2569 emit_move_insn (orig_dst, dst);
2572 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2573 of the value stored in X. */
2576 maybe_emit_group_store (rtx x, tree type)
2578 machine_mode mode = TYPE_MODE (type);
2579 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2580 if (GET_CODE (x) == PARALLEL)
2582 rtx result = gen_reg_rtx (mode);
2583 emit_group_store (result, x, type, int_size_in_bytes (type));
2584 return result;
2586 return x;
2589 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2591 This is used on targets that return BLKmode values in registers. */
2593 void
2594 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2596 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2597 rtx src = NULL, dst = NULL;
2598 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2599 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2600 machine_mode mode = GET_MODE (srcreg);
2601 machine_mode tmode = GET_MODE (target);
2602 machine_mode copy_mode;
2604 /* BLKmode registers created in the back-end shouldn't have survived. */
2605 gcc_assert (mode != BLKmode);
2607 /* If the structure doesn't take up a whole number of words, see whether
2608 SRCREG is padded on the left or on the right. If it's on the left,
2609 set PADDING_CORRECTION to the number of bits to skip.
2611 In most ABIs, the structure will be returned at the least end of
2612 the register, which translates to right padding on little-endian
2613 targets and left padding on big-endian targets. The opposite
2614 holds if the structure is returned at the most significant
2615 end of the register. */
2616 if (bytes % UNITS_PER_WORD != 0
2617 && (targetm.calls.return_in_msb (type)
2618 ? !BYTES_BIG_ENDIAN
2619 : BYTES_BIG_ENDIAN))
2620 padding_correction
2621 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2623 /* We can use a single move if we have an exact mode for the size. */
2624 else if (MEM_P (target)
2625 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2626 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2627 && bytes == GET_MODE_SIZE (mode))
2629 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2630 return;
2633 /* And if we additionally have the same mode for a register. */
2634 else if (REG_P (target)
2635 && GET_MODE (target) == mode
2636 && bytes == GET_MODE_SIZE (mode))
2638 emit_move_insn (target, srcreg);
2639 return;
2642 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2643 into a new pseudo which is a full word. */
2644 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2646 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2647 mode = word_mode;
2650 /* Copy the structure BITSIZE bits at a time. If the target lives in
2651 memory, take care of not reading/writing past its end by selecting
2652 a copy mode suited to BITSIZE. This should always be possible given
2653 how it is computed.
2655 If the target lives in register, make sure not to select a copy mode
2656 larger than the mode of the register.
2658 We could probably emit more efficient code for machines which do not use
2659 strict alignment, but it doesn't seem worth the effort at the current
2660 time. */
2662 copy_mode = word_mode;
2663 if (MEM_P (target))
2665 machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2666 if (mem_mode != BLKmode)
2667 copy_mode = mem_mode;
2669 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2670 copy_mode = tmode;
2672 for (bitpos = 0, xbitpos = padding_correction;
2673 bitpos < bytes * BITS_PER_UNIT;
2674 bitpos += bitsize, xbitpos += bitsize)
2676 /* We need a new source operand each time xbitpos is on a
2677 word boundary and when xbitpos == padding_correction
2678 (the first time through). */
2679 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2680 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2682 /* We need a new destination operand each time bitpos is on
2683 a word boundary. */
2684 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2685 dst = target;
2686 else if (bitpos % BITS_PER_WORD == 0)
2687 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2689 /* Use xbitpos for the source extraction (right justified) and
2690 bitpos for the destination store (left justified). */
2691 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2692 extract_bit_field (src, bitsize,
2693 xbitpos % BITS_PER_WORD, 1,
2694 NULL_RTX, copy_mode, copy_mode,
2695 false),
2696 false);
2700 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2701 register if it contains any data, otherwise return null.
2703 This is used on targets that return BLKmode values in registers. */
2706 copy_blkmode_to_reg (machine_mode mode, tree src)
2708 int i, n_regs;
2709 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2710 unsigned int bitsize;
2711 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2712 machine_mode dst_mode;
2714 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2716 x = expand_normal (src);
2718 bytes = int_size_in_bytes (TREE_TYPE (src));
2719 if (bytes == 0)
2720 return NULL_RTX;
2722 /* If the structure doesn't take up a whole number of words, see
2723 whether the register value should be padded on the left or on
2724 the right. Set PADDING_CORRECTION to the number of padding
2725 bits needed on the left side.
2727 In most ABIs, the structure will be returned at the least end of
2728 the register, which translates to right padding on little-endian
2729 targets and left padding on big-endian targets. The opposite
2730 holds if the structure is returned at the most significant
2731 end of the register. */
2732 if (bytes % UNITS_PER_WORD != 0
2733 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2734 ? !BYTES_BIG_ENDIAN
2735 : BYTES_BIG_ENDIAN))
2736 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2737 * BITS_PER_UNIT));
2739 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2740 dst_words = XALLOCAVEC (rtx, n_regs);
2741 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2743 /* Copy the structure BITSIZE bits at a time. */
2744 for (bitpos = 0, xbitpos = padding_correction;
2745 bitpos < bytes * BITS_PER_UNIT;
2746 bitpos += bitsize, xbitpos += bitsize)
2748 /* We need a new destination pseudo each time xbitpos is
2749 on a word boundary and when xbitpos == padding_correction
2750 (the first time through). */
2751 if (xbitpos % BITS_PER_WORD == 0
2752 || xbitpos == padding_correction)
2754 /* Generate an appropriate register. */
2755 dst_word = gen_reg_rtx (word_mode);
2756 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2758 /* Clear the destination before we move anything into it. */
2759 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2762 /* We need a new source operand each time bitpos is on a word
2763 boundary. */
2764 if (bitpos % BITS_PER_WORD == 0)
2765 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2767 /* Use bitpos for the source extraction (left justified) and
2768 xbitpos for the destination store (right justified). */
2769 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2770 0, 0, word_mode,
2771 extract_bit_field (src_word, bitsize,
2772 bitpos % BITS_PER_WORD, 1,
2773 NULL_RTX, word_mode, word_mode,
2774 false),
2775 false);
2778 if (mode == BLKmode)
2780 /* Find the smallest integer mode large enough to hold the
2781 entire structure. */
2782 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2783 mode != VOIDmode;
2784 mode = GET_MODE_WIDER_MODE (mode))
2785 /* Have we found a large enough mode? */
2786 if (GET_MODE_SIZE (mode) >= bytes)
2787 break;
2789 /* A suitable mode should have been found. */
2790 gcc_assert (mode != VOIDmode);
2793 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2794 dst_mode = word_mode;
2795 else
2796 dst_mode = mode;
2797 dst = gen_reg_rtx (dst_mode);
2799 for (i = 0; i < n_regs; i++)
2800 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2802 if (mode != dst_mode)
2803 dst = gen_lowpart (mode, dst);
2805 return dst;
2808 /* Add a USE expression for REG to the (possibly empty) list pointed
2809 to by CALL_FUSAGE. REG must denote a hard register. */
2811 void
2812 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2814 gcc_assert (REG_P (reg));
2816 if (!HARD_REGISTER_P (reg))
2817 return;
2819 *call_fusage
2820 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2823 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2824 to by CALL_FUSAGE. REG must denote a hard register. */
2826 void
2827 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2829 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2831 *call_fusage
2832 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2835 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2836 starting at REGNO. All of these registers must be hard registers. */
2838 void
2839 use_regs (rtx *call_fusage, int regno, int nregs)
2841 int i;
2843 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2845 for (i = 0; i < nregs; i++)
2846 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2849 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2850 PARALLEL REGS. This is for calls that pass values in multiple
2851 non-contiguous locations. The Irix 6 ABI has examples of this. */
2853 void
2854 use_group_regs (rtx *call_fusage, rtx regs)
2856 int i;
2858 for (i = 0; i < XVECLEN (regs, 0); i++)
2860 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2862 /* A NULL entry means the parameter goes both on the stack and in
2863 registers. This can also be a MEM for targets that pass values
2864 partially on the stack and partially in registers. */
2865 if (reg != 0 && REG_P (reg))
2866 use_reg (call_fusage, reg);
2870 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2871 assigment and the code of the expresion on the RHS is CODE. Return
2872 NULL otherwise. */
2874 static gimple *
2875 get_def_for_expr (tree name, enum tree_code code)
2877 gimple *def_stmt;
2879 if (TREE_CODE (name) != SSA_NAME)
2880 return NULL;
2882 def_stmt = get_gimple_for_ssa_name (name);
2883 if (!def_stmt
2884 || gimple_assign_rhs_code (def_stmt) != code)
2885 return NULL;
2887 return def_stmt;
2890 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2891 assigment and the class of the expresion on the RHS is CLASS. Return
2892 NULL otherwise. */
2894 static gimple *
2895 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2897 gimple *def_stmt;
2899 if (TREE_CODE (name) != SSA_NAME)
2900 return NULL;
2902 def_stmt = get_gimple_for_ssa_name (name);
2903 if (!def_stmt
2904 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2905 return NULL;
2907 return def_stmt;
2910 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2911 its length in bytes. */
2914 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2915 unsigned int expected_align, HOST_WIDE_INT expected_size,
2916 unsigned HOST_WIDE_INT min_size,
2917 unsigned HOST_WIDE_INT max_size,
2918 unsigned HOST_WIDE_INT probable_max_size)
2920 machine_mode mode = GET_MODE (object);
2921 unsigned int align;
2923 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2925 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2926 just move a zero. Otherwise, do this a piece at a time. */
2927 if (mode != BLKmode
2928 && CONST_INT_P (size)
2929 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2931 rtx zero = CONST0_RTX (mode);
2932 if (zero != NULL)
2934 emit_move_insn (object, zero);
2935 return NULL;
2938 if (COMPLEX_MODE_P (mode))
2940 zero = CONST0_RTX (GET_MODE_INNER (mode));
2941 if (zero != NULL)
2943 write_complex_part (object, zero, 0);
2944 write_complex_part (object, zero, 1);
2945 return NULL;
2950 if (size == const0_rtx)
2951 return NULL;
2953 align = MEM_ALIGN (object);
2955 if (CONST_INT_P (size)
2956 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2957 CLEAR_BY_PIECES,
2958 optimize_insn_for_speed_p ()))
2959 clear_by_pieces (object, INTVAL (size), align);
2960 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2961 expected_align, expected_size,
2962 min_size, max_size, probable_max_size))
2964 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2965 return set_storage_via_libcall (object, size, const0_rtx,
2966 method == BLOCK_OP_TAILCALL);
2967 else
2968 gcc_unreachable ();
2970 return NULL;
2974 clear_storage (rtx object, rtx size, enum block_op_methods method)
2976 unsigned HOST_WIDE_INT max, min = 0;
2977 if (GET_CODE (size) == CONST_INT)
2978 min = max = UINTVAL (size);
2979 else
2980 max = GET_MODE_MASK (GET_MODE (size));
2981 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2985 /* A subroutine of clear_storage. Expand a call to memset.
2986 Return the return value of memset, 0 otherwise. */
2989 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2991 tree call_expr, fn, object_tree, size_tree, val_tree;
2992 machine_mode size_mode;
2994 object = copy_addr_to_reg (XEXP (object, 0));
2995 object_tree = make_tree (ptr_type_node, object);
2997 if (!CONST_INT_P (val))
2998 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2999 val_tree = make_tree (integer_type_node, val);
3001 size_mode = TYPE_MODE (sizetype);
3002 size = convert_to_mode (size_mode, size, 1);
3003 size = copy_to_mode_reg (size_mode, size);
3004 size_tree = make_tree (sizetype, size);
3006 /* It is incorrect to use the libcall calling conventions for calls to
3007 memset because it can be provided by the user. */
3008 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3009 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3010 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3012 return expand_call (call_expr, NULL_RTX, false);
3015 /* Expand a setmem pattern; return true if successful. */
3017 bool
3018 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3019 unsigned int expected_align, HOST_WIDE_INT expected_size,
3020 unsigned HOST_WIDE_INT min_size,
3021 unsigned HOST_WIDE_INT max_size,
3022 unsigned HOST_WIDE_INT probable_max_size)
3024 /* Try the most limited insn first, because there's no point
3025 including more than one in the machine description unless
3026 the more limited one has some advantage. */
3028 machine_mode mode;
3030 if (expected_align < align)
3031 expected_align = align;
3032 if (expected_size != -1)
3034 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3035 expected_size = max_size;
3036 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3037 expected_size = min_size;
3040 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
3041 mode = GET_MODE_WIDER_MODE (mode))
3043 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3045 if (code != CODE_FOR_nothing
3046 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3047 here because if SIZE is less than the mode mask, as it is
3048 returned by the macro, it will definitely be less than the
3049 actual mode mask. Since SIZE is within the Pmode address
3050 space, we limit MODE to Pmode. */
3051 && ((CONST_INT_P (size)
3052 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3053 <= (GET_MODE_MASK (mode) >> 1)))
3054 || max_size <= (GET_MODE_MASK (mode) >> 1)
3055 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3057 struct expand_operand ops[9];
3058 unsigned int nops;
3060 nops = insn_data[(int) code].n_generator_args;
3061 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3063 create_fixed_operand (&ops[0], object);
3064 /* The check above guarantees that this size conversion is valid. */
3065 create_convert_operand_to (&ops[1], size, mode, true);
3066 create_convert_operand_from (&ops[2], val, byte_mode, true);
3067 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3068 if (nops >= 6)
3070 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3071 create_integer_operand (&ops[5], expected_size);
3073 if (nops >= 8)
3075 create_integer_operand (&ops[6], min_size);
3076 /* If we can not represent the maximal size,
3077 make parameter NULL. */
3078 if ((HOST_WIDE_INT) max_size != -1)
3079 create_integer_operand (&ops[7], max_size);
3080 else
3081 create_fixed_operand (&ops[7], NULL);
3083 if (nops == 9)
3085 /* If we can not represent the maximal size,
3086 make parameter NULL. */
3087 if ((HOST_WIDE_INT) probable_max_size != -1)
3088 create_integer_operand (&ops[8], probable_max_size);
3089 else
3090 create_fixed_operand (&ops[8], NULL);
3092 if (maybe_expand_insn (code, nops, ops))
3093 return true;
3097 return false;
3101 /* Write to one of the components of the complex value CPLX. Write VAL to
3102 the real part if IMAG_P is false, and the imaginary part if its true. */
3104 void
3105 write_complex_part (rtx cplx, rtx val, bool imag_p)
3107 machine_mode cmode;
3108 machine_mode imode;
3109 unsigned ibitsize;
3111 if (GET_CODE (cplx) == CONCAT)
3113 emit_move_insn (XEXP (cplx, imag_p), val);
3114 return;
3117 cmode = GET_MODE (cplx);
3118 imode = GET_MODE_INNER (cmode);
3119 ibitsize = GET_MODE_BITSIZE (imode);
3121 /* For MEMs simplify_gen_subreg may generate an invalid new address
3122 because, e.g., the original address is considered mode-dependent
3123 by the target, which restricts simplify_subreg from invoking
3124 adjust_address_nv. Instead of preparing fallback support for an
3125 invalid address, we call adjust_address_nv directly. */
3126 if (MEM_P (cplx))
3128 emit_move_insn (adjust_address_nv (cplx, imode,
3129 imag_p ? GET_MODE_SIZE (imode) : 0),
3130 val);
3131 return;
3134 /* If the sub-object is at least word sized, then we know that subregging
3135 will work. This special case is important, since store_bit_field
3136 wants to operate on integer modes, and there's rarely an OImode to
3137 correspond to TCmode. */
3138 if (ibitsize >= BITS_PER_WORD
3139 /* For hard regs we have exact predicates. Assume we can split
3140 the original object if it spans an even number of hard regs.
3141 This special case is important for SCmode on 64-bit platforms
3142 where the natural size of floating-point regs is 32-bit. */
3143 || (REG_P (cplx)
3144 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3145 && REG_NREGS (cplx) % 2 == 0))
3147 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3148 imag_p ? GET_MODE_SIZE (imode) : 0);
3149 if (part)
3151 emit_move_insn (part, val);
3152 return;
3154 else
3155 /* simplify_gen_subreg may fail for sub-word MEMs. */
3156 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3159 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3160 false);
3163 /* Extract one of the components of the complex value CPLX. Extract the
3164 real part if IMAG_P is false, and the imaginary part if it's true. */
3167 read_complex_part (rtx cplx, bool imag_p)
3169 machine_mode cmode, imode;
3170 unsigned ibitsize;
3172 if (GET_CODE (cplx) == CONCAT)
3173 return XEXP (cplx, imag_p);
3175 cmode = GET_MODE (cplx);
3176 imode = GET_MODE_INNER (cmode);
3177 ibitsize = GET_MODE_BITSIZE (imode);
3179 /* Special case reads from complex constants that got spilled to memory. */
3180 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3182 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3183 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3185 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3186 if (CONSTANT_CLASS_P (part))
3187 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3191 /* For MEMs simplify_gen_subreg may generate an invalid new address
3192 because, e.g., the original address is considered mode-dependent
3193 by the target, which restricts simplify_subreg from invoking
3194 adjust_address_nv. Instead of preparing fallback support for an
3195 invalid address, we call adjust_address_nv directly. */
3196 if (MEM_P (cplx))
3197 return adjust_address_nv (cplx, imode,
3198 imag_p ? GET_MODE_SIZE (imode) : 0);
3200 /* If the sub-object is at least word sized, then we know that subregging
3201 will work. This special case is important, since extract_bit_field
3202 wants to operate on integer modes, and there's rarely an OImode to
3203 correspond to TCmode. */
3204 if (ibitsize >= BITS_PER_WORD
3205 /* For hard regs we have exact predicates. Assume we can split
3206 the original object if it spans an even number of hard regs.
3207 This special case is important for SCmode on 64-bit platforms
3208 where the natural size of floating-point regs is 32-bit. */
3209 || (REG_P (cplx)
3210 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3211 && REG_NREGS (cplx) % 2 == 0))
3213 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3214 imag_p ? GET_MODE_SIZE (imode) : 0);
3215 if (ret)
3216 return ret;
3217 else
3218 /* simplify_gen_subreg may fail for sub-word MEMs. */
3219 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3222 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3223 true, NULL_RTX, imode, imode, false);
3226 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3227 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3228 represented in NEW_MODE. If FORCE is true, this will never happen, as
3229 we'll force-create a SUBREG if needed. */
3231 static rtx
3232 emit_move_change_mode (machine_mode new_mode,
3233 machine_mode old_mode, rtx x, bool force)
3235 rtx ret;
3237 if (push_operand (x, GET_MODE (x)))
3239 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3240 MEM_COPY_ATTRIBUTES (ret, x);
3242 else if (MEM_P (x))
3244 /* We don't have to worry about changing the address since the
3245 size in bytes is supposed to be the same. */
3246 if (reload_in_progress)
3248 /* Copy the MEM to change the mode and move any
3249 substitutions from the old MEM to the new one. */
3250 ret = adjust_address_nv (x, new_mode, 0);
3251 copy_replacements (x, ret);
3253 else
3254 ret = adjust_address (x, new_mode, 0);
3256 else
3258 /* Note that we do want simplify_subreg's behavior of validating
3259 that the new mode is ok for a hard register. If we were to use
3260 simplify_gen_subreg, we would create the subreg, but would
3261 probably run into the target not being able to implement it. */
3262 /* Except, of course, when FORCE is true, when this is exactly what
3263 we want. Which is needed for CCmodes on some targets. */
3264 if (force)
3265 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3266 else
3267 ret = simplify_subreg (new_mode, x, old_mode, 0);
3270 return ret;
3273 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3274 an integer mode of the same size as MODE. Returns the instruction
3275 emitted, or NULL if such a move could not be generated. */
3277 static rtx_insn *
3278 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3280 machine_mode imode;
3281 enum insn_code code;
3283 /* There must exist a mode of the exact size we require. */
3284 imode = int_mode_for_mode (mode);
3285 if (imode == BLKmode)
3286 return NULL;
3288 /* The target must support moves in this mode. */
3289 code = optab_handler (mov_optab, imode);
3290 if (code == CODE_FOR_nothing)
3291 return NULL;
3293 x = emit_move_change_mode (imode, mode, x, force);
3294 if (x == NULL_RTX)
3295 return NULL;
3296 y = emit_move_change_mode (imode, mode, y, force);
3297 if (y == NULL_RTX)
3298 return NULL;
3299 return emit_insn (GEN_FCN (code) (x, y));
3302 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3303 Return an equivalent MEM that does not use an auto-increment. */
3306 emit_move_resolve_push (machine_mode mode, rtx x)
3308 enum rtx_code code = GET_CODE (XEXP (x, 0));
3309 HOST_WIDE_INT adjust;
3310 rtx temp;
3312 adjust = GET_MODE_SIZE (mode);
3313 #ifdef PUSH_ROUNDING
3314 adjust = PUSH_ROUNDING (adjust);
3315 #endif
3316 if (code == PRE_DEC || code == POST_DEC)
3317 adjust = -adjust;
3318 else if (code == PRE_MODIFY || code == POST_MODIFY)
3320 rtx expr = XEXP (XEXP (x, 0), 1);
3321 HOST_WIDE_INT val;
3323 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3324 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3325 val = INTVAL (XEXP (expr, 1));
3326 if (GET_CODE (expr) == MINUS)
3327 val = -val;
3328 gcc_assert (adjust == val || adjust == -val);
3329 adjust = val;
3332 /* Do not use anti_adjust_stack, since we don't want to update
3333 stack_pointer_delta. */
3334 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3335 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3336 0, OPTAB_LIB_WIDEN);
3337 if (temp != stack_pointer_rtx)
3338 emit_move_insn (stack_pointer_rtx, temp);
3340 switch (code)
3342 case PRE_INC:
3343 case PRE_DEC:
3344 case PRE_MODIFY:
3345 temp = stack_pointer_rtx;
3346 break;
3347 case POST_INC:
3348 case POST_DEC:
3349 case POST_MODIFY:
3350 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3351 break;
3352 default:
3353 gcc_unreachable ();
3356 return replace_equiv_address (x, temp);
3359 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3360 X is known to satisfy push_operand, and MODE is known to be complex.
3361 Returns the last instruction emitted. */
3363 rtx_insn *
3364 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3366 machine_mode submode = GET_MODE_INNER (mode);
3367 bool imag_first;
3369 #ifdef PUSH_ROUNDING
3370 unsigned int submodesize = GET_MODE_SIZE (submode);
3372 /* In case we output to the stack, but the size is smaller than the
3373 machine can push exactly, we need to use move instructions. */
3374 if (PUSH_ROUNDING (submodesize) != submodesize)
3376 x = emit_move_resolve_push (mode, x);
3377 return emit_move_insn (x, y);
3379 #endif
3381 /* Note that the real part always precedes the imag part in memory
3382 regardless of machine's endianness. */
3383 switch (GET_CODE (XEXP (x, 0)))
3385 case PRE_DEC:
3386 case POST_DEC:
3387 imag_first = true;
3388 break;
3389 case PRE_INC:
3390 case POST_INC:
3391 imag_first = false;
3392 break;
3393 default:
3394 gcc_unreachable ();
3397 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3398 read_complex_part (y, imag_first));
3399 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3400 read_complex_part (y, !imag_first));
3403 /* A subroutine of emit_move_complex. Perform the move from Y to X
3404 via two moves of the parts. Returns the last instruction emitted. */
3406 rtx_insn *
3407 emit_move_complex_parts (rtx x, rtx y)
3409 /* Show the output dies here. This is necessary for SUBREGs
3410 of pseudos since we cannot track their lifetimes correctly;
3411 hard regs shouldn't appear here except as return values. */
3412 if (!reload_completed && !reload_in_progress
3413 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3414 emit_clobber (x);
3416 write_complex_part (x, read_complex_part (y, false), false);
3417 write_complex_part (x, read_complex_part (y, true), true);
3419 return get_last_insn ();
3422 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3423 MODE is known to be complex. Returns the last instruction emitted. */
3425 static rtx_insn *
3426 emit_move_complex (machine_mode mode, rtx x, rtx y)
3428 bool try_int;
3430 /* Need to take special care for pushes, to maintain proper ordering
3431 of the data, and possibly extra padding. */
3432 if (push_operand (x, mode))
3433 return emit_move_complex_push (mode, x, y);
3435 /* See if we can coerce the target into moving both values at once, except
3436 for floating point where we favor moving as parts if this is easy. */
3437 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3438 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3439 && !(REG_P (x)
3440 && HARD_REGISTER_P (x)
3441 && REG_NREGS (x) == 1)
3442 && !(REG_P (y)
3443 && HARD_REGISTER_P (y)
3444 && REG_NREGS (y) == 1))
3445 try_int = false;
3446 /* Not possible if the values are inherently not adjacent. */
3447 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3448 try_int = false;
3449 /* Is possible if both are registers (or subregs of registers). */
3450 else if (register_operand (x, mode) && register_operand (y, mode))
3451 try_int = true;
3452 /* If one of the operands is a memory, and alignment constraints
3453 are friendly enough, we may be able to do combined memory operations.
3454 We do not attempt this if Y is a constant because that combination is
3455 usually better with the by-parts thing below. */
3456 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3457 && (!STRICT_ALIGNMENT
3458 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3459 try_int = true;
3460 else
3461 try_int = false;
3463 if (try_int)
3465 rtx_insn *ret;
3467 /* For memory to memory moves, optimal behavior can be had with the
3468 existing block move logic. */
3469 if (MEM_P (x) && MEM_P (y))
3471 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3472 BLOCK_OP_NO_LIBCALL);
3473 return get_last_insn ();
3476 ret = emit_move_via_integer (mode, x, y, true);
3477 if (ret)
3478 return ret;
3481 return emit_move_complex_parts (x, y);
3484 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3485 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3487 static rtx_insn *
3488 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3490 rtx_insn *ret;
3492 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3493 if (mode != CCmode)
3495 enum insn_code code = optab_handler (mov_optab, CCmode);
3496 if (code != CODE_FOR_nothing)
3498 x = emit_move_change_mode (CCmode, mode, x, true);
3499 y = emit_move_change_mode (CCmode, mode, y, true);
3500 return emit_insn (GEN_FCN (code) (x, y));
3504 /* Otherwise, find the MODE_INT mode of the same width. */
3505 ret = emit_move_via_integer (mode, x, y, false);
3506 gcc_assert (ret != NULL);
3507 return ret;
3510 /* Return true if word I of OP lies entirely in the
3511 undefined bits of a paradoxical subreg. */
3513 static bool
3514 undefined_operand_subword_p (const_rtx op, int i)
3516 machine_mode innermode, innermostmode;
3517 int offset;
3518 if (GET_CODE (op) != SUBREG)
3519 return false;
3520 innermode = GET_MODE (op);
3521 innermostmode = GET_MODE (SUBREG_REG (op));
3522 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3523 /* The SUBREG_BYTE represents offset, as if the value were stored in
3524 memory, except for a paradoxical subreg where we define
3525 SUBREG_BYTE to be 0; undo this exception as in
3526 simplify_subreg. */
3527 if (SUBREG_BYTE (op) == 0
3528 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3530 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3531 if (WORDS_BIG_ENDIAN)
3532 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3533 if (BYTES_BIG_ENDIAN)
3534 offset += difference % UNITS_PER_WORD;
3536 if (offset >= GET_MODE_SIZE (innermostmode)
3537 || offset <= -GET_MODE_SIZE (word_mode))
3538 return true;
3539 return false;
3542 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3543 MODE is any multi-word or full-word mode that lacks a move_insn
3544 pattern. Note that you will get better code if you define such
3545 patterns, even if they must turn into multiple assembler instructions. */
3547 static rtx_insn *
3548 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3550 rtx_insn *last_insn = 0;
3551 rtx_insn *seq;
3552 rtx inner;
3553 bool need_clobber;
3554 int i;
3556 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3558 /* If X is a push on the stack, do the push now and replace
3559 X with a reference to the stack pointer. */
3560 if (push_operand (x, mode))
3561 x = emit_move_resolve_push (mode, x);
3563 /* If we are in reload, see if either operand is a MEM whose address
3564 is scheduled for replacement. */
3565 if (reload_in_progress && MEM_P (x)
3566 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3567 x = replace_equiv_address_nv (x, inner);
3568 if (reload_in_progress && MEM_P (y)
3569 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3570 y = replace_equiv_address_nv (y, inner);
3572 start_sequence ();
3574 need_clobber = false;
3575 for (i = 0;
3576 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3577 i++)
3579 rtx xpart = operand_subword (x, i, 1, mode);
3580 rtx ypart;
3582 /* Do not generate code for a move if it would come entirely
3583 from the undefined bits of a paradoxical subreg. */
3584 if (undefined_operand_subword_p (y, i))
3585 continue;
3587 ypart = operand_subword (y, i, 1, mode);
3589 /* If we can't get a part of Y, put Y into memory if it is a
3590 constant. Otherwise, force it into a register. Then we must
3591 be able to get a part of Y. */
3592 if (ypart == 0 && CONSTANT_P (y))
3594 y = use_anchored_address (force_const_mem (mode, y));
3595 ypart = operand_subword (y, i, 1, mode);
3597 else if (ypart == 0)
3598 ypart = operand_subword_force (y, i, mode);
3600 gcc_assert (xpart && ypart);
3602 need_clobber |= (GET_CODE (xpart) == SUBREG);
3604 last_insn = emit_move_insn (xpart, ypart);
3607 seq = get_insns ();
3608 end_sequence ();
3610 /* Show the output dies here. This is necessary for SUBREGs
3611 of pseudos since we cannot track their lifetimes correctly;
3612 hard regs shouldn't appear here except as return values.
3613 We never want to emit such a clobber after reload. */
3614 if (x != y
3615 && ! (reload_in_progress || reload_completed)
3616 && need_clobber != 0)
3617 emit_clobber (x);
3619 emit_insn (seq);
3621 return last_insn;
3624 /* Low level part of emit_move_insn.
3625 Called just like emit_move_insn, but assumes X and Y
3626 are basically valid. */
3628 rtx_insn *
3629 emit_move_insn_1 (rtx x, rtx y)
3631 machine_mode mode = GET_MODE (x);
3632 enum insn_code code;
3634 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3636 code = optab_handler (mov_optab, mode);
3637 if (code != CODE_FOR_nothing)
3638 return emit_insn (GEN_FCN (code) (x, y));
3640 /* Expand complex moves by moving real part and imag part. */
3641 if (COMPLEX_MODE_P (mode))
3642 return emit_move_complex (mode, x, y);
3644 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3645 || ALL_FIXED_POINT_MODE_P (mode))
3647 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3649 /* If we can't find an integer mode, use multi words. */
3650 if (result)
3651 return result;
3652 else
3653 return emit_move_multi_word (mode, x, y);
3656 if (GET_MODE_CLASS (mode) == MODE_CC)
3657 return emit_move_ccmode (mode, x, y);
3659 /* Try using a move pattern for the corresponding integer mode. This is
3660 only safe when simplify_subreg can convert MODE constants into integer
3661 constants. At present, it can only do this reliably if the value
3662 fits within a HOST_WIDE_INT. */
3663 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3665 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3667 if (ret)
3669 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3670 return ret;
3674 return emit_move_multi_word (mode, x, y);
3677 /* Generate code to copy Y into X.
3678 Both Y and X must have the same mode, except that
3679 Y can be a constant with VOIDmode.
3680 This mode cannot be BLKmode; use emit_block_move for that.
3682 Return the last instruction emitted. */
3684 rtx_insn *
3685 emit_move_insn (rtx x, rtx y)
3687 machine_mode mode = GET_MODE (x);
3688 rtx y_cst = NULL_RTX;
3689 rtx_insn *last_insn;
3690 rtx set;
3692 gcc_assert (mode != BLKmode
3693 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3695 if (CONSTANT_P (y))
3697 if (optimize
3698 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3699 && (last_insn = compress_float_constant (x, y)))
3700 return last_insn;
3702 y_cst = y;
3704 if (!targetm.legitimate_constant_p (mode, y))
3706 y = force_const_mem (mode, y);
3708 /* If the target's cannot_force_const_mem prevented the spill,
3709 assume that the target's move expanders will also take care
3710 of the non-legitimate constant. */
3711 if (!y)
3712 y = y_cst;
3713 else
3714 y = use_anchored_address (y);
3718 /* If X or Y are memory references, verify that their addresses are valid
3719 for the machine. */
3720 if (MEM_P (x)
3721 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3722 MEM_ADDR_SPACE (x))
3723 && ! push_operand (x, GET_MODE (x))))
3724 x = validize_mem (x);
3726 if (MEM_P (y)
3727 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3728 MEM_ADDR_SPACE (y)))
3729 y = validize_mem (y);
3731 gcc_assert (mode != BLKmode);
3733 last_insn = emit_move_insn_1 (x, y);
3735 if (y_cst && REG_P (x)
3736 && (set = single_set (last_insn)) != NULL_RTX
3737 && SET_DEST (set) == x
3738 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3739 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3741 return last_insn;
3744 /* Generate the body of an instruction to copy Y into X.
3745 It may be a list of insns, if one insn isn't enough. */
3747 rtx_insn *
3748 gen_move_insn (rtx x, rtx y)
3750 rtx_insn *seq;
3752 start_sequence ();
3753 emit_move_insn_1 (x, y);
3754 seq = get_insns ();
3755 end_sequence ();
3756 return seq;
3759 /* If Y is representable exactly in a narrower mode, and the target can
3760 perform the extension directly from constant or memory, then emit the
3761 move as an extension. */
3763 static rtx_insn *
3764 compress_float_constant (rtx x, rtx y)
3766 machine_mode dstmode = GET_MODE (x);
3767 machine_mode orig_srcmode = GET_MODE (y);
3768 machine_mode srcmode;
3769 const REAL_VALUE_TYPE *r;
3770 int oldcost, newcost;
3771 bool speed = optimize_insn_for_speed_p ();
3773 r = CONST_DOUBLE_REAL_VALUE (y);
3775 if (targetm.legitimate_constant_p (dstmode, y))
3776 oldcost = set_src_cost (y, orig_srcmode, speed);
3777 else
3778 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3780 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3781 srcmode != orig_srcmode;
3782 srcmode = GET_MODE_WIDER_MODE (srcmode))
3784 enum insn_code ic;
3785 rtx trunc_y;
3786 rtx_insn *last_insn;
3788 /* Skip if the target can't extend this way. */
3789 ic = can_extend_p (dstmode, srcmode, 0);
3790 if (ic == CODE_FOR_nothing)
3791 continue;
3793 /* Skip if the narrowed value isn't exact. */
3794 if (! exact_real_truncate (srcmode, r))
3795 continue;
3797 trunc_y = const_double_from_real_value (*r, srcmode);
3799 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3801 /* Skip if the target needs extra instructions to perform
3802 the extension. */
3803 if (!insn_operand_matches (ic, 1, trunc_y))
3804 continue;
3805 /* This is valid, but may not be cheaper than the original. */
3806 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3807 dstmode, speed);
3808 if (oldcost < newcost)
3809 continue;
3811 else if (float_extend_from_mem[dstmode][srcmode])
3813 trunc_y = force_const_mem (srcmode, trunc_y);
3814 /* This is valid, but may not be cheaper than the original. */
3815 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3816 dstmode, speed);
3817 if (oldcost < newcost)
3818 continue;
3819 trunc_y = validize_mem (trunc_y);
3821 else
3822 continue;
3824 /* For CSE's benefit, force the compressed constant pool entry
3825 into a new pseudo. This constant may be used in different modes,
3826 and if not, combine will put things back together for us. */
3827 trunc_y = force_reg (srcmode, trunc_y);
3829 /* If x is a hard register, perform the extension into a pseudo,
3830 so that e.g. stack realignment code is aware of it. */
3831 rtx target = x;
3832 if (REG_P (x) && HARD_REGISTER_P (x))
3833 target = gen_reg_rtx (dstmode);
3835 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3836 last_insn = get_last_insn ();
3838 if (REG_P (target))
3839 set_unique_reg_note (last_insn, REG_EQUAL, y);
3841 if (target != x)
3842 return emit_move_insn (x, target);
3843 return last_insn;
3846 return NULL;
3849 /* Pushing data onto the stack. */
3851 /* Push a block of length SIZE (perhaps variable)
3852 and return an rtx to address the beginning of the block.
3853 The value may be virtual_outgoing_args_rtx.
3855 EXTRA is the number of bytes of padding to push in addition to SIZE.
3856 BELOW nonzero means this padding comes at low addresses;
3857 otherwise, the padding comes at high addresses. */
3860 push_block (rtx size, int extra, int below)
3862 rtx temp;
3864 size = convert_modes (Pmode, ptr_mode, size, 1);
3865 if (CONSTANT_P (size))
3866 anti_adjust_stack (plus_constant (Pmode, size, extra));
3867 else if (REG_P (size) && extra == 0)
3868 anti_adjust_stack (size);
3869 else
3871 temp = copy_to_mode_reg (Pmode, size);
3872 if (extra != 0)
3873 temp = expand_binop (Pmode, add_optab, temp,
3874 gen_int_mode (extra, Pmode),
3875 temp, 0, OPTAB_LIB_WIDEN);
3876 anti_adjust_stack (temp);
3879 if (STACK_GROWS_DOWNWARD)
3881 temp = virtual_outgoing_args_rtx;
3882 if (extra != 0 && below)
3883 temp = plus_constant (Pmode, temp, extra);
3885 else
3887 if (CONST_INT_P (size))
3888 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3889 -INTVAL (size) - (below ? 0 : extra));
3890 else if (extra != 0 && !below)
3891 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3892 negate_rtx (Pmode, plus_constant (Pmode, size,
3893 extra)));
3894 else
3895 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3896 negate_rtx (Pmode, size));
3899 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3902 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3904 static rtx
3905 mem_autoinc_base (rtx mem)
3907 if (MEM_P (mem))
3909 rtx addr = XEXP (mem, 0);
3910 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3911 return XEXP (addr, 0);
3913 return NULL;
3916 /* A utility routine used here, in reload, and in try_split. The insns
3917 after PREV up to and including LAST are known to adjust the stack,
3918 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3919 placing notes as appropriate. PREV may be NULL, indicating the
3920 entire insn sequence prior to LAST should be scanned.
3922 The set of allowed stack pointer modifications is small:
3923 (1) One or more auto-inc style memory references (aka pushes),
3924 (2) One or more addition/subtraction with the SP as destination,
3925 (3) A single move insn with the SP as destination,
3926 (4) A call_pop insn,
3927 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3929 Insns in the sequence that do not modify the SP are ignored,
3930 except for noreturn calls.
3932 The return value is the amount of adjustment that can be trivially
3933 verified, via immediate operand or auto-inc. If the adjustment
3934 cannot be trivially extracted, the return value is INT_MIN. */
3936 HOST_WIDE_INT
3937 find_args_size_adjust (rtx_insn *insn)
3939 rtx dest, set, pat;
3940 int i;
3942 pat = PATTERN (insn);
3943 set = NULL;
3945 /* Look for a call_pop pattern. */
3946 if (CALL_P (insn))
3948 /* We have to allow non-call_pop patterns for the case
3949 of emit_single_push_insn of a TLS address. */
3950 if (GET_CODE (pat) != PARALLEL)
3951 return 0;
3953 /* All call_pop have a stack pointer adjust in the parallel.
3954 The call itself is always first, and the stack adjust is
3955 usually last, so search from the end. */
3956 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3958 set = XVECEXP (pat, 0, i);
3959 if (GET_CODE (set) != SET)
3960 continue;
3961 dest = SET_DEST (set);
3962 if (dest == stack_pointer_rtx)
3963 break;
3965 /* We'd better have found the stack pointer adjust. */
3966 if (i == 0)
3967 return 0;
3968 /* Fall through to process the extracted SET and DEST
3969 as if it was a standalone insn. */
3971 else if (GET_CODE (pat) == SET)
3972 set = pat;
3973 else if ((set = single_set (insn)) != NULL)
3975 else if (GET_CODE (pat) == PARALLEL)
3977 /* ??? Some older ports use a parallel with a stack adjust
3978 and a store for a PUSH_ROUNDING pattern, rather than a
3979 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3980 /* ??? See h8300 and m68k, pushqi1. */
3981 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3983 set = XVECEXP (pat, 0, i);
3984 if (GET_CODE (set) != SET)
3985 continue;
3986 dest = SET_DEST (set);
3987 if (dest == stack_pointer_rtx)
3988 break;
3990 /* We do not expect an auto-inc of the sp in the parallel. */
3991 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3992 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3993 != stack_pointer_rtx);
3995 if (i < 0)
3996 return 0;
3998 else
3999 return 0;
4001 dest = SET_DEST (set);
4003 /* Look for direct modifications of the stack pointer. */
4004 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4006 /* Look for a trivial adjustment, otherwise assume nothing. */
4007 /* Note that the SPU restore_stack_block pattern refers to
4008 the stack pointer in V4SImode. Consider that non-trivial. */
4009 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4010 && GET_CODE (SET_SRC (set)) == PLUS
4011 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
4012 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
4013 return INTVAL (XEXP (SET_SRC (set), 1));
4014 /* ??? Reload can generate no-op moves, which will be cleaned
4015 up later. Recognize it and continue searching. */
4016 else if (rtx_equal_p (dest, SET_SRC (set)))
4017 return 0;
4018 else
4019 return HOST_WIDE_INT_MIN;
4021 else
4023 rtx mem, addr;
4025 /* Otherwise only think about autoinc patterns. */
4026 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4028 mem = dest;
4029 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4030 != stack_pointer_rtx);
4032 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4033 mem = SET_SRC (set);
4034 else
4035 return 0;
4037 addr = XEXP (mem, 0);
4038 switch (GET_CODE (addr))
4040 case PRE_INC:
4041 case POST_INC:
4042 return GET_MODE_SIZE (GET_MODE (mem));
4043 case PRE_DEC:
4044 case POST_DEC:
4045 return -GET_MODE_SIZE (GET_MODE (mem));
4046 case PRE_MODIFY:
4047 case POST_MODIFY:
4048 addr = XEXP (addr, 1);
4049 gcc_assert (GET_CODE (addr) == PLUS);
4050 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4051 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
4052 return INTVAL (XEXP (addr, 1));
4053 default:
4054 gcc_unreachable ();
4060 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
4062 int args_size = end_args_size;
4063 bool saw_unknown = false;
4064 rtx_insn *insn;
4066 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4068 HOST_WIDE_INT this_delta;
4070 if (!NONDEBUG_INSN_P (insn))
4071 continue;
4073 this_delta = find_args_size_adjust (insn);
4074 if (this_delta == 0)
4076 if (!CALL_P (insn)
4077 || ACCUMULATE_OUTGOING_ARGS
4078 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4079 continue;
4082 gcc_assert (!saw_unknown);
4083 if (this_delta == HOST_WIDE_INT_MIN)
4084 saw_unknown = true;
4086 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
4087 if (STACK_GROWS_DOWNWARD)
4088 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4090 args_size -= this_delta;
4093 return saw_unknown ? INT_MIN : args_size;
4096 #ifdef PUSH_ROUNDING
4097 /* Emit single push insn. */
4099 static void
4100 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4102 rtx dest_addr;
4103 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4104 rtx dest;
4105 enum insn_code icode;
4107 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4108 /* If there is push pattern, use it. Otherwise try old way of throwing
4109 MEM representing push operation to move expander. */
4110 icode = optab_handler (push_optab, mode);
4111 if (icode != CODE_FOR_nothing)
4113 struct expand_operand ops[1];
4115 create_input_operand (&ops[0], x, mode);
4116 if (maybe_expand_insn (icode, 1, ops))
4117 return;
4119 if (GET_MODE_SIZE (mode) == rounded_size)
4120 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4121 /* If we are to pad downward, adjust the stack pointer first and
4122 then store X into the stack location using an offset. This is
4123 because emit_move_insn does not know how to pad; it does not have
4124 access to type. */
4125 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4127 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4128 HOST_WIDE_INT offset;
4130 emit_move_insn (stack_pointer_rtx,
4131 expand_binop (Pmode,
4132 STACK_GROWS_DOWNWARD ? sub_optab
4133 : add_optab,
4134 stack_pointer_rtx,
4135 gen_int_mode (rounded_size, Pmode),
4136 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4138 offset = (HOST_WIDE_INT) padding_size;
4139 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4140 /* We have already decremented the stack pointer, so get the
4141 previous value. */
4142 offset += (HOST_WIDE_INT) rounded_size;
4144 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4145 /* We have already incremented the stack pointer, so get the
4146 previous value. */
4147 offset -= (HOST_WIDE_INT) rounded_size;
4149 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4150 gen_int_mode (offset, Pmode));
4152 else
4154 if (STACK_GROWS_DOWNWARD)
4155 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4156 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4157 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4158 Pmode));
4159 else
4160 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4161 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4162 gen_int_mode (rounded_size, Pmode));
4164 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4167 dest = gen_rtx_MEM (mode, dest_addr);
4169 if (type != 0)
4171 set_mem_attributes (dest, type, 1);
4173 if (cfun->tail_call_marked)
4174 /* Function incoming arguments may overlap with sibling call
4175 outgoing arguments and we cannot allow reordering of reads
4176 from function arguments with stores to outgoing arguments
4177 of sibling calls. */
4178 set_mem_alias_set (dest, 0);
4180 emit_move_insn (dest, x);
4183 /* Emit and annotate a single push insn. */
4185 static void
4186 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4188 int delta, old_delta = stack_pointer_delta;
4189 rtx_insn *prev = get_last_insn ();
4190 rtx_insn *last;
4192 emit_single_push_insn_1 (mode, x, type);
4194 last = get_last_insn ();
4196 /* Notice the common case where we emitted exactly one insn. */
4197 if (PREV_INSN (last) == prev)
4199 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4200 return;
4203 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4204 gcc_assert (delta == INT_MIN || delta == old_delta);
4206 #endif
4208 /* If reading SIZE bytes from X will end up reading from
4209 Y return the number of bytes that overlap. Return -1
4210 if there is no overlap or -2 if we can't determine
4211 (for example when X and Y have different base registers). */
4213 static int
4214 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4216 rtx tmp = plus_constant (Pmode, x, size);
4217 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4219 if (!CONST_INT_P (sub))
4220 return -2;
4222 HOST_WIDE_INT val = INTVAL (sub);
4224 return IN_RANGE (val, 1, size) ? val : -1;
4227 /* Generate code to push X onto the stack, assuming it has mode MODE and
4228 type TYPE.
4229 MODE is redundant except when X is a CONST_INT (since they don't
4230 carry mode info).
4231 SIZE is an rtx for the size of data to be copied (in bytes),
4232 needed only if X is BLKmode.
4233 Return true if successful. May return false if asked to push a
4234 partial argument during a sibcall optimization (as specified by
4235 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4236 to not overlap.
4238 ALIGN (in bits) is maximum alignment we can assume.
4240 If PARTIAL and REG are both nonzero, then copy that many of the first
4241 bytes of X into registers starting with REG, and push the rest of X.
4242 The amount of space pushed is decreased by PARTIAL bytes.
4243 REG must be a hard register in this case.
4244 If REG is zero but PARTIAL is not, take any all others actions for an
4245 argument partially in registers, but do not actually load any
4246 registers.
4248 EXTRA is the amount in bytes of extra space to leave next to this arg.
4249 This is ignored if an argument block has already been allocated.
4251 On a machine that lacks real push insns, ARGS_ADDR is the address of
4252 the bottom of the argument block for this call. We use indexing off there
4253 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4254 argument block has not been preallocated.
4256 ARGS_SO_FAR is the size of args previously pushed for this call.
4258 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4259 for arguments passed in registers. If nonzero, it will be the number
4260 of bytes required. */
4262 bool
4263 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4264 unsigned int align, int partial, rtx reg, int extra,
4265 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4266 rtx alignment_pad, bool sibcall_p)
4268 rtx xinner;
4269 enum direction stack_direction = STACK_GROWS_DOWNWARD ? downward : upward;
4271 /* Decide where to pad the argument: `downward' for below,
4272 `upward' for above, or `none' for don't pad it.
4273 Default is below for small data on big-endian machines; else above. */
4274 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4276 /* Invert direction if stack is post-decrement.
4277 FIXME: why? */
4278 if (STACK_PUSH_CODE == POST_DEC)
4279 if (where_pad != none)
4280 where_pad = (where_pad == downward ? upward : downward);
4282 xinner = x;
4284 int nregs = partial / UNITS_PER_WORD;
4285 rtx *tmp_regs = NULL;
4286 int overlapping = 0;
4288 if (mode == BLKmode
4289 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4291 /* Copy a block into the stack, entirely or partially. */
4293 rtx temp;
4294 int used;
4295 int offset;
4296 int skip;
4298 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4299 used = partial - offset;
4301 if (mode != BLKmode)
4303 /* A value is to be stored in an insufficiently aligned
4304 stack slot; copy via a suitably aligned slot if
4305 necessary. */
4306 size = GEN_INT (GET_MODE_SIZE (mode));
4307 if (!MEM_P (xinner))
4309 temp = assign_temp (type, 1, 1);
4310 emit_move_insn (temp, xinner);
4311 xinner = temp;
4315 gcc_assert (size);
4317 /* USED is now the # of bytes we need not copy to the stack
4318 because registers will take care of them. */
4320 if (partial != 0)
4321 xinner = adjust_address (xinner, BLKmode, used);
4323 /* If the partial register-part of the arg counts in its stack size,
4324 skip the part of stack space corresponding to the registers.
4325 Otherwise, start copying to the beginning of the stack space,
4326 by setting SKIP to 0. */
4327 skip = (reg_parm_stack_space == 0) ? 0 : used;
4329 #ifdef PUSH_ROUNDING
4330 /* Do it with several push insns if that doesn't take lots of insns
4331 and if there is no difficulty with push insns that skip bytes
4332 on the stack for alignment purposes. */
4333 if (args_addr == 0
4334 && PUSH_ARGS
4335 && CONST_INT_P (size)
4336 && skip == 0
4337 && MEM_ALIGN (xinner) >= align
4338 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4339 /* Here we avoid the case of a structure whose weak alignment
4340 forces many pushes of a small amount of data,
4341 and such small pushes do rounding that causes trouble. */
4342 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4343 || align >= BIGGEST_ALIGNMENT
4344 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4345 == (align / BITS_PER_UNIT)))
4346 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4348 /* Push padding now if padding above and stack grows down,
4349 or if padding below and stack grows up.
4350 But if space already allocated, this has already been done. */
4351 if (extra && args_addr == 0
4352 && where_pad != none && where_pad != stack_direction)
4353 anti_adjust_stack (GEN_INT (extra));
4355 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4357 else
4358 #endif /* PUSH_ROUNDING */
4360 rtx target;
4362 /* Otherwise make space on the stack and copy the data
4363 to the address of that space. */
4365 /* Deduct words put into registers from the size we must copy. */
4366 if (partial != 0)
4368 if (CONST_INT_P (size))
4369 size = GEN_INT (INTVAL (size) - used);
4370 else
4371 size = expand_binop (GET_MODE (size), sub_optab, size,
4372 gen_int_mode (used, GET_MODE (size)),
4373 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4376 /* Get the address of the stack space.
4377 In this case, we do not deal with EXTRA separately.
4378 A single stack adjust will do. */
4379 if (! args_addr)
4381 temp = push_block (size, extra, where_pad == downward);
4382 extra = 0;
4384 else if (CONST_INT_P (args_so_far))
4385 temp = memory_address (BLKmode,
4386 plus_constant (Pmode, args_addr,
4387 skip + INTVAL (args_so_far)));
4388 else
4389 temp = memory_address (BLKmode,
4390 plus_constant (Pmode,
4391 gen_rtx_PLUS (Pmode,
4392 args_addr,
4393 args_so_far),
4394 skip));
4396 if (!ACCUMULATE_OUTGOING_ARGS)
4398 /* If the source is referenced relative to the stack pointer,
4399 copy it to another register to stabilize it. We do not need
4400 to do this if we know that we won't be changing sp. */
4402 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4403 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4404 temp = copy_to_reg (temp);
4407 target = gen_rtx_MEM (BLKmode, temp);
4409 /* We do *not* set_mem_attributes here, because incoming arguments
4410 may overlap with sibling call outgoing arguments and we cannot
4411 allow reordering of reads from function arguments with stores
4412 to outgoing arguments of sibling calls. We do, however, want
4413 to record the alignment of the stack slot. */
4414 /* ALIGN may well be better aligned than TYPE, e.g. due to
4415 PARM_BOUNDARY. Assume the caller isn't lying. */
4416 set_mem_align (target, align);
4418 /* If part should go in registers and pushing to that part would
4419 overwrite some of the values that need to go into regs, load the
4420 overlapping values into temporary pseudos to be moved into the hard
4421 regs at the end after the stack pushing has completed.
4422 We cannot load them directly into the hard regs here because
4423 they can be clobbered by the block move expansions.
4424 See PR 65358. */
4426 if (partial > 0 && reg != 0 && mode == BLKmode
4427 && GET_CODE (reg) != PARALLEL)
4429 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4430 if (overlapping > 0)
4432 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4433 overlapping /= UNITS_PER_WORD;
4435 tmp_regs = XALLOCAVEC (rtx, overlapping);
4437 for (int i = 0; i < overlapping; i++)
4438 tmp_regs[i] = gen_reg_rtx (word_mode);
4440 for (int i = 0; i < overlapping; i++)
4441 emit_move_insn (tmp_regs[i],
4442 operand_subword_force (target, i, mode));
4444 else if (overlapping == -1)
4445 overlapping = 0;
4446 /* Could not determine whether there is overlap.
4447 Fail the sibcall. */
4448 else
4450 overlapping = 0;
4451 if (sibcall_p)
4452 return false;
4455 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4458 else if (partial > 0)
4460 /* Scalar partly in registers. */
4462 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4463 int i;
4464 int not_stack;
4465 /* # bytes of start of argument
4466 that we must make space for but need not store. */
4467 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4468 int args_offset = INTVAL (args_so_far);
4469 int skip;
4471 /* Push padding now if padding above and stack grows down,
4472 or if padding below and stack grows up.
4473 But if space already allocated, this has already been done. */
4474 if (extra && args_addr == 0
4475 && where_pad != none && where_pad != stack_direction)
4476 anti_adjust_stack (GEN_INT (extra));
4478 /* If we make space by pushing it, we might as well push
4479 the real data. Otherwise, we can leave OFFSET nonzero
4480 and leave the space uninitialized. */
4481 if (args_addr == 0)
4482 offset = 0;
4484 /* Now NOT_STACK gets the number of words that we don't need to
4485 allocate on the stack. Convert OFFSET to words too. */
4486 not_stack = (partial - offset) / UNITS_PER_WORD;
4487 offset /= UNITS_PER_WORD;
4489 /* If the partial register-part of the arg counts in its stack size,
4490 skip the part of stack space corresponding to the registers.
4491 Otherwise, start copying to the beginning of the stack space,
4492 by setting SKIP to 0. */
4493 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4495 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4496 x = validize_mem (force_const_mem (mode, x));
4498 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4499 SUBREGs of such registers are not allowed. */
4500 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4501 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4502 x = copy_to_reg (x);
4504 /* Loop over all the words allocated on the stack for this arg. */
4505 /* We can do it by words, because any scalar bigger than a word
4506 has a size a multiple of a word. */
4507 for (i = size - 1; i >= not_stack; i--)
4508 if (i >= not_stack + offset)
4509 if (!emit_push_insn (operand_subword_force (x, i, mode),
4510 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4511 0, args_addr,
4512 GEN_INT (args_offset + ((i - not_stack + skip)
4513 * UNITS_PER_WORD)),
4514 reg_parm_stack_space, alignment_pad, sibcall_p))
4515 return false;
4517 else
4519 rtx addr;
4520 rtx dest;
4522 /* Push padding now if padding above and stack grows down,
4523 or if padding below and stack grows up.
4524 But if space already allocated, this has already been done. */
4525 if (extra && args_addr == 0
4526 && where_pad != none && where_pad != stack_direction)
4527 anti_adjust_stack (GEN_INT (extra));
4529 #ifdef PUSH_ROUNDING
4530 if (args_addr == 0 && PUSH_ARGS)
4531 emit_single_push_insn (mode, x, type);
4532 else
4533 #endif
4535 if (CONST_INT_P (args_so_far))
4536 addr
4537 = memory_address (mode,
4538 plus_constant (Pmode, args_addr,
4539 INTVAL (args_so_far)));
4540 else
4541 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4542 args_so_far));
4543 dest = gen_rtx_MEM (mode, addr);
4545 /* We do *not* set_mem_attributes here, because incoming arguments
4546 may overlap with sibling call outgoing arguments and we cannot
4547 allow reordering of reads from function arguments with stores
4548 to outgoing arguments of sibling calls. We do, however, want
4549 to record the alignment of the stack slot. */
4550 /* ALIGN may well be better aligned than TYPE, e.g. due to
4551 PARM_BOUNDARY. Assume the caller isn't lying. */
4552 set_mem_align (dest, align);
4554 emit_move_insn (dest, x);
4558 /* Move the partial arguments into the registers and any overlapping
4559 values that we moved into the pseudos in tmp_regs. */
4560 if (partial > 0 && reg != 0)
4562 /* Handle calls that pass values in multiple non-contiguous locations.
4563 The Irix 6 ABI has examples of this. */
4564 if (GET_CODE (reg) == PARALLEL)
4565 emit_group_load (reg, x, type, -1);
4566 else
4568 gcc_assert (partial % UNITS_PER_WORD == 0);
4569 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4571 for (int i = 0; i < overlapping; i++)
4572 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4573 + nregs - overlapping + i),
4574 tmp_regs[i]);
4579 if (extra && args_addr == 0 && where_pad == stack_direction)
4580 anti_adjust_stack (GEN_INT (extra));
4582 if (alignment_pad && args_addr == 0)
4583 anti_adjust_stack (alignment_pad);
4585 return true;
4588 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4589 operations. */
4591 static rtx
4592 get_subtarget (rtx x)
4594 return (optimize
4595 || x == 0
4596 /* Only registers can be subtargets. */
4597 || !REG_P (x)
4598 /* Don't use hard regs to avoid extending their life. */
4599 || REGNO (x) < FIRST_PSEUDO_REGISTER
4600 ? 0 : x);
4603 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4604 FIELD is a bitfield. Returns true if the optimization was successful,
4605 and there's nothing else to do. */
4607 static bool
4608 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4609 unsigned HOST_WIDE_INT bitpos,
4610 unsigned HOST_WIDE_INT bitregion_start,
4611 unsigned HOST_WIDE_INT bitregion_end,
4612 machine_mode mode1, rtx str_rtx,
4613 tree to, tree src, bool reverse)
4615 machine_mode str_mode = GET_MODE (str_rtx);
4616 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4617 tree op0, op1;
4618 rtx value, result;
4619 optab binop;
4620 gimple *srcstmt;
4621 enum tree_code code;
4623 if (mode1 != VOIDmode
4624 || bitsize >= BITS_PER_WORD
4625 || str_bitsize > BITS_PER_WORD
4626 || TREE_SIDE_EFFECTS (to)
4627 || TREE_THIS_VOLATILE (to))
4628 return false;
4630 STRIP_NOPS (src);
4631 if (TREE_CODE (src) != SSA_NAME)
4632 return false;
4633 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4634 return false;
4636 srcstmt = get_gimple_for_ssa_name (src);
4637 if (!srcstmt
4638 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4639 return false;
4641 code = gimple_assign_rhs_code (srcstmt);
4643 op0 = gimple_assign_rhs1 (srcstmt);
4645 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4646 to find its initialization. Hopefully the initialization will
4647 be from a bitfield load. */
4648 if (TREE_CODE (op0) == SSA_NAME)
4650 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4652 /* We want to eventually have OP0 be the same as TO, which
4653 should be a bitfield. */
4654 if (!op0stmt
4655 || !is_gimple_assign (op0stmt)
4656 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4657 return false;
4658 op0 = gimple_assign_rhs1 (op0stmt);
4661 op1 = gimple_assign_rhs2 (srcstmt);
4663 if (!operand_equal_p (to, op0, 0))
4664 return false;
4666 if (MEM_P (str_rtx))
4668 unsigned HOST_WIDE_INT offset1;
4670 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4671 str_mode = word_mode;
4672 str_mode = get_best_mode (bitsize, bitpos,
4673 bitregion_start, bitregion_end,
4674 MEM_ALIGN (str_rtx), str_mode, 0);
4675 if (str_mode == VOIDmode)
4676 return false;
4677 str_bitsize = GET_MODE_BITSIZE (str_mode);
4679 offset1 = bitpos;
4680 bitpos %= str_bitsize;
4681 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4682 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4684 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4685 return false;
4686 else
4687 gcc_assert (!reverse);
4689 /* If the bit field covers the whole REG/MEM, store_field
4690 will likely generate better code. */
4691 if (bitsize >= str_bitsize)
4692 return false;
4694 /* We can't handle fields split across multiple entities. */
4695 if (bitpos + bitsize > str_bitsize)
4696 return false;
4698 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4699 bitpos = str_bitsize - bitpos - bitsize;
4701 switch (code)
4703 case PLUS_EXPR:
4704 case MINUS_EXPR:
4705 /* For now, just optimize the case of the topmost bitfield
4706 where we don't need to do any masking and also
4707 1 bit bitfields where xor can be used.
4708 We might win by one instruction for the other bitfields
4709 too if insv/extv instructions aren't used, so that
4710 can be added later. */
4711 if ((reverse || bitpos + bitsize != str_bitsize)
4712 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4713 break;
4715 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4716 value = convert_modes (str_mode,
4717 TYPE_MODE (TREE_TYPE (op1)), value,
4718 TYPE_UNSIGNED (TREE_TYPE (op1)));
4720 /* We may be accessing data outside the field, which means
4721 we can alias adjacent data. */
4722 if (MEM_P (str_rtx))
4724 str_rtx = shallow_copy_rtx (str_rtx);
4725 set_mem_alias_set (str_rtx, 0);
4726 set_mem_expr (str_rtx, 0);
4729 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4731 value = expand_and (str_mode, value, const1_rtx, NULL);
4732 binop = xor_optab;
4734 else
4735 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4737 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4738 if (reverse)
4739 value = flip_storage_order (str_mode, value);
4740 result = expand_binop (str_mode, binop, str_rtx,
4741 value, str_rtx, 1, OPTAB_WIDEN);
4742 if (result != str_rtx)
4743 emit_move_insn (str_rtx, result);
4744 return true;
4746 case BIT_IOR_EXPR:
4747 case BIT_XOR_EXPR:
4748 if (TREE_CODE (op1) != INTEGER_CST)
4749 break;
4750 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4751 value = convert_modes (str_mode,
4752 TYPE_MODE (TREE_TYPE (op1)), value,
4753 TYPE_UNSIGNED (TREE_TYPE (op1)));
4755 /* We may be accessing data outside the field, which means
4756 we can alias adjacent data. */
4757 if (MEM_P (str_rtx))
4759 str_rtx = shallow_copy_rtx (str_rtx);
4760 set_mem_alias_set (str_rtx, 0);
4761 set_mem_expr (str_rtx, 0);
4764 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4765 if (bitpos + bitsize != str_bitsize)
4767 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4768 str_mode);
4769 value = expand_and (str_mode, value, mask, NULL_RTX);
4771 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4772 if (reverse)
4773 value = flip_storage_order (str_mode, value);
4774 result = expand_binop (str_mode, binop, str_rtx,
4775 value, str_rtx, 1, OPTAB_WIDEN);
4776 if (result != str_rtx)
4777 emit_move_insn (str_rtx, result);
4778 return true;
4780 default:
4781 break;
4784 return false;
4787 /* In the C++ memory model, consecutive bit fields in a structure are
4788 considered one memory location.
4790 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4791 returns the bit range of consecutive bits in which this COMPONENT_REF
4792 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4793 and *OFFSET may be adjusted in the process.
4795 If the access does not need to be restricted, 0 is returned in both
4796 *BITSTART and *BITEND. */
4798 void
4799 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4800 unsigned HOST_WIDE_INT *bitend,
4801 tree exp,
4802 HOST_WIDE_INT *bitpos,
4803 tree *offset)
4805 HOST_WIDE_INT bitoffset;
4806 tree field, repr;
4808 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4810 field = TREE_OPERAND (exp, 1);
4811 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4812 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4813 need to limit the range we can access. */
4814 if (!repr)
4816 *bitstart = *bitend = 0;
4817 return;
4820 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4821 part of a larger bit field, then the representative does not serve any
4822 useful purpose. This can occur in Ada. */
4823 if (handled_component_p (TREE_OPERAND (exp, 0)))
4825 machine_mode rmode;
4826 HOST_WIDE_INT rbitsize, rbitpos;
4827 tree roffset;
4828 int unsignedp, reversep, volatilep = 0;
4829 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4830 &roffset, &rmode, &unsignedp, &reversep,
4831 &volatilep);
4832 if ((rbitpos % BITS_PER_UNIT) != 0)
4834 *bitstart = *bitend = 0;
4835 return;
4839 /* Compute the adjustment to bitpos from the offset of the field
4840 relative to the representative. DECL_FIELD_OFFSET of field and
4841 repr are the same by construction if they are not constants,
4842 see finish_bitfield_layout. */
4843 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4844 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4845 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4846 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4847 else
4848 bitoffset = 0;
4849 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4850 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4852 /* If the adjustment is larger than bitpos, we would have a negative bit
4853 position for the lower bound and this may wreak havoc later. Adjust
4854 offset and bitpos to make the lower bound non-negative in that case. */
4855 if (bitoffset > *bitpos)
4857 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4858 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4860 *bitpos += adjust;
4861 if (*offset == NULL_TREE)
4862 *offset = size_int (-adjust / BITS_PER_UNIT);
4863 else
4864 *offset
4865 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4866 *bitstart = 0;
4868 else
4869 *bitstart = *bitpos - bitoffset;
4871 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4874 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4875 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4876 DECL_RTL was not set yet, return NORTL. */
4878 static inline bool
4879 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4881 if (TREE_CODE (addr) != ADDR_EXPR)
4882 return false;
4884 tree base = TREE_OPERAND (addr, 0);
4886 if (!DECL_P (base)
4887 || TREE_ADDRESSABLE (base)
4888 || DECL_MODE (base) == BLKmode)
4889 return false;
4891 if (!DECL_RTL_SET_P (base))
4892 return nortl;
4894 return (!MEM_P (DECL_RTL (base)));
4897 /* Returns true if the MEM_REF REF refers to an object that does not
4898 reside in memory and has non-BLKmode. */
4900 static inline bool
4901 mem_ref_refers_to_non_mem_p (tree ref)
4903 tree base = TREE_OPERAND (ref, 0);
4904 return addr_expr_of_non_mem_decl_p_1 (base, false);
4907 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4908 is true, try generating a nontemporal store. */
4910 void
4911 expand_assignment (tree to, tree from, bool nontemporal)
4913 rtx to_rtx = 0;
4914 rtx result;
4915 machine_mode mode;
4916 unsigned int align;
4917 enum insn_code icode;
4919 /* Don't crash if the lhs of the assignment was erroneous. */
4920 if (TREE_CODE (to) == ERROR_MARK)
4922 expand_normal (from);
4923 return;
4926 /* Optimize away no-op moves without side-effects. */
4927 if (operand_equal_p (to, from, 0))
4928 return;
4930 /* Handle misaligned stores. */
4931 mode = TYPE_MODE (TREE_TYPE (to));
4932 if ((TREE_CODE (to) == MEM_REF
4933 || TREE_CODE (to) == TARGET_MEM_REF)
4934 && mode != BLKmode
4935 && !mem_ref_refers_to_non_mem_p (to)
4936 && ((align = get_object_alignment (to))
4937 < GET_MODE_ALIGNMENT (mode))
4938 && (((icode = optab_handler (movmisalign_optab, mode))
4939 != CODE_FOR_nothing)
4940 || SLOW_UNALIGNED_ACCESS (mode, align)))
4942 rtx reg, mem;
4944 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4945 reg = force_not_mem (reg);
4946 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4947 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
4948 reg = flip_storage_order (mode, reg);
4950 if (icode != CODE_FOR_nothing)
4952 struct expand_operand ops[2];
4954 create_fixed_operand (&ops[0], mem);
4955 create_input_operand (&ops[1], reg, mode);
4956 /* The movmisalign<mode> pattern cannot fail, else the assignment
4957 would silently be omitted. */
4958 expand_insn (icode, 2, ops);
4960 else
4961 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
4962 false);
4963 return;
4966 /* Assignment of a structure component needs special treatment
4967 if the structure component's rtx is not simply a MEM.
4968 Assignment of an array element at a constant index, and assignment of
4969 an array element in an unaligned packed structure field, has the same
4970 problem. Same for (partially) storing into a non-memory object. */
4971 if (handled_component_p (to)
4972 || (TREE_CODE (to) == MEM_REF
4973 && (REF_REVERSE_STORAGE_ORDER (to)
4974 || mem_ref_refers_to_non_mem_p (to)))
4975 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4977 machine_mode mode1;
4978 HOST_WIDE_INT bitsize, bitpos;
4979 unsigned HOST_WIDE_INT bitregion_start = 0;
4980 unsigned HOST_WIDE_INT bitregion_end = 0;
4981 tree offset;
4982 int unsignedp, reversep, volatilep = 0;
4983 tree tem;
4985 push_temp_slots ();
4986 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4987 &unsignedp, &reversep, &volatilep);
4989 /* Make sure bitpos is not negative, it can wreak havoc later. */
4990 if (bitpos < 0)
4992 gcc_assert (offset == NULL_TREE);
4993 offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
4994 bitpos &= BITS_PER_UNIT - 1;
4997 if (TREE_CODE (to) == COMPONENT_REF
4998 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4999 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5000 /* The C++ memory model naturally applies to byte-aligned fields.
5001 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5002 BITSIZE are not byte-aligned, there is no need to limit the range
5003 we can access. This can occur with packed structures in Ada. */
5004 else if (bitsize > 0
5005 && bitsize % BITS_PER_UNIT == 0
5006 && bitpos % BITS_PER_UNIT == 0)
5008 bitregion_start = bitpos;
5009 bitregion_end = bitpos + bitsize - 1;
5012 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5014 /* If the field has a mode, we want to access it in the
5015 field's mode, not the computed mode.
5016 If a MEM has VOIDmode (external with incomplete type),
5017 use BLKmode for it instead. */
5018 if (MEM_P (to_rtx))
5020 if (mode1 != VOIDmode)
5021 to_rtx = adjust_address (to_rtx, mode1, 0);
5022 else if (GET_MODE (to_rtx) == VOIDmode)
5023 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5026 if (offset != 0)
5028 machine_mode address_mode;
5029 rtx offset_rtx;
5031 if (!MEM_P (to_rtx))
5033 /* We can get constant negative offsets into arrays with broken
5034 user code. Translate this to a trap instead of ICEing. */
5035 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5036 expand_builtin_trap ();
5037 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5040 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5041 address_mode = get_address_mode (to_rtx);
5042 if (GET_MODE (offset_rtx) != address_mode)
5044 /* We cannot be sure that the RTL in offset_rtx is valid outside
5045 of a memory address context, so force it into a register
5046 before attempting to convert it to the desired mode. */
5047 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5048 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5051 /* If we have an expression in OFFSET_RTX and a non-zero
5052 byte offset in BITPOS, adding the byte offset before the
5053 OFFSET_RTX results in better intermediate code, which makes
5054 later rtl optimization passes perform better.
5056 We prefer intermediate code like this:
5058 r124:DI=r123:DI+0x18
5059 [r124:DI]=r121:DI
5061 ... instead of ...
5063 r124:DI=r123:DI+0x10
5064 [r124:DI+0x8]=r121:DI
5066 This is only done for aligned data values, as these can
5067 be expected to result in single move instructions. */
5068 if (mode1 != VOIDmode
5069 && bitpos != 0
5070 && bitsize > 0
5071 && (bitpos % bitsize) == 0
5072 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
5073 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5075 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
5076 bitregion_start = 0;
5077 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
5078 bitregion_end -= bitpos;
5079 bitpos = 0;
5082 to_rtx = offset_address (to_rtx, offset_rtx,
5083 highest_pow2_factor_for_target (to,
5084 offset));
5087 /* No action is needed if the target is not a memory and the field
5088 lies completely outside that target. This can occur if the source
5089 code contains an out-of-bounds access to a small array. */
5090 if (!MEM_P (to_rtx)
5091 && GET_MODE (to_rtx) != BLKmode
5092 && (unsigned HOST_WIDE_INT) bitpos
5093 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
5095 expand_normal (from);
5096 result = NULL;
5098 /* Handle expand_expr of a complex value returning a CONCAT. */
5099 else if (GET_CODE (to_rtx) == CONCAT)
5101 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
5102 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
5103 && bitpos == 0
5104 && bitsize == mode_bitsize)
5105 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5106 else if (bitsize == mode_bitsize / 2
5107 && (bitpos == 0 || bitpos == mode_bitsize / 2))
5108 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
5109 nontemporal, reversep);
5110 else if (bitpos + bitsize <= mode_bitsize / 2)
5111 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5112 bitregion_start, bitregion_end,
5113 mode1, from, get_alias_set (to),
5114 nontemporal, reversep);
5115 else if (bitpos >= mode_bitsize / 2)
5116 result = store_field (XEXP (to_rtx, 1), bitsize,
5117 bitpos - mode_bitsize / 2,
5118 bitregion_start, bitregion_end,
5119 mode1, from, get_alias_set (to),
5120 nontemporal, reversep);
5121 else if (bitpos == 0 && bitsize == mode_bitsize)
5123 rtx from_rtx;
5124 result = expand_normal (from);
5125 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
5126 TYPE_MODE (TREE_TYPE (from)), 0);
5127 emit_move_insn (XEXP (to_rtx, 0),
5128 read_complex_part (from_rtx, false));
5129 emit_move_insn (XEXP (to_rtx, 1),
5130 read_complex_part (from_rtx, true));
5132 else
5134 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5135 GET_MODE_SIZE (GET_MODE (to_rtx)));
5136 write_complex_part (temp, XEXP (to_rtx, 0), false);
5137 write_complex_part (temp, XEXP (to_rtx, 1), true);
5138 result = store_field (temp, bitsize, bitpos,
5139 bitregion_start, bitregion_end,
5140 mode1, from, get_alias_set (to),
5141 nontemporal, reversep);
5142 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5143 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5146 else
5148 if (MEM_P (to_rtx))
5150 /* If the field is at offset zero, we could have been given the
5151 DECL_RTX of the parent struct. Don't munge it. */
5152 to_rtx = shallow_copy_rtx (to_rtx);
5153 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5154 if (volatilep)
5155 MEM_VOLATILE_P (to_rtx) = 1;
5158 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5159 bitregion_start, bitregion_end,
5160 mode1, to_rtx, to, from,
5161 reversep))
5162 result = NULL;
5163 else
5164 result = store_field (to_rtx, bitsize, bitpos,
5165 bitregion_start, bitregion_end,
5166 mode1, from, get_alias_set (to),
5167 nontemporal, reversep);
5170 if (result)
5171 preserve_temp_slots (result);
5172 pop_temp_slots ();
5173 return;
5176 /* If the rhs is a function call and its value is not an aggregate,
5177 call the function before we start to compute the lhs.
5178 This is needed for correct code for cases such as
5179 val = setjmp (buf) on machines where reference to val
5180 requires loading up part of an address in a separate insn.
5182 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5183 since it might be a promoted variable where the zero- or sign- extension
5184 needs to be done. Handling this in the normal way is safe because no
5185 computation is done before the call. The same is true for SSA names. */
5186 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5187 && COMPLETE_TYPE_P (TREE_TYPE (from))
5188 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5189 && ! (((VAR_P (to)
5190 || TREE_CODE (to) == PARM_DECL
5191 || TREE_CODE (to) == RESULT_DECL)
5192 && REG_P (DECL_RTL (to)))
5193 || TREE_CODE (to) == SSA_NAME))
5195 rtx value;
5196 rtx bounds;
5198 push_temp_slots ();
5199 value = expand_normal (from);
5201 /* Split value and bounds to store them separately. */
5202 chkp_split_slot (value, &value, &bounds);
5204 if (to_rtx == 0)
5205 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5207 /* Handle calls that return values in multiple non-contiguous locations.
5208 The Irix 6 ABI has examples of this. */
5209 if (GET_CODE (to_rtx) == PARALLEL)
5211 if (GET_CODE (value) == PARALLEL)
5212 emit_group_move (to_rtx, value);
5213 else
5214 emit_group_load (to_rtx, value, TREE_TYPE (from),
5215 int_size_in_bytes (TREE_TYPE (from)));
5217 else if (GET_CODE (value) == PARALLEL)
5218 emit_group_store (to_rtx, value, TREE_TYPE (from),
5219 int_size_in_bytes (TREE_TYPE (from)));
5220 else if (GET_MODE (to_rtx) == BLKmode)
5222 /* Handle calls that return BLKmode values in registers. */
5223 if (REG_P (value))
5224 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5225 else
5226 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5228 else
5230 if (POINTER_TYPE_P (TREE_TYPE (to)))
5231 value = convert_memory_address_addr_space
5232 (GET_MODE (to_rtx), value,
5233 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5235 emit_move_insn (to_rtx, value);
5238 /* Store bounds if required. */
5239 if (bounds
5240 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5242 gcc_assert (MEM_P (to_rtx));
5243 chkp_emit_bounds_store (bounds, value, to_rtx);
5246 preserve_temp_slots (to_rtx);
5247 pop_temp_slots ();
5248 return;
5251 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5252 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5254 /* Don't move directly into a return register. */
5255 if (TREE_CODE (to) == RESULT_DECL
5256 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5258 rtx temp;
5260 push_temp_slots ();
5262 /* If the source is itself a return value, it still is in a pseudo at
5263 this point so we can move it back to the return register directly. */
5264 if (REG_P (to_rtx)
5265 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5266 && TREE_CODE (from) != CALL_EXPR)
5267 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5268 else
5269 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5271 /* Handle calls that return values in multiple non-contiguous locations.
5272 The Irix 6 ABI has examples of this. */
5273 if (GET_CODE (to_rtx) == PARALLEL)
5275 if (GET_CODE (temp) == PARALLEL)
5276 emit_group_move (to_rtx, temp);
5277 else
5278 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5279 int_size_in_bytes (TREE_TYPE (from)));
5281 else if (temp)
5282 emit_move_insn (to_rtx, temp);
5284 preserve_temp_slots (to_rtx);
5285 pop_temp_slots ();
5286 return;
5289 /* In case we are returning the contents of an object which overlaps
5290 the place the value is being stored, use a safe function when copying
5291 a value through a pointer into a structure value return block. */
5292 if (TREE_CODE (to) == RESULT_DECL
5293 && TREE_CODE (from) == INDIRECT_REF
5294 && ADDR_SPACE_GENERIC_P
5295 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5296 && refs_may_alias_p (to, from)
5297 && cfun->returns_struct
5298 && !cfun->returns_pcc_struct)
5300 rtx from_rtx, size;
5302 push_temp_slots ();
5303 size = expr_size (from);
5304 from_rtx = expand_normal (from);
5306 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5308 preserve_temp_slots (to_rtx);
5309 pop_temp_slots ();
5310 return;
5313 /* Compute FROM and store the value in the rtx we got. */
5315 push_temp_slots ();
5316 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
5317 preserve_temp_slots (result);
5318 pop_temp_slots ();
5319 return;
5322 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5323 succeeded, false otherwise. */
5325 bool
5326 emit_storent_insn (rtx to, rtx from)
5328 struct expand_operand ops[2];
5329 machine_mode mode = GET_MODE (to);
5330 enum insn_code code = optab_handler (storent_optab, mode);
5332 if (code == CODE_FOR_nothing)
5333 return false;
5335 create_fixed_operand (&ops[0], to);
5336 create_input_operand (&ops[1], from, mode);
5337 return maybe_expand_insn (code, 2, ops);
5340 /* Generate code for computing expression EXP,
5341 and storing the value into TARGET.
5343 If the mode is BLKmode then we may return TARGET itself.
5344 It turns out that in BLKmode it doesn't cause a problem.
5345 because C has no operators that could combine two different
5346 assignments into the same BLKmode object with different values
5347 with no sequence point. Will other languages need this to
5348 be more thorough?
5350 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5351 stack, and block moves may need to be treated specially.
5353 If NONTEMPORAL is true, try using a nontemporal store instruction.
5355 If REVERSE is true, the store is to be done in reverse order.
5357 If BTARGET is not NULL then computed bounds of EXP are
5358 associated with BTARGET. */
5361 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5362 bool nontemporal, bool reverse, tree btarget)
5364 rtx temp;
5365 rtx alt_rtl = NULL_RTX;
5366 location_t loc = curr_insn_location ();
5368 if (VOID_TYPE_P (TREE_TYPE (exp)))
5370 /* C++ can generate ?: expressions with a throw expression in one
5371 branch and an rvalue in the other. Here, we resolve attempts to
5372 store the throw expression's nonexistent result. */
5373 gcc_assert (!call_param_p);
5374 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5375 return NULL_RTX;
5377 if (TREE_CODE (exp) == COMPOUND_EXPR)
5379 /* Perform first part of compound expression, then assign from second
5380 part. */
5381 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5382 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5383 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5384 call_param_p, nontemporal, reverse,
5385 btarget);
5387 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5389 /* For conditional expression, get safe form of the target. Then
5390 test the condition, doing the appropriate assignment on either
5391 side. This avoids the creation of unnecessary temporaries.
5392 For non-BLKmode, it is more efficient not to do this. */
5394 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5396 do_pending_stack_adjust ();
5397 NO_DEFER_POP;
5398 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5399 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5400 nontemporal, reverse, btarget);
5401 emit_jump_insn (targetm.gen_jump (lab2));
5402 emit_barrier ();
5403 emit_label (lab1);
5404 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5405 nontemporal, reverse, btarget);
5406 emit_label (lab2);
5407 OK_DEFER_POP;
5409 return NULL_RTX;
5411 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5412 /* If this is a scalar in a register that is stored in a wider mode
5413 than the declared mode, compute the result into its declared mode
5414 and then convert to the wider mode. Our value is the computed
5415 expression. */
5417 rtx inner_target = 0;
5419 /* We can do the conversion inside EXP, which will often result
5420 in some optimizations. Do the conversion in two steps: first
5421 change the signedness, if needed, then the extend. But don't
5422 do this if the type of EXP is a subtype of something else
5423 since then the conversion might involve more than just
5424 converting modes. */
5425 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5426 && TREE_TYPE (TREE_TYPE (exp)) == 0
5427 && GET_MODE_PRECISION (GET_MODE (target))
5428 == TYPE_PRECISION (TREE_TYPE (exp)))
5430 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5431 TYPE_UNSIGNED (TREE_TYPE (exp))))
5433 /* Some types, e.g. Fortran's logical*4, won't have a signed
5434 version, so use the mode instead. */
5435 tree ntype
5436 = (signed_or_unsigned_type_for
5437 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5438 if (ntype == NULL)
5439 ntype = lang_hooks.types.type_for_mode
5440 (TYPE_MODE (TREE_TYPE (exp)),
5441 SUBREG_PROMOTED_SIGN (target));
5443 exp = fold_convert_loc (loc, ntype, exp);
5446 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5447 (GET_MODE (SUBREG_REG (target)),
5448 SUBREG_PROMOTED_SIGN (target)),
5449 exp);
5451 inner_target = SUBREG_REG (target);
5454 temp = expand_expr (exp, inner_target, VOIDmode,
5455 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5457 /* Handle bounds returned by call. */
5458 if (TREE_CODE (exp) == CALL_EXPR)
5460 rtx bounds;
5461 chkp_split_slot (temp, &temp, &bounds);
5462 if (bounds && btarget)
5464 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5465 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5466 chkp_set_rtl_bounds (btarget, tmp);
5470 /* If TEMP is a VOIDmode constant, use convert_modes to make
5471 sure that we properly convert it. */
5472 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5474 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5475 temp, SUBREG_PROMOTED_SIGN (target));
5476 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5477 GET_MODE (target), temp,
5478 SUBREG_PROMOTED_SIGN (target));
5481 convert_move (SUBREG_REG (target), temp,
5482 SUBREG_PROMOTED_SIGN (target));
5484 return NULL_RTX;
5486 else if ((TREE_CODE (exp) == STRING_CST
5487 || (TREE_CODE (exp) == MEM_REF
5488 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5489 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5490 == STRING_CST
5491 && integer_zerop (TREE_OPERAND (exp, 1))))
5492 && !nontemporal && !call_param_p
5493 && MEM_P (target))
5495 /* Optimize initialization of an array with a STRING_CST. */
5496 HOST_WIDE_INT exp_len, str_copy_len;
5497 rtx dest_mem;
5498 tree str = TREE_CODE (exp) == STRING_CST
5499 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5501 exp_len = int_expr_size (exp);
5502 if (exp_len <= 0)
5503 goto normal_expr;
5505 if (TREE_STRING_LENGTH (str) <= 0)
5506 goto normal_expr;
5508 str_copy_len = strlen (TREE_STRING_POINTER (str));
5509 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5510 goto normal_expr;
5512 str_copy_len = TREE_STRING_LENGTH (str);
5513 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5514 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5516 str_copy_len += STORE_MAX_PIECES - 1;
5517 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5519 str_copy_len = MIN (str_copy_len, exp_len);
5520 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5521 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5522 MEM_ALIGN (target), false))
5523 goto normal_expr;
5525 dest_mem = target;
5527 dest_mem = store_by_pieces (dest_mem,
5528 str_copy_len, builtin_strncpy_read_str,
5529 CONST_CAST (char *,
5530 TREE_STRING_POINTER (str)),
5531 MEM_ALIGN (target), false,
5532 exp_len > str_copy_len ? 1 : 0);
5533 if (exp_len > str_copy_len)
5534 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5535 GEN_INT (exp_len - str_copy_len),
5536 BLOCK_OP_NORMAL);
5537 return NULL_RTX;
5539 else
5541 rtx tmp_target;
5543 normal_expr:
5544 /* If we want to use a nontemporal or a reverse order store, force the
5545 value into a register first. */
5546 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5547 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5548 (call_param_p
5549 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5550 &alt_rtl, false);
5552 /* Handle bounds returned by call. */
5553 if (TREE_CODE (exp) == CALL_EXPR)
5555 rtx bounds;
5556 chkp_split_slot (temp, &temp, &bounds);
5557 if (bounds && btarget)
5559 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5560 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5561 chkp_set_rtl_bounds (btarget, tmp);
5566 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5567 the same as that of TARGET, adjust the constant. This is needed, for
5568 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5569 only a word-sized value. */
5570 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5571 && TREE_CODE (exp) != ERROR_MARK
5572 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5573 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5574 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5576 /* If value was not generated in the target, store it there.
5577 Convert the value to TARGET's type first if necessary and emit the
5578 pending incrementations that have been queued when expanding EXP.
5579 Note that we cannot emit the whole queue blindly because this will
5580 effectively disable the POST_INC optimization later.
5582 If TEMP and TARGET compare equal according to rtx_equal_p, but
5583 one or both of them are volatile memory refs, we have to distinguish
5584 two cases:
5585 - expand_expr has used TARGET. In this case, we must not generate
5586 another copy. This can be detected by TARGET being equal according
5587 to == .
5588 - expand_expr has not used TARGET - that means that the source just
5589 happens to have the same RTX form. Since temp will have been created
5590 by expand_expr, it will compare unequal according to == .
5591 We must generate a copy in this case, to reach the correct number
5592 of volatile memory references. */
5594 if ((! rtx_equal_p (temp, target)
5595 || (temp != target && (side_effects_p (temp)
5596 || side_effects_p (target))))
5597 && TREE_CODE (exp) != ERROR_MARK
5598 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5599 but TARGET is not valid memory reference, TEMP will differ
5600 from TARGET although it is really the same location. */
5601 && !(alt_rtl
5602 && rtx_equal_p (alt_rtl, target)
5603 && !side_effects_p (alt_rtl)
5604 && !side_effects_p (target))
5605 /* If there's nothing to copy, don't bother. Don't call
5606 expr_size unless necessary, because some front-ends (C++)
5607 expr_size-hook must not be given objects that are not
5608 supposed to be bit-copied or bit-initialized. */
5609 && expr_size (exp) != const0_rtx)
5611 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5613 if (GET_MODE (target) == BLKmode)
5615 /* Handle calls that return BLKmode values in registers. */
5616 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5617 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5618 else
5619 store_bit_field (target,
5620 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5621 0, 0, 0, GET_MODE (temp), temp, reverse);
5623 else
5624 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5627 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5629 /* Handle copying a string constant into an array. The string
5630 constant may be shorter than the array. So copy just the string's
5631 actual length, and clear the rest. First get the size of the data
5632 type of the string, which is actually the size of the target. */
5633 rtx size = expr_size (exp);
5635 if (CONST_INT_P (size)
5636 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5637 emit_block_move (target, temp, size,
5638 (call_param_p
5639 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5640 else
5642 machine_mode pointer_mode
5643 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5644 machine_mode address_mode = get_address_mode (target);
5646 /* Compute the size of the data to copy from the string. */
5647 tree copy_size
5648 = size_binop_loc (loc, MIN_EXPR,
5649 make_tree (sizetype, size),
5650 size_int (TREE_STRING_LENGTH (exp)));
5651 rtx copy_size_rtx
5652 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5653 (call_param_p
5654 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5655 rtx_code_label *label = 0;
5657 /* Copy that much. */
5658 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5659 TYPE_UNSIGNED (sizetype));
5660 emit_block_move (target, temp, copy_size_rtx,
5661 (call_param_p
5662 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5664 /* Figure out how much is left in TARGET that we have to clear.
5665 Do all calculations in pointer_mode. */
5666 if (CONST_INT_P (copy_size_rtx))
5668 size = plus_constant (address_mode, size,
5669 -INTVAL (copy_size_rtx));
5670 target = adjust_address (target, BLKmode,
5671 INTVAL (copy_size_rtx));
5673 else
5675 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5676 copy_size_rtx, NULL_RTX, 0,
5677 OPTAB_LIB_WIDEN);
5679 if (GET_MODE (copy_size_rtx) != address_mode)
5680 copy_size_rtx = convert_to_mode (address_mode,
5681 copy_size_rtx,
5682 TYPE_UNSIGNED (sizetype));
5684 target = offset_address (target, copy_size_rtx,
5685 highest_pow2_factor (copy_size));
5686 label = gen_label_rtx ();
5687 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5688 GET_MODE (size), 0, label);
5691 if (size != const0_rtx)
5692 clear_storage (target, size, BLOCK_OP_NORMAL);
5694 if (label)
5695 emit_label (label);
5698 /* Handle calls that return values in multiple non-contiguous locations.
5699 The Irix 6 ABI has examples of this. */
5700 else if (GET_CODE (target) == PARALLEL)
5702 if (GET_CODE (temp) == PARALLEL)
5703 emit_group_move (target, temp);
5704 else
5705 emit_group_load (target, temp, TREE_TYPE (exp),
5706 int_size_in_bytes (TREE_TYPE (exp)));
5708 else if (GET_CODE (temp) == PARALLEL)
5709 emit_group_store (target, temp, TREE_TYPE (exp),
5710 int_size_in_bytes (TREE_TYPE (exp)));
5711 else if (GET_MODE (temp) == BLKmode)
5712 emit_block_move (target, temp, expr_size (exp),
5713 (call_param_p
5714 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5715 /* If we emit a nontemporal store, there is nothing else to do. */
5716 else if (nontemporal && emit_storent_insn (target, temp))
5718 else
5720 if (reverse)
5721 temp = flip_storage_order (GET_MODE (target), temp);
5722 temp = force_operand (temp, target);
5723 if (temp != target)
5724 emit_move_insn (target, temp);
5728 return NULL_RTX;
5731 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5733 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
5734 bool reverse)
5736 return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
5737 reverse, NULL);
5740 /* Return true if field F of structure TYPE is a flexible array. */
5742 static bool
5743 flexible_array_member_p (const_tree f, const_tree type)
5745 const_tree tf;
5747 tf = TREE_TYPE (f);
5748 return (DECL_CHAIN (f) == NULL
5749 && TREE_CODE (tf) == ARRAY_TYPE
5750 && TYPE_DOMAIN (tf)
5751 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5752 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5753 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5754 && int_size_in_bytes (type) >= 0);
5757 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5758 must have in order for it to completely initialize a value of type TYPE.
5759 Return -1 if the number isn't known.
5761 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5763 static HOST_WIDE_INT
5764 count_type_elements (const_tree type, bool for_ctor_p)
5766 switch (TREE_CODE (type))
5768 case ARRAY_TYPE:
5770 tree nelts;
5772 nelts = array_type_nelts (type);
5773 if (nelts && tree_fits_uhwi_p (nelts))
5775 unsigned HOST_WIDE_INT n;
5777 n = tree_to_uhwi (nelts) + 1;
5778 if (n == 0 || for_ctor_p)
5779 return n;
5780 else
5781 return n * count_type_elements (TREE_TYPE (type), false);
5783 return for_ctor_p ? -1 : 1;
5786 case RECORD_TYPE:
5788 unsigned HOST_WIDE_INT n;
5789 tree f;
5791 n = 0;
5792 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5793 if (TREE_CODE (f) == FIELD_DECL)
5795 if (!for_ctor_p)
5796 n += count_type_elements (TREE_TYPE (f), false);
5797 else if (!flexible_array_member_p (f, type))
5798 /* Don't count flexible arrays, which are not supposed
5799 to be initialized. */
5800 n += 1;
5803 return n;
5806 case UNION_TYPE:
5807 case QUAL_UNION_TYPE:
5809 tree f;
5810 HOST_WIDE_INT n, m;
5812 gcc_assert (!for_ctor_p);
5813 /* Estimate the number of scalars in each field and pick the
5814 maximum. Other estimates would do instead; the idea is simply
5815 to make sure that the estimate is not sensitive to the ordering
5816 of the fields. */
5817 n = 1;
5818 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5819 if (TREE_CODE (f) == FIELD_DECL)
5821 m = count_type_elements (TREE_TYPE (f), false);
5822 /* If the field doesn't span the whole union, add an extra
5823 scalar for the rest. */
5824 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5825 TYPE_SIZE (type)) != 1)
5826 m++;
5827 if (n < m)
5828 n = m;
5830 return n;
5833 case COMPLEX_TYPE:
5834 return 2;
5836 case VECTOR_TYPE:
5837 return TYPE_VECTOR_SUBPARTS (type);
5839 case INTEGER_TYPE:
5840 case REAL_TYPE:
5841 case FIXED_POINT_TYPE:
5842 case ENUMERAL_TYPE:
5843 case BOOLEAN_TYPE:
5844 case POINTER_TYPE:
5845 case OFFSET_TYPE:
5846 case REFERENCE_TYPE:
5847 case NULLPTR_TYPE:
5848 return 1;
5850 case ERROR_MARK:
5851 return 0;
5853 case VOID_TYPE:
5854 case METHOD_TYPE:
5855 case FUNCTION_TYPE:
5856 case LANG_TYPE:
5857 default:
5858 gcc_unreachable ();
5862 /* Helper for categorize_ctor_elements. Identical interface. */
5864 static bool
5865 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5866 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5868 unsigned HOST_WIDE_INT idx;
5869 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5870 tree value, purpose, elt_type;
5872 /* Whether CTOR is a valid constant initializer, in accordance with what
5873 initializer_constant_valid_p does. If inferred from the constructor
5874 elements, true until proven otherwise. */
5875 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5876 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5878 nz_elts = 0;
5879 init_elts = 0;
5880 num_fields = 0;
5881 elt_type = NULL_TREE;
5883 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5885 HOST_WIDE_INT mult = 1;
5887 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5889 tree lo_index = TREE_OPERAND (purpose, 0);
5890 tree hi_index = TREE_OPERAND (purpose, 1);
5892 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5893 mult = (tree_to_uhwi (hi_index)
5894 - tree_to_uhwi (lo_index) + 1);
5896 num_fields += mult;
5897 elt_type = TREE_TYPE (value);
5899 switch (TREE_CODE (value))
5901 case CONSTRUCTOR:
5903 HOST_WIDE_INT nz = 0, ic = 0;
5905 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5906 p_complete);
5908 nz_elts += mult * nz;
5909 init_elts += mult * ic;
5911 if (const_from_elts_p && const_p)
5912 const_p = const_elt_p;
5914 break;
5916 case INTEGER_CST:
5917 case REAL_CST:
5918 case FIXED_CST:
5919 if (!initializer_zerop (value))
5920 nz_elts += mult;
5921 init_elts += mult;
5922 break;
5924 case STRING_CST:
5925 nz_elts += mult * TREE_STRING_LENGTH (value);
5926 init_elts += mult * TREE_STRING_LENGTH (value);
5927 break;
5929 case COMPLEX_CST:
5930 if (!initializer_zerop (TREE_REALPART (value)))
5931 nz_elts += mult;
5932 if (!initializer_zerop (TREE_IMAGPART (value)))
5933 nz_elts += mult;
5934 init_elts += mult;
5935 break;
5937 case VECTOR_CST:
5939 unsigned i;
5940 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5942 tree v = VECTOR_CST_ELT (value, i);
5943 if (!initializer_zerop (v))
5944 nz_elts += mult;
5945 init_elts += mult;
5948 break;
5950 default:
5952 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5953 nz_elts += mult * tc;
5954 init_elts += mult * tc;
5956 if (const_from_elts_p && const_p)
5957 const_p
5958 = initializer_constant_valid_p (value,
5959 elt_type,
5960 TYPE_REVERSE_STORAGE_ORDER
5961 (TREE_TYPE (ctor)))
5962 != NULL_TREE;
5964 break;
5968 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5969 num_fields, elt_type))
5970 *p_complete = false;
5972 *p_nz_elts += nz_elts;
5973 *p_init_elts += init_elts;
5975 return const_p;
5978 /* Examine CTOR to discover:
5979 * how many scalar fields are set to nonzero values,
5980 and place it in *P_NZ_ELTS;
5981 * how many scalar fields in total are in CTOR,
5982 and place it in *P_ELT_COUNT.
5983 * whether the constructor is complete -- in the sense that every
5984 meaningful byte is explicitly given a value --
5985 and place it in *P_COMPLETE.
5987 Return whether or not CTOR is a valid static constant initializer, the same
5988 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5990 bool
5991 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5992 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5994 *p_nz_elts = 0;
5995 *p_init_elts = 0;
5996 *p_complete = true;
5998 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6001 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6002 of which had type LAST_TYPE. Each element was itself a complete
6003 initializer, in the sense that every meaningful byte was explicitly
6004 given a value. Return true if the same is true for the constructor
6005 as a whole. */
6007 bool
6008 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6009 const_tree last_type)
6011 if (TREE_CODE (type) == UNION_TYPE
6012 || TREE_CODE (type) == QUAL_UNION_TYPE)
6014 if (num_elts == 0)
6015 return false;
6017 gcc_assert (num_elts == 1 && last_type);
6019 /* ??? We could look at each element of the union, and find the
6020 largest element. Which would avoid comparing the size of the
6021 initialized element against any tail padding in the union.
6022 Doesn't seem worth the effort... */
6023 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6026 return count_type_elements (type, true) == num_elts;
6029 /* Return 1 if EXP contains mostly (3/4) zeros. */
6031 static int
6032 mostly_zeros_p (const_tree exp)
6034 if (TREE_CODE (exp) == CONSTRUCTOR)
6036 HOST_WIDE_INT nz_elts, init_elts;
6037 bool complete_p;
6039 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6040 return !complete_p || nz_elts < init_elts / 4;
6043 return initializer_zerop (exp);
6046 /* Return 1 if EXP contains all zeros. */
6048 static int
6049 all_zeros_p (const_tree exp)
6051 if (TREE_CODE (exp) == CONSTRUCTOR)
6053 HOST_WIDE_INT nz_elts, init_elts;
6054 bool complete_p;
6056 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6057 return nz_elts == 0;
6060 return initializer_zerop (exp);
6063 /* Helper function for store_constructor.
6064 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6065 CLEARED is as for store_constructor.
6066 ALIAS_SET is the alias set to use for any stores.
6067 If REVERSE is true, the store is to be done in reverse order.
6069 This provides a recursive shortcut back to store_constructor when it isn't
6070 necessary to go through store_field. This is so that we can pass through
6071 the cleared field to let store_constructor know that we may not have to
6072 clear a substructure if the outer structure has already been cleared. */
6074 static void
6075 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
6076 HOST_WIDE_INT bitpos, machine_mode mode,
6077 tree exp, int cleared,
6078 alias_set_type alias_set, bool reverse)
6080 if (TREE_CODE (exp) == CONSTRUCTOR
6081 /* We can only call store_constructor recursively if the size and
6082 bit position are on a byte boundary. */
6083 && bitpos % BITS_PER_UNIT == 0
6084 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
6085 /* If we have a nonzero bitpos for a register target, then we just
6086 let store_field do the bitfield handling. This is unlikely to
6087 generate unnecessary clear instructions anyways. */
6088 && (bitpos == 0 || MEM_P (target)))
6090 if (MEM_P (target))
6091 target
6092 = adjust_address (target,
6093 GET_MODE (target) == BLKmode
6094 || 0 != (bitpos
6095 % GET_MODE_ALIGNMENT (GET_MODE (target)))
6096 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
6099 /* Update the alias set, if required. */
6100 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6101 && MEM_ALIAS_SET (target) != 0)
6103 target = copy_rtx (target);
6104 set_mem_alias_set (target, alias_set);
6107 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
6108 reverse);
6110 else
6111 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false,
6112 reverse);
6116 /* Returns the number of FIELD_DECLs in TYPE. */
6118 static int
6119 fields_length (const_tree type)
6121 tree t = TYPE_FIELDS (type);
6122 int count = 0;
6124 for (; t; t = DECL_CHAIN (t))
6125 if (TREE_CODE (t) == FIELD_DECL)
6126 ++count;
6128 return count;
6132 /* Store the value of constructor EXP into the rtx TARGET.
6133 TARGET is either a REG or a MEM; we know it cannot conflict, since
6134 safe_from_p has been called.
6135 CLEARED is true if TARGET is known to have been zero'd.
6136 SIZE is the number of bytes of TARGET we are allowed to modify: this
6137 may not be the same as the size of EXP if we are assigning to a field
6138 which has been packed to exclude padding bits.
6139 If REVERSE is true, the store is to be done in reverse order. */
6141 static void
6142 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
6143 bool reverse)
6145 tree type = TREE_TYPE (exp);
6146 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6148 switch (TREE_CODE (type))
6150 case RECORD_TYPE:
6151 case UNION_TYPE:
6152 case QUAL_UNION_TYPE:
6154 unsigned HOST_WIDE_INT idx;
6155 tree field, value;
6157 /* The storage order is specified for every aggregate type. */
6158 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6160 /* If size is zero or the target is already cleared, do nothing. */
6161 if (size == 0 || cleared)
6162 cleared = 1;
6163 /* We either clear the aggregate or indicate the value is dead. */
6164 else if ((TREE_CODE (type) == UNION_TYPE
6165 || TREE_CODE (type) == QUAL_UNION_TYPE)
6166 && ! CONSTRUCTOR_ELTS (exp))
6167 /* If the constructor is empty, clear the union. */
6169 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6170 cleared = 1;
6173 /* If we are building a static constructor into a register,
6174 set the initial value as zero so we can fold the value into
6175 a constant. But if more than one register is involved,
6176 this probably loses. */
6177 else if (REG_P (target) && TREE_STATIC (exp)
6178 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
6180 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6181 cleared = 1;
6184 /* If the constructor has fewer fields than the structure or
6185 if we are initializing the structure to mostly zeros, clear
6186 the whole structure first. Don't do this if TARGET is a
6187 register whose mode size isn't equal to SIZE since
6188 clear_storage can't handle this case. */
6189 else if (size > 0
6190 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6191 || mostly_zeros_p (exp))
6192 && (!REG_P (target)
6193 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6194 == size)))
6196 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6197 cleared = 1;
6200 if (REG_P (target) && !cleared)
6201 emit_clobber (target);
6203 /* Store each element of the constructor into the
6204 corresponding field of TARGET. */
6205 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6207 machine_mode mode;
6208 HOST_WIDE_INT bitsize;
6209 HOST_WIDE_INT bitpos = 0;
6210 tree offset;
6211 rtx to_rtx = target;
6213 /* Just ignore missing fields. We cleared the whole
6214 structure, above, if any fields are missing. */
6215 if (field == 0)
6216 continue;
6218 if (cleared && initializer_zerop (value))
6219 continue;
6221 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6222 bitsize = tree_to_uhwi (DECL_SIZE (field));
6223 else
6224 bitsize = -1;
6226 mode = DECL_MODE (field);
6227 if (DECL_BIT_FIELD (field))
6228 mode = VOIDmode;
6230 offset = DECL_FIELD_OFFSET (field);
6231 if (tree_fits_shwi_p (offset)
6232 && tree_fits_shwi_p (bit_position (field)))
6234 bitpos = int_bit_position (field);
6235 offset = 0;
6237 else
6238 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
6240 if (offset)
6242 machine_mode address_mode;
6243 rtx offset_rtx;
6245 offset
6246 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
6247 make_tree (TREE_TYPE (exp),
6248 target));
6250 offset_rtx = expand_normal (offset);
6251 gcc_assert (MEM_P (to_rtx));
6253 address_mode = get_address_mode (to_rtx);
6254 if (GET_MODE (offset_rtx) != address_mode)
6255 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6257 to_rtx = offset_address (to_rtx, offset_rtx,
6258 highest_pow2_factor (offset));
6261 /* If this initializes a field that is smaller than a
6262 word, at the start of a word, try to widen it to a full
6263 word. This special case allows us to output C++ member
6264 function initializations in a form that the optimizers
6265 can understand. */
6266 if (WORD_REGISTER_OPERATIONS
6267 && REG_P (target)
6268 && bitsize < BITS_PER_WORD
6269 && bitpos % BITS_PER_WORD == 0
6270 && GET_MODE_CLASS (mode) == MODE_INT
6271 && TREE_CODE (value) == INTEGER_CST
6272 && exp_size >= 0
6273 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6275 tree type = TREE_TYPE (value);
6277 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6279 type = lang_hooks.types.type_for_mode
6280 (word_mode, TYPE_UNSIGNED (type));
6281 value = fold_convert (type, value);
6282 /* Make sure the bits beyond the original bitsize are zero
6283 so that we can correctly avoid extra zeroing stores in
6284 later constructor elements. */
6285 tree bitsize_mask
6286 = wide_int_to_tree (type, wi::mask (bitsize, false,
6287 BITS_PER_WORD));
6288 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6291 if (BYTES_BIG_ENDIAN)
6292 value
6293 = fold_build2 (LSHIFT_EXPR, type, value,
6294 build_int_cst (type,
6295 BITS_PER_WORD - bitsize));
6296 bitsize = BITS_PER_WORD;
6297 mode = word_mode;
6300 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6301 && DECL_NONADDRESSABLE_P (field))
6303 to_rtx = copy_rtx (to_rtx);
6304 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6307 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6308 value, cleared,
6309 get_alias_set (TREE_TYPE (field)),
6310 reverse);
6312 break;
6314 case ARRAY_TYPE:
6316 tree value, index;
6317 unsigned HOST_WIDE_INT i;
6318 int need_to_clear;
6319 tree domain;
6320 tree elttype = TREE_TYPE (type);
6321 int const_bounds_p;
6322 HOST_WIDE_INT minelt = 0;
6323 HOST_WIDE_INT maxelt = 0;
6325 /* The storage order is specified for every aggregate type. */
6326 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6328 domain = TYPE_DOMAIN (type);
6329 const_bounds_p = (TYPE_MIN_VALUE (domain)
6330 && TYPE_MAX_VALUE (domain)
6331 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6332 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6334 /* If we have constant bounds for the range of the type, get them. */
6335 if (const_bounds_p)
6337 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6338 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6341 /* If the constructor has fewer elements than the array, clear
6342 the whole array first. Similarly if this is static
6343 constructor of a non-BLKmode object. */
6344 if (cleared)
6345 need_to_clear = 0;
6346 else if (REG_P (target) && TREE_STATIC (exp))
6347 need_to_clear = 1;
6348 else
6350 unsigned HOST_WIDE_INT idx;
6351 tree index, value;
6352 HOST_WIDE_INT count = 0, zero_count = 0;
6353 need_to_clear = ! const_bounds_p;
6355 /* This loop is a more accurate version of the loop in
6356 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6357 is also needed to check for missing elements. */
6358 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6360 HOST_WIDE_INT this_node_count;
6362 if (need_to_clear)
6363 break;
6365 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6367 tree lo_index = TREE_OPERAND (index, 0);
6368 tree hi_index = TREE_OPERAND (index, 1);
6370 if (! tree_fits_uhwi_p (lo_index)
6371 || ! tree_fits_uhwi_p (hi_index))
6373 need_to_clear = 1;
6374 break;
6377 this_node_count = (tree_to_uhwi (hi_index)
6378 - tree_to_uhwi (lo_index) + 1);
6380 else
6381 this_node_count = 1;
6383 count += this_node_count;
6384 if (mostly_zeros_p (value))
6385 zero_count += this_node_count;
6388 /* Clear the entire array first if there are any missing
6389 elements, or if the incidence of zero elements is >=
6390 75%. */
6391 if (! need_to_clear
6392 && (count < maxelt - minelt + 1
6393 || 4 * zero_count >= 3 * count))
6394 need_to_clear = 1;
6397 if (need_to_clear && size > 0)
6399 if (REG_P (target))
6400 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6401 else
6402 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6403 cleared = 1;
6406 if (!cleared && REG_P (target))
6407 /* Inform later passes that the old value is dead. */
6408 emit_clobber (target);
6410 /* Store each element of the constructor into the
6411 corresponding element of TARGET, determined by counting the
6412 elements. */
6413 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6415 machine_mode mode;
6416 HOST_WIDE_INT bitsize;
6417 HOST_WIDE_INT bitpos;
6418 rtx xtarget = target;
6420 if (cleared && initializer_zerop (value))
6421 continue;
6423 mode = TYPE_MODE (elttype);
6424 if (mode == BLKmode)
6425 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6426 ? tree_to_uhwi (TYPE_SIZE (elttype))
6427 : -1);
6428 else
6429 bitsize = GET_MODE_BITSIZE (mode);
6431 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6433 tree lo_index = TREE_OPERAND (index, 0);
6434 tree hi_index = TREE_OPERAND (index, 1);
6435 rtx index_r, pos_rtx;
6436 HOST_WIDE_INT lo, hi, count;
6437 tree position;
6439 /* If the range is constant and "small", unroll the loop. */
6440 if (const_bounds_p
6441 && tree_fits_shwi_p (lo_index)
6442 && tree_fits_shwi_p (hi_index)
6443 && (lo = tree_to_shwi (lo_index),
6444 hi = tree_to_shwi (hi_index),
6445 count = hi - lo + 1,
6446 (!MEM_P (target)
6447 || count <= 2
6448 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6449 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6450 <= 40 * 8)))))
6452 lo -= minelt; hi -= minelt;
6453 for (; lo <= hi; lo++)
6455 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6457 if (MEM_P (target)
6458 && !MEM_KEEP_ALIAS_SET_P (target)
6459 && TREE_CODE (type) == ARRAY_TYPE
6460 && TYPE_NONALIASED_COMPONENT (type))
6462 target = copy_rtx (target);
6463 MEM_KEEP_ALIAS_SET_P (target) = 1;
6466 store_constructor_field
6467 (target, bitsize, bitpos, mode, value, cleared,
6468 get_alias_set (elttype), reverse);
6471 else
6473 rtx_code_label *loop_start = gen_label_rtx ();
6474 rtx_code_label *loop_end = gen_label_rtx ();
6475 tree exit_cond;
6477 expand_normal (hi_index);
6479 index = build_decl (EXPR_LOCATION (exp),
6480 VAR_DECL, NULL_TREE, domain);
6481 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6482 SET_DECL_RTL (index, index_r);
6483 store_expr (lo_index, index_r, 0, false, reverse);
6485 /* Build the head of the loop. */
6486 do_pending_stack_adjust ();
6487 emit_label (loop_start);
6489 /* Assign value to element index. */
6490 position =
6491 fold_convert (ssizetype,
6492 fold_build2 (MINUS_EXPR,
6493 TREE_TYPE (index),
6494 index,
6495 TYPE_MIN_VALUE (domain)));
6497 position =
6498 size_binop (MULT_EXPR, position,
6499 fold_convert (ssizetype,
6500 TYPE_SIZE_UNIT (elttype)));
6502 pos_rtx = expand_normal (position);
6503 xtarget = offset_address (target, pos_rtx,
6504 highest_pow2_factor (position));
6505 xtarget = adjust_address (xtarget, mode, 0);
6506 if (TREE_CODE (value) == CONSTRUCTOR)
6507 store_constructor (value, xtarget, cleared,
6508 bitsize / BITS_PER_UNIT, reverse);
6509 else
6510 store_expr (value, xtarget, 0, false, reverse);
6512 /* Generate a conditional jump to exit the loop. */
6513 exit_cond = build2 (LT_EXPR, integer_type_node,
6514 index, hi_index);
6515 jumpif (exit_cond, loop_end, -1);
6517 /* Update the loop counter, and jump to the head of
6518 the loop. */
6519 expand_assignment (index,
6520 build2 (PLUS_EXPR, TREE_TYPE (index),
6521 index, integer_one_node),
6522 false);
6524 emit_jump (loop_start);
6526 /* Build the end of the loop. */
6527 emit_label (loop_end);
6530 else if ((index != 0 && ! tree_fits_shwi_p (index))
6531 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6533 tree position;
6535 if (index == 0)
6536 index = ssize_int (1);
6538 if (minelt)
6539 index = fold_convert (ssizetype,
6540 fold_build2 (MINUS_EXPR,
6541 TREE_TYPE (index),
6542 index,
6543 TYPE_MIN_VALUE (domain)));
6545 position =
6546 size_binop (MULT_EXPR, index,
6547 fold_convert (ssizetype,
6548 TYPE_SIZE_UNIT (elttype)));
6549 xtarget = offset_address (target,
6550 expand_normal (position),
6551 highest_pow2_factor (position));
6552 xtarget = adjust_address (xtarget, mode, 0);
6553 store_expr (value, xtarget, 0, false, reverse);
6555 else
6557 if (index != 0)
6558 bitpos = ((tree_to_shwi (index) - minelt)
6559 * tree_to_uhwi (TYPE_SIZE (elttype)));
6560 else
6561 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6563 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6564 && TREE_CODE (type) == ARRAY_TYPE
6565 && TYPE_NONALIASED_COMPONENT (type))
6567 target = copy_rtx (target);
6568 MEM_KEEP_ALIAS_SET_P (target) = 1;
6570 store_constructor_field (target, bitsize, bitpos, mode, value,
6571 cleared, get_alias_set (elttype),
6572 reverse);
6575 break;
6578 case VECTOR_TYPE:
6580 unsigned HOST_WIDE_INT idx;
6581 constructor_elt *ce;
6582 int i;
6583 int need_to_clear;
6584 int icode = CODE_FOR_nothing;
6585 tree elttype = TREE_TYPE (type);
6586 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6587 machine_mode eltmode = TYPE_MODE (elttype);
6588 HOST_WIDE_INT bitsize;
6589 HOST_WIDE_INT bitpos;
6590 rtvec vector = NULL;
6591 unsigned n_elts;
6592 alias_set_type alias;
6594 gcc_assert (eltmode != BLKmode);
6596 n_elts = TYPE_VECTOR_SUBPARTS (type);
6597 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6599 machine_mode mode = GET_MODE (target);
6601 icode = (int) optab_handler (vec_init_optab, mode);
6602 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6603 if (icode != CODE_FOR_nothing)
6605 tree value;
6607 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6608 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6610 icode = CODE_FOR_nothing;
6611 break;
6614 if (icode != CODE_FOR_nothing)
6616 unsigned int i;
6618 vector = rtvec_alloc (n_elts);
6619 for (i = 0; i < n_elts; i++)
6620 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6624 /* If the constructor has fewer elements than the vector,
6625 clear the whole array first. Similarly if this is static
6626 constructor of a non-BLKmode object. */
6627 if (cleared)
6628 need_to_clear = 0;
6629 else if (REG_P (target) && TREE_STATIC (exp))
6630 need_to_clear = 1;
6631 else
6633 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6634 tree value;
6636 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6638 int n_elts_here = tree_to_uhwi
6639 (int_const_binop (TRUNC_DIV_EXPR,
6640 TYPE_SIZE (TREE_TYPE (value)),
6641 TYPE_SIZE (elttype)));
6643 count += n_elts_here;
6644 if (mostly_zeros_p (value))
6645 zero_count += n_elts_here;
6648 /* Clear the entire vector first if there are any missing elements,
6649 or if the incidence of zero elements is >= 75%. */
6650 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6653 if (need_to_clear && size > 0 && !vector)
6655 if (REG_P (target))
6656 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6657 else
6658 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6659 cleared = 1;
6662 /* Inform later passes that the old value is dead. */
6663 if (!cleared && !vector && REG_P (target))
6664 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6666 if (MEM_P (target))
6667 alias = MEM_ALIAS_SET (target);
6668 else
6669 alias = get_alias_set (elttype);
6671 /* Store each element of the constructor into the corresponding
6672 element of TARGET, determined by counting the elements. */
6673 for (idx = 0, i = 0;
6674 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6675 idx++, i += bitsize / elt_size)
6677 HOST_WIDE_INT eltpos;
6678 tree value = ce->value;
6680 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6681 if (cleared && initializer_zerop (value))
6682 continue;
6684 if (ce->index)
6685 eltpos = tree_to_uhwi (ce->index);
6686 else
6687 eltpos = i;
6689 if (vector)
6691 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6692 elements. */
6693 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6694 RTVEC_ELT (vector, eltpos)
6695 = expand_normal (value);
6697 else
6699 machine_mode value_mode =
6700 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6701 ? TYPE_MODE (TREE_TYPE (value))
6702 : eltmode;
6703 bitpos = eltpos * elt_size;
6704 store_constructor_field (target, bitsize, bitpos, value_mode,
6705 value, cleared, alias, reverse);
6709 if (vector)
6710 emit_insn (GEN_FCN (icode)
6711 (target,
6712 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6713 break;
6716 default:
6717 gcc_unreachable ();
6721 /* Store the value of EXP (an expression tree)
6722 into a subfield of TARGET which has mode MODE and occupies
6723 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6724 If MODE is VOIDmode, it means that we are storing into a bit-field.
6726 BITREGION_START is bitpos of the first bitfield in this region.
6727 BITREGION_END is the bitpos of the ending bitfield in this region.
6728 These two fields are 0, if the C++ memory model does not apply,
6729 or we are not interested in keeping track of bitfield regions.
6731 Always return const0_rtx unless we have something particular to
6732 return.
6734 ALIAS_SET is the alias set for the destination. This value will
6735 (in general) be different from that for TARGET, since TARGET is a
6736 reference to the containing structure.
6738 If NONTEMPORAL is true, try generating a nontemporal store.
6740 If REVERSE is true, the store is to be done in reverse order. */
6742 static rtx
6743 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6744 unsigned HOST_WIDE_INT bitregion_start,
6745 unsigned HOST_WIDE_INT bitregion_end,
6746 machine_mode mode, tree exp,
6747 alias_set_type alias_set, bool nontemporal, bool reverse)
6749 if (TREE_CODE (exp) == ERROR_MARK)
6750 return const0_rtx;
6752 /* If we have nothing to store, do nothing unless the expression has
6753 side-effects. */
6754 if (bitsize == 0)
6755 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6757 if (GET_CODE (target) == CONCAT)
6759 /* We're storing into a struct containing a single __complex. */
6761 gcc_assert (!bitpos);
6762 return store_expr (exp, target, 0, nontemporal, reverse);
6765 /* If the structure is in a register or if the component
6766 is a bit field, we cannot use addressing to access it.
6767 Use bit-field techniques or SUBREG to store in it. */
6769 if (mode == VOIDmode
6770 || (mode != BLKmode && ! direct_store[(int) mode]
6771 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6772 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6773 || REG_P (target)
6774 || GET_CODE (target) == SUBREG
6775 /* If the field isn't aligned enough to store as an ordinary memref,
6776 store it as a bit field. */
6777 || (mode != BLKmode
6778 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6779 || bitpos % GET_MODE_ALIGNMENT (mode))
6780 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6781 || (bitpos % BITS_PER_UNIT != 0)))
6782 || (bitsize >= 0 && mode != BLKmode
6783 && GET_MODE_BITSIZE (mode) > bitsize)
6784 /* If the RHS and field are a constant size and the size of the
6785 RHS isn't the same size as the bitfield, we must use bitfield
6786 operations. */
6787 || (bitsize >= 0
6788 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6789 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
6790 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6791 we will handle specially below. */
6792 && !(TREE_CODE (exp) == CONSTRUCTOR
6793 && bitsize % BITS_PER_UNIT == 0)
6794 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6795 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6796 includes some extra padding. store_expr / expand_expr will in
6797 that case call get_inner_reference that will have the bitsize
6798 we check here and thus the block move will not clobber the
6799 padding that shouldn't be clobbered. In the future we could
6800 replace the TREE_ADDRESSABLE check with a check that
6801 get_base_address needs to live in memory. */
6802 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6803 || TREE_CODE (exp) != COMPONENT_REF
6804 || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
6805 || (bitsize % BITS_PER_UNIT != 0)
6806 || (bitpos % BITS_PER_UNIT != 0)
6807 || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
6808 != 0)))
6809 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6810 decl we must use bitfield operations. */
6811 || (bitsize >= 0
6812 && TREE_CODE (exp) == MEM_REF
6813 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6814 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6815 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6816 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6818 rtx temp;
6819 gimple *nop_def;
6821 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6822 implies a mask operation. If the precision is the same size as
6823 the field we're storing into, that mask is redundant. This is
6824 particularly common with bit field assignments generated by the
6825 C front end. */
6826 nop_def = get_def_for_expr (exp, NOP_EXPR);
6827 if (nop_def)
6829 tree type = TREE_TYPE (exp);
6830 if (INTEGRAL_TYPE_P (type)
6831 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6832 && bitsize == TYPE_PRECISION (type))
6834 tree op = gimple_assign_rhs1 (nop_def);
6835 type = TREE_TYPE (op);
6836 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6837 exp = op;
6841 temp = expand_normal (exp);
6843 /* If the value has a record type and an integral mode then, if BITSIZE
6844 is narrower than this mode and this is for big-endian data, we must
6845 first put the value into the low-order bits. Moreover, the field may
6846 be not aligned on a byte boundary; in this case, if it has reverse
6847 storage order, it needs to be accessed as a scalar field with reverse
6848 storage order and we must first put the value into target order. */
6849 if (TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
6850 && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT)
6852 HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (temp));
6854 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
6856 if (reverse)
6857 temp = flip_storage_order (GET_MODE (temp), temp);
6859 if (bitsize < size
6860 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6861 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6862 size - bitsize, NULL_RTX, 1);
6865 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6866 if (mode != VOIDmode && mode != BLKmode
6867 && mode != TYPE_MODE (TREE_TYPE (exp)))
6868 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6870 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6871 are both BLKmode, both must be in memory and BITPOS must be aligned
6872 on a byte boundary. If so, we simply do a block copy. Likewise for
6873 a BLKmode-like TARGET. */
6874 if (GET_CODE (temp) != PARALLEL
6875 && GET_MODE (temp) == BLKmode
6876 && (GET_MODE (target) == BLKmode
6877 || (MEM_P (target)
6878 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6879 && (bitpos % BITS_PER_UNIT) == 0
6880 && (bitsize % BITS_PER_UNIT) == 0)))
6882 gcc_assert (MEM_P (target) && MEM_P (temp)
6883 && (bitpos % BITS_PER_UNIT) == 0);
6885 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6886 emit_block_move (target, temp,
6887 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6888 / BITS_PER_UNIT),
6889 BLOCK_OP_NORMAL);
6891 return const0_rtx;
6894 /* Handle calls that return values in multiple non-contiguous locations.
6895 The Irix 6 ABI has examples of this. */
6896 if (GET_CODE (temp) == PARALLEL)
6898 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6899 rtx temp_target;
6900 if (mode == BLKmode || mode == VOIDmode)
6901 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6902 temp_target = gen_reg_rtx (mode);
6903 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6904 temp = temp_target;
6906 else if (mode == BLKmode)
6908 /* Handle calls that return BLKmode values in registers. */
6909 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6911 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6912 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6913 temp = temp_target;
6915 else
6917 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6918 rtx temp_target;
6919 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6920 temp_target = gen_reg_rtx (mode);
6921 temp_target
6922 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6923 temp_target, mode, mode, false);
6924 temp = temp_target;
6928 /* Store the value in the bitfield. */
6929 store_bit_field (target, bitsize, bitpos,
6930 bitregion_start, bitregion_end,
6931 mode, temp, reverse);
6933 return const0_rtx;
6935 else
6937 /* Now build a reference to just the desired component. */
6938 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6940 if (to_rtx == target)
6941 to_rtx = copy_rtx (to_rtx);
6943 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6944 set_mem_alias_set (to_rtx, alias_set);
6946 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
6947 into a target smaller than its type; handle that case now. */
6948 if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
6950 gcc_assert (bitsize % BITS_PER_UNIT == 0);
6951 store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
6952 return to_rtx;
6955 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
6959 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6960 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6961 codes and find the ultimate containing object, which we return.
6963 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6964 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
6965 storage order of the field.
6966 If the position of the field is variable, we store a tree
6967 giving the variable offset (in units) in *POFFSET.
6968 This offset is in addition to the bit position.
6969 If the position is not variable, we store 0 in *POFFSET.
6971 If any of the extraction expressions is volatile,
6972 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6974 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6975 Otherwise, it is a mode that can be used to access the field.
6977 If the field describes a variable-sized object, *PMODE is set to
6978 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6979 this case, but the address of the object can be found. */
6981 tree
6982 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6983 HOST_WIDE_INT *pbitpos, tree *poffset,
6984 machine_mode *pmode, int *punsignedp,
6985 int *preversep, int *pvolatilep)
6987 tree size_tree = 0;
6988 machine_mode mode = VOIDmode;
6989 bool blkmode_bitfield = false;
6990 tree offset = size_zero_node;
6991 offset_int bit_offset = 0;
6993 /* First get the mode, signedness, storage order and size. We do this from
6994 just the outermost expression. */
6995 *pbitsize = -1;
6996 if (TREE_CODE (exp) == COMPONENT_REF)
6998 tree field = TREE_OPERAND (exp, 1);
6999 size_tree = DECL_SIZE (field);
7000 if (flag_strict_volatile_bitfields > 0
7001 && TREE_THIS_VOLATILE (exp)
7002 && DECL_BIT_FIELD_TYPE (field)
7003 && DECL_MODE (field) != BLKmode)
7004 /* Volatile bitfields should be accessed in the mode of the
7005 field's type, not the mode computed based on the bit
7006 size. */
7007 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7008 else if (!DECL_BIT_FIELD (field))
7009 mode = DECL_MODE (field);
7010 else if (DECL_MODE (field) == BLKmode)
7011 blkmode_bitfield = true;
7013 *punsignedp = DECL_UNSIGNED (field);
7015 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7017 size_tree = TREE_OPERAND (exp, 1);
7018 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7019 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7021 /* For vector types, with the correct size of access, use the mode of
7022 inner type. */
7023 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7024 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7025 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7026 mode = TYPE_MODE (TREE_TYPE (exp));
7028 else
7030 mode = TYPE_MODE (TREE_TYPE (exp));
7031 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7033 if (mode == BLKmode)
7034 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7035 else
7036 *pbitsize = GET_MODE_BITSIZE (mode);
7039 if (size_tree != 0)
7041 if (! tree_fits_uhwi_p (size_tree))
7042 mode = BLKmode, *pbitsize = -1;
7043 else
7044 *pbitsize = tree_to_uhwi (size_tree);
7047 *preversep = reverse_storage_order_for_component_p (exp);
7049 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7050 and find the ultimate containing object. */
7051 while (1)
7053 switch (TREE_CODE (exp))
7055 case BIT_FIELD_REF:
7056 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
7057 break;
7059 case COMPONENT_REF:
7061 tree field = TREE_OPERAND (exp, 1);
7062 tree this_offset = component_ref_field_offset (exp);
7064 /* If this field hasn't been filled in yet, don't go past it.
7065 This should only happen when folding expressions made during
7066 type construction. */
7067 if (this_offset == 0)
7068 break;
7070 offset = size_binop (PLUS_EXPR, offset, this_offset);
7071 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
7073 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7075 break;
7077 case ARRAY_REF:
7078 case ARRAY_RANGE_REF:
7080 tree index = TREE_OPERAND (exp, 1);
7081 tree low_bound = array_ref_low_bound (exp);
7082 tree unit_size = array_ref_element_size (exp);
7084 /* We assume all arrays have sizes that are a multiple of a byte.
7085 First subtract the lower bound, if any, in the type of the
7086 index, then convert to sizetype and multiply by the size of
7087 the array element. */
7088 if (! integer_zerop (low_bound))
7089 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7090 index, low_bound);
7092 offset = size_binop (PLUS_EXPR, offset,
7093 size_binop (MULT_EXPR,
7094 fold_convert (sizetype, index),
7095 unit_size));
7097 break;
7099 case REALPART_EXPR:
7100 break;
7102 case IMAGPART_EXPR:
7103 bit_offset += *pbitsize;
7104 break;
7106 case VIEW_CONVERT_EXPR:
7107 break;
7109 case MEM_REF:
7110 /* Hand back the decl for MEM[&decl, off]. */
7111 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7113 tree off = TREE_OPERAND (exp, 1);
7114 if (!integer_zerop (off))
7116 offset_int boff, coff = mem_ref_offset (exp);
7117 boff = coff << LOG2_BITS_PER_UNIT;
7118 bit_offset += boff;
7120 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7122 goto done;
7124 default:
7125 goto done;
7128 /* If any reference in the chain is volatile, the effect is volatile. */
7129 if (TREE_THIS_VOLATILE (exp))
7130 *pvolatilep = 1;
7132 exp = TREE_OPERAND (exp, 0);
7134 done:
7136 /* If OFFSET is constant, see if we can return the whole thing as a
7137 constant bit position. Make sure to handle overflow during
7138 this conversion. */
7139 if (TREE_CODE (offset) == INTEGER_CST)
7141 offset_int tem = wi::sext (wi::to_offset (offset),
7142 TYPE_PRECISION (sizetype));
7143 tem <<= LOG2_BITS_PER_UNIT;
7144 tem += bit_offset;
7145 if (wi::fits_shwi_p (tem))
7147 *pbitpos = tem.to_shwi ();
7148 *poffset = offset = NULL_TREE;
7152 /* Otherwise, split it up. */
7153 if (offset)
7155 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7156 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
7158 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
7159 offset_int tem = bit_offset.and_not (mask);
7160 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
7161 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
7162 bit_offset -= tem;
7163 tem >>= LOG2_BITS_PER_UNIT;
7164 offset = size_binop (PLUS_EXPR, offset,
7165 wide_int_to_tree (sizetype, tem));
7168 *pbitpos = bit_offset.to_shwi ();
7169 *poffset = offset;
7172 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7173 if (mode == VOIDmode
7174 && blkmode_bitfield
7175 && (*pbitpos % BITS_PER_UNIT) == 0
7176 && (*pbitsize % BITS_PER_UNIT) == 0)
7177 *pmode = BLKmode;
7178 else
7179 *pmode = mode;
7181 return exp;
7184 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7186 static unsigned HOST_WIDE_INT
7187 target_align (const_tree target)
7189 /* We might have a chain of nested references with intermediate misaligning
7190 bitfields components, so need to recurse to find out. */
7192 unsigned HOST_WIDE_INT this_align, outer_align;
7194 switch (TREE_CODE (target))
7196 case BIT_FIELD_REF:
7197 return 1;
7199 case COMPONENT_REF:
7200 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7201 outer_align = target_align (TREE_OPERAND (target, 0));
7202 return MIN (this_align, outer_align);
7204 case ARRAY_REF:
7205 case ARRAY_RANGE_REF:
7206 this_align = TYPE_ALIGN (TREE_TYPE (target));
7207 outer_align = target_align (TREE_OPERAND (target, 0));
7208 return MIN (this_align, outer_align);
7210 CASE_CONVERT:
7211 case NON_LVALUE_EXPR:
7212 case VIEW_CONVERT_EXPR:
7213 this_align = TYPE_ALIGN (TREE_TYPE (target));
7214 outer_align = target_align (TREE_OPERAND (target, 0));
7215 return MAX (this_align, outer_align);
7217 default:
7218 return TYPE_ALIGN (TREE_TYPE (target));
7223 /* Given an rtx VALUE that may contain additions and multiplications, return
7224 an equivalent value that just refers to a register, memory, or constant.
7225 This is done by generating instructions to perform the arithmetic and
7226 returning a pseudo-register containing the value.
7228 The returned value may be a REG, SUBREG, MEM or constant. */
7231 force_operand (rtx value, rtx target)
7233 rtx op1, op2;
7234 /* Use subtarget as the target for operand 0 of a binary operation. */
7235 rtx subtarget = get_subtarget (target);
7236 enum rtx_code code = GET_CODE (value);
7238 /* Check for subreg applied to an expression produced by loop optimizer. */
7239 if (code == SUBREG
7240 && !REG_P (SUBREG_REG (value))
7241 && !MEM_P (SUBREG_REG (value)))
7243 value
7244 = simplify_gen_subreg (GET_MODE (value),
7245 force_reg (GET_MODE (SUBREG_REG (value)),
7246 force_operand (SUBREG_REG (value),
7247 NULL_RTX)),
7248 GET_MODE (SUBREG_REG (value)),
7249 SUBREG_BYTE (value));
7250 code = GET_CODE (value);
7253 /* Check for a PIC address load. */
7254 if ((code == PLUS || code == MINUS)
7255 && XEXP (value, 0) == pic_offset_table_rtx
7256 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7257 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7258 || GET_CODE (XEXP (value, 1)) == CONST))
7260 if (!subtarget)
7261 subtarget = gen_reg_rtx (GET_MODE (value));
7262 emit_move_insn (subtarget, value);
7263 return subtarget;
7266 if (ARITHMETIC_P (value))
7268 op2 = XEXP (value, 1);
7269 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7270 subtarget = 0;
7271 if (code == MINUS && CONST_INT_P (op2))
7273 code = PLUS;
7274 op2 = negate_rtx (GET_MODE (value), op2);
7277 /* Check for an addition with OP2 a constant integer and our first
7278 operand a PLUS of a virtual register and something else. In that
7279 case, we want to emit the sum of the virtual register and the
7280 constant first and then add the other value. This allows virtual
7281 register instantiation to simply modify the constant rather than
7282 creating another one around this addition. */
7283 if (code == PLUS && CONST_INT_P (op2)
7284 && GET_CODE (XEXP (value, 0)) == PLUS
7285 && REG_P (XEXP (XEXP (value, 0), 0))
7286 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7287 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7289 rtx temp = expand_simple_binop (GET_MODE (value), code,
7290 XEXP (XEXP (value, 0), 0), op2,
7291 subtarget, 0, OPTAB_LIB_WIDEN);
7292 return expand_simple_binop (GET_MODE (value), code, temp,
7293 force_operand (XEXP (XEXP (value,
7294 0), 1), 0),
7295 target, 0, OPTAB_LIB_WIDEN);
7298 op1 = force_operand (XEXP (value, 0), subtarget);
7299 op2 = force_operand (op2, NULL_RTX);
7300 switch (code)
7302 case MULT:
7303 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7304 case DIV:
7305 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7306 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7307 target, 1, OPTAB_LIB_WIDEN);
7308 else
7309 return expand_divmod (0,
7310 FLOAT_MODE_P (GET_MODE (value))
7311 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7312 GET_MODE (value), op1, op2, target, 0);
7313 case MOD:
7314 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7315 target, 0);
7316 case UDIV:
7317 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7318 target, 1);
7319 case UMOD:
7320 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7321 target, 1);
7322 case ASHIFTRT:
7323 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7324 target, 0, OPTAB_LIB_WIDEN);
7325 default:
7326 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7327 target, 1, OPTAB_LIB_WIDEN);
7330 if (UNARY_P (value))
7332 if (!target)
7333 target = gen_reg_rtx (GET_MODE (value));
7334 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7335 switch (code)
7337 case ZERO_EXTEND:
7338 case SIGN_EXTEND:
7339 case TRUNCATE:
7340 case FLOAT_EXTEND:
7341 case FLOAT_TRUNCATE:
7342 convert_move (target, op1, code == ZERO_EXTEND);
7343 return target;
7345 case FIX:
7346 case UNSIGNED_FIX:
7347 expand_fix (target, op1, code == UNSIGNED_FIX);
7348 return target;
7350 case FLOAT:
7351 case UNSIGNED_FLOAT:
7352 expand_float (target, op1, code == UNSIGNED_FLOAT);
7353 return target;
7355 default:
7356 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7360 #ifdef INSN_SCHEDULING
7361 /* On machines that have insn scheduling, we want all memory reference to be
7362 explicit, so we need to deal with such paradoxical SUBREGs. */
7363 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7364 value
7365 = simplify_gen_subreg (GET_MODE (value),
7366 force_reg (GET_MODE (SUBREG_REG (value)),
7367 force_operand (SUBREG_REG (value),
7368 NULL_RTX)),
7369 GET_MODE (SUBREG_REG (value)),
7370 SUBREG_BYTE (value));
7371 #endif
7373 return value;
7376 /* Subroutine of expand_expr: return nonzero iff there is no way that
7377 EXP can reference X, which is being modified. TOP_P is nonzero if this
7378 call is going to be used to determine whether we need a temporary
7379 for EXP, as opposed to a recursive call to this function.
7381 It is always safe for this routine to return zero since it merely
7382 searches for optimization opportunities. */
7385 safe_from_p (const_rtx x, tree exp, int top_p)
7387 rtx exp_rtl = 0;
7388 int i, nops;
7390 if (x == 0
7391 /* If EXP has varying size, we MUST use a target since we currently
7392 have no way of allocating temporaries of variable size
7393 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7394 So we assume here that something at a higher level has prevented a
7395 clash. This is somewhat bogus, but the best we can do. Only
7396 do this when X is BLKmode and when we are at the top level. */
7397 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7398 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7399 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7400 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7401 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7402 != INTEGER_CST)
7403 && GET_MODE (x) == BLKmode)
7404 /* If X is in the outgoing argument area, it is always safe. */
7405 || (MEM_P (x)
7406 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7407 || (GET_CODE (XEXP (x, 0)) == PLUS
7408 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7409 return 1;
7411 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7412 find the underlying pseudo. */
7413 if (GET_CODE (x) == SUBREG)
7415 x = SUBREG_REG (x);
7416 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7417 return 0;
7420 /* Now look at our tree code and possibly recurse. */
7421 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7423 case tcc_declaration:
7424 exp_rtl = DECL_RTL_IF_SET (exp);
7425 break;
7427 case tcc_constant:
7428 return 1;
7430 case tcc_exceptional:
7431 if (TREE_CODE (exp) == TREE_LIST)
7433 while (1)
7435 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7436 return 0;
7437 exp = TREE_CHAIN (exp);
7438 if (!exp)
7439 return 1;
7440 if (TREE_CODE (exp) != TREE_LIST)
7441 return safe_from_p (x, exp, 0);
7444 else if (TREE_CODE (exp) == CONSTRUCTOR)
7446 constructor_elt *ce;
7447 unsigned HOST_WIDE_INT idx;
7449 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7450 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7451 || !safe_from_p (x, ce->value, 0))
7452 return 0;
7453 return 1;
7455 else if (TREE_CODE (exp) == ERROR_MARK)
7456 return 1; /* An already-visited SAVE_EXPR? */
7457 else
7458 return 0;
7460 case tcc_statement:
7461 /* The only case we look at here is the DECL_INITIAL inside a
7462 DECL_EXPR. */
7463 return (TREE_CODE (exp) != DECL_EXPR
7464 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7465 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7466 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7468 case tcc_binary:
7469 case tcc_comparison:
7470 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7471 return 0;
7472 /* Fall through. */
7474 case tcc_unary:
7475 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7477 case tcc_expression:
7478 case tcc_reference:
7479 case tcc_vl_exp:
7480 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7481 the expression. If it is set, we conflict iff we are that rtx or
7482 both are in memory. Otherwise, we check all operands of the
7483 expression recursively. */
7485 switch (TREE_CODE (exp))
7487 case ADDR_EXPR:
7488 /* If the operand is static or we are static, we can't conflict.
7489 Likewise if we don't conflict with the operand at all. */
7490 if (staticp (TREE_OPERAND (exp, 0))
7491 || TREE_STATIC (exp)
7492 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7493 return 1;
7495 /* Otherwise, the only way this can conflict is if we are taking
7496 the address of a DECL a that address if part of X, which is
7497 very rare. */
7498 exp = TREE_OPERAND (exp, 0);
7499 if (DECL_P (exp))
7501 if (!DECL_RTL_SET_P (exp)
7502 || !MEM_P (DECL_RTL (exp)))
7503 return 0;
7504 else
7505 exp_rtl = XEXP (DECL_RTL (exp), 0);
7507 break;
7509 case MEM_REF:
7510 if (MEM_P (x)
7511 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7512 get_alias_set (exp)))
7513 return 0;
7514 break;
7516 case CALL_EXPR:
7517 /* Assume that the call will clobber all hard registers and
7518 all of memory. */
7519 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7520 || MEM_P (x))
7521 return 0;
7522 break;
7524 case WITH_CLEANUP_EXPR:
7525 case CLEANUP_POINT_EXPR:
7526 /* Lowered by gimplify.c. */
7527 gcc_unreachable ();
7529 case SAVE_EXPR:
7530 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7532 default:
7533 break;
7536 /* If we have an rtx, we do not need to scan our operands. */
7537 if (exp_rtl)
7538 break;
7540 nops = TREE_OPERAND_LENGTH (exp);
7541 for (i = 0; i < nops; i++)
7542 if (TREE_OPERAND (exp, i) != 0
7543 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7544 return 0;
7546 break;
7548 case tcc_type:
7549 /* Should never get a type here. */
7550 gcc_unreachable ();
7553 /* If we have an rtl, find any enclosed object. Then see if we conflict
7554 with it. */
7555 if (exp_rtl)
7557 if (GET_CODE (exp_rtl) == SUBREG)
7559 exp_rtl = SUBREG_REG (exp_rtl);
7560 if (REG_P (exp_rtl)
7561 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7562 return 0;
7565 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7566 are memory and they conflict. */
7567 return ! (rtx_equal_p (x, exp_rtl)
7568 || (MEM_P (x) && MEM_P (exp_rtl)
7569 && true_dependence (exp_rtl, VOIDmode, x)));
7572 /* If we reach here, it is safe. */
7573 return 1;
7577 /* Return the highest power of two that EXP is known to be a multiple of.
7578 This is used in updating alignment of MEMs in array references. */
7580 unsigned HOST_WIDE_INT
7581 highest_pow2_factor (const_tree exp)
7583 unsigned HOST_WIDE_INT ret;
7584 int trailing_zeros = tree_ctz (exp);
7585 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7586 return BIGGEST_ALIGNMENT;
7587 ret = HOST_WIDE_INT_1U << trailing_zeros;
7588 if (ret > BIGGEST_ALIGNMENT)
7589 return BIGGEST_ALIGNMENT;
7590 return ret;
7593 /* Similar, except that the alignment requirements of TARGET are
7594 taken into account. Assume it is at least as aligned as its
7595 type, unless it is a COMPONENT_REF in which case the layout of
7596 the structure gives the alignment. */
7598 static unsigned HOST_WIDE_INT
7599 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7601 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7602 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7604 return MAX (factor, talign);
7607 /* Convert the tree comparison code TCODE to the rtl one where the
7608 signedness is UNSIGNEDP. */
7610 static enum rtx_code
7611 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7613 enum rtx_code code;
7614 switch (tcode)
7616 case EQ_EXPR:
7617 code = EQ;
7618 break;
7619 case NE_EXPR:
7620 code = NE;
7621 break;
7622 case LT_EXPR:
7623 code = unsignedp ? LTU : LT;
7624 break;
7625 case LE_EXPR:
7626 code = unsignedp ? LEU : LE;
7627 break;
7628 case GT_EXPR:
7629 code = unsignedp ? GTU : GT;
7630 break;
7631 case GE_EXPR:
7632 code = unsignedp ? GEU : GE;
7633 break;
7634 case UNORDERED_EXPR:
7635 code = UNORDERED;
7636 break;
7637 case ORDERED_EXPR:
7638 code = ORDERED;
7639 break;
7640 case UNLT_EXPR:
7641 code = UNLT;
7642 break;
7643 case UNLE_EXPR:
7644 code = UNLE;
7645 break;
7646 case UNGT_EXPR:
7647 code = UNGT;
7648 break;
7649 case UNGE_EXPR:
7650 code = UNGE;
7651 break;
7652 case UNEQ_EXPR:
7653 code = UNEQ;
7654 break;
7655 case LTGT_EXPR:
7656 code = LTGT;
7657 break;
7659 default:
7660 gcc_unreachable ();
7662 return code;
7665 /* Subroutine of expand_expr. Expand the two operands of a binary
7666 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7667 The value may be stored in TARGET if TARGET is nonzero. The
7668 MODIFIER argument is as documented by expand_expr. */
7670 void
7671 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7672 enum expand_modifier modifier)
7674 if (! safe_from_p (target, exp1, 1))
7675 target = 0;
7676 if (operand_equal_p (exp0, exp1, 0))
7678 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7679 *op1 = copy_rtx (*op0);
7681 else
7683 /* If we need to preserve evaluation order, copy exp0 into its own
7684 temporary variable so that it can't be clobbered by exp1. */
7685 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7686 exp0 = save_expr (exp0);
7687 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7688 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7693 /* Return a MEM that contains constant EXP. DEFER is as for
7694 output_constant_def and MODIFIER is as for expand_expr. */
7696 static rtx
7697 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7699 rtx mem;
7701 mem = output_constant_def (exp, defer);
7702 if (modifier != EXPAND_INITIALIZER)
7703 mem = use_anchored_address (mem);
7704 return mem;
7707 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7708 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7710 static rtx
7711 expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode,
7712 enum expand_modifier modifier, addr_space_t as)
7714 rtx result, subtarget;
7715 tree inner, offset;
7716 HOST_WIDE_INT bitsize, bitpos;
7717 int unsignedp, reversep, volatilep = 0;
7718 machine_mode mode1;
7720 /* If we are taking the address of a constant and are at the top level,
7721 we have to use output_constant_def since we can't call force_const_mem
7722 at top level. */
7723 /* ??? This should be considered a front-end bug. We should not be
7724 generating ADDR_EXPR of something that isn't an LVALUE. The only
7725 exception here is STRING_CST. */
7726 if (CONSTANT_CLASS_P (exp))
7728 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7729 if (modifier < EXPAND_SUM)
7730 result = force_operand (result, target);
7731 return result;
7734 /* Everything must be something allowed by is_gimple_addressable. */
7735 switch (TREE_CODE (exp))
7737 case INDIRECT_REF:
7738 /* This case will happen via recursion for &a->b. */
7739 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7741 case MEM_REF:
7743 tree tem = TREE_OPERAND (exp, 0);
7744 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7745 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7746 return expand_expr (tem, target, tmode, modifier);
7749 case CONST_DECL:
7750 /* Expand the initializer like constants above. */
7751 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7752 0, modifier), 0);
7753 if (modifier < EXPAND_SUM)
7754 result = force_operand (result, target);
7755 return result;
7757 case REALPART_EXPR:
7758 /* The real part of the complex number is always first, therefore
7759 the address is the same as the address of the parent object. */
7760 offset = 0;
7761 bitpos = 0;
7762 inner = TREE_OPERAND (exp, 0);
7763 break;
7765 case IMAGPART_EXPR:
7766 /* The imaginary part of the complex number is always second.
7767 The expression is therefore always offset by the size of the
7768 scalar type. */
7769 offset = 0;
7770 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7771 inner = TREE_OPERAND (exp, 0);
7772 break;
7774 case COMPOUND_LITERAL_EXPR:
7775 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7776 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7777 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7778 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7779 the initializers aren't gimplified. */
7780 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7781 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7782 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7783 target, tmode, modifier, as);
7784 /* FALLTHRU */
7785 default:
7786 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7787 expand_expr, as that can have various side effects; LABEL_DECLs for
7788 example, may not have their DECL_RTL set yet. Expand the rtl of
7789 CONSTRUCTORs too, which should yield a memory reference for the
7790 constructor's contents. Assume language specific tree nodes can
7791 be expanded in some interesting way. */
7792 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7793 if (DECL_P (exp)
7794 || TREE_CODE (exp) == CONSTRUCTOR
7795 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7797 result = expand_expr (exp, target, tmode,
7798 modifier == EXPAND_INITIALIZER
7799 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7801 /* If the DECL isn't in memory, then the DECL wasn't properly
7802 marked TREE_ADDRESSABLE, which will be either a front-end
7803 or a tree optimizer bug. */
7805 gcc_assert (MEM_P (result));
7806 result = XEXP (result, 0);
7808 /* ??? Is this needed anymore? */
7809 if (DECL_P (exp))
7810 TREE_USED (exp) = 1;
7812 if (modifier != EXPAND_INITIALIZER
7813 && modifier != EXPAND_CONST_ADDRESS
7814 && modifier != EXPAND_SUM)
7815 result = force_operand (result, target);
7816 return result;
7819 /* Pass FALSE as the last argument to get_inner_reference although
7820 we are expanding to RTL. The rationale is that we know how to
7821 handle "aligning nodes" here: we can just bypass them because
7822 they won't change the final object whose address will be returned
7823 (they actually exist only for that purpose). */
7824 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7825 &unsignedp, &reversep, &volatilep);
7826 break;
7829 /* We must have made progress. */
7830 gcc_assert (inner != exp);
7832 subtarget = offset || bitpos ? NULL_RTX : target;
7833 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7834 inner alignment, force the inner to be sufficiently aligned. */
7835 if (CONSTANT_CLASS_P (inner)
7836 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7838 inner = copy_node (inner);
7839 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7840 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7841 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7843 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7845 if (offset)
7847 rtx tmp;
7849 if (modifier != EXPAND_NORMAL)
7850 result = force_operand (result, NULL);
7851 tmp = expand_expr (offset, NULL_RTX, tmode,
7852 modifier == EXPAND_INITIALIZER
7853 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7855 /* expand_expr is allowed to return an object in a mode other
7856 than TMODE. If it did, we need to convert. */
7857 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7858 tmp = convert_modes (tmode, GET_MODE (tmp),
7859 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7860 result = convert_memory_address_addr_space (tmode, result, as);
7861 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7863 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7864 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7865 else
7867 subtarget = bitpos ? NULL_RTX : target;
7868 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7869 1, OPTAB_LIB_WIDEN);
7873 if (bitpos)
7875 /* Someone beforehand should have rejected taking the address
7876 of such an object. */
7877 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7879 result = convert_memory_address_addr_space (tmode, result, as);
7880 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7881 if (modifier < EXPAND_SUM)
7882 result = force_operand (result, target);
7885 return result;
7888 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7889 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7891 static rtx
7892 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7893 enum expand_modifier modifier)
7895 addr_space_t as = ADDR_SPACE_GENERIC;
7896 machine_mode address_mode = Pmode;
7897 machine_mode pointer_mode = ptr_mode;
7898 machine_mode rmode;
7899 rtx result;
7901 /* Target mode of VOIDmode says "whatever's natural". */
7902 if (tmode == VOIDmode)
7903 tmode = TYPE_MODE (TREE_TYPE (exp));
7905 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7907 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7908 address_mode = targetm.addr_space.address_mode (as);
7909 pointer_mode = targetm.addr_space.pointer_mode (as);
7912 /* We can get called with some Weird Things if the user does silliness
7913 like "(short) &a". In that case, convert_memory_address won't do
7914 the right thing, so ignore the given target mode. */
7915 if (tmode != address_mode && tmode != pointer_mode)
7916 tmode = address_mode;
7918 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7919 tmode, modifier, as);
7921 /* Despite expand_expr claims concerning ignoring TMODE when not
7922 strictly convenient, stuff breaks if we don't honor it. Note
7923 that combined with the above, we only do this for pointer modes. */
7924 rmode = GET_MODE (result);
7925 if (rmode == VOIDmode)
7926 rmode = tmode;
7927 if (rmode != tmode)
7928 result = convert_memory_address_addr_space (tmode, result, as);
7930 return result;
7933 /* Generate code for computing CONSTRUCTOR EXP.
7934 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7935 is TRUE, instead of creating a temporary variable in memory
7936 NULL is returned and the caller needs to handle it differently. */
7938 static rtx
7939 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7940 bool avoid_temp_mem)
7942 tree type = TREE_TYPE (exp);
7943 machine_mode mode = TYPE_MODE (type);
7945 /* Try to avoid creating a temporary at all. This is possible
7946 if all of the initializer is zero.
7947 FIXME: try to handle all [0..255] initializers we can handle
7948 with memset. */
7949 if (TREE_STATIC (exp)
7950 && !TREE_ADDRESSABLE (exp)
7951 && target != 0 && mode == BLKmode
7952 && all_zeros_p (exp))
7954 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7955 return target;
7958 /* All elts simple constants => refer to a constant in memory. But
7959 if this is a non-BLKmode mode, let it store a field at a time
7960 since that should make a CONST_INT, CONST_WIDE_INT or
7961 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7962 use, it is best to store directly into the target unless the type
7963 is large enough that memcpy will be used. If we are making an
7964 initializer and all operands are constant, put it in memory as
7965 well.
7967 FIXME: Avoid trying to fill vector constructors piece-meal.
7968 Output them with output_constant_def below unless we're sure
7969 they're zeros. This should go away when vector initializers
7970 are treated like VECTOR_CST instead of arrays. */
7971 if ((TREE_STATIC (exp)
7972 && ((mode == BLKmode
7973 && ! (target != 0 && safe_from_p (target, exp, 1)))
7974 || TREE_ADDRESSABLE (exp)
7975 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7976 && (! can_move_by_pieces
7977 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7978 TYPE_ALIGN (type)))
7979 && ! mostly_zeros_p (exp))))
7980 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7981 && TREE_CONSTANT (exp)))
7983 rtx constructor;
7985 if (avoid_temp_mem)
7986 return NULL_RTX;
7988 constructor = expand_expr_constant (exp, 1, modifier);
7990 if (modifier != EXPAND_CONST_ADDRESS
7991 && modifier != EXPAND_INITIALIZER
7992 && modifier != EXPAND_SUM)
7993 constructor = validize_mem (constructor);
7995 return constructor;
7998 /* Handle calls that pass values in multiple non-contiguous
7999 locations. The Irix 6 ABI has examples of this. */
8000 if (target == 0 || ! safe_from_p (target, exp, 1)
8001 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8003 if (avoid_temp_mem)
8004 return NULL_RTX;
8006 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8009 store_constructor (exp, target, 0, int_expr_size (exp), false);
8010 return target;
8014 /* expand_expr: generate code for computing expression EXP.
8015 An rtx for the computed value is returned. The value is never null.
8016 In the case of a void EXP, const0_rtx is returned.
8018 The value may be stored in TARGET if TARGET is nonzero.
8019 TARGET is just a suggestion; callers must assume that
8020 the rtx returned may not be the same as TARGET.
8022 If TARGET is CONST0_RTX, it means that the value will be ignored.
8024 If TMODE is not VOIDmode, it suggests generating the
8025 result in mode TMODE. But this is done only when convenient.
8026 Otherwise, TMODE is ignored and the value generated in its natural mode.
8027 TMODE is just a suggestion; callers must assume that
8028 the rtx returned may not have mode TMODE.
8030 Note that TARGET may have neither TMODE nor MODE. In that case, it
8031 probably will not be used.
8033 If MODIFIER is EXPAND_SUM then when EXP is an addition
8034 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8035 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8036 products as above, or REG or MEM, or constant.
8037 Ordinarily in such cases we would output mul or add instructions
8038 and then return a pseudo reg containing the sum.
8040 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8041 it also marks a label as absolutely required (it can't be dead).
8042 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8043 This is used for outputting expressions used in initializers.
8045 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8046 with a constant address even if that address is not normally legitimate.
8047 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8049 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8050 a call parameter. Such targets require special care as we haven't yet
8051 marked TARGET so that it's safe from being trashed by libcalls. We
8052 don't want to use TARGET for anything but the final result;
8053 Intermediate values must go elsewhere. Additionally, calls to
8054 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8056 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8057 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8058 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8059 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8060 recursively.
8062 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8063 In this case, we don't adjust a returned MEM rtx that wouldn't be
8064 sufficiently aligned for its mode; instead, it's up to the caller
8065 to deal with it afterwards. This is used to make sure that unaligned
8066 base objects for which out-of-bounds accesses are supported, for
8067 example record types with trailing arrays, aren't realigned behind
8068 the back of the caller.
8069 The normal operating mode is to pass FALSE for this parameter. */
8072 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8073 enum expand_modifier modifier, rtx *alt_rtl,
8074 bool inner_reference_p)
8076 rtx ret;
8078 /* Handle ERROR_MARK before anybody tries to access its type. */
8079 if (TREE_CODE (exp) == ERROR_MARK
8080 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8082 ret = CONST0_RTX (tmode);
8083 return ret ? ret : const0_rtx;
8086 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8087 inner_reference_p);
8088 return ret;
8091 /* Try to expand the conditional expression which is represented by
8092 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8093 return the rtl reg which represents the result. Otherwise return
8094 NULL_RTX. */
8096 static rtx
8097 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8098 tree treeop1 ATTRIBUTE_UNUSED,
8099 tree treeop2 ATTRIBUTE_UNUSED)
8101 rtx insn;
8102 rtx op00, op01, op1, op2;
8103 enum rtx_code comparison_code;
8104 machine_mode comparison_mode;
8105 gimple *srcstmt;
8106 rtx temp;
8107 tree type = TREE_TYPE (treeop1);
8108 int unsignedp = TYPE_UNSIGNED (type);
8109 machine_mode mode = TYPE_MODE (type);
8110 machine_mode orig_mode = mode;
8112 /* If we cannot do a conditional move on the mode, try doing it
8113 with the promoted mode. */
8114 if (!can_conditionally_move_p (mode))
8116 mode = promote_mode (type, mode, &unsignedp);
8117 if (!can_conditionally_move_p (mode))
8118 return NULL_RTX;
8119 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8121 else
8122 temp = assign_temp (type, 0, 1);
8124 start_sequence ();
8125 expand_operands (treeop1, treeop2,
8126 temp, &op1, &op2, EXPAND_NORMAL);
8128 if (TREE_CODE (treeop0) == SSA_NAME
8129 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8131 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8132 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8133 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8134 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8135 comparison_mode = TYPE_MODE (type);
8136 unsignedp = TYPE_UNSIGNED (type);
8137 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8139 else if (COMPARISON_CLASS_P (treeop0))
8141 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8142 enum tree_code cmpcode = TREE_CODE (treeop0);
8143 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8144 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8145 unsignedp = TYPE_UNSIGNED (type);
8146 comparison_mode = TYPE_MODE (type);
8147 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8149 else
8151 op00 = expand_normal (treeop0);
8152 op01 = const0_rtx;
8153 comparison_code = NE;
8154 comparison_mode = GET_MODE (op00);
8155 if (comparison_mode == VOIDmode)
8156 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8159 if (GET_MODE (op1) != mode)
8160 op1 = gen_lowpart (mode, op1);
8162 if (GET_MODE (op2) != mode)
8163 op2 = gen_lowpart (mode, op2);
8165 /* Try to emit the conditional move. */
8166 insn = emit_conditional_move (temp, comparison_code,
8167 op00, op01, comparison_mode,
8168 op1, op2, mode,
8169 unsignedp);
8171 /* If we could do the conditional move, emit the sequence,
8172 and return. */
8173 if (insn)
8175 rtx_insn *seq = get_insns ();
8176 end_sequence ();
8177 emit_insn (seq);
8178 return convert_modes (orig_mode, mode, temp, 0);
8181 /* Otherwise discard the sequence and fall back to code with
8182 branches. */
8183 end_sequence ();
8184 return NULL_RTX;
8188 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8189 enum expand_modifier modifier)
8191 rtx op0, op1, op2, temp;
8192 rtx_code_label *lab;
8193 tree type;
8194 int unsignedp;
8195 machine_mode mode;
8196 enum tree_code code = ops->code;
8197 optab this_optab;
8198 rtx subtarget, original_target;
8199 int ignore;
8200 bool reduce_bit_field;
8201 location_t loc = ops->location;
8202 tree treeop0, treeop1, treeop2;
8203 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8204 ? reduce_to_bit_field_precision ((expr), \
8205 target, \
8206 type) \
8207 : (expr))
8209 type = ops->type;
8210 mode = TYPE_MODE (type);
8211 unsignedp = TYPE_UNSIGNED (type);
8213 treeop0 = ops->op0;
8214 treeop1 = ops->op1;
8215 treeop2 = ops->op2;
8217 /* We should be called only on simple (binary or unary) expressions,
8218 exactly those that are valid in gimple expressions that aren't
8219 GIMPLE_SINGLE_RHS (or invalid). */
8220 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8221 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8222 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8224 ignore = (target == const0_rtx
8225 || ((CONVERT_EXPR_CODE_P (code)
8226 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8227 && TREE_CODE (type) == VOID_TYPE));
8229 /* We should be called only if we need the result. */
8230 gcc_assert (!ignore);
8232 /* An operation in what may be a bit-field type needs the
8233 result to be reduced to the precision of the bit-field type,
8234 which is narrower than that of the type's mode. */
8235 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8236 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8238 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8239 target = 0;
8241 /* Use subtarget as the target for operand 0 of a binary operation. */
8242 subtarget = get_subtarget (target);
8243 original_target = target;
8245 switch (code)
8247 case NON_LVALUE_EXPR:
8248 case PAREN_EXPR:
8249 CASE_CONVERT:
8250 if (treeop0 == error_mark_node)
8251 return const0_rtx;
8253 if (TREE_CODE (type) == UNION_TYPE)
8255 tree valtype = TREE_TYPE (treeop0);
8257 /* If both input and output are BLKmode, this conversion isn't doing
8258 anything except possibly changing memory attribute. */
8259 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8261 rtx result = expand_expr (treeop0, target, tmode,
8262 modifier);
8264 result = copy_rtx (result);
8265 set_mem_attributes (result, type, 0);
8266 return result;
8269 if (target == 0)
8271 if (TYPE_MODE (type) != BLKmode)
8272 target = gen_reg_rtx (TYPE_MODE (type));
8273 else
8274 target = assign_temp (type, 1, 1);
8277 if (MEM_P (target))
8278 /* Store data into beginning of memory target. */
8279 store_expr (treeop0,
8280 adjust_address (target, TYPE_MODE (valtype), 0),
8281 modifier == EXPAND_STACK_PARM,
8282 false, TYPE_REVERSE_STORAGE_ORDER (type));
8284 else
8286 gcc_assert (REG_P (target)
8287 && !TYPE_REVERSE_STORAGE_ORDER (type));
8289 /* Store this field into a union of the proper type. */
8290 store_field (target,
8291 MIN ((int_size_in_bytes (TREE_TYPE
8292 (treeop0))
8293 * BITS_PER_UNIT),
8294 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8295 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8296 false, false);
8299 /* Return the entire union. */
8300 return target;
8303 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8305 op0 = expand_expr (treeop0, target, VOIDmode,
8306 modifier);
8308 /* If the signedness of the conversion differs and OP0 is
8309 a promoted SUBREG, clear that indication since we now
8310 have to do the proper extension. */
8311 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8312 && GET_CODE (op0) == SUBREG)
8313 SUBREG_PROMOTED_VAR_P (op0) = 0;
8315 return REDUCE_BIT_FIELD (op0);
8318 op0 = expand_expr (treeop0, NULL_RTX, mode,
8319 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8320 if (GET_MODE (op0) == mode)
8323 /* If OP0 is a constant, just convert it into the proper mode. */
8324 else if (CONSTANT_P (op0))
8326 tree inner_type = TREE_TYPE (treeop0);
8327 machine_mode inner_mode = GET_MODE (op0);
8329 if (inner_mode == VOIDmode)
8330 inner_mode = TYPE_MODE (inner_type);
8332 if (modifier == EXPAND_INITIALIZER)
8333 op0 = lowpart_subreg (mode, op0, inner_mode);
8334 else
8335 op0= convert_modes (mode, inner_mode, op0,
8336 TYPE_UNSIGNED (inner_type));
8339 else if (modifier == EXPAND_INITIALIZER)
8340 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8342 else if (target == 0)
8343 op0 = convert_to_mode (mode, op0,
8344 TYPE_UNSIGNED (TREE_TYPE
8345 (treeop0)));
8346 else
8348 convert_move (target, op0,
8349 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8350 op0 = target;
8353 return REDUCE_BIT_FIELD (op0);
8355 case ADDR_SPACE_CONVERT_EXPR:
8357 tree treeop0_type = TREE_TYPE (treeop0);
8359 gcc_assert (POINTER_TYPE_P (type));
8360 gcc_assert (POINTER_TYPE_P (treeop0_type));
8362 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8363 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8365 /* Conversions between pointers to the same address space should
8366 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8367 gcc_assert (as_to != as_from);
8369 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8371 /* Ask target code to handle conversion between pointers
8372 to overlapping address spaces. */
8373 if (targetm.addr_space.subset_p (as_to, as_from)
8374 || targetm.addr_space.subset_p (as_from, as_to))
8376 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8378 else
8380 /* For disjoint address spaces, converting anything but a null
8381 pointer invokes undefined behavior. We truncate or extend the
8382 value as if we'd converted via integers, which handles 0 as
8383 required, and all others as the programmer likely expects. */
8384 #ifndef POINTERS_EXTEND_UNSIGNED
8385 const int POINTERS_EXTEND_UNSIGNED = 1;
8386 #endif
8387 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8388 op0, POINTERS_EXTEND_UNSIGNED);
8390 gcc_assert (op0);
8391 return op0;
8394 case POINTER_PLUS_EXPR:
8395 /* Even though the sizetype mode and the pointer's mode can be different
8396 expand is able to handle this correctly and get the correct result out
8397 of the PLUS_EXPR code. */
8398 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8399 if sizetype precision is smaller than pointer precision. */
8400 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8401 treeop1 = fold_convert_loc (loc, type,
8402 fold_convert_loc (loc, ssizetype,
8403 treeop1));
8404 /* If sizetype precision is larger than pointer precision, truncate the
8405 offset to have matching modes. */
8406 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8407 treeop1 = fold_convert_loc (loc, type, treeop1);
8408 /* FALLTHRU */
8410 case PLUS_EXPR:
8411 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8412 something else, make sure we add the register to the constant and
8413 then to the other thing. This case can occur during strength
8414 reduction and doing it this way will produce better code if the
8415 frame pointer or argument pointer is eliminated.
8417 fold-const.c will ensure that the constant is always in the inner
8418 PLUS_EXPR, so the only case we need to do anything about is if
8419 sp, ap, or fp is our second argument, in which case we must swap
8420 the innermost first argument and our second argument. */
8422 if (TREE_CODE (treeop0) == PLUS_EXPR
8423 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8424 && VAR_P (treeop1)
8425 && (DECL_RTL (treeop1) == frame_pointer_rtx
8426 || DECL_RTL (treeop1) == stack_pointer_rtx
8427 || DECL_RTL (treeop1) == arg_pointer_rtx))
8429 gcc_unreachable ();
8432 /* If the result is to be ptr_mode and we are adding an integer to
8433 something, we might be forming a constant. So try to use
8434 plus_constant. If it produces a sum and we can't accept it,
8435 use force_operand. This allows P = &ARR[const] to generate
8436 efficient code on machines where a SYMBOL_REF is not a valid
8437 address.
8439 If this is an EXPAND_SUM call, always return the sum. */
8440 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8441 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8443 if (modifier == EXPAND_STACK_PARM)
8444 target = 0;
8445 if (TREE_CODE (treeop0) == INTEGER_CST
8446 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8447 && TREE_CONSTANT (treeop1))
8449 rtx constant_part;
8450 HOST_WIDE_INT wc;
8451 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8453 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8454 EXPAND_SUM);
8455 /* Use wi::shwi to ensure that the constant is
8456 truncated according to the mode of OP1, then sign extended
8457 to a HOST_WIDE_INT. Using the constant directly can result
8458 in non-canonical RTL in a 64x32 cross compile. */
8459 wc = TREE_INT_CST_LOW (treeop0);
8460 constant_part =
8461 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8462 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8463 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8464 op1 = force_operand (op1, target);
8465 return REDUCE_BIT_FIELD (op1);
8468 else if (TREE_CODE (treeop1) == INTEGER_CST
8469 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8470 && TREE_CONSTANT (treeop0))
8472 rtx constant_part;
8473 HOST_WIDE_INT wc;
8474 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8476 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8477 (modifier == EXPAND_INITIALIZER
8478 ? EXPAND_INITIALIZER : EXPAND_SUM));
8479 if (! CONSTANT_P (op0))
8481 op1 = expand_expr (treeop1, NULL_RTX,
8482 VOIDmode, modifier);
8483 /* Return a PLUS if modifier says it's OK. */
8484 if (modifier == EXPAND_SUM
8485 || modifier == EXPAND_INITIALIZER)
8486 return simplify_gen_binary (PLUS, mode, op0, op1);
8487 goto binop2;
8489 /* Use wi::shwi to ensure that the constant is
8490 truncated according to the mode of OP1, then sign extended
8491 to a HOST_WIDE_INT. Using the constant directly can result
8492 in non-canonical RTL in a 64x32 cross compile. */
8493 wc = TREE_INT_CST_LOW (treeop1);
8494 constant_part
8495 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8496 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8497 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8498 op0 = force_operand (op0, target);
8499 return REDUCE_BIT_FIELD (op0);
8503 /* Use TER to expand pointer addition of a negated value
8504 as pointer subtraction. */
8505 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8506 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8507 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8508 && TREE_CODE (treeop1) == SSA_NAME
8509 && TYPE_MODE (TREE_TYPE (treeop0))
8510 == TYPE_MODE (TREE_TYPE (treeop1)))
8512 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8513 if (def)
8515 treeop1 = gimple_assign_rhs1 (def);
8516 code = MINUS_EXPR;
8517 goto do_minus;
8521 /* No sense saving up arithmetic to be done
8522 if it's all in the wrong mode to form part of an address.
8523 And force_operand won't know whether to sign-extend or
8524 zero-extend. */
8525 if (modifier != EXPAND_INITIALIZER
8526 && (modifier != EXPAND_SUM || mode != ptr_mode))
8528 expand_operands (treeop0, treeop1,
8529 subtarget, &op0, &op1, modifier);
8530 if (op0 == const0_rtx)
8531 return op1;
8532 if (op1 == const0_rtx)
8533 return op0;
8534 goto binop2;
8537 expand_operands (treeop0, treeop1,
8538 subtarget, &op0, &op1, modifier);
8539 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8541 case MINUS_EXPR:
8542 do_minus:
8543 /* For initializers, we are allowed to return a MINUS of two
8544 symbolic constants. Here we handle all cases when both operands
8545 are constant. */
8546 /* Handle difference of two symbolic constants,
8547 for the sake of an initializer. */
8548 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8549 && really_constant_p (treeop0)
8550 && really_constant_p (treeop1))
8552 expand_operands (treeop0, treeop1,
8553 NULL_RTX, &op0, &op1, modifier);
8555 /* If the last operand is a CONST_INT, use plus_constant of
8556 the negated constant. Else make the MINUS. */
8557 if (CONST_INT_P (op1))
8558 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8559 -INTVAL (op1)));
8560 else
8561 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8564 /* No sense saving up arithmetic to be done
8565 if it's all in the wrong mode to form part of an address.
8566 And force_operand won't know whether to sign-extend or
8567 zero-extend. */
8568 if (modifier != EXPAND_INITIALIZER
8569 && (modifier != EXPAND_SUM || mode != ptr_mode))
8570 goto binop;
8572 expand_operands (treeop0, treeop1,
8573 subtarget, &op0, &op1, modifier);
8575 /* Convert A - const to A + (-const). */
8576 if (CONST_INT_P (op1))
8578 op1 = negate_rtx (mode, op1);
8579 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8582 goto binop2;
8584 case WIDEN_MULT_PLUS_EXPR:
8585 case WIDEN_MULT_MINUS_EXPR:
8586 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8587 op2 = expand_normal (treeop2);
8588 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8589 target, unsignedp);
8590 return target;
8592 case WIDEN_MULT_EXPR:
8593 /* If first operand is constant, swap them.
8594 Thus the following special case checks need only
8595 check the second operand. */
8596 if (TREE_CODE (treeop0) == INTEGER_CST)
8597 std::swap (treeop0, treeop1);
8599 /* First, check if we have a multiplication of one signed and one
8600 unsigned operand. */
8601 if (TREE_CODE (treeop1) != INTEGER_CST
8602 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8603 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8605 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8606 this_optab = usmul_widen_optab;
8607 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8608 != CODE_FOR_nothing)
8610 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8611 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8612 EXPAND_NORMAL);
8613 else
8614 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8615 EXPAND_NORMAL);
8616 /* op0 and op1 might still be constant, despite the above
8617 != INTEGER_CST check. Handle it. */
8618 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8620 op0 = convert_modes (innermode, mode, op0, true);
8621 op1 = convert_modes (innermode, mode, op1, false);
8622 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8623 target, unsignedp));
8625 goto binop3;
8628 /* Check for a multiplication with matching signedness. */
8629 else if ((TREE_CODE (treeop1) == INTEGER_CST
8630 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8631 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8632 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8634 tree op0type = TREE_TYPE (treeop0);
8635 machine_mode innermode = TYPE_MODE (op0type);
8636 bool zextend_p = TYPE_UNSIGNED (op0type);
8637 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8638 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8640 if (TREE_CODE (treeop0) != INTEGER_CST)
8642 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8643 != CODE_FOR_nothing)
8645 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8646 EXPAND_NORMAL);
8647 /* op0 and op1 might still be constant, despite the above
8648 != INTEGER_CST check. Handle it. */
8649 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8651 widen_mult_const:
8652 op0 = convert_modes (innermode, mode, op0, zextend_p);
8654 = convert_modes (innermode, mode, op1,
8655 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8656 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8657 target,
8658 unsignedp));
8660 temp = expand_widening_mult (mode, op0, op1, target,
8661 unsignedp, this_optab);
8662 return REDUCE_BIT_FIELD (temp);
8664 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8665 != CODE_FOR_nothing
8666 && innermode == word_mode)
8668 rtx htem, hipart;
8669 op0 = expand_normal (treeop0);
8670 if (TREE_CODE (treeop1) == INTEGER_CST)
8671 op1 = convert_modes (innermode, mode,
8672 expand_normal (treeop1),
8673 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8674 else
8675 op1 = expand_normal (treeop1);
8676 /* op0 and op1 might still be constant, despite the above
8677 != INTEGER_CST check. Handle it. */
8678 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8679 goto widen_mult_const;
8680 temp = expand_binop (mode, other_optab, op0, op1, target,
8681 unsignedp, OPTAB_LIB_WIDEN);
8682 hipart = gen_highpart (innermode, temp);
8683 htem = expand_mult_highpart_adjust (innermode, hipart,
8684 op0, op1, hipart,
8685 zextend_p);
8686 if (htem != hipart)
8687 emit_move_insn (hipart, htem);
8688 return REDUCE_BIT_FIELD (temp);
8692 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8693 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8694 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8695 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8697 case FMA_EXPR:
8699 optab opt = fma_optab;
8700 gimple *def0, *def2;
8702 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8703 call. */
8704 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8706 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8707 tree call_expr;
8709 gcc_assert (fn != NULL_TREE);
8710 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8711 return expand_builtin (call_expr, target, subtarget, mode, false);
8714 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8715 /* The multiplication is commutative - look at its 2nd operand
8716 if the first isn't fed by a negate. */
8717 if (!def0)
8719 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8720 /* Swap operands if the 2nd operand is fed by a negate. */
8721 if (def0)
8722 std::swap (treeop0, treeop1);
8724 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8726 op0 = op2 = NULL;
8728 if (def0 && def2
8729 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8731 opt = fnms_optab;
8732 op0 = expand_normal (gimple_assign_rhs1 (def0));
8733 op2 = expand_normal (gimple_assign_rhs1 (def2));
8735 else if (def0
8736 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8738 opt = fnma_optab;
8739 op0 = expand_normal (gimple_assign_rhs1 (def0));
8741 else if (def2
8742 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8744 opt = fms_optab;
8745 op2 = expand_normal (gimple_assign_rhs1 (def2));
8748 if (op0 == NULL)
8749 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8750 if (op2 == NULL)
8751 op2 = expand_normal (treeop2);
8752 op1 = expand_normal (treeop1);
8754 return expand_ternary_op (TYPE_MODE (type), opt,
8755 op0, op1, op2, target, 0);
8758 case MULT_EXPR:
8759 /* If this is a fixed-point operation, then we cannot use the code
8760 below because "expand_mult" doesn't support sat/no-sat fixed-point
8761 multiplications. */
8762 if (ALL_FIXED_POINT_MODE_P (mode))
8763 goto binop;
8765 /* If first operand is constant, swap them.
8766 Thus the following special case checks need only
8767 check the second operand. */
8768 if (TREE_CODE (treeop0) == INTEGER_CST)
8769 std::swap (treeop0, treeop1);
8771 /* Attempt to return something suitable for generating an
8772 indexed address, for machines that support that. */
8774 if (modifier == EXPAND_SUM && mode == ptr_mode
8775 && tree_fits_shwi_p (treeop1))
8777 tree exp1 = treeop1;
8779 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8780 EXPAND_SUM);
8782 if (!REG_P (op0))
8783 op0 = force_operand (op0, NULL_RTX);
8784 if (!REG_P (op0))
8785 op0 = copy_to_mode_reg (mode, op0);
8787 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8788 gen_int_mode (tree_to_shwi (exp1),
8789 TYPE_MODE (TREE_TYPE (exp1)))));
8792 if (modifier == EXPAND_STACK_PARM)
8793 target = 0;
8795 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8796 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8798 case TRUNC_DIV_EXPR:
8799 case FLOOR_DIV_EXPR:
8800 case CEIL_DIV_EXPR:
8801 case ROUND_DIV_EXPR:
8802 case EXACT_DIV_EXPR:
8803 /* If this is a fixed-point operation, then we cannot use the code
8804 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8805 divisions. */
8806 if (ALL_FIXED_POINT_MODE_P (mode))
8807 goto binop;
8809 if (modifier == EXPAND_STACK_PARM)
8810 target = 0;
8811 /* Possible optimization: compute the dividend with EXPAND_SUM
8812 then if the divisor is constant can optimize the case
8813 where some terms of the dividend have coeffs divisible by it. */
8814 expand_operands (treeop0, treeop1,
8815 subtarget, &op0, &op1, EXPAND_NORMAL);
8816 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8818 case RDIV_EXPR:
8819 goto binop;
8821 case MULT_HIGHPART_EXPR:
8822 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8823 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8824 gcc_assert (temp);
8825 return temp;
8827 case TRUNC_MOD_EXPR:
8828 case FLOOR_MOD_EXPR:
8829 case CEIL_MOD_EXPR:
8830 case ROUND_MOD_EXPR:
8831 if (modifier == EXPAND_STACK_PARM)
8832 target = 0;
8833 expand_operands (treeop0, treeop1,
8834 subtarget, &op0, &op1, EXPAND_NORMAL);
8835 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8837 case FIXED_CONVERT_EXPR:
8838 op0 = expand_normal (treeop0);
8839 if (target == 0 || modifier == EXPAND_STACK_PARM)
8840 target = gen_reg_rtx (mode);
8842 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8843 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8844 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8845 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8846 else
8847 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8848 return target;
8850 case FIX_TRUNC_EXPR:
8851 op0 = expand_normal (treeop0);
8852 if (target == 0 || modifier == EXPAND_STACK_PARM)
8853 target = gen_reg_rtx (mode);
8854 expand_fix (target, op0, unsignedp);
8855 return target;
8857 case FLOAT_EXPR:
8858 op0 = expand_normal (treeop0);
8859 if (target == 0 || modifier == EXPAND_STACK_PARM)
8860 target = gen_reg_rtx (mode);
8861 /* expand_float can't figure out what to do if FROM has VOIDmode.
8862 So give it the correct mode. With -O, cse will optimize this. */
8863 if (GET_MODE (op0) == VOIDmode)
8864 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8865 op0);
8866 expand_float (target, op0,
8867 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8868 return target;
8870 case NEGATE_EXPR:
8871 op0 = expand_expr (treeop0, subtarget,
8872 VOIDmode, EXPAND_NORMAL);
8873 if (modifier == EXPAND_STACK_PARM)
8874 target = 0;
8875 temp = expand_unop (mode,
8876 optab_for_tree_code (NEGATE_EXPR, type,
8877 optab_default),
8878 op0, target, 0);
8879 gcc_assert (temp);
8880 return REDUCE_BIT_FIELD (temp);
8882 case ABS_EXPR:
8883 op0 = expand_expr (treeop0, subtarget,
8884 VOIDmode, EXPAND_NORMAL);
8885 if (modifier == EXPAND_STACK_PARM)
8886 target = 0;
8888 /* ABS_EXPR is not valid for complex arguments. */
8889 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8890 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8892 /* Unsigned abs is simply the operand. Testing here means we don't
8893 risk generating incorrect code below. */
8894 if (TYPE_UNSIGNED (type))
8895 return op0;
8897 return expand_abs (mode, op0, target, unsignedp,
8898 safe_from_p (target, treeop0, 1));
8900 case MAX_EXPR:
8901 case MIN_EXPR:
8902 target = original_target;
8903 if (target == 0
8904 || modifier == EXPAND_STACK_PARM
8905 || (MEM_P (target) && MEM_VOLATILE_P (target))
8906 || GET_MODE (target) != mode
8907 || (REG_P (target)
8908 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8909 target = gen_reg_rtx (mode);
8910 expand_operands (treeop0, treeop1,
8911 target, &op0, &op1, EXPAND_NORMAL);
8913 /* First try to do it with a special MIN or MAX instruction.
8914 If that does not win, use a conditional jump to select the proper
8915 value. */
8916 this_optab = optab_for_tree_code (code, type, optab_default);
8917 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8918 OPTAB_WIDEN);
8919 if (temp != 0)
8920 return temp;
8922 /* At this point, a MEM target is no longer useful; we will get better
8923 code without it. */
8925 if (! REG_P (target))
8926 target = gen_reg_rtx (mode);
8928 /* If op1 was placed in target, swap op0 and op1. */
8929 if (target != op0 && target == op1)
8930 std::swap (op0, op1);
8932 /* We generate better code and avoid problems with op1 mentioning
8933 target by forcing op1 into a pseudo if it isn't a constant. */
8934 if (! CONSTANT_P (op1))
8935 op1 = force_reg (mode, op1);
8938 enum rtx_code comparison_code;
8939 rtx cmpop1 = op1;
8941 if (code == MAX_EXPR)
8942 comparison_code = unsignedp ? GEU : GE;
8943 else
8944 comparison_code = unsignedp ? LEU : LE;
8946 /* Canonicalize to comparisons against 0. */
8947 if (op1 == const1_rtx)
8949 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8950 or (a != 0 ? a : 1) for unsigned.
8951 For MIN we are safe converting (a <= 1 ? a : 1)
8952 into (a <= 0 ? a : 1) */
8953 cmpop1 = const0_rtx;
8954 if (code == MAX_EXPR)
8955 comparison_code = unsignedp ? NE : GT;
8957 if (op1 == constm1_rtx && !unsignedp)
8959 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8960 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8961 cmpop1 = const0_rtx;
8962 if (code == MIN_EXPR)
8963 comparison_code = LT;
8966 /* Use a conditional move if possible. */
8967 if (can_conditionally_move_p (mode))
8969 rtx insn;
8971 start_sequence ();
8973 /* Try to emit the conditional move. */
8974 insn = emit_conditional_move (target, comparison_code,
8975 op0, cmpop1, mode,
8976 op0, op1, mode,
8977 unsignedp);
8979 /* If we could do the conditional move, emit the sequence,
8980 and return. */
8981 if (insn)
8983 rtx_insn *seq = get_insns ();
8984 end_sequence ();
8985 emit_insn (seq);
8986 return target;
8989 /* Otherwise discard the sequence and fall back to code with
8990 branches. */
8991 end_sequence ();
8994 if (target != op0)
8995 emit_move_insn (target, op0);
8997 lab = gen_label_rtx ();
8998 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8999 unsignedp, mode, NULL_RTX, NULL, lab,
9000 -1);
9002 emit_move_insn (target, op1);
9003 emit_label (lab);
9004 return target;
9006 case BIT_NOT_EXPR:
9007 op0 = expand_expr (treeop0, subtarget,
9008 VOIDmode, EXPAND_NORMAL);
9009 if (modifier == EXPAND_STACK_PARM)
9010 target = 0;
9011 /* In case we have to reduce the result to bitfield precision
9012 for unsigned bitfield expand this as XOR with a proper constant
9013 instead. */
9014 if (reduce_bit_field && TYPE_UNSIGNED (type))
9016 wide_int mask = wi::mask (TYPE_PRECISION (type),
9017 false, GET_MODE_PRECISION (mode));
9019 temp = expand_binop (mode, xor_optab, op0,
9020 immed_wide_int_const (mask, mode),
9021 target, 1, OPTAB_LIB_WIDEN);
9023 else
9024 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9025 gcc_assert (temp);
9026 return temp;
9028 /* ??? Can optimize bitwise operations with one arg constant.
9029 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9030 and (a bitwise1 b) bitwise2 b (etc)
9031 but that is probably not worth while. */
9033 case BIT_AND_EXPR:
9034 case BIT_IOR_EXPR:
9035 case BIT_XOR_EXPR:
9036 goto binop;
9038 case LROTATE_EXPR:
9039 case RROTATE_EXPR:
9040 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9041 || (GET_MODE_PRECISION (TYPE_MODE (type))
9042 == TYPE_PRECISION (type)));
9043 /* fall through */
9045 case LSHIFT_EXPR:
9046 case RSHIFT_EXPR:
9048 /* If this is a fixed-point operation, then we cannot use the code
9049 below because "expand_shift" doesn't support sat/no-sat fixed-point
9050 shifts. */
9051 if (ALL_FIXED_POINT_MODE_P (mode))
9052 goto binop;
9054 if (! safe_from_p (subtarget, treeop1, 1))
9055 subtarget = 0;
9056 if (modifier == EXPAND_STACK_PARM)
9057 target = 0;
9058 op0 = expand_expr (treeop0, subtarget,
9059 VOIDmode, EXPAND_NORMAL);
9061 /* Left shift optimization when shifting across word_size boundary.
9063 If mode == GET_MODE_WIDER_MODE (word_mode), then normally there isn't
9064 native instruction to support this wide mode left shift. Given below
9065 scenario:
9067 Type A = (Type) B << C
9069 |< T >|
9070 | dest_high | dest_low |
9072 | word_size |
9074 If the shift amount C caused we shift B to across the word size
9075 boundary, i.e part of B shifted into high half of destination
9076 register, and part of B remains in the low half, then GCC will use
9077 the following left shift expand logic:
9079 1. Initialize dest_low to B.
9080 2. Initialize every bit of dest_high to the sign bit of B.
9081 3. Logic left shift dest_low by C bit to finalize dest_low.
9082 The value of dest_low before this shift is kept in a temp D.
9083 4. Logic left shift dest_high by C.
9084 5. Logic right shift D by (word_size - C).
9085 6. Or the result of 4 and 5 to finalize dest_high.
9087 While, by checking gimple statements, if operand B is coming from
9088 signed extension, then we can simplify above expand logic into:
9090 1. dest_high = src_low >> (word_size - C).
9091 2. dest_low = src_low << C.
9093 We can use one arithmetic right shift to finish all the purpose of
9094 steps 2, 4, 5, 6, thus we reduce the steps needed from 6 into 2. */
9096 temp = NULL_RTX;
9097 if (code == LSHIFT_EXPR
9098 && target
9099 && REG_P (target)
9100 && ! unsignedp
9101 && mode == GET_MODE_WIDER_MODE (word_mode)
9102 && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode)
9103 && TREE_CONSTANT (treeop1)
9104 && TREE_CODE (treeop0) == SSA_NAME)
9106 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9107 if (is_gimple_assign (def)
9108 && gimple_assign_rhs_code (def) == NOP_EXPR)
9110 machine_mode rmode = TYPE_MODE
9111 (TREE_TYPE (gimple_assign_rhs1 (def)));
9113 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (mode)
9114 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9115 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9116 >= GET_MODE_BITSIZE (word_mode)))
9118 rtx_insn *seq, *seq_old;
9119 unsigned int high_off = subreg_highpart_offset (word_mode,
9120 mode);
9121 rtx low = lowpart_subreg (word_mode, op0, mode);
9122 rtx dest_low = lowpart_subreg (word_mode, target, mode);
9123 rtx dest_high = simplify_gen_subreg (word_mode, target,
9124 mode, high_off);
9125 HOST_WIDE_INT ramount = (BITS_PER_WORD
9126 - TREE_INT_CST_LOW (treeop1));
9127 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9129 start_sequence ();
9130 /* dest_high = src_low >> (word_size - C). */
9131 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9132 rshift, dest_high, unsignedp);
9133 if (temp != dest_high)
9134 emit_move_insn (dest_high, temp);
9136 /* dest_low = src_low << C. */
9137 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9138 treeop1, dest_low, unsignedp);
9139 if (temp != dest_low)
9140 emit_move_insn (dest_low, temp);
9142 seq = get_insns ();
9143 end_sequence ();
9144 temp = target ;
9146 if (have_insn_for (ASHIFT, mode))
9148 bool speed_p = optimize_insn_for_speed_p ();
9149 start_sequence ();
9150 rtx ret_old = expand_variable_shift (code, mode, op0,
9151 treeop1, target,
9152 unsignedp);
9154 seq_old = get_insns ();
9155 end_sequence ();
9156 if (seq_cost (seq, speed_p)
9157 >= seq_cost (seq_old, speed_p))
9159 seq = seq_old;
9160 temp = ret_old;
9163 emit_insn (seq);
9168 if (temp == NULL_RTX)
9169 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9170 unsignedp);
9171 if (code == LSHIFT_EXPR)
9172 temp = REDUCE_BIT_FIELD (temp);
9173 return temp;
9176 /* Could determine the answer when only additive constants differ. Also,
9177 the addition of one can be handled by changing the condition. */
9178 case LT_EXPR:
9179 case LE_EXPR:
9180 case GT_EXPR:
9181 case GE_EXPR:
9182 case EQ_EXPR:
9183 case NE_EXPR:
9184 case UNORDERED_EXPR:
9185 case ORDERED_EXPR:
9186 case UNLT_EXPR:
9187 case UNLE_EXPR:
9188 case UNGT_EXPR:
9189 case UNGE_EXPR:
9190 case UNEQ_EXPR:
9191 case LTGT_EXPR:
9193 temp = do_store_flag (ops,
9194 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9195 tmode != VOIDmode ? tmode : mode);
9196 if (temp)
9197 return temp;
9199 /* Use a compare and a jump for BLKmode comparisons, or for function
9200 type comparisons is have_canonicalize_funcptr_for_compare. */
9202 if ((target == 0
9203 || modifier == EXPAND_STACK_PARM
9204 || ! safe_from_p (target, treeop0, 1)
9205 || ! safe_from_p (target, treeop1, 1)
9206 /* Make sure we don't have a hard reg (such as function's return
9207 value) live across basic blocks, if not optimizing. */
9208 || (!optimize && REG_P (target)
9209 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9210 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9212 emit_move_insn (target, const0_rtx);
9214 rtx_code_label *lab1 = gen_label_rtx ();
9215 jumpifnot_1 (code, treeop0, treeop1, lab1, -1);
9217 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9218 emit_move_insn (target, constm1_rtx);
9219 else
9220 emit_move_insn (target, const1_rtx);
9222 emit_label (lab1);
9223 return target;
9225 case COMPLEX_EXPR:
9226 /* Get the rtx code of the operands. */
9227 op0 = expand_normal (treeop0);
9228 op1 = expand_normal (treeop1);
9230 if (!target)
9231 target = gen_reg_rtx (TYPE_MODE (type));
9232 else
9233 /* If target overlaps with op1, then either we need to force
9234 op1 into a pseudo (if target also overlaps with op0),
9235 or write the complex parts in reverse order. */
9236 switch (GET_CODE (target))
9238 case CONCAT:
9239 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9241 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9243 complex_expr_force_op1:
9244 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9245 emit_move_insn (temp, op1);
9246 op1 = temp;
9247 break;
9249 complex_expr_swap_order:
9250 /* Move the imaginary (op1) and real (op0) parts to their
9251 location. */
9252 write_complex_part (target, op1, true);
9253 write_complex_part (target, op0, false);
9255 return target;
9257 break;
9258 case MEM:
9259 temp = adjust_address_nv (target,
9260 GET_MODE_INNER (GET_MODE (target)), 0);
9261 if (reg_overlap_mentioned_p (temp, op1))
9263 machine_mode imode = GET_MODE_INNER (GET_MODE (target));
9264 temp = adjust_address_nv (target, imode,
9265 GET_MODE_SIZE (imode));
9266 if (reg_overlap_mentioned_p (temp, op0))
9267 goto complex_expr_force_op1;
9268 goto complex_expr_swap_order;
9270 break;
9271 default:
9272 if (reg_overlap_mentioned_p (target, op1))
9274 if (reg_overlap_mentioned_p (target, op0))
9275 goto complex_expr_force_op1;
9276 goto complex_expr_swap_order;
9278 break;
9281 /* Move the real (op0) and imaginary (op1) parts to their location. */
9282 write_complex_part (target, op0, false);
9283 write_complex_part (target, op1, true);
9285 return target;
9287 case WIDEN_SUM_EXPR:
9289 tree oprnd0 = treeop0;
9290 tree oprnd1 = treeop1;
9292 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9293 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9294 target, unsignedp);
9295 return target;
9298 case REDUC_MAX_EXPR:
9299 case REDUC_MIN_EXPR:
9300 case REDUC_PLUS_EXPR:
9302 op0 = expand_normal (treeop0);
9303 this_optab = optab_for_tree_code (code, type, optab_default);
9304 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9306 struct expand_operand ops[2];
9307 enum insn_code icode = optab_handler (this_optab, vec_mode);
9309 create_output_operand (&ops[0], target, mode);
9310 create_input_operand (&ops[1], op0, vec_mode);
9311 expand_insn (icode, 2, ops);
9312 target = ops[0].value;
9313 if (GET_MODE (target) != mode)
9314 return gen_lowpart (tmode, target);
9315 return target;
9318 case VEC_UNPACK_HI_EXPR:
9319 case VEC_UNPACK_LO_EXPR:
9321 op0 = expand_normal (treeop0);
9322 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9323 target, unsignedp);
9324 gcc_assert (temp);
9325 return temp;
9328 case VEC_UNPACK_FLOAT_HI_EXPR:
9329 case VEC_UNPACK_FLOAT_LO_EXPR:
9331 op0 = expand_normal (treeop0);
9332 /* The signedness is determined from input operand. */
9333 temp = expand_widen_pattern_expr
9334 (ops, op0, NULL_RTX, NULL_RTX,
9335 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9337 gcc_assert (temp);
9338 return temp;
9341 case VEC_WIDEN_MULT_HI_EXPR:
9342 case VEC_WIDEN_MULT_LO_EXPR:
9343 case VEC_WIDEN_MULT_EVEN_EXPR:
9344 case VEC_WIDEN_MULT_ODD_EXPR:
9345 case VEC_WIDEN_LSHIFT_HI_EXPR:
9346 case VEC_WIDEN_LSHIFT_LO_EXPR:
9347 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9348 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9349 target, unsignedp);
9350 gcc_assert (target);
9351 return target;
9353 case VEC_PACK_TRUNC_EXPR:
9354 case VEC_PACK_SAT_EXPR:
9355 case VEC_PACK_FIX_TRUNC_EXPR:
9356 mode = TYPE_MODE (TREE_TYPE (treeop0));
9357 goto binop;
9359 case VEC_PERM_EXPR:
9360 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9361 op2 = expand_normal (treeop2);
9363 /* Careful here: if the target doesn't support integral vector modes,
9364 a constant selection vector could wind up smooshed into a normal
9365 integral constant. */
9366 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9368 tree sel_type = TREE_TYPE (treeop2);
9369 machine_mode vmode
9370 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9371 TYPE_VECTOR_SUBPARTS (sel_type));
9372 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9373 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9374 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9376 else
9377 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9379 temp = expand_vec_perm (mode, op0, op1, op2, target);
9380 gcc_assert (temp);
9381 return temp;
9383 case DOT_PROD_EXPR:
9385 tree oprnd0 = treeop0;
9386 tree oprnd1 = treeop1;
9387 tree oprnd2 = treeop2;
9388 rtx op2;
9390 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9391 op2 = expand_normal (oprnd2);
9392 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9393 target, unsignedp);
9394 return target;
9397 case SAD_EXPR:
9399 tree oprnd0 = treeop0;
9400 tree oprnd1 = treeop1;
9401 tree oprnd2 = treeop2;
9402 rtx op2;
9404 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9405 op2 = expand_normal (oprnd2);
9406 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9407 target, unsignedp);
9408 return target;
9411 case REALIGN_LOAD_EXPR:
9413 tree oprnd0 = treeop0;
9414 tree oprnd1 = treeop1;
9415 tree oprnd2 = treeop2;
9416 rtx op2;
9418 this_optab = optab_for_tree_code (code, type, optab_default);
9419 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9420 op2 = expand_normal (oprnd2);
9421 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9422 target, unsignedp);
9423 gcc_assert (temp);
9424 return temp;
9427 case COND_EXPR:
9429 /* A COND_EXPR with its type being VOID_TYPE represents a
9430 conditional jump and is handled in
9431 expand_gimple_cond_expr. */
9432 gcc_assert (!VOID_TYPE_P (type));
9434 /* Note that COND_EXPRs whose type is a structure or union
9435 are required to be constructed to contain assignments of
9436 a temporary variable, so that we can evaluate them here
9437 for side effect only. If type is void, we must do likewise. */
9439 gcc_assert (!TREE_ADDRESSABLE (type)
9440 && !ignore
9441 && TREE_TYPE (treeop1) != void_type_node
9442 && TREE_TYPE (treeop2) != void_type_node);
9444 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9445 if (temp)
9446 return temp;
9448 /* If we are not to produce a result, we have no target. Otherwise,
9449 if a target was specified use it; it will not be used as an
9450 intermediate target unless it is safe. If no target, use a
9451 temporary. */
9453 if (modifier != EXPAND_STACK_PARM
9454 && original_target
9455 && safe_from_p (original_target, treeop0, 1)
9456 && GET_MODE (original_target) == mode
9457 && !MEM_P (original_target))
9458 temp = original_target;
9459 else
9460 temp = assign_temp (type, 0, 1);
9462 do_pending_stack_adjust ();
9463 NO_DEFER_POP;
9464 rtx_code_label *lab0 = gen_label_rtx ();
9465 rtx_code_label *lab1 = gen_label_rtx ();
9466 jumpifnot (treeop0, lab0, -1);
9467 store_expr (treeop1, temp,
9468 modifier == EXPAND_STACK_PARM,
9469 false, false);
9471 emit_jump_insn (targetm.gen_jump (lab1));
9472 emit_barrier ();
9473 emit_label (lab0);
9474 store_expr (treeop2, temp,
9475 modifier == EXPAND_STACK_PARM,
9476 false, false);
9478 emit_label (lab1);
9479 OK_DEFER_POP;
9480 return temp;
9483 case VEC_COND_EXPR:
9484 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9485 return target;
9487 case BIT_INSERT_EXPR:
9489 unsigned bitpos = tree_to_uhwi (treeop2);
9490 unsigned bitsize;
9491 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9492 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9493 else
9494 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9495 rtx op0 = expand_normal (treeop0);
9496 rtx op1 = expand_normal (treeop1);
9497 rtx dst = gen_reg_rtx (mode);
9498 emit_move_insn (dst, op0);
9499 store_bit_field (dst, bitsize, bitpos, 0, 0,
9500 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9501 return dst;
9504 default:
9505 gcc_unreachable ();
9508 /* Here to do an ordinary binary operator. */
9509 binop:
9510 expand_operands (treeop0, treeop1,
9511 subtarget, &op0, &op1, EXPAND_NORMAL);
9512 binop2:
9513 this_optab = optab_for_tree_code (code, type, optab_default);
9514 binop3:
9515 if (modifier == EXPAND_STACK_PARM)
9516 target = 0;
9517 temp = expand_binop (mode, this_optab, op0, op1, target,
9518 unsignedp, OPTAB_LIB_WIDEN);
9519 gcc_assert (temp);
9520 /* Bitwise operations do not need bitfield reduction as we expect their
9521 operands being properly truncated. */
9522 if (code == BIT_XOR_EXPR
9523 || code == BIT_AND_EXPR
9524 || code == BIT_IOR_EXPR)
9525 return temp;
9526 return REDUCE_BIT_FIELD (temp);
9528 #undef REDUCE_BIT_FIELD
9531 /* Return TRUE if expression STMT is suitable for replacement.
9532 Never consider memory loads as replaceable, because those don't ever lead
9533 into constant expressions. */
9535 static bool
9536 stmt_is_replaceable_p (gimple *stmt)
9538 if (ssa_is_replaceable_p (stmt))
9540 /* Don't move around loads. */
9541 if (!gimple_assign_single_p (stmt)
9542 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9543 return true;
9545 return false;
9549 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9550 enum expand_modifier modifier, rtx *alt_rtl,
9551 bool inner_reference_p)
9553 rtx op0, op1, temp, decl_rtl;
9554 tree type;
9555 int unsignedp;
9556 machine_mode mode, dmode;
9557 enum tree_code code = TREE_CODE (exp);
9558 rtx subtarget, original_target;
9559 int ignore;
9560 tree context;
9561 bool reduce_bit_field;
9562 location_t loc = EXPR_LOCATION (exp);
9563 struct separate_ops ops;
9564 tree treeop0, treeop1, treeop2;
9565 tree ssa_name = NULL_TREE;
9566 gimple *g;
9568 type = TREE_TYPE (exp);
9569 mode = TYPE_MODE (type);
9570 unsignedp = TYPE_UNSIGNED (type);
9572 treeop0 = treeop1 = treeop2 = NULL_TREE;
9573 if (!VL_EXP_CLASS_P (exp))
9574 switch (TREE_CODE_LENGTH (code))
9576 default:
9577 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9578 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9579 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9580 case 0: break;
9582 ops.code = code;
9583 ops.type = type;
9584 ops.op0 = treeop0;
9585 ops.op1 = treeop1;
9586 ops.op2 = treeop2;
9587 ops.location = loc;
9589 ignore = (target == const0_rtx
9590 || ((CONVERT_EXPR_CODE_P (code)
9591 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9592 && TREE_CODE (type) == VOID_TYPE));
9594 /* An operation in what may be a bit-field type needs the
9595 result to be reduced to the precision of the bit-field type,
9596 which is narrower than that of the type's mode. */
9597 reduce_bit_field = (!ignore
9598 && INTEGRAL_TYPE_P (type)
9599 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9601 /* If we are going to ignore this result, we need only do something
9602 if there is a side-effect somewhere in the expression. If there
9603 is, short-circuit the most common cases here. Note that we must
9604 not call expand_expr with anything but const0_rtx in case this
9605 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9607 if (ignore)
9609 if (! TREE_SIDE_EFFECTS (exp))
9610 return const0_rtx;
9612 /* Ensure we reference a volatile object even if value is ignored, but
9613 don't do this if all we are doing is taking its address. */
9614 if (TREE_THIS_VOLATILE (exp)
9615 && TREE_CODE (exp) != FUNCTION_DECL
9616 && mode != VOIDmode && mode != BLKmode
9617 && modifier != EXPAND_CONST_ADDRESS)
9619 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9620 if (MEM_P (temp))
9621 copy_to_reg (temp);
9622 return const0_rtx;
9625 if (TREE_CODE_CLASS (code) == tcc_unary
9626 || code == BIT_FIELD_REF
9627 || code == COMPONENT_REF
9628 || code == INDIRECT_REF)
9629 return expand_expr (treeop0, const0_rtx, VOIDmode,
9630 modifier);
9632 else if (TREE_CODE_CLASS (code) == tcc_binary
9633 || TREE_CODE_CLASS (code) == tcc_comparison
9634 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9636 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9637 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9638 return const0_rtx;
9641 target = 0;
9644 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9645 target = 0;
9647 /* Use subtarget as the target for operand 0 of a binary operation. */
9648 subtarget = get_subtarget (target);
9649 original_target = target;
9651 switch (code)
9653 case LABEL_DECL:
9655 tree function = decl_function_context (exp);
9657 temp = label_rtx (exp);
9658 temp = gen_rtx_LABEL_REF (Pmode, temp);
9660 if (function != current_function_decl
9661 && function != 0)
9662 LABEL_REF_NONLOCAL_P (temp) = 1;
9664 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9665 return temp;
9668 case SSA_NAME:
9669 /* ??? ivopts calls expander, without any preparation from
9670 out-of-ssa. So fake instructions as if this was an access to the
9671 base variable. This unnecessarily allocates a pseudo, see how we can
9672 reuse it, if partition base vars have it set already. */
9673 if (!currently_expanding_to_rtl)
9675 tree var = SSA_NAME_VAR (exp);
9676 if (var && DECL_RTL_SET_P (var))
9677 return DECL_RTL (var);
9678 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9679 LAST_VIRTUAL_REGISTER + 1);
9682 g = get_gimple_for_ssa_name (exp);
9683 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9684 if (g == NULL
9685 && modifier == EXPAND_INITIALIZER
9686 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9687 && (optimize || !SSA_NAME_VAR (exp)
9688 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9689 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9690 g = SSA_NAME_DEF_STMT (exp);
9691 if (g)
9693 rtx r;
9694 location_t saved_loc = curr_insn_location ();
9695 location_t loc = gimple_location (g);
9696 if (loc != UNKNOWN_LOCATION)
9697 set_curr_insn_location (loc);
9698 ops.code = gimple_assign_rhs_code (g);
9699 switch (get_gimple_rhs_class (ops.code))
9701 case GIMPLE_TERNARY_RHS:
9702 ops.op2 = gimple_assign_rhs3 (g);
9703 /* Fallthru */
9704 case GIMPLE_BINARY_RHS:
9705 ops.op1 = gimple_assign_rhs2 (g);
9707 /* Try to expand conditonal compare. */
9708 if (targetm.gen_ccmp_first)
9710 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9711 r = expand_ccmp_expr (g);
9712 if (r)
9713 break;
9715 /* Fallthru */
9716 case GIMPLE_UNARY_RHS:
9717 ops.op0 = gimple_assign_rhs1 (g);
9718 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9719 ops.location = loc;
9720 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9721 break;
9722 case GIMPLE_SINGLE_RHS:
9724 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9725 tmode, modifier, NULL, inner_reference_p);
9726 break;
9728 default:
9729 gcc_unreachable ();
9731 set_curr_insn_location (saved_loc);
9732 if (REG_P (r) && !REG_EXPR (r))
9733 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9734 return r;
9737 ssa_name = exp;
9738 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9739 exp = SSA_NAME_VAR (ssa_name);
9740 goto expand_decl_rtl;
9742 case PARM_DECL:
9743 case VAR_DECL:
9744 /* If a static var's type was incomplete when the decl was written,
9745 but the type is complete now, lay out the decl now. */
9746 if (DECL_SIZE (exp) == 0
9747 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9748 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9749 layout_decl (exp, 0);
9751 /* fall through */
9753 case FUNCTION_DECL:
9754 case RESULT_DECL:
9755 decl_rtl = DECL_RTL (exp);
9756 expand_decl_rtl:
9757 gcc_assert (decl_rtl);
9759 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9760 settings for VECTOR_TYPE_P that might switch for the function. */
9761 if (currently_expanding_to_rtl
9762 && code == VAR_DECL && MEM_P (decl_rtl)
9763 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9764 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9765 else
9766 decl_rtl = copy_rtx (decl_rtl);
9768 /* Record writes to register variables. */
9769 if (modifier == EXPAND_WRITE
9770 && REG_P (decl_rtl)
9771 && HARD_REGISTER_P (decl_rtl))
9772 add_to_hard_reg_set (&crtl->asm_clobbers,
9773 GET_MODE (decl_rtl), REGNO (decl_rtl));
9775 /* Ensure variable marked as used even if it doesn't go through
9776 a parser. If it hasn't be used yet, write out an external
9777 definition. */
9778 if (exp)
9779 TREE_USED (exp) = 1;
9781 /* Show we haven't gotten RTL for this yet. */
9782 temp = 0;
9784 /* Variables inherited from containing functions should have
9785 been lowered by this point. */
9786 if (exp)
9787 context = decl_function_context (exp);
9788 gcc_assert (!exp
9789 || SCOPE_FILE_SCOPE_P (context)
9790 || context == current_function_decl
9791 || TREE_STATIC (exp)
9792 || DECL_EXTERNAL (exp)
9793 /* ??? C++ creates functions that are not TREE_STATIC. */
9794 || TREE_CODE (exp) == FUNCTION_DECL);
9796 /* This is the case of an array whose size is to be determined
9797 from its initializer, while the initializer is still being parsed.
9798 ??? We aren't parsing while expanding anymore. */
9800 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9801 temp = validize_mem (decl_rtl);
9803 /* If DECL_RTL is memory, we are in the normal case and the
9804 address is not valid, get the address into a register. */
9806 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9808 if (alt_rtl)
9809 *alt_rtl = decl_rtl;
9810 decl_rtl = use_anchored_address (decl_rtl);
9811 if (modifier != EXPAND_CONST_ADDRESS
9812 && modifier != EXPAND_SUM
9813 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9814 : GET_MODE (decl_rtl),
9815 XEXP (decl_rtl, 0),
9816 MEM_ADDR_SPACE (decl_rtl)))
9817 temp = replace_equiv_address (decl_rtl,
9818 copy_rtx (XEXP (decl_rtl, 0)));
9821 /* If we got something, return it. But first, set the alignment
9822 if the address is a register. */
9823 if (temp != 0)
9825 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9826 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9828 return temp;
9831 if (exp)
9832 dmode = DECL_MODE (exp);
9833 else
9834 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9836 /* If the mode of DECL_RTL does not match that of the decl,
9837 there are two cases: we are dealing with a BLKmode value
9838 that is returned in a register, or we are dealing with
9839 a promoted value. In the latter case, return a SUBREG
9840 of the wanted mode, but mark it so that we know that it
9841 was already extended. */
9842 if (REG_P (decl_rtl)
9843 && dmode != BLKmode
9844 && GET_MODE (decl_rtl) != dmode)
9846 machine_mode pmode;
9848 /* Get the signedness to be used for this variable. Ensure we get
9849 the same mode we got when the variable was declared. */
9850 if (code != SSA_NAME)
9851 pmode = promote_decl_mode (exp, &unsignedp);
9852 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9853 && gimple_code (g) == GIMPLE_CALL
9854 && !gimple_call_internal_p (g))
9855 pmode = promote_function_mode (type, mode, &unsignedp,
9856 gimple_call_fntype (g),
9858 else
9859 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9860 gcc_assert (GET_MODE (decl_rtl) == pmode);
9862 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9863 SUBREG_PROMOTED_VAR_P (temp) = 1;
9864 SUBREG_PROMOTED_SET (temp, unsignedp);
9865 return temp;
9868 return decl_rtl;
9870 case INTEGER_CST:
9871 /* Given that TYPE_PRECISION (type) is not always equal to
9872 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9873 the former to the latter according to the signedness of the
9874 type. */
9875 temp = immed_wide_int_const (wi::to_wide
9876 (exp,
9877 GET_MODE_PRECISION (TYPE_MODE (type))),
9878 TYPE_MODE (type));
9879 return temp;
9881 case VECTOR_CST:
9883 tree tmp = NULL_TREE;
9884 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9885 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9886 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9887 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9888 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9889 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9890 return const_vector_from_tree (exp);
9891 if (GET_MODE_CLASS (mode) == MODE_INT)
9893 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
9894 return const_scalar_mask_from_tree (exp);
9895 else
9897 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9898 if (type_for_mode)
9899 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
9900 type_for_mode, exp);
9903 if (!tmp)
9905 vec<constructor_elt, va_gc> *v;
9906 unsigned i;
9907 vec_alloc (v, VECTOR_CST_NELTS (exp));
9908 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9909 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9910 tmp = build_constructor (type, v);
9912 return expand_expr (tmp, ignore ? const0_rtx : target,
9913 tmode, modifier);
9916 case CONST_DECL:
9917 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9919 case REAL_CST:
9920 /* If optimized, generate immediate CONST_DOUBLE
9921 which will be turned into memory by reload if necessary.
9923 We used to force a register so that loop.c could see it. But
9924 this does not allow gen_* patterns to perform optimizations with
9925 the constants. It also produces two insns in cases like "x = 1.0;".
9926 On most machines, floating-point constants are not permitted in
9927 many insns, so we'd end up copying it to a register in any case.
9929 Now, we do the copying in expand_binop, if appropriate. */
9930 return const_double_from_real_value (TREE_REAL_CST (exp),
9931 TYPE_MODE (TREE_TYPE (exp)));
9933 case FIXED_CST:
9934 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9935 TYPE_MODE (TREE_TYPE (exp)));
9937 case COMPLEX_CST:
9938 /* Handle evaluating a complex constant in a CONCAT target. */
9939 if (original_target && GET_CODE (original_target) == CONCAT)
9941 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9942 rtx rtarg, itarg;
9944 rtarg = XEXP (original_target, 0);
9945 itarg = XEXP (original_target, 1);
9947 /* Move the real and imaginary parts separately. */
9948 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9949 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9951 if (op0 != rtarg)
9952 emit_move_insn (rtarg, op0);
9953 if (op1 != itarg)
9954 emit_move_insn (itarg, op1);
9956 return original_target;
9959 /* fall through */
9961 case STRING_CST:
9962 temp = expand_expr_constant (exp, 1, modifier);
9964 /* temp contains a constant address.
9965 On RISC machines where a constant address isn't valid,
9966 make some insns to get that address into a register. */
9967 if (modifier != EXPAND_CONST_ADDRESS
9968 && modifier != EXPAND_INITIALIZER
9969 && modifier != EXPAND_SUM
9970 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9971 MEM_ADDR_SPACE (temp)))
9972 return replace_equiv_address (temp,
9973 copy_rtx (XEXP (temp, 0)));
9974 return temp;
9976 case SAVE_EXPR:
9978 tree val = treeop0;
9979 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
9980 inner_reference_p);
9982 if (!SAVE_EXPR_RESOLVED_P (exp))
9984 /* We can indeed still hit this case, typically via builtin
9985 expanders calling save_expr immediately before expanding
9986 something. Assume this means that we only have to deal
9987 with non-BLKmode values. */
9988 gcc_assert (GET_MODE (ret) != BLKmode);
9990 val = build_decl (curr_insn_location (),
9991 VAR_DECL, NULL, TREE_TYPE (exp));
9992 DECL_ARTIFICIAL (val) = 1;
9993 DECL_IGNORED_P (val) = 1;
9994 treeop0 = val;
9995 TREE_OPERAND (exp, 0) = treeop0;
9996 SAVE_EXPR_RESOLVED_P (exp) = 1;
9998 if (!CONSTANT_P (ret))
9999 ret = copy_to_reg (ret);
10000 SET_DECL_RTL (val, ret);
10003 return ret;
10007 case CONSTRUCTOR:
10008 /* If we don't need the result, just ensure we evaluate any
10009 subexpressions. */
10010 if (ignore)
10012 unsigned HOST_WIDE_INT idx;
10013 tree value;
10015 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10016 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10018 return const0_rtx;
10021 return expand_constructor (exp, target, modifier, false);
10023 case TARGET_MEM_REF:
10025 addr_space_t as
10026 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10027 enum insn_code icode;
10028 unsigned int align;
10030 op0 = addr_for_mem_ref (exp, as, true);
10031 op0 = memory_address_addr_space (mode, op0, as);
10032 temp = gen_rtx_MEM (mode, op0);
10033 set_mem_attributes (temp, exp, 0);
10034 set_mem_addr_space (temp, as);
10035 align = get_object_alignment (exp);
10036 if (modifier != EXPAND_WRITE
10037 && modifier != EXPAND_MEMORY
10038 && mode != BLKmode
10039 && align < GET_MODE_ALIGNMENT (mode)
10040 /* If the target does not have special handling for unaligned
10041 loads of mode then it can use regular moves for them. */
10042 && ((icode = optab_handler (movmisalign_optab, mode))
10043 != CODE_FOR_nothing))
10045 struct expand_operand ops[2];
10047 /* We've already validated the memory, and we're creating a
10048 new pseudo destination. The predicates really can't fail,
10049 nor can the generator. */
10050 create_output_operand (&ops[0], NULL_RTX, mode);
10051 create_fixed_operand (&ops[1], temp);
10052 expand_insn (icode, 2, ops);
10053 temp = ops[0].value;
10055 return temp;
10058 case MEM_REF:
10060 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10061 addr_space_t as
10062 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10063 machine_mode address_mode;
10064 tree base = TREE_OPERAND (exp, 0);
10065 gimple *def_stmt;
10066 enum insn_code icode;
10067 unsigned align;
10068 /* Handle expansion of non-aliased memory with non-BLKmode. That
10069 might end up in a register. */
10070 if (mem_ref_refers_to_non_mem_p (exp))
10072 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
10073 base = TREE_OPERAND (base, 0);
10074 if (offset == 0
10075 && !reverse
10076 && tree_fits_uhwi_p (TYPE_SIZE (type))
10077 && (GET_MODE_BITSIZE (DECL_MODE (base))
10078 == tree_to_uhwi (TYPE_SIZE (type))))
10079 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10080 target, tmode, modifier);
10081 if (TYPE_MODE (type) == BLKmode)
10083 temp = assign_stack_temp (DECL_MODE (base),
10084 GET_MODE_SIZE (DECL_MODE (base)));
10085 store_expr (base, temp, 0, false, false);
10086 temp = adjust_address (temp, BLKmode, offset);
10087 set_mem_size (temp, int_size_in_bytes (type));
10088 return temp;
10090 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10091 bitsize_int (offset * BITS_PER_UNIT));
10092 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10093 return expand_expr (exp, target, tmode, modifier);
10095 address_mode = targetm.addr_space.address_mode (as);
10096 base = TREE_OPERAND (exp, 0);
10097 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10099 tree mask = gimple_assign_rhs2 (def_stmt);
10100 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10101 gimple_assign_rhs1 (def_stmt), mask);
10102 TREE_OPERAND (exp, 0) = base;
10104 align = get_object_alignment (exp);
10105 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10106 op0 = memory_address_addr_space (mode, op0, as);
10107 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10109 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10110 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10111 op0 = memory_address_addr_space (mode, op0, as);
10113 temp = gen_rtx_MEM (mode, op0);
10114 set_mem_attributes (temp, exp, 0);
10115 set_mem_addr_space (temp, as);
10116 if (TREE_THIS_VOLATILE (exp))
10117 MEM_VOLATILE_P (temp) = 1;
10118 if (modifier != EXPAND_WRITE
10119 && modifier != EXPAND_MEMORY
10120 && !inner_reference_p
10121 && mode != BLKmode
10122 && align < GET_MODE_ALIGNMENT (mode))
10124 if ((icode = optab_handler (movmisalign_optab, mode))
10125 != CODE_FOR_nothing)
10127 struct expand_operand ops[2];
10129 /* We've already validated the memory, and we're creating a
10130 new pseudo destination. The predicates really can't fail,
10131 nor can the generator. */
10132 create_output_operand (&ops[0], NULL_RTX, mode);
10133 create_fixed_operand (&ops[1], temp);
10134 expand_insn (icode, 2, ops);
10135 temp = ops[0].value;
10137 else if (SLOW_UNALIGNED_ACCESS (mode, align))
10138 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10139 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10140 (modifier == EXPAND_STACK_PARM
10141 ? NULL_RTX : target),
10142 mode, mode, false);
10144 if (reverse
10145 && modifier != EXPAND_MEMORY
10146 && modifier != EXPAND_WRITE)
10147 temp = flip_storage_order (mode, temp);
10148 return temp;
10151 case ARRAY_REF:
10154 tree array = treeop0;
10155 tree index = treeop1;
10156 tree init;
10158 /* Fold an expression like: "foo"[2].
10159 This is not done in fold so it won't happen inside &.
10160 Don't fold if this is for wide characters since it's too
10161 difficult to do correctly and this is a very rare case. */
10163 if (modifier != EXPAND_CONST_ADDRESS
10164 && modifier != EXPAND_INITIALIZER
10165 && modifier != EXPAND_MEMORY)
10167 tree t = fold_read_from_constant_string (exp);
10169 if (t)
10170 return expand_expr (t, target, tmode, modifier);
10173 /* If this is a constant index into a constant array,
10174 just get the value from the array. Handle both the cases when
10175 we have an explicit constructor and when our operand is a variable
10176 that was declared const. */
10178 if (modifier != EXPAND_CONST_ADDRESS
10179 && modifier != EXPAND_INITIALIZER
10180 && modifier != EXPAND_MEMORY
10181 && TREE_CODE (array) == CONSTRUCTOR
10182 && ! TREE_SIDE_EFFECTS (array)
10183 && TREE_CODE (index) == INTEGER_CST)
10185 unsigned HOST_WIDE_INT ix;
10186 tree field, value;
10188 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10189 field, value)
10190 if (tree_int_cst_equal (field, index))
10192 if (!TREE_SIDE_EFFECTS (value))
10193 return expand_expr (fold (value), target, tmode, modifier);
10194 break;
10198 else if (optimize >= 1
10199 && modifier != EXPAND_CONST_ADDRESS
10200 && modifier != EXPAND_INITIALIZER
10201 && modifier != EXPAND_MEMORY
10202 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10203 && TREE_CODE (index) == INTEGER_CST
10204 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10205 && (init = ctor_for_folding (array)) != error_mark_node)
10207 if (init == NULL_TREE)
10209 tree value = build_zero_cst (type);
10210 if (TREE_CODE (value) == CONSTRUCTOR)
10212 /* If VALUE is a CONSTRUCTOR, this optimization is only
10213 useful if this doesn't store the CONSTRUCTOR into
10214 memory. If it does, it is more efficient to just
10215 load the data from the array directly. */
10216 rtx ret = expand_constructor (value, target,
10217 modifier, true);
10218 if (ret == NULL_RTX)
10219 value = NULL_TREE;
10222 if (value)
10223 return expand_expr (value, target, tmode, modifier);
10225 else if (TREE_CODE (init) == CONSTRUCTOR)
10227 unsigned HOST_WIDE_INT ix;
10228 tree field, value;
10230 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10231 field, value)
10232 if (tree_int_cst_equal (field, index))
10234 if (TREE_SIDE_EFFECTS (value))
10235 break;
10237 if (TREE_CODE (value) == CONSTRUCTOR)
10239 /* If VALUE is a CONSTRUCTOR, this
10240 optimization is only useful if
10241 this doesn't store the CONSTRUCTOR
10242 into memory. If it does, it is more
10243 efficient to just load the data from
10244 the array directly. */
10245 rtx ret = expand_constructor (value, target,
10246 modifier, true);
10247 if (ret == NULL_RTX)
10248 break;
10251 return
10252 expand_expr (fold (value), target, tmode, modifier);
10255 else if (TREE_CODE (init) == STRING_CST)
10257 tree low_bound = array_ref_low_bound (exp);
10258 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10260 /* Optimize the special case of a zero lower bound.
10262 We convert the lower bound to sizetype to avoid problems
10263 with constant folding. E.g. suppose the lower bound is
10264 1 and its mode is QI. Without the conversion
10265 (ARRAY + (INDEX - (unsigned char)1))
10266 becomes
10267 (ARRAY + (-(unsigned char)1) + INDEX)
10268 which becomes
10269 (ARRAY + 255 + INDEX). Oops! */
10270 if (!integer_zerop (low_bound))
10271 index1 = size_diffop_loc (loc, index1,
10272 fold_convert_loc (loc, sizetype,
10273 low_bound));
10275 if (tree_fits_uhwi_p (index1)
10276 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10278 tree type = TREE_TYPE (TREE_TYPE (init));
10279 machine_mode mode = TYPE_MODE (type);
10281 if (GET_MODE_CLASS (mode) == MODE_INT
10282 && GET_MODE_SIZE (mode) == 1)
10283 return gen_int_mode (TREE_STRING_POINTER (init)
10284 [TREE_INT_CST_LOW (index1)],
10285 mode);
10290 goto normal_inner_ref;
10292 case COMPONENT_REF:
10293 /* If the operand is a CONSTRUCTOR, we can just extract the
10294 appropriate field if it is present. */
10295 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10297 unsigned HOST_WIDE_INT idx;
10298 tree field, value;
10300 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10301 idx, field, value)
10302 if (field == treeop1
10303 /* We can normally use the value of the field in the
10304 CONSTRUCTOR. However, if this is a bitfield in
10305 an integral mode that we can fit in a HOST_WIDE_INT,
10306 we must mask only the number of bits in the bitfield,
10307 since this is done implicitly by the constructor. If
10308 the bitfield does not meet either of those conditions,
10309 we can't do this optimization. */
10310 && (! DECL_BIT_FIELD (field)
10311 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
10312 && (GET_MODE_PRECISION (DECL_MODE (field))
10313 <= HOST_BITS_PER_WIDE_INT))))
10315 if (DECL_BIT_FIELD (field)
10316 && modifier == EXPAND_STACK_PARM)
10317 target = 0;
10318 op0 = expand_expr (value, target, tmode, modifier);
10319 if (DECL_BIT_FIELD (field))
10321 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10322 machine_mode imode = TYPE_MODE (TREE_TYPE (field));
10324 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10326 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10327 imode);
10328 op0 = expand_and (imode, op0, op1, target);
10330 else
10332 int count = GET_MODE_PRECISION (imode) - bitsize;
10334 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10335 target, 0);
10336 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10337 target, 0);
10341 return op0;
10344 goto normal_inner_ref;
10346 case BIT_FIELD_REF:
10347 case ARRAY_RANGE_REF:
10348 normal_inner_ref:
10350 machine_mode mode1, mode2;
10351 HOST_WIDE_INT bitsize, bitpos;
10352 tree offset;
10353 int reversep, volatilep = 0, must_force_mem;
10354 tree tem
10355 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10356 &unsignedp, &reversep, &volatilep);
10357 rtx orig_op0, memloc;
10358 bool clear_mem_expr = false;
10360 /* If we got back the original object, something is wrong. Perhaps
10361 we are evaluating an expression too early. In any event, don't
10362 infinitely recurse. */
10363 gcc_assert (tem != exp);
10365 /* If TEM's type is a union of variable size, pass TARGET to the inner
10366 computation, since it will need a temporary and TARGET is known
10367 to have to do. This occurs in unchecked conversion in Ada. */
10368 orig_op0 = op0
10369 = expand_expr_real (tem,
10370 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10371 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10372 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10373 != INTEGER_CST)
10374 && modifier != EXPAND_STACK_PARM
10375 ? target : NULL_RTX),
10376 VOIDmode,
10377 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10378 NULL, true);
10380 /* If the field has a mode, we want to access it in the
10381 field's mode, not the computed mode.
10382 If a MEM has VOIDmode (external with incomplete type),
10383 use BLKmode for it instead. */
10384 if (MEM_P (op0))
10386 if (mode1 != VOIDmode)
10387 op0 = adjust_address (op0, mode1, 0);
10388 else if (GET_MODE (op0) == VOIDmode)
10389 op0 = adjust_address (op0, BLKmode, 0);
10392 mode2
10393 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10395 /* If we have either an offset, a BLKmode result, or a reference
10396 outside the underlying object, we must force it to memory.
10397 Such a case can occur in Ada if we have unchecked conversion
10398 of an expression from a scalar type to an aggregate type or
10399 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10400 passed a partially uninitialized object or a view-conversion
10401 to a larger size. */
10402 must_force_mem = (offset
10403 || mode1 == BLKmode
10404 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10406 /* Handle CONCAT first. */
10407 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10409 if (bitpos == 0
10410 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10412 if (reversep)
10413 op0 = flip_storage_order (GET_MODE (op0), op0);
10414 return op0;
10416 if (bitpos == 0
10417 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10418 && bitsize)
10420 op0 = XEXP (op0, 0);
10421 mode2 = GET_MODE (op0);
10423 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10424 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10425 && bitpos
10426 && bitsize)
10428 op0 = XEXP (op0, 1);
10429 bitpos = 0;
10430 mode2 = GET_MODE (op0);
10432 else
10433 /* Otherwise force into memory. */
10434 must_force_mem = 1;
10437 /* If this is a constant, put it in a register if it is a legitimate
10438 constant and we don't need a memory reference. */
10439 if (CONSTANT_P (op0)
10440 && mode2 != BLKmode
10441 && targetm.legitimate_constant_p (mode2, op0)
10442 && !must_force_mem)
10443 op0 = force_reg (mode2, op0);
10445 /* Otherwise, if this is a constant, try to force it to the constant
10446 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10447 is a legitimate constant. */
10448 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10449 op0 = validize_mem (memloc);
10451 /* Otherwise, if this is a constant or the object is not in memory
10452 and need be, put it there. */
10453 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10455 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10456 emit_move_insn (memloc, op0);
10457 op0 = memloc;
10458 clear_mem_expr = true;
10461 if (offset)
10463 machine_mode address_mode;
10464 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10465 EXPAND_SUM);
10467 gcc_assert (MEM_P (op0));
10469 address_mode = get_address_mode (op0);
10470 if (GET_MODE (offset_rtx) != address_mode)
10472 /* We cannot be sure that the RTL in offset_rtx is valid outside
10473 of a memory address context, so force it into a register
10474 before attempting to convert it to the desired mode. */
10475 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10476 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10479 /* See the comment in expand_assignment for the rationale. */
10480 if (mode1 != VOIDmode
10481 && bitpos != 0
10482 && bitsize > 0
10483 && (bitpos % bitsize) == 0
10484 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10485 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10487 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10488 bitpos = 0;
10491 op0 = offset_address (op0, offset_rtx,
10492 highest_pow2_factor (offset));
10495 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10496 record its alignment as BIGGEST_ALIGNMENT. */
10497 if (MEM_P (op0) && bitpos == 0 && offset != 0
10498 && is_aligning_offset (offset, tem))
10499 set_mem_align (op0, BIGGEST_ALIGNMENT);
10501 /* Don't forget about volatility even if this is a bitfield. */
10502 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10504 if (op0 == orig_op0)
10505 op0 = copy_rtx (op0);
10507 MEM_VOLATILE_P (op0) = 1;
10510 /* In cases where an aligned union has an unaligned object
10511 as a field, we might be extracting a BLKmode value from
10512 an integer-mode (e.g., SImode) object. Handle this case
10513 by doing the extract into an object as wide as the field
10514 (which we know to be the width of a basic mode), then
10515 storing into memory, and changing the mode to BLKmode. */
10516 if (mode1 == VOIDmode
10517 || REG_P (op0) || GET_CODE (op0) == SUBREG
10518 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10519 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10520 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10521 && modifier != EXPAND_CONST_ADDRESS
10522 && modifier != EXPAND_INITIALIZER
10523 && modifier != EXPAND_MEMORY)
10524 /* If the bitfield is volatile and the bitsize
10525 is narrower than the access size of the bitfield,
10526 we need to extract bitfields from the access. */
10527 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10528 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10529 && mode1 != BLKmode
10530 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10531 /* If the field isn't aligned enough to fetch as a memref,
10532 fetch it as a bit field. */
10533 || (mode1 != BLKmode
10534 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10535 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10536 || (MEM_P (op0)
10537 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10538 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10539 && modifier != EXPAND_MEMORY
10540 && ((modifier == EXPAND_CONST_ADDRESS
10541 || modifier == EXPAND_INITIALIZER)
10542 ? STRICT_ALIGNMENT
10543 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10544 || (bitpos % BITS_PER_UNIT != 0)))
10545 /* If the type and the field are a constant size and the
10546 size of the type isn't the same size as the bitfield,
10547 we must use bitfield operations. */
10548 || (bitsize >= 0
10549 && TYPE_SIZE (TREE_TYPE (exp))
10550 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10551 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10552 bitsize)))
10554 machine_mode ext_mode = mode;
10556 if (ext_mode == BLKmode
10557 && ! (target != 0 && MEM_P (op0)
10558 && MEM_P (target)
10559 && bitpos % BITS_PER_UNIT == 0))
10560 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10562 if (ext_mode == BLKmode)
10564 if (target == 0)
10565 target = assign_temp (type, 1, 1);
10567 /* ??? Unlike the similar test a few lines below, this one is
10568 very likely obsolete. */
10569 if (bitsize == 0)
10570 return target;
10572 /* In this case, BITPOS must start at a byte boundary and
10573 TARGET, if specified, must be a MEM. */
10574 gcc_assert (MEM_P (op0)
10575 && (!target || MEM_P (target))
10576 && !(bitpos % BITS_PER_UNIT));
10578 emit_block_move (target,
10579 adjust_address (op0, VOIDmode,
10580 bitpos / BITS_PER_UNIT),
10581 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10582 / BITS_PER_UNIT),
10583 (modifier == EXPAND_STACK_PARM
10584 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10586 return target;
10589 /* If we have nothing to extract, the result will be 0 for targets
10590 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10591 return 0 for the sake of consistency, as reading a zero-sized
10592 bitfield is valid in Ada and the value is fully specified. */
10593 if (bitsize == 0)
10594 return const0_rtx;
10596 op0 = validize_mem (op0);
10598 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10599 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10601 /* If the result has a record type and the extraction is done in
10602 an integral mode, then the field may be not aligned on a byte
10603 boundary; in this case, if it has reverse storage order, it
10604 needs to be extracted as a scalar field with reverse storage
10605 order and put back into memory order afterwards. */
10606 if (TREE_CODE (type) == RECORD_TYPE
10607 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10608 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10610 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10611 (modifier == EXPAND_STACK_PARM
10612 ? NULL_RTX : target),
10613 ext_mode, ext_mode, reversep);
10615 /* If the result has a record type and the mode of OP0 is an
10616 integral mode then, if BITSIZE is narrower than this mode
10617 and this is for big-endian data, we must put the field
10618 into the high-order bits. And we must also put it back
10619 into memory order if it has been previously reversed. */
10620 if (TREE_CODE (type) == RECORD_TYPE
10621 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
10623 HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (op0));
10625 if (bitsize < size
10626 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10627 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10628 size - bitsize, op0, 1);
10630 if (reversep)
10631 op0 = flip_storage_order (GET_MODE (op0), op0);
10634 /* If the result type is BLKmode, store the data into a temporary
10635 of the appropriate type, but with the mode corresponding to the
10636 mode for the data we have (op0's mode). */
10637 if (mode == BLKmode)
10639 rtx new_rtx
10640 = assign_stack_temp_for_type (ext_mode,
10641 GET_MODE_BITSIZE (ext_mode),
10642 type);
10643 emit_move_insn (new_rtx, op0);
10644 op0 = copy_rtx (new_rtx);
10645 PUT_MODE (op0, BLKmode);
10648 return op0;
10651 /* If the result is BLKmode, use that to access the object
10652 now as well. */
10653 if (mode == BLKmode)
10654 mode1 = BLKmode;
10656 /* Get a reference to just this component. */
10657 if (modifier == EXPAND_CONST_ADDRESS
10658 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10659 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10660 else
10661 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10663 if (op0 == orig_op0)
10664 op0 = copy_rtx (op0);
10666 /* Don't set memory attributes if the base expression is
10667 SSA_NAME that got expanded as a MEM. In that case, we should
10668 just honor its original memory attributes. */
10669 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10670 set_mem_attributes (op0, exp, 0);
10672 if (REG_P (XEXP (op0, 0)))
10673 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10675 /* If op0 is a temporary because the original expressions was forced
10676 to memory, clear MEM_EXPR so that the original expression cannot
10677 be marked as addressable through MEM_EXPR of the temporary. */
10678 if (clear_mem_expr)
10679 set_mem_expr (op0, NULL_TREE);
10681 MEM_VOLATILE_P (op0) |= volatilep;
10683 if (reversep
10684 && modifier != EXPAND_MEMORY
10685 && modifier != EXPAND_WRITE)
10686 op0 = flip_storage_order (mode1, op0);
10688 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10689 || modifier == EXPAND_CONST_ADDRESS
10690 || modifier == EXPAND_INITIALIZER)
10691 return op0;
10693 if (target == 0)
10694 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10696 convert_move (target, op0, unsignedp);
10697 return target;
10700 case OBJ_TYPE_REF:
10701 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10703 case CALL_EXPR:
10704 /* All valid uses of __builtin_va_arg_pack () are removed during
10705 inlining. */
10706 if (CALL_EXPR_VA_ARG_PACK (exp))
10707 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10709 tree fndecl = get_callee_fndecl (exp), attr;
10711 if (fndecl
10712 && (attr = lookup_attribute ("error",
10713 DECL_ATTRIBUTES (fndecl))) != NULL)
10714 error ("%Kcall to %qs declared with attribute error: %s",
10715 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10716 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10717 if (fndecl
10718 && (attr = lookup_attribute ("warning",
10719 DECL_ATTRIBUTES (fndecl))) != NULL)
10720 warning_at (tree_nonartificial_location (exp),
10721 0, "%Kcall to %qs declared with attribute warning: %s",
10722 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10723 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10725 /* Check for a built-in function. */
10726 if (fndecl && DECL_BUILT_IN (fndecl))
10728 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10729 if (CALL_WITH_BOUNDS_P (exp))
10730 return expand_builtin_with_bounds (exp, target, subtarget,
10731 tmode, ignore);
10732 else
10733 return expand_builtin (exp, target, subtarget, tmode, ignore);
10736 return expand_call (exp, target, ignore);
10738 case VIEW_CONVERT_EXPR:
10739 op0 = NULL_RTX;
10741 /* If we are converting to BLKmode, try to avoid an intermediate
10742 temporary by fetching an inner memory reference. */
10743 if (mode == BLKmode
10744 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10745 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10746 && handled_component_p (treeop0))
10748 machine_mode mode1;
10749 HOST_WIDE_INT bitsize, bitpos;
10750 tree offset;
10751 int unsignedp, reversep, volatilep = 0;
10752 tree tem
10753 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
10754 &unsignedp, &reversep, &volatilep);
10755 rtx orig_op0;
10757 /* ??? We should work harder and deal with non-zero offsets. */
10758 if (!offset
10759 && (bitpos % BITS_PER_UNIT) == 0
10760 && !reversep
10761 && bitsize >= 0
10762 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10764 /* See the normal_inner_ref case for the rationale. */
10765 orig_op0
10766 = expand_expr_real (tem,
10767 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10768 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10769 != INTEGER_CST)
10770 && modifier != EXPAND_STACK_PARM
10771 ? target : NULL_RTX),
10772 VOIDmode,
10773 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10774 NULL, true);
10776 if (MEM_P (orig_op0))
10778 op0 = orig_op0;
10780 /* Get a reference to just this component. */
10781 if (modifier == EXPAND_CONST_ADDRESS
10782 || modifier == EXPAND_SUM
10783 || modifier == EXPAND_INITIALIZER)
10784 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10785 else
10786 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10788 if (op0 == orig_op0)
10789 op0 = copy_rtx (op0);
10791 set_mem_attributes (op0, treeop0, 0);
10792 if (REG_P (XEXP (op0, 0)))
10793 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10795 MEM_VOLATILE_P (op0) |= volatilep;
10800 if (!op0)
10801 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10802 NULL, inner_reference_p);
10804 /* If the input and output modes are both the same, we are done. */
10805 if (mode == GET_MODE (op0))
10807 /* If neither mode is BLKmode, and both modes are the same size
10808 then we can use gen_lowpart. */
10809 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10810 && (GET_MODE_PRECISION (mode)
10811 == GET_MODE_PRECISION (GET_MODE (op0)))
10812 && !COMPLEX_MODE_P (GET_MODE (op0)))
10814 if (GET_CODE (op0) == SUBREG)
10815 op0 = force_reg (GET_MODE (op0), op0);
10816 temp = gen_lowpart_common (mode, op0);
10817 if (temp)
10818 op0 = temp;
10819 else
10821 if (!REG_P (op0) && !MEM_P (op0))
10822 op0 = force_reg (GET_MODE (op0), op0);
10823 op0 = gen_lowpart (mode, op0);
10826 /* If both types are integral, convert from one mode to the other. */
10827 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10828 op0 = convert_modes (mode, GET_MODE (op0), op0,
10829 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10830 /* If the output type is a bit-field type, do an extraction. */
10831 else if (reduce_bit_field)
10832 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10833 TYPE_UNSIGNED (type), NULL_RTX,
10834 mode, mode, false);
10835 /* As a last resort, spill op0 to memory, and reload it in a
10836 different mode. */
10837 else if (!MEM_P (op0))
10839 /* If the operand is not a MEM, force it into memory. Since we
10840 are going to be changing the mode of the MEM, don't call
10841 force_const_mem for constants because we don't allow pool
10842 constants to change mode. */
10843 tree inner_type = TREE_TYPE (treeop0);
10845 gcc_assert (!TREE_ADDRESSABLE (exp));
10847 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10848 target
10849 = assign_stack_temp_for_type
10850 (TYPE_MODE (inner_type),
10851 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10853 emit_move_insn (target, op0);
10854 op0 = target;
10857 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10858 output type is such that the operand is known to be aligned, indicate
10859 that it is. Otherwise, we need only be concerned about alignment for
10860 non-BLKmode results. */
10861 if (MEM_P (op0))
10863 enum insn_code icode;
10865 if (modifier != EXPAND_WRITE
10866 && modifier != EXPAND_MEMORY
10867 && !inner_reference_p
10868 && mode != BLKmode
10869 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10871 /* If the target does have special handling for unaligned
10872 loads of mode then use them. */
10873 if ((icode = optab_handler (movmisalign_optab, mode))
10874 != CODE_FOR_nothing)
10876 rtx reg;
10878 op0 = adjust_address (op0, mode, 0);
10879 /* We've already validated the memory, and we're creating a
10880 new pseudo destination. The predicates really can't
10881 fail. */
10882 reg = gen_reg_rtx (mode);
10884 /* Nor can the insn generator. */
10885 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
10886 emit_insn (insn);
10887 return reg;
10889 else if (STRICT_ALIGNMENT)
10891 tree inner_type = TREE_TYPE (treeop0);
10892 HOST_WIDE_INT temp_size
10893 = MAX (int_size_in_bytes (inner_type),
10894 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10895 rtx new_rtx
10896 = assign_stack_temp_for_type (mode, temp_size, type);
10897 rtx new_with_op0_mode
10898 = adjust_address (new_rtx, GET_MODE (op0), 0);
10900 gcc_assert (!TREE_ADDRESSABLE (exp));
10902 if (GET_MODE (op0) == BLKmode)
10903 emit_block_move (new_with_op0_mode, op0,
10904 GEN_INT (GET_MODE_SIZE (mode)),
10905 (modifier == EXPAND_STACK_PARM
10906 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10907 else
10908 emit_move_insn (new_with_op0_mode, op0);
10910 op0 = new_rtx;
10914 op0 = adjust_address (op0, mode, 0);
10917 return op0;
10919 case MODIFY_EXPR:
10921 tree lhs = treeop0;
10922 tree rhs = treeop1;
10923 gcc_assert (ignore);
10925 /* Check for |= or &= of a bitfield of size one into another bitfield
10926 of size 1. In this case, (unless we need the result of the
10927 assignment) we can do this more efficiently with a
10928 test followed by an assignment, if necessary.
10930 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10931 things change so we do, this code should be enhanced to
10932 support it. */
10933 if (TREE_CODE (lhs) == COMPONENT_REF
10934 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10935 || TREE_CODE (rhs) == BIT_AND_EXPR)
10936 && TREE_OPERAND (rhs, 0) == lhs
10937 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10938 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10939 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10941 rtx_code_label *label = gen_label_rtx ();
10942 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10943 do_jump (TREE_OPERAND (rhs, 1),
10944 value ? label : 0,
10945 value ? 0 : label, -1);
10946 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10947 false);
10948 do_pending_stack_adjust ();
10949 emit_label (label);
10950 return const0_rtx;
10953 expand_assignment (lhs, rhs, false);
10954 return const0_rtx;
10957 case ADDR_EXPR:
10958 return expand_expr_addr_expr (exp, target, tmode, modifier);
10960 case REALPART_EXPR:
10961 op0 = expand_normal (treeop0);
10962 return read_complex_part (op0, false);
10964 case IMAGPART_EXPR:
10965 op0 = expand_normal (treeop0);
10966 return read_complex_part (op0, true);
10968 case RETURN_EXPR:
10969 case LABEL_EXPR:
10970 case GOTO_EXPR:
10971 case SWITCH_EXPR:
10972 case ASM_EXPR:
10973 /* Expanded in cfgexpand.c. */
10974 gcc_unreachable ();
10976 case TRY_CATCH_EXPR:
10977 case CATCH_EXPR:
10978 case EH_FILTER_EXPR:
10979 case TRY_FINALLY_EXPR:
10980 /* Lowered by tree-eh.c. */
10981 gcc_unreachable ();
10983 case WITH_CLEANUP_EXPR:
10984 case CLEANUP_POINT_EXPR:
10985 case TARGET_EXPR:
10986 case CASE_LABEL_EXPR:
10987 case VA_ARG_EXPR:
10988 case BIND_EXPR:
10989 case INIT_EXPR:
10990 case CONJ_EXPR:
10991 case COMPOUND_EXPR:
10992 case PREINCREMENT_EXPR:
10993 case PREDECREMENT_EXPR:
10994 case POSTINCREMENT_EXPR:
10995 case POSTDECREMENT_EXPR:
10996 case LOOP_EXPR:
10997 case EXIT_EXPR:
10998 case COMPOUND_LITERAL_EXPR:
10999 /* Lowered by gimplify.c. */
11000 gcc_unreachable ();
11002 case FDESC_EXPR:
11003 /* Function descriptors are not valid except for as
11004 initialization constants, and should not be expanded. */
11005 gcc_unreachable ();
11007 case WITH_SIZE_EXPR:
11008 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11009 have pulled out the size to use in whatever context it needed. */
11010 return expand_expr_real (treeop0, original_target, tmode,
11011 modifier, alt_rtl, inner_reference_p);
11013 default:
11014 return expand_expr_real_2 (&ops, target, tmode, modifier);
11018 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11019 signedness of TYPE), possibly returning the result in TARGET. */
11020 static rtx
11021 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11023 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11024 if (target && GET_MODE (target) != GET_MODE (exp))
11025 target = 0;
11026 /* For constant values, reduce using build_int_cst_type. */
11027 if (CONST_INT_P (exp))
11029 HOST_WIDE_INT value = INTVAL (exp);
11030 tree t = build_int_cst_type (type, value);
11031 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11033 else if (TYPE_UNSIGNED (type))
11035 machine_mode mode = GET_MODE (exp);
11036 rtx mask = immed_wide_int_const
11037 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11038 return expand_and (mode, exp, mask, target);
11040 else
11042 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
11043 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
11044 exp, count, target, 0);
11045 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
11046 exp, count, target, 0);
11050 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11051 when applied to the address of EXP produces an address known to be
11052 aligned more than BIGGEST_ALIGNMENT. */
11054 static int
11055 is_aligning_offset (const_tree offset, const_tree exp)
11057 /* Strip off any conversions. */
11058 while (CONVERT_EXPR_P (offset))
11059 offset = TREE_OPERAND (offset, 0);
11061 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11062 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11063 if (TREE_CODE (offset) != BIT_AND_EXPR
11064 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11065 || compare_tree_int (TREE_OPERAND (offset, 1),
11066 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11067 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11068 return 0;
11070 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11071 It must be NEGATE_EXPR. Then strip any more conversions. */
11072 offset = TREE_OPERAND (offset, 0);
11073 while (CONVERT_EXPR_P (offset))
11074 offset = TREE_OPERAND (offset, 0);
11076 if (TREE_CODE (offset) != NEGATE_EXPR)
11077 return 0;
11079 offset = TREE_OPERAND (offset, 0);
11080 while (CONVERT_EXPR_P (offset))
11081 offset = TREE_OPERAND (offset, 0);
11083 /* This must now be the address of EXP. */
11084 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11087 /* Return the tree node if an ARG corresponds to a string constant or zero
11088 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11089 in bytes within the string that ARG is accessing. The type of the
11090 offset will be `sizetype'. */
11092 tree
11093 string_constant (tree arg, tree *ptr_offset)
11095 tree array, offset, lower_bound;
11096 STRIP_NOPS (arg);
11098 if (TREE_CODE (arg) == ADDR_EXPR)
11100 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
11102 *ptr_offset = size_zero_node;
11103 return TREE_OPERAND (arg, 0);
11105 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
11107 array = TREE_OPERAND (arg, 0);
11108 offset = size_zero_node;
11110 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
11112 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11113 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11114 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11115 return 0;
11117 /* Check if the array has a nonzero lower bound. */
11118 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
11119 if (!integer_zerop (lower_bound))
11121 /* If the offset and base aren't both constants, return 0. */
11122 if (TREE_CODE (lower_bound) != INTEGER_CST)
11123 return 0;
11124 if (TREE_CODE (offset) != INTEGER_CST)
11125 return 0;
11126 /* Adjust offset by the lower bound. */
11127 offset = size_diffop (fold_convert (sizetype, offset),
11128 fold_convert (sizetype, lower_bound));
11131 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
11133 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11134 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11135 if (TREE_CODE (array) != ADDR_EXPR)
11136 return 0;
11137 array = TREE_OPERAND (array, 0);
11138 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11139 return 0;
11141 else
11142 return 0;
11144 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11146 tree arg0 = TREE_OPERAND (arg, 0);
11147 tree arg1 = TREE_OPERAND (arg, 1);
11149 STRIP_NOPS (arg0);
11150 STRIP_NOPS (arg1);
11152 if (TREE_CODE (arg0) == ADDR_EXPR
11153 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
11154 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
11156 array = TREE_OPERAND (arg0, 0);
11157 offset = arg1;
11159 else if (TREE_CODE (arg1) == ADDR_EXPR
11160 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
11161 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
11163 array = TREE_OPERAND (arg1, 0);
11164 offset = arg0;
11166 else
11167 return 0;
11169 else
11170 return 0;
11172 if (TREE_CODE (array) == STRING_CST)
11174 *ptr_offset = fold_convert (sizetype, offset);
11175 return array;
11177 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11179 int length;
11180 tree init = ctor_for_folding (array);
11182 /* Variables initialized to string literals can be handled too. */
11183 if (init == error_mark_node
11184 || !init
11185 || TREE_CODE (init) != STRING_CST)
11186 return 0;
11188 /* Avoid const char foo[4] = "abcde"; */
11189 if (DECL_SIZE_UNIT (array) == NULL_TREE
11190 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
11191 || (length = TREE_STRING_LENGTH (init)) <= 0
11192 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
11193 return 0;
11195 /* If variable is bigger than the string literal, OFFSET must be constant
11196 and inside of the bounds of the string literal. */
11197 offset = fold_convert (sizetype, offset);
11198 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
11199 && (! tree_fits_uhwi_p (offset)
11200 || compare_tree_int (offset, length) >= 0))
11201 return 0;
11203 *ptr_offset = offset;
11204 return init;
11207 return 0;
11210 /* Generate code to calculate OPS, and exploded expression
11211 using a store-flag instruction and return an rtx for the result.
11212 OPS reflects a comparison.
11214 If TARGET is nonzero, store the result there if convenient.
11216 Return zero if there is no suitable set-flag instruction
11217 available on this machine.
11219 Once expand_expr has been called on the arguments of the comparison,
11220 we are committed to doing the store flag, since it is not safe to
11221 re-evaluate the expression. We emit the store-flag insn by calling
11222 emit_store_flag, but only expand the arguments if we have a reason
11223 to believe that emit_store_flag will be successful. If we think that
11224 it will, but it isn't, we have to simulate the store-flag with a
11225 set/jump/set sequence. */
11227 static rtx
11228 do_store_flag (sepops ops, rtx target, machine_mode mode)
11230 enum rtx_code code;
11231 tree arg0, arg1, type;
11232 machine_mode operand_mode;
11233 int unsignedp;
11234 rtx op0, op1;
11235 rtx subtarget = target;
11236 location_t loc = ops->location;
11238 arg0 = ops->op0;
11239 arg1 = ops->op1;
11241 /* Don't crash if the comparison was erroneous. */
11242 if (arg0 == error_mark_node || arg1 == error_mark_node)
11243 return const0_rtx;
11245 type = TREE_TYPE (arg0);
11246 operand_mode = TYPE_MODE (type);
11247 unsignedp = TYPE_UNSIGNED (type);
11249 /* We won't bother with BLKmode store-flag operations because it would mean
11250 passing a lot of information to emit_store_flag. */
11251 if (operand_mode == BLKmode)
11252 return 0;
11254 /* We won't bother with store-flag operations involving function pointers
11255 when function pointers must be canonicalized before comparisons. */
11256 if (targetm.have_canonicalize_funcptr_for_compare ()
11257 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11258 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11259 == FUNCTION_TYPE))
11260 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11261 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11262 == FUNCTION_TYPE))))
11263 return 0;
11265 STRIP_NOPS (arg0);
11266 STRIP_NOPS (arg1);
11268 /* For vector typed comparisons emit code to generate the desired
11269 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11270 expander for this. */
11271 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11273 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11274 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11275 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type))
11276 return expand_vec_cmp_expr (ops->type, ifexp, target);
11277 else
11279 tree if_true = constant_boolean_node (true, ops->type);
11280 tree if_false = constant_boolean_node (false, ops->type);
11281 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11282 if_false, target);
11286 /* Get the rtx comparison code to use. We know that EXP is a comparison
11287 operation of some type. Some comparisons against 1 and -1 can be
11288 converted to comparisons with zero. Do so here so that the tests
11289 below will be aware that we have a comparison with zero. These
11290 tests will not catch constants in the first operand, but constants
11291 are rarely passed as the first operand. */
11293 switch (ops->code)
11295 case EQ_EXPR:
11296 code = EQ;
11297 break;
11298 case NE_EXPR:
11299 code = NE;
11300 break;
11301 case LT_EXPR:
11302 if (integer_onep (arg1))
11303 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11304 else
11305 code = unsignedp ? LTU : LT;
11306 break;
11307 case LE_EXPR:
11308 if (! unsignedp && integer_all_onesp (arg1))
11309 arg1 = integer_zero_node, code = LT;
11310 else
11311 code = unsignedp ? LEU : LE;
11312 break;
11313 case GT_EXPR:
11314 if (! unsignedp && integer_all_onesp (arg1))
11315 arg1 = integer_zero_node, code = GE;
11316 else
11317 code = unsignedp ? GTU : GT;
11318 break;
11319 case GE_EXPR:
11320 if (integer_onep (arg1))
11321 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11322 else
11323 code = unsignedp ? GEU : GE;
11324 break;
11326 case UNORDERED_EXPR:
11327 code = UNORDERED;
11328 break;
11329 case ORDERED_EXPR:
11330 code = ORDERED;
11331 break;
11332 case UNLT_EXPR:
11333 code = UNLT;
11334 break;
11335 case UNLE_EXPR:
11336 code = UNLE;
11337 break;
11338 case UNGT_EXPR:
11339 code = UNGT;
11340 break;
11341 case UNGE_EXPR:
11342 code = UNGE;
11343 break;
11344 case UNEQ_EXPR:
11345 code = UNEQ;
11346 break;
11347 case LTGT_EXPR:
11348 code = LTGT;
11349 break;
11351 default:
11352 gcc_unreachable ();
11355 /* Put a constant second. */
11356 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11357 || TREE_CODE (arg0) == FIXED_CST)
11359 std::swap (arg0, arg1);
11360 code = swap_condition (code);
11363 /* If this is an equality or inequality test of a single bit, we can
11364 do this by shifting the bit being tested to the low-order bit and
11365 masking the result with the constant 1. If the condition was EQ,
11366 we xor it with 1. This does not require an scc insn and is faster
11367 than an scc insn even if we have it.
11369 The code to make this transformation was moved into fold_single_bit_test,
11370 so we just call into the folder and expand its result. */
11372 if ((code == NE || code == EQ)
11373 && integer_zerop (arg1)
11374 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11376 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11377 if (srcstmt
11378 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11380 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11381 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11382 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11383 gimple_assign_rhs1 (srcstmt),
11384 gimple_assign_rhs2 (srcstmt));
11385 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11386 if (temp)
11387 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11391 if (! get_subtarget (target)
11392 || GET_MODE (subtarget) != operand_mode)
11393 subtarget = 0;
11395 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11397 if (target == 0)
11398 target = gen_reg_rtx (mode);
11400 /* Try a cstore if possible. */
11401 return emit_store_flag_force (target, code, op0, op1,
11402 operand_mode, unsignedp,
11403 (TYPE_PRECISION (ops->type) == 1
11404 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11407 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11408 0 otherwise (i.e. if there is no casesi instruction).
11410 DEFAULT_PROBABILITY is the probability of jumping to the default
11411 label. */
11413 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11414 rtx table_label, rtx default_label, rtx fallback_label,
11415 int default_probability)
11417 struct expand_operand ops[5];
11418 machine_mode index_mode = SImode;
11419 rtx op1, op2, index;
11421 if (! targetm.have_casesi ())
11422 return 0;
11424 /* Convert the index to SImode. */
11425 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11427 machine_mode omode = TYPE_MODE (index_type);
11428 rtx rangertx = expand_normal (range);
11430 /* We must handle the endpoints in the original mode. */
11431 index_expr = build2 (MINUS_EXPR, index_type,
11432 index_expr, minval);
11433 minval = integer_zero_node;
11434 index = expand_normal (index_expr);
11435 if (default_label)
11436 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11437 omode, 1, default_label,
11438 default_probability);
11439 /* Now we can safely truncate. */
11440 index = convert_to_mode (index_mode, index, 0);
11442 else
11444 if (TYPE_MODE (index_type) != index_mode)
11446 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11447 index_expr = fold_convert (index_type, index_expr);
11450 index = expand_normal (index_expr);
11453 do_pending_stack_adjust ();
11455 op1 = expand_normal (minval);
11456 op2 = expand_normal (range);
11458 create_input_operand (&ops[0], index, index_mode);
11459 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11460 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11461 create_fixed_operand (&ops[3], table_label);
11462 create_fixed_operand (&ops[4], (default_label
11463 ? default_label
11464 : fallback_label));
11465 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11466 return 1;
11469 /* Attempt to generate a tablejump instruction; same concept. */
11470 /* Subroutine of the next function.
11472 INDEX is the value being switched on, with the lowest value
11473 in the table already subtracted.
11474 MODE is its expected mode (needed if INDEX is constant).
11475 RANGE is the length of the jump table.
11476 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11478 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11479 index value is out of range.
11480 DEFAULT_PROBABILITY is the probability of jumping to
11481 the default label. */
11483 static void
11484 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11485 rtx default_label, int default_probability)
11487 rtx temp, vector;
11489 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11490 cfun->cfg->max_jumptable_ents = INTVAL (range);
11492 /* Do an unsigned comparison (in the proper mode) between the index
11493 expression and the value which represents the length of the range.
11494 Since we just finished subtracting the lower bound of the range
11495 from the index expression, this comparison allows us to simultaneously
11496 check that the original index expression value is both greater than
11497 or equal to the minimum value of the range and less than or equal to
11498 the maximum value of the range. */
11500 if (default_label)
11501 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11502 default_label, default_probability);
11505 /* If index is in range, it must fit in Pmode.
11506 Convert to Pmode so we can index with it. */
11507 if (mode != Pmode)
11508 index = convert_to_mode (Pmode, index, 1);
11510 /* Don't let a MEM slip through, because then INDEX that comes
11511 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11512 and break_out_memory_refs will go to work on it and mess it up. */
11513 #ifdef PIC_CASE_VECTOR_ADDRESS
11514 if (flag_pic && !REG_P (index))
11515 index = copy_to_mode_reg (Pmode, index);
11516 #endif
11518 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11519 GET_MODE_SIZE, because this indicates how large insns are. The other
11520 uses should all be Pmode, because they are addresses. This code
11521 could fail if addresses and insns are not the same size. */
11522 index = simplify_gen_binary (MULT, Pmode, index,
11523 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11524 Pmode));
11525 index = simplify_gen_binary (PLUS, Pmode, index,
11526 gen_rtx_LABEL_REF (Pmode, table_label));
11528 #ifdef PIC_CASE_VECTOR_ADDRESS
11529 if (flag_pic)
11530 index = PIC_CASE_VECTOR_ADDRESS (index);
11531 else
11532 #endif
11533 index = memory_address (CASE_VECTOR_MODE, index);
11534 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11535 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11536 convert_move (temp, vector, 0);
11538 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11540 /* If we are generating PIC code or if the table is PC-relative, the
11541 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11542 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11543 emit_barrier ();
11547 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11548 rtx table_label, rtx default_label, int default_probability)
11550 rtx index;
11552 if (! targetm.have_tablejump ())
11553 return 0;
11555 index_expr = fold_build2 (MINUS_EXPR, index_type,
11556 fold_convert (index_type, index_expr),
11557 fold_convert (index_type, minval));
11558 index = expand_normal (index_expr);
11559 do_pending_stack_adjust ();
11561 do_tablejump (index, TYPE_MODE (index_type),
11562 convert_modes (TYPE_MODE (index_type),
11563 TYPE_MODE (TREE_TYPE (range)),
11564 expand_normal (range),
11565 TYPE_UNSIGNED (TREE_TYPE (range))),
11566 table_label, default_label, default_probability);
11567 return 1;
11570 /* Return a CONST_VECTOR rtx representing vector mask for
11571 a VECTOR_CST of booleans. */
11572 static rtx
11573 const_vector_mask_from_tree (tree exp)
11575 rtvec v;
11576 unsigned i;
11577 int units;
11578 tree elt;
11579 machine_mode inner, mode;
11581 mode = TYPE_MODE (TREE_TYPE (exp));
11582 units = GET_MODE_NUNITS (mode);
11583 inner = GET_MODE_INNER (mode);
11585 v = rtvec_alloc (units);
11587 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11589 elt = VECTOR_CST_ELT (exp, i);
11591 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11592 if (integer_zerop (elt))
11593 RTVEC_ELT (v, i) = CONST0_RTX (inner);
11594 else if (integer_onep (elt)
11595 || integer_minus_onep (elt))
11596 RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
11597 else
11598 gcc_unreachable ();
11601 return gen_rtx_CONST_VECTOR (mode, v);
11604 /* Return a CONST_INT rtx representing vector mask for
11605 a VECTOR_CST of booleans. */
11606 static rtx
11607 const_scalar_mask_from_tree (tree exp)
11609 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
11610 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
11611 tree elt;
11612 unsigned i;
11614 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11616 elt = VECTOR_CST_ELT (exp, i);
11617 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11618 if (integer_all_onesp (elt))
11619 res = wi::set_bit (res, i);
11620 else
11621 gcc_assert (integer_zerop (elt));
11624 return immed_wide_int_const (res, mode);
11627 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11628 static rtx
11629 const_vector_from_tree (tree exp)
11631 rtvec v;
11632 unsigned i;
11633 int units;
11634 tree elt;
11635 machine_mode inner, mode;
11637 mode = TYPE_MODE (TREE_TYPE (exp));
11639 if (initializer_zerop (exp))
11640 return CONST0_RTX (mode);
11642 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
11643 return const_vector_mask_from_tree (exp);
11645 units = GET_MODE_NUNITS (mode);
11646 inner = GET_MODE_INNER (mode);
11648 v = rtvec_alloc (units);
11650 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11652 elt = VECTOR_CST_ELT (exp, i);
11654 if (TREE_CODE (elt) == REAL_CST)
11655 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
11656 inner);
11657 else if (TREE_CODE (elt) == FIXED_CST)
11658 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11659 inner);
11660 else
11661 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
11664 return gen_rtx_CONST_VECTOR (mode, v);
11667 /* Build a decl for a personality function given a language prefix. */
11669 tree
11670 build_personality_function (const char *lang)
11672 const char *unwind_and_version;
11673 tree decl, type;
11674 char *name;
11676 switch (targetm_common.except_unwind_info (&global_options))
11678 case UI_NONE:
11679 return NULL;
11680 case UI_SJLJ:
11681 unwind_and_version = "_sj0";
11682 break;
11683 case UI_DWARF2:
11684 case UI_TARGET:
11685 unwind_and_version = "_v0";
11686 break;
11687 case UI_SEH:
11688 unwind_and_version = "_seh0";
11689 break;
11690 default:
11691 gcc_unreachable ();
11694 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11696 type = build_function_type_list (integer_type_node, integer_type_node,
11697 long_long_unsigned_type_node,
11698 ptr_type_node, ptr_type_node, NULL_TREE);
11699 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11700 get_identifier (name), type);
11701 DECL_ARTIFICIAL (decl) = 1;
11702 DECL_EXTERNAL (decl) = 1;
11703 TREE_PUBLIC (decl) = 1;
11705 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11706 are the flags assigned by targetm.encode_section_info. */
11707 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11709 return decl;
11712 /* Extracts the personality function of DECL and returns the corresponding
11713 libfunc. */
11716 get_personality_function (tree decl)
11718 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11719 enum eh_personality_kind pk;
11721 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11722 if (pk == eh_personality_none)
11723 return NULL;
11725 if (!personality
11726 && pk == eh_personality_any)
11727 personality = lang_hooks.eh_personality ();
11729 if (pk == eh_personality_lang)
11730 gcc_assert (personality != NULL_TREE);
11732 return XEXP (DECL_RTL (personality), 0);
11735 /* Returns a tree for the size of EXP in bytes. */
11737 static tree
11738 tree_expr_size (const_tree exp)
11740 if (DECL_P (exp)
11741 && DECL_SIZE_UNIT (exp) != 0)
11742 return DECL_SIZE_UNIT (exp);
11743 else
11744 return size_in_bytes (TREE_TYPE (exp));
11747 /* Return an rtx for the size in bytes of the value of EXP. */
11750 expr_size (tree exp)
11752 tree size;
11754 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11755 size = TREE_OPERAND (exp, 1);
11756 else
11758 size = tree_expr_size (exp);
11759 gcc_assert (size);
11760 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11763 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11766 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11767 if the size can vary or is larger than an integer. */
11769 static HOST_WIDE_INT
11770 int_expr_size (tree exp)
11772 tree size;
11774 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11775 size = TREE_OPERAND (exp, 1);
11776 else
11778 size = tree_expr_size (exp);
11779 gcc_assert (size);
11782 if (size == 0 || !tree_fits_shwi_p (size))
11783 return -1;
11785 return tree_to_shwi (size);