* tree-ssa.c (target_for_debug_bind, verify_phi_args,
[official-gcc.git] / gcc / alias.c
blob19e9208ac976e86e4f085a4b39bb20b206d9ed24
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "gimple-ssa.h"
32 #include "emit-rtl.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "varasm.h"
36 #include "cselib.h"
37 #include "langhooks.h"
38 #include "cfganal.h"
39 #include "rtl-iter.h"
40 #include "cgraph.h"
42 /* The aliasing API provided here solves related but different problems:
44 Say there exists (in c)
46 struct X {
47 struct Y y1;
48 struct Z z2;
49 } x1, *px1, *px2;
51 struct Y y2, *py;
52 struct Z z2, *pz;
55 py = &x1.y1;
56 px2 = &x1;
58 Consider the four questions:
60 Can a store to x1 interfere with px2->y1?
61 Can a store to x1 interfere with px2->z2?
62 Can a store to x1 change the value pointed to by with py?
63 Can a store to x1 change the value pointed to by with pz?
65 The answer to these questions can be yes, yes, yes, and maybe.
67 The first two questions can be answered with a simple examination
68 of the type system. If structure X contains a field of type Y then
69 a store through a pointer to an X can overwrite any field that is
70 contained (recursively) in an X (unless we know that px1 != px2).
72 The last two questions can be solved in the same way as the first
73 two questions but this is too conservative. The observation is
74 that in some cases we can know which (if any) fields are addressed
75 and if those addresses are used in bad ways. This analysis may be
76 language specific. In C, arbitrary operations may be applied to
77 pointers. However, there is some indication that this may be too
78 conservative for some C++ types.
80 The pass ipa-type-escape does this analysis for the types whose
81 instances do not escape across the compilation boundary.
83 Historically in GCC, these two problems were combined and a single
84 data structure that was used to represent the solution to these
85 problems. We now have two similar but different data structures,
86 The data structure to solve the last two questions is similar to
87 the first, but does not contain the fields whose address are never
88 taken. For types that do escape the compilation unit, the data
89 structures will have identical information.
92 /* The alias sets assigned to MEMs assist the back-end in determining
93 which MEMs can alias which other MEMs. In general, two MEMs in
94 different alias sets cannot alias each other, with one important
95 exception. Consider something like:
97 struct S { int i; double d; };
99 a store to an `S' can alias something of either type `int' or type
100 `double'. (However, a store to an `int' cannot alias a `double'
101 and vice versa.) We indicate this via a tree structure that looks
102 like:
103 struct S
106 |/_ _\|
107 int double
109 (The arrows are directed and point downwards.)
110 In this situation we say the alias set for `struct S' is the
111 `superset' and that those for `int' and `double' are `subsets'.
113 To see whether two alias sets can point to the same memory, we must
114 see if either alias set is a subset of the other. We need not trace
115 past immediate descendants, however, since we propagate all
116 grandchildren up one level.
118 Alias set zero is implicitly a superset of all other alias sets.
119 However, this is no actual entry for alias set zero. It is an
120 error to attempt to explicitly construct a subset of zero. */
122 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
124 struct GTY(()) alias_set_entry {
125 /* The alias set number, as stored in MEM_ALIAS_SET. */
126 alias_set_type alias_set;
128 /* The children of the alias set. These are not just the immediate
129 children, but, in fact, all descendants. So, if we have:
131 struct T { struct S s; float f; }
133 continuing our example above, the children here will be all of
134 `int', `double', `float', and `struct S'. */
135 hash_map<alias_set_hash, int> *children;
137 /* Nonzero if would have a child of zero: this effectively makes this
138 alias set the same as alias set zero. */
139 bool has_zero_child;
140 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
141 aggregate contaiing pointer.
142 This is used for a special case where we need an universal pointer type
143 compatible with all other pointer types. */
144 bool is_pointer;
145 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
146 bool has_pointer;
149 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
150 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 const_rtx, machine_mode, rtx,
160 bool, bool, bool);
161 static int compare_base_symbol_refs (const_rtx, const_rtx);
163 static void memory_modified_1 (rtx, const_rtx, void *);
165 /* Query statistics for the different low-level disambiguators.
166 A high-level query may trigger multiple of them. */
168 static struct {
169 unsigned long long num_alias_zero;
170 unsigned long long num_same_alias_set;
171 unsigned long long num_same_objects;
172 unsigned long long num_volatile;
173 unsigned long long num_dag;
174 unsigned long long num_universal;
175 unsigned long long num_disambiguated;
176 } alias_stats;
179 /* Set up all info needed to perform alias analysis on memory references. */
181 /* Returns the size in bytes of the mode of X. */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains.
186 ??? 10 is a completely arbitrary choice. This should be based on the
187 maximum loop depth in the CFG, but we do not have this information
188 available (even if current_loops _is_ available). */
189 #define MAX_ALIAS_LOOP_PASSES 10
191 /* reg_base_value[N] gives an address to which register N is related.
192 If all sets after the first add or subtract to the current value
193 or otherwise modify it so it does not point to a different top level
194 object, reg_base_value[N] is equal to the address part of the source
195 of the first set.
197 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
198 expressions represent three types of base:
200 1. incoming arguments. There is just one ADDRESS to represent all
201 arguments, since we do not know at this level whether accesses
202 based on different arguments can alias. The ADDRESS has id 0.
204 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 Each of these rtxes has a separate ADDRESS associated with it,
207 each with a negative id.
209 GCC is (and is required to be) precise in which register it
210 chooses to access a particular region of stack. We can therefore
211 assume that accesses based on one of these rtxes do not alias
212 accesses based on another of these rtxes.
214 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 Each such piece of memory has a separate ADDRESS associated
216 with it, each with an id greater than 0.
218 Accesses based on one ADDRESS do not alias accesses based on other
219 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
220 alias globals either; the ADDRESSes have Pmode to indicate this.
221 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222 indicate this. */
224 static GTY(()) vec<rtx, va_gc> *reg_base_value;
225 static rtx *new_reg_base_value;
227 /* The single VOIDmode ADDRESS that represents all argument bases.
228 It has id 0. */
229 static GTY(()) rtx arg_base_value;
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
232 static int unique_id;
234 /* We preserve the copy of old array around to avoid amount of garbage
235 produced. About 8% of garbage produced were attributed to this
236 array. */
237 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240 registers. */
241 #define UNIQUE_BASE_VALUE_SP -1
242 #define UNIQUE_BASE_VALUE_ARGP -2
243 #define UNIQUE_BASE_VALUE_FP -3
244 #define UNIQUE_BASE_VALUE_HFP -4
246 #define static_reg_base_value \
247 (this_target_rtl->x_static_reg_base_value)
249 #define REG_BASE_VALUE(X) \
250 (REGNO (X) < vec_safe_length (reg_base_value) \
251 ? (*reg_base_value)[REGNO (X)] : 0)
253 /* Vector indexed by N giving the initial (unchanging) value known for
254 pseudo-register N. This vector is initialized in init_alias_analysis,
255 and does not change until end_alias_analysis is called. */
256 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258 /* Vector recording for each reg_known_value whether it is due to a
259 REG_EQUIV note. Future passes (viz., reload) may replace the
260 pseudo with the equivalent expression and so we account for the
261 dependences that would be introduced if that happens.
263 The REG_EQUIV notes created in assign_parms may mention the arg
264 pointer, and there are explicit insns in the RTL that modify the
265 arg pointer. Thus we must ensure that such insns don't get
266 scheduled across each other because that would invalidate the
267 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
268 wrong, but solving the problem in the scheduler will likely give
269 better code, so we do it here. */
270 static sbitmap reg_known_equiv_p;
272 /* True when scanning insns from the start of the rtl to the
273 NOTE_INSN_FUNCTION_BEG note. */
274 static bool copying_arguments;
277 /* The splay-tree used to store the various alias set entries. */
278 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 /* Build a decomposed reference object for querying the alias-oracle
281 from the MEM rtx and store it in *REF.
282 Returns false if MEM is not suitable for the alias-oracle. */
284 static bool
285 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 tree expr = MEM_EXPR (mem);
288 tree base;
290 if (!expr)
291 return false;
293 ao_ref_init (ref, expr);
295 /* Get the base of the reference and see if we have to reject or
296 adjust it. */
297 base = ao_ref_base (ref);
298 if (base == NULL_TREE)
299 return false;
301 /* The tree oracle doesn't like bases that are neither decls
302 nor indirect references of SSA names. */
303 if (!(DECL_P (base)
304 || (TREE_CODE (base) == MEM_REF
305 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 || (TREE_CODE (base) == TARGET_MEM_REF
307 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
308 return false;
310 /* If this is a reference based on a partitioned decl replace the
311 base with a MEM_REF of the pointer representative we
312 created during stack slot partitioning. */
313 if (VAR_P (base)
314 && ! is_global_var (base)
315 && cfun->gimple_df->decls_to_pointers != NULL)
317 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
318 if (namep)
319 ref->base = build_simple_mem_ref (*namep);
322 ref->ref_alias_set = MEM_ALIAS_SET (mem);
324 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325 is conservative, so trust it. */
326 if (!MEM_OFFSET_KNOWN_P (mem)
327 || !MEM_SIZE_KNOWN_P (mem))
328 return true;
330 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331 drop ref->ref. */
332 if (MEM_OFFSET (mem) < 0
333 || (ref->max_size != -1
334 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
335 > ref->max_size)))
336 ref->ref = NULL_TREE;
338 /* Refine size and offset we got from analyzing MEM_EXPR by using
339 MEM_SIZE and MEM_OFFSET. */
341 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
342 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
344 /* The MEM may extend into adjacent fields, so adjust max_size if
345 necessary. */
346 if (ref->max_size != -1
347 && ref->size > ref->max_size)
348 ref->max_size = ref->size;
350 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
351 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
352 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
353 && (ref->offset < 0
354 || (DECL_P (ref->base)
355 && (DECL_SIZE (ref->base) == NULL_TREE
356 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
357 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
358 ref->offset + ref->size)))))
359 return false;
361 return true;
364 /* Query the alias-oracle on whether the two memory rtx X and MEM may
365 alias. If TBAA_P is set also apply TBAA. Returns true if the
366 two rtxen may alias, false otherwise. */
368 static bool
369 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
371 ao_ref ref1, ref2;
373 if (!ao_ref_from_mem (&ref1, x)
374 || !ao_ref_from_mem (&ref2, mem))
375 return true;
377 return refs_may_alias_p_1 (&ref1, &ref2,
378 tbaa_p
379 && MEM_ALIAS_SET (x) != 0
380 && MEM_ALIAS_SET (mem) != 0);
383 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
384 such an entry, or NULL otherwise. */
386 static inline alias_set_entry *
387 get_alias_set_entry (alias_set_type alias_set)
389 return (*alias_sets)[alias_set];
392 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
393 the two MEMs cannot alias each other. */
395 static inline int
396 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
398 return (flag_strict_aliasing
399 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
400 MEM_ALIAS_SET (mem2)));
403 /* Return true if the first alias set is a subset of the second. */
405 bool
406 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
408 alias_set_entry *ase2;
410 /* Disable TBAA oracle with !flag_strict_aliasing. */
411 if (!flag_strict_aliasing)
412 return true;
414 /* Everything is a subset of the "aliases everything" set. */
415 if (set2 == 0)
416 return true;
418 /* Check if set1 is a subset of set2. */
419 ase2 = get_alias_set_entry (set2);
420 if (ase2 != 0
421 && (ase2->has_zero_child
422 || (ase2->children && ase2->children->get (set1))))
423 return true;
425 /* As a special case we consider alias set of "void *" to be both subset
426 and superset of every alias set of a pointer. This extra symmetry does
427 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
428 to return true on the following testcase:
430 void *ptr;
431 char **ptr2=(char **)&ptr;
432 *ptr2 = ...
434 Additionally if a set contains universal pointer, we consider every pointer
435 to be a subset of it, but we do not represent this explicitely - doing so
436 would require us to update transitive closure each time we introduce new
437 pointer type. This makes aliasing_component_refs_p to return true
438 on the following testcase:
440 struct a {void *ptr;}
441 char **ptr = (char **)&a.ptr;
442 ptr = ...
444 This makes void * truly universal pointer type. See pointer handling in
445 get_alias_set for more details. */
446 if (ase2 && ase2->has_pointer)
448 alias_set_entry *ase1 = get_alias_set_entry (set1);
450 if (ase1 && ase1->is_pointer)
452 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
453 /* If one is ptr_type_node and other is pointer, then we consider
454 them subset of each other. */
455 if (set1 == voidptr_set || set2 == voidptr_set)
456 return true;
457 /* If SET2 contains universal pointer's alias set, then we consdier
458 every (non-universal) pointer. */
459 if (ase2->children && set1 != voidptr_set
460 && ase2->children->get (voidptr_set))
461 return true;
464 return false;
467 /* Return 1 if the two specified alias sets may conflict. */
470 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
472 alias_set_entry *ase1;
473 alias_set_entry *ase2;
475 /* The easy case. */
476 if (alias_sets_must_conflict_p (set1, set2))
477 return 1;
479 /* See if the first alias set is a subset of the second. */
480 ase1 = get_alias_set_entry (set1);
481 if (ase1 != 0
482 && ase1->children && ase1->children->get (set2))
484 ++alias_stats.num_dag;
485 return 1;
488 /* Now do the same, but with the alias sets reversed. */
489 ase2 = get_alias_set_entry (set2);
490 if (ase2 != 0
491 && ase2->children && ase2->children->get (set1))
493 ++alias_stats.num_dag;
494 return 1;
497 /* We want void * to be compatible with any other pointer without
498 really dropping it to alias set 0. Doing so would make it
499 compatible with all non-pointer types too.
501 This is not strictly necessary by the C/C++ language
502 standards, but avoids common type punning mistakes. In
503 addition to that, we need the existence of such universal
504 pointer to implement Fortran's C_PTR type (which is defined as
505 type compatible with all C pointers). */
506 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
508 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
510 /* If one of the sets corresponds to universal pointer,
511 we consider it to conflict with anything that is
512 or contains pointer. */
513 if (set1 == voidptr_set || set2 == voidptr_set)
515 ++alias_stats.num_universal;
516 return true;
518 /* If one of sets is (non-universal) pointer and the other
519 contains universal pointer, we also get conflict. */
520 if (ase1->is_pointer && set2 != voidptr_set
521 && ase2->children && ase2->children->get (voidptr_set))
523 ++alias_stats.num_universal;
524 return true;
526 if (ase2->is_pointer && set1 != voidptr_set
527 && ase1->children && ase1->children->get (voidptr_set))
529 ++alias_stats.num_universal;
530 return true;
534 ++alias_stats.num_disambiguated;
536 /* The two alias sets are distinct and neither one is the
537 child of the other. Therefore, they cannot conflict. */
538 return 0;
541 /* Return 1 if the two specified alias sets will always conflict. */
544 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
546 /* Disable TBAA oracle with !flag_strict_aliasing. */
547 if (!flag_strict_aliasing)
548 return 1;
549 if (set1 == 0 || set2 == 0)
551 ++alias_stats.num_alias_zero;
552 return 1;
554 if (set1 == set2)
556 ++alias_stats.num_same_alias_set;
557 return 1;
560 return 0;
563 /* Return 1 if any MEM object of type T1 will always conflict (using the
564 dependency routines in this file) with any MEM object of type T2.
565 This is used when allocating temporary storage. If T1 and/or T2 are
566 NULL_TREE, it means we know nothing about the storage. */
569 objects_must_conflict_p (tree t1, tree t2)
571 alias_set_type set1, set2;
573 /* If neither has a type specified, we don't know if they'll conflict
574 because we may be using them to store objects of various types, for
575 example the argument and local variables areas of inlined functions. */
576 if (t1 == 0 && t2 == 0)
577 return 0;
579 /* If they are the same type, they must conflict. */
580 if (t1 == t2)
582 ++alias_stats.num_same_objects;
583 return 1;
585 /* Likewise if both are volatile. */
586 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
588 ++alias_stats.num_volatile;
589 return 1;
592 set1 = t1 ? get_alias_set (t1) : 0;
593 set2 = t2 ? get_alias_set (t2) : 0;
595 /* We can't use alias_sets_conflict_p because we must make sure
596 that every subtype of t1 will conflict with every subtype of
597 t2 for which a pair of subobjects of these respective subtypes
598 overlaps on the stack. */
599 return alias_sets_must_conflict_p (set1, set2);
602 /* Return the outermost parent of component present in the chain of
603 component references handled by get_inner_reference in T with the
604 following property:
605 - the component is non-addressable, or
606 - the parent has alias set zero,
607 or NULL_TREE if no such parent exists. In the former cases, the alias
608 set of this parent is the alias set that must be used for T itself. */
610 tree
611 component_uses_parent_alias_set_from (const_tree t)
613 const_tree found = NULL_TREE;
615 while (handled_component_p (t))
617 switch (TREE_CODE (t))
619 case COMPONENT_REF:
620 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
621 found = t;
622 /* Permit type-punning when accessing a union, provided the access
623 is directly through the union. For example, this code does not
624 permit taking the address of a union member and then storing
625 through it. Even the type-punning allowed here is a GCC
626 extension, albeit a common and useful one; the C standard says
627 that such accesses have implementation-defined behavior. */
628 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
629 found = t;
630 break;
632 case ARRAY_REF:
633 case ARRAY_RANGE_REF:
634 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
635 found = t;
636 break;
638 case REALPART_EXPR:
639 case IMAGPART_EXPR:
640 break;
642 case BIT_FIELD_REF:
643 case VIEW_CONVERT_EXPR:
644 /* Bitfields and casts are never addressable. */
645 found = t;
646 break;
648 default:
649 gcc_unreachable ();
652 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
653 found = t;
655 t = TREE_OPERAND (t, 0);
658 if (found)
659 return TREE_OPERAND (found, 0);
661 return NULL_TREE;
665 /* Return whether the pointer-type T effective for aliasing may
666 access everything and thus the reference has to be assigned
667 alias-set zero. */
669 static bool
670 ref_all_alias_ptr_type_p (const_tree t)
672 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
673 || TYPE_REF_CAN_ALIAS_ALL (t));
676 /* Return the alias set for the memory pointed to by T, which may be
677 either a type or an expression. Return -1 if there is nothing
678 special about dereferencing T. */
680 static alias_set_type
681 get_deref_alias_set_1 (tree t)
683 /* All we care about is the type. */
684 if (! TYPE_P (t))
685 t = TREE_TYPE (t);
687 /* If we have an INDIRECT_REF via a void pointer, we don't
688 know anything about what that might alias. Likewise if the
689 pointer is marked that way. */
690 if (ref_all_alias_ptr_type_p (t))
691 return 0;
693 return -1;
696 /* Return the alias set for the memory pointed to by T, which may be
697 either a type or an expression. */
699 alias_set_type
700 get_deref_alias_set (tree t)
702 /* If we're not doing any alias analysis, just assume everything
703 aliases everything else. */
704 if (!flag_strict_aliasing)
705 return 0;
707 alias_set_type set = get_deref_alias_set_1 (t);
709 /* Fall back to the alias-set of the pointed-to type. */
710 if (set == -1)
712 if (! TYPE_P (t))
713 t = TREE_TYPE (t);
714 set = get_alias_set (TREE_TYPE (t));
717 return set;
720 /* Return the pointer-type relevant for TBAA purposes from the
721 memory reference tree *T or NULL_TREE in which case *T is
722 adjusted to point to the outermost component reference that
723 can be used for assigning an alias set. */
725 static tree
726 reference_alias_ptr_type_1 (tree *t)
728 tree inner;
730 /* Get the base object of the reference. */
731 inner = *t;
732 while (handled_component_p (inner))
734 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
735 the type of any component references that wrap it to
736 determine the alias-set. */
737 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
738 *t = TREE_OPERAND (inner, 0);
739 inner = TREE_OPERAND (inner, 0);
742 /* Handle pointer dereferences here, they can override the
743 alias-set. */
744 if (INDIRECT_REF_P (inner)
745 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
746 return TREE_TYPE (TREE_OPERAND (inner, 0));
747 else if (TREE_CODE (inner) == TARGET_MEM_REF)
748 return TREE_TYPE (TMR_OFFSET (inner));
749 else if (TREE_CODE (inner) == MEM_REF
750 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
751 return TREE_TYPE (TREE_OPERAND (inner, 1));
753 /* If the innermost reference is a MEM_REF that has a
754 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
755 using the memory access type for determining the alias-set. */
756 if (TREE_CODE (inner) == MEM_REF
757 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
758 != TYPE_MAIN_VARIANT
759 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
760 return TREE_TYPE (TREE_OPERAND (inner, 1));
762 /* Otherwise, pick up the outermost object that we could have
763 a pointer to. */
764 tree tem = component_uses_parent_alias_set_from (*t);
765 if (tem)
766 *t = tem;
768 return NULL_TREE;
771 /* Return the pointer-type relevant for TBAA purposes from the
772 gimple memory reference tree T. This is the type to be used for
773 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
774 and guarantees that get_alias_set will return the same alias
775 set for T and the replacement. */
777 tree
778 reference_alias_ptr_type (tree t)
780 /* If the frontend assigns this alias-set zero, preserve that. */
781 if (lang_hooks.get_alias_set (t) == 0)
782 return ptr_type_node;
784 tree ptype = reference_alias_ptr_type_1 (&t);
785 /* If there is a given pointer type for aliasing purposes, return it. */
786 if (ptype != NULL_TREE)
787 return ptype;
789 /* Otherwise build one from the outermost component reference we
790 may use. */
791 if (TREE_CODE (t) == MEM_REF
792 || TREE_CODE (t) == TARGET_MEM_REF)
793 return TREE_TYPE (TREE_OPERAND (t, 1));
794 else
795 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
798 /* Return whether the pointer-types T1 and T2 used to determine
799 two alias sets of two references will yield the same answer
800 from get_deref_alias_set. */
802 bool
803 alias_ptr_types_compatible_p (tree t1, tree t2)
805 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
806 return true;
808 if (ref_all_alias_ptr_type_p (t1)
809 || ref_all_alias_ptr_type_p (t2))
810 return false;
812 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
813 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
816 /* Create emptry alias set entry. */
818 alias_set_entry *
819 init_alias_set_entry (alias_set_type set)
821 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
822 ase->alias_set = set;
823 ase->children = NULL;
824 ase->has_zero_child = false;
825 ase->is_pointer = false;
826 ase->has_pointer = false;
827 gcc_checking_assert (!get_alias_set_entry (set));
828 (*alias_sets)[set] = ase;
829 return ase;
832 /* Return the alias set for T, which may be either a type or an
833 expression. Call language-specific routine for help, if needed. */
835 alias_set_type
836 get_alias_set (tree t)
838 alias_set_type set;
840 /* We can not give up with -fno-strict-aliasing because we need to build
841 proper type representation for possible functions which are build with
842 -fstrict-aliasing. */
844 /* return 0 if this or its type is an error. */
845 if (t == error_mark_node
846 || (! TYPE_P (t)
847 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
848 return 0;
850 /* We can be passed either an expression or a type. This and the
851 language-specific routine may make mutually-recursive calls to each other
852 to figure out what to do. At each juncture, we see if this is a tree
853 that the language may need to handle specially. First handle things that
854 aren't types. */
855 if (! TYPE_P (t))
857 /* Give the language a chance to do something with this tree
858 before we look at it. */
859 STRIP_NOPS (t);
860 set = lang_hooks.get_alias_set (t);
861 if (set != -1)
862 return set;
864 /* Get the alias pointer-type to use or the outermost object
865 that we could have a pointer to. */
866 tree ptype = reference_alias_ptr_type_1 (&t);
867 if (ptype != NULL)
868 return get_deref_alias_set (ptype);
870 /* If we've already determined the alias set for a decl, just return
871 it. This is necessary for C++ anonymous unions, whose component
872 variables don't look like union members (boo!). */
873 if (VAR_P (t)
874 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
875 return MEM_ALIAS_SET (DECL_RTL (t));
877 /* Now all we care about is the type. */
878 t = TREE_TYPE (t);
881 /* Variant qualifiers don't affect the alias set, so get the main
882 variant. */
883 t = TYPE_MAIN_VARIANT (t);
885 /* Always use the canonical type as well. If this is a type that
886 requires structural comparisons to identify compatible types
887 use alias set zero. */
888 if (TYPE_STRUCTURAL_EQUALITY_P (t))
890 /* Allow the language to specify another alias set for this
891 type. */
892 set = lang_hooks.get_alias_set (t);
893 if (set != -1)
894 return set;
895 /* Handle structure type equality for pointer types, arrays and vectors.
896 This is easy to do, because the code bellow ignore canonical types on
897 these anyway. This is important for LTO, where TYPE_CANONICAL for
898 pointers can not be meaningfuly computed by the frotnend. */
899 if (canonical_type_used_p (t))
901 /* In LTO we set canonical types for all types where it makes
902 sense to do so. Double check we did not miss some type. */
903 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
904 return 0;
907 else
909 t = TYPE_CANONICAL (t);
910 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
913 /* If this is a type with a known alias set, return it. */
914 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
915 if (TYPE_ALIAS_SET_KNOWN_P (t))
916 return TYPE_ALIAS_SET (t);
918 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
919 if (!COMPLETE_TYPE_P (t))
921 /* For arrays with unknown size the conservative answer is the
922 alias set of the element type. */
923 if (TREE_CODE (t) == ARRAY_TYPE)
924 return get_alias_set (TREE_TYPE (t));
926 /* But return zero as a conservative answer for incomplete types. */
927 return 0;
930 /* See if the language has special handling for this type. */
931 set = lang_hooks.get_alias_set (t);
932 if (set != -1)
933 return set;
935 /* There are no objects of FUNCTION_TYPE, so there's no point in
936 using up an alias set for them. (There are, of course, pointers
937 and references to functions, but that's different.) */
938 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
939 set = 0;
941 /* Unless the language specifies otherwise, let vector types alias
942 their components. This avoids some nasty type punning issues in
943 normal usage. And indeed lets vectors be treated more like an
944 array slice. */
945 else if (TREE_CODE (t) == VECTOR_TYPE)
946 set = get_alias_set (TREE_TYPE (t));
948 /* Unless the language specifies otherwise, treat array types the
949 same as their components. This avoids the asymmetry we get
950 through recording the components. Consider accessing a
951 character(kind=1) through a reference to a character(kind=1)[1:1].
952 Or consider if we want to assign integer(kind=4)[0:D.1387] and
953 integer(kind=4)[4] the same alias set or not.
954 Just be pragmatic here and make sure the array and its element
955 type get the same alias set assigned. */
956 else if (TREE_CODE (t) == ARRAY_TYPE
957 && (!TYPE_NONALIASED_COMPONENT (t)
958 || TYPE_STRUCTURAL_EQUALITY_P (t)))
959 set = get_alias_set (TREE_TYPE (t));
961 /* From the former common C and C++ langhook implementation:
963 Unfortunately, there is no canonical form of a pointer type.
964 In particular, if we have `typedef int I', then `int *', and
965 `I *' are different types. So, we have to pick a canonical
966 representative. We do this below.
968 Technically, this approach is actually more conservative that
969 it needs to be. In particular, `const int *' and `int *'
970 should be in different alias sets, according to the C and C++
971 standard, since their types are not the same, and so,
972 technically, an `int **' and `const int **' cannot point at
973 the same thing.
975 But, the standard is wrong. In particular, this code is
976 legal C++:
978 int *ip;
979 int **ipp = &ip;
980 const int* const* cipp = ipp;
981 And, it doesn't make sense for that to be legal unless you
982 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
983 the pointed-to types. This issue has been reported to the
984 C++ committee.
986 For this reason go to canonical type of the unqalified pointer type.
987 Until GCC 6 this code set all pointers sets to have alias set of
988 ptr_type_node but that is a bad idea, because it prevents disabiguations
989 in between pointers. For Firefox this accounts about 20% of all
990 disambiguations in the program. */
991 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
993 tree p;
994 auto_vec <bool, 8> reference;
996 /* Unnest all pointers and references.
997 We also want to make pointer to array/vector equivalent to pointer to
998 its element (see the reasoning above). Skip all those types, too. */
999 for (p = t; POINTER_TYPE_P (p)
1000 || (TREE_CODE (p) == ARRAY_TYPE
1001 && (!TYPE_NONALIASED_COMPONENT (p)
1002 || !COMPLETE_TYPE_P (p)
1003 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1004 || TREE_CODE (p) == VECTOR_TYPE;
1005 p = TREE_TYPE (p))
1007 /* Ada supports recusive pointers. Instead of doing recrusion check
1008 just give up once the preallocated space of 8 elements is up.
1009 In this case just punt to void * alias set. */
1010 if (reference.length () == 8)
1012 p = ptr_type_node;
1013 break;
1015 if (TREE_CODE (p) == REFERENCE_TYPE)
1016 /* In LTO we want languages that use references to be compatible
1017 with languages that use pointers. */
1018 reference.safe_push (true && !in_lto_p);
1019 if (TREE_CODE (p) == POINTER_TYPE)
1020 reference.safe_push (false);
1022 p = TYPE_MAIN_VARIANT (p);
1024 /* Make void * compatible with char * and also void **.
1025 Programs are commonly violating TBAA by this.
1027 We also make void * to conflict with every pointer
1028 (see record_component_aliases) and thus it is safe it to use it for
1029 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1030 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1031 set = get_alias_set (ptr_type_node);
1032 else
1034 /* Rebuild pointer type starting from canonical types using
1035 unqualified pointers and references only. This way all such
1036 pointers will have the same alias set and will conflict with
1037 each other.
1039 Most of time we already have pointers or references of a given type.
1040 If not we build new one just to be sure that if someone later
1041 (probably only middle-end can, as we should assign all alias
1042 classes only after finishing translation unit) builds the pointer
1043 type, the canonical type will match. */
1044 p = TYPE_CANONICAL (p);
1045 while (!reference.is_empty ())
1047 if (reference.pop ())
1048 p = build_reference_type (p);
1049 else
1050 p = build_pointer_type (p);
1051 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1052 /* build_pointer_type should always return the canonical type.
1053 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1054 them. Be sure that frontends do not glob canonical types of
1055 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1056 in all other cases. */
1057 gcc_checking_assert (!TYPE_CANONICAL (p)
1058 || p == TYPE_CANONICAL (p));
1061 /* Assign the alias set to both p and t.
1062 We can not call get_alias_set (p) here as that would trigger
1063 infinite recursion when p == t. In other cases it would just
1064 trigger unnecesary legwork of rebuilding the pointer again. */
1065 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1066 if (TYPE_ALIAS_SET_KNOWN_P (p))
1067 set = TYPE_ALIAS_SET (p);
1068 else
1070 set = new_alias_set ();
1071 TYPE_ALIAS_SET (p) = set;
1075 /* Alias set of ptr_type_node is special and serve as universal pointer which
1076 is TBAA compatible with every other pointer type. Be sure we have the
1077 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1078 of pointer types NULL. */
1079 else if (t == ptr_type_node)
1080 set = new_alias_set ();
1082 /* Otherwise make a new alias set for this type. */
1083 else
1085 /* Each canonical type gets its own alias set, so canonical types
1086 shouldn't form a tree. It doesn't really matter for types
1087 we handle specially above, so only check it where it possibly
1088 would result in a bogus alias set. */
1089 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1091 set = new_alias_set ();
1094 TYPE_ALIAS_SET (t) = set;
1096 /* If this is an aggregate type or a complex type, we must record any
1097 component aliasing information. */
1098 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1099 record_component_aliases (t);
1101 /* We treat pointer types specially in alias_set_subset_of. */
1102 if (POINTER_TYPE_P (t) && set)
1104 alias_set_entry *ase = get_alias_set_entry (set);
1105 if (!ase)
1106 ase = init_alias_set_entry (set);
1107 ase->is_pointer = true;
1108 ase->has_pointer = true;
1111 return set;
1114 /* Return a brand-new alias set. */
1116 alias_set_type
1117 new_alias_set (void)
1119 if (alias_sets == 0)
1120 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1121 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1122 return alias_sets->length () - 1;
1125 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1126 not everything that aliases SUPERSET also aliases SUBSET. For example,
1127 in C, a store to an `int' can alias a load of a structure containing an
1128 `int', and vice versa. But it can't alias a load of a 'double' member
1129 of the same structure. Here, the structure would be the SUPERSET and
1130 `int' the SUBSET. This relationship is also described in the comment at
1131 the beginning of this file.
1133 This function should be called only once per SUPERSET/SUBSET pair.
1135 It is illegal for SUPERSET to be zero; everything is implicitly a
1136 subset of alias set zero. */
1138 void
1139 record_alias_subset (alias_set_type superset, alias_set_type subset)
1141 alias_set_entry *superset_entry;
1142 alias_set_entry *subset_entry;
1144 /* It is possible in complex type situations for both sets to be the same,
1145 in which case we can ignore this operation. */
1146 if (superset == subset)
1147 return;
1149 gcc_assert (superset);
1151 superset_entry = get_alias_set_entry (superset);
1152 if (superset_entry == 0)
1154 /* Create an entry for the SUPERSET, so that we have a place to
1155 attach the SUBSET. */
1156 superset_entry = init_alias_set_entry (superset);
1159 if (subset == 0)
1160 superset_entry->has_zero_child = 1;
1161 else
1163 subset_entry = get_alias_set_entry (subset);
1164 if (!superset_entry->children)
1165 superset_entry->children
1166 = hash_map<alias_set_hash, int>::create_ggc (64);
1167 /* If there is an entry for the subset, enter all of its children
1168 (if they are not already present) as children of the SUPERSET. */
1169 if (subset_entry)
1171 if (subset_entry->has_zero_child)
1172 superset_entry->has_zero_child = true;
1173 if (subset_entry->has_pointer)
1174 superset_entry->has_pointer = true;
1176 if (subset_entry->children)
1178 hash_map<alias_set_hash, int>::iterator iter
1179 = subset_entry->children->begin ();
1180 for (; iter != subset_entry->children->end (); ++iter)
1181 superset_entry->children->put ((*iter).first, (*iter).second);
1185 /* Enter the SUBSET itself as a child of the SUPERSET. */
1186 superset_entry->children->put (subset, 0);
1190 /* Record that component types of TYPE, if any, are part of that type for
1191 aliasing purposes. For record types, we only record component types
1192 for fields that are not marked non-addressable. For array types, we
1193 only record the component type if it is not marked non-aliased. */
1195 void
1196 record_component_aliases (tree type)
1198 alias_set_type superset = get_alias_set (type);
1199 tree field;
1201 if (superset == 0)
1202 return;
1204 switch (TREE_CODE (type))
1206 case RECORD_TYPE:
1207 case UNION_TYPE:
1208 case QUAL_UNION_TYPE:
1209 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1210 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1212 /* LTO type merging does not make any difference between
1213 component pointer types. We may have
1215 struct foo {int *a;};
1217 as TYPE_CANONICAL of
1219 struct bar {float *a;};
1221 Because accesses to int * and float * do not alias, we would get
1222 false negative when accessing the same memory location by
1223 float ** and bar *. We thus record the canonical type as:
1225 struct {void *a;};
1227 void * is special cased and works as a universal pointer type.
1228 Accesses to it conflicts with accesses to any other pointer
1229 type. */
1230 tree t = TREE_TYPE (field);
1231 if (in_lto_p)
1233 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1234 element type and that type has to be normalized to void *,
1235 too, in the case it is a pointer. */
1236 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1238 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1239 t = TREE_TYPE (t);
1241 if (POINTER_TYPE_P (t))
1242 t = ptr_type_node;
1243 else if (flag_checking)
1244 gcc_checking_assert (get_alias_set (t)
1245 == get_alias_set (TREE_TYPE (field)));
1248 record_alias_subset (superset, get_alias_set (t));
1250 break;
1252 case COMPLEX_TYPE:
1253 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1254 break;
1256 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1257 element type. */
1259 default:
1260 break;
1264 /* Allocate an alias set for use in storing and reading from the varargs
1265 spill area. */
1267 static GTY(()) alias_set_type varargs_set = -1;
1269 alias_set_type
1270 get_varargs_alias_set (void)
1272 #if 1
1273 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1274 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1275 consistently use the varargs alias set for loads from the varargs
1276 area. So don't use it anywhere. */
1277 return 0;
1278 #else
1279 if (varargs_set == -1)
1280 varargs_set = new_alias_set ();
1282 return varargs_set;
1283 #endif
1286 /* Likewise, but used for the fixed portions of the frame, e.g., register
1287 save areas. */
1289 static GTY(()) alias_set_type frame_set = -1;
1291 alias_set_type
1292 get_frame_alias_set (void)
1294 if (frame_set == -1)
1295 frame_set = new_alias_set ();
1297 return frame_set;
1300 /* Create a new, unique base with id ID. */
1302 static rtx
1303 unique_base_value (HOST_WIDE_INT id)
1305 return gen_rtx_ADDRESS (Pmode, id);
1308 /* Return true if accesses based on any other base value cannot alias
1309 those based on X. */
1311 static bool
1312 unique_base_value_p (rtx x)
1314 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1317 /* Return true if X is known to be a base value. */
1319 static bool
1320 known_base_value_p (rtx x)
1322 switch (GET_CODE (x))
1324 case LABEL_REF:
1325 case SYMBOL_REF:
1326 return true;
1328 case ADDRESS:
1329 /* Arguments may or may not be bases; we don't know for sure. */
1330 return GET_MODE (x) != VOIDmode;
1332 default:
1333 return false;
1337 /* Inside SRC, the source of a SET, find a base address. */
1339 static rtx
1340 find_base_value (rtx src)
1342 unsigned int regno;
1344 #if defined (FIND_BASE_TERM)
1345 /* Try machine-dependent ways to find the base term. */
1346 src = FIND_BASE_TERM (src);
1347 #endif
1349 switch (GET_CODE (src))
1351 case SYMBOL_REF:
1352 case LABEL_REF:
1353 return src;
1355 case REG:
1356 regno = REGNO (src);
1357 /* At the start of a function, argument registers have known base
1358 values which may be lost later. Returning an ADDRESS
1359 expression here allows optimization based on argument values
1360 even when the argument registers are used for other purposes. */
1361 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1362 return new_reg_base_value[regno];
1364 /* If a pseudo has a known base value, return it. Do not do this
1365 for non-fixed hard regs since it can result in a circular
1366 dependency chain for registers which have values at function entry.
1368 The test above is not sufficient because the scheduler may move
1369 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1370 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1371 && regno < vec_safe_length (reg_base_value))
1373 /* If we're inside init_alias_analysis, use new_reg_base_value
1374 to reduce the number of relaxation iterations. */
1375 if (new_reg_base_value && new_reg_base_value[regno]
1376 && DF_REG_DEF_COUNT (regno) == 1)
1377 return new_reg_base_value[regno];
1379 if ((*reg_base_value)[regno])
1380 return (*reg_base_value)[regno];
1383 return 0;
1385 case MEM:
1386 /* Check for an argument passed in memory. Only record in the
1387 copying-arguments block; it is too hard to track changes
1388 otherwise. */
1389 if (copying_arguments
1390 && (XEXP (src, 0) == arg_pointer_rtx
1391 || (GET_CODE (XEXP (src, 0)) == PLUS
1392 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1393 return arg_base_value;
1394 return 0;
1396 case CONST:
1397 src = XEXP (src, 0);
1398 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1399 break;
1401 /* fall through */
1403 case PLUS:
1404 case MINUS:
1406 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1408 /* If either operand is a REG that is a known pointer, then it
1409 is the base. */
1410 if (REG_P (src_0) && REG_POINTER (src_0))
1411 return find_base_value (src_0);
1412 if (REG_P (src_1) && REG_POINTER (src_1))
1413 return find_base_value (src_1);
1415 /* If either operand is a REG, then see if we already have
1416 a known value for it. */
1417 if (REG_P (src_0))
1419 temp = find_base_value (src_0);
1420 if (temp != 0)
1421 src_0 = temp;
1424 if (REG_P (src_1))
1426 temp = find_base_value (src_1);
1427 if (temp!= 0)
1428 src_1 = temp;
1431 /* If either base is named object or a special address
1432 (like an argument or stack reference), then use it for the
1433 base term. */
1434 if (src_0 != 0 && known_base_value_p (src_0))
1435 return src_0;
1437 if (src_1 != 0 && known_base_value_p (src_1))
1438 return src_1;
1440 /* Guess which operand is the base address:
1441 If either operand is a symbol, then it is the base. If
1442 either operand is a CONST_INT, then the other is the base. */
1443 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1444 return find_base_value (src_0);
1445 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1446 return find_base_value (src_1);
1448 return 0;
1451 case LO_SUM:
1452 /* The standard form is (lo_sum reg sym) so look only at the
1453 second operand. */
1454 return find_base_value (XEXP (src, 1));
1456 case AND:
1457 /* If the second operand is constant set the base
1458 address to the first operand. */
1459 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1460 return find_base_value (XEXP (src, 0));
1461 return 0;
1463 case TRUNCATE:
1464 /* As we do not know which address space the pointer is referring to, we can
1465 handle this only if the target does not support different pointer or
1466 address modes depending on the address space. */
1467 if (!target_default_pointer_address_modes_p ())
1468 break;
1469 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1470 break;
1471 /* Fall through. */
1472 case HIGH:
1473 case PRE_INC:
1474 case PRE_DEC:
1475 case POST_INC:
1476 case POST_DEC:
1477 case PRE_MODIFY:
1478 case POST_MODIFY:
1479 return find_base_value (XEXP (src, 0));
1481 case ZERO_EXTEND:
1482 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1483 /* As we do not know which address space the pointer is referring to, we can
1484 handle this only if the target does not support different pointer or
1485 address modes depending on the address space. */
1486 if (!target_default_pointer_address_modes_p ())
1487 break;
1490 rtx temp = find_base_value (XEXP (src, 0));
1492 if (temp != 0 && CONSTANT_P (temp))
1493 temp = convert_memory_address (Pmode, temp);
1495 return temp;
1498 default:
1499 break;
1502 return 0;
1505 /* Called from init_alias_analysis indirectly through note_stores,
1506 or directly if DEST is a register with a REG_NOALIAS note attached.
1507 SET is null in the latter case. */
1509 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1510 register N has been set in this function. */
1511 static sbitmap reg_seen;
1513 static void
1514 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1516 unsigned regno;
1517 rtx src;
1518 int n;
1520 if (!REG_P (dest))
1521 return;
1523 regno = REGNO (dest);
1525 gcc_checking_assert (regno < reg_base_value->length ());
1527 n = REG_NREGS (dest);
1528 if (n != 1)
1530 while (--n >= 0)
1532 bitmap_set_bit (reg_seen, regno + n);
1533 new_reg_base_value[regno + n] = 0;
1535 return;
1538 if (set)
1540 /* A CLOBBER wipes out any old value but does not prevent a previously
1541 unset register from acquiring a base address (i.e. reg_seen is not
1542 set). */
1543 if (GET_CODE (set) == CLOBBER)
1545 new_reg_base_value[regno] = 0;
1546 return;
1548 src = SET_SRC (set);
1550 else
1552 /* There's a REG_NOALIAS note against DEST. */
1553 if (bitmap_bit_p (reg_seen, regno))
1555 new_reg_base_value[regno] = 0;
1556 return;
1558 bitmap_set_bit (reg_seen, regno);
1559 new_reg_base_value[regno] = unique_base_value (unique_id++);
1560 return;
1563 /* If this is not the first set of REGNO, see whether the new value
1564 is related to the old one. There are two cases of interest:
1566 (1) The register might be assigned an entirely new value
1567 that has the same base term as the original set.
1569 (2) The set might be a simple self-modification that
1570 cannot change REGNO's base value.
1572 If neither case holds, reject the original base value as invalid.
1573 Note that the following situation is not detected:
1575 extern int x, y; int *p = &x; p += (&y-&x);
1577 ANSI C does not allow computing the difference of addresses
1578 of distinct top level objects. */
1579 if (new_reg_base_value[regno] != 0
1580 && find_base_value (src) != new_reg_base_value[regno])
1581 switch (GET_CODE (src))
1583 case LO_SUM:
1584 case MINUS:
1585 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1586 new_reg_base_value[regno] = 0;
1587 break;
1588 case PLUS:
1589 /* If the value we add in the PLUS is also a valid base value,
1590 this might be the actual base value, and the original value
1591 an index. */
1593 rtx other = NULL_RTX;
1595 if (XEXP (src, 0) == dest)
1596 other = XEXP (src, 1);
1597 else if (XEXP (src, 1) == dest)
1598 other = XEXP (src, 0);
1600 if (! other || find_base_value (other))
1601 new_reg_base_value[regno] = 0;
1602 break;
1604 case AND:
1605 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1606 new_reg_base_value[regno] = 0;
1607 break;
1608 default:
1609 new_reg_base_value[regno] = 0;
1610 break;
1612 /* If this is the first set of a register, record the value. */
1613 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1614 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1615 new_reg_base_value[regno] = find_base_value (src);
1617 bitmap_set_bit (reg_seen, regno);
1620 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1621 using hard registers with non-null REG_BASE_VALUE for renaming. */
1623 get_reg_base_value (unsigned int regno)
1625 return (*reg_base_value)[regno];
1628 /* If a value is known for REGNO, return it. */
1631 get_reg_known_value (unsigned int regno)
1633 if (regno >= FIRST_PSEUDO_REGISTER)
1635 regno -= FIRST_PSEUDO_REGISTER;
1636 if (regno < vec_safe_length (reg_known_value))
1637 return (*reg_known_value)[regno];
1639 return NULL;
1642 /* Set it. */
1644 static void
1645 set_reg_known_value (unsigned int regno, rtx val)
1647 if (regno >= FIRST_PSEUDO_REGISTER)
1649 regno -= FIRST_PSEUDO_REGISTER;
1650 if (regno < vec_safe_length (reg_known_value))
1651 (*reg_known_value)[regno] = val;
1655 /* Similarly for reg_known_equiv_p. */
1657 bool
1658 get_reg_known_equiv_p (unsigned int regno)
1660 if (regno >= FIRST_PSEUDO_REGISTER)
1662 regno -= FIRST_PSEUDO_REGISTER;
1663 if (regno < vec_safe_length (reg_known_value))
1664 return bitmap_bit_p (reg_known_equiv_p, regno);
1666 return false;
1669 static void
1670 set_reg_known_equiv_p (unsigned int regno, bool val)
1672 if (regno >= FIRST_PSEUDO_REGISTER)
1674 regno -= FIRST_PSEUDO_REGISTER;
1675 if (regno < vec_safe_length (reg_known_value))
1677 if (val)
1678 bitmap_set_bit (reg_known_equiv_p, regno);
1679 else
1680 bitmap_clear_bit (reg_known_equiv_p, regno);
1686 /* Returns a canonical version of X, from the point of view alias
1687 analysis. (For example, if X is a MEM whose address is a register,
1688 and the register has a known value (say a SYMBOL_REF), then a MEM
1689 whose address is the SYMBOL_REF is returned.) */
1692 canon_rtx (rtx x)
1694 /* Recursively look for equivalences. */
1695 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1697 rtx t = get_reg_known_value (REGNO (x));
1698 if (t == x)
1699 return x;
1700 if (t)
1701 return canon_rtx (t);
1704 if (GET_CODE (x) == PLUS)
1706 rtx x0 = canon_rtx (XEXP (x, 0));
1707 rtx x1 = canon_rtx (XEXP (x, 1));
1709 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1711 if (CONST_INT_P (x0))
1712 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1713 else if (CONST_INT_P (x1))
1714 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1715 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1719 /* This gives us much better alias analysis when called from
1720 the loop optimizer. Note we want to leave the original
1721 MEM alone, but need to return the canonicalized MEM with
1722 all the flags with their original values. */
1723 else if (MEM_P (x))
1724 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1726 return x;
1729 /* Return 1 if X and Y are identical-looking rtx's.
1730 Expect that X and Y has been already canonicalized.
1732 We use the data in reg_known_value above to see if two registers with
1733 different numbers are, in fact, equivalent. */
1735 static int
1736 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1738 int i;
1739 int j;
1740 enum rtx_code code;
1741 const char *fmt;
1743 if (x == 0 && y == 0)
1744 return 1;
1745 if (x == 0 || y == 0)
1746 return 0;
1748 if (x == y)
1749 return 1;
1751 code = GET_CODE (x);
1752 /* Rtx's of different codes cannot be equal. */
1753 if (code != GET_CODE (y))
1754 return 0;
1756 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1757 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1759 if (GET_MODE (x) != GET_MODE (y))
1760 return 0;
1762 /* Some RTL can be compared without a recursive examination. */
1763 switch (code)
1765 case REG:
1766 return REGNO (x) == REGNO (y);
1768 case LABEL_REF:
1769 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1771 case SYMBOL_REF:
1772 return compare_base_symbol_refs (x, y) == 1;
1774 case ENTRY_VALUE:
1775 /* This is magic, don't go through canonicalization et al. */
1776 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1778 case VALUE:
1779 CASE_CONST_UNIQUE:
1780 /* Pointer equality guarantees equality for these nodes. */
1781 return 0;
1783 default:
1784 break;
1787 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1788 if (code == PLUS)
1789 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1790 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1791 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1792 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1793 /* For commutative operations, the RTX match if the operand match in any
1794 order. Also handle the simple binary and unary cases without a loop. */
1795 if (COMMUTATIVE_P (x))
1797 rtx xop0 = canon_rtx (XEXP (x, 0));
1798 rtx yop0 = canon_rtx (XEXP (y, 0));
1799 rtx yop1 = canon_rtx (XEXP (y, 1));
1801 return ((rtx_equal_for_memref_p (xop0, yop0)
1802 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1803 || (rtx_equal_for_memref_p (xop0, yop1)
1804 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1806 else if (NON_COMMUTATIVE_P (x))
1808 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1809 canon_rtx (XEXP (y, 0)))
1810 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1811 canon_rtx (XEXP (y, 1))));
1813 else if (UNARY_P (x))
1814 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1815 canon_rtx (XEXP (y, 0)));
1817 /* Compare the elements. If any pair of corresponding elements
1818 fail to match, return 0 for the whole things.
1820 Limit cases to types which actually appear in addresses. */
1822 fmt = GET_RTX_FORMAT (code);
1823 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1825 switch (fmt[i])
1827 case 'i':
1828 if (XINT (x, i) != XINT (y, i))
1829 return 0;
1830 break;
1832 case 'E':
1833 /* Two vectors must have the same length. */
1834 if (XVECLEN (x, i) != XVECLEN (y, i))
1835 return 0;
1837 /* And the corresponding elements must match. */
1838 for (j = 0; j < XVECLEN (x, i); j++)
1839 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1840 canon_rtx (XVECEXP (y, i, j))) == 0)
1841 return 0;
1842 break;
1844 case 'e':
1845 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1846 canon_rtx (XEXP (y, i))) == 0)
1847 return 0;
1848 break;
1850 /* This can happen for asm operands. */
1851 case 's':
1852 if (strcmp (XSTR (x, i), XSTR (y, i)))
1853 return 0;
1854 break;
1856 /* This can happen for an asm which clobbers memory. */
1857 case '0':
1858 break;
1860 /* It is believed that rtx's at this level will never
1861 contain anything but integers and other rtx's,
1862 except for within LABEL_REFs and SYMBOL_REFs. */
1863 default:
1864 gcc_unreachable ();
1867 return 1;
1870 static rtx
1871 find_base_term (rtx x)
1873 cselib_val *val;
1874 struct elt_loc_list *l, *f;
1875 rtx ret;
1877 #if defined (FIND_BASE_TERM)
1878 /* Try machine-dependent ways to find the base term. */
1879 x = FIND_BASE_TERM (x);
1880 #endif
1882 switch (GET_CODE (x))
1884 case REG:
1885 return REG_BASE_VALUE (x);
1887 case TRUNCATE:
1888 /* As we do not know which address space the pointer is referring to, we can
1889 handle this only if the target does not support different pointer or
1890 address modes depending on the address space. */
1891 if (!target_default_pointer_address_modes_p ())
1892 return 0;
1893 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1894 return 0;
1895 /* Fall through. */
1896 case HIGH:
1897 case PRE_INC:
1898 case PRE_DEC:
1899 case POST_INC:
1900 case POST_DEC:
1901 case PRE_MODIFY:
1902 case POST_MODIFY:
1903 return find_base_term (XEXP (x, 0));
1905 case ZERO_EXTEND:
1906 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1907 /* As we do not know which address space the pointer is referring to, we can
1908 handle this only if the target does not support different pointer or
1909 address modes depending on the address space. */
1910 if (!target_default_pointer_address_modes_p ())
1911 return 0;
1914 rtx temp = find_base_term (XEXP (x, 0));
1916 if (temp != 0 && CONSTANT_P (temp))
1917 temp = convert_memory_address (Pmode, temp);
1919 return temp;
1922 case VALUE:
1923 val = CSELIB_VAL_PTR (x);
1924 ret = NULL_RTX;
1926 if (!val)
1927 return ret;
1929 if (cselib_sp_based_value_p (val))
1930 return static_reg_base_value[STACK_POINTER_REGNUM];
1932 f = val->locs;
1933 /* Temporarily reset val->locs to avoid infinite recursion. */
1934 val->locs = NULL;
1936 for (l = f; l; l = l->next)
1937 if (GET_CODE (l->loc) == VALUE
1938 && CSELIB_VAL_PTR (l->loc)->locs
1939 && !CSELIB_VAL_PTR (l->loc)->locs->next
1940 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1941 continue;
1942 else if ((ret = find_base_term (l->loc)) != 0)
1943 break;
1945 val->locs = f;
1946 return ret;
1948 case LO_SUM:
1949 /* The standard form is (lo_sum reg sym) so look only at the
1950 second operand. */
1951 return find_base_term (XEXP (x, 1));
1953 case CONST:
1954 x = XEXP (x, 0);
1955 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1956 return 0;
1957 /* Fall through. */
1958 case PLUS:
1959 case MINUS:
1961 rtx tmp1 = XEXP (x, 0);
1962 rtx tmp2 = XEXP (x, 1);
1964 /* This is a little bit tricky since we have to determine which of
1965 the two operands represents the real base address. Otherwise this
1966 routine may return the index register instead of the base register.
1968 That may cause us to believe no aliasing was possible, when in
1969 fact aliasing is possible.
1971 We use a few simple tests to guess the base register. Additional
1972 tests can certainly be added. For example, if one of the operands
1973 is a shift or multiply, then it must be the index register and the
1974 other operand is the base register. */
1976 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1977 return find_base_term (tmp2);
1979 /* If either operand is known to be a pointer, then prefer it
1980 to determine the base term. */
1981 if (REG_P (tmp1) && REG_POINTER (tmp1))
1983 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1984 std::swap (tmp1, tmp2);
1985 /* If second argument is constant which has base term, prefer it
1986 over variable tmp1. See PR64025. */
1987 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1988 std::swap (tmp1, tmp2);
1990 /* Go ahead and find the base term for both operands. If either base
1991 term is from a pointer or is a named object or a special address
1992 (like an argument or stack reference), then use it for the
1993 base term. */
1994 rtx base = find_base_term (tmp1);
1995 if (base != NULL_RTX
1996 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1997 || known_base_value_p (base)))
1998 return base;
1999 base = find_base_term (tmp2);
2000 if (base != NULL_RTX
2001 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2002 || known_base_value_p (base)))
2003 return base;
2005 /* We could not determine which of the two operands was the
2006 base register and which was the index. So we can determine
2007 nothing from the base alias check. */
2008 return 0;
2011 case AND:
2012 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2013 return find_base_term (XEXP (x, 0));
2014 return 0;
2016 case SYMBOL_REF:
2017 case LABEL_REF:
2018 return x;
2020 default:
2021 return 0;
2025 /* Return true if accesses to address X may alias accesses based
2026 on the stack pointer. */
2028 bool
2029 may_be_sp_based_p (rtx x)
2031 rtx base = find_base_term (x);
2032 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2035 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2036 if they refer to different objects and -1 if we can not decide. */
2039 compare_base_decls (tree base1, tree base2)
2041 int ret;
2042 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2043 if (base1 == base2)
2044 return 1;
2046 /* Declarations of non-automatic variables may have aliases. All other
2047 decls are unique. */
2048 if (!decl_in_symtab_p (base1)
2049 || !decl_in_symtab_p (base2))
2050 return 0;
2052 /* Don't cause symbols to be inserted by the act of checking. */
2053 symtab_node *node1 = symtab_node::get (base1);
2054 if (!node1)
2055 return 0;
2056 symtab_node *node2 = symtab_node::get (base2);
2057 if (!node2)
2058 return 0;
2060 ret = node1->equal_address_to (node2, true);
2061 return ret;
2064 /* Same as compare_base_decls but for SYMBOL_REF. */
2066 static int
2067 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2069 tree x_decl = SYMBOL_REF_DECL (x_base);
2070 tree y_decl = SYMBOL_REF_DECL (y_base);
2071 bool binds_def = true;
2073 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2074 return 1;
2075 if (x_decl && y_decl)
2076 return compare_base_decls (x_decl, y_decl);
2077 if (x_decl || y_decl)
2079 if (!x_decl)
2081 std::swap (x_decl, y_decl);
2082 std::swap (x_base, y_base);
2084 /* We handle specially only section anchors and assume that other
2085 labels may overlap with user variables in an arbitrary way. */
2086 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2087 return -1;
2088 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2089 to ignore CONST_DECLs because they are readonly. */
2090 if (!VAR_P (x_decl)
2091 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2092 return 0;
2094 symtab_node *x_node = symtab_node::get_create (x_decl)
2095 ->ultimate_alias_target ();
2096 /* External variable can not be in section anchor. */
2097 if (!x_node->definition)
2098 return 0;
2099 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2100 /* If not in anchor, we can disambiguate. */
2101 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2102 return 0;
2104 /* We have an alias of anchored variable. If it can be interposed;
2105 we must assume it may or may not alias its anchor. */
2106 binds_def = decl_binds_to_current_def_p (x_decl);
2108 /* If we have variable in section anchor, we can compare by offset. */
2109 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2110 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2112 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2113 return 0;
2114 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2115 return binds_def ? 1 : -1;
2116 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2117 return -1;
2118 return 0;
2120 /* In general we assume that memory locations pointed to by different labels
2121 may overlap in undefined ways. */
2122 return -1;
2125 /* Return 0 if the addresses X and Y are known to point to different
2126 objects, 1 if they might be pointers to the same object. */
2128 static int
2129 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2130 machine_mode x_mode, machine_mode y_mode)
2132 /* If the address itself has no known base see if a known equivalent
2133 value has one. If either address still has no known base, nothing
2134 is known about aliasing. */
2135 if (x_base == 0)
2137 rtx x_c;
2139 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2140 return 1;
2142 x_base = find_base_term (x_c);
2143 if (x_base == 0)
2144 return 1;
2147 if (y_base == 0)
2149 rtx y_c;
2150 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2151 return 1;
2153 y_base = find_base_term (y_c);
2154 if (y_base == 0)
2155 return 1;
2158 /* If the base addresses are equal nothing is known about aliasing. */
2159 if (rtx_equal_p (x_base, y_base))
2160 return 1;
2162 /* The base addresses are different expressions. If they are not accessed
2163 via AND, there is no conflict. We can bring knowledge of object
2164 alignment into play here. For example, on alpha, "char a, b;" can
2165 alias one another, though "char a; long b;" cannot. AND addesses may
2166 implicitly alias surrounding objects; i.e. unaligned access in DImode
2167 via AND address can alias all surrounding object types except those
2168 with aligment 8 or higher. */
2169 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2170 return 1;
2171 if (GET_CODE (x) == AND
2172 && (!CONST_INT_P (XEXP (x, 1))
2173 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2174 return 1;
2175 if (GET_CODE (y) == AND
2176 && (!CONST_INT_P (XEXP (y, 1))
2177 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2178 return 1;
2180 /* Differing symbols not accessed via AND never alias. */
2181 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2182 return compare_base_symbol_refs (x_base, y_base) != 0;
2184 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2185 return 0;
2187 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2188 return 0;
2190 return 1;
2193 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2194 (or equal to) that of V. */
2196 static bool
2197 refs_newer_value_p (const_rtx expr, rtx v)
2199 int minuid = CSELIB_VAL_PTR (v)->uid;
2200 subrtx_iterator::array_type array;
2201 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2202 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2203 return true;
2204 return false;
2207 /* Convert the address X into something we can use. This is done by returning
2208 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2209 we call cselib to get a more useful rtx. */
2212 get_addr (rtx x)
2214 cselib_val *v;
2215 struct elt_loc_list *l;
2217 if (GET_CODE (x) != VALUE)
2219 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2220 && GET_CODE (XEXP (x, 0)) == VALUE
2221 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2223 rtx op0 = get_addr (XEXP (x, 0));
2224 if (op0 != XEXP (x, 0))
2226 if (GET_CODE (x) == PLUS
2227 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2228 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2229 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2230 op0, XEXP (x, 1));
2233 return x;
2235 v = CSELIB_VAL_PTR (x);
2236 if (v)
2238 bool have_equivs = cselib_have_permanent_equivalences ();
2239 if (have_equivs)
2240 v = canonical_cselib_val (v);
2241 for (l = v->locs; l; l = l->next)
2242 if (CONSTANT_P (l->loc))
2243 return l->loc;
2244 for (l = v->locs; l; l = l->next)
2245 if (!REG_P (l->loc) && !MEM_P (l->loc)
2246 /* Avoid infinite recursion when potentially dealing with
2247 var-tracking artificial equivalences, by skipping the
2248 equivalences themselves, and not choosing expressions
2249 that refer to newer VALUEs. */
2250 && (!have_equivs
2251 || (GET_CODE (l->loc) != VALUE
2252 && !refs_newer_value_p (l->loc, x))))
2253 return l->loc;
2254 if (have_equivs)
2256 for (l = v->locs; l; l = l->next)
2257 if (REG_P (l->loc)
2258 || (GET_CODE (l->loc) != VALUE
2259 && !refs_newer_value_p (l->loc, x)))
2260 return l->loc;
2261 /* Return the canonical value. */
2262 return v->val_rtx;
2264 if (v->locs)
2265 return v->locs->loc;
2267 return x;
2270 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2271 where SIZE is the size in bytes of the memory reference. If ADDR
2272 is not modified by the memory reference then ADDR is returned. */
2274 static rtx
2275 addr_side_effect_eval (rtx addr, int size, int n_refs)
2277 int offset = 0;
2279 switch (GET_CODE (addr))
2281 case PRE_INC:
2282 offset = (n_refs + 1) * size;
2283 break;
2284 case PRE_DEC:
2285 offset = -(n_refs + 1) * size;
2286 break;
2287 case POST_INC:
2288 offset = n_refs * size;
2289 break;
2290 case POST_DEC:
2291 offset = -n_refs * size;
2292 break;
2294 default:
2295 return addr;
2298 if (offset)
2299 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
2300 gen_int_mode (offset, GET_MODE (addr)));
2301 else
2302 addr = XEXP (addr, 0);
2303 addr = canon_rtx (addr);
2305 return addr;
2308 /* Return TRUE if an object X sized at XSIZE bytes and another object
2309 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2310 any of the sizes is zero, assume an overlap, otherwise use the
2311 absolute value of the sizes as the actual sizes. */
2313 static inline bool
2314 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2316 return (xsize == 0 || ysize == 0
2317 || (c >= 0
2318 ? (abs (xsize) > c)
2319 : (abs (ysize) > -c)));
2322 /* Return one if X and Y (memory addresses) reference the
2323 same location in memory or if the references overlap.
2324 Return zero if they do not overlap, else return
2325 minus one in which case they still might reference the same location.
2327 C is an offset accumulator. When
2328 C is nonzero, we are testing aliases between X and Y + C.
2329 XSIZE is the size in bytes of the X reference,
2330 similarly YSIZE is the size in bytes for Y.
2331 Expect that canon_rtx has been already called for X and Y.
2333 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2334 referenced (the reference was BLKmode), so make the most pessimistic
2335 assumptions.
2337 If XSIZE or YSIZE is negative, we may access memory outside the object
2338 being referenced as a side effect. This can happen when using AND to
2339 align memory references, as is done on the Alpha.
2341 Nice to notice that varying addresses cannot conflict with fp if no
2342 local variables had their addresses taken, but that's too hard now.
2344 ??? Contrary to the tree alias oracle this does not return
2345 one for X + non-constant and Y + non-constant when X and Y are equal.
2346 If that is fixed the TBAA hack for union type-punning can be removed. */
2348 static int
2349 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2351 if (GET_CODE (x) == VALUE)
2353 if (REG_P (y))
2355 struct elt_loc_list *l = NULL;
2356 if (CSELIB_VAL_PTR (x))
2357 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2358 l; l = l->next)
2359 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2360 break;
2361 if (l)
2362 x = y;
2363 else
2364 x = get_addr (x);
2366 /* Don't call get_addr if y is the same VALUE. */
2367 else if (x != y)
2368 x = get_addr (x);
2370 if (GET_CODE (y) == VALUE)
2372 if (REG_P (x))
2374 struct elt_loc_list *l = NULL;
2375 if (CSELIB_VAL_PTR (y))
2376 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2377 l; l = l->next)
2378 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2379 break;
2380 if (l)
2381 y = x;
2382 else
2383 y = get_addr (y);
2385 /* Don't call get_addr if x is the same VALUE. */
2386 else if (y != x)
2387 y = get_addr (y);
2389 if (GET_CODE (x) == HIGH)
2390 x = XEXP (x, 0);
2391 else if (GET_CODE (x) == LO_SUM)
2392 x = XEXP (x, 1);
2393 else
2394 x = addr_side_effect_eval (x, abs (xsize), 0);
2395 if (GET_CODE (y) == HIGH)
2396 y = XEXP (y, 0);
2397 else if (GET_CODE (y) == LO_SUM)
2398 y = XEXP (y, 1);
2399 else
2400 y = addr_side_effect_eval (y, abs (ysize), 0);
2402 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2404 int cmp = compare_base_symbol_refs (x,y);
2406 /* If both decls are the same, decide by offsets. */
2407 if (cmp == 1)
2408 return offset_overlap_p (c, xsize, ysize);
2409 /* Assume a potential overlap for symbolic addresses that went
2410 through alignment adjustments (i.e., that have negative
2411 sizes), because we can't know how far they are from each
2412 other. */
2413 if (xsize < 0 || ysize < 0)
2414 return -1;
2415 /* If decls are different or we know by offsets that there is no overlap,
2416 we win. */
2417 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2418 return 0;
2419 /* Decls may or may not be different and offsets overlap....*/
2420 return -1;
2422 else if (rtx_equal_for_memref_p (x, y))
2424 return offset_overlap_p (c, xsize, ysize);
2427 /* This code used to check for conflicts involving stack references and
2428 globals but the base address alias code now handles these cases. */
2430 if (GET_CODE (x) == PLUS)
2432 /* The fact that X is canonicalized means that this
2433 PLUS rtx is canonicalized. */
2434 rtx x0 = XEXP (x, 0);
2435 rtx x1 = XEXP (x, 1);
2437 /* However, VALUEs might end up in different positions even in
2438 canonical PLUSes. Comparing their addresses is enough. */
2439 if (x0 == y)
2440 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2441 else if (x1 == y)
2442 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2444 if (GET_CODE (y) == PLUS)
2446 /* The fact that Y is canonicalized means that this
2447 PLUS rtx is canonicalized. */
2448 rtx y0 = XEXP (y, 0);
2449 rtx y1 = XEXP (y, 1);
2451 if (x0 == y1)
2452 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2453 if (x1 == y0)
2454 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2456 if (rtx_equal_for_memref_p (x1, y1))
2457 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2458 if (rtx_equal_for_memref_p (x0, y0))
2459 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2460 if (CONST_INT_P (x1))
2462 if (CONST_INT_P (y1))
2463 return memrefs_conflict_p (xsize, x0, ysize, y0,
2464 c - INTVAL (x1) + INTVAL (y1));
2465 else
2466 return memrefs_conflict_p (xsize, x0, ysize, y,
2467 c - INTVAL (x1));
2469 else if (CONST_INT_P (y1))
2470 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2472 return -1;
2474 else if (CONST_INT_P (x1))
2475 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2477 else if (GET_CODE (y) == PLUS)
2479 /* The fact that Y is canonicalized means that this
2480 PLUS rtx is canonicalized. */
2481 rtx y0 = XEXP (y, 0);
2482 rtx y1 = XEXP (y, 1);
2484 if (x == y0)
2485 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2486 if (x == y1)
2487 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2489 if (CONST_INT_P (y1))
2490 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2491 else
2492 return -1;
2495 if (GET_CODE (x) == GET_CODE (y))
2496 switch (GET_CODE (x))
2498 case MULT:
2500 /* Handle cases where we expect the second operands to be the
2501 same, and check only whether the first operand would conflict
2502 or not. */
2503 rtx x0, y0;
2504 rtx x1 = canon_rtx (XEXP (x, 1));
2505 rtx y1 = canon_rtx (XEXP (y, 1));
2506 if (! rtx_equal_for_memref_p (x1, y1))
2507 return -1;
2508 x0 = canon_rtx (XEXP (x, 0));
2509 y0 = canon_rtx (XEXP (y, 0));
2510 if (rtx_equal_for_memref_p (x0, y0))
2511 return offset_overlap_p (c, xsize, ysize);
2513 /* Can't properly adjust our sizes. */
2514 if (!CONST_INT_P (x1))
2515 return -1;
2516 xsize /= INTVAL (x1);
2517 ysize /= INTVAL (x1);
2518 c /= INTVAL (x1);
2519 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2522 default:
2523 break;
2526 /* Deal with alignment ANDs by adjusting offset and size so as to
2527 cover the maximum range, without taking any previously known
2528 alignment into account. Make a size negative after such an
2529 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2530 assume a potential overlap, because they may end up in contiguous
2531 memory locations and the stricter-alignment access may span over
2532 part of both. */
2533 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2535 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2536 unsigned HOST_WIDE_INT uc = sc;
2537 if (sc < 0 && pow2_or_zerop (-uc))
2539 if (xsize > 0)
2540 xsize = -xsize;
2541 if (xsize)
2542 xsize += sc + 1;
2543 c -= sc + 1;
2544 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2545 ysize, y, c);
2548 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2550 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2551 unsigned HOST_WIDE_INT uc = sc;
2552 if (sc < 0 && pow2_or_zerop (-uc))
2554 if (ysize > 0)
2555 ysize = -ysize;
2556 if (ysize)
2557 ysize += sc + 1;
2558 c += sc + 1;
2559 return memrefs_conflict_p (xsize, x,
2560 ysize, canon_rtx (XEXP (y, 0)), c);
2564 if (CONSTANT_P (x))
2566 if (CONST_INT_P (x) && CONST_INT_P (y))
2568 c += (INTVAL (y) - INTVAL (x));
2569 return offset_overlap_p (c, xsize, ysize);
2572 if (GET_CODE (x) == CONST)
2574 if (GET_CODE (y) == CONST)
2575 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2576 ysize, canon_rtx (XEXP (y, 0)), c);
2577 else
2578 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2579 ysize, y, c);
2581 if (GET_CODE (y) == CONST)
2582 return memrefs_conflict_p (xsize, x, ysize,
2583 canon_rtx (XEXP (y, 0)), c);
2585 /* Assume a potential overlap for symbolic addresses that went
2586 through alignment adjustments (i.e., that have negative
2587 sizes), because we can't know how far they are from each
2588 other. */
2589 if (CONSTANT_P (y))
2590 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2592 return -1;
2595 return -1;
2598 /* Functions to compute memory dependencies.
2600 Since we process the insns in execution order, we can build tables
2601 to keep track of what registers are fixed (and not aliased), what registers
2602 are varying in known ways, and what registers are varying in unknown
2603 ways.
2605 If both memory references are volatile, then there must always be a
2606 dependence between the two references, since their order can not be
2607 changed. A volatile and non-volatile reference can be interchanged
2608 though.
2610 We also must allow AND addresses, because they may generate accesses
2611 outside the object being referenced. This is used to generate aligned
2612 addresses from unaligned addresses, for instance, the alpha
2613 storeqi_unaligned pattern. */
2615 /* Read dependence: X is read after read in MEM takes place. There can
2616 only be a dependence here if both reads are volatile, or if either is
2617 an explicit barrier. */
2620 read_dependence (const_rtx mem, const_rtx x)
2622 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2623 return true;
2624 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2625 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2626 return true;
2627 return false;
2630 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2632 static tree
2633 decl_for_component_ref (tree x)
2637 x = TREE_OPERAND (x, 0);
2639 while (x && TREE_CODE (x) == COMPONENT_REF);
2641 return x && DECL_P (x) ? x : NULL_TREE;
2644 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2645 for the offset of the field reference. *KNOWN_P says whether the
2646 offset is known. */
2648 static void
2649 adjust_offset_for_component_ref (tree x, bool *known_p,
2650 HOST_WIDE_INT *offset)
2652 if (!*known_p)
2653 return;
2656 tree xoffset = component_ref_field_offset (x);
2657 tree field = TREE_OPERAND (x, 1);
2658 if (TREE_CODE (xoffset) != INTEGER_CST)
2660 *known_p = false;
2661 return;
2664 offset_int woffset
2665 = (wi::to_offset (xoffset)
2666 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2667 >> LOG2_BITS_PER_UNIT));
2668 if (!wi::fits_uhwi_p (woffset))
2670 *known_p = false;
2671 return;
2673 *offset += woffset.to_uhwi ();
2675 x = TREE_OPERAND (x, 0);
2677 while (x && TREE_CODE (x) == COMPONENT_REF);
2680 /* Return nonzero if we can determine the exprs corresponding to memrefs
2681 X and Y and they do not overlap.
2682 If LOOP_VARIANT is set, skip offset-based disambiguation */
2685 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2687 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2688 rtx rtlx, rtly;
2689 rtx basex, basey;
2690 bool moffsetx_known_p, moffsety_known_p;
2691 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2692 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
2694 /* Unless both have exprs, we can't tell anything. */
2695 if (exprx == 0 || expry == 0)
2696 return 0;
2698 /* For spill-slot accesses make sure we have valid offsets. */
2699 if ((exprx == get_spill_slot_decl (false)
2700 && ! MEM_OFFSET_KNOWN_P (x))
2701 || (expry == get_spill_slot_decl (false)
2702 && ! MEM_OFFSET_KNOWN_P (y)))
2703 return 0;
2705 /* If the field reference test failed, look at the DECLs involved. */
2706 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2707 if (moffsetx_known_p)
2708 moffsetx = MEM_OFFSET (x);
2709 if (TREE_CODE (exprx) == COMPONENT_REF)
2711 tree t = decl_for_component_ref (exprx);
2712 if (! t)
2713 return 0;
2714 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2715 exprx = t;
2718 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2719 if (moffsety_known_p)
2720 moffsety = MEM_OFFSET (y);
2721 if (TREE_CODE (expry) == COMPONENT_REF)
2723 tree t = decl_for_component_ref (expry);
2724 if (! t)
2725 return 0;
2726 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2727 expry = t;
2730 if (! DECL_P (exprx) || ! DECL_P (expry))
2731 return 0;
2733 /* If we refer to different gimple registers, or one gimple register
2734 and one non-gimple-register, we know they can't overlap. First,
2735 gimple registers don't have their addresses taken. Now, there
2736 could be more than one stack slot for (different versions of) the
2737 same gimple register, but we can presumably tell they don't
2738 overlap based on offsets from stack base addresses elsewhere.
2739 It's important that we don't proceed to DECL_RTL, because gimple
2740 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2741 able to do anything about them since no SSA information will have
2742 remained to guide it. */
2743 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2744 return exprx != expry
2745 || (moffsetx_known_p && moffsety_known_p
2746 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2747 && !offset_overlap_p (moffsety - moffsetx,
2748 MEM_SIZE (x), MEM_SIZE (y)));
2750 /* With invalid code we can end up storing into the constant pool.
2751 Bail out to avoid ICEing when creating RTL for this.
2752 See gfortran.dg/lto/20091028-2_0.f90. */
2753 if (TREE_CODE (exprx) == CONST_DECL
2754 || TREE_CODE (expry) == CONST_DECL)
2755 return 1;
2757 rtlx = DECL_RTL (exprx);
2758 rtly = DECL_RTL (expry);
2760 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2761 can't overlap unless they are the same because we never reuse that part
2762 of the stack frame used for locals for spilled pseudos. */
2763 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2764 && ! rtx_equal_p (rtlx, rtly))
2765 return 1;
2767 /* If we have MEMs referring to different address spaces (which can
2768 potentially overlap), we cannot easily tell from the addresses
2769 whether the references overlap. */
2770 if (MEM_P (rtlx) && MEM_P (rtly)
2771 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2772 return 0;
2774 /* Get the base and offsets of both decls. If either is a register, we
2775 know both are and are the same, so use that as the base. The only
2776 we can avoid overlap is if we can deduce that they are nonoverlapping
2777 pieces of that decl, which is very rare. */
2778 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2779 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2780 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2782 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2783 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2784 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2786 /* If the bases are different, we know they do not overlap if both
2787 are constants or if one is a constant and the other a pointer into the
2788 stack frame. Otherwise a different base means we can't tell if they
2789 overlap or not. */
2790 if (compare_base_decls (exprx, expry) == 0)
2791 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2792 || (CONSTANT_P (basex) && REG_P (basey)
2793 && REGNO_PTR_FRAME_P (REGNO (basey)))
2794 || (CONSTANT_P (basey) && REG_P (basex)
2795 && REGNO_PTR_FRAME_P (REGNO (basex))));
2797 /* Offset based disambiguation not appropriate for loop invariant */
2798 if (loop_invariant)
2799 return 0;
2801 /* Offset based disambiguation is OK even if we do not know that the
2802 declarations are necessarily different
2803 (i.e. compare_base_decls (exprx, expry) == -1) */
2805 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2806 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2807 : -1);
2808 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2809 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2810 : -1);
2812 /* If we have an offset for either memref, it can update the values computed
2813 above. */
2814 if (moffsetx_known_p)
2815 offsetx += moffsetx, sizex -= moffsetx;
2816 if (moffsety_known_p)
2817 offsety += moffsety, sizey -= moffsety;
2819 /* If a memref has both a size and an offset, we can use the smaller size.
2820 We can't do this if the offset isn't known because we must view this
2821 memref as being anywhere inside the DECL's MEM. */
2822 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2823 sizex = MEM_SIZE (x);
2824 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2825 sizey = MEM_SIZE (y);
2827 /* Put the values of the memref with the lower offset in X's values. */
2828 if (offsetx > offsety)
2830 std::swap (offsetx, offsety);
2831 std::swap (sizex, sizey);
2834 /* If we don't know the size of the lower-offset value, we can't tell
2835 if they conflict. Otherwise, we do the test. */
2836 return sizex >= 0 && offsety >= offsetx + sizex;
2839 /* Helper for true_dependence and canon_true_dependence.
2840 Checks for true dependence: X is read after store in MEM takes place.
2842 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2843 NULL_RTX, and the canonical addresses of MEM and X are both computed
2844 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2846 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2848 Returns 1 if there is a true dependence, 0 otherwise. */
2850 static int
2851 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2852 const_rtx x, rtx x_addr, bool mem_canonicalized)
2854 rtx true_mem_addr;
2855 rtx base;
2856 int ret;
2858 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2859 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2861 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2862 return 1;
2864 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2865 This is used in epilogue deallocation functions, and in cselib. */
2866 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2867 return 1;
2868 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2869 return 1;
2870 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2871 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2872 return 1;
2874 if (! x_addr)
2875 x_addr = XEXP (x, 0);
2876 x_addr = get_addr (x_addr);
2878 if (! mem_addr)
2880 mem_addr = XEXP (mem, 0);
2881 if (mem_mode == VOIDmode)
2882 mem_mode = GET_MODE (mem);
2884 true_mem_addr = get_addr (mem_addr);
2886 /* Read-only memory is by definition never modified, and therefore can't
2887 conflict with anything. However, don't assume anything when AND
2888 addresses are involved and leave to the code below to determine
2889 dependence. We don't expect to find read-only set on MEM, but
2890 stupid user tricks can produce them, so don't die. */
2891 if (MEM_READONLY_P (x)
2892 && GET_CODE (x_addr) != AND
2893 && GET_CODE (true_mem_addr) != AND)
2894 return 0;
2896 /* If we have MEMs referring to different address spaces (which can
2897 potentially overlap), we cannot easily tell from the addresses
2898 whether the references overlap. */
2899 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2900 return 1;
2902 base = find_base_term (x_addr);
2903 if (base && (GET_CODE (base) == LABEL_REF
2904 || (GET_CODE (base) == SYMBOL_REF
2905 && CONSTANT_POOL_ADDRESS_P (base))))
2906 return 0;
2908 rtx mem_base = find_base_term (true_mem_addr);
2909 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2910 GET_MODE (x), mem_mode))
2911 return 0;
2913 x_addr = canon_rtx (x_addr);
2914 if (!mem_canonicalized)
2915 mem_addr = canon_rtx (true_mem_addr);
2917 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2918 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2919 return ret;
2921 if (mems_in_disjoint_alias_sets_p (x, mem))
2922 return 0;
2924 if (nonoverlapping_memrefs_p (mem, x, false))
2925 return 0;
2927 return rtx_refs_may_alias_p (x, mem, true);
2930 /* True dependence: X is read after store in MEM takes place. */
2933 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2935 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2936 x, NULL_RTX, /*mem_canonicalized=*/false);
2939 /* Canonical true dependence: X is read after store in MEM takes place.
2940 Variant of true_dependence which assumes MEM has already been
2941 canonicalized (hence we no longer do that here).
2942 The mem_addr argument has been added, since true_dependence_1 computed
2943 this value prior to canonicalizing. */
2946 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2947 const_rtx x, rtx x_addr)
2949 return true_dependence_1 (mem, mem_mode, mem_addr,
2950 x, x_addr, /*mem_canonicalized=*/true);
2953 /* Returns nonzero if a write to X might alias a previous read from
2954 (or, if WRITEP is true, a write to) MEM.
2955 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2956 and X_MODE the mode for that access.
2957 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2959 static int
2960 write_dependence_p (const_rtx mem,
2961 const_rtx x, machine_mode x_mode, rtx x_addr,
2962 bool mem_canonicalized, bool x_canonicalized, bool writep)
2964 rtx mem_addr;
2965 rtx true_mem_addr, true_x_addr;
2966 rtx base;
2967 int ret;
2969 gcc_checking_assert (x_canonicalized
2970 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2971 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2973 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2974 return 1;
2976 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2977 This is used in epilogue deallocation functions. */
2978 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2979 return 1;
2980 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2981 return 1;
2982 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2983 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2984 return 1;
2986 if (!x_addr)
2987 x_addr = XEXP (x, 0);
2988 true_x_addr = get_addr (x_addr);
2990 mem_addr = XEXP (mem, 0);
2991 true_mem_addr = get_addr (mem_addr);
2993 /* A read from read-only memory can't conflict with read-write memory.
2994 Don't assume anything when AND addresses are involved and leave to
2995 the code below to determine dependence. */
2996 if (!writep
2997 && MEM_READONLY_P (mem)
2998 && GET_CODE (true_x_addr) != AND
2999 && GET_CODE (true_mem_addr) != AND)
3000 return 0;
3002 /* If we have MEMs referring to different address spaces (which can
3003 potentially overlap), we cannot easily tell from the addresses
3004 whether the references overlap. */
3005 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3006 return 1;
3008 base = find_base_term (true_mem_addr);
3009 if (! writep
3010 && base
3011 && (GET_CODE (base) == LABEL_REF
3012 || (GET_CODE (base) == SYMBOL_REF
3013 && CONSTANT_POOL_ADDRESS_P (base))))
3014 return 0;
3016 rtx x_base = find_base_term (true_x_addr);
3017 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3018 GET_MODE (x), GET_MODE (mem)))
3019 return 0;
3021 if (!x_canonicalized)
3023 x_addr = canon_rtx (true_x_addr);
3024 x_mode = GET_MODE (x);
3026 if (!mem_canonicalized)
3027 mem_addr = canon_rtx (true_mem_addr);
3029 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3030 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3031 return ret;
3033 if (nonoverlapping_memrefs_p (x, mem, false))
3034 return 0;
3036 return rtx_refs_may_alias_p (x, mem, false);
3039 /* Anti dependence: X is written after read in MEM takes place. */
3042 anti_dependence (const_rtx mem, const_rtx x)
3044 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3045 /*mem_canonicalized=*/false,
3046 /*x_canonicalized*/false, /*writep=*/false);
3049 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3050 Also, consider X in X_MODE (which might be from an enclosing
3051 STRICT_LOW_PART / ZERO_EXTRACT).
3052 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3055 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3056 const_rtx x, machine_mode x_mode, rtx x_addr)
3058 return write_dependence_p (mem, x, x_mode, x_addr,
3059 mem_canonicalized, /*x_canonicalized=*/true,
3060 /*writep=*/false);
3063 /* Output dependence: X is written after store in MEM takes place. */
3066 output_dependence (const_rtx mem, const_rtx x)
3068 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3069 /*mem_canonicalized=*/false,
3070 /*x_canonicalized*/false, /*writep=*/true);
3073 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3074 Also, consider X in X_MODE (which might be from an enclosing
3075 STRICT_LOW_PART / ZERO_EXTRACT).
3076 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3079 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3080 const_rtx x, machine_mode x_mode, rtx x_addr)
3082 return write_dependence_p (mem, x, x_mode, x_addr,
3083 mem_canonicalized, /*x_canonicalized=*/true,
3084 /*writep=*/true);
3089 /* Check whether X may be aliased with MEM. Don't do offset-based
3090 memory disambiguation & TBAA. */
3092 may_alias_p (const_rtx mem, const_rtx x)
3094 rtx x_addr, mem_addr;
3096 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3097 return 1;
3099 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3100 This is used in epilogue deallocation functions. */
3101 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3102 return 1;
3103 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3104 return 1;
3105 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3106 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3107 return 1;
3109 x_addr = XEXP (x, 0);
3110 x_addr = get_addr (x_addr);
3112 mem_addr = XEXP (mem, 0);
3113 mem_addr = get_addr (mem_addr);
3115 /* Read-only memory is by definition never modified, and therefore can't
3116 conflict with anything. However, don't assume anything when AND
3117 addresses are involved and leave to the code below to determine
3118 dependence. We don't expect to find read-only set on MEM, but
3119 stupid user tricks can produce them, so don't die. */
3120 if (MEM_READONLY_P (x)
3121 && GET_CODE (x_addr) != AND
3122 && GET_CODE (mem_addr) != AND)
3123 return 0;
3125 /* If we have MEMs referring to different address spaces (which can
3126 potentially overlap), we cannot easily tell from the addresses
3127 whether the references overlap. */
3128 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3129 return 1;
3131 rtx x_base = find_base_term (x_addr);
3132 rtx mem_base = find_base_term (mem_addr);
3133 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3134 GET_MODE (x), GET_MODE (mem_addr)))
3135 return 0;
3137 if (nonoverlapping_memrefs_p (mem, x, true))
3138 return 0;
3140 /* TBAA not valid for loop_invarint */
3141 return rtx_refs_may_alias_p (x, mem, false);
3144 void
3145 init_alias_target (void)
3147 int i;
3149 if (!arg_base_value)
3150 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3152 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3154 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3155 /* Check whether this register can hold an incoming pointer
3156 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3157 numbers, so translate if necessary due to register windows. */
3158 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3159 && HARD_REGNO_MODE_OK (i, Pmode))
3160 static_reg_base_value[i] = arg_base_value;
3162 static_reg_base_value[STACK_POINTER_REGNUM]
3163 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3164 static_reg_base_value[ARG_POINTER_REGNUM]
3165 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3166 static_reg_base_value[FRAME_POINTER_REGNUM]
3167 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3168 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3169 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3170 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3173 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3174 to be memory reference. */
3175 static bool memory_modified;
3176 static void
3177 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3179 if (MEM_P (x))
3181 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3182 memory_modified = true;
3187 /* Return true when INSN possibly modify memory contents of MEM
3188 (i.e. address can be modified). */
3189 bool
3190 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3192 if (!INSN_P (insn))
3193 return false;
3194 memory_modified = false;
3195 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3196 return memory_modified;
3199 /* Return TRUE if the destination of a set is rtx identical to
3200 ITEM. */
3201 static inline bool
3202 set_dest_equal_p (const_rtx set, const_rtx item)
3204 rtx dest = SET_DEST (set);
3205 return rtx_equal_p (dest, item);
3208 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3209 array. */
3211 void
3212 init_alias_analysis (void)
3214 unsigned int maxreg = max_reg_num ();
3215 int changed, pass;
3216 int i;
3217 unsigned int ui;
3218 rtx_insn *insn;
3219 rtx val;
3220 int rpo_cnt;
3221 int *rpo;
3223 timevar_push (TV_ALIAS_ANALYSIS);
3225 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3226 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3227 bitmap_clear (reg_known_equiv_p);
3229 /* If we have memory allocated from the previous run, use it. */
3230 if (old_reg_base_value)
3231 reg_base_value = old_reg_base_value;
3233 if (reg_base_value)
3234 reg_base_value->truncate (0);
3236 vec_safe_grow_cleared (reg_base_value, maxreg);
3238 new_reg_base_value = XNEWVEC (rtx, maxreg);
3239 reg_seen = sbitmap_alloc (maxreg);
3241 /* The basic idea is that each pass through this loop will use the
3242 "constant" information from the previous pass to propagate alias
3243 information through another level of assignments.
3245 The propagation is done on the CFG in reverse post-order, to propagate
3246 things forward as far as possible in each iteration.
3248 This could get expensive if the assignment chains are long. Maybe
3249 we should throttle the number of iterations, possibly based on
3250 the optimization level or flag_expensive_optimizations.
3252 We could propagate more information in the first pass by making use
3253 of DF_REG_DEF_COUNT to determine immediately that the alias information
3254 for a pseudo is "constant".
3256 A program with an uninitialized variable can cause an infinite loop
3257 here. Instead of doing a full dataflow analysis to detect such problems
3258 we just cap the number of iterations for the loop.
3260 The state of the arrays for the set chain in question does not matter
3261 since the program has undefined behavior. */
3263 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3264 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3266 /* The prologue/epilogue insns are not threaded onto the
3267 insn chain until after reload has completed. Thus,
3268 there is no sense wasting time checking if INSN is in
3269 the prologue/epilogue until after reload has completed. */
3270 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3271 || targetm.have_epilogue ())
3272 && reload_completed);
3274 pass = 0;
3277 /* Assume nothing will change this iteration of the loop. */
3278 changed = 0;
3280 /* We want to assign the same IDs each iteration of this loop, so
3281 start counting from one each iteration of the loop. */
3282 unique_id = 1;
3284 /* We're at the start of the function each iteration through the
3285 loop, so we're copying arguments. */
3286 copying_arguments = true;
3288 /* Wipe the potential alias information clean for this pass. */
3289 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3291 /* Wipe the reg_seen array clean. */
3292 bitmap_clear (reg_seen);
3294 /* Initialize the alias information for this pass. */
3295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3296 if (static_reg_base_value[i])
3298 new_reg_base_value[i] = static_reg_base_value[i];
3299 bitmap_set_bit (reg_seen, i);
3302 /* Walk the insns adding values to the new_reg_base_value array. */
3303 for (i = 0; i < rpo_cnt; i++)
3305 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3306 FOR_BB_INSNS (bb, insn)
3308 if (NONDEBUG_INSN_P (insn))
3310 rtx note, set;
3312 if (could_be_prologue_epilogue
3313 && prologue_epilogue_contains (insn))
3314 continue;
3316 /* If this insn has a noalias note, process it, Otherwise,
3317 scan for sets. A simple set will have no side effects
3318 which could change the base value of any other register. */
3320 if (GET_CODE (PATTERN (insn)) == SET
3321 && REG_NOTES (insn) != 0
3322 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3323 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3324 else
3325 note_stores (PATTERN (insn), record_set, NULL);
3327 set = single_set (insn);
3329 if (set != 0
3330 && REG_P (SET_DEST (set))
3331 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3333 unsigned int regno = REGNO (SET_DEST (set));
3334 rtx src = SET_SRC (set);
3335 rtx t;
3337 note = find_reg_equal_equiv_note (insn);
3338 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3339 && DF_REG_DEF_COUNT (regno) != 1)
3340 note = NULL_RTX;
3342 if (note != NULL_RTX
3343 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3344 && ! rtx_varies_p (XEXP (note, 0), 1)
3345 && ! reg_overlap_mentioned_p (SET_DEST (set),
3346 XEXP (note, 0)))
3348 set_reg_known_value (regno, XEXP (note, 0));
3349 set_reg_known_equiv_p (regno,
3350 REG_NOTE_KIND (note) == REG_EQUIV);
3352 else if (DF_REG_DEF_COUNT (regno) == 1
3353 && GET_CODE (src) == PLUS
3354 && REG_P (XEXP (src, 0))
3355 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3356 && CONST_INT_P (XEXP (src, 1)))
3358 t = plus_constant (GET_MODE (src), t,
3359 INTVAL (XEXP (src, 1)));
3360 set_reg_known_value (regno, t);
3361 set_reg_known_equiv_p (regno, false);
3363 else if (DF_REG_DEF_COUNT (regno) == 1
3364 && ! rtx_varies_p (src, 1))
3366 set_reg_known_value (regno, src);
3367 set_reg_known_equiv_p (regno, false);
3371 else if (NOTE_P (insn)
3372 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3373 copying_arguments = false;
3377 /* Now propagate values from new_reg_base_value to reg_base_value. */
3378 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3380 for (ui = 0; ui < maxreg; ui++)
3382 if (new_reg_base_value[ui]
3383 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3384 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3386 (*reg_base_value)[ui] = new_reg_base_value[ui];
3387 changed = 1;
3391 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3392 XDELETEVEC (rpo);
3394 /* Fill in the remaining entries. */
3395 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3397 int regno = i + FIRST_PSEUDO_REGISTER;
3398 if (! val)
3399 set_reg_known_value (regno, regno_reg_rtx[regno]);
3402 /* Clean up. */
3403 free (new_reg_base_value);
3404 new_reg_base_value = 0;
3405 sbitmap_free (reg_seen);
3406 reg_seen = 0;
3407 timevar_pop (TV_ALIAS_ANALYSIS);
3410 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3411 Special API for var-tracking pass purposes. */
3413 void
3414 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3416 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3419 void
3420 end_alias_analysis (void)
3422 old_reg_base_value = reg_base_value;
3423 vec_free (reg_known_value);
3424 sbitmap_free (reg_known_equiv_p);
3427 void
3428 dump_alias_stats_in_alias_c (FILE *s)
3430 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3431 " %llu are in alias set 0\n"
3432 " %llu queries asked about the same object\n"
3433 " %llu queries asked about the same alias set\n"
3434 " %llu access volatile\n"
3435 " %llu are dependent in the DAG\n"
3436 " %llu are aritificially in conflict with void *\n",
3437 alias_stats.num_disambiguated,
3438 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3439 + alias_stats.num_same_objects + alias_stats.num_volatile
3440 + alias_stats.num_dag + alias_stats.num_disambiguated
3441 + alias_stats.num_universal,
3442 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3443 alias_stats.num_same_objects, alias_stats.num_volatile,
3444 alias_stats.num_dag, alias_stats.num_universal);
3446 #include "gt-alias.h"